WO2014157927A1 - Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor - Google Patents

Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor Download PDF

Info

Publication number
WO2014157927A1
WO2014157927A1 PCT/KR2014/002524 KR2014002524W WO2014157927A1 WO 2014157927 A1 WO2014157927 A1 WO 2014157927A1 KR 2014002524 W KR2014002524 W KR 2014002524W WO 2014157927 A1 WO2014157927 A1 WO 2014157927A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
ucis
serving cell
cell
base station
Prior art date
Application number
PCT/KR2014/002524
Other languages
French (fr)
Korean (ko)
Inventor
박규진
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130155297A external-priority patent/KR101566943B1/en
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to CN201480018997.1A priority Critical patent/CN105075149B/en
Priority to US14/780,176 priority patent/US9854600B2/en
Publication of WO2014157927A1 publication Critical patent/WO2014157927A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to a method and apparatus for transmitting uplink control information of a plurality of serving cells for supporting carrier aggregation technology between base stations.
  • LTE Long Term Evolution
  • LTE-Advanced of the current 3GPP series are high-speed, high-capacity communication systems that can transmit and receive various data such as video and wireless data, beyond voice-oriented services.
  • the development of technology capable of transferring large amounts of data is required.
  • As a method for transmitting a large amount of data data can be efficiently transmitted using a plurality of cells.
  • uplink transmission is performed in a plurality of cells or small cells, and a technique for controlling transmission of a channel of uplink control information is required.
  • the present invention to solve the above problems In the transmission of uplink control information, a technique and a method for controlling the transmission of each serving cell are proposed.
  • the method for controlling the transmission of uplink control information in a plurality of serving cells by the terminal compares the number of simultaneous transmission K and the number of UCI simultaneous transmission M, Selecting M of the UCIs to be transmitted simultaneously when the comparison result K is greater than M, and transmitting the selected M UCIs to a base station through a physical uplink control channel (PUCCH) of each serving cell, M is less than or equal to the number N of serving cells and is a natural number of 1 or more.
  • PUCCH physical uplink control channel
  • a UCI of M or less which is the number of UCI simultaneous transmissions, can be received from a terminal through a physical uplink control channel (PUCCH) of each serving cell. And confirming the UCI, wherein the number of UCIs to be transmitted simultaneously by the UE is greater than M, wherein at least one UCI smaller than K is transmitted through the PUCCH. It is characterized by being a natural number less than or equal to the number N of serving cells and one or more.
  • a terminal compares a receiving unit for receiving a signal from a base station, the number of UCIs to be transmitted simultaneously and M, which is the number of simultaneous UCI transmissions, and when the comparison result is greater than M, among the simultaneous transmissions of UCIs.
  • PUCCH physical uplink control channel
  • a base station is a transmitting unit for transmitting a signal to the terminal, a receiving unit for receiving a UCI or less of the number of UCI simultaneous transmission from the terminal via PUCCH (Physical Uplink Control CHannel) of each serving cell, and the And a control unit for identifying a UCI, wherein when the number of UCIs simultaneously transmitted by the UE is greater than the M, one or more UCIs smaller than K are transmitted through the PUCCH, and M is the number N of serving cells.
  • each serving cell is controlled to be transmitted independently.
  • FIG 1 illustrates an example network configuration scenario for the present invention.
  • FIG. 2 shows another example of a network configuration scenario for the present invention.
  • FIG. 3 is a diagram illustrating a part of a configuration of a higher layer RRC signaling message according to an embodiment of the present invention.
  • 4 is a diagram illustrating a MAC CE according to an embodiment of the present invention. 4 shows a configuration of a MAC header and a MAC CE.
  • FIG. 5 is a diagram illustrating a process of controlling transmission of uplink control information in a plurality of serving cells in a terminal according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a process of a base station controlling transmission of uplink control information in a plurality of serving cells according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a configuration of a user terminal according to another embodiment.
  • FIG. 8 is a diagram illustrating a configuration of a base station according to another embodiment.
  • the wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like.
  • the wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB).
  • a user terminal is a comprehensive concept of a terminal in wireless communication.
  • UE user equipment
  • LTE Long Term Evolution
  • HSPA High Speed Packet Access
  • MS Mobile Station
  • UT User Terminal
  • SS Global System for Mobile communications
  • a base station or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS.
  • Base Transceiver System Access Point, Relay Node, Remote Radio Head, RRH, Radio Unit, Transmission Point, TP, Reception Point, RP, etc. It may be called in other terms.
  • a base station or a cell is a generic meaning indicating some areas or functions covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or a sector (site) in LTE, and the like. It should be interpreted as, and it is meant to cover all the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU communication range.
  • BSC base station controller
  • the base station may be interpreted in two senses. i) the device providing the megacell, the macrocell, the microcell, the picocell, the femtocell, the small cell in relation to the wireless area, or ii) the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station.
  • the eNB, RRH, antenna, RU, LPN, point, transmit / receive point, transmit point, receive point, etc. become embodiments of the base station according to the configuration of the radio region.
  • the base station may indicate the radio area itself to receive or transmit a signal from the viewpoint of the user terminal or the position of a neighboring base station.
  • megacells macrocells, microcells, picocells, femtocells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmit / receive points, transmit points, and receive points are collectively referred to as base stations. do.
  • the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to.
  • the user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to.
  • the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal
  • the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-TDMA
  • OFDM-CDMA OFDM-CDMA
  • One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • Uplink and downlink transmit control information through control channels such as Physical Downlink Control CHannel (PDCCH), Physical Control Format Indicator CHannel (PCFICH), Physical Hybrid ARQ Indicator CHannel (PHICH), and Physical Uplink Control CHannel (PUCCH).
  • a data channel is configured such as PDSCH (Physical Downlink Shared CHannel), PUSCH (Physical Uplink Shared CHannel) and the like to transmit data.
  • control information can also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
  • a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
  • a wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal.
  • antenna transmission system a cooperative multi-cell communication system.
  • the CoMP system may include at least two multiple transmission / reception points and terminals.
  • the multiple transmit / receive point is at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmission power or a low transmission power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • an eNB a base station or a macro cell
  • a high transmission power or a low transmission power in a macro cell region which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal
  • uplink refers to a communication or communication path from a terminal to multiple transmission / reception points.
  • a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
  • a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, and a PDSCH may be described in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, and a PDSCH.
  • transmitting or receiving a PDCCH or transmitting or receiving a signal through a PDCCH may be used to mean transmitting or receiving an EPDCCH or transmitting or receiving a signal through an EPDCCH.
  • the physical downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
  • the PDCCH which is an embodiment of the present invention, may be applied to the portion described as the PDCCH.
  • high layer signaling described in the present specification includes RRC signaling for transmitting RRC information including an RRC parameter.
  • An eNB which is an embodiment of a base station, performs downlink transmission to terminals.
  • the eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH.
  • a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted.
  • PUSCH physical uplink shared channel
  • the first terminal UE1 may transmit an uplink signal to the eNB and the second terminal may transmit an uplink signal to the RRH.
  • carrier aggregation Prior to 3GPP LTE / LTE-Advanced Rel-11, carrier aggregation (or carrier aggregation, or 'CA') technology is one or more CC (Component Carrier, or element) configured by the base station to form a cell for any terminal Or a combination of CCs of small cells constructed using a low power remote radio head (RRH), which is a geographically dispersed antenna within the coverage of the macro cell and the macro cell CC, to increase the data rate.
  • CC Component Carrier, or element
  • the macro cell and the RRH cell are constructed to be scheduled under the control of one eNB for carrier aggregation technology, and for this purpose, an ideal backhaul was required between the macro cell node and the RRH.
  • An ideal backhaul means a backhaul that exhibits very high throughput and very low latency, such as a dedicated point-to-point connection using optical fiber, line of sight (LOS) microware.
  • backhaul that exhibits relatively low throughput and large delay, such as digital subscriber line (xDSL) and non-LOS microwave is called non-ideal backhaul.
  • the CCs operating based on independent center frequencies are referred to as one cell, which is constructed by a network operator such as one base station / eNB / RRH. It has a different meaning from the concept of geographic / physical cell formed through one transmitting node. In the present invention, the cell concept is distinguished by context.
  • a CC corresponding to a serving cell to which the terminal enters when the terminal enters an initial network entry / re-entry is a primary cell.
  • Information related to secondary cells, which can be additionally merged according to the capability of the UE through the corresponding primary cell, is set by RRC signaling, and a MAC CE (Control Element) message is subsequently added.
  • the carrier merging technique is applied to a structure in which a cell to be merged by a corresponding UE among secondary cells configured through the RRC signaling is activated or deactivated.
  • carrier aggregation when carrier aggregation is applied to any UE in a 3GPP LTE / LTE-Advanced Rel-11 or lower system, even if cells have independent center frequencies, carrier aggregation based on a single scheduling unit is applied.
  • PUCCH resources for uplink control information (UCI) transmission of the UE to which the carrier aggregation is applied are configured only through the primary cell among the merged serving cells. Accordingly, when a carrier aggregation applied UE transmits UCI, the UE transmits through the PUCCH resources of the primary cell or the primary according to configuration information about PUCCH / PUSCH simultaneous (PUCCH / PUSCH simultaneous).
  • a PUSCH transmission resource of a cell or a PUSCH transmission resource of a secondary cell is transmitted.
  • any terminal 130 located in an area where respective cells formed by two or more different base stations may be variously referred to 110 and 120 overlap each other.
  • the carriers between the base stations used for data transmission and reception may be merged by merging the frequency bands supported by the base stations 110 and 120.
  • a cell type formed by each of the base stations 110 and 120 may be a macro cell, a small cell (eg, a pico cell, a micro cell, etc.) or a femtocell according to its coverage. femto cell) and the like.
  • carriers between small cells formed by overlapping with macro cells may be merged.
  • FIG. 2 shows another example of a network configuration scenario for the present invention.
  • Small cells formed by low power base stations that use lower transmit (Tx) power than conventional macro base stations cover cells of smaller size than macro cells, thus increasing spatial spatial recyclability compared to macro cell based network structures.
  • Tx transmit
  • the introduction of small cells intensifies the inter-cell interference problem, and in particular, in a heterogeneous network scenario in which macro and small cells overlap with each other using the same frequency band, the macro cell and the small cell are small. Inter-cell interference can cause severe performance degradation.
  • each of the terminals 230 belonging to the small cell coverage may respectively use the macro cell through the frequency band F1 of the macro cell.
  • Supporting inter-eNB Carrier Aggregation which is also connected to the small cell base station 220 through the small cell frequency band (F2) in the state of establishing a connection with the base station 210. Plans are being discussed.
  • inter-eNBs based on the existing carrier merging operation scheme are inter -eNB
  • Carrier merge technology becomes difficult to apply.
  • the UE merges the small cell carrier F2 into the secondary cell while the UE is holding the macro cell carrier F1 as the primary cell
  • the UCI is transmitted to the primary cell as in the past.
  • HARQ operation and radio channel based scheduling become difficult to apply.
  • the present invention supports dual connectivity with neighboring base stations in an arbitrary terminal located in a region where coverage between neighboring base stations (eNB / RRH / RU) overlaps in a 3GPP-based wireless mobile communication system. Suggest ways to do this.
  • the terminal and the base station for supporting the inter-eNB Carrier Aggregation technology that uses the frequency bands supported by the neighboring base stations in the terminal It relates to the operation method of.
  • the present invention proposes a UCI transmission scheme of a terminal for applying a carrier aggregation technique between base stations under a non-ideal backhaul based on a rather long backhaul delay time between base stations as shown in FIG. 1.
  • the present invention focuses on a UCI transmission scheme for a carrier merge terminal for additionally merging F2, which is a small cell carrier, in a carrier merge scenario between the macro cell and the small cell as shown in FIG. 2.
  • F2 is a small cell carrier
  • a PUCCH resource that is an uplink control channel in case of a terminal using a plurality of carriers, that is, a terminal in which a plurality of serving cells are configured, is used. Is allocated only in a primary cell among serving cells configured for the corresponding UE.
  • the term "cell” herein means one component carrier, and in the present invention, the cell and the component carrier (CC) are used together. That is, when the uplink control information is transmitted, the UE transmits the data through the PUSCH which is the uplink data channel of the primary cell or the secondary cell or through the PUCCH of the primary cell.
  • a new proposal for a method of transmitting uplink control information of an applicable terminal is proposed.
  • more diverse carrier aggregation scenarios are considered in Rel-12 and subsequent systems.
  • a base station or inter-eNB, inter-eNB in which a terminal located in a coverage overlap area of a neighboring base station establishes a connection with corresponding neighboring base stations through different carriers, respectively.
  • the Rel-12 system or a subsequent system may be configured to transmit uplink control information independently for each serving cell.
  • each serving may be performed according to a base station / eNB constituting a corresponding serving cell for a plurality of serving cells merged in an arbitrary terminal (classifying a master eNB and a secondary eNB according to whether or not an RRC connection is established).
  • one cell may be selected for each serving cell group, and uplink control information may be transmitted for each serving cell group through the uplink of the selected cell.
  • uplink control information may be transmitted for each serving cell group through the uplink of the selected cell.
  • An indicator regarding a UCI transmission method for setting whether or not to be defined may be defined and may be transmitted to a corresponding UE through MAC CE signaling or UE-specific RRC signaling when the carrier is merged.
  • Rel-12 or subsequent UEs can be defined to transmit UCI independently for each serving cell, or when adding or activating a secondary cell, whether to allocate PUCCH resources for the secondary cell in a corresponding carrier merging situation.
  • UCI transmission scheme can be defined.
  • the UCI transmission scheme for each serving cell for the Rel-12 UE may be configured differently from the UCI transmission scheme in the existing Rel-11 carrier aggregation.
  • the UCI transmission method in Rel-12 carrier aggregation is newly defined, but the above-described method of setting Rel-12 UCI transmission for each terminal is not limited.
  • the present invention looks at the UCI transmission scheme of the terminal when it is necessary to simultaneously transmit the UCI over a plurality of serving cell uplink for the terminal configured to comply with the new UCI transmission scheme for Rel-12.
  • the UCI of a serving cell having an upper (or lower) lower carrier indicator field (CIF ) is dropped.
  • Component Carrier having an upper (or lower) lower carrier indicator field (CIF )
  • UCI for any two or more serving cells among the corresponding serving cells is simultaneously generated for any UE that merges and uses N serving cells, thereby serving each serving cell through the same uplink subframe. If UCI needs to be transmitted, the UCI of the serving cell having the lowest CIF value may be transmitted, and the UCI transmission for the remaining serving cells may be defined to drop.
  • the UE independently transmits uplink control information (UCI) for each serving cell. For example, when a base station activates CC # 2 as a secondary cell for any UE operating by holding CC # 1 as the primary cell, PUCCH resource allocation information for the corresponding CC # 2 is common for the UE. When configured by RRC signaling and dedicated RRC signaling, the UE independently transmits uplink control information (UCI) for each serving cell.
  • UCI uplink control information
  • UCI such as HARQ ACK / NACK feedback for downlink data transmission of primary cell or CQI feedback and scheduling request (SR) for primary cell may be performed through PUCCH resource or PUSCH of uplink subframe of primary cell.
  • the UCI for the secondary cell is transmitted through the PUCCH resource or the PUSCH of the secondary cell.
  • the corresponding terminal does not support simultaneous transmission of uplink through different CCs or serving cells, the corresponding UE has a low CIF.
  • the UCI of the primary cell which is the serving cell, is transmitted first, and the UCI of the remaining secondary cells is dropped.
  • the UCI of the primary cell of the high CIF serving cell may be preferentially transmitted, and the UCI of the remaining secondary cells except for this may be dropped.
  • the secondary cell is configured to have a CIF value in ascending order
  • the UE is the smallest CIF among the CIFs of the serving cell. Only the UCI of the serving cell having the value is transmitted through the PUCCH or the PUSCH of the corresponding serving cell and the remaining UCI is dropped. Further extending the first embodiment, it is possible to drop the UCI of the secondary cell rather than the primary cell.
  • the first embodiment may be extended.
  • the CIF may be defined to select M from small serving cells to transmit UCI.
  • each serving cell is grouped according to the base station / eNB constituting the serving cell with respect to the serving cells merged in an arbitrary terminal, and one serving cell is selected for each serving cell group, and then each serving cell group is upward.
  • the link control information is defined to be transmitted separately, the CIF-based uplink control information transmission serving cell selection scheme may be applied. That is, the priority of uplink control information transmission may be defined according to the CIF value of the serving cells selected to transmit uplink control information for each serving cell group.
  • CC # 1, CC # 2 Is a serving cell configured by the first base station / eNB
  • CC # 3 CC # 4
  • CC # 5 is a serving cell configured by the second base station / eNB having a separate scheduler from the first base station / eNB
  • CC # 1, CC # 2) is configured as one first serving cell group
  • the corresponding (CC # 3, CC # 4, CC # 5) is configured as another second serving cell group
  • the uplink control information for the 1 serving cell group is transmitted through an uplink subframe of CC # 1
  • the uplink control information for the second serving cell group is transmitted through an uplink subframe of CC # 3.
  • the uplink control information transmission for the first serving cell group and the uplink control information transmission for the second serving cell group occur simultaneously in the corresponding CC # 1 and CC # 3, and the corresponding terminal simultaneously transmits the uplink.
  • the transmission is not supported, only uplink control information of a serving cell group having a small (or large) CIF value according to the CIF values of CC # 1 and CC # 3 may be defined to be transmitted at a corresponding moment.
  • priority for uplink control information transmission may be defined in the serving cell group itself.
  • Priority of each of the first serving cell group and the second serving cell group may be determined by the second base station / eNB.
  • a serving cell group configured by a base station / eNB to which a corresponding carrier aggregation terminal has an RRC connection is referred to as a master cell group
  • a serving cell group configured by another base station / eNB is referred to as a secondary cell group.
  • the group may be defined and may be defined to have priority over the uplink control information transmission for the serving cells constituting the secondary cell group with respect to the transmission of the uplink control information for the serving cells constituting the master cell group.
  • Priority ( U) of each UCI type that is commonly applied to serving cells configured as the second embodiment is defined.
  • the priority of each UCI may be defined, and the highest priority UCI may be transmitted through the corresponding serving cell. That is, when a carrier aggregation terminal needs to transmit an uplink subframe of each serving cell to UCI for a plurality of serving cells at the same time, a serving cell to transmit UCI may be selected according to the type of UCI for each serving cell. have. As an example of priority setting according to the UCI type, the priority of HARQ ACK / NACK feedback for downlink data transmission may be set highest, followed by SR and CQI / CSI feedback. As such, when the priority for each UCI is set, the highest priority UCI is transmitted through the PUCCH or the PUSCH of the corresponding serving cell, and the remaining UCI is dropped.
  • the UCI having the highest priority occurs in the plurality of serving cells, it is possible to determine whether to transmit the corresponding high priority according to the scheme described in the first embodiment.
  • the number of uplink simultaneous transmissions supported by the terminal is M, and the M is less than the number of simultaneous UCI transmissions occurring in the terminal at any moment, K, the corresponding K serving cells are transmitted.
  • M UCIs having a high priority may be selected and defined to be transmitted in corresponding M serving cells.
  • a simultaneous UCI transmission indicator for each secondary serving cell is defined.
  • Simultaneous UCI Tx indicator may be defined according to the capability of the terminal and the uplink channel environment of the terminal.
  • the simultaneous UCI transmission indicator is a parameter set for each secondary serving cell when each (secondary) serving cell (CC) is activated.
  • the CIF of the secondary cell is lower than the CIF value of the primary cell or the secondary cell.
  • This parameter configures whether the secondary cell having the value can be performed simultaneously with the transmission of the UCI. That is, when activating any secondary cell, it may be defined to transmit a simultaneous UCI transmission indicator together with PUCCH resource allocation information in the secondary cell.
  • the UE When the simultaneous UCI transmission indicator is configured, the UE simultaneously sets UCI of the secondary cell through UCI transmission of a secondary cell having a UCI of a primary cell or a lower CIF value and PUCCH or PUSCH of a secondary cell uplink subframe. Can transmit If the secondary serving cell for which the corresponding simultaneous UCI transmission indicator is not set, the secondary serving cell when UCI transmission occurs in a secondary cell having a lower primary cell or a lower CIF value according to the first embodiment described above Drops UCI transmissions from. Alternatively, according to the second embodiment, the UCI should be transmitted only when the priority of the UCI to be transmitted in the primary cell or the secondary cell having a lower CIF value is lower than the priority of the UCI to be transmitted in the secondary serving cell. If not, you can drop it.
  • the number of simultaneous UCI Tx configuration is set.
  • an additional " number of simultaneous UCI Tx" can be additionally set and transmitted to the UE.
  • the information is an information area indicating the number of serving cells that can simultaneously transmit UCI in the UE, and the UE can simultaneously transmit UCI in the serving cells corresponding to the set number. That is, if the corresponding simultaneous UCI transmission count information area is set to M (any natural number less than or equal to N) for a UE that merges and uses any N CCs, the UE may simultaneously transmit UCI in up to M serving cells. Can be.
  • M serving cells for transmitting UCI may be selected by Method 1 or Method 2 above.
  • an arbitrary terminal merges five serving cells (CCs) and uses an information area of the corresponding simultaneous UCI transmission number of 2, the corresponding UE uses UCI through uplink subframes of up to two serving cells. Can be transmitted simultaneously.
  • CCs serving cells
  • the corresponding UE uses UCI through uplink subframes of up to two serving cells. Can be transmitted simultaneously.
  • three or more serving cells need to transmit UCI at the same time UCI is transmitted through two serving cells having a small CIF value according to the scheme 1, and the UCI of the other serving cell is dropped, or according to the scheme 2
  • Two serving cells to transmit UCI may be selected according to the priority of UCI to be transmitted in each serving cell.
  • the UCI dropping rule described in the above four embodiments is applied only when transmitted through the PUCCH, and UCI transmission through the PUSCH can always be allowed. That is, in the above example, when it is necessary to simultaneously transmit UCI in a plurality of serving cells, the UCI dropping rule is not applied to the serving cell capable of UCI transmission through the PUSCH, and the UCI for the serving cell is transmitted through the PUSCH. Can transmit That is, when simultaneous PUSCH / PUCCH transmission is not configured in a serving cell to which a PUSCH resource is allocated, the corresponding UE does not apply the UCI dropping rule and piggybacks the corresponding PUSCH to transmit the UCI.
  • the dropping rule may be applied only to serving cells that need to transmit UCI over PUCCH (that is, when PUSCH resources are not allocated or simultaneous PUSCH / PUCCH transmission is configured).
  • secondary cells may be forced not to allow simultaneous PUSCH / PUCCH transmission. That is, when the PUSCH resource is allocated to the secondary cells, it may be defined to always piggyback on the PUSCH and transmit the secondary cell.
  • the parameter is defined as a newly defined MAC CE signaling.
  • an information area may be defined for transmission to a corresponding UE through UE-specific RRC signaling or for transmitting a corresponding parameter to existing MAC CE signaling or UE-specific RRC signaling.
  • FIG. 3 is a diagram illustrating a part of a configuration of a higher layer RRC signaling message according to an embodiment of the present invention.
  • reference numeral 310 denotes an element related to configuration of a secondary cell among an RRCConnectionReconfiguration message.
  • the information on the cell to be a candidate may be included as a simultaneous UCI transmission indicator of the cell, such as sCellUCI_SimultaneousTxIndicator 315.
  • sCellUCI_SimultaneousTxIndicator may indicate that simultaneous UCI transmission of the secondary cell is True / False.
  • corresponding indication information may be transmitted through MAC CE signaling activating carrier aggregation for a corresponding secondary cell.
  • simultaneous UCI transmission indication information for the corresponding cell may be included. Accordingly, the UE may determine the UCI transmission scheme for the secondary cell according to the simultaneous UCI transmission indication of the cell included in the MAC CE signaling activated by the secondary cell.
  • 4 is a diagram illustrating a MAC CE according to an embodiment of the present invention. 4 shows a configuration of a MAC header and a MAC CE.
  • the LCID value of the activated / deactivated MAC CE is 11011.
  • An embodiment of the MAC subheader indicating this is indicated by reference numeral 410 of FIG. 4.
  • the MAC subheader for activating or deactivating the secondary cell is equal to 410.
  • the last reserved bit is set to 1, such as "00001001" of reference numeral 420.
  • 421 is set to '1' to activate the cell at SCellIndex 3
  • the bit indicated by reference number 429 is also set to '1' so that UCI transmission at the secondary cell at SCellIndex 3 is performed simultaneously.
  • an embodiment of the present invention may be applied to one or more, for example, a plurality of secondary cells, and SCellIndex is set to 2 when the MAC CE indicated by 420 is activated and is set to “00010101”.
  • a cell of 4 and since the last reserved bit is '1', it may indicate that simultaneous UCI transmission is performed for the activated cell. In the above example, it may be indicated for each cell using a bit other than the last reserved bit or an area of a separate MAC payload.
  • FIG. 5 is a diagram illustrating a process of controlling transmission of uplink control information in a plurality of serving cells in a terminal according to an embodiment of the present invention.
  • the UE In order to control the transmission of uplink control information in a plurality of serving cells by the UE including Embodiments 1, 2, 3, and 4, the UE first compares the number K of UCIs to be transmitted simultaneously and the number M of UCIs that can be simultaneously transmitted (S510). . If the comparison result K is greater than M, the terminal selects M of the UCIs to be transmitted simultaneously (S520). As described in the first and second embodiments, the UCI of the serving cell having the lowest CIF may be selected, or a priority set according to the priority of the UCI, for example, the type of the UCI. Previously, HARQ ACK / NACK feedback for downlink data has been set to high priority, and SR and CQI / CSI feedback have been set to low priority.
  • the UE may select the UCI based on the Carrier Indicator Field (CIF) of the serving cell among the K UCIs according to the first and fourth embodiments.
  • the UE may select based on the priority set in the UCI among the K UCIs using the second embodiment and the fourth embodiment.
  • the M When applied to Example 1/2, the M may be 1, in which case, the UE may select one UCI.
  • the terminal may select based on the CIF of the serving cells in which uplink control information of each serving cell group is transmitted.
  • the selecting of the S520 may be performed based on a step of defining differential priority for each serving cell group and priority for each serving cell group. It includes a step.
  • the step of defining the priority may be implemented so that the priority definition of the master cell group is higher than the priority of the secondary cell group in defining the priority for each cell group for uplink control information transmission. have. This gives priority to the cell group itself, and when setting the CIF independently for each cell group, for example, set 0, 1, 2, ... to CIF for CCs constituting the master cell group in turn, The CCs constituting the secondary cell group may also be applied to the case where the CIF is set to 0, 1, 2, ... in order.
  • the terminal transmits the selected M UCIs to a base station through a physical uplink control channel (PUCCH) of each serving cell (S530).
  • PUCCH physical uplink control channel
  • the third embodiment may be applied to select a UCI in which a simultaneous UCI transmission indication is set among UCIs not selected among the K UCIs, and transmit the same through a PUCCH or a PUSCH of a serving cell of the UCI.
  • M is 1 and K is 2
  • the lowest CIF or UCI with high priority is selected and transmitted to PUCCH
  • UCI with simultaneous UCI transmission indication set as shown in FIG. 3 or 4 is PUCCH of the serving cell.
  • it may be transmitted through the PUSCH.
  • the UE may receive the RCI signaling method of FIG. 3 or the MAC signaling of FIG. 4 as a method of configuring a UCI simultaneous Tx indicator for the secondary cell from the base station.
  • M is a natural number that is less than or equal to the number N of serving cells and is 1 or more.
  • the terminal may receive the M value from the base station. That is, the information on the M may be received from the base station by RRC or MAC signaling.
  • the UE may exclude one or more UCI set to be transmitted in the PUSCH of the UCI in the selecting step. This is because there is no need to transmit on the PUCCH.
  • the secondary UCI of the UCI may be transmitted to the piggyback (piggyback) on the PUSCH resource allocated to the terminal.
  • FIG. 6 is a diagram illustrating a process of a base station controlling transmission of uplink control information in a plurality of serving cells according to an embodiment of the present invention.
  • the base station receives UCI of M or less, which is the number of UCI simultaneous transmissions, from the terminal through a physical uplink control channel (PUCCH) of each serving cell (S610).
  • the UCI below M are UCIs selected by the UE performing the process of FIG. 5.
  • the base station checks the received UCI (S620). When the number of simultaneous UCIs K is greater than M, the UE transmits one or more UCIs smaller than K through the PUCCH, wherein M is a natural number equal to or smaller than N and the number of serving cells. In this case, the base station receives the UCI selected by the terminal.
  • the base station may transmit the UCI simultaneous transmission indicator to the terminal in the third embodiment. That is, the base station transmits the simultaneous UCI transmission indicator for the secondary cell to the terminal by RRC or MAC signaling, an embodiment thereof has been described with reference to FIGS. 3 and 4.
  • the base station may transmit information about the M to the terminal through RRC or MAC signaling.
  • the base station may receive a UCI of a secondary cell among the UCIs as a piggyback on PUSCH resources allocated to the UE.
  • a terminal and a base station for controlling uplink control channel transmission that independently transmits UCI for each serving cell Let's look at the configuration.
  • FIG. 7 is a diagram illustrating a configuration of a user terminal according to another embodiment.
  • the user terminal 700 includes a receiver 730, a controller 710, and a transmitter 720.
  • the receiver 730 receives downlink control information, data, and a message from a base station through a corresponding channel.
  • controller 710 may be configured to serve each serving cell when a scheduler for each serving cell is distributed in an inter-eNB carrier merge and a dual connectivity based carrier merge environment with a small cell required to perform the above-described present invention. To control the overall operation of the terminal according to the independent transmission of each UCI.
  • the transmitter 720 transmits uplink control information, data, and a message to a base station through a corresponding channel.
  • the control unit 710 may first transmit the number of UCIs and the number of UCIs that can be simultaneously transmitted. For comparison, if K is greater than M, M is selected among the simultaneous transmission UCI. As described above in the first and second embodiments, the controller 710 selects the UCI of the serving cell having the lowest CIF, or selects the priority set according to the priority of the UCI, for example, the type of the UCI. Can be. Alternatively, the UCI of the serving cell having the highest CIF may be selected.
  • the UE may select the UCI based on the Carrier Indicator Field (CIF) of the serving cell among the K UCIs according to the first and fourth embodiments.
  • the controller 710 may select the K UCI based on the priority set in the UCI using the second and fourth embodiments.
  • M may be 1, in which case, the UE may select one UCI.
  • the controller 710 may select based on the CIF of the serving cells in which uplink control information of each serving cell group is transmitted.
  • the serving cell is divided into two or more serving cell groups, and the control unit 710 may define differential priorities for each serving cell group, and select the serving cells based on the priority of each serving cell group. .
  • the control unit 710 prioritizes the priority of the master cell group over the priority of the secondary cell group in defining the priority for each cell group for uplink control information transmission. It can be implemented to be definition. This gives priority to the cell group itself, and when setting CIF independently for each cell group, for example, set 0, 1, 2, ... to CIF for CCs constituting the master cell group, The CCs constituting the secondary cell group may also be applied to the case where the CIF is set to 0, 1, 2, ... in order.
  • the transmitter 720 transmits the selected M UCIs to a base station through a physical uplink control channel (PUCCH) of each serving cell (S530).
  • PUCCH physical uplink control channel
  • the third embodiment may be applied to select a UCI in which a simultaneous UCI transmission indication is set among UCIs not selected among the K UCIs, and transmit the same through a PUCCH or a PUSCH of a serving cell of the UCI.
  • M is 1 and K is 2
  • the lowest CIF or UCI with high priority is selected and transmitted to PUCCH
  • UCI with simultaneous UCI transmission indication set as shown in FIG. 3 or 4 is PUCCH of the serving cell.
  • it may be transmitted through the PUSCH.
  • the receiver 730 may receive the RRC signaling method of FIG. 3 or the MAC signaling of FIG. 4 so that the UE sets a simultaneous UCI Tx indicator for the secondary cell from the base station.
  • M is a natural number that is less than or equal to the number N of serving cells and is 1 or more.
  • the terminal may receive the M value from the base station. That is, the information on the M may be received from the base station by RRC or MAC signaling.
  • control unit 710 may exclude one or more UCI set to be transmitted in the PUSCH of the UCI in the selecting step. This is because there is no need to transmit on the PUCCH.
  • the transmitter 720 may transmit the secondary UCI among the UCI to the piggyback on the PUSCH resource allocated to the terminal.
  • FIG. 8 is a diagram illustrating a configuration of a base station according to another embodiment.
  • the base station 800 includes a controller 810, a transmitter 820, and a receiver 830.
  • the controller 810 independently transmits UCI for each serving cell when a scheduler for each serving cell is distributed in an eNB-carrier aggregation between eNBs and a dual connectivity-based carrier aggregation environment for implementing the above-described invention.
  • the transmitter 1020 and the receiver 1030 are used to transmit and receive signals, messages, and data necessary for carrying out the above-described present invention.
  • the receiving unit 830 of the base station receives UCI of M or less, which is the number of UCI simultaneous transmissions, from the terminal through the physical uplink control channel (PUCCH) of each serving cell.
  • the UCI below M are UCIs selected by the UE performing the process of FIG. 5.
  • the control unit 810 of the base station checks the received UCI. When the number of simultaneous UCIs K is greater than M, the UE transmits one or more UCIs smaller than K through the PUCCH, wherein M is a natural number equal to or smaller than N and the number of serving cells. In this case, the receiver 730 of the base station receives the UCI selected by the terminal.
  • the transmitter 820 of the base station may transmit the UCI simultaneous transmission indicator to the terminal in the third embodiment. That is, the transmitter 820 transmits the simultaneous UCI transmission indicator for the secondary cell to the terminal through RRC or MAC signaling. An embodiment thereof has been described with reference to FIGS. 3 and 4.
  • the transmitter 820 may transmit information about the M to the terminal through RRC or MAC signaling.
  • the receiver 830 may receive a UCI of a secondary cell among the UCIs as a piggyback on the PUSCH resource allocated to the UE.
  • a low CIF may be selected first or a high CIF may be selected in selecting a serving cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention pertains to a method for transmitting uplink control information on a plurality of serving cells for supporting carrier aggregation technology between base stations, and an apparatus therefor. According to one embodiment of the present invention, the method for controlling, by a terminal, the transmission of uplink control information in a plurality of serving cells comprises the steps of: comparing K number of UCIs to be transmitted simultaneously and M, which is the number of UCIs enabled to be transmitted simultaneously so as to select M number among UCIs to be transmitted simultaneously when K is greater than M in the comparison results; and a step of transmitting the M number of UCIs through physical uplink control channel (PUCCH) of each serving cell to a base station. In addition, the M is characterized by being less than or equal to N number of serving cells, or greater than natural number 1.

