WO2015046830A1 - Method for transceiving downlink data channel and apparatus therefor - Google Patents

Method for transceiving downlink data channel and apparatus therefor Download PDF

Info

Publication number
WO2015046830A1
WO2015046830A1 PCT/KR2014/008763 KR2014008763W WO2015046830A1 WO 2015046830 A1 WO2015046830 A1 WO 2015046830A1 KR 2014008763 W KR2014008763 W KR 2014008763W WO 2015046830 A1 WO2015046830 A1 WO 2015046830A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
epdcch
pdsch
transmission
terminal
Prior art date
Application number
PCT/KR2014/008763
Other languages
French (fr)
Korean (ko)
Inventor
박규진
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20140021106A external-priority patent/KR20150037461A/en
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Publication of WO2015046830A1 publication Critical patent/WO2015046830A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a method and apparatus for transmitting and receiving a downlink data channel, and more particularly, to a method and apparatus for transmitting a downlink data channel for a machine type communication (MTC) terminal.
  • MTC machine type communication
  • Machine Type Communication or Machine to Machine (M2M) is communication between devices and things with no or minimal human intervention.
  • machine may refer to an entity that does not require direct human intervention or intervention, and “MTC” may refer to a form of data communication that includes one or more such “machines.”
  • An example of a “machine” may be a smart meter or vending machine equipped with a mobile communication module, and recently, a smartphone that automatically connects to a network and performs communication without user intervention or intervention depending on the location or situation of the user. With the advent of the portable terminal having the MTC function is also considered as a form of "machine”.
  • the MTC terminal may be installed in a place where the radio environment is worse than that of the general terminal. Therefore, the coverage of the MTC terminal should be improved to 20dB or more compared to the coverage of the general terminal.
  • An object of the present invention is to provide a method and apparatus for transmitting and receiving a downlink data channel for an MTC terminal to overcome the above problems.
  • a method for transmitting a PDCCH or EPDCCH including PDSCH scheduling information for a UE by the base station according to an embodiment of the present invention and the PDSCH according thereto may include N downlink subframes of the PDCCH or the EPDCCH. Repeatedly transmitting through the PSCH, and repeatedly transmitting the PDSCH through P downlink subframes, and if the downlink subframe index at which repetitive transmission of the PDCCH or the EPDCCH is terminated is M, the PDSCH The downlink subframe index at which repetitive transmission is started is M + k.
  • a method for receiving a PDCCH or EPDCCH including PDSCH scheduling information from a base station and the PDSCH includes repeatedly receiving the PDCCH or the EPDCCH through N downlink subframes, and And repeatedly receiving the PDSCH through P downlink subframes, and if the downlink subframe index at which repeated reception of the PDCCH or the EPDCCH is terminated is M, the downlink subframe at which the PDSCH repeat reception is started The frame index is M + k.
  • a PDCCH or EPDCCH including PDSCH scheduling information for a UE and a base station transmitting the PDSCH according thereto may repeatedly transmit the PDCCH or the EPDCCH through N downlink subframes and transmit the PDSCH.
  • the transmitter repeatedly transmits through P downlink subframes and the downlink subframe index at which repeating transmission of the PDCCH or the EPDCCH is M the downlink subframe index at which the PDSCH repeat transmission is started is M +.
  • a terminal receiving a PDCCH or EPDCCH including PDSCH scheduling information and the PDSCH according thereto repeatedly receives the PDCCH or the EPDCCH through N downlink subframes, and receives the PDSCH.
  • the receiving unit repeatedly receives through P downlink subframes and the downlink subframe index at which repeated reception of the PDCCH or the EPDCCH is terminated is M
  • the downlink subframe index at which the PDSCH repeat reception is started is M +.
  • FIG. 1 shows an example of a wireless communication system to which an embodiment of the present invention is applied.
  • FIG. 2 illustrates an example of blind decoding PDCCH / EPDCCH and obtaining PDSCH scheduling information.
  • 4 is a diagram showing the number of EREGs by ECCE.
  • 5 is a diagram for a supported EPDCCH format.
  • FIG. 6 is a diagram for transmitting a PDSCH after repeated transmission of a PDCCH / EPDCCH according to an embodiment of the present invention.
  • FIG. 7 illustrates an example in which the number of PRBs, the number of repetitions, and the MCS are set according to a PDSCH format according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating repetitive transmission of a PDCCH or EPDCCH including PDSCH scheduling information according to an embodiment of the present invention, and transmission of the PDSCH accordingly.
  • FIG. 9 is a diagram illustrating a process in which a base station repeatedly transmits a PDCCH or an EPDCCH to a UE according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a process of repeatedly receiving a PDCCH or EPDCCH from a base station by a terminal according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration of a base station according to another embodiment.
  • FIG. 12 is a diagram illustrating a configuration of a user terminal according to another embodiment.
  • the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement.
  • the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement.
  • the MTC terminal may mean a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
  • the MTC terminal may mean a newly defined 3GPP Release-13 low cost (or low complexity) UE category / type for performing LTE-based MTC related operations.
  • the MTC terminal supports enhanced coverage compared to the existing LTE coverage, or supports UE category / type defined in the existing 3GPP Release-12 or lower, or newly defined Release-13 low cost (or lower power consumption).
  • low complexity can mean UE category / type.
  • FIG. 1 shows an example of a wireless communication system to which an embodiment of the present invention is applied.
  • the wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like.
  • the wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB).
  • a user terminal is a comprehensive concept of a terminal in wireless communication.
  • a user station (UE) in WCDMA and LTE / LTE-Advanced, HSPA, etc., as well as a mobile station (MS) and user interface (UT) in GSM It should be interpreted as a concept that includes a terminal, a subscriber station (SS), and a wireless device.
  • a base station 20 or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, and a Site. It may be called by other terms such as a base transceiver system (BTS), an access point, an access node, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell.
  • BTS base transceiver system
  • RRH remote radio head
  • RU radio unit
  • the base station 20 or the cell is a partial area covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or a sector (site) in LTE / LTE-Advanced, and the like. Or, it should be interpreted as a comprehensive meaning of function, and encompasses various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, and small cell communication range. to be.
  • BSC base station controller
  • the base station may be interpreted in two senses. i) A device providing a mega cell, a macro cell, a micro cell, a pico cell, a femto cell, a small cell in relation to a radio area, or ii) may indicate the radio area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station.
  • the base station may indicate the radio area itself to receive or transmit a signal from a viewpoint of a user terminal or a neighboring base station.
  • megacells macrocells, microcells, picocells, femtocells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmit / receive points, transmit points, and receive points are collectively referred to as base stations. do.
  • the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to.
  • the user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to.
  • the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal
  • the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-TDMA
  • OFDM-CDMA OFDM-CDMA
  • One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers.
  • the uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like.
  • Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
  • EPDCCH enhanced PDCCH
  • extended PDCCH extended PDCCH
  • a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
  • a wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal.
  • antenna transmission system a cooperative multi-cell communication system.
  • the CoMP system may include at least two multiple transmission / reception points and terminals.
  • the multiple transmit / receive point is at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmission power or a low transmission power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • an eNB a base station or a macro cell
  • a high transmission power or a low transmission power in a macro cell region which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal
  • uplink refers to a communication or communication path from a terminal to multiple transmission / reception points.
  • a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
  • a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH may be expressed in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH.
  • transmitting (receiving) or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used as a meaning including transmitting or receiving an EPDCCH or transmitting (receiving) or receiving a signal through the EPDCCH.
  • the physical downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
  • the EPDCCH which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the EPDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
  • high layer signaling described below includes RRC signaling for transmitting RRC information including an RRC parameter.
  • the base station or eNB 20 performs downlink transmission to the terminals 10.
  • the eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH.
  • a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted.
  • PUSCH physical uplink shared channel
  • the base station 20 transmits downlink control information (DCI) to the terminal 10 through a PDCCH / EPDCCH.
  • the DCI may include a downlink scheduling assignment including PDSCH resource information or an uplink scheduling grant including PUSCH resource information.
  • the base station 20 uses DCI to allocate uplink / downlink data transmission resources to the terminal 10 and transmits the same to the terminal 10 using a downlink control channel.
  • the downlink control channel may be classified into a PDCCH and an EPDCCH according to a location of a transmission resource used for transmitting a DCI.
  • the PDCCH is transmitted in a control region established through a control format indicator (CFI).
  • CFI control format indicator
  • the control region is formed over the entire downlink bandwidth and consists of 1 to 4 OFDM symbols for each subframe according to the CFI setting value.
  • the EPDCCH is transmitted using the remaining transmission resources except for the control region in each subframe.
  • the transmission resource used for EPDCCH transmission is allocated to a subframe predefined by upper layer signaling (for example, RRC (Radio Resource Control)) and a plurality of predefined physical resource block (PRB) pairs for each UE. Can only be used.
  • RRC Radio Resource Control
  • PRB physical resource block
  • a basic transmission resource unit may be referred to as a control channel element (CCE).
  • CCE control channel element
  • One CCE may consist of nine Resource Element Groups (REGs), and one REG may consist of four Resource Elements (REs).
  • the basic transmission resource unit may be referred to as ECCE (Enhanced CCE).
  • ECCE Enhanced CCE
  • One ECCE is composed of 4 or 8 EREGs (Enhanced REGs) according to cyclic prefix length and / or TDD configuration, and one EREG is variable depending on RE used for RS (Reference Signal) transmission. It may be composed of a plurality of RE.
  • the base station 20 may set the number of CCEs used to transmit one DCI through the PDCCH according to the channel condition of the terminal. This is called an aggregation level, and 1, 2, 4, or 8 CCEs may be used according to the channel condition of the UE.
  • the base station 20 may set the number of ECCEs used when transmitting one DCI through the EPDCCH according to the channel condition of the terminal. This is called an aggregation level, and 1, 2, 4, 8, 16, or 32 ECCEs may be used according to the channel condition of the UE.
  • the PDCCH / EPDCCH is composed of a plurality of CCE / ECCE
  • the base station can transmit a plurality of DCI to a plurality of terminals in every subframe.
  • the UE does not separately provide CCE / ECCE allocation information (that is, CCE combining level information and CCE transmission resource location information used for one DCI transmission) necessary for the UE to receive DCI through PDCCH / EPDCCH. Therefore, the terminal performs blind decoding on the possible coupling level and the CCE / ECCE transmission resource to confirm the DCI transmitted to the terminal.
  • the PDCCH configured with pre-defined CCE / ECCE indices for each UE.
  • Blind decoding is performed only on a candidate / EPDCCH candidate.
  • the CCE index / ECCE index constituting the PDCCH candidate / EPDCCH candidate for each coupling level may be defined as a function of a coupling level, a value of a Radio Network Temporary Identifier (RNTI), and a slot number (or subframe number).
  • the UE may perform blind decoding only on a limited number of PDCCH candidates / EPDCCH candidates at each coupling level in every subframe.
  • FIG. 2 illustrates a method of blind decoding a PDCCH / EPDCCH by a general terminal and receiving a PDSCH.
  • the UE attempts blind decoding of the PDCCH / EPDCCH with respect to the PDCCH candidate / EPDCCH candidate.
  • a cyclic redundancy check (CRC) is added to the DCI, and the UE checks the CRC to confirm the DCI transmitted to the DCI.
  • CRC cyclic redundancy check
  • the UE acquires downlink scheduling information included in the DCI and decodes the PDSCH using downlink data transmission resources in the same subframe as the subframe in which the DCI is transmitted. do.
  • PUSCH scheduling information may also be obtained by blind decoding PDCCH / EPDCCH.
  • a PDCCH defined in a Rel-10 or lower system and an EPDCCH newly defined in a Release-11 system are used as a downlink control information (DCI) transmission channel for a terminal.
  • DCI downlink control information
  • FIG. 3 illustrates four PDCCH formats.
  • four PDCCH formats as shown in FIG. 3 are transmitted for link adaptation according to downlink radio channel quality and DCI size of the UE.
  • the number of CCEs represents an aggregation level.
  • FIG. 4 is a diagram showing the number of EREGs by ECCE.
  • the value of (Number of EREGs per ECCE) is determined according to the characteristics of the subframe, and in the case of the normal cyclic prefix, it is a normal subframe or a special subframe of 3, 4, and 8 settings. Special subframe, configuration 3, 4, 8) is 4.
  • a normal subframe or a special subframe of 1, 2, 3, 5, and 6 configuration (Special subframe, configuration 1, 2, 3, 5, 6) ) Is 8.
  • FIG. 5 is a diagram for Supported EPDCCH formats. In FIG. 5, it is divided into case A and case B, and is divided into five types according to localized transmission and distributed transmission, respectively.
  • EPDCCH five EPDCCH formats are transmitted according to FIGS. 4 and 5 for link adaptation for DCI transmission.
  • the PDCCH / EPDCCH including one downlink allocation (DL assignment) DCI for PDSCH resource allocation to any UE is transmitted through one downlink subframe.
  • a downlink subframe in which a DL allocation PDCCH or EPDCCH including PDSCH resource allocation information is transmitted and a subframe in which the corresponding PDSCH transmission is performed are the same. That is, PDSCH transmission according to DL allocation information is defined in a downlink subframe in which DL allocation DCI transmission is performed for an arbitrary UE.
  • the coverage of LTE MTC terminals is conventional LTE. It should be improved by about 20dB compared to the coverage of the terminal. In addition, if the performance reduction due to the specification change is further considered, the coverage of the LTE MTC terminal should be improved by 20 dB or more.
  • various methods for robust transmission such as PSD boosting or low coding rate and time domain repetition are used to improve coverage while lowering the LTE MTC terminal price. This is considered for each physical channel.
  • the requirements of the LTE-based low-cost MTC terminal is as follows.
  • the data transmission rate must satisfy the data transmission rate provided by the minimum EGPRS-based MTC terminal, that is, downlink 118.4kbps, uplink 59.2kbps.
  • Frequency efficiency should be improved significantly compared to GSM / EGPRS MTC terminal.
  • the service area provided shall not be smaller than that provided by the GSM / EGPRS MTC terminal.
  • Power consumption should not be greater than GSM / EGPRS MTC terminal.
  • Low cost LTE MTC terminal should support limited mobility and low power consumption module.
  • the MTC terminal In order to support 20dB enhanced coverage compared to the general LTE terminal, the MTC terminal repetitively transmits a PDCCH or EPDCCH transmission made in one downlink subframe unit through a plurality of downlink subframes, The MTC terminal also needs to perform decoding by combining PDCCHs or EPDCCHs received through a plurality of downlink subframes.
