WO2015050359A1 - Method for transmitting and receiving downlink control channel, and apparatus therefor - Google Patents

Method for transmitting and receiving downlink control channel, and apparatus therefor Download PDF

Info

Publication number
WO2015050359A1
WO2015050359A1 PCT/KR2014/009184 KR2014009184W WO2015050359A1 WO 2015050359 A1 WO2015050359 A1 WO 2015050359A1 KR 2014009184 W KR2014009184 W KR 2014009184W WO 2015050359 A1 WO2015050359 A1 WO 2015050359A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
downlink
subframe
subframes
epdcch
Prior art date
Application number
PCT/KR2014/009184
Other languages
French (fr)
Korean (ko)
Inventor
박규진
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20140026752A external-priority patent/KR20150040193A/en
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Publication of WO2015050359A1 publication Critical patent/WO2015050359A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to a method and apparatus for transmitting and receiving a downlink control channel, and more particularly, to a method and apparatus for repeatedly transmitting a downlink control channel in a plurality of subframes for a machine type communication (MTC) terminal.
  • MTC machine type communication
  • Machine Type Communication or Machine to Machine (M2M) is communication between devices and things with no or minimal human intervention.
  • machine may refer to an entity that does not require direct human intervention or intervention, and “MTC” may refer to a form of data communication that includes one or more such “machines.”
  • An example of a “machine” may be a smart meter or vending machine equipped with a mobile communication module, and recently, a smartphone that automatically connects to a network and performs communication without user intervention or intervention depending on the location or situation of the user. With the advent of the portable terminal having the MTC function is also considered as a form of "machine”.
  • the MTC terminal may be installed in a place where the radio environment is worse than that of the general terminal. Therefore, the coverage of the MTC terminal should be improved to 20dB or more compared to the coverage of the general terminal.
  • An object of the present invention is to provide a method and apparatus for repeatedly transmitting a downlink control channel in a plurality of subframes in order to overcome the above problems.
  • a method of transmitting a downlink control channel to a user equipment by a base station includes: determining a start subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And repeatedly transmitting the downlink control channel through the plurality of downlink subframes based on the determined starting subframe.
  • a method for receiving a downlink control channel from a base station by a terminal comprising: determining a start subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And repeatedly receiving the downlink control channel through the plurality of downlink subframes based on the determined starting subframe.
  • Another embodiment of the present invention provides a base station for transmitting a downlink control channel to a terminal, including: a control unit for determining a starting subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And a transmitter for repeatedly transmitting the downlink control channel through the plurality of downlink subframes based on the determined starting subframe.
  • Another embodiment of the present invention provides a terminal for receiving a downlink control channel from a base station, comprising: a controller for determining a starting subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And a receiver configured to repeatedly receive the downlink control channel through the plurality of downlink subframes, based on the determined starting subframe.
  • the downlink control channel can be repeatedly transmitted in a plurality of subframes.
  • FIG. 1 shows an example of a wireless communication system to which an embodiment of the present invention is applied.
  • FIG. 2 is a diagram illustrating an example of a method for a general terminal to blind decode a PDCCH / EPDCCH and receive a PDSCH.
  • 5 is a diagram showing the number of EREGs by ECCE.
  • 5 is a diagram for a supported EPDCCH format.
  • FIG. 6 is a diagram illustrating an example of a method of blind decoding a PDCCH / EPDCCH and receiving a PDSCH by an MTC terminal.
  • FIG. 7 is a diagram illustrating an example of a subframe in which PDCCH / EPDCCH is repeatedly transmitted.
  • FIG. 8 is a diagram illustrating a process of repeatedly transmitting a PDCCH / EPDCCH through a plurality of subframes by a base station according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a process of repeatedly transmitting a PDCCH / EPDCCH through a plurality of subframes by a base station according to another embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a process of transmitting, by a base station, a PDCCH / EPDCCH to a mobile station through a search space according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a process of transmitting a PDCCH / EPDCCH to a user equipment through a search space by a base station according to another embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement.
  • the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement.
  • the MTC terminal may mean a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
  • the MTC terminal may mean a newly defined Release 13 low cost (or low complexity) UE category / type for performing LTE-based MTC related operations.
  • the MTC terminal supports enhanced coverage compared to the existing LTE coverage, or UE category / type defined in the existing Release 12 or less that supports low power consumption, or newly defined Release 13 low cost (or low complexity). It may mean a UE category / type.
  • MTC_CSS-RNTI means an identifier for identifying MTC-only CSS.
  • FIG. 1 shows an example of a wireless communication system to which an embodiment of the present invention is applied.
  • the wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like.
  • the wireless communication system includes a user equipment (UE) 10 and a base station (Base Station, BS, or eNB) 20.
  • a user terminal is a generic concept meaning a terminal in wireless communication.
  • user equipment (UE) in WCDMA, LTE, and HSPA, as well as mobile station (MS) in GSM, user terminal (UT), and SS It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like.
  • a base station or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS.
  • Other terms such as a base transceiver system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell may be called.
  • RRH remote radio head
  • RU radio unit
  • a base station or a cell is a generic meaning indicating some areas or functions covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or a sector (site) in LTE, and the like. It should be interpreted as, and it is meant to cover all the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, small cell communication range.
  • BSC base station controller
  • the base station may be interpreted in two senses. i) the device providing the megacell, the macrocell, the microcell, the picocell, the femtocell, the small cell in relation to the wireless area, or ii) the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station.
  • the base station may indicate the radio area itself to receive or transmit a signal from a viewpoint of a user terminal or a neighboring base station.
  • megacells macrocells, microcells, picocells, femtocells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmit / receive points, transmit points, and receive points are collectively referred to as base stations. do.
  • the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to.
  • the user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to.
  • the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal
  • the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-TDMA
  • OFDM-CDMA OFDM-CDMA
  • One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers.
  • the uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like.
  • Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
  • EPDCCH enhanced PDCCH
  • extended PDCCH extended PDCCH
  • a cell may mean a component carrier having coverage of a signal transmitted from a base station or coverage of a signal transmitted from a base station, and the base station itself.
  • a wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission system in which two or more base stations cooperate to transmit a signal. transmission system), a cooperative multi-cell communication system.
  • the CoMP system may include at least two multiple base stations and terminals.
  • the multiple transmit / receive point is at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmission power or a low transmission power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • an eNB a base station or a macro cell
  • a high transmission power or a low transmission power in a macro cell region which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal
  • uplink means a communication or communication path from a terminal to multiple transmission / reception points.
  • a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
  • a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH may be expressed in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH.
  • a description of transmitting or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used as a meaning including transmitting or receiving an EPDCCH or transmitting or receiving a signal through the EPDCCH.
  • the downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
  • the EPDCCH which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the EPDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
  • high layer signaling described below includes RRC signaling for transmitting RRC information including an RRC parameter.
  • the base station 20 performs downlink transmission to the terminals 10.
  • the base station 20 is a downlink control information and uplink data channel such as a physical downlink shared channel (PDSCH), which is a main physical channel for unicast transmission, and scheduling required for reception of the PDSCH.
  • PDSCH physical downlink shared channel
  • a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission in eg, a physical uplink shared channel (PUSCH)
  • PUSCH physical uplink shared channel
  • the base station 20 transmits downlink control information (DCI) to the terminal 10 through a PDCCH / EPDCCH.
  • the DCI may include a downlink scheduling assignment including PDSCH resource information or an uplink scheduling grant including PUSCH resource information.
  • the base station 20 uses DCI to allocate uplink / downlink data transmission resources to the terminal 10 and transmits the same to the terminal 10 using a downlink control channel.
  • the downlink control channel may be classified into a PDCCH and an EPDCCH according to a location of a transmission resource used for transmitting a DCI.
  • the PDCCH is transmitted in a control region established through a control format indicator (CFI).
  • CFI control format indicator
  • the control region is formed over the entire downlink bandwidth and consists of 1 to 4 OFDM symbols for each subframe according to the CFI setting value.
  • the EPDCCH is transmitted using the remaining transmission resources except for the control region in each subframe.
  • the transmission resource used for EPDCCH transmission is allocated to a subframe predefined by upper layer signaling (for example, RRC (Radio Resource Control)) and a plurality of predefined physical resource block (PRB) pairs for each UE. Can only be used.
  • RRC Radio Resource Control
  • PRB physical resource block
  • a basic transmission resource unit may be referred to as a control channel element (CCE).
  • CCE control channel element
  • One CCE may consist of nine Resource Element Groups (REGs), and one REG may consist of four Resource Elements (REs).
  • the basic transmission resource unit may be referred to as ECCE (Enhanced CCE).
  • ECCE Enhanced CCE
  • One ECCE is composed of 4 or 8 EREGs (Enhanced REGs) according to cyclic prefix length and / or TDD configuration, and one EREG is variable depending on RE used for RS (Reference Signal) transmission. It may be composed of a plurality of RE.
  • the base station 20 may set the number of CCEs used to transmit one DCI through the PDCCH according to the channel condition of the terminal. This is called an aggregation level, and 1, 2, 4, or 8 CCEs may be used according to the channel condition of the UE.
  • the base station 20 may set the number of ECCEs used when transmitting one DCI through the EPDCCH according to the channel condition of the terminal. This is called an aggregation level, and 1, 2, 4, 8, 16, or 32 ECCEs may be used according to the channel condition of the UE.
  • the PDCCH / EPDCCH is composed of a plurality of CCE / ECCE
  • the base station can transmit a plurality of DCI to a plurality of terminals in every subframe.
  • the UE does not separately provide CCE / ECCE allocation information (that is, CCE combining level information and CCE transmission resource location information used for one DCI transmission) necessary for the UE to receive DCI through PDCCH / EPDCCH. Therefore, the terminal performs blind decoding on the possible coupling level and the CCE / ECCE transmission resource to confirm the DCI transmitted to the terminal.
  • the PDCCH configured with pre-defined CCE / ECCE indices for each UE.
  • Blind decoding is performed only on a candidate / EPDCCH candidate.
  • the CCE index / ECCE index constituting the PDCCH candidate / EPDCCH candidate for each coupling level may be defined as a function of a coupling level, a value of a Radio Network Temporary Identifier (RNTI), and a slot number (or subframe number).
  • the UE may perform blind decoding only on a limited number of PDCCH candidates / EPDCCH candidates at each coupling level in every subframe.
  • FIG. 2 illustrates a method of blind decoding a PDCCH / EPDCCH by a general terminal and receiving a PDSCH.
  • the UE attempts blind decoding of the PDCCH / EPDCCH with respect to the PDCCH candidate / EPDCCH candidate.
  • a cyclic redundancy check (CRC) is added to the DCI, and the UE checks the CRC to confirm the DCI transmitted to the DCI. If the UE checks the DCI transmitted to the UE as a result of the CRC check, the UE acquires downlink scheduling information included in the DCI and decodes the PDSCH using downlink data transmission resources in the same subframe as the subframe in which the DCI is transmitted. do.
  • CRC cyclic redundancy check
  • PUSCH scheduling information may also be obtained by blind decoding PDCCH / EPDCCH.
  • a PDCCH defined in a Rel-10 or lower system and an EPDCCH newly defined in a Rel-11 system are used as a downlink control information (DCI) transmission channel for a UE. .
  • DCI downlink control information
  • FIG. 3 illustrates four PDCCH formats.
  • PDCCH Physical Downlink Control Channel
  • four PDCCH formats as shown in FIG. 3 are transmitted for link adaptation according to downlink radio channel quality and DCI size of the UE.
  • the number of CCEs represents an aggregation level.
  • FIG. 4 is a diagram showing the number of EREGs by ECCE.
  • the value of (Number of EREGs per ECCE) is determined according to the characteristics of the subframe, and in the case of the normal cyclic prefix, it is a normal subframe or a special subframe of 3, 4, and 8 settings. Special subframe, configuration 3, 4, 8) is 4.
  • a normal subframe or a special subframe of 1, 2, 3, 5, and 6 configuration (Special subframe, configuration 1, 2, 3, 5, 6) ) Is 8.
  • FIG. 5 is a diagram for Supported EPDCCH formats. In FIG. 5, it is divided into case A and case B, and is divided into five types according to localized transmission and distributed transmission, respectively.
  • EPDCCH five EPDCCH formats are transmitted according to FIG. 5 for link adaptation for DCI transmission.
  • the coverage of the LTE MTC terminal is conventional LTE terminal. It should be improved by about 20dB compared to the coverage of. In addition, if the performance reduction due to the specification change is further considered, the coverage of the LTE MTC terminal should be improved by 20 dB or more.
  • the requirements of the LTE-based low-cost MTC terminal is as follows.
  • the data transmission rate must satisfy the data transmission rate provided by the minimum EGPRS-based MTC terminal, that is, downlink 118.4kbps, uplink 59.2kbps.
  • Frequency efficiency should be improved significantly compared to GSM / EGPRS MTC terminal.
  • the service area provided shall not be smaller than that provided by the GSM / EGPRS MTC terminal.
  • Power consumption should not be greater than GSM / EGPRS MTC terminal.
  • Low cost LTE MTC terminal should support limited mobility and low power consumption module.
  • the PDCCH / EPDCCH for transmitting scheduling control information or other downlink control information for any one terminal or terminal group is transmitted through one downlink subframe.
  • the MTC terminal in order for the low-cost MTC terminal to support 20dB improved coverage compared to the general LTE terminal, it is necessary to repetitively transmit PDCCH or EPDCCH transmissions made in one downlink subframe unit through a plurality of downlink subframes. have.
  • the MTC terminal also needs to perform decoding by combining PDCCHs or EPDCCHs received through the plurality of downlink subframes.
  • FIG. 6 is a diagram illustrating an example of a method of blind decoding a PDCCH or an EPDCCH and receiving a PDSCH by an MTC terminal.
  • the base station repeatedly transmits one DCI through four subframes of SF # 0 (Subframe Number # 0) to SF # 3 in consideration of a channel condition of the UE.
  • the base station repeatedly transmits the same data through four subframes of SF # 3 to SF # 6 in consideration of the channel condition of the terminal.
  • the CRC check succeeds as a result of blind decoding by soft combining the received values of the DCIs transmitted from SF # 0 to SF # 3
  • the UE checks scheduling information of the PDSCH included in the DCI.
  • the terminal performs decoding by soft combining the received values of the data transmitted in SF # 3 to SF # 6.
  • a method for setting a PDCCH search space for an MTC terminal is defined.
  • the UE In case of a UE configured to receive DCI through PDCCH in an existing 3GPP LTE / LTE-Advanced system, the UE is configured as a set of PDCCH candidates defined to monitor for receiving downlink control information in any downlink subframe k. Search space for the terminal, This is made up. At this time Level, L (where, ECCE corresponding to any PDCCH candidate m with) is determined by Equation 1 below.
  • CIF Carrier Indicator Field
  • Has the value of Denotes the number of PDCCH candidates defined for the UE to monitor for the association level L, Denotes the number of CCEs constituting the PDCCH control region in the corresponding downlink subframe k.
  • Equation 1 The value is set to 9 for a common search space and determined by Equation 2 below for a UE-specific search space.
  • a set of PDCCH candidates defined to monitor for receiving downlink control information in any downlink subframe k is set. Search space for the terminal (search space), This is made up.