Description

복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 방법 및 그 장치Method and apparatus for controlling transmission of uplink control information in a plurality of serving cells
본 발명은 기지국 간 캐리어 병합 기술을 지원하기 위한 복수의 서빙 셀의 상향 링크 제어 정보를 전송하는 방법 및 그 장치에 관한 기술이다. The present invention relates to a method and apparatus for transmitting uplink control information of a plurality of serving cells for supporting carrier aggregation technology between base stations.
통신 시스템이 발전해나감에 따라 사업체들 및 개인들과 같은 소비자들은 매우 다양한 무선 단말기들을 사용하게 되었다. 현재의 3GPP 계열의 LTE(Long Term Evolution), LTE-Advanced 등의 이동 통신 시스템에서는 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 데이터를 송수신할 수 있는 고속 대용량의 통신 시스템으로서, 유선 통신 네트워크에 준하는 대용량 데이터를 전송할 수 있는 기술 개발이 요구되고 있다. 대용량의 데이터를 전송하기 위한 방식으로 다수의 셀(cell)을 이용하여 데이터를 효율적으로 전송할 수 있다. As communication systems have evolved, consumers, such as businesses and individuals, have used a wide variety of wireless terminals. Mobile communication systems such as LTE (Long Term Evolution) and LTE-Advanced of the current 3GPP series are high-speed, high-capacity communication systems that can transmit and receive various data such as video and wireless data, beyond voice-oriented services. The development of technology capable of transferring large amounts of data is required. As a method for transmitting a large amount of data, data can be efficiently transmitted using a plurality of cells.
한편, 다수의 셀 또는 스몰 셀(small cell)에서 상향링크 전송이 이루어지며 상향링크 제어정보의 채널의 전송을 제어하는 기술이 필요하다.Meanwhile, uplink transmission is performed in a plurality of cells or small cells, and a technique for controlling transmission of a channel of uplink control information is required.
전술한 문제점을 해결하기 위하여 본 발명은 상향링크 제어 정보를 전송함에 있어 각각의 서빙 셀 별로 독립적으로 전송하도록 제어하는 기술 및 방안을 제안한다. The present invention to solve the above problems In the transmission of uplink control information, a technique and a method for controlling the transmission of each serving cell are proposed.
전술한 과제를 해결하기 위하여 본 발명의 일 실시예에 의한 단말이 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 방법은 동시 전송할 UCI의 수 K와 UCI 동시 전송 가능한 수인 M을 비교하여, 상기 비교 결과 K가 M보다 큰 경우 상기 동시 전송할 UCI 중 M개를 선택하는 단계, 및 상기 선택한 M개의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 기지국으로 전송하는 단계를 포함하며, 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 것을 특징으로 한다.In order to solve the above problems, the method for controlling the transmission of uplink control information in a plurality of serving cells by the terminal according to an embodiment of the present invention compares the number of simultaneous transmission K and the number of UCI simultaneous transmission M, Selecting M of the UCIs to be transmitted simultaneously when the comparison result K is greater than M, and transmitting the selected M UCIs to a base station through a physical uplink control channel (PUCCH) of each serving cell, M is less than or equal to the number N of serving cells and is a natural number of 1 or more.
본 발명의 다른 실시예에 의한 기지국이 복수의 서빙 셀에서 상향 링크 제어 정보를 수신하는 방법은 단말로부터 UCI 동시 전송 가능한 수인 M 이하의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 수신하는 단계, 및 상기 UCI를 확인하는 단계를 포함하며, 상기 단말이 동시 전송할 UCI의 수 K가 상기 M보다 큰 경우 K 보다 작은 하나 이상의 UCI가 상기 PUCCH를 통하여 전송된 것을 특징으로 하며, 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 것을 특징으로 한다. In a method for receiving uplink control information in a plurality of serving cells by a base station according to another embodiment of the present invention, a UCI of M or less, which is the number of UCI simultaneous transmissions, can be received from a terminal through a physical uplink control channel (PUCCH) of each serving cell. And confirming the UCI, wherein the number of UCIs to be transmitted simultaneously by the UE is greater than M, wherein at least one UCI smaller than K is transmitted through the PUCCH. It is characterized by being a natural number less than or equal to the number N of serving cells and one or more.
본 발명의 또 다른 실시예에 의한 단말은 기지국으로부터 신호를 수신하는 수신부, 동시 전송할 UCI의 수 K와 UCI 동시 전송 가능한 수인 M을 비교하여, 상기 비교 결과 K가 M보다 큰 경우 상기 동시 전송할 UCI 중 M개를 선택하는 제어부, 및 상기 선택한 M개의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 기지국으로 전송하는 송신부를 포함하며, 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 것을 특징으로 하는 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어한다. A terminal according to another embodiment of the present invention compares a receiving unit for receiving a signal from a base station, the number of UCIs to be transmitted simultaneously and M, which is the number of simultaneous UCI transmissions, and when the comparison result is greater than M, among the simultaneous transmissions of UCIs. A control unit for selecting M and a transmitter for transmitting the selected M UCIs to a base station through a physical uplink control channel (PUCCH) of each serving cell, wherein M is less than or equal to the number N of serving cells, and 1 Transmission of uplink control information is controlled by the plurality of serving cells, which is the above natural number.
본 발명의 또 다른 실시예에 의한 기지국은 단말에게 신호를 전송하는 송신부, 단말로부터 UCI 동시 전송 가능한 수인 M 이하의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 수신하는 수신부, 및 상기 UCI를 확인하는 제어부를 포함하며, 상기 단말이 동시 전송할 UCI의 수 K가 상기 M보다 큰 경우 K 보다 작은 하나 이상의 UCI가 상기 PUCCH를 통하여 전송된 것을 특징으로 하며, 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 것을 특징으로 하는 복수의 서빙 셀에서 상향 링크 제어 정보를 수신한다. A base station according to another embodiment of the present invention is a transmitting unit for transmitting a signal to the terminal, a receiving unit for receiving a UCI or less of the number of UCI simultaneous transmission from the terminal via PUCCH (Physical Uplink Control CHannel) of each serving cell, and the And a control unit for identifying a UCI, wherein when the number of UCIs simultaneously transmitted by the UE is greater than the M, one or more UCIs smaller than K are transmitted through the PUCCH, and M is the number N of serving cells. Receive uplink control information from a plurality of serving cells characterized in that it is less than or equal to and equal to or more than one natural number.
본 발명을 구현할 경우 상향링크 제어 정보를 전송함에 있어 각각의 서빙 셀 별로 독립적으로 전송하도록 제어한다.In the case of implementing the present invention, in the transmission of uplink control information, each serving cell is controlled to be transmitted independently.
도 1은 본 발명을 위한 네트워크 구성 시나리오 예를 도시한다.1 illustrates an example network configuration scenario for the present invention.
도 2는 본 발명을 위한 네트워크 구성 시나리오의 다른 예를 도시하고 있다.2 shows another example of a network configuration scenario for the present invention.
도 3은 본 발명의 일 실시예에 의한 상위계층 RRC 시그널링 메시지의 구성 중 일부를 보여주는 도면이다. 3 is a diagram illustrating a part of a configuration of a higher layer RRC signaling message according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 의한 MAC CE를 보여주는 도면이다. 도 4는 MAC 헤더 및 MAC CE의 구성을 나타낸다. 4 is a diagram illustrating a MAC CE according to an embodiment of the present invention. 4 shows a configuration of a MAC header and a MAC CE.
도 5는 본 발명의 일 실시예에 의한 단말에서 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 과정을 보여주는 도면이다. 5 is a diagram illustrating a process of controlling transmission of uplink control information in a plurality of serving cells in a terminal according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 의한 기지국이 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 과정을 보여주는 도면이다. 6 is a diagram illustrating a process of a base station controlling transmission of uplink control information in a plurality of serving cells according to an embodiment of the present invention.
도 7은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.7 is a diagram illustrating a configuration of a user terminal according to another embodiment.
도 8은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다. 8 is a diagram illustrating a configuration of a base station according to another embodiment.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다. 이하, 본 명세서에서 사용자 단말은 약칭하여 단말로 지칭할 수도 있다. 이하 본 명세서에서 사용자 단말은 약칭하여 단말로 지칭할 수도 있다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like. The wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB). In the present specification, a user terminal is a comprehensive concept of a terminal in wireless communication. In addition to user equipment (UE) in WCDMA, LTE, and HSPA, as well as MS (Mobile Station), UT (User Terminal), SS in GSM, It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like. Hereinafter, in the present specification, the user terminal may be abbreviated as a terminal. Hereinafter, in the present specification, a user terminal may be referred to as a terminal for short.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), 송신 포인트(Transmission Point, TP), 수신 포인트(Reception point, RP) 등 다른 용어로 불릴 수 있다.A base station or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. Base Transceiver System, Access Point, Relay Node, Remote Radio Head, RRH, Radio Unit, Transmission Point, TP, Reception Point, RP, etc. It may be called in other terms.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 Node-B, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. In other words, in the present specification, a base station or a cell is a generic meaning indicating some areas or functions covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or a sector (site) in LTE, and the like. It should be interpreted as, and it is meant to cover all the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU communication range.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선 영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above have a base station for controlling each cell, the base station may be interpreted in two senses. i) the device providing the megacell, the macrocell, the microcell, the picocell, the femtocell, the small cell in relation to the wireless area, or ii) the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station. The eNB, RRH, antenna, RU, LPN, point, transmit / receive point, transmit point, receive point, etc. become embodiments of the base station according to the configuration of the radio region. In ii), the base station may indicate the radio area itself to receive or transmit a signal from the viewpoint of the user terminal or the position of a neighboring base station.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.Therefore, megacells, macrocells, microcells, picocells, femtocells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmit / receive points, transmit points, and receive points are collectively referred to as base stations. do.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.In the present specification, the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to. The user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to. Here, the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal, the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-Advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There is no limitation on the multiple access scheme applied to the wireless communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used. One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
또한, LTE, LTE-Advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. 한편, EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.In addition, in systems such as LTE and LTE-Advanced, a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers. Uplink and downlink transmit control information through control channels such as Physical Downlink Control CHannel (PDCCH), Physical Control Format Indicator CHannel (PCFICH), Physical Hybrid ARQ Indicator CHannel (PHICH), and Physical Uplink Control CHannel (PUCCH). A data channel is configured such as PDSCH (Physical Downlink Shared CHannel), PUSCH (Physical Uplink Shared CHannel) and the like to transmit data. On the other hand, control information can also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다. In the present specification, a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다. A wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal. antenna transmission system), a cooperative multi-cell communication system. The CoMP system may include at least two multiple transmission / reception points and terminals.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀 영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multiple transmit / receive point is at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmission power or a low transmission power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다. In the following, downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal, and uplink refers to a communication or communication path from a terminal to multiple transmission / reception points. In downlink, a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal. In uplink, a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
이하에서는 PUCCH, PUSCH, PDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, and a PDSCH may be described in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, and a PDSCH.'
또한, 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다. In addition, hereinafter, a description of transmitting or receiving a PDCCH or transmitting or receiving a signal through a PDCCH may be used to mean transmitting or receiving an EPDCCH or transmitting or receiving a signal through an EPDCCH.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다. 또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 PDCCH를 적용할 수 있다.That is, the physical downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH. In addition, for convenience of description, the PDCCH, which is an embodiment of the present invention, may be applied to the portion described as the PDCCH.
또한, 본 명세서에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC 시그널링을 포함한다.In addition, high layer signaling described in the present specification includes RRC signaling for transmitting RRC information including an RRC parameter.
기지국의 일 실시예인 eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.An eNB, which is an embodiment of a base station, performs downlink transmission to terminals. The eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH. For example, a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted. Hereinafter, the transmission and reception of signals through each channel will be described in the form of transmission and reception of the corresponding channel.
이때 아래에서 도면들을 참조하여 설명한 바와 같이 제1단말(UE1)은 eNB로 상향링크 신호를 전송하고 제2단말은 RRH로 상향링크 신호를 전송할 수 있다. At this time, as described with reference to the drawings below, the first terminal UE1 may transmit an uplink signal to the eNB and the second terminal may transmit an uplink signal to the RRH.
3GPP LTE/LTE-Advanced Rel-11 이전의 캐리어 병합(carrier aggregation, 또는 'CA'라 함) 기술은 임의의 단말을 위해 하나의 셀을 형성하는 기지국에 의해 구성된 하나 이상의 CC(Component Carrier, 또는 요소 반송파)들을 병합하거나 혹은 매크로 셀의 CC와 해당 매크로 셀의 커버리지 내에서 지리적으로 분산된 안테나인 저전력 RRH(Remote Radio Head)를 사용하여 구축된 스몰 셀들의 CC를 병합하여 데이터 전송률을 높이는 기술이다.Prior to 3GPP LTE / LTE-Advanced Rel-11, carrier aggregation (or carrier aggregation, or 'CA') technology is one or more CC (Component Carrier, or element) configured by the base station to form a cell for any terminal Or a combination of CCs of small cells constructed using a low power remote radio head (RRH), which is a geographically dispersed antenna within the coverage of the macro cell and the macro cell CC, to increase the data rate.
특히 캐리어 병합 기술 적용을 위해 매크로 셀과 RRH 셀은 하나의 eNB의 제어 하에 스케줄링 되도록 구축되며, 이를 위해 매크로 셀 노드와 RRH 간에는 이상적인 백홀(ideal backhaul) 구축이 필요했다. 이상적인 백홀이란 광선로(optical fiber), LOS(Line Of Sight) 극초단파(microware)를 사용하는 전용 점대점 연결과 같이 매우 높은 쓰루풋(throughput)과 매우 적은 지연을 나타내는 백홀을 의미한다. 이와 달리, xDSL(Digital Subscriber Line), 비 LOS 극초단파(Non LOS microwave)와 같이 상대적으로 낮은 쓰루풋과 큰 지연을 나타내는 백홀을 비이상적 백홀(non-ideal backhaul)이라 한다.In particular, the macro cell and the RRH cell are constructed to be scheduled under the control of one eNB for carrier aggregation technology, and for this purpose, an ideal backhaul was required between the macro cell node and the RRH. An ideal backhaul means a backhaul that exhibits very high throughput and very low latency, such as a dedicated point-to-point connection using optical fiber, line of sight (LOS) microware. In contrast, backhaul that exhibits relatively low throughput and large delay, such as digital subscriber line (xDSL) and non-LOS microwave, is called non-ideal backhaul.
