WO2016108674A1 - Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station - Google Patents

Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station Download PDF

Info

Publication number
WO2016108674A1
WO2016108674A1 PCT/KR2015/014592 KR2015014592W WO2016108674A1 WO 2016108674 A1 WO2016108674 A1 WO 2016108674A1 KR 2015014592 W KR2015014592 W KR 2015014592W WO 2016108674 A1 WO2016108674 A1 WO 2016108674A1
Authority
WO
WIPO (PCT)
Prior art keywords
uci
cell
csi
transmission
pucch
Prior art date
Application number
PCT/KR2015/014592
Other languages
French (fr)
Korean (ko)
Inventor
양석철
안준기
이승민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/540,552 priority Critical patent/US10264560B2/en
Publication of WO2016108674A1 publication Critical patent/WO2016108674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/62Queue scheduling characterised by scheduling criteria
    • H04L47/625Queue scheduling characterised by scheduling criteria for service slots or service orders
    • H04L47/6275Queue scheduling characterised by scheduling criteria for service slots or service orders based on priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/805QOS or priority aware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to a wireless communication system, and to a method and apparatus for transmitting or receiving an uplink signal.
  • M2M smartphone-to-machine communication
  • smart phones and tablet PCs which require high data transmission rates
  • M2M smartphone-to-machine communication
  • the amount of data required to be processed in a cellular network is growing very quickly.
  • carrier aggregation technology, cognitive radio technology, etc. to efficiently use more frequency bands, and increase the data capacity transmitted within a limited frequency Multi-antenna technology, multi-base station cooperation technology, and the like are developing.
  • a typical wireless communication system performs data transmission / reception over one downlink (DL) band and one uplink (UL) band corresponding thereto (frequency division duplex (FDD) mode). Or a predetermined radio frame divided into an uplink time unit and a downlink time unit in a time domain, and perform data transmission / reception through uplink / downlink time units (time division duplex). (for time division duplex, TDD) mode).
  • a base station (BS) and a user equipment (UE) transmit and receive data and / or control information scheduled in a predetermined time unit, for example, a subframe (SF). Data is transmitted and received through the data area set in the uplink / downlink subframe, and control information is transmitted and received through the control area set in the uplink / downlink subframe.
  • the carrier aggregation technique can collect a plurality of uplink / downlink frequency blocks to use a wider frequency band and use a larger uplink / downlink bandwidth, so that a greater amount of signals can be processed simultaneously than when a single carrier is used. .
  • a node is a fixed point capable of transmitting / receiving a radio signal with a UE having one or more antennas.
  • a communication system having a high density of nodes can provide higher performance communication services to the UE by cooperation between nodes.
  • the present invention provides an uplink signal transmission method and user equipment, an uplink signal reception method, and a base station.
  • the user equipment of the present invention When the user equipment of the present invention is configured as a plurality of cell groups, and a plurality of uplink control information (UCIs) to be transmitted in a subframe is generated by the user equipment, the user equipment has the highest priority among the plurality of UCIs. UCI (s) having a priority are transmitted to the plurality of cell groups one by one, and UCI (s) having subordinated priorities are dropped.
  • UCI (s) having a priority are transmitted to the plurality of cell groups one by one, and UCI (s) having subordinated priorities are dropped.
  • a user equipment configured with a plurality of cell groups transmits an uplink signal
  • a plurality of uplink control information configured to be transmitted in subframe n through at least one of the plurality of cell groups.
  • a user equipment including a radio frequency (RF) unit and a processor configured to control the RF unit in transmitting a UL signal by a user equipment configured with a plurality of cell groups
  • the processor is configured to: control the RF unit to receive UCI transmission information for a plurality of uplink control information (UCI) configured to be transmitted in subframe n through at least one of the plurality of cell groups; Based on the UCI transmission information, in the subframe n, the RF unit may be controlled to transmit a first UCI of at least the highest priority and a second UCI of a next higher priority among the plurality of UCIs.
  • UCI uplink control information
  • a plurality of uplink control information configured to be transmitted in subframe n through at least one of the plurality of cell groups.
  • a base station in still another aspect of the present invention, includes a radio frequency (RF) unit and a processor configured to control the RF unit when the user equipment configured with a plurality of cell groups receives an uplink signal.
  • a base station is provided.
  • the processor is configured to: control the RF unit to transmit UCI transmission information for a plurality of uplink control information (UCI) configured to be transmitted in subframe n through at least one of the plurality of cell groups; Based on the UCI transmission information, in the subframe n, the RF unit may be controlled to receive a first UCI of at least the highest priority and a second UCI of a next higher priority among the plurality of UCIs.
  • UCI uplink control information
  • the first UCI when both the first UCI and the second UCI are set in a first cell group, the first UCI is transmitted on the first cell group and the second UCI is the first cell group Can be transmitted on the second cell group.
  • one of the first cell group and the second cell group is a primary cell group having a primary cell
  • the second cell group is the primary cell group without the primary cell. It may be a secondary cell group consisting of one or more secondary cells that do not belong to.
  • information indicating a special secondary cell for transmitting a physical uplink control channel (PUCCH) among the one or more secondary cells belonging to the primary cell group is informed to the user equipment. Can be provided.
  • PUCCH physical uplink control channel
  • the first UCI and the second UCI may be UCI in which simultaneous transmission is not allowed on a single physical uplink channel.
  • the wireless communication signal can be efficiently transmitted / received. Accordingly, the overall throughput of the wireless communication system can be high.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 2 illustrates an example of a downlink (DL) / uplink (UL) slot structure in a wireless communication system.
  • FIG. 3 illustrates a downlink (DL) subframe structure used in a wireless communication system.
  • FIG. 4 illustrates an example of an uplink (UL) subframe structure used in a wireless communication system.
  • 5 is a diagram for describing single carrier communication and multicarrier communication.
  • FIG. 6 illustrates states of cells in a system supporting carrier aggregation.
  • RRP 10 illustrates a subframe configuration of a reserved resource period (RRP).
  • UCI uplink control information
  • 15 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • CDMA may be implemented in a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented in radio technologies such as Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Enhanced Data Rates for GSM Evolution (EDGE) (i.e., GERAN), and the like.
  • GSM Global System for Mobile Communication
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (WiFi), IEEE 802.16 (WiMAX), IEEE802-20, evolved-UTRA (E-UTRA), and the like.
  • IEEE Institute of Electrical and Electronics Engineers
  • WiFi WiFi
  • WiMAX WiMAX
  • IEEE802-20 evolved-UTRA
  • UTRA is part of Universal Mobile Telecommunication System (UMTS)
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • 3GPP LTE adopts OFDMA in downlink (DL) and SC-FDMA in uplink (UL).
  • LTE-advanced (LTE-A) is an evolution of 3GPP LTE. For convenience of explanation, hereinafter, it will be described on the assumption that the present invention is applied to 3GPP LTE / LTE-A.
  • an eNB allocates a downlink / uplink time / frequency resource to a UE, and the UE receives a downlink signal according to the allocation of the eNB and transmits an uplink signal.
  • it can be applied to contention-based communication such as WiFi.
  • an access point (AP) or a control node controlling the access point allocates resources for communication between a UE and the AP, whereas a competition-based communication technique connects to an AP. Communication resources are occupied through contention among multiple UEs that are willing to.
  • CSMA carrier sense multiple access
  • MAC probabilistic media access control
  • the transmitting device determines if another transmission is in progress before attempting to send traffic to the receiving device. In other words, the transmitting device attempts to detect the presence of a carrier from another transmitting device before attempting to transmit. When the carrier is detected, the transmission device waits for transmission to be completed by another transmission device in progress before initiating its transmission.
  • CSMA is a communication technique based on the principle of "sense before transmit” or “listen before talk”.
  • Carrier Sense Multiple Access with Collision Detection (CSMA / CD) and / or Carrier Sense Multiple Access with Collision Avoidance (CSMA / CA) are used as a technique for avoiding collision between transmission devices in a contention-based communication system using CSMA.
  • CSMA / CD is a collision detection technique in a wired LAN environment. First, a PC or a server that wants to communicate in an Ethernet environment checks if a communication occurs on the network, and then another device If you are sending on the network, wait and send data.
  • CSMA / CD monitors the collisions to allow flexible data transmission.
  • a transmission device using CSMA / CD detects data transmission by another transmission device and adjusts its data transmission using a specific rule.
  • CSMA / CA is a media access control protocol specified in the IEEE 802.11 standard.
  • WLAN systems according to the IEEE 802.11 standard use a CA, that is, a collision avoidance method, without using the CSMA / CD used in the IEEE 802.3 standard.
  • the transmitting devices always detect the carrier of the network, and when the network is empty, wait for a certain amount of time according to their location on the list and send the data.
  • Various methods are used to prioritize and reconfigure transmission devices within a list.
  • a collision may occur, in which a collision detection procedure is performed.
  • Transmission devices using CSMA / CA use specific rules to avoid collisions between data transmissions by other transmission devices and their data transmissions.
  • the UE may be fixed or mobile, and various devices which communicate with a base station (BS) to transmit and receive user data and / or various control information belong to the same.
  • BS Base station
  • UE Terminal Equipment
  • MS Mobile Station
  • MT Mobile Terminal
  • UT User Terminal
  • SS Subscribe Station
  • wireless device PDA (Personal Digital Assistant), wireless modem
  • a BS generally refers to a fixed station communicating with the UE and / or another BS, and communicates with the UE and another BS to exchange various data and control information.
  • the BS may be referred to in other terms such as ABS (Advanced Base Station), Node-B (NB), evolved-NodeB (NB), Base Transceiver System (BTS), Access Point, and Processing Server (PS).
  • ABS Advanced Base Station
  • NB Node-B
  • NB evolved-NodeB
  • BTS Base Transceiver System
  • PS Access Point
  • eNB Processing Server
  • a node refers to a fixed point capable of transmitting / receiving a radio signal by communicating with a UE.
  • Various forms of eNBs may be used as nodes regardless of their names.
  • a node may be a BS, an NB, an eNB, a pico-cell eNB (PeNB), a home eNB (HeNB), a relay, a repeater, or the like.
  • the node may not be an eNB.
  • it may be a radio remote head (RRH), a radio remote unit (RRU).
  • RRH, RRU, etc. generally have a power level lower than the power level of the eNB.
  • RRH or RRU, RRH / RRU is generally connected to the eNB by a dedicated line such as an optical cable
  • RRH / RRU and eNB are generally compared to cooperative communication by eNBs connected by a wireless line.
  • cooperative communication can be performed smoothly.
  • At least one antenna is installed at one node.
  • the antenna may mean a physical antenna or may mean an antenna port, a virtual antenna, or an antenna group. Nodes are also called points.
  • a cell refers to a certain geographic area in which one or more nodes provide communication services. Therefore, in the present invention, communication with a specific cell may mean communication with an eNB or a node that provides a communication service to the specific cell.
  • the downlink / uplink signal of a specific cell means a downlink / uplink signal from / to an eNB or a node that provides a communication service to the specific cell.
  • a cell that provides uplink / downlink communication service to a UE is particularly called a serving cell.
  • the channel state / quality of a specific cell means a channel state / quality of a channel or communication link formed between an eNB or a node providing a communication service to the specific cell and a UE.
  • the UE transmits a downlink channel state from a specific node to a CRS in which antenna port (s) of the specific node are transmitted on a Cell-specific Reference Signal (CRS) resource allocated to the specific node. It may be measured using the CSI-RS (s) transmitted on the (s) and / or Channel State Information Reference Signal (CSI-RS) resources.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • the 3GPP LTE / LTE-A system uses the concept of a cell to manage radio resources.
  • Cells associated with radio resources are distinguished from cells in a geographic area.
  • a "cell” in a geographic area may be understood as coverage in which a node can provide services using a carrier, and a "cell” of radio resources is a bandwidth (frequency) that is a frequency range configured by the carrier. bandwidth, BW). Since downlink coverage, which is a range in which a node can transmit valid signals, and uplink coverage, which is a range in which a valid signal is received from a UE, depends on a carrier carrying the signal, the coverage of the node is determined by the radio resources used by the node. It is also associated with the coverage of the "cell”.
  • the term "cell” can sometimes be used to mean coverage of a service by a node, sometimes a radio resource, and sometimes a range within which a signal using the radio resource can reach a valid strength.
  • the "cell” of radio resources is described in more detail later.
  • the 3GPP LTE / LTE-A standard corresponds to downlink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Downlink physical signals are defined.
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels
  • reference signal and synchronization signal Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predetermined special waveform known to the eNB and the UE.
  • a cell specific RS, UE- UE-specific RS, positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals.
  • the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Uplink physical signals are defined. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are the uplink physical channels.
  • a demodulation reference signal (DMRS) for uplink control / data signals and a sounding reference signal (SRS) used for uplink channel measurement are defined.
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a Physical Uplink Control CHannel (PUCCH) / Physical (PUSCH) Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI) / uplink data / random access signals, respectively.
  • DCI Downlink Control Information
  • CFI Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK
  • the PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE is allocated to the PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH.
  • the PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource is referred to below:
  • the expression that the user equipment transmits the PUCCH / PUSCH / PRACH is hereinafter referred to as uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively.
  • PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
  • CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured OFDM symbol / subcarrier / RE to CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier / subcarrier / RE. It is called.
  • an OFDM symbol assigned or configured with a tracking RS (TRS) is called a TRS symbol
  • a subcarrier assigned or configured with a TRS is called a TRS subcarrier
  • an RE assigned or configured with a TRS is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called.
  • An OFDM symbol / subcarrier / RE to which PSS / SSS is assigned or configured is referred to as a PSS / SSS symbol / subcarrier / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, and an antenna configured to transmit CSI-RS, respectively.
  • Port an antenna port configured to transmit TRS.
  • Antenna ports configured to transmit CRSs may be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs may be UE-RS according to the UE-RS ports.
  • the RSs may be distinguished from each other by locations of REs occupied, and antenna ports configured to transmit CSI-RSs may be distinguished from each other by locations of REs occupied by the CSI-RSs according to the CSI-RS ports. Therefore, the term CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • Figure 1 (a) shows a frame structure for frequency division duplex (FDD) used in the 3GPP LTE / LTE-A system
  • Figure 1 (b) is used in the 3GPP LTE / LTE-A system
  • the frame structure for time division duplex (TDD) is shown.
  • a radio frame used in a 3GPP LTE / LTE-A system has a length of 10 ms (307200 T s ) and consists of 10 equally sized subframes (subframes). Numbers may be assigned to 10 subframes in one radio frame.
  • Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
  • the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe for a specific frequency band. In the TDD mode, since downlink transmission and uplink transmission are separated by time, a radio frame includes both a downlink subframe and an uplink subframe for a specific frequency band.
  • Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special (special) subframe.
  • the special subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
  • DwPTS is a time interval reserved for downlink transmission
  • UpPTS is a time interval reserved for uplink transmission.
  • Table 2 illustrates the configuration of a special subframe.
  • FIG. 2 illustrates an example of a downlink (DL) / uplink (UL) slot structure in a wireless communication system.
  • a slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in a time domain and a plurality of resource blocks (RBs) in a frequency domain.
  • An OFDM symbol may mean a symbol period.
  • a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB ⁇ N RB sc subcarriers and N DL / UL symb OFDM symbols.
  • N DL RB represents the number of resource blocks (RBs) in the downlink slot
  • N UL RB represents the number of RBs in the UL slot.
  • N DL RB With N UL RB Depends on the DL transmission bandwidth and the UL transmission bandwidth, respectively.
  • N DL symb represents the number of OFDM symbols in the downlink slot
  • N UL symb represents the number of OFDM symbols in the UL slot.
  • N RB sc represents the number of subcarriers constituting one RB.
  • the OFDM symbol may be called an OFDM symbol, a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the cyclic prefix (CP). For example, in case of a normal CP, one slot includes 7 OFDM symbols, whereas in case of an extended CP, one slot includes 6 OFDM symbols.
  • FIG. 2 illustrates a subframe in which one slot is composed of seven OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having different numbers of OFDM symbols in the same manner. Referring to FIG.
  • each OFDM symbol includes N DL / UL RB ⁇ N RB sc subcarriers in the frequency domain.
  • the type of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard band or direct current (DC) components.
  • the DC component is mapped to a carrier frequency f 0 during an OFDM signal generation process or a frequency upconversion process.
  • the carrier frequency is also called a center frequency ( f c ).
  • One RB is defined as N DL / UL symb (e.g. 7) consecutive OFDM symbols in the time domain and is defined by N RB sc (e.g. 12) consecutive subcarriers in the frequency domain. Is defined.
  • N DL / UL symb e.g. 7
  • N RB sc e.g. 12
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is composed of N DL / UL symb ⁇ N RB sc resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair ( k , 1 ) in one slot.
  • k is an index given from 0 to N DL / UL RB ⁇ N RB sc ⁇ 1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb ⁇ 1 in the time domain.
  • one RB is mapped to one physical resource block (PRB) and one virtual resource block (VRB), respectively.
  • the PRB is defined as N DL / UL symb contiguous OFDM symbols (e.g. 7) or SC-FDM symbols in the time domain and N RB sc contiguous (e.g. 12) in the frequency domain Is defined by subcarriers. Therefore, one PRB is composed of N DL / UL symb ⁇ N RB sc resource elements.
  • Two RBs each occupied by N RB sc consecutive subcarriers in one subframe and one in each of two slots of the subframe, are referred to as a PRB pair.
  • Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
  • the UE When the UE is powered on or wants to access a new cell, the UE acquires time and frequency synchronization with the cell and detects a cell's physical layer cell identity N cell ID . Perform an initial cell search procedure. To this end, the UE receives a synchronization signal from the eNB, for example, a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) to synchronize with the eNB, and synchronizes with the eNB. , ID) and the like can be obtained.
  • a synchronization signal from the eNB for example, a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) to synchronize with the eNB, and synchronizes with the eNB.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the UE detects the PSS to know that the corresponding subframe is one of the subframe 0 and the subframe 5, but the subframe is specifically the subframe 0 and the subframe 5. I can not know. Therefore, the UE does not recognize the boundary of the radio frame only by the PSS. That is, frame synchronization cannot be obtained only by PSS.
  • the UE detects the boundary of the radio frame by detecting the SSS transmitted twice in one radio frame but transmitted as different sequences.
  • the UE which has performed a cell discovery process using PSS / SSS to determine the time and frequency parameters required to perform demodulation of DL signals and transmission of UL signals at an accurate time point, can also be determined from the eNB. System information necessary for system configuration must be obtained to communicate with the eNB.
  • System information is configured by a Master Information Block (MIB) and System Information Blocks (SIBs).
  • Each system information block includes a collection of functionally related parameters, and includes a master information block (MIB), a system information block type 1 (SIB1), and a system information block type according to the included parameters. 2 (System Information Block Type 2, SIB2) and SIB3 to SIB8.