  • Level L (where, ECCE corresponding to any PDCCH candidate m with) is determined by Equation 3 below.
  • Has the value of Represents the number of EPDCCH candidates defined for the UE to monitor for the aggregation level L in EPDCCH-PRB-set p, Denotes the number of ECCEs constituting the EPDCCH control region in EPDCCH-PRB-set p and downlink subframe k.
  • Equation 4 the value of is determined by Equation 4 below.
  • the corresponding PDCCH / EPDCCH is not transmitted through a single downlink subframe, but N downlink subframes are defined according to the number of PDCCH / EPDCCH repetitions or the definition of a new PDCCH / EPDCCH format for the MTC UE. Since it can be transmitted repeatedly through, it is necessary to extend the search space to the downlink subframe domain to define it.
  • a downlink subframe index constituting the corresponding N repeated PDCCH / EPDCCH candidates is determined.
  • a search space configuration expression defining a CCE index constituting the PDCCH / EPDCCH candidate m repeated N times in each N downlink subframes may be defined.
  • Embodiment 1 Downlink Subframe in which PDCCH / EPDCCH Repeat for MTC UE Starts
  • a downlink subframe in which the corresponding PDCCH / EPDCCH repetition is started for any N repeated PDCCH / EPDCCH candidate m is limited to a subset of downlink subframes configured in the corresponding cell, and corresponding PDCCH /
  • FIG. 7 is a diagram illustrating an example of a subframe in which PDCCH / EPDCCH is repeatedly transmitted.
  • n is determined, and PDCCH / EPDCCH is N consecutive downlink subframes from the downlink subframe SF # k start, n , that is, SF # k start, n to SF # (k start, n + N-1 May be repeated N times.
  • FIG. 8 is a diagram illustrating a process of repeatedly transmitting a PDCCH / EPDCCH through a plurality of subframes by a base station according to an embodiment of the present invention.
  • the downlink subframe k start, n at which the start of the corresponding PDCCH / EPDCCH repetition is performed in the terminal 10 and the base station 20 is determined by the number N of the corresponding PDCCH / EPDCCH repetitions and / or the coupling level L. It may be determined (S810).
  • M represents a System Frame Number (SFN) value
  • SFN System Frame Number
  • the mod value of Equation 5 may be defined to have an arbitrary natural value smaller than N, not 0, and the value is defined as a fixed value or UE-specific for MTC terminal. Or, it may be set through cell-specific Radio Resource Control (RRC) signaling or may be determined as a function of C-RNTI of the corresponding MTC terminal.
  • RRC Radio Resource Control
  • the ⁇ value may have any natural value.
  • the coupling level L may also define the corresponding DL subframe (s) as a parameter of the determination equation.
  • the ⁇ value may also have any natural value.
  • Equations 5 and 6 above are only embodiments for determining a downlink subframe in which the corresponding PDCCH / EPDCCH repetition is performed as a function of the number of repetitions N or a function of the number of repetitions N and the coupling level L, but the present invention is not limited thereto. Rather, other types of equations for determining a downlink subframe as a function of N or a function of N and L may be included in the scope of the present invention.
  • the base station 20 may repeatedly transmit the PDCCH / EPDCCH to the UE through the N subframes determined as described above (S820).
  • FIG. 9 is a diagram illustrating a process of repeatedly transmitting a PDCCH / EPDCCH through a plurality of subframes by a base station according to another embodiment of the present invention.
  • the base station 20 directly sets the corresponding start subframe index value according to the number of repetitions N (S910), and performs the cell-specific or UE-specific higher layer signaling (S910). It may be transmitted to each MTC terminal through higher layer signaling (S920).
  • the starting downlink subframe index for monitoring the / EPDCCH candidate m may be set in a bitmap manner to be signaled.
  • Subframe offset value k start, off for k start, n as another method of starting downlink subframe index k start, n for monitoring N repeated PDCCH / EPDCCH candidate m based on the upper layer signaling And period P may be set to signal it.
  • the start downlink subframe for transmitting the N times repeated PDCCH / EPDCCH may be defined repeatedly with a P subframe period based on the corresponding k start and offset .
  • the downlink subframe index k start, n may be set to a separate value according to the PDCCH / EPDCCH repetition number N value defined to be monitored by the corresponding MTC terminal, or one regardless of the repetition number N value.
  • the downlink subframe index k start, n is set and can be commonly applied to all the repetition times.
  • the N downlink subframe index constituting the corresponding N repeated PDCCH / EPDCCH candidates m is selected from the base station.
  • Each MTC terminal may be configured directly through cell-specific or UE-specific higher layer signaling.
  • the corresponding N downlink subframes may be allocated discontinuously, and for this purpose, N downlink subframes having a constant period P may be defined.
  • the corresponding N downlink subframes include all DL subframes in the corresponding period P (the number of downlink subframes in the case of FDD may be P, and the number of corresponding downlink subframes may be smaller than P in the case of TDD). It can be allocated in a bitmap manner, but does not limit the specific signaling scheme for allocating the corresponding N downlink subframes.
  • the base station 20 may repeatedly transmit PDCCH / EPDCCH to the terminal through N subframes configured as described above and the configuration information transmitted to the terminal through higher layer signaling (S930).
  • FIG. 10 is a diagram illustrating a process of transmitting, by a base station, a PDCCH / EPDCCH to a mobile station through a search space according to an embodiment of the present invention.
  • the base station 20 and the terminal 10 determine a PDCCH or EPDCCH search space for each downlink subframe (S1010).
  • the existing equation (1) may be applied. That is, according to this, a search space ⁇ configured in each downlink subframe for N repeated PDCCH candidates m for an arbitrary MTC terminal ⁇ ⁇ May be determined as in Equation 1.
  • Equation 7 and N below are added as parameters to the modified ⁇ ⁇ Can be defined.
  • Equation 7 above is only one embodiment of the search space determination equation including the number of repetitions N as a parameter, and is not limited thereto. That is, in defining the corresponding search space setting expression, another type of search space setting expression using the corresponding N value as a parameter may be included in the scope of the present invention.
  • Equation 3 it is possible to apply the existing equation (3) as the first method of determining the search space constituting the corresponding N repeated EPDCCH candidate m in each downlink subframe. That is, according to the search space is set in each downlink subframe for the N repeated PDCCH candidate m for any MTC terminal ⁇ ⁇ May be determined as in Equation 3.
  • Equation 8 and N below are added as parameters to the modified ⁇ ⁇ Can be defined.
  • Equation (8) above is only one embodiment of the search space determination formula including the repetition number N as a parameter, but the form of the search space setting formula including the N is not limited thereto. That is, in defining the corresponding search space setting expression, another type of search space setting expression using the corresponding N value as a parameter may be included in the scope of the present invention.
  • the base station 20 transmits downlink control information to the terminal 10 through the determined search space (S1020).
  • FIG. 11 is a diagram illustrating a process of transmitting a PDCCH / EPDCCH to a user equipment through a search space by a base station according to another embodiment of the present invention.
  • the base station 20 and the terminal 10 identify a PDCCH or EPDCCH search space based on a specific subframe (for example, a starting subframe) among downlink subframes in which PDCCH or EPDCCH is repeatedly transmitted. Determine (S1110).
  • N PDCCH / EPDCCH repetitions are performed in N consecutive downlink subframes from downlink subframe k start, n to downlink subframe k start, n + N ⁇ 1 for DCI transmission for an arbitrary MTC terminal.
  • the index may be defined to use the same CCE / ECCE index used for transmitting the corresponding PDCCH in k start, n , which is the first downlink subframe. That is, in case of PDCCH, the CCE index in the first downlink subframe #k start, n constituting the candidate m repeated N times according to Equation 1 or Equation 7 above.
  • the CCE index constituting the corresponding PDCCH candidate m repeated N times in downlink subframe # (k start, n +1) to downlink subframe # (k start, n + N-1) is determined accordingly. Can be defined to follow.
  • the ECCE index constituting the corresponding N repeated EPDCCH candidates m in downlink subframe # (k start, n +1) to downlink subframe # (k start, n + N-1) is determined accordingly. Can be defined to follow.
  • the base station 20 transmits downlink control information to the terminal 10 through the determined search space (S1120).
  • the above N value may be applied regardless of the value, and the downlink subframe index setting method for the N times repeated PDCCH / EPDCCH candidate m and each downlink subframe
  • the CCE / ECCE method of the configuration is not limited to the combination, and may be included in the scope of the present invention even if the proposed method is applied independently of each other.
  • the DCI for the MTC terminal is transmitted through the EPDCCH, that is, it is apparent that the contents proposed in the present invention can be applied to the method of configuring the N times repeated EPDCCH candidate.
  • FIG. 12 is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • the base station 1200 may include a controller 1210, a transmitter 1220, and a receiver 1230.
  • the controller 1210 may control the overall operation of the base station 1200.
  • the controller 1210 performs a downlink subframe in which a corresponding PDCCH / EPDCCH transmission is repeatedly performed for a PDCCH / EPDCCH candidate m repeatedly transmitted N times to perform the above-described embodiments. It may be limited to a subset of all downlink subframes set in.
  • the controller 1210 may limit a start subframe of a downlink subframe in which PDCCH / EPDCCH transmission is repeatedly performed to a subset of a downlink subframe set in a corresponding cell.
  • the starting subframe may include at least one of the number N of the plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted, the coupling level L of the downlink control information, and the identifier (eg, C-RNTI) of the UE. It can be determined based on.
  • the transmitter 1220 and the receiver 1230 may be used to transmit and receive signals, messages, data, and the like, necessary to perform the above-described embodiment.
  • the transmitter 1220 may repeatedly transmit PDCCH / EPDCCH through a plurality of downlink subframes determined by the controller 1210.
  • the transmitter 1220 may transmit information on a plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted to the terminal through higher layer signaling.
  • the information on the plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted may include information about the start subframe of the plurality of downlink subframes or information on each of the plurality of downlink subframes.
  • the higher layer signaling may be higher layer signaling specific to the terminal or higher layer signaling specific to the cell.
  • FIG. 13 is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • the terminal 1300 may include a controller 1310, a transmitter 1320, and a receiver 1330.
  • the controller 1310 may control the overall operation of the terminal 1300.
  • the control unit 1310 performs a downlink subframe in which a corresponding PDCCH / EPDCCH transmission is repeatedly performed for a PDCCH / EPDCCH candidate m repeatedly transmitted N times in order to perform the aforementioned embodiments. It may be limited to a subset of all downlink subframes set in.
  • the controller 1310 may limit a start subframe of a downlink subframe in which PDCCH / EPDCCH transmission is repeatedly performed to a subset of a downlink subframe set in a corresponding cell.
  • the starting subframe may include at least one of the number N of the plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted, the coupling level L of the downlink control information, and the identifier (eg, C-RNTI) of the UE. It can be determined based on.
  • the transmitter 1320 and the receiver 1330 may be used to transmit and receive signals, messages, data, and the like necessary for performing the above-described embodiment with the base station.
  • the receiver 1330 may repeatedly receive the PDCCH / EPDCCH through a plurality of downlink subframes determined by the controller 1310.
  • the receiver 1330 may receive information on a plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted from the base station through higher layer signaling.
  • the information on the plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted may include information about the start subframe of the plurality of downlink subframes or information on each of the plurality of downlink subframes.
  • the higher layer signaling may be higher layer signaling specific to the terminal or higher layer signaling specific to the cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides a method and an apparatus for limiting downlink subframes, where a control channel which is repeated arbitrary N times starts, to a subset of downlink subframes which have been set in a relevant cell, and for determining a subset of starting downlink subframes where a relevant control channel starts.

Description

하향링크 제어 채널의 송수신 방법 및 그 장치Method for transmitting / receiving downlink control channel and apparatus therefor
본 발명은 하향링크 제어 채널의 송수신 방법 및 장치에 관한 것으로서, 특히, MTC(Machine Type Communication) 단말을 위해 복수의 서브프레임에서 하향링크 제어 채널을 반복하여 전송하는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for transmitting and receiving a downlink control channel, and more particularly, to a method and apparatus for repeatedly transmitting a downlink control channel in a plurality of subframes for a machine type communication (MTC) terminal.
MTC(Machine Type Communication) 또는 M2M(Machine to Machine)은 사람이 개입하지 않거나 최소한으로 개입한 상태에서 기기 및 사물 간에 일어나는 통신이다. "machine"은 사람의 직접적인 조작이나 개입을 필요로 하지 않는 개체를 의미할 수 있고, "MTC"는 이러한 "machine"이 하나 이상 포함된 데이터 통신의 한 형태를 의미할 수 있다. "machine"의 예로는 이동 통신 모듈이 탑재된 스마트 미터, 자판기 등의 형태일 수 있고, 최근에는 사용자의 위치 또는 상황에 따라 사용자의 조작 또는 개입 없이도 자동으로 네트워크에 접속하여 통신을 수행하는 스마트폰의 등장으로 MTC 기능을 가진 휴대 단말도 "machine"의 한 형태로 고려되고 있다.Machine Type Communication (MTC) or Machine to Machine (M2M) is communication between devices and things with no or minimal human intervention. "machine" may refer to an entity that does not require direct human intervention or intervention, and "MTC" may refer to a form of data communication that includes one or more such "machines." An example of a "machine" may be a smart meter or vending machine equipped with a mobile communication module, and recently, a smartphone that automatically connects to a network and performs communication without user intervention or intervention depending on the location or situation of the user. With the advent of the portable terminal having the MTC function is also considered as a form of "machine".
MTC 단말은 일반 단말에 비해 전파 환경이 나쁜 장소에 설치될 수 있다. 따라서, MTC 단말의 커버리지는 일반 단말의 커버리지와 비교하여 20dB 이상으로 향상되어야 한다.The MTC terminal may be installed in a place where the radio environment is worse than that of the general terminal. Therefore, the coverage of the MTC terminal should be improved to 20dB or more compared to the coverage of the general terminal.
MTC 단말이 일반 단말에 비해 20 dB 이상 향상된 커버리지에서 동작하기 위해서는, 하나의 서브프레임 단위로만 전송되는 각 물리 채널의 제어 정보 및/또는 데이터를 복수의 서브프레임에서 반복하여 전송할 필요가 있다. 한편, 저가형 MTC 단말을 위한 PDCCH(Physical Downlink Control CHannel) 혹은 EPDCCH(Enhanced Physical Downlink Control CHannel) 전송 시, 해당 채널에 대한 반복이 지원될 경우, 해당 MTC 단말에서 PDCCH 혹은 EPDCCH 디코딩을 원활하게 수행하는 방안이 필요하다.In order for an MTC terminal to operate in coverage improved by 20 dB or more compared with a general terminal, it is necessary to repeatedly transmit control information and / or data of each physical channel transmitted only in one subframe unit in a plurality of subframes. On the other hand, when the PDCCH (Enhanced Downlink Control CHannel) or EPDCCH (Enhanced Physical Downlink Control CHannel) transmission for the low-cost MTC terminal, if the repetition for the corresponding channel is supported, a method for smoothly decoding the PDCCH or EPDCCH in the MTC terminal This is necessary.
본 발명은 상술한 문제점을 극복하기 위해 복수의 서브프레임에서 하향링크 제어 채널을 반복하여 전송하는 방법 및 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method and apparatus for repeatedly transmitting a downlink control channel in a plurality of subframes in order to overcome the above problems.