LTE/LTE-Advanced 시스템에서는 각각 독립적인 중심 주파수(center frequency)를 기반으로 동작하는 상기의 CC를 하나의 셀(cell)이라고 지칭하며, 이는 하나의 기지국/eNB/RRH 등의 망 사업자에 의해 구축되는 하나의 전송 노드를 통해 형성되는 지리적/물리적 셀의 개념과는 다른 의미를 지닌다. 본 발명에서는 문맥에 의해 상기 셀 개념이 구분되도록 한다. In the LTE / LTE-Advanced system, the CCs operating based on independent center frequencies are referred to as one cell, which is constructed by a network operator such as one base station / eNB / RRH. It has a different meaning from the concept of geographic / physical cell formed through one transmitting node. In the present invention, the cell concept is distinguished by context.
임의의 단말을 위한 캐리어 병합 동작 시, 해당 단말이 초기 네트워크 진입/재진입(initial network entry/re-entry) 시 해당 단말이 진입한 서빙 셀(serving cell)에 해당하는 CC가 프라이머리 셀(primary cell)이 되며, 해당 프라이머리 셀을 통해 단말의 능력(capability)에 따라 추가적으로 병합할 수 있는 세컨더리 셀(secondary cell)들과 관련된 정보가 RRC 시그널링에 의해 설정되고, 추후 MAC CE(Control Element) 메시지를 통해 상기 RRC 시그널링을 통해 설정된 세컨더리 셀들 중 해당 단말이 병합할 셀이 활성화(activation)되거나 혹은 비활성화(deactivation)되는 구조로 캐리어 병합 기술이 적용되게 된다.In a carrier merging operation for a terminal, a CC corresponding to a serving cell to which the terminal enters when the terminal enters an initial network entry / re-entry is a primary cell. Information related to secondary cells, which can be additionally merged according to the capability of the UE through the corresponding primary cell, is set by RRC signaling, and a MAC CE (Control Element) message is subsequently added. The carrier merging technique is applied to a structure in which a cell to be merged by a corresponding UE among secondary cells configured through the RRC signaling is activated or deactivated.
상기한 바와 같이 3GPP LTE/LTE-Advanced Rel-11 이하의 시스템에서 임의의 단말을 위한 캐리어 병합 적용 시, 각각 독립적인 중심 주파수를 가지는 셀들이라 할지라도 단일한 스케줄링 유닛 기반의 캐리어 병합이 적용되었기 때문에 해당 캐리어 병합을 적용한 단말의 UCI(Uplink Control Information, 상향 링크 제어 정보) 전송을 위한 PUCCH 자원은 병합된 서빙 셀들 중 프라이머리 셀을 통해서만 구성되었다. 이에 따라 임의의 캐리어 병합 적용 단말이 UCI를 전송할 경우, 해당 단말은 프라이머리 셀의 PUCCH 자원을 통해 전송하거나, 혹은 PUCCH/PUSCH 동시(연립)(PUCCH/PUSCH simultaneous)에 관한 설정 정보에 따라 프라이머리 셀의 PUSCH 전송 자원 혹은 세컨더리 셀의 PUSCH 전송 자원을 통해 전송되었다. As described above, when carrier aggregation is applied to any UE in a 3GPP LTE / LTE-Advanced Rel-11 or lower system, even if cells have independent center frequencies, carrier aggregation based on a single scheduling unit is applied. PUCCH resources for uplink control information (UCI) transmission of the UE to which the carrier aggregation is applied are configured only through the primary cell among the merged serving cells. Accordingly, when a carrier aggregation applied UE transmits UCI, the UE transmits through the PUCCH resources of the primary cell or the primary according to configuration information about PUCCH / PUSCH simultaneous (PUCCH / PUSCH simultaneous). A PUSCH transmission resource of a cell or a PUSCH transmission resource of a secondary cell is transmitted.
아래의 도 1과 같이 서로 다른 둘 이상의 기지국(eNB/RU/RRH/eNodeB 등 다양하게 지칭될 수 있다)(110, 120)에 의해 형성되는 각각의 셀들이 중첩되는 지역에 위치한 임의의 단말(130)에 대해, 해당 단말(130)의 데이터 전송률을 높이기 위한 방안으로 각각의 기지국(110, 120)에서 지원하는 주파수 대역을 병합하여 데이터 송수신을 위해 사용하는 기지국 간 캐리어를 병합할 수 있다. 단, 도 1에서 각각의 기지국(110, 120)에 의해 형성되는 셀 타입은 그 커버리지에 따라 매크로 셀(macro cell), 스몰 셀(small cell, 예를 들어 피코셀, 마이크로 셀 등), 펨토셀(femto cell) 등 다양하게 구성될 수 있다. As shown in FIG. 1 below, any terminal 130 located in an area where respective cells formed by two or more different base stations (eNB / RU / RRH / eNodeB, etc. may be variously referred to) 110 and 120 overlap each other. In order to increase the data rate of the terminal 130, the carriers between the base stations used for data transmission and reception may be merged by merging the frequency bands supported by the base stations 110 and 120. However, in FIG. 1, a cell type formed by each of the base stations 110 and 120 may be a macro cell, a small cell (eg, a pico cell, a micro cell, etc.) or a femtocell according to its coverage. femto cell) and the like.
이와 같은 기지국 간 캐리어 병합 기술 적용이 필요한 대표적인 시나리오로서, 도 2에 제시된 바와 같이 매크로 셀과 중첩되어 형성된 스몰 셀 간의 캐리어를 병합할 수 있다. As a typical scenario that requires the application of such a carrier aggregation technology between base stations, as shown in FIG. 2, carriers between small cells formed by overlapping with macro cells may be merged.
도 2는 본 발명을 위한 네트워크 구성 시나리오의 다른 예를 도시하고 있다.2 shows another example of a network configuration scenario for the present invention.
일반적인 매크로 기지국에 비해 낮은 송신(Tx) 전력을 사용하는 저전력 기지국에 의해 형성되는 스몰 셀은 매크로 셀에 비해 작은 사이즈의 셀을 커버하기 때문에 주파수의 공간적 재활용성을 매크로 셀 기반의 네트워크 구조에 비해 높일 수 있을 뿐 아니라, 매크로 셀과 중첩되어 도입될 경우 데이터 트래픽이 몰리는 핫 스팟(hot spot)과 같은 국소 지역의 높은 데이터 전송률을 처리하는데 용이한 장점이 있다. 하지만 이처럼 스몰 셀을 도입하게 되면 그 반대급부로 셀 간 간섭 문제가 심화되며, 특히 동일한 주파수 대역을 사용하는 매크로 셀과 스몰 셀이 중첩되어 구성되는 헤테로지니어스 네트워크(heterogeneous network) 시나리오에서 매크로 셀과 스몰 셀 간의 간섭은 심각한 성능 열하를 야기할 수 있다. Small cells formed by low power base stations that use lower transmit (Tx) power than conventional macro base stations cover cells of smaller size than macro cells, thus increasing spatial spatial recyclability compared to macro cell based network structures. In addition, it is advantageous in handling the high data rate of a local area such as a hot spot where data traffic is introduced when overlapped with a macro cell. However, the introduction of small cells intensifies the inter-cell interference problem, and in particular, in a heterogeneous network scenario in which macro and small cells overlap with each other using the same frequency band, the macro cell and the small cell are small. Inter-cell interference can cause severe performance degradation.
따라서 저전력 기지국의 도입을 통해 특정 국소 지역의 데이터 전송률을 높이면서, 매크로 셀과 스몰 셀 간의 간섭을 최소화하기 위한 스몰 셀 향상(small cell enhancement) 방안이 필요하다. 스몰 셀 향상을 위한 실시예로 도 2와 같이 매크로 셀과 스몰 셀의 주파수 대역을 달리 사용하는 환경에서 스몰 셀 커버리지에 속한 단말(230)이 각각 매크로 셀의 주파수 대역(F1)을 통해 각각 매크로 셀 기지국(210)과 연결(connection)을 맺고 있는 상태에서 추가적으로 스몰 셀의 주파수 대역(F2)를 통해 스몰 셀 기지국(220)과도 연결을 맺는 기지국 간 캐리어 병합 기술(inter-eNB Carrier Aggregation)을 지원하는 방안이 논의되고 있다. Accordingly, there is a need for a small cell enhancement scheme for minimizing interference between a macro cell and a small cell while increasing the data rate of a specific local area through the introduction of a low power base station. As an embodiment for improving a small cell, as shown in FIG. 2, in an environment in which frequency bands of the macro cell and the small cell are used differently, each of the terminals 230 belonging to the small cell coverage may respectively use the macro cell through the frequency band F1 of the macro cell. Supporting inter-eNB Carrier Aggregation, which is also connected to the small cell base station 220 through the small cell frequency band (F2) in the state of establishing a connection with the base station 210. Plans are being discussed.
하지만, 도 2와 같이 매크로 기지국과 스몰 셀 기지국 간의 이상적 백홀 구축이 이루어지지 않은 경우, 즉, 매크로 기지국과 스몰 셀 간 비이상적 백홀 구축이 이루어진 경우, 기존의 캐리어 병합 동작 방안 기반의 eNB간(inter-eNB) 캐리어 병합 기술 적용이 어렵게 된다. 특히 단말이 매크로 셀 캐리어인 F1을 프라이머리 셀로 잡고 있는 상태에서 스몰 셀 캐리어인 F2를 세컨더리 셀로 병합하여 캐리어 병합을 적용하는 경우, 기존처럼 UCI를 프라이머리 셀로 전송하면 백홀 지연으로 인해 스몰 셀에서 원활한 HARQ 동작 및 무선 채널 기반 스케줄링을 적용하기 힘들어 진다.However, when the ideal backhaul is not established between the macro base station and the small cell base station as shown in FIG. 2, that is, when the non-ideal backhaul is established between the macro base station and the small cell, inter-eNBs based on the existing carrier merging operation scheme are inter -eNB) Carrier merge technology becomes difficult to apply. In particular, when the UE merges the small cell carrier F2 into the secondary cell while the UE is holding the macro cell carrier F1 as the primary cell, when the UE is applied to the UE, the UCI is transmitted to the primary cell as in the past. HARQ operation and radio channel based scheduling become difficult to apply.
이를 좀 더 일반화하면, 도 1과 같이 임의의 둘 혹은 그 이상의 기지국에 의해 형성되는 셀 간 중첩 지역에 위치한 단말을 위해 해당 기지국들에 의해 지원되는 각각의 주파수 대역들을 병합하여 사용하는 경우, 해당 기지국들 간 백홀 지연 시간이 존재하는 비이상적 백홀 환경에서는 상기에서 서술한 문제가 동일하게 적용된다.More generally, when the respective frequency bands supported by the base stations are merged and used for a terminal located in an inter-cell overlapping area formed by any two or more base stations as shown in FIG. 1, the corresponding base station In the non-ideal backhaul environment where the backhaul delay times exist, the above-described problems apply equally.
본 발명은 3GPP 기반의 무선 이동 통신 시스템에서 서로 이웃하는 기지국(eNB/RRH/RU) 간 커버리지가 중첩된 지역에 위치한 임의의 단말에서 해당 이웃 기지국들과의 듀얼 코넥티비티(dual connectivity)를 지원하기 위한 방안에 대해 제안한다. 특히 해당 이웃 기지국들이 서로 다른 주파수 대역을 사용하는 경우, 이를 해당 이웃 기지국들이 지원하는 주파수 대역을 해당 단말에서 병합해서 사용하는 기지국 간 캐리어 병합 기술(inter-eNB Carrier Aggregation)을 지원하기 위한 단말 및 기지국의 동작 방안에 관한 것이다. The present invention supports dual connectivity with neighboring base stations in an arbitrary terminal located in a region where coverage between neighboring base stations (eNB / RRH / RU) overlaps in a 3GPP-based wireless mobile communication system. Suggest ways to do this. In particular, when the neighboring base stations use different frequency bands, the terminal and the base station for supporting the inter-eNB Carrier Aggregation technology that uses the frequency bands supported by the neighboring base stations in the terminal It relates to the operation method of.
본 발명에서는 상기의 도 1과 같이 기지국 간 다소 긴 백홀 지연 시간이 존재하는 비이상적 백홀 기반 하에서 기지국 간 캐리어 병합 기술을 적용하기 위한 단말의 UCI 전송 방안에 대해 제안한다. 특히 본 발명은 도 2와 같이 매크로 셀과 스몰 셀 간의 캐리어 병합 시나리오에서 매크로 셀 캐리어를 프라이머리 셀로 설정한 상태에서 추가적으로 스몰 셀 캐리어인 F2를 병합하는 캐리어 병합 단말을 위한 UCI 전송 방안에 대해 초점을 맞추어 기술하지만, 해당 제안 기술이 도 1과 같은 일반적인 기지국 간 캐리어 병합 시나리오에서도 동일하게 적용될 수 있음은 명백하다. 혹은 하나의 기지국에서 지원하는 복수의 캐리어 간 병합 기술 적용 시나리오에서도 본 발명의 내용이 동일하게 적용될 수 있다. 추가적으로, 서로 이웃하는 각각의 기지국이 지원하는 캐리어가 하나일 경우를 가정하여 설명하지만, 이를 하나로 한정 짓지 않고 임의의 N(단, N은 임의의 자연수)개의 캐리어로 확장해도 동일한 방안이 적용될 수 있다. 즉, 단말 관점에서 현재 접속을 맺고 있는 프라이머리 CC(primary cell) 외에 추가적으로 하나 혹은 N-1개의 추가적인 세컨더리 CC(secondary cell)들을 병합할 경우에도, 각각의 세컨더리 셀 병합에 있어서 하기에 기술한 발명의 제안 내용이 동일하게 적용될 수 있다. The present invention proposes a UCI transmission scheme of a terminal for applying a carrier aggregation technique between base stations under a non-ideal backhaul based on a rather long backhaul delay time between base stations as shown in FIG. 1. In particular, the present invention focuses on a UCI transmission scheme for a carrier merge terminal for additionally merging F2, which is a small cell carrier, in a carrier merge scenario between the macro cell and the small cell as shown in FIG. 2. Although described in detail, it is obvious that the proposed technique can be equally applied to the general inter-base station carrier aggregation scenario shown in FIG. 1. Alternatively, the contents of the present invention may be equally applied to a scenario of applying a merge technology between a plurality of carriers supported by one base station. In addition, the description will be given on the assumption that there is only one carrier supported by each of the neighboring base stations, but the same scheme may be applied to any N (where N is any natural number) carriers without being limited to one. . That is, in the case of merging additional one or N-1 additional secondary CCs in addition to the primary CC which is currently connected from the UE perspective, the invention described below in merging each secondary cell The proposed content of can be equally applied.
3GPP LTE/LTE-Advanced Rel-11 이하의 시스템에서 정의된 캐리어 병합 기술에 의하면 복수의 캐리어를 병합하여 사용하는 단말의 경우, 즉, 복수의 서빙 셀이 설정된 단말의 경우 상향 링크 제어 채널인 PUCCH 자원은 해당 단말을 위해 설정된 서빙 셀(serving cell)들 중 프라이머리 셀(primary cell)에서만 할당되었다. 단, 여기서 셀이라 함은 하나의 요소 반송파를 의미하며, 본 발명에서는 셀과 요소 반송파(CC)를 병용해서 기술한다. 즉, 해당 단말은 상향 링크 제어 정보 전송 시, 프라이머리 셀 혹은 세컨더리 셀의 상향 링크 데이터 채널인 PUSCH를 통해 전송하거나, 혹은 프라이머리 셀의 PUCCH를 통해서 전송하였다. According to a carrier merging technique defined in a 3GPP LTE / LTE-Advanced Rel-11 or lower system, a PUCCH resource that is an uplink control channel in case of a terminal using a plurality of carriers, that is, a terminal in which a plurality of serving cells are configured, is used. Is allocated only in a primary cell among serving cells configured for the corresponding UE. However, the term "cell" herein means one component carrier, and in the present invention, the cell and the component carrier (CC) are used together. That is, when the uplink control information is transmitted, the UE transmits the data through the PUSCH which is the uplink data channel of the primary cell or the secondary cell or through the PUCCH of the primary cell.
본 발명에서는 3GPP LTE/LTE-Advanced Rel-12 시스템 혹은 그 후속 시스템에서 캐리어 병합 시, 적용 가능한 단말의 상향 링크 제어 정보 전송 방안에 대해 새롭게 제안하도록 한다. 특히 기존의 LTE/LTE-Advanced Rel-11 이하의 시스템에서의 캐리어 병합 시나리오와 달리, Rel-12 및 그 후속 시스템에서는 좀 더 다양한 캐리어 병합 시나리오가 고려되고 있다. 이에 대한 한 예로서, 기지국 간 이상적 백홀 선로가 확보되지 않은 환경에서 해당 이웃 기지국의 커버리지 중첩 지역에 위치한 단말이 각각 서로 다른 캐리어를 통해 해당 이웃 기지국들과 접속을 맺는 기지국 간(또는 eNB 간, inter-eNB) 캐리어 병합도 시나리오 중 하나로 고려되고 있다. 이렇게 다양한 캐리어 병합 시나리오들이 고려됨에 따라 기존의 Rel-11 이하의 시스템에서의 단일 기지국 기반 캐리어 병합 시나리오에서 적용되었던 상향 링크 제어 정보 전송 방안과 다른 새로운 캐리어 병합 시나리오에서도 적용 가능한 새로운 상향 링크 제어 정보 전송 방안에 대해 설계할 필요가 있을 수 있다. 이에 대한 한 예로서, Rel-12 시스템 혹은 그 후속의 시스템에서는 각각의 서빙 셀 별로 독립적으로 상향 링크 제어 정보를 전송하도록 설정될 수 있다. 혹은 임의의 단말에서 병합된 복수의 서빙 셀들에 대해 해당 서빙 셀을 구성하는 기지국/eNB(macro cell eNB vs. small cell eNB 혹은 RRC connection 여부에 따라 마스터 eNB와 secondary eNB를 구분)에 따라 각각의 서빙 셀을 그룹화하고, 서빙 셀 그룹 별로 하나의 셀을 선택하여 해당 선택된 셀의 상향 링크를 통해 서빙 셀 그룹별로 상향 링크 제어 정보를 전송할 수 있다. 이를 위해 Rel-12 혹은 후속 단말의 경우, 기존 LTE/LTE-Advanced Rel-11에서 정의된 캐리어 병합 기반 UCI 전송 방법을 적용할 것인지, 서빙 셀 별로 UCI를 독립적으로 전송하도록 하는 새로운 UCI 전송 방법을 적용할 것인지를 설정하는 UCI 전송 방법에 관한 지시자(indicator)를 정의하고 이를 캐리어 병합 시, MAC CE 시그널링(signaling) 혹은 UE 특이적(UE-specific) RRC 시그널링을 통해 해당 단말에 전송할 수 있다. 혹은 Rel-12 혹은 후속 단말은 서빙 셀 별로 독립적으로 UCI를 전송하도록 정의하거나, 혹은 세컨더리 셀 추가(addition) 혹은 활성화(activation) 시, 해당 세컨더리 셀을 위한 PUCCH 자원 할당 여부를 통해 해당 캐리어 병합 상황에서의 UCI 전송 방안을 정의할 수 있다. In the present invention, when a carrier merges in a 3GPP LTE / LTE-Advanced Rel-12 system or a subsequent system, a new proposal for a method of transmitting uplink control information of an applicable terminal is proposed. In particular, unlike the carrier aggregation scenario in the system of the existing LTE / LTE-Advanced Rel-11 or less, more diverse carrier aggregation scenarios are considered in Rel-12 and subsequent systems. As an example of this, in an environment in which an ideal backhaul line is not secured between base stations, a base station (or inter-eNB, inter-eNB) in which a terminal located in a coverage overlap area of a neighboring base station establishes a connection with corresponding neighboring base stations through different carriers, respectively. -eNB) carrier aggregation is also considered as one of the scenarios. As such various carrier aggregation scenarios are considered, the uplink control information transmission scheme applied in the single base station based carrier aggregation scenario in the existing Rel-11 or lower system and the new uplink control information transmission scheme applicable to other new carrier aggregation scenarios You may need to design for. As an example of this, the Rel-12 system or a subsequent system may be configured to transmit uplink control information independently for each serving cell. Alternatively, each serving may be performed according to a base station / eNB constituting a corresponding serving cell for a plurality of serving cells merged in an arbitrary terminal (classifying a master eNB and a secondary eNB according to whether or not an RRC connection is established). By grouping cells, one cell may be selected for each serving cell group, and uplink control information may be transmitted for each serving cell group through the uplink of the selected cell. To this end, in case of Rel-12 or subsequent UEs, whether to apply the carrier aggregation-based UCI transmission method defined in the existing LTE / LTE-Advanced Rel-11, or apply the new UCI transmission method to transmit UCI independently for each serving cell. An indicator regarding a UCI transmission method for setting whether or not to be defined may be defined and may be transmitted to a corresponding UE through MAC CE signaling or UE-specific RRC signaling when the carrier is merged. Alternatively, Rel-12 or subsequent UEs can be defined to transmit UCI independently for each serving cell, or when adding or activating a secondary cell, whether to allocate PUCCH resources for the secondary cell in a corresponding carrier merging situation. UCI transmission scheme can be defined.