  • the MIB contains the most frequently transmitted parameters that are necessary for the UE to have initial access to the eNB's network.
  • SIB1 includes not only information on time domain scheduling of other SIBs, but also parameters necessary for determining whether a specific cell is a cell suitable for cell selection.
  • the UE may receive the MIB via a broadcast channel (eg, PBCH).
  • PBCH broadcast channel
  • the MIB includes a downlink system bandwidth (dl-Bandwidth, DL BW), a PHICH configuration, and a system frame number (SFN). Therefore, the UE can know the information on the DL BW, SFN, PHICH configuration explicitly by receiving the PBCH.
  • the information that the UE implicitly (implicit) through the reception of the PBCH includes the number of transmit antenna ports of the eNB.
  • Information about the number of transmit antennas of the eNB is implicitly signaled by masking (eg, XOR operation) a sequence corresponding to the number of transmit antennas to a 16-bit cyclic redundancy check (CRC) used for error detection of the PBCH.
  • masking eg, XOR operation
  • CRC cyclic redundancy check
  • the DL carrier frequency and the corresponding system bandwidth may be obtained by the PBCH, and the UL carrier frequency and the corresponding system bandwidth may be obtained through the system information that is the DL signal.
  • the UE may acquire a system information block type 2 (SystemInformationBlockType2, SIB2) to determine the entire UL system band that can be used for UL transmission through UL-carrier frequency and UL-bandwidth information in the SIB2. .
  • SystemInformationBlockType2, SIB2 SystemInformationBlockType2
  • the UE may perform a random access procedure to complete the access to the eNB. To this end, the UE may transmit a preamble through a physical random access channel (PRACH) and receive a response message for the preamble through a PDCCH and a PDSCH.
  • PRACH physical random access channel
  • additional PRACH transmission and contention resolution procedure such as PDCCH and PDSCH corresponding to the PDCCH may be performed.
  • the UE may perform PDCCH / PDSCH reception and PUSCH / PUCCH transmission as a general uplink / downlink signal transmission procedure.
  • the random access process is also referred to as a random access channel (RACH) process.
  • the random access procedure is used for initial access, the random access procedure is used for various purposes such as initial access, uplink synchronization coordination, resource allocation, handover, and the like.
  • the random access process is classified into a contention-based process and a dedicated (ie non-competition-based) process.
  • the contention-based random access procedure is generally used, including initial access, and the dedicated random access procedure is limited to handover and the like.
  • the UE randomly selects a RACH preamble sequence. Therefore, it is possible for a plurality of UEs to transmit the same RACH preamble sequence at the same time, which requires a contention cancellation process later.
  • the dedicated random access process the UE uses the RACH preamble sequence that is allocated only to the UE by the eNB. Therefore, the random access procedure can be performed without collision with another UE.
  • the contention-based random access procedure includes four steps.
  • the messages transmitted in steps 1 to 4 may be referred to as messages 1 to 4 (Msg1 to Msg4), respectively.
  • Step 1 RACH preamble (via PRACH) (UE to eNB)
  • Step 2 random access response (RAR) (via PDCCH and PDSCH) (eNB to UE)
  • Step 3 Layer 2 / Layer 3 message (via PUSCH) (UE to eNB)
  • Step 4 Contention Resolution Message (eNB to UE)
  • the dedicated random access procedure includes three steps.
  • the messages transmitted in steps 0 to 2 may be referred to as messages 0 to 2 (Msg0 to Msg2), respectively.
  • uplink transmission (ie, step 3) corresponding to the RAR may also be performed as part of the random access procedure.
  • the dedicated random access procedure may be triggered using a PDCCH (hereinafter, referred to as a PDCCH order) for the purpose of instructing the base station to transmit the RACH preamble.
  • a PDCCH hereinafter, referred to as a PDCCH order
  • Step 0 RACH preamble allocation via dedicated signaling (eNB to UE)
  • Step 1 RACH preamble (via PRACH) (UE to eNB)
  • Step 2 Random Access Response (RAR) (via PDCCH and PDSCH) (eNB to UE)
  • RAR Random Access Response
  • the UE After transmitting the RACH preamble, the UE attempts to receive a random access response (RAR) within a pre-set time window. Specifically, the UE attempts to detect a PDCCH (hereinafter, RA-RNTI PDCCH) having a random access RNTI (RA-RNTI) (eg, CRC in the PDCCH is masked to RA-RNTI) within a time window. Upon detecting the RA-RNTI PDCCH, the UE checks whether there is a RAR for itself in the PDSCH corresponding to the RA-RNTI PDCCH.
  • RA-RNTI PDCCH a PDCCH having a random access RNTI (RA-RNTI) (eg, CRC in the PDCCH is masked to RA-RNTI)
  • RA-RNTI PDCCH a random access RNTI
  • the RAR includes timing advance (TA) information indicating timing offset information for UL synchronization, UL resource allocation information (UL grant information), a temporary identifier (eg, temporary cell-RNTI, TC-RNTI), and the like.
  • the UE may perform UL transmission (eg, Msg3) according to the resource allocation information and the TA value in the RAR.
  • HARQ is applied to UL transmission corresponding to the RAR. Therefore, after transmitting the Msg3, the UE may receive reception response information (eg, PHICH) corresponding to the Msg3.
  • FIG. 3 illustrates a downlink subframe structure used in a wireless communication system.
  • a DL subframe is divided into a control region and a data region in the time domain.
  • up to three (or four) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
  • the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHannel (PDSCH) is allocated.
  • PDSCH region a resource region available for PDSCH transmission in a DL subframe.
  • Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a Hybrid Automatic Repeat Request (HARQ) ACK / NACK (acknowledgment / negative-acknowledgment) signal as a response to the UL transmission.
  • HARQ Hybrid Automatic Repeat Request
  • DCI downlink control information
  • DCI includes resource allocation information and other control information for the UE or UE group.
  • the transmission format and resource allocation information of a downlink shared channel (DL-SCH) may also be called DL scheduling information or a DL grant, and may be referred to as an uplink shared channel (UL-SCH).
  • the transmission format and resource allocation information is also called UL scheduling information or UL grant.
  • the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
  • formats 0 and 4 for uplink and formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, and 3A are defined for uplink.
  • Hopping flag, RB allocation, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DMRS Control information such as shift demodulation reference signal (UL), UL index, CQI request, DL assignment index, HARQ process number, transmitted precoding matrix indicator (TPMI), and precoding matrix indicator (PMI) information
  • UL shift demodulation reference signal
  • UL index UL index
  • CQI request UL assignment index
  • HARQ process number transmitted precoding matrix indicator
  • PMI precoding matrix indicator
  • a plurality of PDCCHs may be transmitted in the control region.
  • the UE may monitor the plurality of PDCCHs.
  • the eNB determines the DCI format according to the DCI to be transmitted to the UE, and adds a cyclic redundancy check (CRC) to the DCI.
  • CRC cyclic redundancy check
  • the CRC is masked (or scrambled) with an identifier (eg, a radio network temporary identifier (RNTI)) depending on the owner or purpose of use of the PDCCH.
  • an identifier eg, cell-RNTI (C-RNTI) of the UE may be masked to the CRC.
  • a paging identifier eg, paging-RNTI (P-RNTI)
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
  • Four QPSK symbols are mapped to each REG.
  • the resource element RE occupied by the reference signal RS is not included in the REG. Thus, the number of REGs within a given OFDM symbol depends on the presence of RS.
  • the REG concept is also used for other downlink control channels (ie, PCFICH and PHICH).
  • the DCI format and the number of DCI bits are determined according to the number of CCEs.
  • CCEs are numbered and used consecutively, and to simplify the decoding process, a PDCCH having a format consisting of n CCEs can be started only in a CCE having a number corresponding to a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the network or eNB according to the channel state. For example, in case of PDCCH for a UE having a good downlink channel (eg, adjacent to an eNB), one CCE may be sufficient. However, in case of PDCCH for a UE having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
  • the power level of the PDCCH may be adjusted according to the channel state.
  • a set of CCEs in which a PDCCH can be located for each UE is defined.
  • the collection of CCEs in which a UE can discover its PDCCH is referred to as a PDCCH search space, simply a search space (SS).
  • An individual resource to which a PDCCH can be transmitted in a search space is called a PDCCH candidate.
  • the collection of PDCCH candidates that the UE will monitor is defined as a search space.
  • the search space may have a different size, and a dedicated search space and a common search space are defined.
  • the dedicated search space is a UE-specific search space (USS) and is configured for each individual UE.
  • a common search space (CSS) is set for a plurality of UEs.
  • the eNB sends the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the UE monitors the search space to find the PDCCH (DCI).
  • monitoring means attempting decoding of each PDCCH in a corresponding search space according to all monitored DCI formats.
  • the UE may detect its own PDCCH by monitoring the plurality of PDCCHs. Basically, since the UE does not know where its PDCCH is transmitted, every subframe attempts to decode the PDCCH until all PDCCHs of the corresponding DCI format have detected a PDCCH having their own identifiers. It is called blind detection (blind decoding).
  • a specific PDCCH is masked with a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, frequency location) of "B” and a transmission of "C".
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identity
  • format information eg, transport block size, modulation scheme, coding information, etc.
  • a PDCCH may be additionally allocated in a data region (eg, a resource region for PDSCH).
  • the PDCCH allocated to the data region is called an EPDCCH.
  • the EPDCCH carries a DCI.
  • the EPDCCH may carry downlink scheduling information and uplink scheduling information.
  • the UE may receive an EPDCCH and receive data / control information through a PDSCH corresponding to the EPDCCH.
  • the UE may receive the EPDCCH and transmit data / control information through a PUSCH corresponding to the EPDCCH.
  • the EPDCCH / PDSCH may be allocated from the first OFDM symbol of the subframe according to the cell type.
  • the PDCCH includes both PDCCH and EPDCCH.
  • FIG. 4 illustrates an example of an uplink (UL) subframe structure used in a wireless communication system.
  • the UL subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or several physical uplink shared channels may be allocated to a data region of a UL subframe to carry user data.
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion.
  • the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used to request an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ-ACK A response to a PDCCH and / or a response to a downlink data packet (eg, codeword) on a PDSCH. This indicates whether the PDCCH or PDSCH is successfully received.
  • HARQ-ACK 1 bit is transmitted in response to a single downlink codeword
  • HARQ-ACK 2 bits are transmitted in response to two downlink codewords.
  • HARQ-ACK for a PDCCH or PDSCH received in one subframe on a single carrier may be represented by 1 bit.
  • the UE detects the PDCCH and successfully decodes the PDSCH, it feeds back a bit (eg, 1b) indicating an ACK, and if the UE fails to detect the PDCCH or fails to decode the PDSCH, it feeds back a bit (eg, 0b) indicating a NACK.
  • HARQ-ACK for PDCCH / PDSCHs on multiple carriers or PDCCH / PDSCHs in multiple subframes may be represented by 2 bits.
  • one of the two carriers or two subframes detects the PDCCH and decodes the PDSCH accordingly.
  • a corresponding ACK / NACK bit may be set according to the decoding result of the PDSCH. If the PDCCH is not detected in the other of the two carriers or two subframes, the corresponding HARQ-ACK corresponds to DTX, but since the UE must feed back a 2-bit HARQ-ACK to the eNB, the remaining bits of the 2-bit HARQ-ACK Is set to NACK to feed back to the eNB.
  • HARQ-ACK response includes a positive ACK (simple, ACK), negative ACK (hereinafter, NACK), DTX (Discontinuous Transmission) or NACK / DTX.
  • HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • CSI Channel State Information
  • CQI channel quality information
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • RI rank indication
  • MIMO Multiple Input Multiple Output
  • RI means the number of streams or the number of layers that a UE can receive through the same time-frequency resource.
  • PMI is a value reflecting a space characteristic of a channel and indicates an index of a precoding matrix that a UE prefers for downlink signal transmission based on a metric such as SINR.
  • the CQI is a value indicating the strength of the channel and typically indicates the received SINR that the UE can obtain when the eNB uses PMI.
  • the PUCCH allocated for SR transmission is called SR PUCCH
  • the PUCCH allocated for HARQ-ACK transmission is called ACK / NACK PUCCH
  • the PUCCH allocated for CSI transmission is called CSI PUCCH.
  • FIG. 5 is a diagram for describing single carrier communication and multicarrier communication.
  • FIG. 5 (a) shows a subframe structure of a single carrier
  • FIG. 5 (b) shows a subframe structure of a multicarrier.
  • a general wireless communication system performs data transmission or reception through one DL band and one UL band corresponding thereto (in a frequency division duplex (FDD) mode) or
  • a predetermined radio frame is divided into an uplink time unit and a downlink time unit in a time domain, and data transmission or reception is performed through an uplink / downlink time unit (time division duplex). , TDD) mode).
  • FDD frequency division duplex
  • TDD time division duplex
  • Carrier aggregation performs DL or UL communication by using a plurality of carrier frequencies, and performs DL or UL communication by putting a fundamental frequency band divided into a plurality of orthogonal subcarriers on one carrier frequency. It is distinguished from an orthogonal frequency division multiplexing (OFDM) system.
  • OFDM orthogonal frequency division multiplexing
  • each carrier aggregated by carrier aggregation is called a component carrier (CC).
  • CC component carrier
  • three 20 MHz CCs may be gathered in the UL and the DL to support a 60 MHz bandwidth.
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • a DL / UL CC limited to a specific UE may be referred to as a configured serving UL / DL CC in a specific UE.
  • a "cell" associated with a radio resource is defined as a combination of DL resources and UL resources, that is, a combination of a DL CC and a UL CC.
  • the cell may be configured with DL resources alone or with a combination of DL resources and UL resources.
  • the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is indicated by system information.
  • SIB2 System Information Block Type 2
  • the carrier frequency means a center frequency of each cell or CC.
  • a cell operating on a primary frequency is referred to as a primary cell (Pcell) or a PCC
  • a cell operating on a secondary frequency (or SCC) is referred to as a secondary cell.
  • cell, Scell) or SCC The carrier corresponding to the Pcell in downlink is called a DL primary CC (DL PCC), and the carrier corresponding to the Pcell in the uplink is called a UL primary CC (DL PCC).
  • Scell refers to a cell that can be configured after RRC (Radio Resource Control) connection establishment is made and can be used for providing additional radio resources.
  • RRC Radio Resource Control
  • the Scell may form a set of serving cells for the UE with the Pcell.
  • the carrier corresponding to the Scell in downlink is called a DL secondary CC (DL SCC)
  • the carrier corresponding to the Scell in the uplink is called a UL secondary CC (UL SCC).
  • DL SCC DL secondary CC
  • UL SCC UL secondary CC
  • the eNB may be used for communication with the UE by activating some or all of the serving cells configured in the UE or by deactivating some.
  • the eNB may change a cell that is activated / deactivated and may change the number of cells that are activated / deactivated.
  • a cell that is not deactivated may be referred to as a Pcell unless a global reset of cell allocation for the UE is performed.
  • a cell that an eNB can freely activate / deactivate may be referred to as an Scell.
  • Pcell and Scell may be classified based on control information. For example, specific control information may be set to be transmitted / received only through a specific cell. This specific cell may be referred to as a Pcell, and the remaining cell (s) may be referred to as an Scell.
  • FIG. 6 illustrates states of cells in a system supporting carrier aggregation.
  • a configured cell is a cell in which carrier aggregation is performed for a UE based on a measurement report from another eNB or a UE among cells of an eNB, and is configured for each UE.
  • the cell configured for the UE may be referred to as a serving cell from the viewpoint of the UE.
  • resources for ACK / NACK transmission for PDSCH transmission are reserved in advance.
  • the activated cell is a cell configured to be actually used for PDSCH / PUSCH transmission among cells configured in the UE, and is performed on a cell in which CSI reporting and SRS transmission are activated for PDSCH / PUSCH transmission.
  • the deactivated cell is a cell configured not to be used for PDSCH / PUSCH transmission by the operation of a eNB or a timer.
  • CSI reporting and SRS transmission are also stopped in the cell.
  • CI means a serving cell index
  • the serving cell index is a short identity used to identify the serving cell, for example, one of an integer from 0 to 'the maximum number of carrier frequencies that can be set to the UE at one time-1'. May be assigned to one serving cell as the serving cell index. That is, the serving cell index may be referred to as a logical index used to identify a specific serving cell only among cells allocated to the UE, rather than a physical index used to identify a specific carrier frequency among all carrier frequencies.
  • the term cell used in carrier aggregation is distinguished from the term cell which refers to a certain geographic area where communication service is provided by one eNB or one antenna group.
  • a cell referred to in the present invention refers to a cell of carrier aggregation which is a combination of a UL CC and a DL CC.
  • the PDCCH carrying the UL / DL grant and the corresponding PUSCH / PDSCH are transmitted in the same cell.
  • the PDCCH for the DL grant for the PDSCH to be transmitted in a specific DL CC is transmitted in the specific CC
  • the PDSCH for the UL grant for the PUSCH to be transmitted in the specific UL CC is determined by the specific CC. It is transmitted on the DL CC linked with the UL CC.
  • the PDCCH for the DL grant for the PDSCH to be transmitted in a specific CC is transmitted in the specific CC
  • the PDSCH for the UL grant for the PUSCH to be transmitted in the specific CC is transmitted in the specific CC.
  • UL / DL grant can be allowed to be transmitted in a serving cell having a good channel condition.
  • cross-carrier scheduling when a cell carrying UL / DL grant, which is scheduling information, and a cell in which UL / DL transmission corresponding to a UL / DL grant is performed, this is called cross-carrier scheduling.
  • a case where a cell is scheduled from a corresponding cell itself, that is, itself and a case where a cell is scheduled from another cell is called self-CC scheduling and cross-CC scheduling, respectively.
  • 3GPP LTE / LTE-A may support a merge of multiple CCs and a cross carrier-scheduling operation based on the same for improving data rate and stable control signaling.
  • cross-carrier scheduling When cross-carrier scheduling (or cross-CC scheduling) is applied, downlink allocation for DL CC B or DL CC C, that is, PDCCH carrying DL grant is transmitted to DL CC A, and the corresponding PDSCH is DL CC B or DL CC C may be transmitted.
  • a carrier indicator field For cross-CC scheduling, a carrier indicator field (CIF) may be introduced.
  • the presence or absence of the CIF in the PDCCH may be set in a semi-static and UE-specific (or UE group-specific) manner by higher layer signaling (eg, RRC signaling).
  • RRC signaling higher layer signaling
  • PDCCH on DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on one linked UL CC
  • PDCCH on DL CC can allocate PDSCH / PUSCH resource on a specific DL / UL CC among a plurality of merged DL / UL CCs using CIF
  • One or more scheduling cells may be configured for one UE, and one of these scheduling cells may be a PCC dedicated to specific DL control signaling and UL PUCCH transmission.