  • the DL allocation DCI when the DL allocation DCI is transmitted through the corresponding PDCCH or EPDCCH, the DL allocation DCI based on the same downlink subframe in the existing LTE / LTE-Advanced terminal and the PDSCH transmission / reception timing relationship accordingly, for the MTC terminal There is a need for a new definition of the repeated PDCCH and EPDCCH transmission and reception and PDSCH transmission and reception timing relationship.
  • the present invention proposes a transmission format of a PDCCH or an EPDCCH for an MTC terminal and a PDSCH transmission scheme according thereto.
  • the present invention proposes a PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal, a PDSCH transmission method based thereon, and a PDCCH / EPDCCH and PDSCH reception method of an MTC terminal based thereon. .
  • the relationship between the PDCCH / EPDCCH transmission downlink subframe including the DL allocation and the PDSCH transmission downlink subframe is defined.
  • a method of defining a PDSCH transmission subframe and a PDSCH repetition number for an MTC terminal is proposed.
  • the PDCCH or EPDCCH including one DCI for any UE is transmitted through one downlink subframe.
  • One PDCCH or EPDCCH including one DCI for one UE or UE group is transmitted in one downlink subframe.
  • the PDSCH transmission is performed in the same subframe as the downlink subframe in which the corresponding DL allocation PDCCH or EPDCCH transmission is performed.
  • a PDCCH or an EPDCCH including one DCI may be repeatedly transmitted through a plurality of downlink subframes to support enhanced coverage.
  • the PDCCH / EPDCCH for transmitting the DL allocation DCI for any MTC terminal is transmitted through any N downlink subframes, the downlink subframe in which the corresponding PDCCH / EPDCCH transmission is performed and the PDSCH transmission accordingly It is necessary to define the relationship with the downlink subframe.
  • a PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal the relationship between a PDCCH / EPDCCH transmission downlink subframe including DL allocation and a PDSCH transmission downlink subframe
  • a downlink data channel transmission / reception method for a specified MTC terminal and an apparatus therefor will be described.
  • the MTC UE transmits all N downlink subframes in which the corresponding PDCCH / EPDCCH transmission is performed until decoding of the PDCCH / EPDCCH is completed. Buffering must be performed for the PDSCH region of the band. This may be inefficient in terms of complexity of the MTC terminal.
  • the PDSCH transmission start downlink subframe is defined as DL subframe # (M + k). do.
  • k value can be limited to an integer of 0 or more.
  • FIG. 6 is a diagram for transmitting a PDSCH after repeated transmission of a PDCCH / EPDCCH according to an embodiment of the present invention.
  • k 1 above. That is, PDSCH transmission may be defined from the next subframe of the last transmission subframe of the repeated PDCCH or EPDCCH. That is, as shown in FIG. 6, from DL subframe # (M-N + 1) indicated by 611 to PDCCH or EPDCCH including one DL-allocated DCI for an arbitrary MTC UE, to DL subframe #M indicated by 619.
  • PDSCH transmission corresponding to the DL allocation information is performed from DL subframe # (M + 1) indicated by 621 through DL subframe # (M + P) indicated by 629. It can be done until. However, P is the number of repeated PDSCH transmissions for the corresponding MTC terminal.
  • PDSCH repeated P times are 641, 642, ..., 649, respectively.
  • "1" of M + 1 shows the case where the timing k of the PDSCH is 1.
  • any integer satisfying k ⁇ 0 may be included in the scope of the present invention.
  • the number of PDSCH repetitions to be applied, P value is a function of N value which is the number of repetitions of DL allocation PDCCH / EPDCCH containing corresponding PDSCH allocation information, or as a function of PDCCH / EPDCCH format including the same.
  • N value is the number of repetitions of DL allocation PDCCH / EPDCCH containing corresponding PDSCH allocation information, or as a function of PDCCH / EPDCCH format including the same.
  • the corresponding PDSCH repetition number and P may be defined as half the repetition number and N values of the PDCCH / EPDCCH for transmitting the corresponding PDSCH allocation information.
  • any arbitrary plurality of PDSCH formats including the corresponding P value may be defined and included in the DL allocation DCI for transmission.
  • the PDSCH format may include or part of PRB allocation information, MCS value, etc. in addition to the PDSCH repetition number P value as shown in FIG. 6.
  • the number of specific PDSCH formats, the number of PRB allocations per PDSCH format, and the number of repetitions may be variously defined, and there is no limitation on this value.
  • FIG. 7 is a relationship in which the number of PRBs, the number of repetitions, and the Modulation and Coding Scheme (MCS) are set according to a PDSCH format according to an embodiment of the present invention.
  • MCS Modulation and Coding Scheme
  • a coverage level may be defined according to radio channel quality for each MTC terminal, and a PDSCH repetition number P value may be defined for each corresponding coverage level.
  • the coverage level for any terminal may be set by the base station or implicitly set for each terminal through a PRACH procedure of the corresponding MTC terminal.
  • FIG. 8 is a diagram illustrating repetitive transmission of a PDCCH or EPDCCH including PDSCH scheduling information according to an embodiment of the present invention, and transmission of the PDSCH accordingly.
  • the base station 801 generates a downlink signal including the PDCCH or EPDCCH for the terminal 809 (S810).
  • the generated downlink signal is transmitted in a first downlink subframe. This is the first transmission of repetitive transmission, the terminal 809 receives the PDCCH or EPDCCH of the downlink signal (S819).
  • the base station repeatedly repeats a process of generating and transmitting a downlink signal including a PDCCH or an EPDCCH for the terminal 809.
  • the base station generates a downlink signal including a PDCCH or EPDCCH for the terminal 809 for five transmissions which are the last repetitive transmission (S820).
  • the generated downlink signal is transmitted in a fifth downlink subframe.
  • PDSCH repeats transmission.
  • the base station 801 generates a downlink signal including a PDSCH for the terminal (S830) and transmits it to the terminal 809 as a downlink signal in a sixth downlink subframe (S835). This is the first transmission of the PDSCH repetitive transmission.
  • the terminal receives the PDSCH of the downlink signal (S839).
  • the base station 801 generates a downlink signal including a PDSCH for the terminal (S840) and transmits it to the terminal 809 as a downlink signal in a seventh downlink subframe (S845). This is the second transmission of the PDSCH repetitive transmission.
  • the terminal receives the PDSCH of the downlink signal (S849).
  • FIG. 9 is a diagram illustrating a process in which a base station repeatedly transmits a PDCCH or an EPDCCH to a UE according to an embodiment of the present invention.
  • the base station transmits the PDCCH or EPDCCH including the PDSCH scheduling information for the terminal based on the process of FIG. 9 and the PDSCH accordingly.
  • the base station repeatedly transmits the PDCCH or the EPDCCH through N downlink subframes (S910).
  • the PDSCH is repeatedly transmitted through P downlink subframes according to the scheduling information included in the repeatedly transmitted PDCCH or EPDCCH (S920).
  • the downlink subframe index at which repetitive transmission of the PDCCH or the EPDCCH is terminated is M
  • the downlink subframe index at which the PDSCH repeating transmission is started is M + k. That is, the PDSCH is transmitted in the subframe after k in the subframe in which repeated transmission of the PDCCH / EPDCCH is completed.
  • the value of k may have an integer value of 0 or greater, and in one embodiment, the k value may be 1.
  • the terminal to receive the repeated transmission may be a terminal supporting MTC, and the value P of the repeated transmission of the PDSCH to be repeatedly transmitted may have an integer value of 1 or more.
  • a P value for PDSCH repetitive transmission may be determined using a format of PDCCH or EPDCCH and one or more of N as shown in FIG. 7. That is, the format and the value of N may be given as arguments of the function, and the base station and the terminal may share information in the form as shown in FIG. 7.
  • FIG. 10 is a diagram illustrating a process of repeatedly receiving a PDCCH or EPDCCH from a base station by a terminal according to an embodiment of the present invention.
  • the terminal receives a PDCCH or EPDCCH including PDSCH scheduling information from the base station and the PDSCH accordingly based on the process of FIG. 10.
  • the UE repeatedly receives the PDCCH or the EPDCCH through N downlink subframes (S1010).
  • the PDSCH is repeatedly received through P downlink subframes according to the scheduling information included in the repeatedly received PDCCH or EPDCCH (S1020).
  • the downlink subframe index at which repeated reception of the PDCCH or the EPDCCH is terminated is M
  • the downlink subframe index at which the PDSCH repeat reception is started is M + k. That is, the PDSCH is received in the subframe after k in the subframe in which repeated reception of the PDCCH / EPDCCH is completed.
  • the value of k may have an integer value of 0 or greater, and in one embodiment, the k value may be 1.
  • the terminal may be a terminal supporting MTC, and the value of P, which is a value for repetitive transmission of the PDSCH to be repeatedly received, may have an integer value of 1 or more.
  • a P value for PDSCH repetitive reception may be determined using a format of PDCCH or EPDCCH and one or more of N as shown in FIG. 7. That is, the format and the value of N may be given as arguments of the function, and the base station and the terminal may share information in the form as shown in FIG. 7.
  • FIG. 11 is a diagram illustrating a configuration of a base station according to another embodiment.
  • the base station 1100 includes a controller 1110, a transmitter 1120, and a receiver 1130.
  • the control unit 1110 is a PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal required to perform the above-described invention. Controls the overall operation of the base station according to performing a downlink data channel transmission / reception method for an MTC terminal in which a relationship between a subframe and a corresponding PDSCH transmission downlink subframe is specified.
  • the transmitter 1120 and the receiver 1130 are used to transmit and receive signals, messages, and data necessary for carrying out the above-described present invention.
  • the base station of FIG. 11 transmits a PDCCH or EPDCCH including PDSCH scheduling information for a UE and the PDSCH accordingly, and repeatedly transmits the PDCCH or EPDCCH. That is, the transmitter 1120 repeatedly transmits the PDCCH or the EPDCCH through N downlink subframes and repeatedly transmits the PDSCH through P downlink subframes, and the controller 1110 controls the PDCCH or the EPDCCH. If the downlink subframe index at which repeating transmission is terminated is M, the transmitter 1120 controls the downlink subframe index at which the PDSCH repeating transmission is started to be M + k.
  • K denotes a PDSCH transmission interval after repeated PDCCH / EPDCCH transmission
  • the controller 1110 may control the transmitter 1120 such that the value of k has an integer value equal to or greater than zero.
  • the controller 1110 may control the transmitter 1120 such that the value of k becomes 1.
  • the terminal may be a terminal that supports MTC.
  • the controller 1110 may control the transmitter 1120 such that the value of P, which is the number of repeated PDSCH transmissions, has an integer value of 1 or more.
  • the controller 1110 may determine the P using any one or more of the format of the PDCCH or EPDCCH and the N.
  • FIG. 12 is a diagram illustrating a configuration of a user terminal according to another embodiment.
  • the user terminal 1200 includes a receiver 1230, a controller 1210, and a transmitter 1220.
  • the receiver 1230 receives downlink control information, data, and a message from a base station through a corresponding channel.
  • control unit 1210 is a PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal required to perform the above-described invention, and transmits PDCCH / EPDCCH transmission downlink including DL allocation. Controls the overall operation of the UE according to performing a downlink data channel transmission / reception method for an MTC UE having a relationship between a link subframe and a PDSCH transmission downlink subframe.
  • the transmitter 1220 transmits uplink control information, data, and a message to a base station through a corresponding channel.
  • the terminal of FIG. 12 receives a PDCCH or EPDCCH including PDSCH scheduling information from the base station and the PDSCH accordingly, and repeatedly receives the PDCCH or EPDCCH.
  • the receiver 1230 repeatedly receives the PDCCH or the EPDCCH through N downlink subframes, and repeatedly receives the PDSCH through P downlink subframes.
  • the control unit 1210 receives the downlink subframe index at which the PDSCH repeat reception is started to be M + k. To control. That is, the receiver 1230 repeatedly receives the PDCCH or the EPDCCH through N downlink subframes and repeatedly receives the PDSCH through P downlink subframes, and the controller 1210 controls the PDCCH or the EPDCCH.
  • the downlink subframe index at which the PDSCH repeat reception is started is controlled by the receiver 1230 such that M + k.
  • K denotes a PDSCH transmission interval after repeated PDCCH / EPDCCH transmission
  • the controller 1210 may control the receiver 1230 such that the value of k has an integer value equal to or greater than zero.
  • the controller 1210 may control the receiver 1230 such that the value of k becomes 1.
  • the terminal 1200 may be a terminal supporting the MTC.
  • the controller 1210 may control the receiver 1230 such that the value of P, which is the number of repeated PDSCH transmissions, has an integer value of 1 or more.
  • the controller 1210 may determine the P using any one or more of the format of the PDCCH or EPDCCH and the N.
  • PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal so far the PDCCH / EPDCCH transmission downlink subframe including DL allocation and the PDSCH transmission downlink subframe
  • a method and apparatus for downlink data channel transmission and reception for a MTC terminal having a specified relationship have been described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method for transceiving a downlink data channel and an apparatus therefor, the method according to an embodiment of the present invention for a base station to transmit PDCCH or EPDCCH comprising PDSCH scheduling information for a terminal, and PDSCH corresponding to the PDCCH or EPDCCH comprising the steps of: repetitively transmitting the PDCCH or EPDCCH by means of N number of downlink subframes; and repetitively transmitting the PDSCH by means of P number of downlink subframes, wherein, if the subframe index at which the repetitive transmission of PDCCH or EPDCCH ends is M, then the downlink subframe index at which the repetitive PDSCH transmission starts is M+k.

Description

하향링크 데이터 채널을 송수신하는 방법 및 그 장치Method and apparatus for transmitting / receiving downlink data channel
본 발명은 하향링크 데이터 채널을 송수신하는 방법 및 장치에 관한 것으로, 보다 상세하게는 MTC(Machine Type Communication) 단말을 위한 하향링크 데이터 채널 전송 방법 및 장치를 제안한다. The present invention relates to a method and apparatus for transmitting and receiving a downlink data channel, and more particularly, to a method and apparatus for transmitting a downlink data channel for a machine type communication (MTC) terminal.