이처럼 Rel-12 단말을 위한 서빙 셀 별 UCI 전송 방안은 기존 Rel-11 캐리어 병합에서의 UCI 전송 방안과 달리 설정될 수 있다. 본 발명에서는 Rel-12 캐리어 병합에서의 UCI 전송 방법이 새롭게 정의된 상황을 가정하고 설명하나, 상기에서 서술한 단말 별 Rel-12 UCI 전송 설정 방안에 제한을 두지 않는다. As such, the UCI transmission scheme for each serving cell for the Rel-12 UE may be configured differently from the UCI transmission scheme in the existing Rel-11 carrier aggregation. In the present invention, it is assumed that the UCI transmission method in Rel-12 carrier aggregation is newly defined, but the above-described method of setting Rel-12 UCI transmission for each terminal is not limited.
본 발명은 Rel-12를 위한 새로운 UCI 전송 방안에 따르도록 설정된 단말에 대해 복수의 서빙 셀 상향 링크를 통해 동시에 UCI를 전송해야 할 경우에 단말의 UCI 전송 방안에 대해 살펴본다.The present invention looks at the UCI transmission scheme of the terminal when it is necessary to simultaneously transmit the UCI over a plurality of serving cell uplink for the terminal configured to comply with the new UCI transmission scheme for Rel-12.
제 1 실시예로 상위(혹은 하위) CIF(lower Carrier Indicator Field)를 갖는 서빙 셀(Component Carrier)의 UCI를 드롭(dropping)한다. In a first embodiment , the UCI of a serving cell (Component Carrier) having an upper (or lower) lower carrier indicator field (CIF ) is dropped.
첫 번째 실시예로 N개의 서빙 셀을 병합하여 사용하고 있는 임의의 단말에 대해 해당 서빙 셀들 중 임의의 2개 이상의 서빙 셀을 위한 UCI가 동시에 발생하여 동일한 상향 링크 서브프레임을 통해 각각의 서빙 셀 별 UCI를 전송해야 하는 경우, 최하위 CIF 값을 갖는 서빙 셀의 UCI를 전송하고, 나머지 서빙 셀들을 위한 UCI 전송은 드롭하도록 정의할 수 있다. In the first embodiment, UCI for any two or more serving cells among the corresponding serving cells is simultaneously generated for any UE that merges and uses N serving cells, thereby serving each serving cell through the same uplink subframe. If UCI needs to be transmitted, the UCI of the serving cell having the lowest CIF value may be transmitted, and the UCI transmission for the remaining serving cells may be defined to drop.
즉, 임의의 N개의 서빙 셀을 병합하여 사용하고 있는 단말에 대해, 각각의 서빙 셀 별로 PUCCH 자원이 할당된 경우, 해당 단말은 서빙 셀 별로 UCI(Uplink Control Information)를 독립적으로 전송하도록 한다. 예를 들어, CC #1을 프라이머리 셀로 잡고 동작하는 임의의 단말에 대해 기지국이 CC #2를 세컨더리 셀로 활성화(activation)한 경우, 해당 CC #2를 위한 PUCCH 자원 할당 정보가 해당 단말을 위한 공통 RRC 시그널링 및 전용 RRC 시그널링에 의해 설정되면 단말은 해당 서빙 셀 별로 UCI(Uplink Control Information)를 독립적으로 전송하도록 한다. 즉, 프라이머리 셀의 하향 링크 데이터 전송에 대한 HARQ ACK/NACK 피드백이나 프라이머리 셀에 대한 CQI 피드백 및 SR(Scheduling Request)와 같은 UCI는 프라이머리 셀의 상향 링크 서브프레임의 PUCCH 자원 혹은 PUSCH를 통해 전송하도록 하며, 세컨더리 셀을 위한 UCI는 세컨더리 셀의 PUCCH 자원 혹은 PUSCH를 통해 전송하도록 한다. 이 때 해당 프라이머리 셀을 위한 UCI 전송과 세컨더리 셀을 위한 UCI 전송이 동시에 발생하고, 해당 단말이 서로 다른 CC 혹은 서빙 셀을 통한 상향 링크의 동시 전송을 지원하지 않을 경우, 해당 단말은 CIF가 낮은 서빙 셀인 프라이머리 셀의 UCI를 우선적으로 전송하고, 이를 제외한 나머지 세컨더리 셀의 UCI를 드롭한다. 다른 실시예로 CIF가 높은 서빙 셀의 프라이머리 셀의 UCI를 우선적으로 전송하고, 이를 제외한 나머지 세컨더리 셀의 UCI를 드롭할 수 있다.That is, when PUCCH resources are allocated to each serving cell for a UE that merges and uses any N serving cells, the UE independently transmits uplink control information (UCI) for each serving cell. For example, when a base station activates CC # 2 as a secondary cell for any UE operating by holding CC # 1 as the primary cell, PUCCH resource allocation information for the corresponding CC # 2 is common for the UE. When configured by RRC signaling and dedicated RRC signaling, the UE independently transmits uplink control information (UCI) for each serving cell. That is, UCI such as HARQ ACK / NACK feedback for downlink data transmission of primary cell or CQI feedback and scheduling request (SR) for primary cell may be performed through PUCCH resource or PUSCH of uplink subframe of primary cell. The UCI for the secondary cell is transmitted through the PUCCH resource or the PUSCH of the secondary cell. At this time, if UCI transmission for the corresponding primary cell and UCI transmission for the secondary cell occur at the same time, and the corresponding terminal does not support simultaneous transmission of uplink through different CCs or serving cells, the corresponding UE has a low CIF. The UCI of the primary cell, which is the serving cell, is transmitted first, and the UCI of the remaining secondary cells is dropped. In another embodiment, the UCI of the primary cell of the high CIF serving cell may be preferentially transmitted, and the UCI of the remaining secondary cells except for this may be dropped.
즉, CC #1, ... , CC #N까지 N개의 CC를 병합하여 사용하는 단말에 대해 CC #1이 프라이머리 셀(CIF value=0)이고 CC #2, ... ,CC #N이 세컨더리 셀로서 오름차순으로 CIF값을 갖도록 설정되었을 때, 해당 서빙 셀들 중 복수의 서빙 셀을 위한 UCI가 동일한 상향 링크 서브프레임을 통해 전송되어야 하는 경우, 해당 단말은 해당 서빙 셀의 CIF 중 가장 작은 CIF값을 갖는 서빙 셀의 UCI만을 해당 서빙 셀의 PUCCH 혹은 PUSCH를 통해 전송하고 나머지 UCI는 드롭하도록 한다. 제 1 실시예를 보다 확장하면, 프라이머리 셀이 아닌 세컨더리 셀의 UCI를 드롭할 수 있다. 혹은 해당 제 1 실시예를 확장하여, 해당 단말에서 지원하는 상향 링크 동시 전송 수가 M이고, 해당 M이 임의의 순간에 해당 단말에서 발생한 UCI 동시 전송 수, K보다 작을 경우, 해당 K개의 서빙 셀 중에서 CIF가 작은 서빙 셀로부터 M개를 선택하여 UCI를 전송하도록 정의할 수 있다.That is, CC # 1 is a primary cell (CIF value = 0) and CC # 2, ..., CC #N for a UE using N CCs merged up to CC # 1, ..., CC #N. When the secondary cell is configured to have a CIF value in ascending order, when the UCI for a plurality of serving cells among the corresponding serving cells is to be transmitted through the same uplink subframe, the UE is the smallest CIF among the CIFs of the serving cell. Only the UCI of the serving cell having the value is transmitted through the PUCCH or the PUSCH of the corresponding serving cell and the remaining UCI is dropped. Further extending the first embodiment, it is possible to drop the UCI of the secondary cell rather than the primary cell. Alternatively, if the number of uplink simultaneous transmissions supported by the terminal is M, and the M is less than the number of simultaneous UCI transmissions generated by the terminal at any moment, K, the first embodiment may be extended. The CIF may be defined to select M from small serving cells to transmit UCI.
추가적으로 서술한 바와 같이 임의의 단말에서 병합된 서빙 셀들에 대해 해당 서빙 셀을 구성하는 기지국/eNB에 따라 각각의 서빙 셀들을 그룹화하여 서빙 셀 그룹 별로 하나의 서빙 셀을 선택하여 해당 서빙 셀 그룹별로 상향 링크 제어 정보를 분리하여 전송하도록 정의된 경우에도 상기의 CIF 기반의 상향 링크 제어 정보 전송 서빙 셀 선택 방안이 적용될 수 있다. 즉, 해당 서빙 셀 그룹별로 상향 링크 제어 정보를 전송하도록 선택된 서빙 셀들의 CIF 값에 따라 상향 링크 제어 정보 전송에 대한 우선 순위를 정하도록 정의할 수 있다. 예를 들어, CC#1, CC#2, ...... , CC#5까지 5개의 서빙 셀들이 병합된 임의의 단말에 대해, 해당 5개의 서빙 셀들 중, CC#1,CC#2는 제 1 기지국/eNB에 의해 구성된 서빙 셀이고, CC #3, CC#4, CC#5는 제 1 기지국/eNB와 별도의 스케줄러를 갖는 제 2 기지국/eNB에 의해 구성된 서빙 셀일 경우, 해당 (CC#1, CC#2)를 하나의 제 1 서빙 셀 그룹으로 구성하고, 해당 (CC#3, CC#4, CC#5)를 또 다른 제 2 서빙 셀 그룹으로 구성하도록 정의하여, 해당 제 1 서빙 셀 그룹에 대한 상향 링크 제어 정보는 CC#1의 상향 링크 서브프레임을 통해 전송하고 제 2 서빙 셀 그룹에 대한 상향 링크 제어 정보는 CC#3의 상향 링크 서브프레임을 통해 각각 전송하도록 정의할 수 있다. 이 때 해당 제 1 서빙 셀 그룹에 대한 상향 링크 제어 정보 전송과 제 2 서빙 셀 그룹에 대한 상향 링크 제어 정보 전송이 해당 CC#1과 CC#3에서 동시에 발생하고, 해당 단말이 상향 링크에 대한 동시 전송을 지원하지 않을 경우, CC#1과 CC#3의 CIF 값에 따라 해당 CIF값이 작은(혹은 큰) 서빙 셀 그룹의 상향 링크 제어 정보만을 해당 순간에 전송하도록 정의할 수 있다. 혹은 각각의 서빙 셀 그룹을 정의할 때, 해당 서빙 셀 그룹 자체에 상향 링크 제어 정보 전송에 대한 우선 순위를 정의할 수 있다. 즉, 상기의 예에서 (CC#1, CC#2)로 구성된 서빙 셀 그룹을 구성하는 제 1 기지국/eNB와 (CC#3, CC#4, CC#5)로 구성된 서빙 셀 그룹을 구성하는 제 2 기지국/eNB에 의해 각각의 제 1 서빙 셀 그룹과 제 2 서빙 셀 그룹의 우선 순위가 결정될 수 있다. 예를 들어 해당 캐리어 병합 단말이 RRC connection을 맺고 있는 기지국/eNB에 의해 구성된 서빙 셀 그룹을 마스터 셀 그룹(master cell group)이라 지칭하고, 그 외의 기지국/eNB에 의해 구성된 서빙 셀 그룹을 세컨더리 셀 그룹(secondary cell group)이라 지칭하거나, 혹은 매크로 셀(macro cell) 기지국/eNB에 의해 구성된 서빙 셀 그룹이냐, 스몰 셀(small cell) 기지국/eNB에 구성된 서빙 셀 그룹이냐에 따라 마스터 셀 그룹과 세컨더리 셀 그룹을 정의하도록 하고, 마스터 셀 그룹을 구성하는 서빙 셀들에 대한 상향 링크 제어 정보 전송에 대해 세컨더리 셀 그룹 을 구성하는 서빙 셀들에 대한 상향 링크 제어 정보 전송보다 우선 순위를 갖도록 정의할 수 있다.As described above, each serving cell is grouped according to the base station / eNB constituting the serving cell with respect to the serving cells merged in an arbitrary terminal, and one serving cell is selected for each serving cell group, and then each serving cell group is upward. Even when the link control information is defined to be transmitted separately, the CIF-based uplink control information transmission serving cell selection scheme may be applied. That is, the priority of uplink control information transmission may be defined according to the CIF value of the serving cells selected to transmit uplink control information for each serving cell group. For example, for any terminal in which five serving cells are merged up to CC # 1, CC # 2, ......, CC # 5, among the corresponding five serving cells, CC # 1, CC # 2 Is a serving cell configured by the first base station / eNB, and CC # 3, CC # 4, CC # 5 is a serving cell configured by the second base station / eNB having a separate scheduler from the first base station / eNB, CC # 1, CC # 2) is configured as one first serving cell group, and the corresponding (CC # 3, CC # 4, CC # 5) is configured as another second serving cell group, The uplink control information for the 1 serving cell group is transmitted through an uplink subframe of CC # 1, and the uplink control information for the second serving cell group is transmitted through an uplink subframe of CC # 3. Can be. At this time, the uplink control information transmission for the first serving cell group and the uplink control information transmission for the second serving cell group occur simultaneously in the corresponding CC # 1 and CC # 3, and the corresponding terminal simultaneously transmits the uplink. When the transmission is not supported, only uplink control information of a serving cell group having a small (or large) CIF value according to the CIF values of CC # 1 and CC # 3 may be defined to be transmitted at a corresponding moment. Alternatively, when defining each serving cell group, priority for uplink control information transmission may be defined in the serving cell group itself. That is, in the above example, the first base station / eNB constituting the serving cell group consisting of (CC # 1, CC # 2) and the serving cell group consisting of (CC # 3, CC # 4, CC # 5) Priority of each of the first serving cell group and the second serving cell group may be determined by the second base station / eNB. For example, a serving cell group configured by a base station / eNB to which a corresponding carrier aggregation terminal has an RRC connection is referred to as a master cell group, and a serving cell group configured by another base station / eNB is referred to as a secondary cell group. (secondary cell group) or a serving cell group configured by a macro cell base station / eNB or a serving cell group configured by a small cell base station / eNB. The group may be defined and may be defined to have priority over the uplink control information transmission for the serving cells constituting the secondary cell group with respect to the transmission of the uplink control information for the serving cells constituting the master cell group.
제 2 실시예로 설정된 서빙 셀들에 대해 공통으로 적용되는 UCI 종류별 우선순위(priority)를 정의한다. Priority ( U) of each UCI type that is commonly applied to serving cells configured as the second embodiment is defined.
두 번째 실시예로 UCI 별 우선순위를 정의하여 이를 기준으로 우선순위가 가장 높은 UCI를 해당 서빙 셀을 통해 전송할 수 있다. 즉, 임의의 캐리어 병합 단말에서 동시의 복수의 서빙 셀을 위한 UCI를 각각의 서빙 셀의 상향 링크 서브프레임을 전송해야 할 경우, 해당 서빙 셀 별 UCI의 종류에 따라 UCI를 전송할 서빙 셀을 선택할 수 있다. UCI 종류에 따른 우선순위 설정의 한 예로써, 하향 링크 데이터 전송에 대한 HARQ ACK/NACK 피드백의 우선순위를 가장 높게 설정하고, 이어서 SR, CQI/CSI 피드백의 순으로 설정할 수 있다. 이처럼 UCI 별 우선순위가 설정될 경우, 가장 우선순위가 높은 UCI를 해당 서빙 셀의 PUCCH 혹은 PUSCH를 통해 전송하도록 하고, 나머지 UCI는 드롭한다. 추가적으로 가장 높은 우선순위를 갖는 UCI가 복수의 서빙 셀에서 발생한 경우, 상기의 제 1 실시예에서 서술한 방안에 따라 해당 높은 우선 순위의 UCI 전송 여부를 결정할 수 있다. 해당 제 2 실시예를 확장하여, 해당 단말에서 지원하는 상향 링크 동시 전송 수가 M이고, 해당 M이 임의의 순간에 해당 단말에서 발생한 UCI 동시 전송 수, K보다 작을 경우, 해당 K개의 서빙 셀에서 전송해야 하는 UCI 중 우선순위(priority)가 높은 M개의 UCI를 선택하여 이를 해당 M개의 서빙 셀에서 전송하도록 정의할 수 있다.In a second embodiment, the priority of each UCI may be defined, and the highest priority UCI may be transmitted through the corresponding serving cell. That is, when a carrier aggregation terminal needs to transmit an uplink subframe of each serving cell to UCI for a plurality of serving cells at the same time, a serving cell to transmit UCI may be selected according to the type of UCI for each serving cell. have. As an example of priority setting according to the UCI type, the priority of HARQ ACK / NACK feedback for downlink data transmission may be set highest, followed by SR and CQI / CSI feedback. As such, when the priority for each UCI is set, the highest priority UCI is transmitted through the PUCCH or the PUSCH of the corresponding serving cell, and the remaining UCI is dropped. In addition, when the UCI having the highest priority occurs in the plurality of serving cells, it is possible to determine whether to transmit the corresponding high priority according to the scheme described in the first embodiment. Extending the second embodiment, if the number of uplink simultaneous transmissions supported by the terminal is M, and the M is less than the number of simultaneous UCI transmissions occurring in the terminal at any moment, K, the corresponding K serving cells are transmitted. Among UCIs to be selected, M UCIs having a high priority may be selected and defined to be transmitted in corresponding M serving cells.
제 3 실시예로 각각의 세컨더리 서빙 셀 별 동시 UCI 전송 지시자(indicator)를 정의한다. In a third embodiment, a simultaneous UCI transmission indicator for each secondary serving cell is defined.
단말의 능력 및 해당 단말의 상향 링크 채널 환경에 따라 동시 UCI 전송 지시자(simultaneous UCI Tx indicator)를 정의할 수 있다. 해당 동시 UCI 전송 지시자는 각각의 (세컨더리) 서빙 셀(CC)이 활성화될 때, 해당 세컨더리 서빙 셀 별로 설정되는 파라미터로서 해당 세컨더리 셀의 UCI 전송이 프라이머리 셀 혹은 해당 세컨더리 셀의 CIF 값보다 낮은 CIF 값을 갖는 세컨더리 셀의 UCI 전송과 동시에 수행될 수 있는지 여부를 설정하는 파라미터이다. 즉, 임의의 세컨더리 셀을 활성화할 경우, 해당 세컨더리 셀에서의 PUCCH 자원 할당 정보와 함께 동시 UCI 전송 지시자를 전송하도록 정의할 수 있다. 해당 동시 UCI 전송 지시자가 설정된 경우, 해당 단말은 해당 세컨더리 셀의 UCI를 프라이머리 셀의 UCI 혹은 그보다 낮은 CIF 값을 갖는 세컨더리 셀의 UCI 전송과 해당 세컨더리 셀 상향 링크 서브프레임의 PUCCH 혹은 PUSCH를 통해 동시에 전송할 수 있다. 만약 해당 동시 UCI 전송 지시자가 설정되지 않은 세컨더리 서빙 셀의 경우, 상기의 제 1 실시예에 따라 보다 낮은 프라이머리 셀이나 보다 낮은 CIF 값을 갖는 세컨더리 셀에서의 UCI 전송이 일어날 경우, 해당 세컨더리 서빙 셀에서의 UCI 전송을 드롭한다. 혹은 제 2 실시예에 따라 프라이머리 셀이나 혹은 보다 낮은 CIF 값을 갖는 세컨더리 셀에서 전송해야 하는 UCI의 우선순위가 해당 세컨더리 서빙 셀에서 전송해야 하는 UCI의 우선순위 보다 낮은 경우에만 UCI를 전송하도록 하고, 그렇지 않은 경우, 드롭할 수 있다. Simultaneous UCI Tx indicator may be defined according to the capability of the terminal and the uplink channel environment of the terminal. The simultaneous UCI transmission indicator is a parameter set for each secondary serving cell when each (secondary) serving cell (CC) is activated.The CIF of the secondary cell is lower than the CIF value of the primary cell or the secondary cell. This parameter configures whether the secondary cell having the value can be performed simultaneously with the transmission of the UCI. That is, when activating any secondary cell, it may be defined to transmit a simultaneous UCI transmission indicator together with PUCCH resource allocation information in the secondary cell. When the simultaneous UCI transmission indicator is configured, the UE simultaneously sets UCI of the secondary cell through UCI transmission of a secondary cell having a UCI of a primary cell or a lower CIF value and PUCCH or PUSCH of a secondary cell uplink subframe. Can transmit If the secondary serving cell for which the corresponding simultaneous UCI transmission indicator is not set, the secondary serving cell when UCI transmission occurs in a secondary cell having a lower primary cell or a lower CIF value according to the first embodiment described above Drops UCI transmissions from. Alternatively, according to the second embodiment, the UCI should be transmitted only when the priority of the UCI to be transmitted in the primary cell or the secondary cell having a lower CIF value is lower than the priority of the UCI to be transmitted in the secondary serving cell. If not, you can drop it.