  • the scheduling cell set may be set in a UE-specific, UE group-specific or cell-specific manner. In the case of a scheduling cell, it may be configured to at least schedule itself. In other words, the scheduling cell may be its own scheduled cell.
  • a cell carrying a PDCCH is called a scheduling cell, a monitoring cell, or an MCC
  • a cell carrying a PDSCH / PUSCH scheduled by the PDCCH is called a scheduled cell.
  • the scheduling cell is part of all carrier aggregated cells, and includes a DL CC, and the UE detects / decodes a PDCCH only on the corresponding DL CC.
  • PDSCH / PUSCH of a scheduling cell or a scheduled cell refers to a PDSCH / PUSCH configured to be transmitted on a corresponding cell
  • PHICH of a scheduling cell or a scheduled cell refers to an ACK / NACK for a PUSCH transmitted on a corresponding cell. It means PHICH to carry.
  • a time delay occurs until data retransmission is performed.
  • This time delay occurs because of the time required for channel propagation delay, data decoding / encoding. Therefore, when new data is sent after the current HARQ process is completed, a space delay occurs in the data transmission due to a time delay. Therefore, a plurality of independent HARQ processes (HARQ process, HARQ) is used to prevent the occurrence of a gap in the data transmission during the time delay period. For example, when the interval between initial transmission and retransmission is seven subframes, seven independent HARQ processes may be operated to transmit data without a space.
  • Each HARQ process is associated with a HARQ buffer of a medium access control (MAC) layer.
  • MAC medium access control
  • Each HARQ process manages state variables related to the number of transmissions of the MAC Physical Data Block (PDU) in the buffer, HARQ feedback for the MAC PDU in the buffer, the current redundancy version, and the like.
  • PDU Physical Data Block
  • the transmission timing (or HARQ timing) of ACK / NACK for DL transmission will be described.
  • the UE may receive a PDCCH indicating one or more PDSCH or SPS releases on M DL subframes (SF) (M ⁇ 1).
  • Each PDSCH signal may include one or more (eg, two) transport blocks (TBs) according to a transmission mode. If there are PDSCH signals and / or SPS release PDCCH signals in the M DL subframes, the UE goes through a process for ACK / NACK transmission (eg, ACK / NACK (payload) generation, ACK / NACK resource allocation, etc.) ACK / NACK is transmitted through one UL subframe corresponding to M DL subframes.
  • ACK / NACK is transmitted through one UL subframe corresponding to M DL subframes.
  • the ACK / NACK includes reception response information for the PDSCH signal and / or the SPS release PDCCH signal.
  • the ACK / NACK is basically transmitted through the PUCCH, but is transmitted through the PUSCH when there is a PUSCH assignment at the time of the ACK / NACK transmission.
  • the PUCCH is transmitted only on the Pcell, and the PUSCH is transmitted on the scheduled CC.
  • Various PUCCH formats may be used for ACK / NACK transmission.
  • Various methods such as ACK / NACK bundling and ACK / NACK channel selection (CHsel) may be used to reduce the number of ACK / NACK bits.
  • M 1 in FDD and M is an integer greater than or equal to 1 in TDD.
  • DASI Downlink Association Set Index
  • the UE When operating in the TDD scheme, the UE should transmit ACK / NACK signals for one or more DL transmissions (eg, PDSCHs) received through M DL subframes (SFs) through one UL SF.
  • DL transmissions eg, PDSCHs
  • M DL subframes SFs
  • a method of transmitting ACK / NACK for a plurality of DL SFs through one UL SF is as follows.
  • ACK / NACK bundling ACK / NACK bits for a plurality of data units (e.g. PDSCH, semi-persistent scheduling (SPS) release PDCCH, etc.) are logical operations (e.g., Logical-AND operation). For example, if all data units are successfully decoded, the receiving end (eg, UE) sends an ACK signal. On the other hand, if decoding (or detection) of any of the data units fails, the UE transmits a NACK signal or nothing.
  • data units e.g. PDSCH, semi-persistent scheduling (SPS) release PDCCH, etc.
  • SPS semi-persistent scheduling
  • channel selection (CHsel): A UE receiving a plurality of data units (eg, PDSCH, SPS release PDCCH, etc.) occupies a plurality of PUCCH resources for ACK / NACK transmission.
  • the ACK / NACK response for the plurality of data units is identified by the combination of the PUCCH resource used for the actual ACK / NACK transmission and the transmitted ACK / NACK content (eg, bit value, QPSK symbol value).
  • the channel selection method is also referred to as an ACK / NACK selection method and a PUCCH selection method.
  • 3GPP LTE / LTE-A system there are two transmission schemes, an open-loop MIMO operated without feedback of channel information and a closed-loop MIMO using feedback of channel information.
  • the transmitter and the receiver perform beamforming based on channel information, that is, CSI, to obtain multiplexing gains of the MIMO antenna, respectively.
  • the time and frequency resources that can be used by the UE to report CSI are controlled by the eNB. For example, the eNB instructs the UE to feed back the downlink CSI by allocating a PUCCH or a PUSCH to obtain the downlink CSI.
  • Periodic CSI reporting is set up periodically or aperiodically.
  • Periodic CSI reporting is a special case (e.g., when the UE is not configured for simultaneous PUSCH and PUCCH transmission and the PUCCH transmission time collides with a subframe with PUSCH allocation). If not, it is sent by the UE on PUCCH. Since the RI of the CSI is determined to be dominant by long term fading, it is fed back from the UE to the eNB in a longer period than the PMI and the CQI. On the other hand, the aperiodic CSI report is transmitted on the PUSCH.
  • Aperiodic CSI reporting is triggered by a CSI request field included in DCI (eg, DCI of DCI format 0 or 4) (hereinafter, referred to as uplink DCI format) for scheduling of uplink data. do.
  • DCI eg, DCI of DCI format 0 or 4
  • serving cell c a specific serving cell
  • a UE that has decoded an uplink DCI format or random access response grant for a specific serving cell (hereinafter, serving cell c ) in subframe n is configured such that the corresponding CSI request field is triggered to trigger CSI reporting.
  • serving cell c serving cell
  • aperiodic CSI reporting is performed using the PUSCH in subframe n + k on the serving cell c .
  • the PUSCH is a PUSCH transmitted in subframe n + k in accordance with the UL DCI format decoded in sub frame n.
  • k 4.
  • k is given by the following table.
  • TDD UL / DLConfiguration subframe number n 0 One 2 3 4 5 6 7 8 9 0 4 6 4 6 One 6 4 6 4 2 4 4 3 4 4 4 4 4 5 4 6 7 7 7 5
  • a UE having a TDD UL / DL configuration of 6 detects an uplink DCI format for serving cell c in subframe 9, the UE detects subframe 9 + 5, that is, the uplink DCI format is detected.
  • subframe 4 of the radio frame following the radio frame including subframe 9 aperiodic CSI reporting triggered by the CSI request field in the detected uplink DCI format is performed on the PUSCH of the serving cell c .
  • the length of the CSI request field is 1 bit or 2 bits. If the CSI request field is 1 bit, the CSI request field set to '1' triggers aperiodic CSI reporting for the serving cell c . If the CSI request field is 2 bits and a UE configured with one or more Scells is set to transmission mode 1-9 for all cells, aperiodic CSI reporting corresponding to the values in the following table is triggered.
  • the following table shows a CSI request field for a PDCCH / EPDCCH with an uplink DCI format in a UE specific search space.
  • serving cell (s) aperiodic CSI reporting is triggered by CSI request field '10' and / or CSI request field '11' may be set by a higher layer signal (e.g., RRC signal).
  • the upper layer signal includes an 8-bit bitmap indicating a cell (s) to be triggered by the CSI request field '10' and an 8-bit bitmap indicating a cell (s) to be triggered by the CSI request field '11'. It may include. In each bitmap, bit 0, which is the lowest bit, to bit 7, which is the highest bit, correspond one-to-one to cells with a serving cell index of 0 (that is, Pcell) to cells with a serving cell index of 7.
  • a cell corresponding to a bit set to 1 in the bitmap for the CSI request field '10' means a cell in which an aperiodic CSI report is triggered by the CSI request field value '10', and a cell corresponding to a bit set to 0 Denotes a cell in which aperiodic CSI reporting is not triggered by the CSI request field value '10'.
  • a cell corresponding to a bit set to 1 in the bitmap for the CSI request field '11' means a cell in which an aperiodic CSI report is triggered by the CSI request field value '11', and a cell corresponding to a bit set to 0 Denotes a cell in which aperiodic CSI reporting is not triggered by the CSI request field value '11'.
  • CoMP technology involves a plurality of nodes.
  • a new transmission mode associated with CoMP technology may be defined.
  • the maximum number of CSI resource settings that can be used for the UE is more than one.
  • the UE When the UE is set to a mode that can be set with one or more CSI-RS resource settings, that is, when the UE is set to CoMP mode, the UE can provide information about one or more CSI-RS resource settings. A higher layer signal may be received.
  • CA carrier aggregation
  • the UE transmits / receives a signal to / from one node on a specific serving cell. That is, in the existing LTE / LTE-A system, since only one radio link exists on one serving cell, only one CSI for one serving cell could be calculated by the UE.
  • the downlink channel state may be different for each node or a combination of nodes.
  • CSI is associated with CSI-RS resources because CSI-RS resource configuration may vary depending on the node or combination of nodes. In addition, depending on the interference environment between the nodes participating in the CoMP channel state may be different.
  • the maximum number of CSIs that can be calculated for each serving cell of the UE may be an integer greater than 1 since it may be measured by the UE for each node or a combination of nodes and CSI may exist for each interference environment. How the CSI should report the CSI in order for the UE to obtain the CSI may be set by the upper layer. If CoMP is set, not only one CSI can be calculated by the UE but also a plurality of CSIs. Therefore, if the UE is set to CoMP mode, CSI reporting for one or more CSI can be configured for each serving cell of the UE for periodic or aperiodic CSI reporting.
  • CSI is associated with a CSI-RS resource used for channel measurement and a resource used for interference measurement (hereinafter, referred to as an interference measurement (IM) resource).
  • IM interference measurement
  • the association of one CSI-RS resource for signal measurement and one IM resource for interference measurement is called a CSI process. That is, the CSI process may be associated with one CSI-RS resource and IM resource (IM resource, IMR).
  • the eNB to which the UE is connected or the eNB (hereinafter, the serving eNB) managing the node of the cell where the UE is located transmits no signal on the IM resource.
  • the IM resource may be configured for the UE in the same manner as the zero-power CSI-RS.
  • the eNB may inform the UE of the resource elements used by the UE for interference measurement using a 16-bit bitmap and CSI-RS subframe configuration indicating the zero power CSI-RS pattern described above.
  • the UE measures the interference in the IM resource and assumes that the interference is an interference in the CSI reference resource that is the basis of the CSI measurement, and calculates the CSI. More specifically, the UE may perform channel measurement based on CSI-RS or CRS and perform interference measurement based on IM resources, thereby obtaining CSI based on the channel measurement and the interference measurement.
  • one CSI reported by the UE may correspond to one CSI process.
  • Each CSI process may have an independent CSI feedback setting.
  • Independent feedback setting means a feedback mode, a feedback period, and a feedback offset.
  • the feedback offset corresponds to a starting subframe with feedback among the subframes in the radio frame.
  • the feedback mode depends on whether the CQI included in the fed back CSI among the RI, CQI, PMI, and TPMI is the CQI for the wideband, the CQI for the subband, or the CQI for the subband selected by the UE.
  • the CSI may be defined differently depending on whether the CSI includes a PMI, whether a CSI includes a single PMI, or a plurality of PMIs.
  • the CSI request field is 2 bits and the UE is set to a mode in which one or more CSI processes can be configured for at least one cell (eg, transmission mode 10), then aperiodic CSI reporting corresponding to the values in the following table is triggered.
  • the following table shows a CSI request field for a PDCCH / EPDCCH with an uplink DCI format in a UE specific search space.
  • Aperiodic CSI report is triggered for a set of CSI process (es) configured by higher layers for serving cell c '10' Aperiodic CSI report is triggered for a 1 st set of CSI process (es) configured by higher layers '11' Aperiodic CSI report is triggered for a 2 nd set of CSI process (es) configured by higher layers
  • the higher layer signal e.g. RRC Signal.
  • a CSI process is set in a serving cell by a higher layer, it is set whether aperiodic CSI reporting is triggered by a CSI request field '01', a CSI request field '10', and a CSI request field '11' for each CSI process. do.
  • the trigger 01 for the CSI process indicates whether the corresponding CSI process is triggered by the CSI request field set to '01', and the trigger 10 indicates whether the corresponding CSI process is triggered by the CSI request field set to '10'.
  • the trigger 11 indicates whether the corresponding CSI process is triggered by the CSI request field set to '11'.
  • the CSI process may trigger aperiodic CSI reporting by both CSI request field '01', CSI request field '10', and CSI request field '11'. In either case, aperiodic CSI reporting may not be triggered by any of them, and only a part may trigger aperiodic CSI reporting.
  • the upper layer signal includes an 8-bit bitmap indicating a cell (s) to be triggered by the CSI request field '10' and an 8-bit bitmap indicating a cell (s) to be triggered by the CSI request field '11'. It may include. In each bitmap, bit 0, which is the lowest bit, to bit 7, which is the highest bit, correspond one-to-one to cells with a serving cell index of 0 (that is, Pcell) to cells with a serving cell index of 7.
  • a cell corresponding to a bit set to 1 in the bitmap for the CSI request field '10' means a cell in which an aperiodic CSI report is triggered by the CSI request field value '10', and a cell corresponding to a bit set to 0 Denotes a cell in which aperiodic CSI reporting is not triggered by the CSI request field value '10'.
  • a cell corresponding to a bit set to 1 in the bitmap for the CSI request field '11' means a cell in which an aperiodic CSI report is triggered by the CSI request field value '11', and a cell corresponding to a bit set to 0 Denotes a cell in which aperiodic CSI reporting is not triggered by the CSI request field value '11'.
  • FIG. 7 illustrates a slot level structure of a PUCCH format.
  • FIG. 7 shows the structures of PUCCH formats 1a and 1b in the case of a normal cyclic prefix.
  • the ACK / NACK signal has different cyclic shift (CS) (frequency domain codes) and orthogonal cover sequences (OCCs) of a computer-generated constant amplitude zero auto correlation (CG-CAZAC) sequence. (also called a cover code) (time domain spreading code).
  • CS frequency domain codes
  • OCCs orthogonal cover sequences
  • CG-CAZAC constant amplitude zero auto correlation
  • the OC sequence includes, for example, Walsh / DFT orthogonal code. If the number of CSs is six and the number of OC sequences is three, a total of 18 UEs may be multiplexed in the same physical resource block (PRB) based on a single antenna.
  • the orthogonal sequence [w (0) w (1) w (2) w (3)] can be applied in any time domain (after FFT modulation) or in any frequency domain (before FFT modulation).
  • PUCCH resources composed of CS, OC sequence and Physical Resource Block (PRB) may be given to the UE through RRC (Radio Resource Control).
  • RRC Radio Resource Control
  • PUCCH resources may be implicitly given to the UE by the lowest CCE (Control Channel Element) index of the PDCCH corresponding to the PDSCH. .
  • FIG. 8 shows an example of transmitting channel state information using a PUCCH format 2 / 2a / 2b in a UL slot having a regular CP.
  • one UL subframe includes 10 OFDM symbols except for a symbol carrying a UL reference signal (RS).
  • the channel state information is coded into 10 transmission symbols (also called complex modulation symbols) through block coding.
  • the 10 transmission symbols are respectively mapped to the 10 OFDM symbols and transmitted to the eNB.
  • FIG. 9 illustrates a PUCCH format based on block-spreading.
  • the block-spreading technique transmits a symbol sequence by time-domain spreading by an orthogonal cover code (OCC) (also called an orthogonal sequence).
  • OCC orthogonal cover code
  • control signals of several UEs may be multiplexed on the same RB and transmitted to the eNB by the OCC.
  • PUCCH format 2 one symbol sequence is transmitted over time-domain, but UCIs of UEs are multiplexed using cyclic shift (CCS) of a CAZAC sequence and transmitted to an eNB.
  • CCS cyclic shift
  • one symbol sequence is transmitted across a frequency-domain, where UCIs of UEs use OCC based time-domain spreading of UEs. UCIs are multiplexed and sent to the eNB.
  • the RS symbol may be generated from a CAZAC sequence having a specific cyclic shift, and may be transmitted from the UE to the eNB in a specific OCC applied / multiplied form to a plurality of RS symbols in the time domain.
  • the Fast Fourier Transform FFT
  • DFT Discrete Fourier Transform
  • this channel coding based multiple ACK / NACK transmission scheme using PUCCH format 2 or PUCCH format 3 is referred to as a "multi-bit ACK / NACK coding" transmission method.
  • This method generates an ACK generated by channel coding ACK / NACK or DTX information (meaning that a PDCCH cannot be received / detected) for PDSCH (s) of multiple DL CCs, that is, PDSCH (s) transmitted on multiple DL CCs.
  • / NACK This indicates a method of transmitting a coded block.
  • a UE operates in a single user MIMO (SU-MIMO) mode in a DL CC and receives two codewords (CW), ACK / ACK, ACK / NACK, NACK / ACK, One of a total of four feedback states of NACK / NACK may be transmitted, or one of a maximum of five feedback states including up to DTX may be transmitted.
  • SU-MIMO single user MIMO
  • ACK / ACK ACK ACK / NACK
  • NACK / ACK One of a total of four feedback states of NACK / NACK may be transmitted, or one of a maximum of five feedback states including up to DTX may be transmitted.
  • the UE receives a single CW, there may be up to three feedback states of ACK, NACK, and DTX (if the NACK is treated the same as DTX, two feedback states of ACK, NACK / DTX May be).
  • ACK / NACK payload (payload) size to represent this, a total of 12 Bit. If, if the same handle DTX and NACK the number of feedback state is a dog 4 5, ACK / NACK payload size for representing this is a total of 10 bits.
  • the UCI carried by one PUCCH may have a different size and use depending on the PUCCH format, and may vary in size depending on a coding rate.
  • the following table illustrates the mapping relationship between the PUCCH format and UCI.
  • PUCCH format For example, the following PUCCH format may be defined.
  • PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
  • One N / A N / A (exist or absent) SR (Scheduling Request) 1a BPSK One ACK / NACK orSR + ACK / NACK
  • One codeword 1b QPSK 2 ACK / NACK orSR + ACK / NACK
  • Two codeword 2 QPSK 20 CQI / PMI / RI Joint coding ACK / NACK (extended CP) 2a QPSK + BPSK 21 CQI / PMI / RI + ACK / NACK Normal CP only 2b QPSK + QPSK 22 CQI / PMI / RI + ACK / NACK Normal CP only 3 QPSK 48 ACK / NACK orSR + ACK / NACK orCQI / PMI / RI + ACK / NACK
  • the PUCCH format 1 series is mainly used to transmit ACK / NACK information
  • the PUCCH format 2 series is mainly used to carry channel state information (CSI) such as CQI / PMI / RI
  • the PUCCH format 3 series is mainly used to transmit ACK / NACK information.