MTC(Machine Type Communication) 또는 M2M(Machine to Machine)은 사람이 개입하지 않거나 최소한으로 개입한 상태에서 기기 및 사물 간에 일어나는 통신이다. "machine"은 사람의 직접적인 조작이나 개입을 필요로 하지 않는 개체를 의미할 수 있고, "MTC"는 이러한 "machine"이 하나 이상 포함된 데이터 통신의 한 형태를 의미할 수 있다. "machine"의 예로는 이동 통신 모듈이 탑재된 스마트 미터, 자판기 등의 형태일 수 있고, 최근에는 사용자의 위치 또는 상황에 따라 사용자의 조작 또는 개입 없이도 자동으로 네트워크에 접속하여 통신을 수행하는 스마트폰의 등장으로 MTC 기능을 가진 휴대 단말도 "machine"의 한 형태로 고려되고 있다.Machine Type Communication (MTC) or Machine to Machine (M2M) is communication between devices and things with no or minimal human intervention. "machine" may refer to an entity that does not require direct human intervention or intervention, and "MTC" may refer to a form of data communication that includes one or more such "machines." An example of a "machine" may be a smart meter or vending machine equipped with a mobile communication module, and recently, a smartphone that automatically connects to a network and performs communication without user intervention or intervention depending on the location or situation of the user. With the advent of the portable terminal having the MTC function is also considered as a form of "machine".
MTC 단말은 일반 단말에 비해 전파 환경이 나쁜 장소에 설치될 수 있다. 따라서, MTC 단말의 커버리지는 일반 단말의 커버리지와 비교하여 20dB 이상으로 향상되어야 한다. The MTC terminal may be installed in a place where the radio environment is worse than that of the general terminal. Therefore, the coverage of the MTC terminal should be improved to 20dB or more compared to the coverage of the general terminal.
MTC 단말이 일반 단말에 비해 20dB 이상 향상된 커버리지에서 동작하기 위해서는, 하나의 서브프레임 단위로만 전송되는 각 물리 채널의 제어 정보 및/또는 데이터를 복수의 서브프레임에서 반복하여 전송할 필요가 있다. 또한 다른 LTE/LTE-Advanced 단말과 MTC 단말이 공통 검색 공간을 중첩하여 가질 경우 MTC 단말이 제어 정보를 확인하는데 에러가 발생할 가능성이 있다. 따라서 이러한 MTC 단말의 특성에 적합하도록 물리 채널의 제어 정보와 데이터를 전송하는 방안이 필요하다.In order for an MTC terminal to operate in coverage improved by 20 dB or more compared with a general terminal, it is necessary to repeatedly transmit control information and / or data of each physical channel transmitted only in one subframe unit in a plurality of subframes. In addition, when another LTE / LTE-Advanced terminal and the MTC terminal overlap the common search space, an error may occur when the MTC terminal checks the control information. Therefore, there is a need for a method of transmitting control information and data of a physical channel to suit the characteristics of the MTC terminal.
본 발명은 상술한 문제점을 극복하기 위해 MTC 단말을 위한 하향링크 데이터 채널을 송수신하는 방법 및 장치를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method and apparatus for transmitting and receiving a downlink data channel for an MTC terminal to overcome the above problems.
전술한 과제를 해결하기 위하여 본 발명의 일 실시예에 의한 기지국이 단말을 위한 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH 및 그에 따른 상기 PDSCH를 전송하는 방법은 상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 전송하는 단계, 및 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 전송하는 단계를 포함하되, 상기 PDCCH 또는 상기 EPDCCH의 반복 전송이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 전송이 시작되는 하향링크 서브프레임 인덱스는 M+k인 것을 특징으로 한다.  In order to solve the above-described problem, a method for transmitting a PDCCH or EPDCCH including PDSCH scheduling information for a UE by the base station according to an embodiment of the present invention and the PDSCH according thereto may include N downlink subframes of the PDCCH or the EPDCCH. Repeatedly transmitting through the PSCH, and repeatedly transmitting the PDSCH through P downlink subframes, and if the downlink subframe index at which repetitive transmission of the PDCCH or the EPDCCH is terminated is M, the PDSCH The downlink subframe index at which repetitive transmission is started is M + k.
본 발명의 다른 실시예에 의한 단말이 기지국으로부터 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH 및 그에 따른 상기 PDSCH를 수신하는 방법은 상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 수신하는 단계, 및 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 수신하는 단계를 포함하되, 상기 PDCCH 또는 상기 EPDCCH의 반복 수신이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 수신이 시작되는 하향링크 서브프레임 인덱스는 M+k인 것을 특징으로 한다. According to another embodiment of the present invention, a method for receiving a PDCCH or EPDCCH including PDSCH scheduling information from a base station and the PDSCH according to the present invention includes repeatedly receiving the PDCCH or the EPDCCH through N downlink subframes, and And repeatedly receiving the PDSCH through P downlink subframes, and if the downlink subframe index at which repeated reception of the PDCCH or the EPDCCH is terminated is M, the downlink subframe at which the PDSCH repeat reception is started The frame index is M + k.
본 발명의 또 다른 실시예에 의한 단말을 위한 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH 및 그에 따른 상기 PDSCH를 전송하는 기지국은 상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 전송하며 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 전송하는 송신부, 및 상기 PDCCH 또는 상기 EPDCCH의 반복 전송이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 전송이 시작되는 하향링크 서브프레임 인덱스는 M+k가 되도록 상기 송신부를 제어하는 제어부를 포함한다.According to another embodiment of the present invention, a PDCCH or EPDCCH including PDSCH scheduling information for a UE and a base station transmitting the PDSCH according thereto may repeatedly transmit the PDCCH or the EPDCCH through N downlink subframes and transmit the PDSCH. When the transmitter repeatedly transmits through P downlink subframes and the downlink subframe index at which repeating transmission of the PDCCH or the EPDCCH is M, the downlink subframe index at which the PDSCH repeat transmission is started is M +. and a control unit for controlling the transmission unit to be k.
본 발명의 또 다른 실시예에 의한 기지국으로부터 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH 및 그에 따른 상기 PDSCH를 수신하는 단말은 상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 수신하며, 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 수신하는 수신부, 및 상기 PDCCH 또는 상기 EPDCCH의 반복 수신이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 수신이 시작되는 하향링크 서브프레임 인덱스는 M+k이 되도록 상기 수신부를 제어하는 제어부를 포함한다. A terminal receiving a PDCCH or EPDCCH including PDSCH scheduling information and the PDSCH according thereto according to another embodiment of the present invention repeatedly receives the PDCCH or the EPDCCH through N downlink subframes, and receives the PDSCH. When the receiving unit repeatedly receives through P downlink subframes and the downlink subframe index at which repeated reception of the PDCCH or the EPDCCH is terminated is M, the downlink subframe index at which the PDSCH repeat reception is started is M +. and a control unit for controlling the receiving unit to be k.
본 발명을 구현할 경우 MTC 단말을 위한 하향링크 데이터 채널을 송수신하는 방법 및 장치를 구현할 수 있다. When implementing the present invention can be implemented a method and apparatus for transmitting and receiving downlink data channel for the MTC terminal.
도 1은 본 발명의 실시예가 적용되는 무선 통신 시스템의 예를 도시한다.1 shows an example of a wireless communication system to which an embodiment of the present invention is applied.
도 2는 PDCCH/EPDCCH를 블라인드 디코딩하고 PDSCH 스케줄링 정보를 획득하는 예시를 보여주는 도면이다.2 illustrates an example of blind decoding PDCCH / EPDCCH and obtaining PDSCH scheduling information.
도 3은 4 가지의 PDCCH 포맷을 제시한 도면이다.3 illustrates four PDCCH formats.
도 4는 ECCE 별 EREG의 수를 제시한 도면이다.4 is a diagram showing the number of EREGs by ECCE.
도 5는 지원되는 EPDCCH 포맷에 대한 도면이다.5 is a diagram for a supported EPDCCH format.
도 6은 본 발명의 일 실시예에 의한 PDCCH/EPDCCH의 반복 전송 후 PDSCH를 전송하는 도면이다.6 is a diagram for transmitting a PDSCH after repeated transmission of a PDCCH / EPDCCH according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 의한 PDSCH 포맷에 따라 PRB 의 수와 반복 횟수, MCS가 설정되는 예를 보여주는 도면이다.7 illustrates an example in which the number of PRBs, the number of repetitions, and the MCS are set according to a PDSCH format according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 의한 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH의 반복 전송 및 그에 따른 상기 PDSCH의 전송을 보여주는 도면이다. 8 is a diagram illustrating repetitive transmission of a PDCCH or EPDCCH including PDSCH scheduling information according to an embodiment of the present invention, and transmission of the PDSCH accordingly.
도 9는 본 발명의 일 실시예에 의한 기지국이 단말에게 PDCCH 또는 EPDCCH를 반복 전송하는 과정을 보여주는 도면이다.9 is a diagram illustrating a process in which a base station repeatedly transmits a PDCCH or an EPDCCH to a UE according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 의한 단말이 기지국으로부터 PDCCH 또는 EPDCCH를 반복 수신하는 과정을 보여주는 도면이다.10 is a diagram illustrating a process of repeatedly receiving a PDCCH or EPDCCH from a base station by a terminal according to an embodiment of the present invention.
도 11은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.11 is a diagram illustrating a configuration of a base station according to another embodiment.
도 12는 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.12 is a diagram illustrating a configuration of a user terminal according to another embodiment.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.In the present specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement. In the present specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement. Alternatively, in the present specification, the MTC terminal may mean a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.In other words, in the present specification, the MTC terminal may mean a newly defined 3GPP Release-13 low cost (or low complexity) UE category / type for performing LTE-based MTC related operations. Alternatively, in the present specification, the MTC terminal supports enhanced coverage compared to the existing LTE coverage, or supports UE category / type defined in the existing 3GPP Release-12 or lower, or newly defined Release-13 low cost (or lower power consumption). low complexity) can mean UE category / type.
도 1은 본 발명의 실시예가 적용되는 무선 통신 시스템의 예를 도시한다.1 shows an example of a wireless communication system to which an embodiment of the present invention is applied.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE/LTE-Advanced, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like. The wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB). In the present specification, a user terminal is a comprehensive concept of a terminal in wireless communication. In addition, a user station (UE) in WCDMA and LTE / LTE-Advanced, HSPA, etc., as well as a mobile station (MS) and user interface (UT) in GSM It should be interpreted as a concept that includes a terminal, a subscriber station (SS), and a wireless device.
기지국(20) 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.A base station 20 or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, and a Site. It may be called by other terms such as a base transceiver system (BTS), an access point, an access node, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell.
즉, 본 명세서에서 기지국(20) 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 Node-B, LTE/LTE-Advanced에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. That is, in the present specification, the base station 20 or the cell is a partial area covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or a sector (site) in LTE / LTE-Advanced, and the like. Or, it should be interpreted as a comprehensive meaning of function, and encompasses various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, and small cell communication range. to be.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토 셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii) 에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above have a base station for controlling each cell, the base station may be interpreted in two senses. i) A device providing a mega cell, a macro cell, a micro cell, a pico cell, a femto cell, a small cell in relation to a radio area, or ii) may indicate the radio area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station. The eNB, RRH, antenna, RU, LPN, point, transmit / receive point, transmit point, receive point, and the like, according to the configuration of the radio region, become an embodiment of the base station. In ii), the base station may indicate the radio area itself to receive or transmit a signal from a viewpoint of a user terminal or a neighboring base station.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신포인트를 통칭하여 기지국으로 지칭한다.Therefore, megacells, macrocells, microcells, picocells, femtocells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmit / receive points, transmit points, and receive points are collectively referred to as base stations. do.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.In the present specification, the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to. The user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to. Here, the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal, the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-Advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There is no limitation on the multiple access scheme applied to the wireless communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used. One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
또한, LTE, LTE-Advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. In addition, in systems such as LTE and LTE-Advanced, a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers. The uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like. Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.On the other hand, control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다. In the present specification, a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다. A wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal. antenna transmission system), a cooperative multi-cell communication system. The CoMP system may include at least two multiple transmission / reception points and terminals.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀 영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multiple transmit / receive point is at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmission power or a low transmission power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다. In the following, downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal, and uplink refers to a communication or communication path from a terminal to multiple transmission / reception points. In downlink, a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal. In uplink, a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH may be expressed in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH.'
또한 이하에서는 PDCCH를 전송(송신) 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송(송신) 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In addition, hereinafter, a description of transmitting (receiving) or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used as a meaning including transmitting or receiving an EPDCCH or transmitting (receiving) or receiving a signal through the EPDCCH.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the physical downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 EPDCCH를 적용할 수 있다.In addition, for convenience of description, the EPDCCH, which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the EPDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.Meanwhile, high layer signaling described below includes RRC signaling for transmitting RRC information including an RRC parameter.
기지국 또는 eNB(20)은 단말(10)들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The base station or eNB 20 performs downlink transmission to the terminals 10. The eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH. For example, a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted. Hereinafter, the transmission and reception of signals through each channel will be described in the form of transmission and reception of the corresponding channel.
도 1을 참조하면, 기지국(20)은 단말(10)로 PDCCH/EPDCCH를 통해 하향링크 제어 정보(Downlink Control Information, DCI)를 전송한다. DCI는 PDSCH 자원 정보를 포함하는 하향링크 스케줄링 할당(assignment)을 포함하거나, PUSCH 자원 정보를 포함하는 상향링크 스케줄링 승인(grant)를 포함할 수 있다. Referring to FIG. 1, the base station 20 transmits downlink control information (DCI) to the terminal 10 through a PDCCH / EPDCCH. The DCI may include a downlink scheduling assignment including PDSCH resource information or an uplink scheduling grant including PUSCH resource information.
즉, 기지국(20)은 단말(10)에 상/하향 데이터 전송 자원을 할당하기 위해 DCI를 사용하고, 이를 하향링크 제어 채널을 이용하여 단말(10)로 전송한다. 하향링크 제어 채널은 DCI를 전송하기 위해 사용하는 전송 자원의 위치에 따라서 PDCCH 및 EPDCCH로 분류될 수 있다.That is, the base station 20 uses DCI to allocate uplink / downlink data transmission resources to the terminal 10 and transmits the same to the terminal 10 using a downlink control channel. The downlink control channel may be classified into a PDCCH and an EPDCCH according to a location of a transmission resource used for transmitting a DCI.
PDCCH는 CFI(Control Format Indicator)를 통해서 설정되는 제어 영역에서 전송된다. 제어 영역은 하향링크 대역폭 전체에 걸쳐서 형성되고 각각의 서브프레임마다 CFI 설정 값에 따라 1~4 개의 OFDM 심볼로 구성된다.The PDCCH is transmitted in a control region established through a control format indicator (CFI). The control region is formed over the entire downlink bandwidth and consists of 1 to 4 OFDM symbols for each subframe according to the CFI setting value.