제 4 실시예로 동시 UCI 전송수의 설정(Number of simultaneous UCI Tx configuration)한다.In the fourth embodiment, the number of simultaneous UCI Tx configuration is set.
상기의 제 3 실시예와 유사한 방안으로서 특정 세컨더리 셀을 활성화하거나 혹은 비활성화(de-activation)할 경우 추가적으로 "동시 UCI 전송수"("number of simultaneous UCI Tx")를 설정하여 단말에게 전송할 수 있다. 해당 정보는 해당 단말에서 동시에 UCI를 전송할 수 있는 서빙 셀의 개수를 지시해주는 정보 영역으로서 단말은 해당 설정 개수에 해당하는 서빙 셀에서 동시에 UCI를 전송이 가능하다. 즉 임의의 N개의 CC를 병합하여 사용하는 단말에 대해 해당 동시 UCI 전송수 정보 영역이 M(N보다 작거나 같은 임의의 자연수)로 설정된 경우, 해당 단말은 최대 M개의 서빙 셀에서 동시에 UCI를 전송할 수 있다. 단 이 경우 동시에 UCI를 전송해야 하는 cell이 M을 넘을 경우, 상기의 방안 1 혹은 방안 2에 의해 UCI를 전송하는 M개의 서빙 셀이 선택될 수 있다. 예를 들어 임의의 단말이 5개의 CC(serving cell)을 병합하여 사용하고, 해당 동시 UCI 전송수의 정보 영역이 2로 설정된 경우, 해당 단말은 최대 2개의 서빙 셀의 상향 링크 서브프레임을 통해 UCI를 동시에 전송할 수 있다. 이 때 3개 이상의 서빙 셀에서 동시에 UCI를 전송해야 할 경우, 방안 1에 따라 CIF 값이 작은 서빙 셀 2개를 통해 UCI를 전송하고 나머지 하나의 서빙 셀의 UCI는 드롭되거나, 혹은 방안 2에 따라 각각의 서빙 셀에서 전송해야 하는 UCI의 우선순위에 따라 UCI를 전송할 2개의 서빙 셀을 선택할 수 있다. As a method similar to the third embodiment, when activating or de-activating a specific secondary cell, an additional " number of simultaneous UCI Tx " can be additionally set and transmitted to the UE. The information is an information area indicating the number of serving cells that can simultaneously transmit UCI in the UE, and the UE can simultaneously transmit UCI in the serving cells corresponding to the set number. That is, if the corresponding simultaneous UCI transmission count information area is set to M (any natural number less than or equal to N) for a UE that merges and uses any N CCs, the UE may simultaneously transmit UCI in up to M serving cells. Can be. However, in this case, when the cell that needs to simultaneously transmit UCI exceeds M, M serving cells for transmitting UCI may be selected by Method 1 or Method 2 above. For example, if an arbitrary terminal merges five serving cells (CCs) and uses an information area of the corresponding simultaneous UCI transmission number of 2, the corresponding UE uses UCI through uplink subframes of up to two serving cells. Can be transmitted simultaneously. In this case, if three or more serving cells need to transmit UCI at the same time, UCI is transmitted through two serving cells having a small CIF value according to the scheme 1, and the UCI of the other serving cell is dropped, or according to the scheme 2 Two serving cells to transmit UCI may be selected according to the priority of UCI to be transmitted in each serving cell.
단, 상기에서 4가지 실시예에서 서술한 UCI 드로핑 룰(dropping rule)은 PUCCH를 통해 전송되는 경우에만 적용하도록 하며, PUSCH를 통한 UCI 전송은 항상 허용할 수 있다. 즉, 상기의 예에서 복수의 서빙 셀에서 동시에 UCI를 전송해야 할 경우, PUSCH를 통한 UCI 전송이 가능한 서빙 셀에 대해서는 해당 UCI 드로핑 룰을 적용하지 않고, 해당 서빙 셀을 위한 UCI를 PUSCH를 통해 전송할 수 있다. 즉, PUSCH 자원이 할당된 서빙 셀에서 동시 PUSCH/PUCCH 전송이 설정되지 않은 경우, 해당 단말은 상기의 UCI 드로핑 룰을 적용하지 않고, 해당 PUSCH에 피기백(piggyback)하여 UCI를 전송하도록 하며, PUCCH를 통해 UCI를 전송하여야 하는 서빙 셀들에 대해서만(즉, PUSCH 자원이 할당되지 않거나, 동시 PUSCH/PUCCH 전송이 설정된 경우) 상기의 드로핑 룰을 적용할 수 있다. 이 때 Rel-12 이상의 새로운 UCI 전송 방법에 있어서 세컨더리 셀들에 대해서는 동시 PUSCH/PUCCH 전송을 허용하지 않도록 강제할 수도 있다. 즉, 세컨더리 셀들에 대해서는 PUSCH 자원이 할당될 경우, 항상 PUSCH에 피기백하여 전송하도록 정의될 수 있다. However, the UCI dropping rule described in the above four embodiments is applied only when transmitted through the PUCCH, and UCI transmission through the PUSCH can always be allowed. That is, in the above example, when it is necessary to simultaneously transmit UCI in a plurality of serving cells, the UCI dropping rule is not applied to the serving cell capable of UCI transmission through the PUSCH, and the UCI for the serving cell is transmitted through the PUSCH. Can transmit That is, when simultaneous PUSCH / PUCCH transmission is not configured in a serving cell to which a PUSCH resource is allocated, the corresponding UE does not apply the UCI dropping rule and piggybacks the corresponding PUSCH to transmit the UCI. The dropping rule may be applied only to serving cells that need to transmit UCI over PUCCH (that is, when PUSCH resources are not allocated or simultaneous PUSCH / PUCCH transmission is configured). At this time, in the new UCI transmission method of Rel-12 or higher, secondary cells may be forced not to allow simultaneous PUSCH / PUCCH transmission. That is, when the PUSCH resource is allocated to the secondary cells, it may be defined to always piggyback on the PUSCH and transmit the secondary cell.
상기의 방안에 따라 LTE/LTE-Advanced Rel-12 혹은 그 후속 시스템에서의 UCI 전송 방법이 정의될 때, 새로운 파라미터가 도입될 경우(방안 3 혹은 방안 4) 해당 파라미터는 새롭게 정의된 MAC CE 시그널링이나 혹은 UE-특이적 RRC 시그널링을 통해 해당 단말에게 전송되거나, 혹은 기존의 MAC CE 시그널링 혹은 UE-특이적 RRC 시그널링에 해당 파라미터를 전송하기 위한 정보 영역을 정의할 수 있다.When a UCI transmission method is defined in LTE / LTE-Advanced Rel-12 or a subsequent system according to the above scheme, when a new parameter is introduced (Method 3 or Scheme 4), the parameter is defined as a newly defined MAC CE signaling. Alternatively, an information area may be defined for transmission to a corresponding UE through UE-specific RRC signaling or for transmitting a corresponding parameter to existing MAC CE signaling or UE-specific RRC signaling.
도 3은 본 발명의 일 실시예에 의한 상위계층 RRC 시그널링 메시지의 구성 중 일부를 보여주는 도면이다. 3 is a diagram illustrating a part of a configuration of a higher layer RRC signaling message according to an embodiment of the present invention.
도 3의 310은 RRC연결 재설정(RRCConnectionReconfiguration) 메시지 중 세컨더리 셀의 설정과 관련된 요소이다. 310에서 후보자가 되는 셀에 대한 정보 중 셀의 동시 UCI 전송 지시자로 sCellUCI_SimultaneousTxIndicator(315)와 같이 포함할 수 있다. 315에서는 sCellUCI_SimultaneousTxIndicator에서 세컨더리 셀의 동시 UCI 전송을 True/False로 지시할 수 있다. In FIG. 3, reference numeral 310 denotes an element related to configuration of a secondary cell among an RRCConnectionReconfiguration message. In step 310, the information on the cell to be a candidate may be included as a simultaneous UCI transmission indicator of the cell, such as sCellUCI_SimultaneousTxIndicator 315. In 315, sCellUCI_SimultaneousTxIndicator may indicate that simultaneous UCI transmission of the secondary cell is True / False.
MAC CE에 기반한 시그널링(MAC CE based indication)을 살펴보면 해당 셀의 동시 UCI 전송을 지시하기 위해 해당 세컨더리 셀에 대한 캐리어 병합을 활성화하는 MAC CE 시그널링을 통해 해당 지시 정보를 전송할 수 있다. 캐리어 병합을 지원하는 임의의 단말에 대해 후보자 세컨더리 셀들 중 특정 세컨더리 셀을 활성화하기 위한 MAC CE 시그널링 전송 시, 해당 셀에 대한 동시 UCI 전송 지시 정보를 포함할 수 있다. 이에 따라 단말은 해당 세컨더리 셀이 활성화시키는 MAC CE 시그널링에 포함된 해당 셀의 동시 UCI 전송 지시에 따라 해당 세컨더리 셀을 위한 UCI 전송 방안을 결정할 수 있다. Referring to MAC CE based indication, in order to indicate simultaneous UCI transmission of a corresponding cell, corresponding indication information may be transmitted through MAC CE signaling activating carrier aggregation for a corresponding secondary cell. When transmitting MAC CE signaling for activating a specific secondary cell among candidate secondary cells with respect to any terminal supporting carrier aggregation, simultaneous UCI transmission indication information for the corresponding cell may be included. Accordingly, the UE may determine the UCI transmission scheme for the secondary cell according to the simultaneous UCI transmission indication of the cell included in the MAC CE signaling activated by the secondary cell.
도 4는 본 발명의 일 실시예에 의한 MAC CE를 보여주는 도면이다. 도 4는 MAC 헤더 및 MAC CE의 구성을 나타낸다. 4 is a diagram illustrating a MAC CE according to an embodiment of the present invention. 4 shows a configuration of a MAC header and a MAC CE.
표 1 MAC 헤더(header) 및 서브헤더(sub-header)의 구성
인덱스 LCID 값
00000 CCCH
00001-01010 논리 채널의 식별정보(Identity of the logical channel)
01011-11010 예약(Reserved)
11011 활성화/비활성화(Activation/Deactivation)
11100 UE CR 식별정보(UE Contention Resolution Identity)
11101 TA 명령(Timing Advance Command)
11110 DRX 명령(DRX Command)
11111 패딩(Padding)
Table 1 Configuration of MAC Headers and Subheaders
index LCID value
00000 CCCH
00001-01010 Identity of the logical channel
01011-11010 Reserved
11011 Activation / Deactivation
11100 UE Content Resolution Resolution Identity
11101 Timing Advance Command
11110 DRX Command
11111 Padding
MAC 헤더 및 서브헤더의 옥텟(octet) 구성을 표 1과 같이 살펴보면 활성화/비활성화 MAC CE의 LCID 값은 11011이다. 이를 나타내는 MAC 서브헤더의 실시예는 도 4의 참조번호 410이 지시하고 있다. 세컨더리 셀을 활성화 또는 비활성화 시키는 MAC 서브헤더는 410과 같다.Looking at the octet configuration of the MAC header and subheader as shown in Table 1, the LCID value of the activated / deactivated MAC CE is 11011. An embodiment of the MAC subheader indicating this is indicated by reference numeral 410 of FIG. 4. The MAC subheader for activating or deactivating the secondary cell is equal to 410.
본 발명의 일 실시예에 의하면 MAC CE가 동시 UCI 전송을 지시하는 정보를 포함하므로, 참조번호 420의 "00001001"과 같이 마지막 예약된 비트(reserved bit)를 1로 설정하였다. 421은 SCellIndex 3인 셀을 활성화시키도록 '1'로 설정되었으며, 예약된 비트로 참조번호 429가 지시하는 비트 역시 '1'로 설정하여 SCellIndex 3인 세컨더리 셀에서의 UCI 전송은 동시 UCI 전송이 이루어지도록 지시할 수 있다. 앞서 살펴본 바와 같이 하나 이상, 예를 들어 다수의 세컨더리 셀에 대해서도 본 발명의 실시예를 적용할 수 있으며, 420이 지시하는 MAC CE에서 다수의 셀을 활성화 하도록 하며 설정된 "00010101"인 경우 SCellIndex가 2 및 4인 셀을 활성화시키며 마지막 예약된 비트가 '1'이므로 상기 활성화된 셀에 대해 동시 UCI 전송이 이루어지도록 지시할 수 있다. 상기 예시에서 마지막 예약된 비트가 아닌 다른 비트 혹은 별도의 MAC 페이로드의 영역을 사용하여 셀 별로 지시할 수도 있다.According to an embodiment of the present invention, since the MAC CE includes information indicating simultaneous UCI transmission, the last reserved bit is set to 1, such as "00001001" of reference numeral 420. 421 is set to '1' to activate the cell at SCellIndex 3, and the bit indicated by reference number 429 is also set to '1' so that UCI transmission at the secondary cell at SCellIndex 3 is performed simultaneously. Can be directed. As described above, an embodiment of the present invention may be applied to one or more, for example, a plurality of secondary cells, and SCellIndex is set to 2 when the MAC CE indicated by 420 is activated and is set to “00010101”. And a cell of 4, and since the last reserved bit is '1', it may indicate that simultaneous UCI transmission is performed for the activated cell. In the above example, it may be indicated for each cell using a bit other than the last reserved bit or an area of a separate MAC payload.
Rel-12 혹은 후속 시스템에서 캐리어 병합 단말에 대해 적용 가능한 새로운 UCI 전송 방안에 대해 제안한다. 특히 eNB간(inter-eNB) 캐리어 병합 및 스몰 셀과의 듀얼 커넥티비티(dual connectivity) 기반의 캐리어 병합 등 다양한 시나리오 도입에 따라 서빙 셀 별 스케줄러가 분산되는 경우, 각각의 서빙 셀 별로 UCI를 독립적으로 전송해야 할 필요성이 있다. 이 경우, 복수의 서빙 셀로 동시에 UCI를 전송해야 하는 경우에 대한 단말 및 기지국 동작 방안을 제공함으로써, UCI 송수신에 있어서 단말 및 기지국 동작 모호성(ambiguity)을 해결하는 방안을 제공한다.We propose a new UCI transmission scheme applicable to a carrier aggregation terminal in Rel-12 or a subsequent system. In particular, when a scheduler for each serving cell is distributed according to various scenarios such as inter-eNB carrier merging and dual connectivity based carrier merging with small cells, UCI is independently transmitted for each serving cell. There is a need to do it. In this case, by providing a terminal and base station operation scheme for the case that it is necessary to transmit the UCI to a plurality of serving cells at the same time, it provides a scheme for solving the ambiguity of the terminal and base station in the UCI transmission and reception.
이하 eNB 간 캐리어 병합 및 스몰 셀과의 듀얼 커넥티비티 기반의 캐리어 병합 환경에서 서빙 셀 별 스케줄러가 분산되는 경우, 각각의 서빙 셀 별로 UCI를 독립적으로 전송하는 상향 링크 제어 채널 전송과정에 대해 살펴본다. Hereinafter, when a scheduler for each serving cell is distributed in an eNB-carrier aggregation and a dual connectivity-based carrier aggregation environment with a small cell, an uplink control channel transmission process for independently transmitting a UCI for each serving cell will be described.
도 5는 본 발명의 일 실시예에 의한 단말에서 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 과정을 보여주는 도면이다. 5 is a diagram illustrating a process of controlling transmission of uplink control information in a plurality of serving cells in a terminal according to an embodiment of the present invention.
실시예 1, 2, 3, 4를 포함하여 단말이 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어기 위하여 먼저 단말은 동시 전송할 UCI의 수 K와 UCI 동시 전송 가능한 수인 M을 비교한다(S510). 단말은 상기 비교 결과 K가 M보다 큰 경우 상기 동시 전송할 UCI 중 M개를 선택한다(S520). 앞서 제 1, 2 실시예에서 살펴본 바와 같이 가장 낮은 CIF를 가지는 서빙 셀의 UCI를 선택하거나, 또는 UCI의 우선 순위, 예를 들어 UCI의 종류에 따라 설정된 우선 순위로 선택할 수 있다. 앞서 하향 링크 데이터에 대한 HARQ ACK/NACK 피드백을 높은 우선순위로 하고 SR, CQI/CSI 피드백을 낮은 순위로 설정함은 살펴보았다. 즉, 단말은 실시예 1 및 실시예 4에 의해 상기 K개의 UCI 중 서빙 셀의 CIF(Carrier indicator Field)를 기준으로 UCI를 선택할 수 있다. 또한 단말은 실시예 2 및 실시예 4를 이용하여 상기 K개의 UCI 중 UCI에 설정된 우선 순위를 기준으로 선택할 수 있다. 실시예 1/2에 적용 시 상기 M이 1이 될 수 있으며, 이 경우 단말은 하나의 UCI를 선택할 수 있다. In order to control the transmission of uplink control information in a plurality of serving cells by the UE including Embodiments 1, 2, 3, and 4, the UE first compares the number K of UCIs to be transmitted simultaneously and the number M of UCIs that can be simultaneously transmitted (S510). . If the comparison result K is greater than M, the terminal selects M of the UCIs to be transmitted simultaneously (S520). As described in the first and second embodiments, the UCI of the serving cell having the lowest CIF may be selected, or a priority set according to the priority of the UCI, for example, the type of the UCI. Previously, HARQ ACK / NACK feedback for downlink data has been set to high priority, and SR and CQI / CSI feedback have been set to low priority. That is, the UE may select the UCI based on the Carrier Indicator Field (CIF) of the serving cell among the K UCIs according to the first and fourth embodiments. In addition, the UE may select based on the priority set in the UCI among the K UCIs using the second embodiment and the fourth embodiment. When applied to Example 1/2, the M may be 1, in which case, the UE may select one UCI.
또한, 서빙 셀이 다수의 서빙 셀 그룹으로 나뉘어진 경우, 상기 단말은 각 서빙 셀 그룹의 상향 링크 제어 정보가 전송되는 서빙 셀들의 CIF를 기준으로 선택할 수 있다. In addition, when the serving cell is divided into a plurality of serving cell groups, the terminal may select based on the CIF of the serving cells in which uplink control information of each serving cell group is transmitted.
보다 상세히, 살펴볼 때, 상기 서빙 셀은 둘 이상의 서빙 셀 그룹으로 나뉘어지며, 상기 S520의 선택하는 단계는 서빙 셀 그룹 별 차등적인 우선 순위를 정의하는 단계와 해당 서빙 셀 그룹 별 우선 순위를 기준으로 선택하는 단계를 포함한다. 또한, 상기 우선 순위를 정의하는 단계는 상향 링크 제어 정보 전송을 위한 셀 그룹 별 우선 순위를 정의함에 있어서 마스터 셀 그룹의 우선 순위를 세컨더리 셀 그룹의 우선 순위보다 우위에 두는 우선 순위 정의가 되도록 구현할 수 있다. 이는 셀 그룹 자체에 우선 순위를 두는 것으로 셀 그룹별로 CIF를 독립적으로 설정하는 경우, 예를 들어 마스터 셀 그룹을 구성하는 CC들에 대해 차례로 0, 1, 2, ...를 CIF로 설정하고, 세컨더리 셀 그룹을 구성하는 CC들에 대해서도 차례로 0, 1, 2, ...로 CIF를 설정하는 경우에 적용할 수 있다.In more detail, when the serving cell is divided into two or more serving cell groups, the selecting of the S520 may be performed based on a step of defining differential priority for each serving cell group and priority for each serving cell group. It includes a step. The step of defining the priority may be implemented so that the priority definition of the master cell group is higher than the priority of the secondary cell group in defining the priority for each cell group for uplink control information transmission. have. This gives priority to the cell group itself, and when setting the CIF independently for each cell group, for example, set 0, 1, 2, ... to CIF for CCs constituting the master cell group in turn, The CCs constituting the secondary cell group may also be applied to the case where the CIF is set to 0, 1, 2, ... in order.