본 발명의 일 실시예는, 기지국이 단말로 하향링크 제어 채널을 전송하는 방법에 있어서, 상기 하향링크 제어 채널이 반복되어 전송되는 복수의 하향링크 서브프레임의 시작 서브프레임을 결정하는 단계; 및 상기 결정된 시작 서브프레임에 기초하여, 상기 복수의 하향링크 서브프레임을 통해 상기 하향링크 제어 채널을 반복하여 전송하는 단계를 포함하는 방법을 제공한다.According to an embodiment of the present invention, a method of transmitting a downlink control channel to a user equipment by a base station includes: determining a start subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And repeatedly transmitting the downlink control channel through the plurality of downlink subframes based on the determined starting subframe.
본 발명의 다른 실시예는, 단말이 기지국으로부터 하향링크 제어 채널을 수신하는 방법에 있어서, 상기 하향링크 제어 채널이 반복되어 전송되는 복수의 하향링크 서브프레임의 시작 서브프레임을 결정하는 단계; 및 상기 결정된 시작 서브프레임에 기초하여, 상기 복수의 하향링크 서브프레임을 통해 상기 하향링크 제어 채널을 반복하여 수신하는 단계를 포함하는 방법을 제공한다.According to another embodiment of the present invention, a method for receiving a downlink control channel from a base station by a terminal, the method comprising: determining a start subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And repeatedly receiving the downlink control channel through the plurality of downlink subframes based on the determined starting subframe.
본 발명의 다른 실시예는, 단말로 하향링크 제어 채널을 전송하는 기지국으로서, 상기 하향링크 제어 채널이 반복되어 전송되는 복수의 하향링크 서브프레임의 시작 서브프레임을 결정하는 제어부; 및 상기 결정된 시작 서브프레임에 기초하여, 상기 복수의 하향링크 서브프레임을 통해 상기 하향링크 제어 채널을 반복하여 전송하는 송신부를 포함하는 기지국을 제공한다.Another embodiment of the present invention provides a base station for transmitting a downlink control channel to a terminal, including: a control unit for determining a starting subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And a transmitter for repeatedly transmitting the downlink control channel through the plurality of downlink subframes based on the determined starting subframe.
본 발명의 다른 실시예는, 기지국으로부터 하향링크 제어 채널을 수신하는 단말로서, 상기 하향링크 제어 채널이 반복되어 전송되는 복수의 하향링크 서브프레임의 시작 서브프레임을 결정하는 제어부; 및 상기 결정된 시작 서브프레임에 기초하여, 상기 복수의 하향링크 서브프레임을 통해 상기 하향링크 제어 채널을 반복하여 수신하는 수신부를 포함하는 단말을 제공한다.Another embodiment of the present invention provides a terminal for receiving a downlink control channel from a base station, comprising: a controller for determining a starting subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And a receiver configured to repeatedly receive the downlink control channel through the plurality of downlink subframes, based on the determined starting subframe.
상술한 본 발명에 따르면, 복수의 서브프레임에서 하향링크 제어 채널을 반복하여 전송하도록 설정할 수 있다.According to the present invention described above, the downlink control channel can be repeatedly transmitted in a plurality of subframes.
도 1은 본 발명의 실시예가 적용되는 무선 통신 시스템의 예를 도시한다.1 shows an example of a wireless communication system to which an embodiment of the present invention is applied.
도 2는 일반 단말이 PDCCH/EPDCCH를 블라인드 디코딩하고 PDSCH를 수신하는 방법의 예를 도시한 도면이다.2 is a diagram illustrating an example of a method for a general terminal to blind decode a PDCCH / EPDCCH and receive a PDSCH.
도 4는 4 가지 PDCCH 포맷을 제시한 도면이다.4 shows four PDCCH formats.
도 5는 ECCE 별 EREG의 수를 제시한 도면이다.5 is a diagram showing the number of EREGs by ECCE.
도 5는 지원되는 EPDCCH 포맷에 대한 도면이다.5 is a diagram for a supported EPDCCH format.
도 6은 MTC 단말이 PDCCH/EPDCCH를 블라인드 디코딩하고 PDSCH를 수신하는 방법의 예를 도시한 도면이다.6 is a diagram illustrating an example of a method of blind decoding a PDCCH / EPDCCH and receiving a PDSCH by an MTC terminal.
도 7은 PDCCH/EPDCCH가 반복되어 전송되는 서브프레임의 예를 도시한 도면이다.7 is a diagram illustrating an example of a subframe in which PDCCH / EPDCCH is repeatedly transmitted.
도 8은 본 발명의 일 실시예에 의한 기지국이 단말로 PDCCH/EPDCCH를 복수의 서브프레임을 통해 반복하여 전송하는 과정을 보여주는 도면이다.8 is a diagram illustrating a process of repeatedly transmitting a PDCCH / EPDCCH through a plurality of subframes by a base station according to an embodiment of the present invention.
도 9는 본 발명의 다른 실시예에 의한 기지국이 단말로 PDCCH/EPDCCH를 복수의 서브프레임을 통해 반복하여 전송하는 과정을 보여주는 도면이다.9 is a diagram illustrating a process of repeatedly transmitting a PDCCH / EPDCCH through a plurality of subframes by a base station according to another embodiment of the present invention.
도 10은 본 발명의 일 실시예에 의한 기지국이 단말로 PDCCH/EPDCCH를 검색 공간을 통해 전송하는 과정을 보여주는 도면이다.FIG. 10 is a diagram illustrating a process of transmitting, by a base station, a PDCCH / EPDCCH to a mobile station through a search space according to an embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 의한 기지국이 단말로 PDCCH/EPDCCH를 검색 공간을 통해 전송하는 과정을 보여주는 도면이다.FIG. 11 is a diagram illustrating a process of transmitting a PDCCH / EPDCCH to a user equipment through a search space by a base station according to another embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 기지국의 구성을 보여주는 도면이다.12 is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 단말의 구성을 보여주는 도면이다.13 is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.In the present specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement. In the present specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement. Alternatively, in the present specification, the MTC terminal may mean a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
또한, 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 Release 13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 Release 12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release 13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.In addition, in the present specification, the MTC terminal may mean a newly defined Release 13 low cost (or low complexity) UE category / type for performing LTE-based MTC related operations. Alternatively, in the present specification, the MTC terminal supports enhanced coverage compared to the existing LTE coverage, or UE category / type defined in the existing Release 12 or less that supports low power consumption, or newly defined Release 13 low cost (or low complexity). It may mean a UE category / type.
이하 본 명세서에서 MTC_CSS-RNTI는 MTC 전용 CSS를 식별하는 식별자를 의미한다.Hereinafter, in the present specification, MTC_CSS-RNTI means an identifier for identifying MTC-only CSS.
도 1은 본 발명의 실시예가 적용되는 무선 통신 시스템의 예를 도시한다.1 shows an example of a wireless communication system to which an embodiment of the present invention is applied.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE)(10) 및 기지국(Base Station, BS, 또는 eNB)(20)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like. The wireless communication system includes a user equipment (UE) 10 and a base station (Base Station, BS, or eNB) 20. In the present specification, a user terminal is a generic concept meaning a terminal in wireless communication. In addition, user equipment (UE) in WCDMA, LTE, and HSPA, as well as mobile station (MS) in GSM, user terminal (UT), and SS It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. Other terms such as a base transceiver system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell may be called.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 Node-B, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. In other words, in the present specification, a base station or a cell is a generic meaning indicating some areas or functions covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or a sector (site) in LTE, and the like. It should be interpreted as, and it is meant to cover all the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, small cell communication range.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii) 에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above have a base station for controlling each cell, the base station may be interpreted in two senses. i) the device providing the megacell, the macrocell, the microcell, the picocell, the femtocell, the small cell in relation to the wireless area, or ii) the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station. The eNB, RRH, antenna, RU, LPN, point, transmit / receive point, transmit point, receive point, and the like, according to the configuration of the radio region, become an embodiment of the base station. In ii), the base station may indicate the radio area itself to receive or transmit a signal from a viewpoint of a user terminal or a neighboring base station.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신포인트를 통칭하여 기지국으로 지칭한다.Therefore, megacells, macrocells, microcells, picocells, femtocells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmit / receive points, transmit points, and receive points are collectively referred to as base stations. do.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.In the present specification, the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to. The user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to. Here, the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal, the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-Advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There is no limitation on the multiple access scheme applied to the wireless communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used. One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
또한, LTE, LTE-Advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. In addition, in systems such as LTE and LTE-Advanced, a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers. The uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like. Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.On the other hand, control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
본 명세서에서 셀(cell)은 기지국으로부터 전송되는 신호의 커버리지 또는 기지국으로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 기지국 자체를 의미할 수 있다. In this specification, a cell may mean a component carrier having coverage of a signal transmitted from a base station or coverage of a signal transmitted from a base station, and the base station itself.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 기지국들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 기지국과 단말들을 포함할 수 있다. A wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission system in which two or more base stations cooperate to transmit a signal. transmission system), a cooperative multi-cell communication system. The CoMP system may include at least two multiple base stations and terminals.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀 영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multiple transmit / receive point is at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmission power or a low transmission power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트으로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다. Hereinafter, downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal, and uplink means a communication or communication path from a terminal to multiple transmission / reception points. In downlink, a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal. In uplink, a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH may be expressed in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH.'
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In addition, hereinafter, a description of transmitting or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used as a meaning including transmitting or receiving an EPDCCH or transmitting or receiving a signal through the EPDCCH.
즉, 이하에서 기재하는 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 EPDCCH를 적용할 수 있다.In addition, for convenience of description, the EPDCCH, which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the EPDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.Meanwhile, high layer signaling described below includes RRC signaling for transmitting RRC information including an RRC parameter.
기지국(20)은 단말(10)들로 하향링크 전송을 수행한다. 기지국(20)은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The base station 20 performs downlink transmission to the terminals 10. The base station 20 is a downlink control information and uplink data channel such as a physical downlink shared channel (PDSCH), which is a main physical channel for unicast transmission, and scheduling required for reception of the PDSCH. A physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission in (eg, a physical uplink shared channel (PUSCH)) may be transmitted. Hereinafter, the transmission and reception of signals through each channel will be described in the form of transmission and reception of the corresponding channel.
도 1을 참조하면, 기지국(20)은 단말(10)로 PDCCH/EPDCCH를 통해 하향링크 제어 정보(Downlink Control Information, DCI)를 전송한다. DCI는 PDSCH 자원 정보를 포함하는 하향링크 스케줄링 할당(assignment)을 포함하거나, PUSCH 자원 정보를 포함하는 상향링크 스케줄링 승인(grant)를 포함할 수 있다. Referring to FIG. 1, the base station 20 transmits downlink control information (DCI) to the terminal 10 through a PDCCH / EPDCCH. The DCI may include a downlink scheduling assignment including PDSCH resource information or an uplink scheduling grant including PUSCH resource information.
즉, 기지국(20)은 단말(10)에 상/하향 데이터 전송 자원을 할당하기 위해 DCI를 사용하고, 이를 하향링크 제어 채널을 이용하여 단말(10)로 전송한다. 하향링크 제어 채널은 DCI를 전송하기 위해 사용하는 전송 자원의 위치에 따라서 PDCCH 및 EPDCCH로 분류될 수 있다.That is, the base station 20 uses DCI to allocate uplink / downlink data transmission resources to the terminal 10 and transmits the same to the terminal 10 using a downlink control channel. The downlink control channel may be classified into a PDCCH and an EPDCCH according to a location of a transmission resource used for transmitting a DCI.
PDCCH는 CFI(Control Format Indicator)를 통해서 설정되는 제어 영역에서 전송된다. 제어 영역은 하향링크 대역폭 전체에 걸쳐서 형성되고 각각의 서브프레임마다 CFI 설정 값에 따라 1~4 개의 OFDM 심볼로 구성된다.The PDCCH is transmitted in a control region established through a control format indicator (CFI). The control region is formed over the entire downlink bandwidth and consists of 1 to 4 OFDM symbols for each subframe according to the CFI setting value.
EPDCCH는 각각의 서브프레임 내에서 제어 영역을 제외한 나머지 전송 자원을 사용하여 전송된다. EPDCCH 전송을 위해 사용되는 전송 자원은 각 단말마다 상위계층 시그널링(예를 들면, RRC(Radio Resource Control))으로 미리 정의된 서브프레임과 미리 정의된 복수 개의 PRB(Physical Resource Block) 페어(pair)에 대해서만 사용될 수 있다. The EPDCCH is transmitted using the remaining transmission resources except for the control region in each subframe. The transmission resource used for EPDCCH transmission is allocated to a subframe predefined by upper layer signaling (for example, RRC (Radio Resource Control)) and a plurality of predefined physical resource block (PRB) pairs for each UE. Can only be used.
DCI를 PDCCH를 통해 전송할 때 기본이 되는 전송 자원의 단위를 CCE(Control Channel Element)라 할 수 있다. 하나의 CCE는 9개의 REG(Resource Element Group)로 구성되고, 하나의 REG는 4개의 RE(Resource Element)로 구성될 수 있다.When transmitting DCI through the PDCCH, a basic transmission resource unit may be referred to as a control channel element (CCE). One CCE may consist of nine Resource Element Groups (REGs), and one REG may consist of four Resource Elements (REs).
DCI를 EPDCCH를 통해 전송할 때 기본이 되는 전송 자원의 단위를 ECCE(Enhanced CCE)라 할 수 있다. 하나의 ECCE는 사이클릭 프리픽스(cyclic prefix) 길이 및/또는 TDD 구성에 따라 4개 또는 8개의 EREG(Enhanced REG)로 구성되고, 하나의 EREG는 RS(Reference Signal) 전송에 사용되는 RE에 따라서 가변적인 복수 개의 RE로 구성될 수 있다.When transmitting DCI through EPDCCH, the basic transmission resource unit may be referred to as ECCE (Enhanced CCE). One ECCE is composed of 4 or 8 EREGs (Enhanced REGs) according to cyclic prefix length and / or TDD configuration, and one EREG is variable depending on RE used for RS (Reference Signal) transmission. It may be composed of a plurality of RE.
기지국(20)은 단말의 채널 상황에 따라서 하나의 DCI를 PDCCH를 통해 전송할 때 사용하는 CCE의 개수를 설정할 수 있다. 이를 결합 레벨(Aggregation level)이라고 하고, 단말의 채널 상황에 따라서 1, 2, 4, 또는 8개의 CCE를 사용할 수 있다. The base station 20 may set the number of CCEs used to transmit one DCI through the PDCCH according to the channel condition of the terminal. This is called an aggregation level, and 1, 2, 4, or 8 CCEs may be used according to the channel condition of the UE.
또한, 기지국(20)은 단말의 채널 상황에 따라서 하나의 DCI를 EPDCCH를 통해 전송할 때 사용하는 ECCE의 개수를 설정할 수 있다. 이를 결합 레벨(Aggregation level)이라고 하고, 단말의 채널 상황에 따라서 1, 2, 4, 8, 16 또는 32개의 ECCE를 사용할 수 있다.In addition, the base station 20 may set the number of ECCEs used when transmitting one DCI through the EPDCCH according to the channel condition of the terminal. This is called an aggregation level, and 1, 2, 4, 8, 16, or 32 ECCEs may be used according to the channel condition of the UE.