  • the UE is allocated a PUCCH resource for transmission of UCI from the eNB by a higher layer signal or a dynamic control signal or an implicit method.
  • the physical resources used for the PUCCH depend on two parameters given by higher layers, N (2) RB and N (1) cs .
  • the variable N (2) RB ⁇ 0 represents the bandwidth available for PUCCH format 2 / 2a / 2b transmission in each slot and is expressed as N RB sc integer multiples.
  • Variable N (1) cs is the number of cyclic shifts (CS) used for PUCCH format 1 / 1a / 1b in the resource block used for mixing of formats 1 / 1a / 1b and 2 / 2a / 2b. Indicates.
  • N (1) cs becomes an integer multiple of ⁇ PUCCH shift within the range of ⁇ 0, 1, ..., 7 ⁇ .
  • the resources used for transmission of PUCCH formats 1 / 1a / 1b, 2 / 2a / 2b, and 3 by antenna port p are non-negative integer indexes n (1, p) PUCCH , n (2, p) PUCCH ⁇ N (2) RB N RB sc + ceil ( N (1) cs / 8). ( N RB sc - N (1) cs -2), and n (3, p) PUCCH , respectively.
  • an orthogonal sequence and / or cyclic shift to be applied to a corresponding UCI is determined from a PUCCH resource index, and resource indexes of two resource blocks in a subframe to which a PUCCH is mapped are given.
  • a PRB for transmission of a PUCCH in slot n s is given as follows.
  • Equation 1 the variable m depends on the PUCCH format, and is given to the PUCCH format 1 / 1a / 1b, the PUCCH format 2 / 2a / 2b, and the PUCCH format 3 by Equation 2, Equation 3, and Equation 4, respectively.
  • n (1, p) PUCCH is a PUCCH resource index of the antenna port p for the PUCCH format 1 / 1a / 1b, in the case of ACK / NACK PUCCH, the first CCE index of the PDCCH carrying the scheduling information of the PDSCH This is an implicit value.
  • PUCCH is a PUCCH resource index of antenna port p for PUCCH format 2 / 2a / 2b, and is a value transmitted from eNB to UE by higher layer signaling.
  • PUCCH is a PUCCH resource index of antenna port p for PUCCH format 2 / 2a / 2b, and is a value transmitted from eNB to UE by higher layer signaling.
  • N PUCCH SF, 0 represents a spreading factor (SF) for the first slot of a subframe.
  • N PUCCH for all within two slot sub-frame using a common PUCCH Format 3 SF, 0 to 5, and, N PUCCH for the first slot and the second slot from using a reduced PUCCH Format 3 sub-frames SF, 0 Are 5 and 4, respectively.
  • PUCCH resources for ACK / NACK is not allocated to each UE in advance, a plurality of PUCCH resources are used by each of the plurality of UEs in the cell divided at each time point.
  • the PUCCH resource used by the UE to transmit ACK / NACK is dynamically determined based on a PDCCH carrying scheduling information for a PDSCH carrying corresponding downlink data or a PDCCH indicating SPS release.
  • the entire region in which the PDCCH is transmitted in each DL subframe consists of a plurality of control channel elements (CCEs), and the PDCCH transmitted to the UE consists of one or more CCEs.
  • the UE transmits ACK / NACK through a PUCCH resource linked to a specific CCE (for example, the lowest index CCE) among the CCEs constituting the PDCCH received by the UE.
  • Each PUCCH resource index corresponds to a PUCCH resource for ACK / NACK.
  • scheduling information for a PDSCH is transmitted to a UE through a PDCCH configured with 4 to 6 CCEs, and the 4 CCE is linked to a PUCCH resource index 4, the UE configures the PDCCH 4 times.
  • the ACK / NACK for the PDSCH is transmitted to the eNB through the PUCCH resource 4 corresponding to the CCE.
  • the PUCCH resource index for transmission by two antenna ports p 0 and p 1 in 3GPP LTE (-A) system is determined as follows.
  • N (1) PUCCH represents a signaling value received from a higher layer.
  • n CCE corresponds to the smallest value among the CCE indexes used for PDCCH transmission. For example, when the CCE aggregation level is 2 or more, the first CCE index among the indexes of the plurality of CCEs aggregated for PDCCH transmission is used for determining the ACK / NACK PUCCH resource.
  • a specific PUCCH format 3 resource index among the plurality of PUCCH format 3 resource indexes ( n (3) PUCCH ) allocated by a higher layer (eg, RRC) is a DL grant. It may be indicated by an ACK / NACK Resource Indicator (ARI) value of the PDCCH (explicit PUCCH resource). The ARI is transmitted through the TPC field of the PDCCH scheduling the PDSCH of the Scell. n (3) and an OC PRB for PUCCH Format 3 is obtained from the PUCCH.
  • the ACK / NACK transmission resource for the DL data scheduled by the DL grant EPDCCH has a specific ECCE index (eg, a minimum ECCE index) constituting the DL grant EPDCCH or a specific offset value added thereto. It may be determined as a PUCCH resource linked to the ECCE index. In addition, the ACK / NACK feedback transmission resource may be determined as a PUCCH resource linked to a specific ECCE index (eg, a minimum ECCE index) constituting a DL grant EPDCCH or a PUCCH resource added with a specific offset value.
  • a specific ECCE index eg, a minimum ECCE index
  • the specific offset value may be determined by a value directly signaled through an ACK / NACK Resource Offset (ARO) field in the DL grant EPDCCH and / or a value designated as dedicated for each antenna port.
  • ARO ACK / NACK Resource Offset
  • the information signaled through the TPC field and the ARO field in the DL grant EPDCCH according to the frame structure type (eg, FDD or TDD) and ACK / NACK feedback transmission scheme (eg, PUCCH format 3 or channel selection) is as follows. Can be configured.
  • a TPC command for PUCCH power control is a "TPC value”
  • an offset value added when the implicit PUCCH index is determined is an "ARO value”
  • An ARI indicating a specific one of format 1 index groups) is defined as an "ARI value”.
  • a fixed value eg, '0'
  • a fixed value that is inserted without any information (for a purpose such as a virtual CRC) is defined as a "fixed value”.
  • ACK / NACK determined dynamically (ie, implicitly) on the Pcell in the UL subframe corresponding to the ACK / NACK transmission timing for the DL subframe by detection of PDCCH / EPDCCH on the Pcell in the DL subframe.
  • the remaining PUCCH resource (s) for the SR, ACK / NACK and / or CSI except the PUCCH resource (s) are set by the higher layer.
  • merging of multiple CCs having the same UL-DL subframe configuration is merging of multiple CCs configured with different UL-DL configurations (referred to as different TDD CAs for convenience), merging of TDD CCs and FDD CCs. It includes.
  • Cross-CC scheduling may be supported even when multiple CCs having different subframe configurations are merged.
  • the HARQ timing set in each of the scheduling CC and the scheduled CC may be different. Accordingly, in order to perform UL grant and / or PHICH transmission for the scheduling CC UL SF and the UL data transmitted through the scheduling CC UL SF that is cross-CC scheduled through the scheduling CC, the same for each CC, Alternatively, consider applying different HARQ timings (set in a specific UL-DL configuration) or applying HARQ timings set in a specific UL-DL configuration to all CCs (ie, PCC (or scheduling CC) / SCC) in common. have.
  • Reference Configurations are either UL-DL configurations (MCC-Cfg) set in the PCC (or scheduling CC) or UL-DL configurations (SCC-Cfg) set in the SCC. It may be determined the same as or other UL-DL configuration.
  • the UL grant or PHICH timing may mean a DL subframe configured to transmit / receive a UL grant for scheduling UL data of a specific UL subframe and a PHICH for corresponding UL data transmission, or may mean a timing relationship thereof. Can be.
  • applying the UL grant or PHICH timing set in a specific CC means that a parameter value corresponding to UL-is set (UD-Cfg) or a specific UD-cfg of a specific CC is applied. This may mean using.
  • the TDD PCell-FDD SCell CA applies the PDCCH / PDSCH-to-ACK / NACK timing (eg 4 ms) of the existing FDD cell to the PDSCH of the FDD cell as it is, the TDD PCell is DL SF in the ACK / NACK transmission timing. If defined as ACK / NACK can not be transmitted. Therefore, new DL HARQ timing may be applied instead of the PDCCH / PDSCH-to-ACK / NACK timing defined in the existing FDD cell. Likewise, the UL HARQ timing may apply the new HARQ timing. For example, there may be the following DL HARQ timing.
  • Cross-carrier scheduling case follows the DL HARQ timing of the FDD Pcell.
  • Option 1 For each TDD Pcell U / D configuration, additional new timings (or more DL subframes than those defined in the TDD Pcell) for DL subframes where DL HARQ timing is not defined in TDD Pcell timing + TDD Pcell timing. New timings for each TDD Pcell U / D configuration to address them.
  • Option 2 follows the defined (or set) reference U / D settings for the FDD Scell.
  • the reference U / D setting (configurable) depends on the U / D setting of the TDD Pcell. (New timing can be added to the reference U / D configuration above to support more DL subframes.)
  • UD-cfg basic UL-DL configuration of the TDD cell (or CC) is (semi-) statically configured using higher layer signaling (eg, SIB), and then the operation of the corresponding cell (or CC) is performed.
  • SIB higher layer signaling
  • a method of dynamically reconfiguring / modifying UD-cfg using lower layer signaling (eg, L1 (Layer1) signaling (eg, PDCCH)) has been considered.
  • the base UD-cfg is called SIB-cfg, and the operational UD-cfg is called actual-cfg.
  • Subframe configuration according to UD-cfg is set based on Table 1.
  • the actual-cfg may be selectively determined only among UD-cfg (including SIB-cfg) including all D's on the SIB-cfg. That is, the UD-cfg in which all Ds are placed in the D position on the SIB-cfg may be determined as actual-cfg, but the UD-cfg in which the U is disposed in the D position in the SIB-cfg cannot be determined as the actual-cfg. Meanwhile, in eIMTA, a reference UD-cfg (hereinafter, D-ref-cfg) is separately set by a higher layer (signaling) to set HARQ timing (eg, HARQ-ACK feedback transmission timing) for DL scheduling.
  • D-ref-cfg a reference UD-cfg (hereinafter, D-ref-cfg) is separately set by a higher layer (signaling) to set HARQ timing (eg, HARQ-ACK feedback transmission timing) for
  • the actual-cfg may be selectively determined only among UD-cfg (including D-ref-cfg) including all U on the D-ref-cfg. Therefore, the UD-cfg in which D is placed at the U position on the D-ref-cfg cannot be determined as the actual-cfg.
  • D-ref-cfg may be set to UD-cfg including all Ds on possible actual-cfg candidates
  • SIB-cfg may be set to UD-cfg including all U on possible actual-cfg candidates. That is, D-ref-cfg may be set to D superset UD-cfg for possible actual-cfg candidates, and SIB-cfg may be set to U superset UD-cfg for possible actual-cfg candidates.
  • a reference UD-cfg (hereinafter, U-ref-cfg) of HARQ timing (eg, UG / PUSCH / PHICH transmission timing) for UL scheduling may be set to SIB-cfg.
  • U on D-ref-cfg may be considered fixed U and D on SIB-cfg may be considered fixed D.
  • one of the UD-cfg (s) that includes all D on SIB-cfg and all U on D-ref-cfg Can be set to actual-cfg by L1 signaling.
  • the eIMTA may be applied by resetting some UL SFs on the UL carrier to DL SF (and / or special SF) (hereinafter, referred to as FDD eIMTA).
  • FDD eIMTA a method of operating while reconfiguring / modifying UL SF on a UL carrier (dynamically) in accordance with a TDD UL-DL configuration may be considered.
  • a plurality of UCIs, a plurality of PUCCHs or a plurality of PUSCHs may collide in one subframe.
  • Priority for uplink signal transmission is determined because of limitations of the UCI payload that can be transmitted in a single uplink channel and the fact that one UE is not allowed to simultaneously transmit a plurality of PUCCHs through a Pcell. Only high priority signal (s) are transmitted in that subframe and low priority signal (s) are dropped in that subframe.
  • the following table illustrates CSI information according to a PUCCH report type, a mode state, and payloads (bits per bandwidth part (BP), bits / BP) according to a PUCCH report mode.
  • PUCCH Reporting Type Reported Mode state PUCCH Reporting Modes Mode1-1 Mode2-1 Mode1-0 Mode2-0
  • One Sub-bandCQI RI 1 NA 4 + L NA 4 + L RI> 1 NA 7 + L NA 4 + L 1a
  • the same serving cell with the PUCCH report type of the same priority for a UE set to transmission mode 10 and set as CSI subframe set C CSI, 0 and CSI subframe set C CSI, 1 by higher layer signal for the serving cell If the CSI reports of C collisions and the CSI reports correspond to CSI processes with the same CSI-process ID, then the CSI report corresponding to the SI subframe set C CSI, 1 is dropped. If the UE is configured with more than one serving cells, the UE transmits CSI report of only one serving cell in a given subframe.
  • the CSI report of PUCCH report type 3, 5, 6 or 2a of one serving cell collides with the CSI report of PUCCH report type 1, 1a, 2, 2b, 2c or 4 of another serving cell the latter The CSI report of has a low priority and is dropped in the subframe (ie, corresponding transmission timing).
  • the latter CSI report has a lower priority. And drop in the subframe (ie, corresponding transmission timing).
  • CSI reports of other serving cells having the same priority PUCCH report type collide with each other, serving except the serving cell having the lowest serving cell index All CSI reports for the cells are dropped.
  • CSI reports of other serving cells having the same priority PUCCH report type collide with each other and the CSI reports have CSI processes with the same CSI-process ID. If corresponding, all CSI reports for serving cells except the serving cell with the lowest serving cell index are dropped.
  • CSI reports of other serving cells having the same priority PUCCH report type collide with each other and the CSI reports are sent to CSI processes with different CSI-process ID. If corresponding, CSI reports of all serving cells except the serving cell with CSI reports corresponding to the CSI process with the lowest CSI-process ID are dropped.
  • the CSI report of the serving cell in which the UE is set to transmission mode 1-9 and the CSI report (s) corresponding to the CSI process (s) of another serving cell in which the UE is set to transmission mode 10 collide, and the serving If the CSI reports of cells are of the same priority PUCCH report type, then the CSI report (s) corresponding to the CSI process (s) with CSI process ID> 1 of the other serving cell are dropped.
  • CSI is dropped if CSI and positive SR collide in the same subframe .
  • the periodic CSI report and the HARQ-ACK for the UE collide in the same subframe without the PUSCH, if the periodic CSI report and the HARQ-ACK cannot be transmitted in a single uplink channel (e.g., provided by a higher layer) If the simultaneous ACK / NACK and CQI parameters are set to false), the periodic CSI report is dropped. If the periodic CSI reporting and HARQ-ACK collide in the same subframe without PUSCH for a UE configured as a single serving cell and not configured as PUCCH format 3, the simultaneous ACK / NACK and CQI parameters provided by the higher layer are true. If set to, the periodic CSI report is multiplexed with HARQ-ACK on PUCCH, otherwise the CSI is dropped.
  • a single uplink channel e.g., provided by a higher layer
  • the UE transmits the periodic CSI report on the PUCCH in a subframe without PUSCH assignment and on the PUSCH of the serving cell with the lowest serving cell index in the subframe with PUSCH assignment. Send the periodic CSI report. If the periodic CSI report and the aperiodic CSI report occur in the same subframe, the UE transmits only the aperiodic CSI report in the subframe.
  • SR and ACK / NACK may be multiplexed and transmitted together.
  • Cellular communication systems such as 3GPP LTE / LTE-A systems, also utilize unlicensed bands, such as the 2.4GHz band used by existing WiFi systems, or unlicensed bands, such as the emerging 5GHz band, for traffic offloading. How to do this is under consideration.
  • the unlicensed band assumes a method of wireless transmission and reception through competition between communication nodes, so that channel communication is performed before each communication node transmits a signal to confirm that other communication nodes do not transmit a signal. Is required. This is called a clear channel assessment (CCA), and an eNB or a UE of an LTE system may also need to perform CCA for signal transmission in an unlicensed band (hereinafter, referred to as LTE-U band).
  • CCA clear channel assessment
  • LTE-U band unlicensed band
  • other communication nodes such as WiFi should also perform CCA to not cause interference.
  • the CCA threshold is defined as -62dBm for non-WiFi signals and -82dBm for WiFi signals, which means that either STA or AP, For example, if a signal other than WiFi is received at power of -62dBm or more, it means that no signal transmission is performed so as not to cause interference.
  • an STA or an AP may perform CCA and perform signal transmission if it does not detect a signal above the CCA threshold for 4us or more.
  • the eNB may transmit a signal to the UE or the UE may transmit a signal to the eNB.
  • the UE is configured to perform wireless communication through two component carriers (CC) in each of the licensed band and the unlicensed band.
  • CC component carriers
  • the carrier of the licensed band may be configured as a primary component carrier and the carrier of an unlicensed band may be configured as a secondary component carrier.
  • embodiments of the present invention can be extended and applied even in a situation where a plurality of licensed bands and a plurality of unlicensed bands are used as a carrier aggregation technique, and can also be applied to signal transmission and reception between an eNB and a UE using only an unlicensed band. .
  • embodiments of the present invention can be extended and applied to not only 3GPP LTE / LTE-A system but also other system characteristics.
  • a cell set in a licensed band for 3GPP LTE / LTE-A and operating in a 3GPP LTE / LTE-A scheme is referred to as an Lcell, and is set in an unlicensed band operated in an LTE-U scheme.
  • a cell operating in the -U manner is called a Ucell.
  • the band is allocated for a specific time interval through competition with other communication (eg, WiFi) systems unrelated to LTE / LTE-A.
  • other communication eg, WiFi
  • RRP reserved resource period
  • RRP a time period occupied / obtained for communication in the LTE-U band
  • RRP may be various ways to secure such RRP.
  • other communication system devices such as WiFi, send a specific reservation signal so that the radio channel is busy, or RS and / or data to continuously transmit a signal above a certain power level during RRP. It is possible to transmit a signal continuously.
  • RRP may be set by carrier detection by the eNB. If the eNB has previously determined the RRP to occupy the LTE-U band, it can inform the UE in advance so that the UE can maintain the communication transmit / receive link during the indicated RRP. In order to inform the UE of the RRP information, the corresponding RRP information may be delivered through another CC (eg, the LTE-A band) connected in the carrier aggregation form.