EPDCCH는 각각의 서브프레임 내에서 제어 영역을 제외한 나머지 전송 자원을 사용하여 전송된다. EPDCCH 전송을 위해 사용되는 전송 자원은 각 단말마다 상위계층 시그널링(예를 들면, RRC(Radio Resource Control))으로 미리 정의된 서브프레임과 미리 정의된 복수 개의 PRB(Physical Resource Block) 페어(pair)에 대해서만 사용될 수 있다. The EPDCCH is transmitted using the remaining transmission resources except for the control region in each subframe. The transmission resource used for EPDCCH transmission is allocated to a subframe predefined by upper layer signaling (for example, RRC (Radio Resource Control)) and a plurality of predefined physical resource block (PRB) pairs for each UE. Can only be used.
DCI를 PDCCH를 통해 전송할 때 기본이 되는 전송 자원의 단위를 CCE(Control Channel Element)라 할 수 있다. 하나의 CCE는 9개의 REG(Resource Element Group)로 구성되고, 하나의 REG는 4개의 RE(Resource Element)로 구성될 수 있다.When transmitting DCI through the PDCCH, a basic transmission resource unit may be referred to as a control channel element (CCE). One CCE may consist of nine Resource Element Groups (REGs), and one REG may consist of four Resource Elements (REs).
DCI를 EPDCCH를 통해 전송할 때 기본이 되는 전송 자원의 단위를 ECCE(Enhanced CCE)라 할 수 있다. 하나의 ECCE는 사이클릭 프리픽스(cyclic prefix) 길이 및/또는 TDD 구성에 따라 4개 또는 8개의 EREG(Enhanced REG)로 구성되고, 하나의 EREG는 RS(Reference Signal) 전송에 사용되는 RE에 따라서 가변적인 복수 개의 RE로 구성될 수 있다.When transmitting DCI through EPDCCH, the basic transmission resource unit may be referred to as ECCE (Enhanced CCE). One ECCE is composed of 4 or 8 EREGs (Enhanced REGs) according to cyclic prefix length and / or TDD configuration, and one EREG is variable depending on RE used for RS (Reference Signal) transmission. It may be composed of a plurality of RE.
기지국(20)은 단말의 채널 상황에 따라서 하나의 DCI를 PDCCH를 통해 전송할 때 사용하는 CCE의 개수를 설정할 수 있다. 이를 결합 레벨(Aggregation level)이라고 하고, 단말의 채널 상황에 따라서 1, 2, 4, 또는 8개의 CCE를 사용할 수 있다. The base station 20 may set the number of CCEs used to transmit one DCI through the PDCCH according to the channel condition of the terminal. This is called an aggregation level, and 1, 2, 4, or 8 CCEs may be used according to the channel condition of the UE.
또한, 기지국(20)은 단말의 채널 상황에 따라서 하나의 DCI를 EPDCCH를 통해 전송할 때 사용하는 ECCE의 개수를 설정할 수 있다. 이를 결합 레벨(Aggregation level)이라고 하고, 단말의 채널 상황에 따라서 1, 2, 4, 8, 16 또는 32개의 ECCE를 사용할 수 있다.In addition, the base station 20 may set the number of ECCEs used when transmitting one DCI through the EPDCCH according to the channel condition of the terminal. This is called an aggregation level, and 1, 2, 4, 8, 16, or 32 ECCEs may be used according to the channel condition of the UE.
상술한 바와 같이, PDCCH/EPDCCH는 복수 개의 CCE/ECCE로 구성되고 있고, 기지국은 매 서브프레임마다 복수 개의 DCI를 복수 개의 단말로 전송할 수 있다. 이때 단말이 PDCCH/EPDCCH를 통해 DCI를 수신하기 위해 필요한 CCE/ECCE의 할당 정보(즉, 하나의 DCI 전송에 사용되는 CCE 결합 레벨 정보 및 CCE 전송 자원의 위치 정보)는 기지국이 단말에 별도로 제공하지 않으므로, 단말은 자신에게 전송되는 DCI를 확인하기 위해 가능한 결합 레벨 및 CCE/ECCE 전송 자원에 대해 블라인드 디코딩(blind decoding)을 수행한다.As described above, the PDCCH / EPDCCH is composed of a plurality of CCE / ECCE, the base station can transmit a plurality of DCI to a plurality of terminals in every subframe. In this case, the UE does not separately provide CCE / ECCE allocation information (that is, CCE combining level information and CCE transmission resource location information used for one DCI transmission) necessary for the UE to receive DCI through PDCCH / EPDCCH. Therefore, the terminal performs blind decoding on the possible coupling level and the CCE / ECCE transmission resource to confirm the DCI transmitted to the terminal.
단말이 PDCCH/EPDCCH 내에 존재하는 모든 CCE/ECCE에 대해서 결합 레벨 별로 가능한 모든 CCE/ECCE 조합을 블라인드 디코딩하기에는 처리 지연을 고려할 때 현실적으로 불가능하므로, 단말 별로 미리 정의된 CCE/ECCE 인덱스들로 구성되는 PDCCH 후보(candidate)/EPDCCH 후보(candidate)에 대해서만 블라인드 디코딩을 수행한다. 각 결합 레벨 별로 PDCCH 후보/EPDCCH 후보를 구성하는 CCE 인덱스/ECCE 인덱스는 결합 레벨, RNTI(Radio Network Temporary Identifier)의 값, 슬롯 넘버(또는 서브프레임 넘버)의 함수로 정의될 수 있다. 단말은 매 서브프레임마다 결합 레벨 마다 제한된 개수의 PDCCH 후보/EPDCCH 후보에 대해서만 블라인드 디코딩을 수행할 수 있다.Since the UE cannot realistically blind-decode all possible CCE / ECCE combinations for each coupling level for all CCEs / ECCEs present in the PDCCH / EPDCCH, the PDCCH configured with pre-defined CCE / ECCE indices for each UE. Blind decoding is performed only on a candidate / EPDCCH candidate. The CCE index / ECCE index constituting the PDCCH candidate / EPDCCH candidate for each coupling level may be defined as a function of a coupling level, a value of a Radio Network Temporary Identifier (RNTI), and a slot number (or subframe number). The UE may perform blind decoding only on a limited number of PDCCH candidates / EPDCCH candidates at each coupling level in every subframe.
일 예로서, 도 2는 일반 단말이 PDCCH/EPDCCH를 블라인드 디코딩하고 PDSCH를 수신하는 방법을 도시한다. 도 2를 참조하면, 단말은 PDCCH 후보/EPDCCH 후보에 대해서 PDCCH/EPDCCH의 블라인드 디코딩을 시도한다. DCI에는 CRC(Cyclic Redundancy Check)가 추가되어 있고, 단말은 CRC를 체크하여 자신에게 전송된 DCI를 확인한다. CRC 체크 결과 자신에게 전송된 DCI를 확인한 때, 단말은 DCI에 포함된 하향링크 스케줄링 정보를 획득하고, DCI가 전송된 서브프레임과 동일한 서브프레임 내에서의 하향링크 데이터 전송 자원을 사용하여 PDSCH를 디코딩한다. As an example, FIG. 2 illustrates a method of blind decoding a PDCCH / EPDCCH by a general terminal and receiving a PDSCH. Referring to FIG. 2, the UE attempts blind decoding of the PDCCH / EPDCCH with respect to the PDCCH candidate / EPDCCH candidate. A cyclic redundancy check (CRC) is added to the DCI, and the UE checks the CRC to confirm the DCI transmitted to the DCI. When checking the DCI transmitted to itself as a result of the CRC check, the UE acquires downlink scheduling information included in the DCI and decodes the PDSCH using downlink data transmission resources in the same subframe as the subframe in which the DCI is transmitted. do.
도 2는 PDCCH/EPDCCH를 블라인드 디코딩하고 PDSCH 스케줄링 정보를 획득하는 것에 대하여 예시하고 있다. 도 2와 유사한 방식으로, PUSCH 스케줄링 정보 또한 PDCCH/EPDCCH를 블라인드 디코딩하여 획득될 수 있다.2 illustrates blind decoding PDCCH / EPDCCH and obtaining PDSCH scheduling information. In a manner similar to that of FIG. 2, PUSCH scheduling information may also be obtained by blind decoding PDCCH / EPDCCH.
종래의 3GPP LTE/LTE-Advanced 시스템에서 단말을 위한 하향링크 제어 정보(DCI, Downlink Control Information) 전송 채널로서 Rel-10 이하의 시스템에서 정의된 PDCCH 및 Release-11 시스템에서 새롭게 정의된 EPDCCH가 사용된다. In the conventional 3GPP LTE / LTE-Advanced system, a PDCCH defined in a Rel-10 or lower system and an EPDCCH newly defined in a Release-11 system are used as a downlink control information (DCI) transmission channel for a terminal. .
도 3은 4 가지의 PDCCH 포맷을 제시한 도면이다. PDCCH의 경우, 단말의 하향링크 무선 채널 품질 및 DCI의 사이즈에 따른 링크 적응(link adaptation)을 위해 도 3과 같은 4가지 PDCCH 포맷을 사용하여 전송되었다. 도 4에서 CCE의 개수(Number of CCEs)는 결합 레벨(Aggregation Level)을 나타낸다. 3 illustrates four PDCCH formats. In the case of the PDCCH, four PDCCH formats as shown in FIG. 3 are transmitted for link adaptation according to downlink radio channel quality and DCI size of the UE. In FIG. 4, the number of CCEs represents an aggregation level.
도 4는 ECCE 별 EREG의 수를 제시한 도면이다. 도 4에서는
Figure PCTKR2014008763-appb-I000001
(Number of EREGs per ECCE)의 값은 서브프레임의 특성에 따라 결정되는데, 노멀 사이클릭 프리픽스(Normal cyclic prefix)인 경우에는 노멀 서브프레임(Normal subframe) 또는 3, 4, 8 설정의 스페셜 서브프레임(Special subframe, configuration 3, 4, 8)에서는 4가 된다. 한편, 확장 사이클릭 프리픽스(Extended cyclic prefix)인 경우에는 노멀 서브프레임(Normal subframe) 또는 1, 2, 3, 5, 6 설정의 스페셜 서브프레임(Special subframe, configuration 1, 2, 3, 5, 6)에서는 8이 된다.
4 is a diagram showing the number of EREGs by ECCE. In Figure 4
Figure PCTKR2014008763-appb-I000001
The value of (Number of EREGs per ECCE) is determined according to the characteristics of the subframe, and in the case of the normal cyclic prefix, it is a normal subframe or a special subframe of 3, 4, and 8 settings. Special subframe, configuration 3, 4, 8) is 4. On the other hand, in the case of an extended cyclic prefix, a normal subframe or a special subframe of 1, 2, 3, 5, and 6 configuration (Special subframe, configuration 1, 2, 3, 5, 6) ) Is 8.
도 5는 지원되는 EPDCCH 포맷(Supported EPDCCH formats)에 대한 도면이다. 도 5에서 케이스 A와 케이스 B로 나뉘어지며, 각각 로컬라이즈 전송(Localized transmission)과 분산 전송(Distributed transmission)에 따라 5가지로 나뉘어진다. 5 is a diagram for Supported EPDCCH formats. In FIG. 5, it is divided into case A and case B, and is divided into five types according to localized transmission and distributed transmission, respectively.
즉, EPDCCH의 경우에도 마찬가지로 DCI 전송을 위한 링크 적응(link adaptation)을 위해 도 4, 5에 따라 5가지의 EPDCCH 포맷을 사용하여 전송되었다. That is, in the case of EPDCCH, five EPDCCH formats are transmitted according to FIGS. 4 and 5 for link adaptation for DCI transmission.
기존의 LTE/LTE-Advanced 시스템에서 임의의 단말에 대한 PDSCH 자원 할당을 위한 하나의 다운링크 할당(DL assignment) DCI를 포함하는 PDCCH/EPDCCH는 하나의 하향링크 서브프레임을 통해 전송되었다. 또한, 상기의 PDCCH/EPDCCH 포맷과 관계없이 PDSCH 자원 할당 정보를 포함하는 DL 할당 PDCCH 혹은 EPDCCH에 대한 전송이 이루어지는 하향링크 서브프레임과 해당 PDSCH 전송이 이루어지는 서브프레임은 동일하다. 즉 임의의 단말을 위한 DL 할당 DCI 전송이 이루어지는 하향링크 서브프레임에서 해당 DL 할당 정보에 따른 PDSCH 전송이 이루어지도록 정의되어 있다. In the existing LTE / LTE-Advanced system, the PDCCH / EPDCCH including one downlink allocation (DL assignment) DCI for PDSCH resource allocation to any UE is transmitted through one downlink subframe. In addition, regardless of the PDCCH / EPDCCH format, a downlink subframe in which a DL allocation PDCCH or EPDCCH including PDSCH resource allocation information is transmitted and a subframe in which the corresponding PDSCH transmission is performed are the same. That is, PDSCH transmission according to DL allocation information is defined in a downlink subframe in which DL allocation DCI transmission is performed for an arbitrary UE.
[LTE 기반의 저가형 MTC][LTE-based low-cost MTC]
LTE 네트워크가 확산될 수록, 이동통신 사업자는 네트워크의 유지보수 비용 등을 줄이기 위해 RAT(Radio Access Terminals)의 수를 최소화하기를 원하고 있다. 하지만, 종래의 GSM/GPRS 네트워크 기반의 MTC 제품들이 증가하고 있고, 낮은 데이터 전송률을 사용하는 MTC를 저비용으로 제공할 수 있다. 따라서 이동통신 사업자 입장에서 일반 데이터 전송을 위해서는 LTE 네트워크를 사용하고 MTC를 위해서는 GSM/GPRS 네트워크를 사용하므로, 두 개의 RAT을 각각 운영해야 하는 문제가 발생하며, 이는 주파수 대역의 비효율적 활용으로 이동통신 사업자의 수익에 부담이 된다.As LTE networks proliferate, mobile operators want to minimize the number of Radio Access Terminals (RATs) to reduce network maintenance costs. However, MTC products based on conventional GSM / GPRS networks are increasing, and MTCs using low data rates can be provided at low cost. Therefore, since the mobile operators use the LTE network for general data transmission and the GSM / GPRS network for the MTC, there is a problem of operating two RATs, which are inefficient use of the frequency band. It becomes burden on profit.
이와 같은 문제를 해결하기 위해서, GSM/EGPRS 네트워크를 사용하는 값싼 MTC 단말을 LTE 네트워크를 사용하는 MTC 단말로 대체해야 하며, 이를 위해서 LTE MTC 단말의 가격을 낮추기 위한 다양한 요구사항들이 제안된다. In order to solve this problem, the cheap MTC terminal using the GSM / EGPRS network should be replaced with the MTC terminal using the LTE network, for this purpose, various requirements for reducing the price of the LTE MTC terminal is proposed.