단말은 상기 선택한 M개의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 기지국으로 전송한다(S530). 이 과정에서 실시예 3을 적용하여 상기 K개의 UCI 중 선택되지 않은 UCI 중에서 동시 UCI 전송 지시가 설정된 UCI를 선택하여 상기 UCI의 서빙 셀의 PUCCH 또는 PUSCH를 통하여 전송할 수 있다. 예를 들어 M이 1이며, 상기 K가 2인 경우, 최하위 CIF 또는 우선 순위가 높은 UCI를 선택하여 PUCCH로 전송하며, 도 3 또는 4와 같이 UCI 동시 전송 지시가 설정된 UCI는 그 서빙 셀의 PUCCH 또는 PUSCH를 통하여 전송할 수 있다. 단말은 기지국으로부터 세컨더리 셀에 대한 UCI 동시 전송 지시자(simultaneous UCI Tx indicator)를 설정하는 방식으로는 도 3의 RRC 시그널링 방식 또는 도 4의 MAC 시그널링으로 수신할 수 있다. The terminal transmits the selected M UCIs to a base station through a physical uplink control channel (PUCCH) of each serving cell (S530). In this process, the third embodiment may be applied to select a UCI in which a simultaneous UCI transmission indication is set among UCIs not selected among the K UCIs, and transmit the same through a PUCCH or a PUSCH of a serving cell of the UCI. For example, when M is 1 and K is 2, the lowest CIF or UCI with high priority is selected and transmitted to PUCCH, and UCI with simultaneous UCI transmission indication set as shown in FIG. 3 or 4 is PUCCH of the serving cell. Alternatively, it may be transmitted through the PUSCH. The UE may receive the RCI signaling method of FIG. 3 or the MAC signaling of FIG. 4 as a method of configuring a UCI simultaneous Tx indicator for the secondary cell from the base station.
도 5의 실시예에서 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수가 된다. 또한 상기 M 값을 단말이 기지국으로부터 수신할 수 있다. 즉, 기지국으로부터 상기 M에 대한 정보를 RRC 또는 MAC 시그널링으로 수신할 수 있다. In the embodiment of FIG. 5, M is a natural number that is less than or equal to the number N of serving cells and is 1 or more. In addition, the terminal may receive the M value from the base station. That is, the information on the M may be received from the base station by RRC or MAC signaling.
또한 단말은 상기 UCI 중 PUSCH에서 전송하도록 설정된 하나 이상의 UCI는 상기 선택하는 단계에서 제외시킬 수 있다. 이는 PUCCH에서 전송할 필요가 없기 때문이다. 또한 UCI 중 세컨더리의 UCI를 상기 단말이 할당된 PUSCH 자원에서 피기 백(piggyback)으로 전송할 수 있다. In addition, the UE may exclude one or more UCI set to be transmitted in the PUSCH of the UCI in the selecting step. This is because there is no need to transmit on the PUCCH. In addition, the secondary UCI of the UCI may be transmitted to the piggyback (piggyback) on the PUSCH resource allocated to the terminal.
도 6은 본 발명의 일 실시예에 의한 기지국이 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 과정을 보여주는 도면이다. 6 is a diagram illustrating a process of a base station controlling transmission of uplink control information in a plurality of serving cells according to an embodiment of the present invention.
기지국은 단말로부터 UCI 동시 전송 가능한 수인 M 이하의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 수신한다(S610). 상기 M 이하의 UCI는 단말이 도 5의 과정을 수행하여 선택한 UCI들이다. 기지국은 수신한 UCI를 확인한다(S620). 상기 단말은 동시 전송할 UCI의 수 K가 상기 M보다 큰 경우 K 보다 작은 하나 이상의 UCI가 상기 PUCCH를 통하여 전송된 것을 특징으로 하며, 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 경우 단말이 선택한 UCI를 기지국이 수신하는 과정이다. The base station receives UCI of M or less, which is the number of UCI simultaneous transmissions, from the terminal through a physical uplink control channel (PUCCH) of each serving cell (S610). The UCI below M are UCIs selected by the UE performing the process of FIG. 5. The base station checks the received UCI (S620). When the number of simultaneous UCIs K is greater than M, the UE transmits one or more UCIs smaller than K through the PUCCH, wherein M is a natural number equal to or smaller than N and the number of serving cells. In this case, the base station receives the UCI selected by the terminal.
한편 기지국은 제 3 실시예에서 UCI 동시 전송 지시자를 단말에게 전송할 수 있다. 즉, 기지국은 단말에게 세컨더리 셀에 대한 동시 UCI 전송 지시자를 RRC 또는 MAC 시그널링으로 전송하며, 이의 실시예는 도 3 및 도 4에서 살펴보았다. 제 4실시예의 동시 UCI 전송 수 M 의 전송을 위해 기지국은 단말에게 상기 M에 대한 정보를 RRC 또는 MAC 시그널링으로 전송할 수 있다. 또한 기지국은 상기 UCI 중 세컨더리(Secondary Cell)의 UCI를 상기 단말에게 할당된 PUSCH 자원에서 피기 백(piggyback)으로 수신할 수 있다. Meanwhile, the base station may transmit the UCI simultaneous transmission indicator to the terminal in the third embodiment. That is, the base station transmits the simultaneous UCI transmission indicator for the secondary cell to the terminal by RRC or MAC signaling, an embodiment thereof has been described with reference to FIGS. 3 and 4. In order to transmit the number of simultaneous UCI transmissions M of the fourth embodiment, the base station may transmit information about the M to the terminal through RRC or MAC signaling. Also, the base station may receive a UCI of a secondary cell among the UCIs as a piggyback on PUSCH resources allocated to the UE.
이하 eNB 간 캐리어 병합 및 스몰 셀과의 듀얼 커넥티비티 기반의 캐리어 병합 환경에서 서빙 셀 별 스케줄러가 분산되는 경우, 각각의 서빙 셀 별로 UCI를 독립적으로 전송하는 상향 링크 제어 채널 전송을 제어하는 단말 및 기지국의 구성에 대해 살펴보고자 한다. Hereinafter, when a scheduler for each serving cell is distributed in an eNB-carrier aggregation and a dual connectivity-based carrier aggregation environment with a small cell, a terminal and a base station for controlling uplink control channel transmission that independently transmits UCI for each serving cell Let's look at the configuration.
도 7은 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.7 is a diagram illustrating a configuration of a user terminal according to another embodiment.
도 7을 참조하면, 또 다른 실시예에 의한 사용자 단말(700)은 수신부(730) 및 제어부(710), 송신부(720)을 포함한다.Referring to FIG. 7, the user terminal 700 according to another embodiment includes a receiver 730, a controller 710, and a transmitter 720.
수신부(730)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiver 730 receives downlink control information, data, and a message from a base station through a corresponding channel.
또한 제어부(710)는 전술한 본 발명을 수행하기에 필요한 eNB간(inter-eNB) 캐리어 병합 및 스몰 셀과의 듀얼 커넥티비티 기반의 캐리어 병합 환경에서 서빙 셀 별 스케줄러가 분산되는 경우, 각각의 서빙 셀 별로 UCI를 독립적으로 전송하는 데에 따른 전반적인 단말의 동작을 제어한다. In addition, the controller 710 may be configured to serve each serving cell when a scheduler for each serving cell is distributed in an inter-eNB carrier merge and a dual connectivity based carrier merge environment with a small cell required to perform the above-described present invention. To control the overall operation of the terminal according to the independent transmission of each UCI.
송신부(720)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The transmitter 720 transmits uplink control information, data, and a message to a base station through a corresponding channel.
보다 상세히, 실시예 1, 2, 3, 4를 포함하여 단말이 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어기 위하여 먼저 제어부(710)는 동시 전송할 UCI의 수 K와 UCI 동시 전송 가능한 수인 M을 비교하고, 비교 결과 K가 M보다 큰 경우 상기 동시 전송할 UCI 중 M개를 선택한다. 상기 앞서 제 1, 2 실시예에서 살펴본 바와 같이 상기 제어부(710)는 가장 낮은 CIF를 가지는 서빙 셀의 UCI를 선택하거나, 또는 UCI의 우선 순위, 예를 들어 UCI의 종류에 따라 설정된 우선 순위로 선택할 수 있다. 또는 가장 높은 CIF를 가지는 서빙 셀의 UCI를 선택할 수 있다. 앞서 하향 링크 데이터에 대한 HARQ ACK/NACK 피드백을 높은 우선순위로 하고 SR, CQI/CSI 피드백을 낮은 순위로 설정함은 살펴보았다. 즉, 단말은 실시예 1 및 실시예 4에 의해 상기 K개의 UCI 중 서빙 셀의 CIF(Carrier indicator Field)를 기준으로 UCI를 선택할 수 있다. 또한 상기 제어부(710)는 실시예 2 및 실시예 4를 이용하여 상기 K개의 UCI 중 UCI에 설정된 우선 순위를 기준으로 선택할 수 있다. 실시예 1 또는 실시예 2에 적용 시 상기 M이 1이 될 수 있으며, 이 경우 단말은 하나의 UCI를 선택할 수 있다. In more detail, in order to control the transmission of uplink control information in a plurality of serving cells by the UE including Embodiments 1, 2, 3, and 4, the control unit 710 may first transmit the number of UCIs and the number of UCIs that can be simultaneously transmitted. For comparison, if K is greater than M, M is selected among the simultaneous transmission UCI. As described above in the first and second embodiments, the controller 710 selects the UCI of the serving cell having the lowest CIF, or selects the priority set according to the priority of the UCI, for example, the type of the UCI. Can be. Alternatively, the UCI of the serving cell having the highest CIF may be selected. Previously, HARQ ACK / NACK feedback for downlink data has been set to high priority, and SR and CQI / CSI feedback have been set to low priority. That is, the UE may select the UCI based on the Carrier Indicator Field (CIF) of the serving cell among the K UCIs according to the first and fourth embodiments. In addition, the controller 710 may select the K UCI based on the priority set in the UCI using the second and fourth embodiments. When applied to Embodiment 1 or Embodiment 2, M may be 1, in which case, the UE may select one UCI.
또한, 서빙 셀이 다수의 서빙 셀 그룹으로 나뉘어진 경우, 상기 제어부(710)는 각 서빙 셀 그룹의 상향 링크 제어 정보가 전송되는 서빙 셀들의 CIF를 기준으로 선택할 수 있다.In addition, when the serving cell is divided into a plurality of serving cell groups, the controller 710 may select based on the CIF of the serving cells in which uplink control information of each serving cell group is transmitted.
보다 상세히, 살펴볼 때, 상기 서빙 셀은 둘 이상의 서빙 셀 그룹으로 나뉘어지며, 상기 제어부(710)는 서빙 셀 그룹 별 차등적인 우선 순위를 정의하고, 해당 서빙 셀 그룹 별 우선 순위를 기준으로 선택할 수 있다. 또한, 상기 우선 순위를 정의하기 위하여, 제어부(710)는 상향 링크 제어 정보 전송을 위한 셀 그룹 별 우선 순위를 정의함에 있어서 마스터 셀 그룹의 우선 순위를 세컨더리 셀 그룹의 우선 순위보다 우위에 두는 우선 순위 정의가 되도록 구현할 수 있다. 이는 셀 그룹 자체에 우선 순위를 두는 것으로 셀 그룹별로 CIF를 독립적으로 설정하는 경우, 예를 들어 마스터 셀 그룹을 구성하는 CC들에 대해 차례로 0, 1, 2, ...를 CIF로 설정하고, 세컨더리 셀 그룹을 구성하는 CC들에 대해서도 차례로 0, 1, 2, ...로 CIF를 설정하는 경우에 적용할 수 있다.In more detail, the serving cell is divided into two or more serving cell groups, and the control unit 710 may define differential priorities for each serving cell group, and select the serving cells based on the priority of each serving cell group. . In addition, in order to define the priority, the control unit 710 prioritizes the priority of the master cell group over the priority of the secondary cell group in defining the priority for each cell group for uplink control information transmission. It can be implemented to be definition. This gives priority to the cell group itself, and when setting CIF independently for each cell group, for example, set 0, 1, 2, ... to CIF for CCs constituting the master cell group, The CCs constituting the secondary cell group may also be applied to the case where the CIF is set to 0, 1, 2, ... in order.
상기 송신부(720)는 상기 선택한 M개의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 기지국으로 전송한다(S530). 이 과정에서 실시예 3을 적용하여 상기 K개의 UCI 중 선택되지 않은 UCI 중에서 동시 UCI 전송 지시가 설정된 UCI를 선택하여 상기 UCI의 서빙 셀의 PUCCH 또는 PUSCH를 통하여 전송할 수 있다. 예를 들어 M이 1이며, 상기 K가 2인 경우, 최하위 CIF 또는 우선 순위가 높은 UCI를 선택하여 PUCCH로 전송하며, 도 3 또는 4와 같이 UCI 동시 전송 지시가 설정된 UCI는 그 서빙 셀의 PUCCH 또는 PUSCH를 통하여 전송할 수 있다. 단말이 기지국으로부터 세컨더리 셀에 대한 UCI 동시 전송 지시자(simultaneous UCI Tx indicator)를 설정기 위해 상기 수신부(730)는 도 3의 RRC 시그널링 방식 또는 도 4의 MAC 시그널링으로 수신할 수 있다. The transmitter 720 transmits the selected M UCIs to a base station through a physical uplink control channel (PUCCH) of each serving cell (S530). In this process, the third embodiment may be applied to select a UCI in which a simultaneous UCI transmission indication is set among UCIs not selected among the K UCIs, and transmit the same through a PUCCH or a PUSCH of a serving cell of the UCI. For example, when M is 1 and K is 2, the lowest CIF or UCI with high priority is selected and transmitted to PUCCH, and UCI with simultaneous UCI transmission indication set as shown in FIG. 3 or 4 is PUCCH of the serving cell. Alternatively, it may be transmitted through the PUSCH. The receiver 730 may receive the RRC signaling method of FIG. 3 or the MAC signaling of FIG. 4 so that the UE sets a simultaneous UCI Tx indicator for the secondary cell from the base station.
도 5의 실시예에서 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수가 된다. 또한 상기 M 값을 단말이 기지국으로부터 수신할 수 있다. 즉, 기지국으로부터 상기 M에 대한 정보를 RRC 또는 MAC 시그널링으로 수신할 수 있다. In the embodiment of FIG. 5, M is a natural number that is less than or equal to the number N of serving cells and is 1 or more. In addition, the terminal may receive the M value from the base station. That is, the information on the M may be received from the base station by RRC or MAC signaling.
또한 상기 제어부(710)는 상기 UCI 중 PUSCH에서 전송하도록 설정된 하나 이상의 UCI는 상기 선택하는 단계에서 제외시킬 수 있다. 이는 PUCCH에서 전송할 필요가 없기 때문이다. 또한 UCI 중 세컨더리의 UCI를 상기 송신부(720)는 단말이 할당된 PUSCH 자원에서 피기 백(piggyback)으로 전송할 수 있다. In addition, the control unit 710 may exclude one or more UCI set to be transmitted in the PUSCH of the UCI in the selecting step. This is because there is no need to transmit on the PUCCH. In addition, the transmitter 720 may transmit the secondary UCI among the UCI to the piggyback on the PUSCH resource allocated to the terminal.
도 8은 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다. 8 is a diagram illustrating a configuration of a base station according to another embodiment.
도 8을 참조하면, 또 다른 실시예에 의한 기지국(800)은 제어부(810)과 송신부(820), 수신부(830)을 포함한다.Referring to FIG. 8, the base station 800 according to another embodiment includes a controller 810, a transmitter 820, and a receiver 830.
제어부(810)는 전술한 본 발명을 수행하기에 필요한 eNB 간 캐리어 병합 및 스몰 셀과의 듀얼 커넥티비티 기반의 캐리어 병합 환경에서 서빙 셀 별 스케줄러가 분산되는 경우, 각각의 서빙 셀 별로 UCI를 독립적으로 전송하는 데에 따른 전반적인 기지국의 동작을 제어한다. 송신부(1020)와 수신부(1030)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다. The controller 810 independently transmits UCI for each serving cell when a scheduler for each serving cell is distributed in an eNB-carrier aggregation between eNBs and a dual connectivity-based carrier aggregation environment for implementing the above-described invention. To control the overall operation of the base station. The transmitter 1020 and the receiver 1030 are used to transmit and receive signals, messages, and data necessary for carrying out the above-described present invention.
기지국의 수신부(830)는 단말로부터 UCI 동시 전송 가능한 수인 M 이하의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 수신한다. 상기 M 이하의 UCI는 단말이 도 5의 과정을 수행하여 선택한 UCI들이다. 기지국의 제어부(810)는 수신한 UCI를 확인한다. 상기 단말은 동시 전송할 UCI의 수 K가 상기 M보다 큰 경우 K 보다 작은 하나 이상의 UCI가 상기 PUCCH를 통하여 전송된 것을 특징으로 하며, 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 경우 단말이 선택한 UCI를 기지국의 수신부(730)가 수신한다. The receiving unit 830 of the base station receives UCI of M or less, which is the number of UCI simultaneous transmissions, from the terminal through the physical uplink control channel (PUCCH) of each serving cell. The UCI below M are UCIs selected by the UE performing the process of FIG. 5. The control unit 810 of the base station checks the received UCI. When the number of simultaneous UCIs K is greater than M, the UE transmits one or more UCIs smaller than K through the PUCCH, wherein M is a natural number equal to or smaller than N and the number of serving cells. In this case, the receiver 730 of the base station receives the UCI selected by the terminal.
한편 기지국의 송신부(820)는 제 3 실시예에서 UCI 동시 전송 지시자를 단말에게 전송할 수 있다. 즉, 송신부(820)는 단말에게 세컨더리 셀에 대한 동시 UCI 전송 지시자를 RRC 또는 MAC 시그널링으로 전송하며, 이의 실시예는 도 3 및 도 4에서 살펴보았다. 제 4실시예의 동시 UCI 전송 수 M 의 전송을 위해 송신부(820)는 단말에게 상기 M에 대한 정보를 RRC 또는 MAC 시그널링으로 전송할 수 있다. 또한 수신부(830)는 상기 UCI 중 세컨더리(Secondary Cell)의 UCI를 상기 단말에게 할당된 PUSCH 자원에서 피기 백(piggyback)으로 수신할 수 있다. Meanwhile, the transmitter 820 of the base station may transmit the UCI simultaneous transmission indicator to the terminal in the third embodiment. That is, the transmitter 820 transmits the simultaneous UCI transmission indicator for the secondary cell to the terminal through RRC or MAC signaling. An embodiment thereof has been described with reference to FIGS. 3 and 4. In order to transmit the number of simultaneous UCI transmissions M according to the fourth embodiment, the transmitter 820 may transmit information about the M to the terminal through RRC or MAC signaling. In addition, the receiver 830 may receive a UCI of a secondary cell among the UCIs as a piggyback on the PUSCH resource allocated to the UE.
본 발명의 실시예는 앞서 실시예 1, 2, 3, 4에서 살펴본 바와 같이 서빙 셀을 선택함에 있어서 낮은 CIF를 우선 선택하거나 혹은 높은 CIF를 선택할 수 있다. According to the embodiment of the present invention, as described in Embodiments 1, 2, 3, and 4, a low CIF may be selected first or a high CIF may be selected in selecting a serving cell.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 03월 28일 한국에 출원한 특허출원번호 제 10-2013-0033867 호 및 2013년 12월 13일 한국에 출원한 특허출원번호 제 10-2013-0155297호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application is related to the patent application No. 10-2013-0033867 filed in Korea on March 28, 2013 and the patent application No. 10-2013-0155297 filed in Korea on December 13, 2013. Priority is claimed under section (a) (35 USC § 119 (a)), all of which is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (20)