  • another CC eg, the LTE-A band
  • the RRP determination agent may vary depending on whether the DL transmission or the UL transmission.
  • RRP DL RPP
  • UL RRP UL RRP
  • DL RPP DL RPP
  • UL RRP UL RRP
  • the UE may check or determine the UL RRP in units of subframes by checking the channel state before signal transmission, that is, through carrier detection by the UE itself.
  • RS for channel synchronization or RS for channel measurement such as PSS / SSS / PBCH, CRS and / or CSI-RS appears periodically and continuously.
  • the eNB may set an RRP and transmit a channel measurement RS on the RRP only when the Ucell is idle.
  • synchronization / measurement RSs will appear aperiodically and / or discontinuously.
  • the UE is configured to detect the RS (s) during the time period in which the Lcell is activated or to perform synchronization or measurement using the RS (s), but the RS (s) in the time interval in which the Lcell is inactive. ) Is not sent at all.
  • the synchronization / measurement RSs are continuously transmitted regardless of the activation or deactivation of the Lcell, but the UE is configured to detect the synchronization / measurement RSs only during the activated time interval.
  • the eNB transmits synchronization or measurement RS (s) only during the RRP, and the wireless communication medium during the non-RRP is occupied by other devices, so that the synchronization or measurement of the eNB is performed.
  • RS (s) are in principle not transmitted during non-RRP.
  • the eNB may first perform carrier detection (CS) before data transmission / reception. If the Scell checks whether the current channel state is busy or idle, and determines that it is idle, the eNB transmits a scheduling grant over the Pcell's PDCCH (ie, cross-carrier scheduling) or over the Scell's PDCCH. You can try to send / receive data. In this case, for example, an RRP configured of M consecutive subframes (SFs) may be set.
  • the eNB may inform the UE of the M values and the M SFs in advance through higher layer signaling (using a Pcell) or a physical control / data channel.
  • the starting point of the RRP may be set periodically or semi-statically by higher layer signaling.
  • the start point of the RRP may be designated through physical layer signaling in SF #n or SF # (n-k).
  • RRP 10 illustrates a subframe configuration of a reserved resource period (RRP).
  • the boundary of the subframe (s) constituting the RRP is configured to match the boundary of the subframe (s) set on the Pcell as shown in FIG. 10 (a), or FIG. 10 (b).
  • the configuration may be configured to support a form that does not match the boundary of the subframe (s) set on the Pcell.
  • the LTE-U system operating based on competition through carrier sensing in the unlicensed band is available depending on the carrier detection result (eg, available for data transmission / scheduling purposes).
  • Resource intervals can be secured / configured aperiodically.
  • the cell / carrier that operates in the LTE-U method is called a Ucell for convenience, and a resource section configured aperiodically on the Ucell is defined as RRP
  • the eNB identifies a UE configured with the Ucell when the RRP section is secured on the Ucell.
  • RRP resource section configured aperiodically on the Ucell
  • the LTE-A system commonly applies a timing advance (TA) value applicable to one specific cell (eg, PCC or Pcell) to the plurality of cells.
  • TA timing advance
  • Ucells and non-Ucells belonging to different frequency bands may be carrier aggregated, or propagation characteristics of the carrier aggregated Ucell and non-Ucell may be different.
  • devices such as an RRH are disposed in a cell in order to expand coverage or to remove a coverage hole.
  • UL transmission is performed using a method in which one TA value is commonly applied to a plurality of carrier aggregated cells, it may seriously affect synchronization of UL signals transmitted on the plurality of cells.
  • the UE is configured as two cells (eg, PCell and SCell), and a UL signal may be transmitted by applying a different TA for each cell.
  • TA 1 may be applied to UL transmission of a PCell
  • TA 2 may be applied to UL transmission of a SCell.
  • the transmission end time of the UL subframe / signal eg, PUSCH, PUCCH, SRS, etc.
  • the transmission start time of the UL subframe / signal eg, PUSCH, PUCCH, SRS, etc.
  • the transmission start time of the UL subframe / signal eg, PUSCH, PUCCH, SRS, etc.
  • the transmission start time of the UL subframe / signal may be advanced by TA based on the reception start time of the DL subframe.
  • TA group a group of cells using the same timing reference cell and the same TA value for cells set by a higher layer (eg, RRC) and configured with UL is referred to as a TA group (TA group, TAG).
  • the TAG may include one or more cells CC.
  • One TA may be commonly applied to the cell (s) in the TAG.
  • the TAG may be classified into a primary TAG (PTAG) including a Pcell and a secondary TAG (STAG) including at least one serving cell with a UL set without including the Pcell.
  • PTAG primary TAG
  • STAG secondary TAG
  • a TA determined based on the Pcell or adjusted through a random access procedure accompanying the Pcell may be applied to all cell (s) in the PTAG.
  • a TA determined based on a specific Scell in the STAG may be applied to all Scell (s) in the STAG.
  • the random access procedure may be performed not only through the Pcell but also through the Scell.
  • the random access procedure accompanying the Scell is a non-competitive random access procedure triggered using a PDCCH (i.e., PDCCH order) for the eNB to command the RACH preamble transmission, rather than a contention based scheme triggered by the UE. This can be done.
  • PDCCH i.e., PDCCH order
  • LTE / LTE-A systems can support CAs for up to five cells / carriers / CCs (hereinafter collectively referred to as cells) for a single UE, and dual connectivity (DC) is established. Except for the case, the PUCCH carrying UCI (eg, HARQ-ACK, CSI, etc.) associated with the plurality of cells may be transmitted through only one Pcell.
  • the UE in the RRC_connected state is configured as DC.
  • Each serving cell of the UE belongs exclusively to the MCG or SCG.
  • the UE When the UE is configured as DC, it means that the UE is connected to two eNBs at the same time, and MCG is a cell managed by an eNB (hereinafter, eNB M) to which the UE first connects among the two eNBs. ), And the remaining SCG is composed of cell (s) managed by an eNB (hereinafter, referred to as eNB S) further connected after the UE connects to eNB M.
  • eNB S cell managed by an eNB
  • the scheduling cell of the scheduling cell if the scheduling cell belongs to the MCG, the scheduling cell of the scheduling cell also belongs to the MCG, and if the scheduling cell belongs to the SCG, the scheduling cell of the scheduling cell also belongs to the SCG, Cross-scheduling between the cells of and the cells of the SCG is not performed. In other words, the scheduling cell and the corresponding scheduled cell do not belong to another CG.
  • a UE configured as DC has two Pcells, one for each eNB, UCI for MCG is transmitted through PUCCH on Pcell of MCG, and UCI for SCG is transmitted on PUCCH on Pcell of SCG, and UCI for MCG The UCI for the SCG or for the SCG cannot be transmitted in the MCG.
  • the next system may be considered to support CAs of five or more cells for one UE for a higher data rate.
  • PUCCH may also be performed through a specific Scell (hereinafter, Acell). (UCI through this) may be considered to enable the transmission. While the Pcell of the MCG and the Pcell of the SCG are controlled by independent schedulers, the Pcell and Acell according to the present invention are controlled by a single scheduler.
  • the present invention proposes a UCI transmission structure and method through PUCCH / PUSCH suitable for a case where PUCCH transmission through Acell is configured to be possible in a CA.
  • the entire CA is configured to enable transmission of HARQ-ACK PUCCH through Acell in a state in which two cell groups (CGs) are set as CG1 and CG2, HARQ- for CG1 (DL data reception through it) is set.
  • a PUCCH carrying an ACK a PUCCH carrying a HARQ-ACK for a CG2 may be transmitted through a corresponding Acell, where the Pcell may be included in the CG1 and the Acell may be included in the CG2.
  • embodiments of the present invention will be described taking the case where Pcell belongs to CG1 and Acell belongs to CG2 as an example. However, embodiments of the present invention may be similarly applied when Pcell belongs to CG2 and Acell belongs to CG1. .
  • embodiments of the present invention may be similarly applied when Pcell belongs to CG2 and Acell belongs to CG1.
  • the proposed principle and operation of the present invention may be similarly applied.
  • the dynamic PUCCH resource on the Acell may be determined based on the lowest CCE index of the DL grant PDCCH or SPS release PDCCH transmitted on the Acell or the lowest CCE index of EPDCCH.
  • Explicit PUCCH resources or explicit PUCCCH resource candidates on the Acell may be set by a signal to a higher layer.
  • PUCCH resources actually used among the PUCCH resource candidates may be indicated by the ARI.
  • PUCCH transmission When PUCCH transmission is configured in Acell in CA, it may be considered to select a UCI transmission cell in the following manner for more flexible and efficient UCI transmission.
  • UL channel transmissions e.g., PUCCH or PUSCH
  • another CG e.g., Simultaneous transmission of a plurality of PUCCHs through a PUCCH transmission cell belonging to the corresponding CG may be allowed.
  • Simultaneous transmission hereinafter means that corresponding signals are transmitted in a single subframe.
  • a / N or CG1
  • CG1 with or without simultaneous transmission of ACK / NACK (hereinafter, A / N) and CSI over PUCCH)
  • a / N or CSI over PUCCH
  • PUCCH or PUSCH transmission ie, no PUCCH and no PUSCH
  • Both PUCCH carrying N and PUCCH carrying CSI (for CG1) may be transmitted simultaneously over CG1 (eg, Pcell).
  • CG1 eg, Pcell
  • a / N transmission and CSI transmission are simultaneously required through CG1 (or CG1) while the simultaneous transmission of A / N and CSI over PUCCH is not set.
  • the transmission of CSI (for CG1) is omitted / discarded (i.e., dropped) and one A / N carrying (for CG1) Only PUCCH may be transmitted through CG1 (eg, Pcell).
  • the specific CG When a plurality of UCIs (eg, A / N, CSI, and / or SR) requiring transmission through a specific CG have a higher priority than UCIs requiring transmission through another CG, the specific CG (for example, simultaneous transmission of a plurality of PUCCHs through a PUCCH transmission cell belonging to the specific CG may be allowed.
  • UCIs eg, A / N, CSI, and / or SR
  • a / N transmission and CSI i.e., CG1-CSI
  • CG1 CG1
  • CG2 If (CG2) CSI (i.e., CG2-CSI) transmissions are required at the same time, if CG1-CSI has a higher priority than CG2-CSI, then the transmission of CG2-CSI is dropped (CG1).
  • the PUCCH carrying A / N and the PUCCH carrying CG1-CSI may be simultaneously transmitted through the CG1 (eg, Pcell).
  • a / N PUCCH and CSI PUCCH in which transmission is set on CG1 in a subframe
  • PUCCH high priority
  • a / N PUCCH and CSI PUCCH are simultaneously transmitted on the CG1 in the subframe.
  • P1 and P2 mean priority, and it is assumed that CSI of P1 has higher priority than CSI of P2.
  • a / N and CSI i.e., CG1-CSI transmissions over CG1 (or CG1) with CG1 (with or without simultaneous transmission of A / N and CSI on PUCCH) set to CG2.
  • (CG2) CSI i.e., CG2-CSI
  • transmission of CG1-CSI is dropped and A / N
  • the PUCCH carrying the CG1 (eg, Pcell) and the PUCCH carrying the CG2-CSI may be transmitted via the CG2 (eg, Acell).
  • a specific portion of the plurality of UCIs may be transmitted through another CG.
  • P1 and P2 indicate a priority
  • P1 has a higher priority than P2. 13
  • UCI with priority P1 and UCI with priority P2 configured for transmission in one CG occur in the same subframe, if the UCIs cannot be transmitted through a single PUCCH or PUSCH, UCI with priority P2 is transmitted on another CG.
  • the PUCCH resource on the CG2 used for example, the corresponding CSI PUCCH resource on the CG2 may be preset by an upper layer signal (eg, an RRC signal).
  • PUSCH resources on the CG2 used at this time may be allocated through the UL grant transmitted on a specific cell according to the self-CC scheduling configuration or cross-CC scheduling configuration.
  • a-CSI aperiodic CSI
  • p-CSI periodic CSI
  • UCI-a UCI-a
  • UCI-b UCI- Certain portions of a (eg, UCIs with lower priorities) may be sent over other CGs.
  • priority P1 is higher than priority P2
  • priority P2 is higher than priority P3.
  • UCI with priority P1 and UCI with priority P2 having transmission set on CG1 may occur in the same subframe, and the UCIs may be transmitted on a single PUCCH or PUSCH.
  • the UCI of the higher priority P1 is transmitted on the CG1 to which the original transmission was set and the lower priority.
  • UCI of rank P2 is transmitted through PUCCH or PUSCH on CG2.
  • UCIs having a lower priority than P1 and P2 to be transmitted on CG2 in the subframe are dropped.
  • the UCI (s) of the CG1 having a lower priority than the UCI of the CG2 are dropped in the corresponding subframe. .
  • a / N transmission and CSI (hereinafter, CG1-CSI) transmission are required through CG1 (or CG1) without simultaneous transmission of A / N and CSI through PUCCH.
  • CG1-CSI has higher priority than CG2-CSI when CSI (or CG2-CSI) transmission is required through CG2 (or CG2) at the same time, transmission of CG2-CSI is dropped and (CG1 A / N may be transmitted through PUCCH on CG1 (eg, Pcell), and the CG1-CSI may be transmitted on PUCCH or PUSCH on CG2 (eg, Acell).
  • CG1-CSI a-CSI transmission and p-CSI (hereinafter CG1-CSI) transmission are required through CG1 (or CG1) and p-CSI (or CG2-) through CG2 (or CG2).
  • CG1-CSI When CG) transmission is simultaneously required, when CG1-CSI has a higher priority than CG2-CSI, transmission of CG2-CSI is dropped and the a-CSI is transmitted through PUSCH on CG1, and the CG1-CSI is CG2 ( For example, it may be transmitted through PUCCH or PUSCH on Acell.
  • the PUCCH on the CG2 used for the transmission of the CG1-CSI may be a PUCCH resource set for transmission (without CG classification).
  • the PUSCH on the CG2 used for the transmission of the CG1-CSI may be allocated on the CG2 through the UL grant transmitted on the specific cell according to the self / cross-CC scheduling configuration regardless of the UCI.
  • the number of PUCCHs or UCIs transmitted simultaneously in one subframe may depend on the number of cell groups or the number of cells for PUCCH transmission (ie, Pcell and Acell).
  • an a-CSI request from an eNB and an a-CSI report from a UE may be basically performed for each CG.
  • a cell set or a CSI process set configured as an a-CSI measurement target via upper layer (e.g. RRC) signaling may also be configured for each CG.
  • a specific (scheduling) cell 1 and a (pic scheduling) cell 2 configured to be scheduled from the cell 1 may belong to different CGs.
  • cell 1, which is a scheduling cell may belong to CG1
  • cell 2, which is a scheduled cell may belong to CG2.
  • a PUSCH on cell 2 is scheduled through UL grant DCI transmission on cell 1 and at the same time, through DCI.
  • the a-CSI measurement / reporting cell (s) or CSI process (s) corresponding to the a-CSI request are configured in cell 2, which is a scheduled cell, and CG2 to which cell 2 belongs. It may be determined based on a-CSI measurement target cell (or CSI process) set. For example, a triggerXX that indicates whether a-CSI is triggered by the CSI request field value XX (where XX is 01, 10, 11) is configured / set only for cells (or CSI processes) within that CG. Can be.
  • This method may be equally applied to a-CSI request / report and a-CSI measurement target cell (or CSI process) set configuration / configuration for each cell group in the absence of Scell PUCCH transmission setting. That is, in the state where Acell is not configured at all, the cells may be divided into cell groups for a-CSI measurement.
  • the HARQ-ACK transmission timing (or reference UL / DL setting for HARQ-ACK transmission timing determination) for DL data reception in the cell 2 is determined whether the cell 2 is configured to be cross-CC scheduled from another cell. It may be determined differently depending on whether or not.
  • the timing applied when Cell 2 is set to be scheduled by another cell is referred to as cross-HARQ timing
  • the timing applied when Cell 2 is not set to be scheduled by another cell is called self-HARQ timing. .
  • a cell in which UCI (eg, A / N) PUCCH for cell 2 and cell 2 are transmitted may belong to the same CG.
  • cell 1, which is a scheduling cell belongs to CG1
  • cell 2, which is a scheduled cell belongs to CG2
  • a cell to which UCI (eg, A / N) PUCCH for cell 2 is transmitted is in CG2, which is the same CG as cell 2.
  • the corresponding HARQ-ACK timing may be determined differently according to whether cell 2 is set to be cross-CC scheduled from any cell belonging to the CG2.
  • cross-CC scheduling configuration (based on Alt 1 or Alt 2) for cell 2
  • cross-HARQ timing is applied, and cross-CC (based on Alt 1 or Alt 2) for cell 2
  • self-HARQ timing may be applied.
  • Alt 1 if cell 2 belonging to CG2 is set to be scheduled from any cell (belonging to CG1 or CG2) other than the PUCCH transmission cell configured in CG2, cell 2 belonging to CG2 in Alt 2 Is set to be scheduled from any cell belonging to CG1), self-HARQ timing may be applied.
  • Alt 1 scheme the same may be applied to a CA situation in which there is no Scell PUCCH transmission setting.
  • the Acell since the Acell also corresponds to one Scell from the perspective of the entire CA, a method of deactivating similarly to the general Scell may be considered.
  • basically all cells belonging to the CG including the Acell may be simultaneously deactivated in a batch.
  • another CG eg, CG2 scheduling cell
  • CG1 scheduled cells a cell belonging to the CG (eg, CG2) including the same (hereinafter, CG2 scheduling cell).
  • the cells in CG1) hereinafter, CG1 scheduled cells
  • it can be activated only when both the Acell and CG2 scheduling are activated.
  • 15 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system.
  • the device is operatively connected to components such as the memory 12 and 22, the RF unit 13 and 23, and the memory 12 and 22, which store various types of information related to communication, and controls the components.
  • a processor (11, 21) configured to control the memory (12, 22) and / or the RF unit (13, 23), respectively, to perform at least one of the embodiments of the invention described above.
  • the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
  • the memories 12 and 22 may be utilized as buffers.
  • the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
  • application specific integrated circuits ASICs
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software when implementing the present invention using firmware or software, may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
  • the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13. For example, the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
  • the coded data string is also called a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer.
  • One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
  • the RF unit 13 may include an oscillator for frequency upconversion.
  • the RF unit 13 may include N t transmit antennas, where N t is a positive integer greater than or equal to one.
  • the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
  • the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10.
  • the RF unit 23 may include N r receive antennas, and the RF unit 23 frequency down-converts each of the signals received through the receive antennas to restore the baseband signal. .
  • the RF unit 23 may include an oscillator for frequency downconversion.
  • the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
  • the RF units 13, 23 have one or more antennas.