상기 저가 LTE MTC 단말을 지원하기 위해서 협대역 지원/ 싱글 RF 체인(Single RF chain)/ 반듀플렉스 FDD(Half duplex FDD) / 긴 DRX(Long Discontinued Reception) 등의 기술을 예로 들 수 있다. 하지만 가격을 낮추기 위해서 고려되고 있는 상기 방법들은 종래의 LTE 단말과 비교하여 MTC 단말의 성능을 감소시킬 수 있다.In order to support the low-cost LTE MTC terminal, there may be mentioned, for example, technologies such as narrowband support / single RF chain / half duplex FDD / long discontinued reception (DRX). However, the above methods, which are considered to lower the price, may reduce the performance of the MTC terminal compared to the conventional LTE terminal.
또한 스마트 메터링(Smart metering)과 같은 MTC 서비스를 지원하는 MTC 단말 중 20%정도는 지하실과 같은 'Deep indoor' 환경에 설치되므로, 성공적인 MTC 데이터 전송을 위해서, LTE MTC 단말의 커버리지는 종래 일반 LTE 단말의 커버리지와 비교하여 20dB 정도 향상되어야 한다. 또한 상기 규격 변경으로 인한 성능 감소를 추가적으로 고려한다면 LTE MTC 단말의 커버리지는 20dB 이상 향상되어야 한다.In addition, since about 20% of MTC terminals supporting MTC services such as smart metering are installed in a 'deep indoor' environment such as a basement, for successful MTC data transmission, the coverage of LTE MTC terminals is conventional LTE. It should be improved by about 20dB compared to the coverage of the terminal. In addition, if the performance reduction due to the specification change is further considered, the coverage of the LTE MTC terminal should be improved by 20 dB or more.
이와 같이 LTE MTC 단말 가격을 낮추면서 커버리지를 향상시키기 위해서 PSD 부스팅(boosting) 또는 낮은 코딩률(Low coding rate) 및 시간 도메인 반복(Time domain repetition) 등과 같은 로부스트(Robust)한 전송을 위한 다양한 방법이 각각의 물리채널 별로 고려되고 있다.As described above, various methods for robust transmission such as PSD boosting or low coding rate and time domain repetition are used to improve coverage while lowering the LTE MTC terminal price. This is considered for each physical channel.
LTE 기반의 저가형 MTC 단말의 요구사항은 다음과 같다.The requirements of the LTE-based low-cost MTC terminal is as follows.
1) 데이터 전송속도는 최소 EGPRS 기반의 MTC 단말에서 제공하는 데이터 전송속도, 즉 하향링크 118.4kbps, 상향링크 59.2kbps를 만족해야 한다.1) The data transmission rate must satisfy the data transmission rate provided by the minimum EGPRS-based MTC terminal, that is, downlink 118.4kbps, uplink 59.2kbps.
2) 주파수 효율은 GSM/EGPRS MTC 단말 대비 획기적으로 향상되어야 한다.2) Frequency efficiency should be improved significantly compared to GSM / EGPRS MTC terminal.
3) 제공되는 서비스 영역은 GSM/EGPRS MTC 단말에서 제공되는 것보다 작지 않아야 한다.3) The service area provided shall not be smaller than that provided by the GSM / EGPRS MTC terminal.
4) 전력 소모량도 GSM/EGPRS MTC 단말보다 크지 않아야 한다.4) Power consumption should not be greater than GSM / EGPRS MTC terminal.
5) 레가시(Legacy) LTE 단말과 LTE MTC 단말은 동일 주파수에서 사용할 수 있어야 한다.5) Legacy LTE terminal and LTE MTC terminal should be available in the same frequency.
6) 기존의 LTE/SAE 네트워크를 재사용한다.6) Reuse existing LTE / SAE networks.
7) FDD 모드뿐만 아니라 TDD 모드에서도 최적화를 수행한다.7) Optimization is performed not only in the FDD mode but also in the TDD mode.
8) 저가 LTE MTC 단말은 제한된 이동성(mobility)과 저전력 소모 모듈을 지원해야 한다.8) Low cost LTE MTC terminal should support limited mobility and low power consumption module.
MTC 단말이 확장된 일반 LTE단말과 비교하여 20dB 향상된 커버리지를 지원하기 위해서는 하나의 하향링크 서브프레임 단위로 이루어지던 PDCCH 혹은 EPDCCH 전송을 복수 개의 하향링크 서브프레임을 통해 반복(repetition)하여 전송하고, 해당 MTC 단말도 해당 복수 개의 하향링크 서브프레임을 통해 수신된 PDCCH 혹은 EPDCCH를 컴바이닝(combining)하여 디코딩(decoding)을 수행해야 할 필요가 있다. 이 경우 해당 PDCCH 혹은 EPDCCH를 통해 DL 할당 DCI가 전송될 경우, 기존의 LTE/LTE-Advanced 단말에서의 동일한 하향링크 서브프레임 기반의 DL 할당 DCI와 그에 따른 PDSCH 송수신 타이밍 관계가 아닌, MTC 단말을 위한 반복이 이루어진 PDCCH 및 EPDCCH 송수신과 그에 따른 PDSCH 송수신 타이밍 관계에 대한 새로운 정의가 필요하다. In order to support 20dB enhanced coverage compared to the general LTE terminal, the MTC terminal repetitively transmits a PDCCH or EPDCCH transmission made in one downlink subframe unit through a plurality of downlink subframes, The MTC terminal also needs to perform decoding by combining PDCCHs or EPDCCHs received through a plurality of downlink subframes. In this case, when the DL allocation DCI is transmitted through the corresponding PDCCH or EPDCCH, the DL allocation DCI based on the same downlink subframe in the existing LTE / LTE-Advanced terminal and the PDSCH transmission / reception timing relationship accordingly, for the MTC terminal There is a need for a new definition of the repeated PDCCH and EPDCCH transmission and reception and PDSCH transmission and reception timing relationship.
본 발명에서는 MTC 단말을 위한 PDCCH 혹은 EPDCCH의 전송 포맷과 그에 따른 PDSCH 전송 방안에 대해 제안한다.The present invention proposes a transmission format of a PDCCH or an EPDCCH for an MTC terminal and a PDSCH transmission scheme according thereto.
특히 MTC 단말을 위한 DCI(Downlink Control Information) 전송을 위한 새로운 PDCCH/EPDCCH 포맷을 정의하고, 이를 기반으로 한 PDSCH 전송 방법에 대해 제안한다.In particular, we define a new PDCCH / EPDCCH format for downlink control information (DCI) transmission for MTC UE, and propose a PDSCH transmission method based on the same.
본 발명에서는 MTC 단말을 위한 기지국에서의 PDSCH 스케줄링 정보를 포함하는 DL 할당 DCI 전송을 위한 PDCCH/EPDCCH 전송 방법과 이에 기반한 PDSCH 전송 방법 및 이에 기반한 MTC 단말의 PDCCH/EPDCCH 및 PDSCH 수신 방법에 대해 제안한다. The present invention proposes a PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal, a PDSCH transmission method based thereon, and a PDCCH / EPDCCH and PDSCH reception method of an MTC terminal based thereon. .
특히 DL 할당을 포함한 PDCCH/EPDCCH 전송 하향링크 서브프레임과 이에 따른 PDSCH 전송 하향링크 서브프레임의 관계에 대해 정의한다. 특히 MTC 단말을 위한 PDSCH 전송 서브프레임 및 PDSCH 반복 횟수를 정의하는 방안에 대해 제안한다.In particular, the relationship between the PDCCH / EPDCCH transmission downlink subframe including the DL allocation and the PDSCH transmission downlink subframe is defined. In particular, a method of defining a PDSCH transmission subframe and a PDSCH repetition number for an MTC terminal is proposed.
상기에서 서술한 바와 같이 종래의 LTE/LTE-Advanced 시스템에서 임의의 단말을 위한 하나의 DCI를 포함하는 PDCCH 혹은 EPDCCH는 하나의 하향링크 서브프레임을 통해 전송되었다. 예를 들어 임의의 LTE/LTE-Advanced 단말을 위한 PDSCH 자원 할당 정보인 DL 할당 DCI를 포함하는 PDCCH/EPDCCH, 혹은 PUSCH 자원 할당 정보인 UL 그랜트(UL grant) DCI를 포함하는 PDCCH/EPDCCH 등, 임의의 한 단말 혹은 단말 그룹을 위한 하나의 DCI를 포함하는 하나의 PDCCH 혹은 EPDCCH는 하나의 하향링크 서브프레임 내에서 전송이 이루어졌다. 특히 PDSCH 자원 할당 정보를 전송하기 위한 DL 할당 PDCCH 혹은 EPDCCH의 경우, 해당 DL 할당 PDCCH 혹은 EPDCCH 전송이 이루어진 하향링크 서브프레임과 동일한 서브프레임에서 해당 PDSCH 전송이 이루어졌다. 하지만 상기에서 서술한 바와 같이 MTC 단말의 경우, 향상된 커버리지를 지원하기 위해 하나의 DCI를 포함하는 PDCCH 혹은 EPDCCH가 복수 개의 하향링크 서브프레임을 통해 반복되어 전송될 수 있다. 이 경우 임의의 MTC 단말을 위한 DL 할당 DCI를 전송하기 위한 PDCCH/EPDCCH가 임의의 N개의 하향링크 서브프레임을 통해 전송될 때, 해당 PDCCH/EPDCCH 전송이 이루어진 하향링크 서브프레임과 그에 따른 PDSCH 전송이 이루어지는 하향링크 서브프레임과의 관계에 대해 정의할 필요가 있다. As described above, in the conventional LTE / LTE-Advanced system, the PDCCH or EPDCCH including one DCI for any UE is transmitted through one downlink subframe. For example, PDCCH / EPDCCH including DL allocation DCI which is PDSCH resource allocation information for any LTE / LTE-Advanced UE, or PDCCH / EPDCCH including UL grant DCI which is PUSCH resource allocation information. One PDCCH or EPDCCH including one DCI for one UE or UE group is transmitted in one downlink subframe. In particular, in case of DL allocation PDCCH or EPDCCH for transmitting PDSCH resource allocation information, the PDSCH transmission is performed in the same subframe as the downlink subframe in which the corresponding DL allocation PDCCH or EPDCCH transmission is performed. However, as described above, in case of an MTC terminal, a PDCCH or an EPDCCH including one DCI may be repeatedly transmitted through a plurality of downlink subframes to support enhanced coverage. In this case, when the PDCCH / EPDCCH for transmitting the DL allocation DCI for any MTC terminal is transmitted through any N downlink subframes, the downlink subframe in which the corresponding PDCCH / EPDCCH transmission is performed and the PDSCH transmission accordingly It is necessary to define the relationship with the downlink subframe.
이하 MTC 단말을 위한 기지국에서의 PDSCH 스케줄링 정보를 포함하는 DL 할당 DCI 전송을 위한 PDCCH/EPDCCH 전송 방법으로, DL 할당을 포함한 PDCCH/EPDCCH 전송 하향링크 서브프레임과 이에 따른 PDSCH 전송 하향링크 서브프레임의 관계가 특정된 MTC 단말을 위한 하향링크 데이터 채널 송수신 방법 및 이를 위한 장치에 대해 살펴본다. Hereinafter, a PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal, the relationship between a PDCCH / EPDCCH transmission downlink subframe including DL allocation and a PDSCH transmission downlink subframe A downlink data channel transmission / reception method for a specified MTC terminal and an apparatus therefor will be described.
방법 1. PDSCH 출발 서브프레임(PDSCH starting subframe) Method 1. PDSCH starting subframe
기존의 LTE/LTE-Advanced 시스템의 PDCCH/EPDCCH와 PDSCH 간의 타이밍 관계를 유지할 경우, MTC 단말은 PDCCH/EPDCCH에 대한 디코딩이 완료될 때까지 해당 PDCCH/EPDCCH 전송이 이루어지는 N개의 하향링크 서브프레임의 전 대역의 PDSCH 영역에 대한 버퍼링을 수행해야 한다. 이는 MTC 단말의 복잡성(complexity) 측면에서 비효율적일 수 있다. 본 발명에서는 이를 해결하기 위해 마지막 PDCCH/EPDCCH 반복이 이루어진 하향링크 서브프레임을 DL 서브프레임 #M이라 할 때, 그에 따른 PDSCH 전송 시작 하향링크 서브프레임을 DL 서브프레임 #(M+k)로 정의하도록 한다. 단, k값은 0이상의 정수로 한정할 수 있다. If the timing relationship between the PDCCH / EPDCCH and the PDSCH of the existing LTE / LTE-Advanced system is maintained, the MTC UE transmits all N downlink subframes in which the corresponding PDCCH / EPDCCH transmission is performed until decoding of the PDCCH / EPDCCH is completed. Buffering must be performed for the PDSCH region of the band. This may be inefficient in terms of complexity of the MTC terminal. In order to solve this problem, in the present invention, when the downlink subframe in which the last PDCCH / EPDCCH repetition is performed is called DL subframe #M, the PDSCH transmission start downlink subframe is defined as DL subframe # (M + k). do. However, k value can be limited to an integer of 0 or more.
도 6은 본 발명의 일 실시예에 의한 PDCCH/EPDCCH의 반복 전송 후 PDSCH를 전송하는 도면이다. PDCCH/EPDCCH의 반복 전송과 이에 대한 PDSCH의 타이밍(k=1)인 경우를 보여준다. 앞서 살펴본 k값을 1로 설정할 수 있다. 즉, 반복이 이루어진 PDCCH 혹은 EPDCCH의 마지막 전송 서브프레임의 다음 서브프레임부터 PDSCH 전송이 이루어지도록 정의할 수 있다. 즉, 도 6과 같이 임의의 MTC 단말을 위한 하나의 DL 할당 DCI를 포함하는 PDCCH 혹은 EPDCCH가 611에서 지시하는 DL 서브프레임 #(M-N+1) 부터 619에서 지시하는 DL 서브프레임 #M까지 N개의 DL 서브프레임을 통해 반복되어 전송된 경우, 해당 DL 할당 정보에 해당하는 PDSCH 전송은 621에서 지시하는 DL 서브프레임 #(M+1)부터 629에서 지시하는 DL 서브프레임 #(M+P)까지 이루어지도록 할 수 있다. 단, P는 해당 MTC 단말을 위한 PDSCH 반복 전송의 횟수이다.6 is a diagram for transmitting a PDSCH after repeated transmission of a PDCCH / EPDCCH according to an embodiment of the present invention. The case of repetitive transmission of the PDCCH / EPDCCH and timing (k = 1) of the PDSCH thereto is shown. We can set k as 1 above. That is, PDSCH transmission may be defined from the next subframe of the last transmission subframe of the repeated PDCCH or EPDCCH. That is, as shown in FIG. 6, from DL subframe # (M-N + 1) indicated by 611 to PDCCH or EPDCCH including one DL-allocated DCI for an arbitrary MTC UE, to DL subframe #M indicated by 619. When repeated transmission through N DL subframes, PDSCH transmission corresponding to the DL allocation information is performed from DL subframe # (M + 1) indicated by 621 through DL subframe # (M + P) indicated by 629. It can be done until. However, P is the number of repeated PDSCH transmissions for the corresponding MTC terminal.