상술한 바와 같이, PDCCH/EPDCCH는 복수 개의 CCE/ECCE로 구성되고 있고, 기지국은 매 서브프레임마다 복수 개의 DCI를 복수 개의 단말로 전송할 수 있다. 이때 단말이 PDCCH/EPDCCH를 통해 DCI를 수신하기 위해 필요한 CCE/ECCE의 할당 정보(즉, 하나의 DCI 전송에 사용되는 CCE 결합 레벨 정보 및 CCE 전송 자원의 위치 정보)는 기지국이 단말에 별도로 제공하지 않으므로, 단말은 자신에게 전송되는 DCI를 확인하기 위해 가능한 결합 레벨 및 CCE/ECCE 전송 자원에 대해 블라인드 디코딩(blind decoding)을 수행한다.As described above, the PDCCH / EPDCCH is composed of a plurality of CCE / ECCE, the base station can transmit a plurality of DCI to a plurality of terminals in every subframe. In this case, the UE does not separately provide CCE / ECCE allocation information (that is, CCE combining level information and CCE transmission resource location information used for one DCI transmission) necessary for the UE to receive DCI through PDCCH / EPDCCH. Therefore, the terminal performs blind decoding on the possible coupling level and the CCE / ECCE transmission resource to confirm the DCI transmitted to the terminal.
단말이 PDCCH/EPDCCH 내에 존재하는 모든 CCE/ECCE에 대해서 결합 레벨 별로 가능한 모든 CCE/ECCE 조합을 블라인드 디코딩하기에는 처리 지연을 고려할 때 현실적으로 불가능하므로, 단말 별로 미리 정의된 CCE/ECCE 인덱스들로 구성되는 PDCCH 후보(candidate)/EPDCCH 후보(candidate)에 대해서만 블라인드 디코딩을 수행한다. 각 결합 레벨 별로 PDCCH 후보/EPDCCH 후보를 구성하는 CCE 인덱스/ECCE 인덱스는 결합 레벨, RNTI(Radio Network Temporary Identifier)의 값, 슬롯 넘버(또는 서브프레임 넘버)의 함수로 정의될 수 있다. 단말은 매 서브프레임마다 결합 레벨 마다 제한된 개수의 PDCCH 후보/EPDCCH 후보에 대해서만 블라인드 디코딩을 수행할 수 있다.Since the UE cannot realistically blind-decode all possible CCE / ECCE combinations for each coupling level for all CCEs / ECCEs present in the PDCCH / EPDCCH, the PDCCH configured with pre-defined CCE / ECCE indices for each UE. Blind decoding is performed only on a candidate / EPDCCH candidate. The CCE index / ECCE index constituting the PDCCH candidate / EPDCCH candidate for each coupling level may be defined as a function of a coupling level, a value of a Radio Network Temporary Identifier (RNTI), and a slot number (or subframe number). The UE may perform blind decoding only on a limited number of PDCCH candidates / EPDCCH candidates at each coupling level in every subframe.
일 예로서, 도 2는 일반 단말이 PDCCH/EPDCCH를 블라인드 디코딩하고 PDSCH를 수신하는 방법을 도시한다. 도 2를 참조하면, 단말은 PDCCH 후보/EPDCCH 후보에 대해서 PDCCH/EPDCCH의 블라인드 디코딩을 시도한다. DCI에는 CRC(Cyclic Redundancy Check)가 추가되어 있고, 단말은 CRC를 체크하여 자신에게 전송된 DCI를 확인한다. CRC 체크 결과 자신에게 전송된 DCI를 확인한 경우, 단말은 DCI에 포함된 하향링크 스케줄링 정보를 획득하고, DCI가 전송된 서브프레임과 동일한 서브프레임 내에서의 하향링크 데이터 전송 자원을 사용하여 PDSCH를 디코딩한다. As an example, FIG. 2 illustrates a method of blind decoding a PDCCH / EPDCCH by a general terminal and receiving a PDSCH. Referring to FIG. 2, the UE attempts blind decoding of the PDCCH / EPDCCH with respect to the PDCCH candidate / EPDCCH candidate. A cyclic redundancy check (CRC) is added to the DCI, and the UE checks the CRC to confirm the DCI transmitted to the DCI. If the UE checks the DCI transmitted to the UE as a result of the CRC check, the UE acquires downlink scheduling information included in the DCI and decodes the PDSCH using downlink data transmission resources in the same subframe as the subframe in which the DCI is transmitted. do.
도 2는 PDCCH/EPDCCH를 블라인드 디코딩하고 PDSCH 스케줄링 정보를 획득하는 것에 대하여 예시하고 있다. 도 2와 유사한 방식으로, PUSCH 스케줄링 정보 또한 PDCCH/EPDCCH를 블라인드 디코딩하여 획득될 수 있다.2 illustrates blind decoding PDCCH / EPDCCH and obtaining PDSCH scheduling information. In a manner similar to that of FIG. 2, PUSCH scheduling information may also be obtained by blind decoding PDCCH / EPDCCH.
종래의 3GPP LTE/LTE-Advanced 시스템에서 단말을 위한 하향 링크 제어 정보(DCI, Downlink Control Information) 전송 채널로서 Rel-10 이하의 시스템에서 정의된 PDCCH 및 Rel-11 시스템에서 새롭게 정의된 EPDCCH가 사용된다. In the conventional 3GPP LTE / LTE-Advanced system, a PDCCH defined in a Rel-10 or lower system and an EPDCCH newly defined in a Rel-11 system are used as a downlink control information (DCI) transmission channel for a UE. .
도 3은 4 가지의 PDCCH 포맷을 제시한 도면이다. PDCCH의 경우, 단말의 하향 링크 무선 채널 품질 및 DCI의 사이즈에 따른 링크 적응(link adaptation)을 위해 도 3과 같은 4가지 PDCCH format을 사용하여 전송되었다. 도 3에서 CCE의 개수(Number of CCEs)는 결합 레벨(Aggregation Level)을 나타낸다. 3 illustrates four PDCCH formats. In the case of PDCCH, four PDCCH formats as shown in FIG. 3 are transmitted for link adaptation according to downlink radio channel quality and DCI size of the UE. In FIG. 3, the number of CCEs represents an aggregation level.
도 4는 ECCE 별 EREG의 수를 제시한 도면이다. 도 4에서
Figure PCTKR2014009184-appb-I000001
(Number of EREGs per ECCE)의 값은 서브프레임의 특성에 따라 결정되는데, 노멀 사이클릭 프리픽스(Normal cyclic prefix)인 경우에는 노멀 서브프레임(Normal subframe) 또는 3, 4, 8 설정의 스페셜 서브프레임(Special subframe, configuration 3, 4, 8)에서는 4가 된다. 한편, 확장 사이클릭 프리픽스(Extended cyclic prefix)인 경우에는 노멀 서브프레임(Normal subframe) 또는 1, 2, 3, 5, 6 설정의 스페셜 서브프레임(Special subframe, configuration 1, 2, 3, 5, 6)에서는 8이 된다.
4 is a diagram showing the number of EREGs by ECCE. In Figure 4
Figure PCTKR2014009184-appb-I000001
The value of (Number of EREGs per ECCE) is determined according to the characteristics of the subframe, and in the case of the normal cyclic prefix, it is a normal subframe or a special subframe of 3, 4, and 8 settings. Special subframe, configuration 3, 4, 8) is 4. On the other hand, in the case of an extended cyclic prefix, a normal subframe or a special subframe of 1, 2, 3, 5, and 6 configuration (Special subframe, configuration 1, 2, 3, 5, 6) ) Is 8.
도 5는 지원되는 EPDCCH 포맷(Supported EPDCCH formats)에 대한 도면이다. 도 5에서 케이스 A와 케이스 B로 나뉘어지며, 각각 로컬라이즈 전송(Localized transmission)과 분산 전송(Distributed transmission)에 따라 5가지로 나뉘어진다. 5 is a diagram for Supported EPDCCH formats. In FIG. 5, it is divided into case A and case B, and is divided into five types according to localized transmission and distributed transmission, respectively.
즉, EPDCCH의 경우에도 마찬가지로 DCI 전송을 위한 링크 적용(link adaptation)을 위해 도 5에 따라 5가지의 EPDCCH format을 사용하여 전송되었다. That is, in the case of EPDCCH, five EPDCCH formats are transmitted according to FIG. 5 for link adaptation for DCI transmission.
LTE 기반의 저가형 MTCLTE based low cost MTC
LTE 네트워크가 확산될 수록, 이동통신 사업자는 네트워크의 유지보수 비용 등을 줄이기 위해 RAT(Radio Access Terminals)의 수를 최소화하기를 원하고 있다. 하지만, 종래의 GSM/GPRS 네트워크 기반의 MTC 제품들이 증가하고 있고, 낮은 데이터 전송률을 사용하는 MTC를 저비용으로 제공할 수 있다. 따라서 이동통신 사업자 입장에서 일반 데이터 전송을 위해서는 LTE 네트워크를 사용하고 MTC를 위해서는 GSM/GPRS 네트워크를 사용하므로, 두 개의 RAT을 각각 운영해야 하는 문제가 발생하며, 이는 주파수 대역의 비효율적 활용으로 이동통신 사업자의 수익에 부담이 된다.As LTE networks proliferate, mobile operators want to minimize the number of Radio Access Terminals (RATs) to reduce network maintenance costs. However, MTC products based on conventional GSM / GPRS networks are increasing, and MTCs using low data rates can be provided at low cost. Therefore, since the mobile operators use the LTE network for general data transmission and the GSM / GPRS network for the MTC, there is a problem of operating two RATs, which are inefficient use of the frequency band. It becomes burden on profit.
이와 같은 문제를 해결하기 위해서, GSM/EGPRS 네트워크를 사용하는 값싼 MTC 단말을 LTE 네트워크를 사용하는 MTC 단말로 대체 해야 하며, 이를 위해서 LTE MTC 단말의 가격을 낮추기 위한 다양한 요구사항들이 제안되고 있다.In order to solve such a problem, the cheap MTC terminal using the GSM / EGPRS network should be replaced with the MTC terminal using the LTE network, for this purpose, various requirements for reducing the price of the LTE MTC terminal has been proposed.
상기 저가 LTE MTC 단말을 지원하기 위해서 협대역 지원/ 싱글 RF 체인(Single RF chain)/ 반 듀플렉스 FDD(Half duplex FDD)/ 긴 DRX(Long DRX(Discontinued Reception)) 등의 기술을 예로 들 수 있다. 하지만 가격을 낮추기 위해서 고려되고 있는 상기 방법들은 종래의 LTE 단말과 비교하여 MTC 단말의 성능을 감소시킬 수 있다.In order to support the low-cost LTE MTC terminal, a technique such as narrowband support / single RF chain / half duplex FDD / Long DRX (Discontinued Reception) may be mentioned. However, the above methods, which are considered to lower the price, may reduce the performance of the MTC terminal compared to the conventional LTE terminal.
또한 스마트 미터링(Smart metering)과 같은 MTC 서비스를 지원하는 MTC 단말 중 20%정도는 지하실과 같은 'Deep indoor' 환경에 설치되므로, 성공적인 MTC 데이터 전송을 위해서, LTE MTC 단말의 커버리지는 종래 일반 LTE 단말의 커버리지와 비교하여 20dB 정도 향상되어야 한다. 또한 상기 규격 변경으로 인한 성능 감소를 추가적으로 고려한다면 LTE MTC 단말의 커버리지는 20dB 이상 향상되어야 한다.In addition, since about 20% of MTC terminals supporting MTC services such as smart metering are installed in a 'deep indoor' environment such as a basement, for successful MTC data transmission, the coverage of the LTE MTC terminal is conventional LTE terminal. It should be improved by about 20dB compared to the coverage of. In addition, if the performance reduction due to the specification change is further considered, the coverage of the LTE MTC terminal should be improved by 20 dB or more.
이와 같이 LTE MTC 단말 가격을 낮추면서 커버리지를 향상시키기 위해서 PSD(Power Spectral Density) 부스팅(boosting) 또는 낮은 코딩률(Low coding rate) 및 시간 도메인 반복(Time domain repetition) 등과 같은 로부스트(Robust한) 전송을 위한 다양한 방법이 각각의 물리채널 별로 고려되고 있다.In order to improve coverage while lowering the LTE MTC terminal price, robust boost such as PSD (Power Spectral Density) boosting or low coding rate and time domain repetition Various methods for transmission are considered for each physical channel.
LTE 기반의 저가형 MTC 단말의 요구사항은 다음과 같다.The requirements of the LTE-based low-cost MTC terminal is as follows.
1) 데이터 전송속도는 최소 EGPRS 기반의 MTC 단말에서 제공하는 데이터 전송속도, 즉 하향링크 118.4kbps, 상향링크 59.2kbps를 만족해야 한다.1) The data transmission rate must satisfy the data transmission rate provided by the minimum EGPRS-based MTC terminal, that is, downlink 118.4kbps, uplink 59.2kbps.
2) 주파수 효율은 GSM/EGPRS MTC 단말 대비 획기적으로 향상되어야 한다.2) Frequency efficiency should be improved significantly compared to GSM / EGPRS MTC terminal.
3) 제공되는 서비스 영역은 GSM/EGPRS MTC 단말에서 제공되는 것보다 작지 않아야 한다.3) The service area provided shall not be smaller than that provided by the GSM / EGPRS MTC terminal.
4) 전력 소모량도 GSM/EGPRS MTC 단말보다 크지 않아야 한다.4) Power consumption should not be greater than GSM / EGPRS MTC terminal.
5) 레가시(Legacy) LTE 단말과 LTE MTC 단말은 동일 주파수에서 사용할 수 있어야 한다.5) Legacy LTE terminal and LTE MTC terminal should be available in the same frequency.
6) 기존의 LTE/SAE 네트워크를 재사용한다.6) Reuse existing LTE / SAE networks.
7) FDD 모드뿐만 아니라 TDD 모드에서도 최적화를 수행한다.7) Optimization is performed not only in the FDD mode but also in the TDD mode.
8) 저가 LTE MTC 단말은 제한된 이동성(mobility)과 저전력 소모 모듈을 지원해야 한다.8) Low cost LTE MTC terminal should support limited mobility and low power consumption module.
기존의 LTE/LTE-Advanced 시스템에서 임의의 한 단말 혹은 단말 그룹에 대한 스케줄링 제어 정보 혹은 기타 하향 링크 제어 정보 전송을 위한 PDCCH/EPDCCH는 하나의 하향 링크 서브프레임을 통해 그 전송이 이루어졌다.In the existing LTE / LTE-Advanced system, the PDCCH / EPDCCH for transmitting scheduling control information or other downlink control information for any one terminal or terminal group is transmitted through one downlink subframe.