  1. 단말이 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 방법에 있어서,In the method for the terminal to control the transmission of the uplink control information in a plurality of serving cells,
    동시 전송할 UCI의 개수 K와 UCI 동시 전송 가능한 개수인 M을 비교하여, 상기 비교 결과 K가 M보다 큰 경우 상기 동시 전송할 UCI 중 M개를 선택하는 단계; 및Comparing the number K of simultaneous UCIs and M, the number of UCI simultaneous transmissions, and selecting M of the simultaneous UCIs when K is greater than M; And
    상기 선택한 M개의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 기지국으로 전송하는 단계를 포함하며, Transmitting the selected M UCIs to a base station through a physical uplink control channel (PUCCH) of each serving cell,
    상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 것을 특징으로 하는 방법. M is less than or equal to the number N of serving cells and is a natural number greater than one.
  2. 제 1항에 있어서,The method of claim 1,
    상기 선택하는 단계는 상기 K개의 UCI 중 서빙 셀의 CIF(Carrier indicator Field)를 기준으로 선택하는 것을 특징으로 하는 방법. The selecting may include selecting based on a carrier indicator field (CIF) of a serving cell among the K UCIs.
  3. 제 1항에 있어서,The method of claim 1,
    상기 서빙 셀은 둘 이상의 서빙 셀 그룹들로 나뉘어지며,The serving cell is divided into two or more serving cell groups,
    상기 선택하는 단계는 둘 이상의 서빙 셀 그룹들의 상향 링크 제어 정보가 전송되는 서빙 셀들의 CIF를 기준으로 선택하거나, 또는The selecting may be performed based on the CIF of the serving cells in which uplink control information of two or more serving cell groups is transmitted, or
    서빙 셀 그룹 별 차등적인 우선 순위를 정의하고 해당 서빙 셀 그룹 별 우선 순위를 기준으로 선택하는 것을 특징으로 하는 방법.A method for defining differential priority for each serving cell group and selecting based on the priority for each serving cell group.
  4. 제 1항에 있어서,The method of claim 1,
    상기 선택하는 단계는 상기 K개의 UCI 중 UCI에 설정된 우선 순위를 기준으로 선택하는 것을 특징으로 하는 방법. The selecting is characterized in that the selection based on the priority set in the UCI of the K UCI.
  5. 제 1항에 있어서,The method of claim 1,
    상기 전송하는 단계는 상기 K개의 UCI 중 선택되지 않은 UCI 중에서 동시 UCI 전송 지시가 설정된 UCI를 선택하여 상기 UCI의 서빙 셀의 PUCCH 또는 PUSCH(Physical Uplink Shared CHannel)를 통하여 전송하는 것을 특징으로 하는 방법. The transmitting may include selecting a UCI in which simultaneous UCI transmission indication is set among UCIs not selected among the K UCIs, and transmitting the same through a PUCCH or a Physical Uplink Shared CHannel (PUSCH) of a serving cell of the UCI.
  6. 제 5항에 있어서,The method of claim 5,
    상기 기지국으로부터 세컨더리 셀에 대한 동시 UCI 전송 지시자를 RRC 또는 MAC 시그널링으로 수신하는 단계를 더 포함하는 방법. Receiving from the base station a simultaneous UCI transmission indicator for a secondary cell by RRC or MAC signaling.
  7. 제 1항에 있어서,The method of claim 1,
    상기 UCI 중 PUSCH에서 전송하도록 설정된 하나 이상의 UCI는 상기 선택하는 단계에서 제외시키는 것을 특징으로 하는 방법. One or more UCIs configured to be transmitted in a PUSCH among the UCIs are excluded from the selecting step.
  8. 제 1항에 있어서,The method of claim 1,
    상기 UCI 중 세컨더리 셀(Secondary Cell)의 UCI를 상기 단말이 할당된 PUSCH 자원에서 피기 백(piggyback)으로 전송하는 것을 특징으로 하는 방법. Method of transmitting the UCI of the secondary cell (Secondary Cell) of the UCI to the piggyback on the PUSCH resource allocated to the terminal.
  9. 기지국이 복수의 서빙 셀에서 상향 링크 제어 정보를 수신하는 방법에 있어서,In the method for the base station to receive the uplink control information in a plurality of serving cells,
    단말로부터 UCI 동시 전송 가능한 개수인 M 이하의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 수신하는 단계; 및Receiving a UCI of less than or equal to the number of UCI simultaneous transmission from the terminal through the PUCCH (Physical Uplink Control CHannel) of each serving cell; And
    상기 UCI를 확인하는 단계를 포함하며, Identifying the UCI,
    상기 단말이 동시 전송할 UCI의 개수 K가 상기 M보다 큰 경우 K 보다 작은 하나 이상의 UCI가 상기 PUCCH를 통하여 전송된 것을 특징으로 하며, 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 것을 특징으로 하는 방법.When the number of UCIs simultaneously transmitted by the UE is greater than M, one or more UCIs smaller than K are transmitted through the PUCCH, wherein M is a natural number equal to or less than N and the number of serving cells. Characterized in that the method.
  10. 제 9항에 있어서,The method of claim 9,
    상기 기지국은 상기 UCI 중 세컨더리 셀(Secondary Cell)의 UCI를 상기 단말에게 할당된 PUSCH 자원에서 피기 백(piggyback)으로 수신하는 것을 특징으로 하는 방법. The base station is characterized in that for receiving the UCI of the secondary cell (Secondary Cell) of the UCI as a piggyback on the PUSCH resource allocated to the terminal.
  11. 기지국으로부터 신호를 수신하는 수신부;Receiving unit for receiving a signal from the base station;
    동시 전송할 UCI의 개수 K와 UCI 동시 전송 가능한 개수인 M을 비교하여, 상기 비교 결과 K가 M보다 큰 경우 상기 동시 전송할 UCI 중 M개를 선택하는 제어부; 및A control unit for comparing the number K of UCIs to be transmitted simultaneously with M, which is the number of UCI simultaneous transmissions, and selecting M of the UCIs to be transmitted simultaneously if K is greater than M; And
    상기 선택한 M개의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 기지국으로 전송하는 송신부를 포함하며, It includes a transmitter for transmitting the selected M UCI to the base station through the PUCCH (Physical Uplink Control CHannel) of each serving cell,
    상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 것을 특징으로 하는 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 단말. The M is a terminal for controlling the transmission of uplink control information in a plurality of serving cells, characterized in that less than or equal to the number of serving cells N is a natural number of one or more.
  12. 제 11항에 있어서,The method of claim 11,
    상기 제어부는 상기 K개의 UCI 중 서빙 셀의 CIF(Carrier indicator Field)를 기준으로 선택하는 것을 특징으로 하는 단말. The control unit is characterized in that for selecting based on the carrier indicator field (CIF) of the serving cell of the K UCI.
  13. 제 11항에 있어서,The method of claim 11,
    상기 서빙 셀은 둘 이상의 서빙 셀 그룹들로 나뉘어지며,The serving cell is divided into two or more serving cell groups,
    상기 제어부는 둘 이상의 서빙 셀 그룹들의 상향 링크 제어 정보가 전송되는 서빙 셀들의 CIF를 기준으로 선택하거나, 또는The controller selects based on the CIF of the serving cells in which uplink control information of two or more serving cell groups is transmitted, or
    상기 제어부는 서빙 셀 그룹 별 차등적인 우선순위를 정의하고, 해당 서빙 셀 그룹 별 우선 순위를 기준으로 선택하는 것을 특징으로 하는 단말.The control unit defines a differential priority for each serving cell group, and selects based on the priority of each serving cell group.
  14. 제 11항에 있어서,The method of claim 11,
    상기 제어부는 상기 K개의 UCI 중 UCI에 설정된 우선 순위를 기준으로 선택하는 것을 특징으로 하는 단말. The control unit is characterized in that for selecting based on the priority set in the UCI among the K UCI.
  15. 제 11항에 있어서,The method of claim 11,
    상기 송신부는 상기 K개의 UCI 중 선택되지 않은 UCI 중에서 동시 UCI 전송 지시가 설정된 UCI를 선택하여 상기 UCI의 서빙 셀의 PUCCH 또는 PUSCH(Physical Uplink Shared CHannel)를 통하여 전송하는 것을 특징으로 하는 단말. The transmitter selects a UCI in which simultaneous UCI transmission indication is set among UCIs not selected among the K UCIs, and transmits it through PUCCH or PUSCH (Physical Uplink Shared CHannel) of the serving cell of the UCI.
  16. 제 15항에 있어서,The method of claim 15,
    상기 수신부는 상기 기지국으로부터 세컨더리 셀에 대한 동시 UCI 전송 지시자를 RRC 또는 MAC 시그널링으로 수신하는 것을 특징으로 하는 단말. The receiving unit is characterized in that for receiving the simultaneous UCI transmission indicator for the secondary cell from the base station by RRC or MAC signaling.
  17. 제 11항에 있어서,The method of claim 11,
    상기 제어부는 상기 UCI 중 PUSCH에서 전송하도록 설정된 하나 이상의 UCI를 상기 선택에서 제외시키는 것을 특징으로 하는 단말.The control unit excludes from the selection one or more UCI configured to transmit in the PUSCH of the UCI.
  18. 제 11항에 있어서,The method of claim 11,
    상기 UCI 중 세컨더리 셀(Secondary Cell)의 UCI를 상기 송신부가 상기 단말에 할당된 PUSCH 자원에서 피기 백(piggyback)으로 전송하는 것을 특징으로 하는 단말.The UE characterized in that the transmitting unit transmits the UCI of the secondary cell (Secondary Cell) of the UCI from the PUSCH resource allocated to the terminal to the piggyback (piggyback).
  19. 단말에게 신호를 전송하는 송신부;Transmitter for transmitting a signal to the terminal;
    단말로부터 UCI 동시 전송 가능한 개수인 M 이하의 UCI를 각 서빙 셀의 PUCCH(Physical Uplink Control CHannel)를 통해 수신하는 수신부; 및Receiving unit for receiving UCI or less of the number of UCI simultaneous transmission from the terminal through the PUCCH (Physical Uplink Control CHannel) of each serving cell; And
    상기 UCI를 확인하는 제어부를 포함하며, It includes a control unit for identifying the UCI,
    상기 단말이 동시 전송할 UCI의 수 K가 상기 M보다 큰 경우 K 보다 작은 하나 이상의 UCI가 상기 PUCCH를 통하여 전송된 것을 특징으로 하며, 상기 M은 서빙 셀의 개수 N보다 작거나 같으며 1 이상인 자연수인 것을 특징으로 하는 복수의 서빙 셀에서 상향 링크 제어 정보를 수신하는 기지국.When the number of UCIs simultaneously transmitted by the UE is greater than M, one or more UCIs smaller than K are transmitted through the PUCCH, wherein M is a natural number equal to or less than N and the number of serving cells. A base station for receiving uplink control information in a plurality of serving cells, characterized in that.
  20. 제 19항에 있어서,The method of claim 19,
    상기 수신부는 상기 UCI 중 세컨더리 셀(Secondary Cell)의 UCI를 상기 단말에게 할당된 PUSCH 자원에서 피기 백(piggyback)으로 수신하는 것을 특징으로 하는 기지국. The receiving unit, the base station, characterized in that for receiving the UCI of the secondary cell (Secondary Cell) of the UCI as a piggyback on the PUSCH resource allocated to the terminal.
PCT/KR2014/002524 2013-03-28 2014-03-25 Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor WO2014157927A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480018997.1A CN105075149B (en) 2013-03-28 2014-03-25 The method and its device of uplink control information transmission are controlled in multiple serving cells
US14/780,176 US9854600B2 (en) 2013-03-28 2014-03-25 Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0033867 2013-03-28
KR20130033867 2013-03-28
KR10-2013-0155297 2013-12-13
KR1020130155297A KR101566943B1 (en) 2013-03-28 2013-12-13 Methods of controlling the transmission of uplink control information in multiple serving cells and apparatuses thereof