다시 설명하면 도 6에서 반복 전송되는 PDCCH/EPDCCH(PDCCH/EPDCCH transmission)는 631, 632, ... , 639에 해당하며, 이들은 N 번 반복(Number of repetition = N) 전송된다. 전송이 종료된 서브프레임(619)의 서브프레임 넘버는 #M이며, 이후 #(M+1) 서브프레임(621)부터 P번의 반복(Number of repetition = P)을 통해 PDSCH가 전송된다(corresponding PDSCH transmission). P번 반복되는 PDSCH는 각각 641, 642, ... , 649가 된다. 위에서 M+1의 "1"은 PDSCH의 타이밍 k가 1인 경우를 보여준다. 해당 k값을 정의하기 위한 또 다른 실시예로서 기존의 업링크 그랜트(UL grant)를 포함하는 PDCCH/EPDCCH 전송과 PUSCH 전송 간의 타이밍 관계를 따라 k=4로 고정할 수 있다. 즉, 반복이 이루어진 PDCCH/EPDCCH의 마지막 전송 서브프레임으로부터 4 서브프레임 이후부터 해당 PDSCH 전송이 시작되도록 정의할 수 있다.In other words, PDCCH / EPDCCH transmission (PDCCH / EPDCCH transmission) repeated in FIG. 6 corresponds to 631, 632, ..., 639, and these are repeated N times (Number of repetition = N). The subframe number of the subframe 619 in which transmission has been completed is #M, and then PDSCH is transmitted through P (Number of repetition = P) from # (M + 1) subframe 621 (corresponding PDSCH). transmission). PDSCH repeated P times are 641, 642, ..., 649, respectively. "1" of M + 1 shows the case where the timing k of the PDSCH is 1. As another embodiment for defining the corresponding k value, k = 4 may be fixed according to a timing relationship between a PDCCH / EPDCCH transmission including a UL grant and a PUSCH transmission. That is, the PDSCH transmission may be defined to start from 4 subframes after the last transmission subframe of the repeated PDCCH / EPDCCH.
상기의 k값에 대한 구체적인 실시예 외에 k≥0을 만족하는 임의의 정수에 대해 본 발명의 범주에 포함시킬 수 있다.In addition to the above specific examples of k values, any integer satisfying k ≧ 0 may be included in the scope of the present invention.
방법 2. PDSCH 반복 횟수(Number of PDSCH repetition)Method 2.Number of PDSCH repetition
MTC 단말을 DL 할당 DCI에 따른 PDSCH 전송 시, 적용될 PDSCH 반복 횟수, P값은 해당 PDSCH 할당 정보를 담은 DL 할당 PDCCH/EPDCCH의 반복 횟수인 N값의 함수, 혹은 이를 포함한 PDCCH/EPDCCH 포맷의 함수로서 결정되도록 할 수 있다. 이에 대한 한 예로써, 해당 P값은 N값에 비례하여 설정하도록 할 수 있다. 즉, 해당 P=aㅇN의 관계가 성립하도록 정의할 수 있다. 이 때 a는 임의의 양의 상수이다. When the MTC UE transmits PDSCH according to DL allocation DCI, the number of PDSCH repetitions to be applied, P value, is a function of N value which is the number of repetitions of DL allocation PDCCH / EPDCCH containing corresponding PDSCH allocation information, or as a function of PDCCH / EPDCCH format including the same. Can be determined. As an example of this, the corresponding P value may be set in proportion to the N value. That is, it can be defined that the relation of P = a • N holds. Where a is any positive constant.
예를 들어, a=1/2로 정의할 수 있다. 이 경우 해당 PDSCH 반복 횟수(repetition number), P는 해당 PDSCH 할당 정보를 전송하는 PDCCH/EPDCCH의 repetition number, N값의 반으로 정의될 수 있다. For example, it can be defined as a = 1/2. In this case, the corresponding PDSCH repetition number and P may be defined as half the repetition number and N values of the PDCCH / EPDCCH for transmitting the corresponding PDSCH allocation information.
해당 P값을 결정하는 또 다른 방안으로서, 해당 P 값을 포함하는 임의의 임의의 복수의 PDSCH 포맷을 정의하고 이를 DL 할당 DCI에 포함하여 전송하도록 할 수 있다. 해당 PDSCH format은 도 6과 같이 PDSCH 반복 횟수 P값 외에 PRB 할당 정보, MCS값 등을 포함하거나 혹은 그 일부를 포함할 수 있다. 단, 구체적인 PDSCH 포맷의 개수 및 PDSCH 포맷 별 PRB 할당 개수 및 반복 횟수 등의 다양하게 정의될 수 있으며 이 값에 제한을 두지 않는다.As another method of determining the corresponding P value, any arbitrary plurality of PDSCH formats including the corresponding P value may be defined and included in the DL allocation DCI for transmission. The PDSCH format may include or part of PRB allocation information, MCS value, etc. in addition to the PDSCH repetition number P value as shown in FIG. 6. However, the number of specific PDSCH formats, the number of PRB allocations per PDSCH format, and the number of repetitions may be variously defined, and there is no limitation on this value.
도 7은 본 발명의 일 실시예에 의한 PDSCH 포맷에 따라 PRB 의 수(number of PRBs)와 반복 횟수(Number of repetition), 또한 MCS(Modulation and Coding Scheme)가 설정되는 관계이다. 각각의 값인 a, b, c, d, e, f, g, h는 실시예에 따라 결정될 수 있다. MCS는 PDSCH의 포맷에 따라 추후 규정(To be determined)될 수 있다. FIG. 7 is a relationship in which the number of PRBs, the number of repetitions, and the Modulation and Coding Scheme (MCS) are set according to a PDSCH format according to an embodiment of the present invention. Each of the values a, b, c, d, e, f, g, and h may be determined according to an embodiment. The MCS may be defined later according to the format of the PDSCH.
PDSCH 반복 횟수를 결정하는 또 다른 방법으로서, 각각의 MTC 단말 별로 무선 채널 품질에 따라 커버리지 레벨(coverage level)을 정의하고, 해당 커버리지 레벨 별로 PDSCH 반복 횟수 P값이 정의되도록 할 수 있다. 이 때 임의의 단말을 위한 커버리지 레벨은 기지국에 의해 설정되거나, 해당 MTC 단말의 PRACH 프로시져(procedure)를 통해 단말 별로 내재적으로(implicit) 설정되도록 할 수 있다.As another method of determining the number of PDSCH repetitions, a coverage level may be defined according to radio channel quality for each MTC terminal, and a PDSCH repetition number P value may be defined for each corresponding coverage level. In this case, the coverage level for any terminal may be set by the base station or implicitly set for each terminal through a PRACH procedure of the corresponding MTC terminal.
도 8은 본 발명의 일 실시예에 의한 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH의 반복 전송 및 그에 따른 상기 PDSCH의 전송을 보여주는 도면이다. 8 is a diagram illustrating repetitive transmission of a PDCCH or EPDCCH including PDSCH scheduling information according to an embodiment of the present invention, and transmission of the PDSCH accordingly.
도 8에서 반복 전송하게 되는 수(N)은 5이며, 반복 전송 후 1 서브프레임(k=1) 이후 2번의 PDSCH의 반복 전송(P=2)이 이루어지는 과정을 보여준다.In FIG. 8, the number N of repetitive transmissions is 5 and shows a process of performing repetitive transmissions of two PDSCHs (P = 2) after one subframe (k = 1) after repeated transmissions.
기지국(801)은 단말(809)를 위한 PDCCH 또는 EPDCCH를 포함한 하향링크 신호를 생성한다(S810). 그리고 제 1 하향링크 서브프레임에서 상기 생성한 하향링크 신호를 전송한다(S815). 이는 반복 전송 중 첫 번째 전송이 되며, 단말(809)은 하향링크 신호의 PDCCH 또는 EPDCCH를 수신한다(S819). 기지국은 반복하여 상기 단말(809)를 위한 PDCCH 또는 EPDCCH를 포함한 하향링크 신호를 생성하고 전송하는 과정을 반복한다. 기지국은 마지막 반복 전송인 5회 전송을 위해 단말(809)를 위한 PDCCH 또는 EPDCCH를 포함한 하향링크 신호를 생성한다(S820). 그리고 제 5 하향링크 서브프레임에서 상기 생성한 하향링크 신호를 전송한다(S825). 이는 반복 전송 중 다섯 번째 전송이 되며, 단말(809)은 하향링크 신호의 PDCCH 또는 EPDCCH를 수신한다(S829). 반복 전송이 완료되면, 기지국(801)은 S815 내지 S825에서 반복 전송하였던 PDCCH 또는 EPDCCH에 포함된 PDSCH 스케줄링 정보에 따라 반복 전송이 완료된 제 5 서브프레임의 다음 서브프레임(k=1이므로)에서 2번의 PDSCH 반복 전송을 수행한다. 기지국(801)은 단말을 위한 PDSCH를 포함한 하향링크 신호를 생성하고(S830) 이를 단말(809)에게 제 6 하향링크 서브프레임에서 하향링크 신호로 전송한다(S835). 이는 PDSCH 반복 전송의 첫 번째 전송이다. 단말은 하향링크 신호의 PDSCH를 수신한다(S839). 그리고 기지국(801)은 단말을 위한 PDSCH를 포함한 하향링크 신호를 생성하고(S840) 이를 단말(809)에게 제 7 하향링크 서브프레임에서 하향링크 신호로 전송한다(S845). 이는 PDSCH 반복 전송의 두 번째 전송이다. 단말은 하향링크 신호의 PDSCH를 수신한다(S849).The base station 801 generates a downlink signal including the PDCCH or EPDCCH for the terminal 809 (S810). In operation S815, the generated downlink signal is transmitted in a first downlink subframe. This is the first transmission of repetitive transmission, the terminal 809 receives the PDCCH or EPDCCH of the downlink signal (S819). The base station repeatedly repeats a process of generating and transmitting a downlink signal including a PDCCH or an EPDCCH for the terminal 809. The base station generates a downlink signal including a PDCCH or EPDCCH for the terminal 809 for five transmissions which are the last repetitive transmission (S820). In operation S825, the generated downlink signal is transmitted in a fifth downlink subframe. This is the fifth transmission of repetitive transmission, and the terminal 809 receives the PDCCH or EPDCCH of the downlink signal (S829). When the repetitive transmission is completed, the base station 801 performs two times in the next subframe (since k = 1) of the fifth subframe in which the repetitive transmission is completed according to the PDSCH scheduling information included in the PDCCH or EPDCCH repeatedly transmitted in S815 through S825. PDSCH repeats transmission. The base station 801 generates a downlink signal including a PDSCH for the terminal (S830) and transmits it to the terminal 809 as a downlink signal in a sixth downlink subframe (S835). This is the first transmission of the PDSCH repetitive transmission. The terminal receives the PDSCH of the downlink signal (S839). The base station 801 generates a downlink signal including a PDSCH for the terminal (S840) and transmits it to the terminal 809 as a downlink signal in a seventh downlink subframe (S845). This is the second transmission of the PDSCH repetitive transmission. The terminal receives the PDSCH of the downlink signal (S849).
도 9는 본 발명의 일 실시예에 의한 기지국이 단말에게 PDCCH 또는 EPDCCH를 반복 전송하는 과정을 보여주는 도면이다. 기지국은 도 9의 과정을 기반으로 하여 단말을 위한 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH 및 그에 따른 상기 PDSCH를 전송한다.9 is a diagram illustrating a process in which a base station repeatedly transmits a PDCCH or an EPDCCH to a UE according to an embodiment of the present invention. The base station transmits the PDCCH or EPDCCH including the PDSCH scheduling information for the terminal based on the process of FIG. 9 and the PDSCH accordingly.
기지국은 상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 전송한다(S910). 그리고 상기 반복 전송된 PDCCH 또는 EPDCCH에 포함된 스케줄링 정보에 따라 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 전송한다(S920). 여기서 상기 PDCCH 또는 상기 EPDCCH의 반복 전송이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 전송이 시작되는 하향링크 서브프레임 인덱스는 M+k가 된다. 즉, PDCCH/EPDCCH의 반복 전송이 종료된 서브프레임에서 k 이후 서브프레임에서 PDSCH가 전송된다. 상기 k의 값은 0 이상의 정수 값을 가질 수 있으며, 일 실시예로 k값이 1이 될 수 있다. 한편 상기 반복 전송을 수신할 단말은 MTC를 지원하는 단말일 수 있으며, 상기 반복 전송될 PDSCH의 반복 전송에 대한 값인 P의 값은 1 이상의 정수 값을 가질 수 있다. 다른 실시예로 방법 2에서 살펴본 바와 같이 PDSCH 반복 전송을 위한 P 값이 도 7에서 살펴본 바와 같이 PDCCH 또는 EPDCCH의 포맷과 상기 N 중 어느 하나 이상을 이용하여 결정될 수 있다. 즉, 함수의 인자로 포맷과 N의 값이 주어질 수 있으며, 도 7과 같은 형태로 기지국과 단말이 정보를 공유할 수 있다. The base station repeatedly transmits the PDCCH or the EPDCCH through N downlink subframes (S910). The PDSCH is repeatedly transmitted through P downlink subframes according to the scheduling information included in the repeatedly transmitted PDCCH or EPDCCH (S920). Here, when the downlink subframe index at which repetitive transmission of the PDCCH or the EPDCCH is terminated is M, the downlink subframe index at which the PDSCH repeating transmission is started is M + k. That is, the PDSCH is transmitted in the subframe after k in the subframe in which repeated transmission of the PDCCH / EPDCCH is completed. The value of k may have an integer value of 0 or greater, and in one embodiment, the k value may be 1. Meanwhile, the terminal to receive the repeated transmission may be a terminal supporting MTC, and the value P of the repeated transmission of the PDSCH to be repeatedly transmitted may have an integer value of 1 or more. In another embodiment, as described in Method 2, a P value for PDSCH repetitive transmission may be determined using a format of PDCCH or EPDCCH and one or more of N as shown in FIG. 7. That is, the format and the value of N may be given as arguments of the function, and the base station and the terminal may share information in the form as shown in FIG. 7.