하지만, 저가형 MTC 단말이 일반 LTE단말과 비교하여 20dB 향상된 커버리지를 지원하기 위해서는 하나의 하향 링크 서브프레임 단위로 이루어지던 PDCCH 혹은 EPDCCH 전송을 복수개의 하향 링크 서브프레임을 통해 반복(repetition)하여 전송할 필요가 있다. 또한, 해당 MTC 단말도 해당 복수개의 하향 링크 서브프레임을 통해 수신된 PDCCH 혹은 EPDCCH를 컴바이닝(combining)하여 디코딩(decoding)을 수행해야 할 필요가 있다. However, in order for the low-cost MTC terminal to support 20dB improved coverage compared to the general LTE terminal, it is necessary to repetitively transmit PDCCH or EPDCCH transmissions made in one downlink subframe unit through a plurality of downlink subframes. have. In addition, the MTC terminal also needs to perform decoding by combining PDCCHs or EPDCCHs received through the plurality of downlink subframes.
도 6은 MTC 단말이 PDCCH 혹은 EPDCCH를 블라인드 디코딩하고 PDSCH를 수신하는 방법의 예를 도시한 도면이다.FIG. 6 is a diagram illustrating an example of a method of blind decoding a PDCCH or an EPDCCH and receiving a PDSCH by an MTC terminal.
도 6의 예에서, 기지국은 단말의 채널 상황을 고려하여 하나의 DCI를 SF#0(Subframe Number #0) 내지 SF#3의 4개 서브프레임을 통해 반복하여 전송한다. 또한, 기지국은 단말의 채널 상황을 고려하여 동일한 데이터를 SF#3 내지 SF#6의 4개 서브프레임을 통해 반복하여 전송한다. 단말은 SF#0 내지 SF#3에서 전송된 DCI의 수신 값을 소프트 컴바이닝(soft combining)하여 블라인드 디코딩한 결과 CRC check가 성공할 때, 단말은 DCI에 포함된 PDSCH의 스케줄링 정보를 확인한다. 단말은 SF#3 내지 SF#6에서 전송된 데이터의 수신 값을 소프트 컴바이닝하여 디코딩을 수행한다.In the example of FIG. 6, the base station repeatedly transmits one DCI through four subframes of SF # 0 (Subframe Number # 0) to SF # 3 in consideration of a channel condition of the UE. In addition, the base station repeatedly transmits the same data through four subframes of SF # 3 to SF # 6 in consideration of the channel condition of the terminal. When the CRC check succeeds as a result of blind decoding by soft combining the received values of the DCIs transmitted from SF # 0 to SF # 3, the UE checks scheduling information of the PDSCH included in the DCI. The terminal performs decoding by soft combining the received values of the data transmitted in SF # 3 to SF # 6.
이처럼 저가형 MTC 단말을 위한 PDCCH 혹은 EPDCCH 전송 시, 해당 채널에 대한 반복이 지원될 경우, 해당 MTC 단말에서 성공적으로 디코딩을 수행하기 위해서는 해당 반복 횟수 및 반복을 포함한 검색 공간에 대한 정의가 필요하다.As described above, when repetition for a corresponding channel is supported when transmitting a PDCCH or EPDCCH for a low-cost MTC terminal, in order to successfully decode the corresponding MTC terminal, a definition of a search space including the repetition number and repetition is required.
본 발명에서는 MTC 단말을 위한 PDCCH 검색 공간 설정 방안에 대해 정의하도록 한다.In the present invention, a method for setting a PDCCH search space for an MTC terminal is defined.
기존의 3GPP LTE/LTE-Advanced 시스템에서 PDCCH를 통해 DCI를 수신하도록 설정된 단말의 경우, 임의의 하향 링크 서브프레임 k에서 하향 링크 제어 정보 수신을 위해 모니터링 하도록 정의된 PDCCH 후보(candidate)의 집합으로 해당 단말을 위한 검색 공간(search space),
Figure PCTKR2014009184-appb-I000002
이 구성된다. 이 때 해당
Figure PCTKR2014009184-appb-I000003
을 구성하는 결합 레벨, L(where,
Figure PCTKR2014009184-appb-I000004
)을 갖는 임의의 PDCCH 후보 m에 해당하는 ECCE는 아래의 수학식 1에 의해 결정된다.
In case of a UE configured to receive DCI through PDCCH in an existing 3GPP LTE / LTE-Advanced system, the UE is configured as a set of PDCCH candidates defined to monitor for receiving downlink control information in any downlink subframe k. Search space for the terminal,
Figure PCTKR2014009184-appb-I000002
This is made up. At this time
Figure PCTKR2014009184-appb-I000003
Level, L (where,
Figure PCTKR2014009184-appb-I000004
ECCE corresponding to any PDCCH candidate m with) is determined by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2014009184-appb-I000005
Figure PCTKR2014009184-appb-I000005
여기서
Figure PCTKR2014009184-appb-I000006
의 값을 가지며, 크로스-캐리어 스케줄링(cross-carrier scheduling)이 설정된 경우,
Figure PCTKR2014009184-appb-I000007
을 가지며, 크로스-캐리어 스케줄링이 설정되지 않은 경우,
Figure PCTKR2014009184-appb-I000008
의 값을 갖는다. (단,
Figure PCTKR2014009184-appb-I000009
는 해당 DCI에 포함된 CIF(Carrier Indicator Field)값을 의미한다.) 또한,
Figure PCTKR2014009184-appb-I000010
의 값을 가지고,
Figure PCTKR2014009184-appb-I000011
은 결합 레벨 L에 대해 단말이 모니터링하도록 정의된 PDCCH 후보의 수를 나타내며,
Figure PCTKR2014009184-appb-I000012
는 해당 하향링크 서브프레임 k에서의 PDCCH 제어 영역을 구성하는 CCE의 개수를 나타낸다.
here
Figure PCTKR2014009184-appb-I000006
Has a value of and cross-carrier scheduling is set,
Figure PCTKR2014009184-appb-I000007
If cross-carrier scheduling is not set,
Figure PCTKR2014009184-appb-I000008
Has the value of. (only,
Figure PCTKR2014009184-appb-I000009
Denotes a Carrier Indicator Field (CIF) value included in the DCI.) In addition,
Figure PCTKR2014009184-appb-I000010
Has the value of,
Figure PCTKR2014009184-appb-I000011
Denotes the number of PDCCH candidates defined for the UE to monitor for the association level L,
Figure PCTKR2014009184-appb-I000012
Denotes the number of CCEs constituting the PDCCH control region in the corresponding downlink subframe k.
추가적으로 상기의 수학식 1에서
Figure PCTKR2014009184-appb-I000013
값은 공통 검색 공간(common search space)에 대해 9로 설정되고, UE-특정 검색 공간(UE-specific search space)에 대해 아래의 수학식 2에 의해 결정된다.
Additionally in Equation 1 above
Figure PCTKR2014009184-appb-I000013
The value is set to 9 for a common search space and determined by Equation 2 below for a UE-specific search space.
[수학식 2][Equation 2]
Figure PCTKR2014009184-appb-I000014
Figure PCTKR2014009184-appb-I000014
여기서 각각
Figure PCTKR2014009184-appb-I000015
(
Figure PCTKR2014009184-appb-I000016
는 slot number)의 값을 가진다.
Where each
Figure PCTKR2014009184-appb-I000015
(
Figure PCTKR2014009184-appb-I000016
Has a slot number).
한편, 기존의 3GPP LTE/LTE-Advanced 시스템에서 EPDCCH를 통해 DCI를 수신하도록 설정된 단말의 경우, 임의의 하향 링크 서브프레임 k에서 하향 링크 제어 정보 수신을 위해 모니터링 하도록 정의된 PDCCH 후보(candidate)의 집합으로 해당 단말을 위한 검색 공간(search space),
Figure PCTKR2014009184-appb-I000017
이 구성된다. 이 때, EPDCCH-PRB set p에 대해, 해당
Figure PCTKR2014009184-appb-I000018
을 구성하는 결합 레벨 L(where,
Figure PCTKR2014009184-appb-I000019
)을 갖는 임의의 PDCCH 후보 m에 해당하는 ECCE는 아래의 수학식 3에 의해 결정된다.
Meanwhile, in the case of a UE configured to receive DCI through EPDCCH in the existing 3GPP LTE / LTE-Advanced system, a set of PDCCH candidates defined to monitor for receiving downlink control information in any downlink subframe k is set. Search space for the terminal (search space),
Figure PCTKR2014009184-appb-I000017
This is made up. At this time, for EPDCCH-PRB set p,
Figure PCTKR2014009184-appb-I000018
Level L (where,
Figure PCTKR2014009184-appb-I000019
ECCE corresponding to any PDCCH candidate m with) is determined by Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2014009184-appb-I000020
Figure PCTKR2014009184-appb-I000020
여기서
Figure PCTKR2014009184-appb-I000021
의 값을 가지며, 크로스 캐리어 스케줄링이 설정된 경우
Figure PCTKR2014009184-appb-I000022
의 값을 가지며, 크로스 캐리어 스케줄링이 설정되지 않은 경우
Figure PCTKR2014009184-appb-I000023
의 값을 가진다. (단,
Figure PCTKR2014009184-appb-I000024
는 해당 DCI에 포함된 CIF(Carrier Indicator Field)값을 의미한다.) 또한,
Figure PCTKR2014009184-appb-I000025
의 값을 가지고,
Figure PCTKR2014009184-appb-I000026
은 EPDCCH-PRB-set p에서 집합 레벨 L에 대해 단말이 모니터링하도록 정의된 EPDCCH 후보의 수를 나타내며,
Figure PCTKR2014009184-appb-I000027
는 EPDCCH-PRB-set p, 하향링크 서브프레임 k에서의 EPDCCH 제어 영역을 구성하는 ECCE의 개수를 나타낸다.
here
Figure PCTKR2014009184-appb-I000021
Has a value of, and cross-carrier scheduling is set
Figure PCTKR2014009184-appb-I000022
Has a value of and no cross-carrier scheduling is set
Figure PCTKR2014009184-appb-I000023
Has the value (only,
Figure PCTKR2014009184-appb-I000024
Denotes a Carrier Indicator Field (CIF) value included in the DCI.) In addition,
Figure PCTKR2014009184-appb-I000025
Has the value of,
Figure PCTKR2014009184-appb-I000026
Represents the number of EPDCCH candidates defined for the UE to monitor for the aggregation level L in EPDCCH-PRB-set p,
Figure PCTKR2014009184-appb-I000027
Denotes the number of ECCEs constituting the EPDCCH control region in EPDCCH-PRB-set p and downlink subframe k.
추가적으로 상기의 수학식 3에서
Figure PCTKR2014009184-appb-I000028
의 값은 아래의 수학식 4에 의해 결정된다.
Additionally in Equation 3 above
Figure PCTKR2014009184-appb-I000028
The value of is determined by Equation 4 below.
[수학식 4][Equation 4]
Figure PCTKR2014009184-appb-I000029
Figure PCTKR2014009184-appb-I000029
여기서, 각각
Figure PCTKR2014009184-appb-I000030
(
Figure PCTKR2014009184-appb-I000031
는 slot number)의 값을 가진다.
Where
Figure PCTKR2014009184-appb-I000030
(
Figure PCTKR2014009184-appb-I000031
Has a slot number).
하지만, MTC 단말의 경우 해당 PDCCH/EPDCCH가 단일한 하향 링크 서브프레임을 통해 전송되는 것이 아니라, PDCCH/EPDCCH 반복 횟수 혹은 MTC 단말을 위한 새로운 PDCCH/EPDCCH 포맷의 정의에 따라 N개의 하향 링크 서브프레임을 통해 반복되어 전송될 수 있기 때문에 해당 검색 공간을 하향 링크 서브프레임 도메인으로 확장하여 정의할 필요가 있다. However, in case of the MTC UE, the corresponding PDCCH / EPDCCH is not transmitted through a single downlink subframe, but N downlink subframes are defined according to the number of PDCCH / EPDCCH repetitions or the definition of a new PDCCH / EPDCCH format for the MTC UE. Since it can be transmitted repeatedly through, it is necessary to extend the search space to the downlink subframe domain to define it.
이에 따라 반복 횟수가 N으로 정의된 임의의 N회 반복된 PDCCH/EPDCCH 후보 m을 구성하는 검색 공간을 결정하기 위해, 1) 해당 N회 반복된 PDCCH/EPDCCH 후보를 구성하는 하향링크 서브프레임 인덱스를 결정하고, 2) 각각의 N개의 하향링크 서브프레임에서 해당 N회 반복된 PDCCH/EPDCCH 후보 m을 구성하는 CCE 인덱스를 정의하는 검색 공간 설정 식을 정의하도록 할 수 있다. Accordingly, in order to determine a search space constituting any N repeated PDCCH / EPDCCH candidates m with the number of repetitions defined as N, 1) a downlink subframe index constituting the corresponding N repeated PDCCH / EPDCCH candidates is determined. 2) A search space configuration expression defining a CCE index constituting the PDCCH / EPDCCH candidate m repeated N times in each N downlink subframes may be defined.
실시예 1: MTC 단말을 위한 PDCCH/EPDCCH 반복이 시작되는 하향링크 서브프레임Embodiment 1: Downlink Subframe in which PDCCH / EPDCCH Repeat for MTC UE Starts
그 첫 번째로서 N회 반복되는 PDCCH/EPDCCH 후보 m을 구성하는 하향링크 서브프레임을 결정하는 방안에 대해 제안하도록 한다. As a first example, a method of determining a downlink subframe constituting PDCCH / EPDCCH candidate m repeated N times is proposed.
특히 본 발명에서는 임의의 N회 반복된 PDCCH/EPDCCH 후보 m에 대해 해당 PDCCH/EPDCCH 반복이 시작되는 하향링크 서브프레임을 해당 셀에서 설정된 하향링크 서브프레임들의 서브셋(subset)으로 한정하고, 해당 PDCCH/EPDCCH 반복이 시작되는 시작 하향링크 서브프레임 서브셋(starting DL subframe subset)을 결정하는 방안에 대해 제안한다.Particularly, in the present invention, a downlink subframe in which the corresponding PDCCH / EPDCCH repetition is started for any N repeated PDCCH / EPDCCH candidate m is limited to a subset of downlink subframes configured in the corresponding cell, and corresponding PDCCH / We propose a method for determining a starting DL subframe subset in which EPDCCH repetition is started.
도 7은 PDCCH/EPDCCH가 반복되어 전송되는 서브프레임의 예를 도시한 도면이다.7 is a diagram illustrating an example of a subframe in which PDCCH / EPDCCH is repeatedly transmitted.
도 7의 예에서, 결합 레벨 L 기반의 N회 반복된 PDCCH/EPDCCH 후보 m을 구성하는 하향링크 서브프레임을 결정하는 방법으로서, N회 반복된 PDCCH/EPDCCH 전송이 시작되는 하향링크 서브프레임 kstart,n가 결정되고, PDCCH/EPDCCH는 하향링크 서브프레임 SF#kstart,n으로부터 N개의 연속적인 하향링크 서브프레임, 즉, SF#kstart,n 내지 SF#(kstart,n+N-1)을 통해 N회 반복되어 전송될 수 있다. In the example of FIG. 7, a method of determining a downlink subframe constituting N repeated PDCCH / EPDCCH candidates m based on the joint level L, the downlink subframe k start in which N repeated PDCCH / EPDCCH transmissions are started. , n is determined, and PDCCH / EPDCCH is N consecutive downlink subframes from the downlink subframe SF # k start, n , that is, SF # k start, n to SF # (k start, n + N-1 May be repeated N times.