Publications (1)

Publication Number Publication Date
WO2014157927A1 true WO2014157927A1 (en) 2014-10-02

Family

ID=51624801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002524 WO2014157927A1 (en) 2013-03-28 2014-03-25 Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2014157927A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108674A1 (en) * 2014-12-31 2016-07-07 엘지전자 주식회사 Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station
WO2016114561A1 (en) * 2015-01-12 2016-07-21 엘지전자 주식회사 Method for operating user equipment in wireless communication system, and device therefor
WO2016114579A1 (en) * 2015-01-16 2016-07-21 Lg Electronics Inc. Method for selecting pucch transmission in a carrier aggregation system and a device therefor
CN107113841A (en) * 2014-12-31 2017-08-29 德克萨斯仪器股份有限公司 Method and apparatus for the uplink control signaling using extensive carrier aggregation
WO2021023037A1 (en) * 2019-08-07 2021-02-11 上海朗桦通信技术有限公司 Method and apparatus used in node for wireless communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100195575A1 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Transmitting uplink control information over a data channel or over a control channel
US20100272019A1 (en) * 2009-04-24 2010-10-28 Samsung Electronics Co., Ltd. Multiplexing large payloads of control information from user equipments
KR20110084964A (en) * 2008-10-20 2011-07-26 인터디지탈 패튼 홀딩스, 인크 Carrier aggregation
US20130039321A1 (en) * 2010-04-22 2013-02-14 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a carrier aggregation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084964A (en) * 2008-10-20 2011-07-26 인터디지탈 패튼 홀딩스, 인크 Carrier aggregation
US20100195575A1 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Transmitting uplink control information over a data channel or over a control channel
US20100272019A1 (en) * 2009-04-24 2010-10-28 Samsung Electronics Co., Ltd. Multiplexing large payloads of control information from user equipments
US20130039321A1 (en) * 2010-04-22 2013-02-14 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a carrier aggregation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Remaining Open issues of Simultaneous transmission of UL Channels/Signals", R1-110165, 3GPP TSG RAN WG1 MEETING #63BIS, 17 January 2011 (2011-01-17), DUBLIN, IRELAND ., Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg1_r11/TSGR1 _63b/Docs> *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10433288B2 (en) 2014-12-31 2019-10-01 Lg Electronics Inc. Uplink control information transmitting method and user equipment, and uplink control information receiving method and base station
WO2016108674A1 (en) * 2014-12-31 2016-07-07 엘지전자 주식회사 Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station
US11818717B2 (en) 2014-12-31 2023-11-14 Texas Instruments Incorporated Method and apparatus for uplink control signaling with massive Carrier Aggregation
CN107113841A (en) * 2014-12-31 2017-08-29 德克萨斯仪器股份有限公司 Method and apparatus for the uplink control signaling using extensive carrier aggregation
US10264560B2 (en) 2014-12-31 2019-04-16 Lg Electronics Inc. Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station
US10462800B2 (en) 2015-01-12 2019-10-29 Lg Electronics Inc. Method whereby user equipment transmits UE capability information in wireless communication system, and device therefor
WO2016114561A1 (en) * 2015-01-12 2016-07-21 엘지전자 주식회사 Method for operating user equipment in wireless communication system, and device therefor
US10448412B2 (en) 2015-01-12 2019-10-15 Lg Electronics Inc. Method whereby user equipment receives downlink control information in wireless communication system, and device therefor
US10433318B2 (en) 2015-01-12 2019-10-01 Lg Electronics Inc. Method for operating user equipment in wireless communication system, and device therefor
US10667276B2 (en) 2015-01-12 2020-05-26 Lg Electronics Inc. Method whereby user equipment transmits UE capability information in wireless communication system, and device therefor
US10674519B2 (en) 2015-01-12 2020-06-02 Lg Electronics Inc. Method for monitoring downlink control information wireless communication system, and device therefor
US10869321B2 (en) 2015-01-12 2020-12-15 Lg Electronics Inc. Method for operating user equipment in wireless communication system, and device therefor
US11805539B2 (en) 2015-01-12 2023-10-31 Lg Electronics Inc. Method for operating user equipment in wireless communication system, and device therefor
WO2016114579A1 (en) * 2015-01-16 2016-07-21 Lg Electronics Inc. Method for selecting pucch transmission in a carrier aggregation system and a device therefor
WO2021023037A1 (en) * 2019-08-07 2021-02-11 上海朗桦通信技术有限公司 Method and apparatus used in node for wireless communication

Similar Documents

Publication Publication Date Title
KR101655699B1 (en) Methods of controlling the transmission of uplink control information in multiple serving cells and apparatuses thereof
WO2018043960A1 (en) Method and device for transmitting or receiving data in next generation wireless access network
KR102306320B1 (en) Methods for transceiving discovery signal and apparatues thereof
WO2014051293A1 (en) Method and apparatus for blind decoding adjustment in downlink control channel
WO2011071329A2 (en) Method and apparatus for reducing inter-cell interference in a wireless communication system
WO2014051333A1 (en) Method and apparatus for supporting a control plane and a user plane in a wireless communication system
WO2018174684A1 (en) Method and apparatus for transmitting sidelink signal in wireless communication system
WO2013069903A1 (en) E-pdcch mapping, and method and apparatus for transmission and reception in wireless communication system
WO2017196106A1 (en) Method for interworking between heterogeneous radio access networks and apparatus therefor
WO2015050339A1 (en) Method for transmitting and receiving downlink control channel, and apparatus therefor
WO2015046830A1 (en) Method for transceiving downlink data channel and apparatus therefor
WO2017034279A1 (en) Method and apparatus for changing base station in wireless communication system
WO2016021969A1 (en) Method and apparatus for supporting amorphous cell in wireless communication system
WO2014182131A1 (en) Method for configuring terminal identifier in wireless communication system supporting dual connectivity and apparatus thereof
WO2014157927A1 (en) Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor
WO2018093180A1 (en) Method and apparatus for transmitting and receiving uplink control data in next generation wireless network
WO2017171355A2 (en) Method and apparatus for acquiring system information
US9832693B2 (en) Method and apparatus for carrier aggregation
WO2019031950A1 (en) Method and device for terminal to set transmit power for plurality of ccs during carrier aggregation in wireless communication system
WO2015046831A1 (en) Method for downlink control channel resource allocation of terminal and apparatus therefor
WO2018131904A1 (en) Method for controlling heterogeneous network handover and apparatus therefor
WO2019027309A1 (en) Method by which terminal simultaneously transmits messages in at least two carriers in wireless communication system supporting device to device communication, and apparatus therefor
WO2018080212A2 (en) Method and device for scheduling uplink control channel in next generation wireless network
WO2016010276A1 (en) Data retransmission processing method and apparatus therefor
WO2016013779A1 (en) Method for receiving scheduling information of unlicensed spectrum cell and device thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018997.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14780176

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC ( EPO FORM 1205A DATED 11/02/2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 14775011

Country of ref document: EP

Kind code of ref document: A1