도 10은 본 발명의 일 실시예에 의한 단말이 기지국으로부터 PDCCH 또는 EPDCCH를 반복 수신하는 과정을 보여주는 도면이다. 단말은 도 10의 과정을 기반으로 하여 기지국으로부터 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH 및 그에 따른 상기 PDSCH를 수신한다. 10 is a diagram illustrating a process of repeatedly receiving a PDCCH or EPDCCH from a base station by a terminal according to an embodiment of the present invention. The terminal receives a PDCCH or EPDCCH including PDSCH scheduling information from the base station and the PDSCH accordingly based on the process of FIG. 10.
단말은 상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 수신한다(S1010). 그리고 상기 반복 수신된 PDCCH 또는 EPDCCH에 포함된 스케줄링 정보에 따라 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 수신한다(S1020). 여기서 상기 PDCCH 또는 상기 EPDCCH의 반복 수신이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 수신이 시작되는 하향링크 서브프레임 인덱스는 M+k가 된다. 즉, PDCCH/EPDCCH의 반복 수신이 종료된 서브프레임에서 k 이후 서브프레임에서 PDSCH를 수신한다. 상기 k의 값은 0 이상의 정수 값을 가질 수 있으며, 일 실시예로 k값이 1이 될 수 있다. 한편 상기 단말은 MTC를 지원하는 단말일 수 있으며, 상기 반복 수신될 PDSCH의 반복 전송에 대한 값인 P의 값은 1 이상의 정수 값을 가질 수 있다. 다른 실시예로 방법 2에서 살펴본 바와 같이 PDSCH 반복 수신을 위한 P 값이 도 7에서 살펴본 바와 같이 PDCCH 또는 EPDCCH의 포맷과 상기 N 중 어느 하나 이상을 이용하여 결정될 수 있다. 즉, 함수의 인자로 포맷과 N의 값이 주어질 수 있으며, 도 7과 같은 형태로 기지국과 단말이 정보를 공유할 수 있다. The UE repeatedly receives the PDCCH or the EPDCCH through N downlink subframes (S1010). The PDSCH is repeatedly received through P downlink subframes according to the scheduling information included in the repeatedly received PDCCH or EPDCCH (S1020). Here, when the downlink subframe index at which repeated reception of the PDCCH or the EPDCCH is terminated is M, the downlink subframe index at which the PDSCH repeat reception is started is M + k. That is, the PDSCH is received in the subframe after k in the subframe in which repeated reception of the PDCCH / EPDCCH is completed. The value of k may have an integer value of 0 or greater, and in one embodiment, the k value may be 1. Meanwhile, the terminal may be a terminal supporting MTC, and the value of P, which is a value for repetitive transmission of the PDSCH to be repeatedly received, may have an integer value of 1 or more. In another embodiment, as described in Method 2, a P value for PDSCH repetitive reception may be determined using a format of PDCCH or EPDCCH and one or more of N as shown in FIG. 7. That is, the format and the value of N may be given as arguments of the function, and the base station and the terminal may share information in the form as shown in FIG. 7.
도 11은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다. 11 is a diagram illustrating a configuration of a base station according to another embodiment.
도 11을 참조하면, 또 다른 실시예에 의한 기지국(1100)은 제어부(1110), 송신부(1120) 및 수신부(1130)을 포함한다.Referring to FIG. 11, the base station 1100 according to another embodiment includes a controller 1110, a transmitter 1120, and a receiver 1130.
제어부(1110)는 전술한 본 발명을 수행하기에 필요한 MTC 단말을 위한 기지국에서의 PDSCH 스케줄링 정보를 포함하는 DL 할당 DCI 전송을 위한 PDCCH/EPDCCH 전송 방법으로, DL 할당을 포함한 PDCCH/EPDCCH 전송 하향링크 서브프레임과 이에 따른 PDSCH 전송 하향링크 서브프레임의 관계가 특정된 MTC 단말을 위한 하향링크 데이터 채널 송수신 방법을 수행하는 데에 따른 전반적인 기지국의 동작을 제어한다. The control unit 1110 is a PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal required to perform the above-described invention. Controls the overall operation of the base station according to performing a downlink data channel transmission / reception method for an MTC terminal in which a relationship between a subframe and a corresponding PDSCH transmission downlink subframe is specified.
송신부(1120)와 수신부(1130)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다. The transmitter 1120 and the receiver 1130 are used to transmit and receive signals, messages, and data necessary for carrying out the above-described present invention.
보다 상세히 살펴보면, 도 11의 기지국은 단말을 위한 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH 및 그에 따른 상기 PDSCH를 전송하며, 이 때 상기 PDCCH 또는 EPDCCH를 반복 전송한다. 즉, 송신부(1120)는 상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 전송하며 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 전송하며, 제어부(1110)는 상기 PDCCH 또는 상기 EPDCCH의 반복 전송이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 전송이 시작되는 하향링크 서브프레임 인덱스는 M+k가 되도록 상기 송신부(1120)를 제어한다. 상기 k는 PDCCH/EPDCCH 반복 전송 후 PDSCH 전송 간격을 의미하며, 상기 제어부(1110)는 상기 k의 값이 0이상의 정수 값을 가지도록 상기 송신부(1120)를 제어할 수 있다. 일 실시예로 제어부(1110)는 상기 k의 값이 1이 되도록 상기 송신부(1120)를 제어할 수 있다. 또한 상기 단말은 MTC를 지원하는 단말일 수 있다. 그리고 상기 제어부(1110)는 PDSCH 반복 전송 횟수인 상기 P의 값이 1 이상의 정수 값을 가지도록 상기 송신부(1120)를 제어할 수 있다. 방법 2에서 PDSCH 반복 전송에 대한 정보를 함수화하는 방식과 마찬가지로 상기 제어부(1110)는 상기 PDCCH 또는 EPDCCH의 포맷과 상기 N 중 어느 하나 이상을 이용하여 상기 P를 결정할 수 있다. In more detail, the base station of FIG. 11 transmits a PDCCH or EPDCCH including PDSCH scheduling information for a UE and the PDSCH accordingly, and repeatedly transmits the PDCCH or EPDCCH. That is, the transmitter 1120 repeatedly transmits the PDCCH or the EPDCCH through N downlink subframes and repeatedly transmits the PDSCH through P downlink subframes, and the controller 1110 controls the PDCCH or the EPDCCH. If the downlink subframe index at which repeating transmission is terminated is M, the transmitter 1120 controls the downlink subframe index at which the PDSCH repeating transmission is started to be M + k. K denotes a PDSCH transmission interval after repeated PDCCH / EPDCCH transmission, and the controller 1110 may control the transmitter 1120 such that the value of k has an integer value equal to or greater than zero. In an embodiment, the controller 1110 may control the transmitter 1120 such that the value of k becomes 1. In addition, the terminal may be a terminal that supports MTC. The controller 1110 may control the transmitter 1120 such that the value of P, which is the number of repeated PDSCH transmissions, has an integer value of 1 or more. Similarly to the method of functionalizing information on the PDSCH repetitive transmission in Method 2, the controller 1110 may determine the P using any one or more of the format of the PDCCH or EPDCCH and the N.
도 12는 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.12 is a diagram illustrating a configuration of a user terminal according to another embodiment.
도 12를 참조하면, 또 다른 실시예에 의한 사용자 단말(1200)은 수신부(1230), 제어부(1210) 및 송신부(1220)를 포함한다.Referring to FIG. 12, the user terminal 1200 according to another embodiment includes a receiver 1230, a controller 1210, and a transmitter 1220.
수신부(1230)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiver 1230 receives downlink control information, data, and a message from a base station through a corresponding channel.
또한 제어부(1210)는 전술한 본 발명을 수행하기에 필요한 MTC 단말을 위한 기지국에서의 PDSCH 스케줄링 정보를 포함하는 DL 할당 DCI 전송을 위한 PDCCH/EPDCCH 전송 방법으로, DL 할당을 포함한 PDCCH/EPDCCH 전송 하향링크 서브프레임과 이에 따른 PDSCH 전송 하향링크 서브프레임의 관계가 특정된 MTC 단말을 위한 하향링크 데이터 채널 송수신 방법을 수행하는 데에 따른 전반적인 단말의 동작을 제어한다. Also, the control unit 1210 is a PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal required to perform the above-described invention, and transmits PDCCH / EPDCCH transmission downlink including DL allocation. Controls the overall operation of the UE according to performing a downlink data channel transmission / reception method for an MTC UE having a relationship between a link subframe and a PDSCH transmission downlink subframe.
송신부(1220)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The transmitter 1220 transmits uplink control information, data, and a message to a base station through a corresponding channel.
보다 상세히 살펴보면, 도 12의 단말은 기지국으로부터 PDSCH 스케줄링 정보를 포함한 PDCCH 또는 EPDCCH 및 그에 따른 상기 PDSCH를 수신하며 이 때 상기 PDCCH 또는 EPDCCH를 반복 수신한다.In more detail, the terminal of FIG. 12 receives a PDCCH or EPDCCH including PDSCH scheduling information from the base station and the PDSCH accordingly, and repeatedly receives the PDCCH or EPDCCH.
수신부(1230)는 상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 수신하며, 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 수신한다. 그리고 제어부(1210)는 상기 PDCCH 또는 상기 EPDCCH의 반복 수신이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 수신이 시작되는 하향링크 서브프레임 인덱스는 M+k이 되도록 상기 수신부(1230)를 제어한다. 즉, 수신부(1230)는 상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 수신하며 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 수신하며, 제어부(1210)는 상기 PDCCH 또는 상기 EPDCCH의 반복 수신이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 수신이 시작되는 하향링크 서브프레임 인덱스는 M+k가 되도록 상기 수신부(1230)를 제어한다. 상기 k는 PDCCH/EPDCCH 반복 전송 후 PDSCH 전송 간격을 의미하며, 상기 제어부(1210)는 상기 k의 값이 0이상의 정수 값을 가지도록 상기 수신부(1230)를 제어할 수 있다. 일 실시예로 제어부(1210)는 상기 k의 값이 1이 되도록 상기 수신부(1230)를 제어할 수 있다. 또한 상기 단말(1200)은 MTC를 지원하는 단말일 수 있다. 그리고 상기 제어부(1210)는 PDSCH 반복 전송 횟수인 상기 P의 값이 1 이상의 정수 값을 가지도록 상기 수신부(1230)를 제어할 수 있다. 방법 2에서 PDSCH 반복 전송에 대한 정보를 함수화하는 방식과 마찬가지로 상기 제어부(1210)는 상기 PDCCH 또는 EPDCCH의 포맷과 상기 N 중 어느 하나 이상을 이용하여 상기 P를 결정할 수 있다.The receiver 1230 repeatedly receives the PDCCH or the EPDCCH through N downlink subframes, and repeatedly receives the PDSCH through P downlink subframes. When the downlink subframe index at which repetitive reception of the PDCCH or the EPDCCH is terminated is M, the control unit 1210 receives the downlink subframe index at which the PDSCH repeat reception is started to be M + k. To control. That is, the receiver 1230 repeatedly receives the PDCCH or the EPDCCH through N downlink subframes and repeatedly receives the PDSCH through P downlink subframes, and the controller 1210 controls the PDCCH or the EPDCCH. When the downlink subframe index at which repeated reception is terminated is M, the downlink subframe index at which the PDSCH repeat reception is started is controlled by the receiver 1230 such that M + k. K denotes a PDSCH transmission interval after repeated PDCCH / EPDCCH transmission, and the controller 1210 may control the receiver 1230 such that the value of k has an integer value equal to or greater than zero. In an embodiment, the controller 1210 may control the receiver 1230 such that the value of k becomes 1. In addition, the terminal 1200 may be a terminal supporting the MTC. The controller 1210 may control the receiver 1230 such that the value of P, which is the number of repeated PDSCH transmissions, has an integer value of 1 or more. Similarly to the method of functionalizing information on the PDSCH repetitive transmission in Method 2, the controller 1210 may determine the P using any one or more of the format of the PDCCH or EPDCCH and the N.
지금까지 MTC 단말을 위한 기지국에서의 PDSCH 스케줄링 정보를 포함하는 DL 할당 DCI 전송을 위한 PDCCH/EPDCCH 전송 방법으로, DL 할당을 포함한 PDCCH/EPDCCH 전송 하향링크 서브프레임과 이에 따른 PDSCH 전송 하향링크 서브프레임의 관계가 특정된 MTC 단말을 위한 하향링크 데이터 채널 송수신 방법 및 장치에 대해 살펴보았다. PDCCH / EPDCCH transmission method for DL allocation DCI transmission including PDSCH scheduling information in a base station for an MTC terminal so far, the PDCCH / EPDCCH transmission downlink subframe including DL allocation and the PDSCH transmission downlink subframe A method and apparatus for downlink data channel transmission and reception for a MTC terminal having a specified relationship have been described.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 09월 30일 한국에 출원한 특허출원번호 제 10-2013-0116812 호 및 2014년 02월 24일 한국에 출원한 특허출원번호 제 10-2014-0021106 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application is related to the patent application No. 10-2013-0116812 filed in Korea on September 30, 2013 and the patent application No. 10-2014-0021106 filed in Korea on February 24, 2014. Priority is claimed under section (a) (35 USC § 119 (a)), all of which is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (18)

  1. 기지국이 단말을 위한 PDSCH(Physical Downlink Shared CHannel) 스케줄링 정보를 포함한 PDCCH(Physical Downlink Control CHannel) 또는 EPDCCH(Enhanced Physical Downlink Control CHannel) 및 그에 따른 상기 PDSCH를 전송하는 방법에 있어서,In a method for a base station to transmit a physical downlink control channel (PDCCH) or enhanced physical downlink control channel (EPDCCH) including PDSCH (Physical Downlink Shared CHannel) scheduling information for the terminal and the PDSCH accordingly;
    상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 전송하는 단계; 및Repeatedly transmitting the PDCCH or the EPDCCH through N downlink subframes; And
    상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 전송하는 단계를 포함하되,Repeatedly transmitting the PDSCH through P downlink subframes,
    상기 PDCCH 또는 상기 EPDCCH의 반복 전송이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 전송이 시작되는 하향링크 서브프레임 인덱스는 M+k인 것을 특징으로 하는 방법.And if the downlink subframe index at which repetitive transmission of the PDCCH or the EPDCCH is terminated is M, the downlink subframe index at which the PDSCH repeating transmission is started is M + k.
  2. 제 1항에 있어서,The method of claim 1,
    상기 k의 값은, 0 이상의 정수 값을 갖는 것을 특징으로 하는 방법.The value of k has an integer value of 0 or more.
  3. 제 1항에 있어서,The method of claim 1,
    상기 k의 값은, 1인 것을 특징으로 하는 방법.The value of k is 1, characterized in that.