도 8은 본 발명의 일 실시예에 의한 기지국이 PDCCH/EPDCCH를 복수의 서브프레임을 통해 반복하여 전송하는 과정을 보여주는 도면이다.8 is a diagram illustrating a process of repeatedly transmitting a PDCCH / EPDCCH through a plurality of subframes by a base station according to an embodiment of the present invention.
도 8을 참조하면, 단말(10) 및 기지국(20)에서 해당 PDCCH/EPDCCH 반복의 시작이 이루어지는 하향 링크 서브프레임 kstart,n은 해당 PDCCH/EPDCCH 반복의 횟수 N 및/또는 결합 레벨 L에 의해 결정될 수 있다(S810). Referring to FIG. 8, the downlink subframe k start, n at which the start of the corresponding PDCCH / EPDCCH repetition is performed in the terminal 10 and the base station 20 is determined by the number N of the corresponding PDCCH / EPDCCH repetitions and / or the coupling level L. It may be determined (S810).
이에 대한 하나의 실시예로서 해당
Figure PCTKR2014009184-appb-I000032
은 아래의 수학식 5를 만족시키는 값으로 결정될 수 있다.
As one embodiment of this
Figure PCTKR2014009184-appb-I000032
May be determined as a value satisfying Equation 5 below.
[수학식 5][Equation 5]
Figure PCTKR2014009184-appb-I000033
Figure PCTKR2014009184-appb-I000033
여기서 M은 시스템 프레임 번호(System Frame Number, SFN) 값을 나타내며,
Figure PCTKR2014009184-appb-I000034
는 슬롯 번호(slot number)를 나타낸다. 단, 상기의 수학식 5의 해당 mod 값이 0이 아닌 N보다 작은 임의의 자연수 값을 갖도록 정의할 수 있으며 해당 값은 고정된 값으로 정의되거나 혹은 MTC 단말을 위한 단말-특정(UE-specific) 혹은 셀-특정(cell-specific) RRC(Radio Resource Control) 시그널링(signaling)을 통해 설정되거나 혹은 해당 MTC 단말의 C-RNTI의 함수로 결정될 수 있다. 또한 상기의 α 값은 임의의 자연수 값을 가질 수 있다.
Where M represents a System Frame Number (SFN) value,
Figure PCTKR2014009184-appb-I000034
Denotes a slot number. However, the mod value of Equation 5 may be defined to have an arbitrary natural value smaller than N, not 0, and the value is defined as a fixed value or UE-specific for MTC terminal. Or, it may be set through cell-specific Radio Resource Control (RRC) signaling or may be determined as a function of C-RNTI of the corresponding MTC terminal. In addition, the α value may have any natural value.
혹은 아래의 수학식 6과 같이 결합 레벨 L도 해당 DL subframe(s)를 결정 식의 파라미터로 정의할 수도 있다. 여기서 β값 또한 임의의 자연수 값을 가질 수 있다.Alternatively, as shown in Equation 6 below, the coupling level L may also define the corresponding DL subframe (s) as a parameter of the determination equation. The β value may also have any natural value.
[수학식 6][Equation 6]
Figure PCTKR2014009184-appb-I000035
Figure PCTKR2014009184-appb-I000035
상기의 수학식 5와 수학식 6은 반복 횟수 N의 함수 혹은 반복 횟수 N과 결합 레벨 L의 함수로서 해당 PDCCH/EPDCCH 반복이 이루어지는 하향링크 서브프레임을 결정하는 실시예일뿐이고, 본 발명은 이에 한정하지 않고, 해당 N의 함수 혹은 N과 L의 함수로서 하향링크 서브프레임을 결정하는 다른 형태의 식도 본 발명의 범주에 포함될 수 있다. Equations 5 and 6 above are only embodiments for determining a downlink subframe in which the corresponding PDCCH / EPDCCH repetition is performed as a function of the number of repetitions N or a function of the number of repetitions N and the coupling level L, but the present invention is not limited thereto. Rather, other types of equations for determining a downlink subframe as a function of N or a function of N and L may be included in the scope of the present invention.
그리고, 기지국(20)은 상술한 바와 같이 결정된 N개의 서브프레임을 통해 PDCCH/EPDCCH를 반복하여 단말로 전송할 수 있다(S820).In addition, the base station 20 may repeatedly transmit the PDCCH / EPDCCH to the UE through the N subframes determined as described above (S820).
도 9는 본 발명의 다른 실시예에 의한 기지국이 단말로 PDCCH/EPDCCH를 복수의 서브프레임을 통해 반복하여 전송하는 과정을 보여주는 도면이다.9 is a diagram illustrating a process of repeatedly transmitting a PDCCH / EPDCCH through a plurality of subframes by a base station according to another embodiment of the present invention.
도 9를 참조하면, N회 반복된 PDCCH/EPDCCH 후보 m을 구성하는 하향링크 서브프레임을 정의하기 위해 해당 PDCCH/EPDCCH 전송이 시작되는 하향링크 서브프레임 인덱스 kstart,n을 결정하는 또 다른 방법으로서, 기지국(20)은 각각의 반복 횟수 N값에 따라 해당 시작 서브프레임 인덱스 값을 직접 설정하고(S910), 이를 셀-특정(cell-specific) 혹은 단말-특정(UE-specific) 상위계층 시그널링(higher layer signaling)을 통해 각각의 MTC 단말에 전송할 수 있다(S920). Referring to FIG. 9, as another method of determining a downlink subframe index k start, n at which a corresponding PDCCH / EPDCCH transmission is started to define a downlink subframe constituting N repeated PDCCH / EPDCCH candidates m; The base station 20 directly sets the corresponding start subframe index value according to the number of repetitions N (S910), and performs the cell-specific or UE-specific higher layer signaling (S910). It may be transmitted to each MTC terminal through higher layer signaling (S920).
해당 상위계층 시그널링 기반의 N회 반복된 PDCCH/EPDCCH 후보 m의 모니터링을 위한 시작 하향링크 서브프레임 인덱스 kstart,n 설정 방법의 한 예로, 일정한 주기의 하향링크 서브프레임에 대해 해당 N회 반복된 PDCCH/EPDCCH 후보 m의 모니터링을 위한 시작 하향링크 서브프레임 인덱스를 비트맵 방식으로 설정하여 시그널링하도록 할 수 있다. As an example of a method of setting a start downlink subframe index k start, n for monitoring N repeated PDCCH / EPDCCH candidate m based on the higher layer signaling, the corresponding N times repeated PDCCH for a downlink subframe of a certain period The starting downlink subframe index for monitoring the / EPDCCH candidate m may be set in a bitmap manner to be signaled.
해당 상위계층 시그널링 기반의 N회 반복된 PDCCH/EPDCCH 후보 m의 모니터링을 위한 시작 하향링크 서브프레임 인덱스 kstart,n 설정 방법의 또 다른 방법으로 kstart,n 을 위한 서브프레임 옵셋 값 kstart,offset 및 주기 P를 설정하여 이를 시그널링하도록 할 수 있다. 이 경우 해당 N회 반복된 PDCCH/EPDCCH 전송을 위한 시작 하향링크 서브프레임은 해당 kstart,offset을 기준으로 P 서브프레임 주기를 가지고 반복하여 정의될 수 있다. 단, 상기의 하향링크 서브프레임 인덱스 kstart,n 은 해당 MTC 단말이 모니터링하도록 정의된 PDCCH/EPDCCH 반복 횟수 N값에 따라 별도의 값으로 설정될 수 있고, 혹은 반복 횟수 N값에 관계 없이 하나의 하향링크 서브프레임 인덱스 kstart,n값이 설정되어 모든 반복 횟수에 공통적으로 적용될 수 있다.Subframe offset value k start, off for k start, n as another method of starting downlink subframe index k start, n for monitoring N repeated PDCCH / EPDCCH candidate m based on the upper layer signaling And period P may be set to signal it. In this case, the start downlink subframe for transmitting the N times repeated PDCCH / EPDCCH may be defined repeatedly with a P subframe period based on the corresponding k start and offset . However, the downlink subframe index k start, n may be set to a separate value according to the PDCCH / EPDCCH repetition number N value defined to be monitored by the corresponding MTC terminal, or one regardless of the repetition number N value. The downlink subframe index k start, n is set and can be commonly applied to all the repetition times.
N회 반복된 PDCCH/EPDCCH 후보 m을 구성하는 하향링크 서브프레임을 정의하기 위한 또 다른 방법으로서 해당 N회 반복된 PDCCH/EPDCCH 후보 m을 구성하는 N개의 하향링크 서브프레임 인덱스를 해당 기지국에서 셀-특정(cell-specific) 혹은 단말-특정(UE-specific) 상위계층 시그널링(higher layer signaling)을 통해 각각의 MTC 단말에게 직접 설정하도록 할 수 있다. 이 경우 해당 N개의 하향링크 서브프레임은 비연속적으로 할당될 수 있으며, 이를 위해 일정한 주기 P를 갖는 N개의 하향링크 서브프레임을 할당하도록 정의할 수 있다. 이 경우, 해당 N개의 하향링크 서브프레임은 해당 주기 P 내의 모든 DL 서브프레임(FDD의 경우 해당 하향링크 서브프레임 개수는 P개이고, TDD의 경우 해당 하향링크 서브프레임 개수는 P보다 작을 수 있다.)에 대해 비트맵 방식으로 할당될 수 있으나, 해당 N개의 하향링크 서브프레임을 할당하기 위한 구체적인 시그널링 방안에 대해 제한을 두지 않는다. As another method for defining a downlink subframe constituting the N repeated PDCCH / EPDCCH candidates m, the N downlink subframe index constituting the corresponding N repeated PDCCH / EPDCCH candidates m is selected from the base station. Each MTC terminal may be configured directly through cell-specific or UE-specific higher layer signaling. In this case, the corresponding N downlink subframes may be allocated discontinuously, and for this purpose, N downlink subframes having a constant period P may be defined. In this case, the corresponding N downlink subframes include all DL subframes in the corresponding period P (the number of downlink subframes in the case of FDD may be P, and the number of corresponding downlink subframes may be smaller than P in the case of TDD). It can be allocated in a bitmap manner, but does not limit the specific signaling scheme for allocating the corresponding N downlink subframes.
그리고, 기지국(20)은, 상술한 바와 같이 설정되고 설정 정보가 상위계층 시그널링을 통해 단말로 전달된 N개의 서브프레임을 통해, PDCCH/EPDCCH를 반복하여 단말로 전송할 수 있다(S930).In addition, the base station 20 may repeatedly transmit PDCCH / EPDCCH to the terminal through N subframes configured as described above and the configuration information transmitted to the terminal through higher layer signaling (S930).
추가적으로 상기의 방안들은 PDCCH 반복에 대해 초점을 두고 기술했으나, 동일한 개념이 EPDCCH 반복에도 적용될 수 있음은 명백하다. 단, 임의의 MTC 단말을 위한 DCI가 EPDCCH를 통해 전송되도록 설정된 경우, 상기의 방법을 적용함에 있어 그 대상이 되는 하향링크 서브프레임을 해당 EPDCCH 설정 RRC signaling에 포함된 EPDCCH monitoring subframe으로 한정하여 적용할 수 있다. 즉, 상기에서 서술한 방안들에 의해 해당 EPDCCH 반복의 시작 하향링크 서브프레임 정의 및 이를 포함한 EPDCCH 반복이 수행되는 N개의 하향링크 서브프레임은 해당 EPDCCH monitoring subframes 내에서 상기의 방법을 적용하여 정의될 수 있다.In addition, while the above schemes focus on PDCCH repetition, it is clear that the same concept can be applied to EPDCCH repetition. However, when a DCI for an arbitrary MTC terminal is configured to be transmitted through an EPDCCH, in applying the above method, a downlink subframe as a target is limited to an EPDCCH monitoring subframe included in a corresponding EPDCCH configuration RRC signaling. Can be. That is, according to the above-described schemes, the definition of the start downlink subframe of the EPDCCH repetition and the N downlink subframes in which the EPDCCH repetition including the same is performed may be defined by applying the above method in the corresponding EPDCCH monitoring subframes. have.
실시예 2: N회 반복된 PDCCH/EPDCCH를 위한 검색 공간 구성Example 2 Search Space Configuration for N Repeated PDCCH / EPDCCH
상술한 N회 반복된 PDCCH/EPDCCH 후보 m의 구성을 위한 하향링크 서브프레임 결정 방안에 이어서 각각의 N개의 하향링크 서브프레임에서 해당 PDCCH/EPDCCH 후보 m을 위해 할당된 CCE/ECCE 인덱스를 구성하는 검색 공간 설정 방안에 대해 제안하도록 한다. Following the downlink subframe determination method for the configuration of the above-described N times repeated PDCCH / EPDCCH candidate m, a search for configuring the CCE / ECCE index allocated for the corresponding PDCCH / EPDCCH candidate m in each N downlink subframes. Suggest ways to set up space.
도 10은 본 발명의 일 실시예에 의한 기지국이 단말로 PDCCH/EPDCCH를 검색 공간을 통해 전송하는 과정을 보여주는 도면이다.FIG. 10 is a diagram illustrating a process of transmitting, by a base station, a PDCCH / EPDCCH to a mobile station through a search space according to an embodiment of the present invention.
도 10을 참조하면, 기지국(20) 및 단말(10)은 각각의 하향링크 서브프레임에 대하여 PDCCH 혹은 EPDCCH 검색 공간을 결정한다(S1010).Referring to FIG. 10, the base station 20 and the terminal 10 determine a PDCCH or EPDCCH search space for each downlink subframe (S1010).
각각의 하향링크 서브프레임에서의 해당 N회 반복된 PDCCH 후보 m을 구성하는 검색 공간을 결정하는 첫 번째 방법으로서 기존의 수학식 1을 적용하도록 할 수 있다. 즉, 이에 따라 임의의 MTC 단말을 위한 N회 반복된 PDCCH 후보 m을 위해 각각의 하향링크 서브프레임에서 설정되는 검색 공간 {
Figure PCTKR2014009184-appb-I000036
}은 수학식 1과 같이 결정될 수 있다.
As the first method of determining a search space constituting the corresponding N times repeated PDCCH candidate m in each downlink subframe, the existing equation (1) may be applied. That is, according to this, a search space {configured in each downlink subframe for N repeated PDCCH candidates m for an arbitrary MTC terminal {
Figure PCTKR2014009184-appb-I000036
} May be determined as in Equation 1.
또는, 각각의 하향링크 서브프레임에서의 해당 N회 반복된 PDCCH 후보 m을 구성하는 검색 공간을 결정하는 또 다른 방법으로서 아래의 수학식 7과 N을 파라미터로 추가하여 MTC 단말을 위한 변형된 {
Figure PCTKR2014009184-appb-I000037
} 을 정의하도록 할 수 있다.
Alternatively, as another method of determining a search space constituting the corresponding N times repeated PDCCH candidate m in each downlink subframe, Equation 7 and N below are added as parameters to the modified {
Figure PCTKR2014009184-appb-I000037
} Can be defined.