  • the antenna transmits a signal processed by the RF units 13 and 23 to the outside under the control of the processors 11 and 21, or receives a radio signal from the outside to receive the RF unit 13. , 23).
  • Antennas are also called antenna ports.
  • Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
  • a reference signal (RS) transmitted in correspondence with the corresponding antenna defines the antenna as viewed from the perspective of the receiver 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna.
  • RS reference signal
  • the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
  • the antenna In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
  • MIMO multi-input multi-output
  • the UE operates as the transmitter 10 in the uplink and operates as the receiver 20 in the downlink.
  • the eNB operates as the receiving device 20 in the uplink, and operates as the transmitting device 10 in the downlink.
  • the processor, the RF unit and the memory provided in the UE will be referred to as a UE processor, the UE RF unit and the UE memory, respectively, and the processor, the RF unit and the memory provided in the eNB will be referred to as an eNB processor, the eNB RF unit and the eNB memory, respectively.
  • An eNB process may divide the serving cells of the UE into two or more cell groups for the UE.
  • the eNB processor may configure at least one Pcell group including at least one Pcell and at least one Scell group each consisting of one or more Scells.
  • the eNB processor may set one Scell of the corresponding Scell group as an Acell for each Scell group.
  • the eNB processor may control the eNB RF unit to transmit the information on the Scell group and information indicating which of the Scell (s) of the Scell group is the Acell.
  • the eNB processor may configure PUCCH resource (s) implicitly and / or explicitly in Pcell and Acell.
  • the eNB processor may control the eNB RF unit to set an SR PUCCH resource, an ACK / NACK PUCCH resource, and a CSI PUCCH resource for each of the Pcell and the Acell, and transmit information about the same to the UE.
  • the eNB processor may control the eNB RF unit to transmit UCI configuration information for one or more cells or one or more cell groups among the cells of the UE to the UE.
  • PDCCH, SR PUCCH configuration, periodic / aperiodic CSI reporting configuration, etc. associated with dynamic PUCCH resources may correspond to the UCI configuration information.
  • the eNB processor of the present invention may simultaneously receive a plurality of PUCCHs or a plurality of UCIs in a subframe according to any one of embodiments of the present invention.
  • the eNB processor configured according to any one of the embodiments of the present invention knows which PUCCH or UCI the UE configured according to the embodiment will transmit on which CG and which PUCCH or UCI will be dropped, so that the corresponding uplink signal is transmitted.
  • the eNB RF unit may be controlled to receive on the corresponding cell in the corresponding CG.
  • the eNB processor may not expect reception for the PUCCH or UCI dropped by the UE.
  • the UE processor of the present invention may control the UE RF unit to receive the aforementioned cell group information, Acell information for the cell group, PUCCH resource information, and / or UCI configuration information.
  • the UE processor of the present invention may configure at least one cell group consisting of a Pcell and zero or more Scells and a cell group consisting of one or more Scells that do not belong to a cell group in which the Pcell is located.
  • the UE processor may set one of the Scell (s) of the cell group consisting of only the Scell (s) as a cell for PUCCH transmission (ie, an Acell).
  • the UE processor may configure cell group (s) and Acell based on cell group information and Acell information.
  • the UE processor determines whether transmission of a plurality of uplink channels (PUCCHs, PUSCHs, or PUCCHs and PUSCHs) or a plurality of UCIs is required in a subframe based on the PUCCH resource information, UL grant and / or UCI configuration information, and the like. You can judge.
  • the UE processor of the present invention may simultaneously transmit a plurality of PUCCHs or a plurality of UCIs in a subframe according to one of the embodiments of the present invention.
  • the eNB processor of the present invention may control the eNB RF unit to transmit / receive a signal according to HARQ timing according to any one of the embodiments of the present invention.
  • the UE processor of the present invention may control the UE RF unit to transmit / receive a signal according to HARQ timing according to any one of the embodiments of the present invention.
  • Embodiments of the present invention may be used in a base station or user equipment or other equipment in a wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides a method and device for transmitting/receiving an uplink signal. When a user equipment of the present invention is configured by multiple cell groups and multiple pieces of uplink control information (UCI) to be transmitted by the user equipment in a sub-frame are generated, the user equipment separately transmits, to the multiple cell groups, the UCI one by one from the piece of UCI having the highest priority, and drops the pieces of UCI having lower priorities among the multiple pieces of UCI.

Description

상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국UL signal transmission method and user equipment, UL signal reception method and base station
본 발명은 무선 통신 시스템에 관한 것으로서, 상향링크 신호를 전송 또는 수신하는 방법과 이를 위한 장치에 관한 것이다.The present invention relates to a wireless communication system, and to a method and apparatus for transmitting or receiving an uplink signal.
기기간(Machine-to-Machine, M2M) 통신과, 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 망에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다. Various devices and technologies, such as smartphone-to-machine communication (M2M) and smart phones and tablet PCs, which require high data transmission rates, are emerging and spread. As a result, the amount of data required to be processed in a cellular network is growing very quickly. In order to meet this rapidly increasing data processing demand, carrier aggregation technology, cognitive radio technology, etc. to efficiently use more frequency bands, and increase the data capacity transmitted within a limited frequency Multi-antenna technology, multi-base station cooperation technology, and the like are developing.
일반적인 무선 통신 시스템은 하나의 하향링크(downlink, DL) 대역과 이에 대응하는 하나의 상향링크(uplink, UL) 대역을 통해 데이터 송/수신을 수행(주파수 분할 듀플렉스(frequency division duplex, FDD) 모드의 경우)하거나, 소정 무선 프레임(Radio Frame)을 시간 도메인(time domain)에서 상향링크 시간 유닛과 하향링크 시간 유닛으로 구분하고, 상/하향링크 시간 유닛을 통해 데이터 송/수신을 수행(시 분할 듀플렉스(time division duplex, TDD) 모드의 경우)한다. 기지국(base station, BS)와 사용자기기(user equipment, UE)는 소정 시간 유닛(unit), 예를 들어, 서브프레임(subframe, SF) 내에서 스케줄링된 데이터 및/또는 제어 정보를 송수신한다. 데이터는 상/하향링크 서브프레임에 설정된 데이터 영역을 통해 송수신되고, 제어 정보는 상/하향링크 서브프레임에 설정된 제어 영역을 통해 송수신된다. 이를 위해, 무선 신호를 나르는 다양한 물리 채널이 상/하향링크 서브프레임에 설정된다. 이에 반해 반송파 집성 기술은 보다 넓은 주파수 대역을 사용하기 위하여 복수의 상/하향링크 주파수 블록들을 모아 더 큰 상/하향링크 대역폭을 사용함으로써 단일 반송파가 사용될 때에 비해 많은 양의 신호가 동시에 처리될 수 있다.A typical wireless communication system performs data transmission / reception over one downlink (DL) band and one uplink (UL) band corresponding thereto (frequency division duplex (FDD) mode). Or a predetermined radio frame divided into an uplink time unit and a downlink time unit in a time domain, and perform data transmission / reception through uplink / downlink time units (time division duplex). (for time division duplex, TDD) mode). A base station (BS) and a user equipment (UE) transmit and receive data and / or control information scheduled in a predetermined time unit, for example, a subframe (SF). Data is transmitted and received through the data area set in the uplink / downlink subframe, and control information is transmitted and received through the control area set in the uplink / downlink subframe. To this end, various physical channels carrying radio signals are configured in uplink / downlink subframes. In contrast, the carrier aggregation technique can collect a plurality of uplink / downlink frequency blocks to use a wider frequency band and use a larger uplink / downlink bandwidth, so that a greater amount of signals can be processed simultaneously than when a single carrier is used. .
한편, UE가 주변에서 접속(access)할 수 있는 노드(node)의 밀도가 높아지는 방향으로 통신 환경이 진화하고 있다. 노드라 함은 하나 이상의 안테나를 구비하여 UE와 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 높은 밀도의 노드를 구비한 통신 시스템은 노드들 간의 협력에 의해 더 높은 성능의 통신 서비스를 UE에게 제공할 수 있다. Meanwhile, the communication environment is evolving in a direction in which the density of nodes that the UE can access in the vicinity is increased. A node is a fixed point capable of transmitting / receiving a radio signal with a UE having one or more antennas. A communication system having a high density of nodes can provide higher performance communication services to the UE by cooperation between nodes.
새로운 무선 통신 기술의 도입에 따라, 기지국이 소정 자원영역에서 서비스를 제공해야 하는 UE들의 개수가 증가할 뿐만 아니라, 상기 기지국이 서비스를 제공하는 UE들과 전송/수신하는 데이터와 제어정보의 양이 증가하고 있다. 기지국이 UE(들)과의 통신에 이용 가능한 무선 자원의 양은 유한하므로, 기지국이 유한한 무선 자원을 이용하여 상/하향링크 데이터 및/또는 상/하향링크 제어정보를 UE(들)로부터/에게 효율적으로 수신/전송하기 위한 새로운 방안이 요구된다.With the introduction of a new wireless communication technology, not only the number of UEs that a base station needs to provide service in a predetermined resource area increases, but also the amount of data and control information transmitted / received by UEs that provide service It is increasing. Since the amount of radio resources available for the base station to communicate with the UE (s) is finite, the base station uses finite radio resources to transmit uplink / downlink data and / or uplink / downlink control information to / from the UE (s). There is a need for a new scheme for efficient reception / transmission.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved by the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above are apparent to those skilled in the art from the following detailed description. Can be understood.
본 발명은 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국을 제공한다. The present invention provides an uplink signal transmission method and user equipment, an uplink signal reception method, and a base station.
본 발명의 사용자기기가 복수의 셀 그룹들로써 설정되고, 상기 사용자기기에 의해 서브프레임에서 전송될 상향링크 제어 정보(UCI)가 복수개 발생하면, 상기 사용자기기는 상기 복수의 UCI들 중 최상의 우선순위를 갖는 UCI들부터 상기 복수의 셀 그룹들에 하나씩 나누어 전송하고, 후순위 우선순위를 갖는 UCI(들)은 드랍한다.When the user equipment of the present invention is configured as a plurality of cell groups, and a plurality of uplink control information (UCIs) to be transmitted in a subframe is generated by the user equipment, the user equipment has the highest priority among the plurality of UCIs. UCI (s) having a priority are transmitted to the plurality of cell groups one by one, and UCI (s) having subordinated priorities are dropped.
본 발명의 일 양상으로, 복수의 셀 그룹들이 설정된 사용자기기가 상향링크 신호를 전송함에 있어서, 상기 복수의 셀 그룹들 적어도 하나를 통해 서브프레임 n에서 전송되도록 설정된 복수의 상향링크 제어 정보(uplink control information, UCI)에 대한 UCI 전송 정보를 수신; 및 상기 UCI 전송 정보를 바탕으로, 상기 서브프레임 n에서, 상기 복수의 UCI 중 적어도 최상위 우선순위의 제1 UCI와 차상위 우선순위의 제2 UCI를 전송하는 것을 포함하는, 상향링크 신호 전송방법이 제공된다.In an aspect of the present invention, when a user equipment configured with a plurality of cell groups transmits an uplink signal, a plurality of uplink control information configured to be transmitted in subframe n through at least one of the plurality of cell groups. receiving UCI transmission information for information (UCI); And based on the UCI transmission information, in the subframe n, transmitting a first UCI of at least the highest priority and a second UCI of a next higher priority among the plurality of UCIs. do.
본 발명의 다른 양상으로, 복수의 셀 그룹들이 설정된 사용자기기가 상향링크 신호를 전송함에 있어서, 무선 주파수(radio frequency, RF) 유닛, 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하는, 사용자기기가 제공된다. 상기 프로세서는: 상기 복수의 셀 그룹들 적어도 하나를 통해 서브프레임 n에서 전송되도록 설정된 복수의 상향링크 제어 정보(uplink control information, UCI)에 대한 UCI 전송 정보를 수신하도록 상기 RF 유닛을 제어하고; 상기 UCI 전송 정보를 바탕으로, 상기 서브프레임 n에서, 상기 복수의 UCI 중 적어도 최상위 우선순위의 제1 UCI와 차상위 우선순위의 제2 UCI를 전송하도록 상기 RF 유닛을 제어할 수 있다.In another aspect of the present invention, a user equipment including a radio frequency (RF) unit and a processor configured to control the RF unit in transmitting a UL signal by a user equipment configured with a plurality of cell groups includes: Is provided. The processor is configured to: control the RF unit to receive UCI transmission information for a plurality of uplink control information (UCI) configured to be transmitted in subframe n through at least one of the plurality of cell groups; Based on the UCI transmission information, in the subframe n, the RF unit may be controlled to transmit a first UCI of at least the highest priority and a second UCI of a next higher priority among the plurality of UCIs.
본 발명의 또 다른 양상으로, 기지국이 복수의 셀 그룹들이 설정된 사용자기기가 상향링크 신호를 수신함에 있어서, 상기 복수의 셀 그룹들 적어도 하나를 통해 서브프레임 n에서 전송되도록 설정된 복수의 상향링크 제어 정보(uplink control information, UCI)에 대한 UCI 전송 정보를 전송; 및 상기 UCI 전송 정보를 바탕으로, 상기 서브프레임 n에서, 상기 복수의 UCI 중 적어도 최상위 우선순위의 제1 UCI와 차상위 우선순위의 제2 UCI를 수신하는 것을 포함하는, 상향링크 신호 수신 방법이 제공된다.In another aspect of the present invention, when the user equipment configured with a plurality of cell groups is received by the base station, a plurality of uplink control information configured to be transmitted in subframe n through at least one of the plurality of cell groups. transmit UCI transmission information for uplink control information (UCI); And receiving, according to the UCI transmission information, in the subframe n, a first UCI of at least the highest priority and a second UCI of a next higher priority among the plurality of UCIs. do.
본 발명의 또 다른 양상으로, 기지국이 복수의 셀 그룹들이 설정된 사용자기기가 상향링크 신호를 수신함에 있어서, 무선 주파수(radio frequency, RF) 유닛, 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하는, 기지국이 제공된다. 상기 프로세서는: 상기 복수의 셀 그룹들 적어도 하나를 통해 서브프레임 n에서 전송되도록 설정된 복수의 상향링크 제어 정보(uplink control information, UCI)에 대한 UCI 전송 정보를 전송하도록 상기 RF 유닛을 제어하고; 상기 UCI 전송 정보를 바탕으로, 상기 서브프레임 n에서, 상기 복수의 UCI 중 적어도 최상위 우선순위의 제1 UCI와 차상위 우선순위의 제2 UCI를 수신하도록 상기 RF 유닛을 제어할 수 잇다.In still another aspect of the present invention, a base station includes a radio frequency (RF) unit and a processor configured to control the RF unit when the user equipment configured with a plurality of cell groups receives an uplink signal. A base station is provided. The processor is configured to: control the RF unit to transmit UCI transmission information for a plurality of uplink control information (UCI) configured to be transmitted in subframe n through at least one of the plurality of cell groups; Based on the UCI transmission information, in the subframe n, the RF unit may be controlled to receive a first UCI of at least the highest priority and a second UCI of a next higher priority among the plurality of UCIs.
본 발명의 각 양상에 있어서, 상기 제1 UCI와 상기 제2 UCI가 모두 제1 셀 그룹에 설정된 경우, 상기 제1 UCI는 상기 제1 셀 그룹 상에서 전송되고 상기 제2 UCI는 상기 제1 셀 그룹이 아닌 제2 셀 그룹 상에서 전송될 수 있다.In each aspect of the present invention, when both the first UCI and the second UCI are set in a first cell group, the first UCI is transmitted on the first cell group and the second UCI is the first cell group Can be transmitted on the second cell group.
본 발명의 각 양상에 있어서, 상기 제1 셀 그룹과 상기 제2 셀 그룹 중 하나는 1차 셀을 갖는 1차 셀 그룹이고, 상기 제2 셀 그룹은 상기 1차 셀이 없으면서 상기 1차 셀 그룹에 속하지 않는 하나 이상의 2차 셀로 구성된 2차 셀 그룹일 수 있다.In each aspect of the present invention, one of the first cell group and the second cell group is a primary cell group having a primary cell, and the second cell group is the primary cell group without the primary cell. It may be a secondary cell group consisting of one or more secondary cells that do not belong to.
본 발명의 각 양상에 있어서, 상기 1차 셀 그룹에 속한 상기 하나 이상의 2차 셀들 중 물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송을 위한 특별 2차 셀을 지시하는 정보가 사용자기기에게 제공될 수 있다.In each aspect of the present invention, information indicating a special secondary cell for transmitting a physical uplink control channel (PUCCH) among the one or more secondary cells belonging to the primary cell group is informed to the user equipment. Can be provided.
본 발명의 각 양상에 있어서, 제1 UCI와 상기 제2 UCI는 단일 물리 상향링크 채널 상에서 동시 전송이 허용되지 않는 UCI일 수 있다.In each aspect of the present invention, the first UCI and the second UCI may be UCI in which simultaneous transmission is not allowed on a single physical uplink channel.
본 발명의 각 양상에 있어서, 상기 서브프레임 n에 상기 제1 셀 그룹 또는 상기 제2 셀 그룹에 설정된, 상기 제1 UCI와 상기 제2 UCI보다 낮은 우선순위의 제3 UCI가 있는 경우, 상기 제3 UCI의 전송을 드랍될 수 있다.In each aspect of the present invention, if there is a third UCI having a lower priority than the first UCI and the second UCI set in the first cell group or the second cell group in the subframe n, 3 UCI transmission can be dropped.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.The problem solving methods are only a part of embodiments of the present invention, and various embodiments reflecting the technical features of the present invention are based on the detailed description of the present invention described below by those skilled in the art. Can be derived and understood.
본 발명의 일 실시예에 의하면, 무선 통신 신호가 효율적으로 전송/수신될 수 있다. 이에 따라, 무선 통신 시스템의 전체 처리량(throughput)이 높아질 수 있다.According to an embodiment of the present invention, the wireless communication signal can be efficiently transmitted / received. Accordingly, the overall throughput of the wireless communication system can be high.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects according to the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the detailed description of the present invention. There will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description in order to provide a thorough understanding of the present invention, provide an embodiment of the present invention and together with the description, illustrate the technical idea of the present invention.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.1 illustrates an example of a radio frame structure used in a wireless communication system.
도 2 는 무선 통신 시스템에서 하향링크(downlink, DL)/상향링크(uplink, UL) 슬롯 구조의 일례를 나타낸 것이다.2 illustrates an example of a downlink (DL) / uplink (UL) slot structure in a wireless communication system.
도 3은 무선 통신 시스템에서 사용되는 하향링크(downlink, DL) 서브프레임(subframe) 구조를 예시한 것이다.3 illustrates a downlink (DL) subframe structure used in a wireless communication system.
도 4는 무선 통신 시스템에 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.4 illustrates an example of an uplink (UL) subframe structure used in a wireless communication system.