  4. 제 1항에 있어서,The method of claim 1,
    상기 단말은, MTC(Machine Type Communications) 단말인 것을 특징으로 하는 방법.The terminal is characterized in that the MTC (Machine Type Communications) terminal.
  5. 제 1항에 있어서,The method of claim 1,
    상기 P의 값은 1 이상의 정수 값을 갖는 것을 특징으로 하는 방법.Wherein the value of P has an integer value of at least one.
  6. 제 1항에 있어서,The method of claim 1,
    상기 P는 상기 PDCCH 또는 EPDCCH의 포맷과 상기 N 중 어느 하나 이상을 이용하여 결정되는 것을 특징으로 하는 방법.The P is determined using any one or more of the format of the PDCCH or EPDCCH and the N.
  7. 단말이 기지국으로부터 PDSCH(Physical Downlink Shared CHannel) 스케줄링 정보를 포함한 PDCCH(Physical Downlink Control CHannel) 또는 EPDCCH(Enhanced Physical Downlink Control CHannel) 및 그에 따른 상기 PDSCH를 수신하는 방법에 있어서, In a method for a terminal to receive a physical downlink control channel (PDCCH) or enhanced physical downlink control channel (EPDCCH) including PDSCH (Physical Downlink Shared CHannel) scheduling information from the base station and accordingly
    상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 수신하는 단계; 및Repeatedly receiving the PDCCH or the EPDCCH through N downlink subframes; And
    상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 수신하는 단계를 포함하되,Repeatedly receiving the PDSCH through P downlink subframes,
    상기 PDCCH 또는 상기 EPDCCH의 반복 수신이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 수신이 시작되는 하향링크 서브프레임 인덱스는 M+k인 것을 특징으로 하는 방법.If the downlink subframe index at which repeated reception of the PDCCH or the EPDCCH is terminated is M, the downlink subframe index at which the PDSCH repeat reception is started is M + k.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 k의 값은, 0 이상의 정수 값을 갖는 것을 특징으로 하는 방법.The value of k has an integer value of 0 or more.
  9. 제 7항에 있어서,The method of claim 7, wherein
    상기 k의 값은, 1인 것을 특징으로 하는 방법.The value of k is 1, characterized in that.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 단말은, MTC(Machine Type Communications) 단말인 것을 특징으로 하는 방법.The terminal is characterized in that the MTC (Machine Type Communications) terminal.
  11. 제 7항에 있어서,The method of claim 7, wherein
    상기 P의 값은 1 이상의 정수 값을 갖는 것을 특징으로 하는 방법. Wherein the value of P has an integer value of at least one.
  12. 제 7항에 있어서,The method of claim 7, wherein
    상기 P는 상기 PDCCH 또는 EPDCCH의 포맷과 상기 N 중 어느 하나 이상을 이용하여 결정되는 것을 특징으로 하는 방법.The P is determined using any one or more of the format of the PDCCH or EPDCCH and the N.
  13. 단말을 위한 PDSCH(Physical Downlink Shared CHannel) 스케줄링 정보를 포함한 PDCCH(Physical Downlink Control CHannel) 또는 EPDCCH(Enhanced Physical Downlink Control CHannel) 및 그에 따른 상기 PDSCH를 전송하는 기지국에 있어서,In the base station for transmitting a Physical Downlink Control CHannel (PDCCH) or Enhanced Physical Downlink Control CHannel (EPDCCH) including PDSCH scheduling information for a UE and the PDSCH accordingly,
    상기 PDCCH 또는 상기 EPDCCH를 N개의 하향링크 서브프레임을 통해 반복 전송하며 상기 PDSCH를 P개의 하향링크 서브프레임을 통해 반복 전송하는 송신부; 및A transmitter for repeatedly transmitting the PDCCH or the EPDCCH through N downlink subframes and repeatedly transmitting the PDSCH through P downlink subframes; And
    상기 PDCCH 또는 상기 EPDCCH의 반복 전송이 종료되는 하향링크 서브프레임 인덱스가 M인 경우, 상기 PDSCH 반복 전송이 시작되는 하향링크 서브프레임 인덱스는 M+k가 되도록 상기 송신부를 제어하는 제어부를 포함하는 기지국.And a control unit for controlling the transmitter such that the downlink subframe index at which the PDSCH repeat transmission is started is M + k when the downlink subframe index at which repeated transmission of the PDCCH or the EPDCCH is terminated is M + k.
  14. 제 13항에 있어서,The method of claim 13,
    상기 제어부는 상기 k의 값이 0이상의 정수 값을 가지도록 상기 송신부를 제어하는 것을 특징으로 하는 기지국.And the control unit controls the transmitter so that the value of k has an integer value greater than or equal to zero.
  15. 제 13항에 있어서,The method of claim 13,
    상기 제어부는 상기 k의 값이 1이 되도록 상기 송신부를 제어하는 것을 특징으로 하는 기지국.The control unit controls the transmitter so that the value of k is 1.
  16. 제 13항에 있어서,The method of claim 13,
    상기 단말은, MTC(Machine Type Communications) 단말인 것을 특징으로 하는 기지국.The terminal is a base station, characterized in that the MTC (Machine Type Communications) terminal.
  17. 제 13항에 있어서,The method of claim 13,
    상기 제어부는 상기 P의 값이 1 이상의 정수 값을 가지도록 상기 송신부를 제어하는 것을 특징으로 하는 기지국.The control unit controls the transmitter so that the value of P has an integer value of 1 or more.
  18. 제 13항에 있어서,The method of claim 13,
    상기 제어부는 상기 PDCCH 또는 EPDCCH의 포맷과 상기 N 중 어느 하나 이상을 이용하여 상기 P를 결정하는 것을 특징으로 하는 기지국.The controller determines the P using any one or more of the format of the PDCCH or EPDCCH and the N.
PCT/KR2014/008763 2013-09-30 2014-09-22 Method for transceiving downlink data channel and apparatus therefor WO2015046830A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130116812 2013-09-30
KR10-2013-0116812 2013-09-30
KR10-2014-0021106 2014-02-24
KR20140021106A KR20150037461A (en) 2013-09-30 2014-02-24 Methods for Transmitting and Receiving Downlink Data Channels and Apparatuses thereof

Publications (1)

Publication Number Publication Date
WO2015046830A1 true WO2015046830A1 (en) 2015-04-02

Family

ID=52743883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008763 WO2015046830A1 (en) 2013-09-30 2014-09-22 Method for transceiving downlink data channel and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2015046830A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163645A1 (en) * 2015-04-10 2016-10-13 엘지전자 주식회사 Method and wireless device for receiving pdsch
WO2016171399A1 (en) * 2015-04-22 2016-10-27 엘지전자 주식회사 Method for transmitting and receiving data channel, and lc device
WO2019209084A1 (en) * 2018-04-27 2019-10-31 엘지전자 주식회사 Method for transmitting and receiving downlink data and apparatus therefor
WO2019216610A1 (en) * 2018-05-06 2019-11-14 엘지전자 주식회사 Method for transmitting and receiving downlink data and apparatus therefor
CN110536270A (en) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 Data sending, receiving method, device, terminal, base station and storage medium
WO2020033884A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Data and control transmission enhancements for new radio (nr)
EP3627940A4 (en) * 2017-07-14 2020-05-20 Huawei Technologies Co., Ltd. Communication method and device
CN113132953A (en) * 2015-04-19 2021-07-16 阿尔卡特朗讯 Method and apparatus for preventing collision between uplink control messages for LC-MTC devices
CN113316127A (en) * 2015-05-15 2021-08-27 瑞典爱立信有限公司 Method and apparatus for receiving or transmitting downlink transmissions across multiple subframes
US11411690B2 (en) 2018-11-21 2022-08-09 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel based on a plurality of physical uplink shared channels in communication system and apparatus for the same
US11464008B2 (en) * 2018-07-12 2022-10-04 Qualcomm Incorporated Determination rule of PDSCH scheduled slot with PDCCH repetition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113925A1 (en) * 2008-03-16 2012-05-10 Joon Kui Ahn Method for effectively transmitting control signal in wireless communication system
WO2013058564A1 (en) * 2011-10-19 2013-04-25 엘지전자 주식회사 Method for allowing mtc terminal to transmit and receive signal in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113925A1 (en) * 2008-03-16 2012-05-10 Joon Kui Ahn Method for effectively transmitting control signal in wireless communication system
WO2013058564A1 (en) * 2011-10-19 2013-04-25 엘지전자 주식회사 Method for allowing mtc terminal to transmit and receive signal in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Analysis of coverage improvement for low-cost MTC LTE UEs", RL-124772, 3GPP TSG RAN WG1 MEETING #71, 12 November 2012 (2012-11-12), NEW ORLEANS, USA *
CATT: "Coverage improvement for MTC UEs", RL-133020, 3GPP TSG RAN WG1 MEETING #74, 19 August 2013 (2013-08-19), BARCELONA, SPAIN *
SONY EUROPE LTD.: "Introduction to coverage aspects of low cost MTC UEs", RL-125038, 3GPP TSG RAN WG1 MEETING #71, 12 November 2012 (2012-11-12), NEW ORLEANS, USA *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163645A1 (en) * 2015-04-10 2016-10-13 엘지전자 주식회사 Method and wireless device for receiving pdsch
US10362596B2 (en) 2015-04-10 2019-07-23 Lg Electronics Inc. Method and wireless device for receiving PDSCH
US10856321B2 (en) 2015-04-10 2020-12-01 Lg Electronics Inc. Method and wireless device for receiving PDSCH
CN113132953A (en) * 2015-04-19 2021-07-16 阿尔卡特朗讯 Method and apparatus for preventing collision between uplink control messages for LC-MTC devices
WO2016171399A1 (en) * 2015-04-22 2016-10-27 엘지전자 주식회사 Method for transmitting and receiving data channel, and lc device
WO2016171400A1 (en) * 2015-04-22 2016-10-27 엘지전자 주식회사 Method for transmitting and receiving data channel and lc device
US10313066B2 (en) 2015-04-22 2019-06-04 Lg Electronics Inc. Method for transmitting and receiving data channel and LC device
US10425196B2 (en) 2015-04-22 2019-09-24 Lg Electronics Inc. Method for transmitting and receiving data channel, and LC device
CN113316127A (en) * 2015-05-15 2021-08-27 瑞典爱立信有限公司 Method and apparatus for receiving or transmitting downlink transmissions across multiple subframes
US11444737B2 (en) 2017-07-14 2022-09-13 Huawei Technologies Co., Ltd. Communication method and device
EP3627940A4 (en) * 2017-07-14 2020-05-20 Huawei Technologies Co., Ltd. Communication method and device
TWI704791B (en) * 2018-04-27 2020-09-11 南韓商Lg電子股份有限公司 Method of transmitting and receiving downlink data and apparatus therefor
US11139943B2 (en) 2018-04-27 2021-10-05 Lg Electronics Inc. Method of transmitting and receiving downlink data and apparatus therefor
US11743015B2 (en) 2018-04-27 2023-08-29 Lg Electronics Inc. Method of transmitting and receiving downlink data and apparatus therefor
WO2019209084A1 (en) * 2018-04-27 2019-10-31 엘지전자 주식회사 Method for transmitting and receiving downlink data and apparatus therefor
US11251927B2 (en) 2018-04-27 2022-02-15 Lg Electronics Inc. Method of transmitting and receiving downlink data and apparatus therefor
WO2019216610A1 (en) * 2018-05-06 2019-11-14 엘지전자 주식회사 Method for transmitting and receiving downlink data and apparatus therefor
US11218279B2 (en) 2018-05-06 2022-01-04 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink data
US10673598B2 (en) 2018-05-06 2020-06-02 Lg Electronics Inc. Method and apparatus for transmitting and receiving downlink data
US11464008B2 (en) * 2018-07-12 2022-10-04 Qualcomm Incorporated Determination rule of PDSCH scheduled slot with PDCCH repetition
WO2020033884A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Data and control transmission enhancements for new radio (nr)
US11985674B2 (en) 2018-08-10 2024-05-14 Apple Inc. Data and control transmission enhancements for new radio (NR)
CN110536270A (en) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 Data sending, receiving method, device, terminal, base station and storage medium
CN110536270B (en) * 2018-09-28 2023-09-01 中兴通讯股份有限公司 Data transmitting and receiving method and device, terminal, base station and storage medium
US11411690B2 (en) 2018-11-21 2022-08-09 Electronics And Telecommunications Research Institute Method for transmitting and receiving data channel based on a plurality of physical uplink shared channels in communication system and apparatus for the same

Similar Documents

Publication Publication Date Title
WO2015046830A1 (en) Method for transceiving downlink data channel and apparatus therefor
US11044777B2 (en) Method for processing data on basis of network slice, and apparatus therefor
WO2018043960A1 (en) Method and device for transmitting or receiving data in next generation wireless access network
EP3346787B1 (en) User terminal and radio communication method
US12108482B2 (en) Method for processing data on basis of network slice, and apparatus therefor
EP3346755A1 (en) User terminal, radio base station and radio communication method
WO2014051293A1 (en) Method and apparatus for blind decoding adjustment in downlink control channel
WO2015050339A1 (en) Method for transmitting and receiving downlink control channel, and apparatus therefor
WO2010074536A2 (en) Method of allocating resource for relay
WO2018093162A1 (en) Method and apparatus for transmitting and receiving downlink signal in next generation wireless network
WO2017196106A1 (en) Method for interworking between heterogeneous radio access networks and apparatus therefor
CN107734467B (en) Single cell multicast data receiving method and device
WO2018080274A1 (en) Method and device for transceiving data channel in next-generation wireless network
WO2015046831A1 (en) Method for downlink control channel resource allocation of terminal and apparatus therefor
CN110651441A (en) User terminal and wireless communication method
US10200983B2 (en) Method and device for transmitting and receiving downlink control information
WO2016010276A1 (en) Data retransmission processing method and apparatus therefor
WO2013009109A2 (en) Apparatus and method for transmitting control channel in wireless communication system
WO2014157927A1 (en) Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor
WO2018080268A1 (en) Method and device for allocating data channel resource for next-generation wireless access network
KR20150037461A (en) Methods for Transmitting and Receiving Downlink Data Channels and Apparatuses thereof
CN107733625B (en) Multicast communication method and apparatus
WO2015046773A1 (en) Method for transreceiving downlink control information and apparatus for same
WO2013005973A2 (en) Method for transmitting extended control information, transmitting end therefor, method for receiving extended control information, and terminal therefor
WO2015046808A1 (en) Method for improving downlink control channel reception rate of terminal and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.07.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14847827

Country of ref document: EP

Kind code of ref document: A1