[수학식 7][Equation 7]
Figure PCTKR2014009184-appb-I000038
Figure PCTKR2014009184-appb-I000038
단, 상기의 수학식 7은 반복 횟수 N을 파라미터로 포함하는 검색 공간 결정 식의 한 실시예일뿐, 해당 N을 포함한 검색 공간 설정 식의 형태를 이로 한정 짓는 것은 아니다. 즉, 해당 검색 공간 설정 식을 정의함에 있어서 해당 N값을 파라미터로 하는 다른 형태 검색 공간 설정 식도 본 발명의 범주에 포함될 수 있다.However, Equation 7 above is only one embodiment of the search space determination equation including the number of repetitions N as a parameter, and is not limited thereto. That is, in defining the corresponding search space setting expression, another type of search space setting expression using the corresponding N value as a parameter may be included in the scope of the present invention.
한편, 각각의 하향링크 서브프레임에서의 해당 N 반복된 EPDCCH 후보 m을 구성하는 검색 공간을 결정하는 첫 번째 방법으로서 기존의 수학식 3을 적용하도록 할 수 있다. 즉, 이에 따라 임의의 MTC 단말을 위한 N 반복된 PDCCH 후보 m을 위해 각각의 하향링크 서브프레임에서 설정되는 검색 공간{
Figure PCTKR2014009184-appb-I000039
}은 수학식 3과 같이 결정될 수 있다.
Meanwhile, it is possible to apply the existing equation (3) as the first method of determining the search space constituting the corresponding N repeated EPDCCH candidate m in each downlink subframe. That is, according to the search space is set in each downlink subframe for the N repeated PDCCH candidate m for any MTC terminal {
Figure PCTKR2014009184-appb-I000039
} May be determined as in Equation 3.
또는, 각각의 하향링크 서브프레임에서의 해당 N 반복된 PDCCH 후보 m을 구성하는 검색 공간을 결정하는 또 다른 방법으로서 아래의 수학식 8과 N을 파라미터로 추가하여 MTC 단말을 위한 변형된 {
Figure PCTKR2014009184-appb-I000040
} 을 정의하도록 할 수 있다.
Alternatively, as another method of determining a search space constituting a corresponding N repeated PDCCH candidate m in each downlink subframe, Equation 8 and N below are added as parameters to the modified {
Figure PCTKR2014009184-appb-I000040
} Can be defined.
[수학식 8][Equation 8]
Figure PCTKR2014009184-appb-I000041
Figure PCTKR2014009184-appb-I000041
단, 상기의 수학식 8은 반복 횟수 N을 파라미터로 포함하는 검색 공간 결정 식의 한 실시예일뿐, 해당 N을 포함한 검색 공간 설정 식의 형태를 이로 한정 짓는 것은 아니다. 즉, 해당 검색 공간 설정 식을 정의함에 있어서 해당 N값을 파라미터로 하는 다른 형태 검색 공간 설정 식도 본 발명의 범주에 포함될 수 있다.However, Equation (8) above is only one embodiment of the search space determination formula including the repetition number N as a parameter, but the form of the search space setting formula including the N is not limited thereto. That is, in defining the corresponding search space setting expression, another type of search space setting expression using the corresponding N value as a parameter may be included in the scope of the present invention.
그리고, 기지국(20)은 결정된 검색 공간을 통해 단말(10)로 하향링크 제어 정보를 전송한다(S1020).The base station 20 transmits downlink control information to the terminal 10 through the determined search space (S1020).
도 11은 본 발명의 다른 실시예에 의한 기지국이 단말로 PDCCH/EPDCCH를 검색 공간을 통해 전송하는 과정을 보여주는 도면이다.FIG. 11 is a diagram illustrating a process of transmitting a PDCCH / EPDCCH to a user equipment through a search space by a base station according to another embodiment of the present invention.
도 11을 참조하면, 기지국(20) 및 단말(10)은 PDCCH 혹은 EPDCCH가 반복되어 전송되는 하향링크 서브프레임 중 특정 서브프레임(예를 들면, 시작 서브프레임)을 기준으로 PDCCH 혹은 EPDCCH 검색 공간을 결정한다(S1110).Referring to FIG. 11, the base station 20 and the terminal 10 identify a PDCCH or EPDCCH search space based on a specific subframe (for example, a starting subframe) among downlink subframes in which PDCCH or EPDCCH is repeatedly transmitted. Determine (S1110).
각각의 하향링크 서브프레임에서의 해당 N회 반복된 PDCCH/EPDCCH 후보 m을 구성하는 검색 공간을 결정하는 또 다른 방법으로서 상기의 하향링크 서브프레임 # kstart,n에서 정의되는 CCE/ECCE 인덱스에 의해 후속 하향 링크 서브프레임에서 할당되는 CCE/ECCE 인덱스를 정의하도록 할 수 있다. 즉, 임의의 MTC 단말을 위한 DCI 전송을 위해 하향 링크 서브프레임 kstart,n부터 하향 링크 서브프레임 kstart,n+N-1까지 N개의 연속적인 하향 링크 서브프레임에서 N번의 PDCCH/EPDCCH 반복이 이루어진 경우, 해당 N회 반복된 PDCCH/EPDCCH 전송을 위해 하향 링크 서브프레임 kstart,n+1부터 kstart,n+N-1까지 후속 N-1개의 하향 링크 서브프레임 각각에서 할당되는 CCE/ECCE 인덱스는 첫 번째 하향 링크 서브프레임인 kstart,n에서 해당 PDCCH 전송을 위해 사용된 CCE/ECCE 인덱스와 동일한 CCE/ECCE 인덱스를 사용하도록 정의할 수 있다. 즉, PDCCH의 경우, 상기의 수학식 1 혹은 수학식 7에 의해 해당 N회 반복된 후보 m을 구성하는 첫 번째 하향링크 서브프레임 # kstart,n에서의 CCE 인덱스
Figure PCTKR2014009184-appb-I000042
이 결정되고, 이에 따라 하향링크 서브프레임 #( kstart,n+1) ~ 하향링크 서브프레임 #( kstart,n+N-1)에서 해당 N회 반복된 PDCCH 후보 m을 구성하는 CCE 인덱스도
Figure PCTKR2014009184-appb-I000043
을 따르도록 정의할 수 있다. EPDCCH의 경우, 상기의 수학식 3 혹은 수학식 8에 의해 해당 N 반복된 후보 m을 구성하는 첫 번째 하향링크 서브프레임 # kstart,n에서의 ECCE 인덱스
Figure PCTKR2014009184-appb-I000044
이 결정되고, 이에 따라 하향링크 서브프레임 #( kstart,n+1) ~ 하향링크 서브프레임 #( kstart,n+N-1)에서 해당 N 반복된 EPDCCH 후보 m을 구성하는 ECCE 인덱스도
Figure PCTKR2014009184-appb-I000045
을 따르도록 정의할 수 있다.
As another method of determining a search space constituting the corresponding N times repeated PDCCH / EPDCCH candidate m in each downlink subframe , by the CCE / ECCE index defined in the downlink subframe #k start, n A CCE / ECCE index allocated in a subsequent downlink subframe may be defined. That is, N PDCCH / EPDCCH repetitions are performed in N consecutive downlink subframes from downlink subframe k start, n to downlink subframe k start, n + N−1 for DCI transmission for an arbitrary MTC terminal. In this case, CCE / ECCE allocated in each subsequent N-1 downlink subframes from downlink subframe k start, n +1 to k start, n + N-1 for transmission of the corresponding N times repeated PDCCH / EPDCCH. The index may be defined to use the same CCE / ECCE index used for transmitting the corresponding PDCCH in k start, n , which is the first downlink subframe. That is, in case of PDCCH, the CCE index in the first downlink subframe #k start, n constituting the candidate m repeated N times according to Equation 1 or Equation 7 above.
Figure PCTKR2014009184-appb-I000042
The CCE index constituting the corresponding PDCCH candidate m repeated N times in downlink subframe # (k start, n +1) to downlink subframe # (k start, n + N-1) is determined accordingly.
Figure PCTKR2014009184-appb-I000043
Can be defined to follow. In case of EPDCCH, the ECCE index in the first downlink subframe #k start, n constituting the corresponding N repeated candidate m by Equation 3 or Equation 8 above.
Figure PCTKR2014009184-appb-I000044
The ECCE index constituting the corresponding N repeated EPDCCH candidates m in downlink subframe # (k start, n +1) to downlink subframe # (k start, n + N-1) is determined accordingly.
Figure PCTKR2014009184-appb-I000045
Can be defined to follow.
그리고, 기지국(20)은 결정된 검색 공간을 통해 단말(10)로 하향링크 제어 정보를 전송한다(S1120).In addition, the base station 20 transmits downlink control information to the terminal 10 through the determined search space (S1120).
본 발명의 검색 공간 설정 방안 상기의 N값이 어떤 값을 갖건 관계 없이 적용될 수 있으며, 상기의 N회 반복된 PDCCH/EPDCCH 후보 m을 위한 하향링크 서브프레임 인덱스 설정 방법과 각각의 하향링크 서브프레임에서의 CCE/ECCE 구성 방법을 적용함에 있어서 그 조합에 제한을 두지 않으며, 또한 서로 독립적으로 제안된 방법이 적용되는 경우에도 본 발명의 범주에 포함될 수 있다. 또한 MTC 단말을 위한 DCI가 EPDCCH를 통해 전송되는 경우에도, 즉, N회 반복된 EPDCCH 후보를 구성하는 방법에 있어서도 본 발명에서 제안한 내용이 적용될 수 있음은 명백하다.Search Space Setting Method of the Invention The above N value may be applied regardless of the value, and the downlink subframe index setting method for the N times repeated PDCCH / EPDCCH candidate m and each downlink subframe In applying the CCE / ECCE method of the configuration is not limited to the combination, and may be included in the scope of the present invention even if the proposed method is applied independently of each other. In addition, even if the DCI for the MTC terminal is transmitted through the EPDCCH, that is, it is apparent that the contents proposed in the present invention can be applied to the method of configuring the N times repeated EPDCCH candidate.
도 12는 본 발명의 일 실시예에 따른 기지국의 구성을 보여주는 도면이다.12 is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
도 12를 참조하면, 기지국(1200)은 제어부(1210), 송신부(1220) 및 수신부(1230)를 포함할 수 있다.Referring to FIG. 12, the base station 1200 may include a controller 1210, a transmitter 1220, and a receiver 1230.
제어부(1210)는 기지국(1200)의 전반적인 동작을 제어할 수 있다. 특히, 제어부(1210)는 전술한 실시예들을 수행하기 위해, 임의의 N회 반복되어 전송되는 PDCCH/EPDCCH 후보 m에 대해, 해당하는 PDCCH/EPDCCH 전송이 반복되어 수행되는 하향링크 서브프레임을 해당 셀에서 설정된 전체 하향링크 서브프레임의 서브셋으로 한정할 수 있다. 예를 들면, 제어부(1210)는 PDCCH/EPDCCH 전송이 반복되어 수행되는 하향링크 서브프레임의 시작 서브프레임을 해당 셀에서 설정된 하향링크 서브프레임의 서브셋으로 한정할 수 있다. 예를 들면, 시작 서브프레임은 PDCCH/EPDCCH가 반복되어 전송되는 복수의 하향링크 서브프레임의 개수 N, 하향링크 제어 정보의 결합 레벨 L, 단말의 식별자(예를 들면, C-RNTI) 중 적어도 하나에 기초하여 결정될 수 있다.The controller 1210 may control the overall operation of the base station 1200. In particular, the controller 1210 performs a downlink subframe in which a corresponding PDCCH / EPDCCH transmission is repeatedly performed for a PDCCH / EPDCCH candidate m repeatedly transmitted N times to perform the above-described embodiments. It may be limited to a subset of all downlink subframes set in. For example, the controller 1210 may limit a start subframe of a downlink subframe in which PDCCH / EPDCCH transmission is repeatedly performed to a subset of a downlink subframe set in a corresponding cell. For example, the starting subframe may include at least one of the number N of the plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted, the coupling level L of the downlink control information, and the identifier (eg, C-RNTI) of the UE. It can be determined based on.
송신부(1220) 및 수신부(1230)는 전술한 실시예를 수행하기에 필요한 신호, 메시지, 데이터 등을 단말과 송수신하기 위해 사용될 수 있다. 특히, 송신부(1220)는 제어부(1210)에 의해 결정된 복수의 하향링크 서브프레임을 통해 PDCCH/EPDCCH를 반복하여 전송할 수 있다. The transmitter 1220 and the receiver 1230 may be used to transmit and receive signals, messages, data, and the like, necessary to perform the above-described embodiment. In particular, the transmitter 1220 may repeatedly transmit PDCCH / EPDCCH through a plurality of downlink subframes determined by the controller 1210.
일부 실시예에서, 송신부(1220)는 PDCCH/EPDCCH가 반복되어 전송되는 복수의 하향링크 서브프레임에 대한 정보를 상위계층 시그널링을 통해 단말로 전송할 수 있다. PDCCH/EPDCCH가 반복되어 전송되는 복수의 하향링크 서브프레임에 대한 정보는 복수의 하향링크 서브프레임의 시작 서브프레임에 대한 정보, 또는 복수의 하향링크 서브프레임 각각에 대한 정보를 포함할 수 있다. 상위계층 시그널링은 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링일 수 있다.In some embodiments, the transmitter 1220 may transmit information on a plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted to the terminal through higher layer signaling. The information on the plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted may include information about the start subframe of the plurality of downlink subframes or information on each of the plurality of downlink subframes. The higher layer signaling may be higher layer signaling specific to the terminal or higher layer signaling specific to the cell.
도 13은 본 발명의 일 실시예에 따른 기지국의 구성을 보여주는 도면이다.13 is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
도 13을 참조하면, 단말(1300)은 제어부(1310), 송신부(1320) 및 수신부(1330)를 포함할 수 있다.Referring to FIG. 13, the terminal 1300 may include a controller 1310, a transmitter 1320, and a receiver 1330.
제어부(1310)는 단말(1300)의 전반적인 동작을 제어할 수 있다. 특히, 제어부(1310)는 전술한 실시예들을 수행하기 위해, 임의의 N회 반복되어 전송되는 PDCCH/EPDCCH 후보 m에 대해, 해당하는 PDCCH/EPDCCH 전송이 반복되어 수행되는 하향링크 서브프레임을 해당 셀에서 설정된 전체 하향링크 서브프레임의 서브셋으로 한정할 수 있다. 예를 들면, 제어부(1310)는 PDCCH/EPDCCH 전송이 반복되어 수행되는 하향링크 서브프레임의 시작 서브프레임을 해당 셀에서 설정된 하향링크 서브프레임의 서브셋으로 한정할 수 있다. 예를 들면, 시작 서브프레임은 PDCCH/EPDCCH가 반복되어 전송되는 복수의 하향링크 서브프레임의 개수 N, 하향링크 제어 정보의 결합 레벨 L, 단말의 식별자(예를 들면, C-RNTI) 중 적어도 하나에 기초하여 결정될 수 있다.The controller 1310 may control the overall operation of the terminal 1300. In particular, the control unit 1310 performs a downlink subframe in which a corresponding PDCCH / EPDCCH transmission is repeatedly performed for a PDCCH / EPDCCH candidate m repeatedly transmitted N times in order to perform the aforementioned embodiments. It may be limited to a subset of all downlink subframes set in. For example, the controller 1310 may limit a start subframe of a downlink subframe in which PDCCH / EPDCCH transmission is repeatedly performed to a subset of a downlink subframe set in a corresponding cell. For example, the starting subframe may include at least one of the number N of the plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted, the coupling level L of the downlink control information, and the identifier (eg, C-RNTI) of the UE. It can be determined based on.