도 5는 단일 반송파 통신과 다중 반송파 통신을 설명하기 위한 도면이다.5 is a diagram for describing single carrier communication and multicarrier communication.
도 6은 반송파 집성을 지원하는 시스템에서 셀들의 상태를 예시한 것이다.6 illustrates states of cells in a system supporting carrier aggregation.
도 7에서 도 9는 PUCCH 포맷을 PUCCH 자원에 물리적으로 맵핑하는 예를 나타낸 것이다.7 to 9 illustrate examples of physically mapping a PUCCH format to PUCCH resources.
도 10는 예약 자원 구간(reserved resource period, RRP)의 서브프레임 구성을 예시한 것이다. 10 illustrates a subframe configuration of a reserved resource period (RRP).
도 11에서 도 14는 본 발명의 실시예들에 따른 상향링크 제어 정보(uplink control information, UCI)의 전송을 예시한 것이다.11 through 14 illustrate transmission of uplink control information (UCI) according to embodiments of the present invention.
도 15는 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.15 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다. CDMA는 UTRA (Universal Terrestrial Radio Access) 또는 CDMA2000과 같은 무선 기술(technology)에서 구현될 수 있다. TDMA는 GSM(Global System for Mobile communication), GPRS(General Packet Radio Service), EDGE(Enhanced Data Rates for GSM Evolution) (i.e., GERAN) 등과 같은 무선 기술에서 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11(WiFi), IEEE 802.16(WiMAX), IEEE802-20, E-UTRA(evolved-UTRA) 등과 같은 무선 기술에서 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunication System)의 일부이며, 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 이용하는 E-UMTS의 일부이다. 3GPP LTE는 하향링크(downlink, DL)에서는 OFDMA를 채택하고, 상향링크(uplink, UL)에서는 SC-FDMA를 채택하고 있다. LTE-A(LTE-advanced)는 3GPP LTE의 진화된 형태이다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE/LTE-A에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE/LTE-A 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE/LTE-A에 특유한 사항을 제외하고는 다른 임의의 이동 통신 시스템에도 적용 가능하다. The techniques, devices, and systems described below can be applied to various wireless multiple access systems. Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access (MCD) systems and multi-carrier frequency division multiple access (MC-FDMA) systems. CDMA may be implemented in a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented in radio technologies such as Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Enhanced Data Rates for GSM Evolution (EDGE) (i.e., GERAN), and the like. OFDMA may be implemented in wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (WiFi), IEEE 802.16 (WiMAX), IEEE802-20, evolved-UTRA (E-UTRA), and the like. UTRA is part of Universal Mobile Telecommunication System (UMTS), and 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of E-UMTS using E-UTRA. 3GPP LTE adopts OFDMA in downlink (DL) and SC-FDMA in uplink (UL). LTE-advanced (LTE-A) is an evolution of 3GPP LTE. For convenience of explanation, hereinafter, it will be described on the assumption that the present invention is applied to 3GPP LTE / LTE-A. However, the technical features of the present invention are not limited thereto. For example, even if the following detailed description is described based on the mobile communication system corresponding to the 3GPP LTE / LTE-A system, any other mobile communication except for the matters specific to 3GPP LTE / LTE-A is described. Applicable to the system as well.
예를 들어, 본 발명은 3GPP LTE/LTE-A 시스템과 같이 eNB가 UE에게 하향링크/상향링크 시간/주파수 자원을 할당하고 UE가 eNB의 할당에 따라 하향링크 신호를 수신하고 상향링크 신호를 전송하는 비-경쟁 기반(non-contention based) 통신뿐만 아니라, WiFi와 같은 경쟁 기반(contention based) 통신에도 적용될 수 있다. 비-경쟁 기반 통신 기법은 접속 포인트(access point, AP) 혹은 상기 접속 포인트를 제어하는 제어 노드(node)가 UE와 상기 AP 사이의 통신을 위한 자원을 할당함에 반해 경쟁 기반 통신 기법은 AP에 접속하고자 하는 다수의 UE들 사이의 경쟁을 통해 통신 자원이 점유된다. 경쟁 기반 통신 기법에 대해 간략히 설명하면, 경쟁 기반 통신 기법의 일종으로 반송파 감지 다중 접속(carrier sense multiple access, CSMA)이 있는데, CSMA는 노드 혹은 통신 기기가 주파수 대역(band)와 같은, 공유 전송 매체(shared transmission medium)(공유 채널이라고도 함) 상에서 트래픽(traffic)을 전송하기 전에 동일한 공유 전송 매체 상에 다른 트래픽이 없음을 확인하는 확률적(probabilistic) 매체 접속 제어(media access control, MAC) 프로토콜(protocol)을 말한다. CSMA에서 전송 장치는 수신 장치에 트래픽을 보내는 것을 시도하기 전에 다른 전송이 진행 중인지를 결정한다. 다시 말해, 전송 장치는 전송을 시도하기 전에 다른 전송 장치로부터의 반송파(carrier)의 존재를 검출(detect)하는 것을 시도한다. 반송파가 감지되면 전송 장치는 자신의 전송을 개시하기 전에 진행 중인 다른 전송 장치에 의해 전송이 완료(finish)되기를 기다린다. 결국, CSMA는 "sense before transmit" 혹은 "listen before talk" 원리를 기반으로 한 통신 기법이라 할 수 있다. CSMA를 이용하는 경쟁 기반 통신 시스템에서 전송 장치들 사이의 충돌을 회피하기 위한 기법으로 CSMA/CD(Carrier Sense Multiple Access with Collision Detection) 및/또는 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)가 사용된다. CSMA/CD는 유선 랜 환경에서 충돌 검출 기법으로서 이더넷(ethernet) 환경에서 통신을 하고자 하는 PC(Personal Computer)나 서버(server)가 먼저 네트워크 상에서 통신이 일어나고 있는지 확인한 후, 다른 장치(device)가 데이터를 상기 네트워크 상에서 실어 보내고 있으면 기다렸다가 데이터를 보낸다. 즉 2명 이상의 사용자(예, PC, UE 등)가 동시에 데이터를 실어 보내는 경우, 상기 동시 전송들 사이에 충돌이 발생하는데, CSMA/CD는 상기 충돌을 감시하여 유연성 있는 데이터 전송이 이루어질 수 있도록 하는 기법이다. CSMA/CD를 사용하는 전송 장치는 특정 규칙을 이용하여 다른 전송 장치에 의한 데이터 전송을 감지하여 자신의 데이터 전송을 조절한다. CSMA/CA는 IEEE 802.11 표준에 명시 되어 있는 매체 접근 제어 프로토콜이다. IEEE 802.11 표준에 따른 WLAN 시스템은 IEEE 802.3 표준에서 사용되던 CSMA/CD를 사용하지 않고 CA, 즉, 충돌을 회피하는 방식을 사용하고 있다. 전송 장치들은 항상 네트워크의 반송파를 감지하고 있다가, 네트워크가 비어있을 때 목록에 등재된 자신의 위치에 따라 정해진 만큼의 시간을 기다렸다가 데이터를 보낸다. 목록 내에서 전송 장치들 간의 우선순위를 정하고, 이를 재설정(reconfiguration)하는 데에는 여러 가지 방법들이 사용된다. IEEE 802.11 표준의 일부 버전에 따른 시스템에서는, 충돌이 일어날 수 있으며, 이때에는 충돌 감지 절차가 수행된다. CSMA/CA를 사용하는 전송 장치는 특정 규칙을 이용하여 다른 전송 장치에 의한 데이터 전송과 자신의 데이터 전송 사이의 충돌을 회피한다.For example, in the present invention, as in the 3GPP LTE / LTE-A system, an eNB allocates a downlink / uplink time / frequency resource to a UE, and the UE receives a downlink signal according to the allocation of the eNB and transmits an uplink signal. In addition to non-contention based communication, it can be applied to contention-based communication such as WiFi. In the non-competition based communication scheme, an access point (AP) or a control node controlling the access point allocates resources for communication between a UE and the AP, whereas a competition-based communication technique connects to an AP. Communication resources are occupied through contention among multiple UEs that are willing to. A brief description of the contention-based communication technique is a type of contention-based communication technique called carrier sense multiple access (CSMA), which is a shared transmission medium in which a node or a communication device is a frequency band. probabilistic media access control (MAC) protocol that ensures that there is no other traffic on the same shared transmission medium before transmitting traffic on a shared transmission medium (also called a shared channel). protocol). In CSMA, the transmitting device determines if another transmission is in progress before attempting to send traffic to the receiving device. In other words, the transmitting device attempts to detect the presence of a carrier from another transmitting device before attempting to transmit. When the carrier is detected, the transmission device waits for transmission to be completed by another transmission device in progress before initiating its transmission. After all, CSMA is a communication technique based on the principle of "sense before transmit" or "listen before talk". Carrier Sense Multiple Access with Collision Detection (CSMA / CD) and / or Carrier Sense Multiple Access with Collision Avoidance (CSMA / CA) are used as a technique for avoiding collision between transmission devices in a contention-based communication system using CSMA. . CSMA / CD is a collision detection technique in a wired LAN environment. First, a PC or a server that wants to communicate in an Ethernet environment checks if a communication occurs on the network, and then another device If you are sending on the network, wait and send data. That is, when two or more users (eg, PCs, UEs, etc.) simultaneously carry data, collisions occur between the simultaneous transmissions. CSMA / CD monitors the collisions to allow flexible data transmission. Technique. A transmission device using CSMA / CD detects data transmission by another transmission device and adjusts its data transmission using a specific rule. CSMA / CA is a media access control protocol specified in the IEEE 802.11 standard. WLAN systems according to the IEEE 802.11 standard use a CA, that is, a collision avoidance method, without using the CSMA / CD used in the IEEE 802.3 standard. The transmitting devices always detect the carrier of the network, and when the network is empty, wait for a certain amount of time according to their location on the list and send the data. Various methods are used to prioritize and reconfigure transmission devices within a list. In a system according to some versions of the IEEE 802.11 standard, a collision may occur, in which a collision detection procedure is performed. Transmission devices using CSMA / CA use specific rules to avoid collisions between data transmissions by other transmission devices and their data transmissions.
본 발명에 있어서, UE는 고정되거나 이동성을 가질 수 있으며, 기지국(base station, BS)과 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 (Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, BS는 일반적으로 UE 및/또는 다른 BS와 통신하는 고정국(fixed station)을 말하며, UE 및 타 BS와 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 접속 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다. 이하의 본 발명에 관한 설명에서는, BS를 eNB로 통칭한다.In the present invention, the UE may be fixed or mobile, and various devices which communicate with a base station (BS) to transmit and receive user data and / or various control information belong to the same. UE (Terminal Equipment), MS (Mobile Station), MT (Mobile Terminal), UT (User Terminal), SS (Subscribe Station), wireless device, PDA (Personal Digital Assistant), wireless modem ), A handheld device, or the like. In addition, in the present invention, a BS generally refers to a fixed station communicating with the UE and / or another BS, and communicates with the UE and another BS to exchange various data and control information. The BS may be referred to in other terms such as ABS (Advanced Base Station), Node-B (NB), evolved-NodeB (NB), Base Transceiver System (BTS), Access Point, and Processing Server (PS). In the following description of the present invention, BS is collectively referred to as eNB.
본 발명에서 노드(node)라 함은 UE 와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 다양한 형태의 eNB 들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), 릴레이(relay), 리피터(repeater) 등이 노드가 될 수 있다. 또한, 노드는 eNB 가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 eNB 의 전력 레벨(power level) 보다 낮은 전력 레벨을 갖는다. RRH 혹은 RRU 이하, RRH/RRU)는 일반적으로 광 케이블 등의 전용 회선(dedicated line)으로 eNB 에 연결되어 있기 때문에, 일반적으로 무선 회선으로 연결된 eNB 들에 의한 협력 통신에 비해, RRH/RRU 와 eNB 에 의한 협력 통신이 원활하게 수행될 수 있다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다.In the present invention, a node refers to a fixed point capable of transmitting / receiving a radio signal by communicating with a UE. Various forms of eNBs may be used as nodes regardless of their names. For example, a node may be a BS, an NB, an eNB, a pico-cell eNB (PeNB), a home eNB (HeNB), a relay, a repeater, or the like. Also, the node may not be an eNB. For example, it may be a radio remote head (RRH), a radio remote unit (RRU). RRH, RRU, etc. generally have a power level lower than the power level of the eNB. Since RRH or RRU, RRH / RRU) is generally connected to the eNB by a dedicated line such as an optical cable, RRH / RRU and eNB are generally compared to cooperative communication by eNBs connected by a wireless line. By cooperative communication can be performed smoothly. At least one antenna is installed at one node. The antenna may mean a physical antenna or may mean an antenna port, a virtual antenna, or an antenna group. Nodes are also called points.
본 발명에서 셀(cell)이라 함은 하나 이상의 노드가 통신 서비스를 제공하는 일정 지리적 영역을 말한다. 따라서, 본 발명에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE 에게 상/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 eNB 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다. LTE/LTE-A 기반의 시스템에서, UE 는 특정 노드로부터의 하향링크 채널 상태를 상기 특정 노드의 안테나 포트(들)이 상기 특정 노드에 할당된 CRS (Cell-specific Reference Signal) 자원 상에서 전송되는 CRS(들) 및/또는 CSI-RS(Channel State Information Reference Signal) 자원 상에서 전송하는 CSI-RS(들)을 이용하여 측정할 수 있다. 구체적인 CSI-RS 설정에 대해서는 3GPP TS 36.211 및 3GPP TS 36.331 문서를 참조할 수 있다. In the present invention, a cell refers to a certain geographic area in which one or more nodes provide communication services. Therefore, in the present invention, communication with a specific cell may mean communication with an eNB or a node that provides a communication service to the specific cell. In addition, the downlink / uplink signal of a specific cell means a downlink / uplink signal from / to an eNB or a node that provides a communication service to the specific cell. A cell that provides uplink / downlink communication service to a UE is particularly called a serving cell. In addition, the channel state / quality of a specific cell means a channel state / quality of a channel or communication link formed between an eNB or a node providing a communication service to the specific cell and a UE. In an LTE / LTE-A based system, the UE transmits a downlink channel state from a specific node to a CRS in which antenna port (s) of the specific node are transmitted on a Cell-specific Reference Signal (CRS) resource allocated to the specific node. It may be measured using the CSI-RS (s) transmitted on the (s) and / or Channel State Information Reference Signal (CSI-RS) resources. For detailed CSI-RS configuration, reference may be made to 3GPP TS 36.211 and 3GPP TS 36.331 documents.
한편, 3GPP LTE/LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용하고 있는데, 무선 자원과 연관된 셀(cell)은 지리적 영역의 셀(cell)과 구분된다.Meanwhile, the 3GPP LTE / LTE-A system uses the concept of a cell to manage radio resources. Cells associated with radio resources are distinguished from cells in a geographic area.
지리적 영역의 "셀"은 노드가 반송파를 이용하여 서비스를 제공할 수 있는 커버리지(coverage)라고 이해될 수 있으며, 무선 자원의 "셀"은 상기 반송파에 의해 설정(configure)되는 주파수 범위인 대역폭(bandwidth, BW)와 연관된다. 노드가 유효한 신호를 전송할 수 있는 범위인 하향링크 커버리지와 UE 로부터 유효한 신호를 수신할 수 있는 범위인 상향링크 커버리지는 해당 신호를 나르는 반송파에 의해 의존하므로 노드의 커버리지는 상기 노드가 사용하는 무선 자원의 "셀"의 커버리지와 연관되기도 한다. 따라서 "셀"이라는 용어는 때로는 노드에 의한 서비스의 커버리지를, 때로는 무선 자원을, 때로는 상기 무선 자원을 이용한 신호가 유효한 세기로 도달할 수 있는 범위를 의미하는 데 사용될 수 있다. 무선 자원의 "셀"에 대해서는 이후에 좀 더 자세히 설명된다.A "cell" in a geographic area may be understood as coverage in which a node can provide services using a carrier, and a "cell" of radio resources is a bandwidth (frequency) that is a frequency range configured by the carrier. bandwidth, BW). Since downlink coverage, which is a range in which a node can transmit valid signals, and uplink coverage, which is a range in which a valid signal is received from a UE, depends on a carrier carrying the signal, the coverage of the node is determined by the radio resources used by the node. It is also associated with the coverage of the "cell". Thus, the term "cell" can sometimes be used to mean coverage of a service by a node, sometimes a radio resource, and sometimes a range within which a signal using the radio resource can reach a valid strength. The "cell" of radio resources is described in more detail later.
3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 eNB와 UE 가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.The 3GPP LTE / LTE-A standard corresponds to downlink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Downlink physical signals are defined. For example, a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, reference signal and synchronization signal Is defined as downlink physical signals. A reference signal (RS), also referred to as a pilot, refers to a signal of a predetermined special waveform known to the eNB and the UE. For example, a cell specific RS, UE- UE-specific RS, positioning RS (PRS), and channel state information RS (CSI-RS) are defined as downlink reference signals. The 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Uplink physical signals are defined. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are the uplink physical channels. A demodulation reference signal (DMRS) for uplink control / data signals and a sounding reference signal (SRS) used for uplink channel measurement are defined.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH 를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, eNB 가 PDCCH/PCFICH/PHICH/PDSCH 를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.In the present invention, Physical Downlink Control CHannel (PDCCH) / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a Physical Uplink Control CHannel (PUCCH) / Physical (PUSCH) Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI) / uplink data / random access signals, respectively. The PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE is allocated to the PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH. The PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource is referred to below: The expression that the user equipment transmits the PUCCH / PUSCH / PRACH is hereinafter referred to as uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively. It is used in the same sense as transmitting a data / random access signal, and the expression that the eNB transmits PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS 가 할당된 혹은 설정된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS 가 할당된 혹은 설정된(configured) OFDM 심볼/부반송파/RE 를 각각 PSS/SSS 심볼/부반송파/RE 라 칭한다.In the following description, CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured OFDM symbol / subcarrier / RE to CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier / subcarrier / RE. It is called. For example, an OFDM symbol assigned or configured with a tracking RS (TRS) is called a TRS symbol, a subcarrier assigned or configured with a TRS is called a TRS subcarrier, and an RE assigned or configured with a TRS is called a TRS RE. . In addition, a subframe configured for TRS transmission is called a TRS subframe. Also, a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe, and a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called. An OFDM symbol / subcarrier / RE to which PSS / SSS is assigned or configured is referred to as a PSS / SSS symbol / subcarrier / RE, respectively.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정된(configured) 안테나 포트, UE-RS를 전송하도록 설정된 안테나 포트, CSI-RS를 전송하도록 설정된 안테나 포트, TRS를 전송하도록 설정된 안테나 포트를 의미한다. CRS들을 전송하도록 설정된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.In the present invention, the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, and an antenna configured to transmit CSI-RS, respectively. Port, an antenna port configured to transmit TRS. Antenna ports configured to transmit CRSs may be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs may be UE-RS according to the UE-RS ports. The RSs may be distinguished from each other by locations of REs occupied, and antenna ports configured to transmit CSI-RSs may be distinguished from each other by locations of REs occupied by the CSI-RSs according to the CSI-RS ports. Therefore, the term CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.1 illustrates an example of a radio frame structure used in a wireless communication system.