송신부(1320) 및 수신부(1330)는 전술한 실시예를 수행하기에 필요한 신호, 메시지, 데이터 등을 기지국과 송수신하기 위해 사용될 수 있다. 특히, 수신부(1330)는 제어부(1310)에 의해 결정된 복수의 하향링크 서브프레임을 통해 PDCCH/EPDCCH를 반복하여 수신할 수 있다. The transmitter 1320 and the receiver 1330 may be used to transmit and receive signals, messages, data, and the like necessary for performing the above-described embodiment with the base station. In particular, the receiver 1330 may repeatedly receive the PDCCH / EPDCCH through a plurality of downlink subframes determined by the controller 1310.
일부 실시예에서, 수신부(1330)는 PDCCH/EPDCCH가 반복되어 전송되는 복수의 하향링크 서브프레임에 대한 정보를 상위계층 시그널링을 통해 기지국으로부터 수신할 수 있다. PDCCH/EPDCCH가 반복되어 전송되는 복수의 하향링크 서브프레임에 대한 정보는 복수의 하향링크 서브프레임의 시작 서브프레임에 대한 정보, 또는 복수의 하향링크 서브프레임 각각에 대한 정보를 포함할 수 있다. 상위계층 시그널링은 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링일 수 있다.In some embodiments, the receiver 1330 may receive information on a plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted from the base station through higher layer signaling. The information on the plurality of downlink subframes in which PDCCH / EPDCCH is repeatedly transmitted may include information about the start subframe of the plurality of downlink subframes or information on each of the plurality of downlink subframes. The higher layer signaling may be higher layer signaling specific to the terminal or higher layer signaling specific to the cell.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 10월 04일 한국에 출원한 특허출원번호 제 10-2013-0118593 호 및 2013년 11월 21일 한국에 출원한 특허출원번호 제 10-2013-0142474 호 및 2014년 03월 06일 한국에 출원한 특허출원번호 제 10-2014-0026752호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application is filed with Korean Patent Application No. 10-2013-0118593 filed with Korea on October 04, 2013 and Patent Application No. 10-2013-0142474 filed with Korea on November 21, 2013 and March 2014. Priority is claimed to Korean Patent Application No. 10-2014-0026752 filed to Korea on the 06th in accordance with US Patent Law Article 119 (a) (35 USC § 119 (a)), all of which are hereby incorporated by reference. Incorporated into the application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (20)

  1. 기지국이 단말로 하향링크 제어 채널을 전송하는 방법에 있어서,In the method for transmitting a downlink control channel to the terminal by the base station,
    상기 하향링크 제어 채널이 반복되어 전송되는 복수의 하향링크 서브프레임의 시작 서브프레임을 결정하는 단계; 및Determining a start subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And
    상기 결정된 시작 서브프레임에 기초하여, 상기 복수의 하향링크 서브프레임을 통해 상기 하향링크 제어 채널을 반복하여 전송하는 단계를 포함하는 방법.Based on the determined starting subframe, repeatedly transmitting the downlink control channel on the plurality of downlink subframes.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 시작 서브프레임은 전체 하향링크 서브프레임의 서브셋인 것을 특징으로 하는 방법.The starting subframe is a subset of the entire downlink subframe.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 시작 서브프레임은 상기 복수의 서브프레임의 개수, 하향링크 제어 정보의 결합 레벨, 및 상기 단말의 식별자 중 적어도 하나에 기초하여 결정되는 것을 특징으로 하는 방법.The starting subframe is determined based on at least one of the number of the plurality of subframes, the combined level of downlink control information, and the identifier of the terminal.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 시작 서브프레임에 대한 정보를 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링을 통해 상기 단말로 전송하는 단계를 더 포함하는 방법.And transmitting the information on the starting subframe to the terminal through higher layer signaling specific to the terminal or higher layer signaling specific to the cell.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 서브프레임에 대한 정보를 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링을 통해 상기 단말로 전송하는 단계를 더 포함하는 방법.And transmitting information on the plurality of subframes to the terminal through higher layer signaling specific to the terminal or higher layer signaling specific to the cell.
  6. 단말이 기지국으로부터 하향링크 제어 채널을 수신하는 방법에 있어서,In a method for receiving a downlink control channel from a base station,
    상기 하향링크 제어 채널이 반복되어 전송되는 복수의 하향링크 서브프레임의 시작 서브프레임을 결정하는 단계; 및Determining a start subframe of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And
    상기 결정된 시작 서브프레임에 기초하여, 상기 복수의 하향링크 서브프레임을 통해 상기 하향링크 제어 채널을 반복하여 수신하는 단계를 포함하는 방법.Based on the determined starting subframe, repeatedly receiving the downlink control channel through the plurality of downlink subframes.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 시작 서브프레임은 전체 하향링크 서브프레임의 서브셋인 것을 특징으로 하는 방법.The starting subframe is a subset of the entire downlink subframe.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 시작 서브프레임은 상기 복수의 서브프레임의 개수, 하향링크 제어 정보의 결합 레벨, 및 상기 단말의 식별자 중 적어도 하나에 기초하여 결정되는 것을 특징으로 하는 방법.The starting subframe is determined based on at least one of the number of the plurality of subframes, the combined level of downlink control information, and the identifier of the terminal.
  9. 제 6 항에 있어서,The method of claim 6,
    상기 결정하는 단계는, 상기 시작 서브프레임에 대한 정보를 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링을 통해 상기 기지국으로부터 수신하는 단계를 더 포함하는 방법.The determining may further include receiving information on the starting subframe from the base station through higher layer signaling specific to a terminal or higher layer signaling specific to a cell.
  10. 제 6 항에 있어서,The method of claim 6,
    상기 결정하는 단계는, 상기 복수의 서브프레임에 대한 정보를 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링을 통해 상기 기지국으로부터 수신하는 단계를 더 포함하는 방법.The determining may further include receiving information on the plurality of subframes from the base station through higher layer signaling specific to a terminal or higher layer signaling specific to a cell.
  11. 단말로 하향링크 제어 채널을 전송하는 기지국에 있어서,In the base station for transmitting a downlink control channel to the terminal,
    상기 하향링크 제어 채널이 반복되어 전송되는 복수의 하향링크 서브프레임의 시작 서브프레임을 결정하는 제어부; 및A controller configured to determine start subframes of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And
    상기 결정된 시작 서브프레임에 기초하여, 상기 복수의 하향링크 서브프레임을 통해 상기 하향링크 제어 채널을 반복하여 전송하는 송신부를 포함하는 기지국.And a transmitter for repeatedly transmitting the downlink control channel through the plurality of downlink subframes based on the determined starting subframe.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 시작 서브프레임은 전체 하향링크 서브프레임의 서브셋인 것을 특징으로 하는 기지국.The starting subframe is a subset of the entire downlink subframe.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 시작 서브프레임은 상기 복수의 서브프레임의 개수, 하향링크 제어 정보의 결합 레벨, 및 상기 단말의 식별자 중 적어도 하나에 기초하여 결정되는 것을 특징으로 하는 기지국.The starting subframe is determined based on at least one of the number of the plurality of subframes, the combined level of downlink control information, and the identifier of the terminal.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 송신부는, 상기 시작 서브프레임에 대한 정보를 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링을 통해 상기 단말로 더 전송하는 것을 특징으로 하는 기지국.The transmitter, the base station, characterized in that further transmitting to the terminal via the higher layer signaling specified in the terminal or the higher layer signaling specified in the terminal.
  15. 제 11 항에 있어서,The method of claim 11,
    상기 송신부는, 상기 복수의 서브프레임에 대한 정보를 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링을 통해 상기 단말로 더 전송하는 것을 특징으로 하는 기지국.The transmitter, the base station, characterized in that for transmitting the information on the plurality of sub-frames to the terminal via higher layer signaling specific to the terminal or higher layer signaling specific to the cell.
  16. 기지국으로부터 하향링크 제어 채널을 수신하는 단말에 있어서,In a terminal receiving a downlink control channel from a base station,
    상기 하향링크 제어 채널이 반복되어 전송되는 복수의 하향링크 서브프레임의 시작 서브프레임을 결정하는 제어부; 및A controller configured to determine start subframes of a plurality of downlink subframes in which the downlink control channel is repeatedly transmitted; And
    상기 결정된 시작 서브프레임에 기초하여, 상기 복수의 하향링크 서브프레임을 통해 상기 하향링크 제어 채널을 반복하여 수신하는 수신부를 포함하는 단말.And a receiver configured to repeatedly receive the downlink control channel through the plurality of downlink subframes based on the determined starting subframe.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 시작 서브프레임은 전체 하향링크 서브프레임의 서브셋인 것을 특징으로 하는 단말.The starting subframe is a subset of the entire downlink subframe.
  18. 제 16 항에 있어서,The method of claim 16,
    상기 시작 서브프레임은 상기 복수의 서브프레임의 개수, 하향링크 제어 정보의 결합 레벨, 및 상기 단말의 식별자 중 적어도 하나에 기초하여 결정되는 것을 특징으로 하는 단말.The starting subframe is determined based on at least one of the number of the plurality of subframes, the combined level of downlink control information, and the identifier of the terminal.
  19. 제 16 항에 있어서,The method of claim 16,
    상기 수신부는, 상기 시작 서브프레임에 대한 정보를 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링을 통해 상기 기지국으로부터 더 수신하고,The receiving unit further receives information on the start subframe from the base station through higher layer signaling specified in a terminal or higher layer signaling specified in a cell,
    상기 제어부는, 상기 시작 서브프레임에 대한 정보에 기초하여 상기 시작 서브프레임을 결정하는 것을 특징으로 하는 단말.The controller determines the start subframe based on the information on the start subframe.
  20. 제 16 항에 있어서,The method of claim 16,
    상기 수신부는, 상기 복수의 서브프레임에 대한 정보를 단말에 특정된 상위계층 시그널링 또는 셀에 특정된 상위계층 시그널링을 통해 상기 기지국으로부터 더 수신하고,The receiver further receives information on the plurality of subframes from the base station through higher layer signaling specified in a terminal or higher layer signaling specified in a cell,
    상기 제어부는, 상기 복수의 서브프레임에 대한 정보에 기초하여 상기 시작 서브프레임을 결정하는 것을 특징으로 하는 단말.The control unit, characterized in that for determining the start subframe based on the information on the plurality of subframes.
PCT/KR2014/009184 2013-10-04 2014-09-30 Method for transmitting and receiving downlink control channel, and apparatus therefor WO2015050359A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2013-0118593 2013-10-04
KR20130118593 2013-10-04
KR10-2013-0142474 2013-11-21
KR20130142474 2013-11-21
KR10-2014-0026752 2014-03-06
KR20140026752A KR20150040193A (en) 2013-10-04 2014-03-06 Methods for Transmitting and Receiving Downlink Control Channels and Apparatuses thereof

Publications (1)

Publication Number Publication Date
WO2015050359A1 true WO2015050359A1 (en) 2015-04-09

Family

ID=52778906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009184 WO2015050359A1 (en) 2013-10-04 2014-09-30 Method for transmitting and receiving downlink control channel, and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2015050359A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2537181A (en) * 2015-04-10 2016-10-12 Nec Corp Communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090034865A (en) * 2006-06-19 2009-04-08 가부시키가이샤 엔티티 도코모 Base station and transmission method
WO2013000818A1 (en) * 2011-06-27 2013-01-03 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
US20130083753A1 (en) * 2011-09-30 2013-04-04 Interdigital Patent Holdings, Inc. Device communication using a reduced channel bandwidth
US20130114587A1 (en) * 2011-11-04 2013-05-09 Alexey Khoryaev Narrow bandwidth device in a broadband network
US20130121317A1 (en) * 2011-11-16 2013-05-16 Electronics And Telecommunications Research Institute Machine type communication support method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090034865A (en) * 2006-06-19 2009-04-08 가부시키가이샤 엔티티 도코모 Base station and transmission method
WO2013000818A1 (en) * 2011-06-27 2013-01-03 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
US20130083753A1 (en) * 2011-09-30 2013-04-04 Interdigital Patent Holdings, Inc. Device communication using a reduced channel bandwidth
US20130114587A1 (en) * 2011-11-04 2013-05-09 Alexey Khoryaev Narrow bandwidth device in a broadband network
US20130121317A1 (en) * 2011-11-16 2013-05-16 Electronics And Telecommunications Research Institute Machine type communication support method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2537181A (en) * 2015-04-10 2016-10-12 Nec Corp Communication system
US10356748B2 (en) 2015-04-10 2019-07-16 Nec Corporation Communication system
US10791539B2 (en) 2015-04-10 2020-09-29 Nec Corporation Communication system
US11706738B2 (en) 2015-04-10 2023-07-18 Nec Corporation Communication system

Similar Documents

Publication Publication Date Title
WO2015050339A1 (en) Method for transmitting and receiving downlink control channel, and apparatus therefor
WO2018043960A1 (en) Method and device for transmitting or receiving data in next generation wireless access network
WO2014051293A1 (en) Method and apparatus for blind decoding adjustment in downlink control channel
WO2013012190A2 (en) Method and apparatus for limiting a downlink subframe in a tdd mode
WO2014133321A1 (en) Method and apparatus for transmitting control channel depending on ue capability in intra-cell carrier aggregation system
WO2015046830A1 (en) Method for transceiving downlink data channel and apparatus therefor
WO2013005970A2 (en) Method and apparatus for transmitting and processing control information in time division duplex system using multi-component carrier
WO2014038857A1 (en) Transmitting configuration information of interference measurement resource, and measuring interference
WO2016053039A1 (en) System information transmission method and apparatus
WO2013168901A1 (en) Method for indicating pucch resource location, method for allocating pucch resource, and apparatus for same
WO2018093180A1 (en) Method and apparatus for transmitting and receiving uplink control data in next generation wireless network
WO2018080274A1 (en) Method and device for transceiving data channel in next-generation wireless network
WO2015046831A1 (en) Method for downlink control channel resource allocation of terminal and apparatus therefor
WO2018084500A1 (en) Method and device for executing multi-beam-based scheduling request in wireless communication
WO2018080212A2 (en) Method and device for scheduling uplink control channel in next generation wireless network
WO2011096744A2 (en) Method and apparatus for performing measurement in an extension carrier
WO2014042411A1 (en) Transmission and reception of control information
WO2014157927A1 (en) Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor
WO2013024987A2 (en) Srs transmission controlling method at a transmitting end, transmitting end thereof, srs transmitting method of a terminal, and terminal thereof
WO2016013779A1 (en) Method for receiving scheduling information of unlicensed spectrum cell and device thereof
WO2019066557A1 (en) Method and apparatus for decoding control information in wireless communication system
WO2018080268A1 (en) Method and device for allocating data channel resource for next-generation wireless access network
WO2016048063A1 (en) Method for transmitting/receiving signal by mtc ue, and apparatus therefor
WO2015072687A2 (en) Method and apparatus for transmitting and receiving control information
WO2018080217A1 (en) Method and device for scheduling uplink signal and downlink data channel in next generation wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15/07/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14851238

Country of ref document: EP

Kind code of ref document: A1