특히, 도 1(a)는 3GPP LTE/LTE-A 시스템에서 사용되는 주파수분할듀플렉스(frequency division duplex, FDD)용 프레임 구조를 나타낸 것이고, 도 1(b)는 3GPP LTE/LTE-A 시스템에서 사용되는 시분할듀플렉스(time division duplex, TDD)용 프레임 구조를 나타낸 것이다.In particular, Figure 1 (a) shows a frame structure for frequency division duplex (FDD) used in the 3GPP LTE / LTE-A system, Figure 1 (b) is used in the 3GPP LTE / LTE-A system The frame structure for time division duplex (TDD) is shown.
도 1을 참조하면, 3GPP LTE/LTE-A 시스템에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임(subframe, SF)으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송 시간 간격(transmission time interval, TTI)로 정의된다. 시간 자원은 무선 프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.Referring to FIG. 1, a radio frame used in a 3GPP LTE / LTE-A system has a length of 10 ms (307200 T s ) and consists of 10 equally sized subframes (subframes). Numbers may be assigned to 10 subframes in one radio frame. Here, T s represents the sampling time and is expressed as T s = 1 / (2048 * 15 kHz). Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long. The time for transmitting one subframe is defined as a transmission time interval (TTI). The time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
무선 프레임은 듀플렉스(duplex) 모드에 따라 다르게 설정(configure)될 수 있다. 예를 들어, FDD 모드에서, 하향링크 전송 및 상향링크 전송은 주파수에 의해 구분되므로, 무선 프레임은 특정 주파수 대역에 대해 하향링크 서브프레임 또는 상향링크 서브프레임 중 하나만을 포함한다. TDD 모드에서 하향링크 전송 및 상향링크 전송은 시간에 의해 구분되므로, 특정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 상향링크 서브프레임을 모두 포함한다.The radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe for a specific frequency band. In the TDD mode, since downlink transmission and uplink transmission are separated by time, a radio frame includes both a downlink subframe and an uplink subframe for a specific frequency band.
표 1은 TDD 모드에서, 무선 프레임 내 서브프레임들의 DL-UL 설정(configuration)을 예시한 것이다.Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
DL-UL configurationDL-UL configuration Downlink-to-Uplink Switch-point periodicityDownlink-to-Uplink Switch-point periodicity Subframe numberSubframe number
00 1One 22 33 44 55 66 77 88 99
00 5ms5 ms DD SS UU UU UU DD SS UU U U UU
1One 5ms5 ms DD SS UU UU DD DD SS U U UU DD
22 5ms5 ms DD SS UU DD DD DD SS U U DD DD
33 10ms10 ms DD SS UU UU UU DD DD D D DD DD
44 10ms10 ms DD SS UU UU DD DD DD D D DD DD
55 10ms10 ms DD SS UU DD DD DD DD DD DD DD
66 5ms5 ms DD SS UU UU UU DD SS UU UU DD
표 1에서, D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 특별(특별) 서브프레임을 나타낸다. 특별 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)의 3개 필드를 포함한다. DwPTS는 하향링크 전송용으로 유보되는 시간 구간이며, UpPTS는 상향링크 전송용으로 유보되는 시간 구간이다. 표 2는 특별 서브프레임의 설정(configuration)을 예시한 것이다.In Table 1, D represents a downlink subframe, U represents an uplink subframe, and S represents a special (special) subframe. The special subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS). DwPTS is a time interval reserved for downlink transmission, and UpPTS is a time interval reserved for uplink transmission. Table 2 illustrates the configuration of a special subframe.
Special subframe configurationSpecial subframe configuration Normal cyclic prefix in downlinkNormal cyclic prefix in downlink Extended cyclic prefix in downlinkExtended cyclic prefix in downlink
DwPTSDwPTS UpPTSUpPTS DwPTSDwPTS UpPTSUpPTS
Normal cyclic prefix in uplinkNormal cyclic prefix in uplink Extended cyclic prefix in uplinkExtended cyclic prefix in uplink Normal cyclic prefix in uplinkNormal cyclic prefix in uplink Extended cyclic prefix in uplinkExtended cyclic prefix in uplink
00 6592·Ts 6592T s 2192·Ts 2192T s 2560·Ts 2560T s 7680·Ts 7680T s 2192·Ts 2192T s 2560·Ts 2560T s
1One 19760·Ts 19760T s 20480·Ts 20480T s
22 21952·Ts 21952T s 23040·Ts 23040T s
33 24144·Ts 24144T s 25600·Ts 25600T s
44 26336·Ts 26336T s 7680·Ts 7680T s 4384·Ts 4384T s 5120·Ts 5120T s
55 6592·Ts 6592T s 4384·Ts 4384T s 5120·Ts 5120T s 20480·Ts 20480T s
66 19760·Ts 19760T s 23040·Ts 23040T s
77 21952·Ts 21952T s -- -- --
88 24144·Ts 24144T s -- -- --
도 2는 무선 통신 시스템에서 하향링크(downlink, DL)/상향링크(uplink, UL) 슬롯 구조의 일례를 나타낸 것이다.2 illustrates an example of a downlink (DL) / uplink (UL) slot structure in a wireless communication system.
도 2를 참조하면, 슬롯은 시간 도메인(time domain)에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인(frequency domain)에서 복수의 자원 블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 2를 참조하면, 각 슬롯에서 전송되는 신호는 N DL / UL RB×N RB sc개의 부반송파(subcarrier)와 N DL / UL symb개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, N DL RB은 하향링크 슬롯에서의 자원 블록(resource block, RB)의 개수를 나타내고, N UL RB은 UL 슬롯에서의 RB 의 개수를 나타낸다. N DL RB N UL RB 은 DL 전송 대역폭과 UL 전송 대역폭에 각각 의존한다. N DL symb은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며, N UL symb은 UL 슬롯 내 OFDM 심볼의 개수를 나타낸다. N RB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.Referring to FIG. 2, a slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in a time domain and a plurality of resource blocks (RBs) in a frequency domain. An OFDM symbol may mean a symbol period. Referring to FIG. 2, a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB × N RB sc subcarriers and N DL / UL symb OFDM symbols. . Here, N DL RB represents the number of resource blocks (RBs) in the downlink slot, and N UL RB represents the number of RBs in the UL slot. N DL RB With N UL RB Depends on the DL transmission bandwidth and the UL transmission bandwidth, respectively. N DL symb represents the number of OFDM symbols in the downlink slot, and N UL symb represents the number of OFDM symbols in the UL slot. N RB sc represents the number of subcarriers constituting one RB.
OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP(cyclic prefix)의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 정규(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7개 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 도 2를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서, N DL / UL RB×N RB sc개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호(reference signal)의 전송 위한 참조신호 부반송파, 보호 밴드(guard band) 또는 직류(Direct Current, DC) 성분을 위한 널(null) 부반송파로 나뉠 수 있다. DC 성분은 OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier frequency, f 0)로 맵핑(mapping)된다. 반송파 주파수는 중심 주파수(center frequency, f c)라고도 한다.The OFDM symbol may be called an OFDM symbol, a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol, or the like according to a multiple access scheme. The number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the cyclic prefix (CP). For example, in case of a normal CP, one slot includes 7 OFDM symbols, whereas in case of an extended CP, one slot includes 6 OFDM symbols. Although FIG. 2 illustrates a subframe in which one slot is composed of seven OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having different numbers of OFDM symbols in the same manner. Referring to FIG. 2, each OFDM symbol includes N DL / UL RB × N RB sc subcarriers in the frequency domain. The type of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard band or direct current (DC) components. . The DC component is mapped to a carrier frequency f 0 during an OFDM signal generation process or a frequency upconversion process. The carrier frequency is also called a center frequency ( f c ).
일 RB는 시간 도메인에서 N DL / UL symb개(예를 들어, 7개)의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 N RB sc개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 따라서, 하나의 RB는 N DL / UL symb×N RB sc개의 자원요소로 구성된다. 자원격자 내 각 자원요소는 일 슬롯 내 인덱스 쌍 (k, 1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 N DL/UL RB×N RB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 N DL / UL symb-1까지 부여되는 인덱스이다.One RB is defined as N DL / UL symb (e.g. 7) consecutive OFDM symbols in the time domain and is defined by N RB sc (e.g. 12) consecutive subcarriers in the frequency domain. Is defined. For reference, a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is composed of N DL / UL symb × N RB sc resource elements. Each resource element in the resource grid may be uniquely defined by an index pair ( k , 1 ) in one slot. k is an index given from 0 to N DL / UL RB × N RB sc −1 in the frequency domain, and l is an index given from 0 to N DL / UL symb −1 in the time domain.
한편, 일 RB는 일 물리 자원 블록(physical resource block, PRB)와 일 가상자원 블록(virtual resource block, VRB)에 각각 맵핑된다. PRB는 시간 도메인에서 N DL/UL symb개(예를 들어, 7개)의 연속하는 OFDM 심볼 혹은 SC-FDM 심볼로서 정의되며, 주파수 도메인에서 N RB sc 개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 따라서, 하나의 PRB는 N DL / UL symb×N RB sc개의 자원요소로 구성된다. 일 서브프레임에서 N RB sc개의 연속하는 동일한 부반송파를 점유하면서, 상기 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 PRB 쌍이라고 한다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호(혹은, PRB 인덱스라고도 함)를 갖는다.On the other hand, one RB is mapped to one physical resource block (PRB) and one virtual resource block (VRB), respectively. The PRB is defined as N DL / UL symb contiguous OFDM symbols (e.g. 7) or SC-FDM symbols in the time domain and N RB sc contiguous (e.g. 12) in the frequency domain Is defined by subcarriers. Therefore, one PRB is composed of N DL / UL symb × N RB sc resource elements. Two RBs , each occupied by N RB sc consecutive subcarriers in one subframe and one in each of two slots of the subframe, are referred to as a PRB pair. Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
UE 는 전원이 켜지거나 새로이 셀에 접속하고자 하는 경우 상기 셀과의 시간 및 주파수 동기를 획득하고 상기 셀의 물리 계층 셀 식별자(physical layer cell identity) N cell ID를 검출(detect)하는 등의 셀 탐색(initial cell search) 과정(procedure)을 수행한다. 이를 위해, UE 는 eNB로부터 동기신호, 예를 들어, 1차 동기신호(Primary Synchronization Signal, PSS) 및 2차 동기신호(Secondary Synchronization Signal, SSS)를 수신하여 eNB와 동기를 맞추고, 셀 식별자(identity, ID) 등의 정보를 획득할 수 있다. When the UE is powered on or wants to access a new cell, the UE acquires time and frequency synchronization with the cell and detects a cell's physical layer cell identity N cell ID . Perform an initial cell search procedure. To this end, the UE receives a synchronization signal from the eNB, for example, a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) to synchronize with the eNB, and synchronizes with the eNB. , ID) and the like can be obtained.
구체적으로, PSS는 5ms마다 전송되므로 UE는 PSS를 검출함으로써 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 하나임을 알 수 있으나, 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 구체적으로 무엇인지는 알 수 없다. 따라서, UE는 PSS만으로는 무선 프레임의 경계를 인지하지 못한다. 즉, PSS만으로는 프레임 동기가 획득될 수 없다. UE는 일 무선 프레임 내에서 두 번 전송되되 서로 다른 시퀀스로서 전송되는 SSS를 검출하여 무선 프레임의 경계를 검출한다.Specifically, since the PSS is transmitted every 5 ms, the UE detects the PSS to know that the corresponding subframe is one of the subframe 0 and the subframe 5, but the subframe is specifically the subframe 0 and the subframe 5. I can not know. Therefore, the UE does not recognize the boundary of the radio frame only by the PSS. That is, frame synchronization cannot be obtained only by PSS. The UE detects the boundary of the radio frame by detecting the SSS transmitted twice in one radio frame but transmitted as different sequences.
PSS/SSS를 이용한 셀(cell) 탐색 과정을 수행하여 DL 신호의 복조(demodulation) 및 UL 신호의 전송을 정확한 시점에 수행하는 데 필요한 시간 및 주파수 파라미터를 결정한 UE는 또한 상기 eNB로부터 상기 UE의 시스템 설정(system configuration)에 필요한 시스템 정보를 획득해야 상기 eNB와 통신할 수 있다.The UE, which has performed a cell discovery process using PSS / SSS to determine the time and frequency parameters required to perform demodulation of DL signals and transmission of UL signals at an accurate time point, can also be determined from the eNB. System information necessary for system configuration must be obtained to communicate with the eNB.
시스템 정보는 마스터정보블록(Master Information Block, MIB) 및 시스템정보블록(System Information Blocks, SIBs)에 의해 설정된다(configured). 각 시스템정보블록은 기능적으로 연관된 파라미터의 모음을 포함하며, 포함하는 파라미터에 따라 마스터정보블록(Master Information Block, MIB) 및 시스템정보블록타입 1(System Information Block Type 1, SIB1), 시스템정보블록타입 2(System Information Block Type 2, SIB2), SIB3∼SIB8으로 구분된다. MIB는 UE가 eNB의 네트워크(network)에 초기 접속(initial access)하는 데 필수적인, 가장 자주 전송되는 파라미터들을 포함한다. SIB1은 다른 SIB들의 시간 도메인 스케줄링에 대한 정보뿐만 아니라, 특정 셀이 셀 선택에 적합한 셀인지를 판단하는 데 필요한 파라미터들을 포함한다.System information is configured by a Master Information Block (MIB) and System Information Blocks (SIBs). Each system information block includes a collection of functionally related parameters, and includes a master information block (MIB), a system information block type 1 (SIB1), and a system information block type according to the included parameters. 2 (System Information Block Type 2, SIB2) and SIB3 to SIB8. The MIB contains the most frequently transmitted parameters that are necessary for the UE to have initial access to the eNB's network. SIB1 includes not only information on time domain scheduling of other SIBs, but also parameters necessary for determining whether a specific cell is a cell suitable for cell selection.
UE는 MIB를 브로드캐스트 채널(예, PBCH)를 통해 수신할 수 있다. MIB에는 하향링크 시스템 대역폭(dl-Bandwidth, DL BW), PHICH 설정(configuration), 시스템 프레임 넘버(SFN)가 포함된다. 따라서, UE는 PBCH를 수신함으로써 명시적(explicit)으로 DL BW, SFN, PHICH 설정에 대한 정보를 알 수 있다. 한편, PBCH를 수신을 통해 UE가 암묵적(implicit)으로 알 수 있는 정보로는 eNB의 전송 안테나 포트의 개수가 있다. eNB의 전송 안테나 개수에 대한 정보는 PBCH의 에러 검출에 사용되는 16-비트 CRC(Cyclic Redundancy Check)에 전송 안테나 개수에 대응되는 시퀀스를 마스킹(예, XOR 연산)하여 암묵적으로 시그널링된다.The UE may receive the MIB via a broadcast channel (eg, PBCH). The MIB includes a downlink system bandwidth (dl-Bandwidth, DL BW), a PHICH configuration, and a system frame number (SFN). Therefore, the UE can know the information on the DL BW, SFN, PHICH configuration explicitly by receiving the PBCH. On the other hand, the information that the UE implicitly (implicit) through the reception of the PBCH includes the number of transmit antenna ports of the eNB. Information about the number of transmit antennas of the eNB is implicitly signaled by masking (eg, XOR operation) a sequence corresponding to the number of transmit antennas to a 16-bit cyclic redundancy check (CRC) used for error detection of the PBCH.
DL 반송파 주파수와 해당 시스템 대역폭은 PBCH에 의해 획득될 수 있으며, UL 반송파 주파수 및 해당 시스템 대역폭은 DL 신호인 시스템 정보를 통해 얻어질 수 있다. 예를 들어, UE는 시스템 정보 블록 타입 2(SystemInformationBlockType2, SIB2)를 획득하여, 상기 SIB2 내 UL-반송파 주파수 및 UL-대역폭 정보를 통해 자신이 UL 전송에 사용할 수 있는 전체 UL 시스템 대역을 파악할 수 있다.The DL carrier frequency and the corresponding system bandwidth may be obtained by the PBCH, and the UL carrier frequency and the corresponding system bandwidth may be obtained through the system information that is the DL signal. For example, the UE may acquire a system information block type 2 (SystemInformationBlockType2, SIB2) to determine the entire UL system band that can be used for UL transmission through UL-carrier frequency and UL-bandwidth information in the SIB2. .
초기 셀 탐색을 마친 UE는 eNB로의 접속을 완료하기 위해 임의 접속 과정(random access procedure)을 수행할 수 있다. 이를 위해 UE는 물리 임의 접속 채널(physical random access channel, PRACH)을 통해 프리앰블(preamble)을 전송하고, PDCCH 및 PDSCH을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다. 경쟁 기반 임의 접속(contention based random access)의 경우 추가적인 PRACH의 전송, 그리고 PDCCH 및 상기 PDCCH에 대응하는 PDSCH와 같은 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다.After the initial cell discovery, the UE may perform a random access procedure to complete the access to the eNB. To this end, the UE may transmit a preamble through a physical random access channel (PRACH) and receive a response message for the preamble through a PDCCH and a PDSCH. In case of contention based random access, additional PRACH transmission and contention resolution procedure such as PDCCH and PDSCH corresponding to the PDCCH may be performed.
상술한 바와 같은 절차를 수행한 UE는 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신 및 PUSCH/PUCCH 전송을 수행할 수 있다.After performing the above-described procedure, the UE may perform PDCCH / PDSCH reception and PUSCH / PUCCH transmission as a general uplink / downlink signal transmission procedure.
상기 임의 접속 과정은 임의 접속 채널(random access channel, RACH) 과정으로도 지칭된다. 임의 접속 과정은 초기 접속, 임의 접속 과정은 초기 접속, 상향링크 동기 조정, 자원 할당, 핸드오버 등의 용도로 다양하게 사용된다. 임의 접속 과정은 경쟁-기반(contention-based) 과정과, 전용(dedicated)(즉, 비-경쟁-기반) 과정으로 분류된다. 경쟁-기반 임의 접속 과정은 초기 접속을 포함하여 일반적으로 사용되며, 전용 임의 접속 과정을 핸드오버 등에 제한적으로 사용된다. 경쟁-기반 임의 접속 과정에서 UE는 RACH 프리앰블 시퀀스를 임의로(randomly) 선택한다. 따라서, 복수의 UE들이 동시에 동일한 RACH 프리앰블 시퀀스를 전송하는 것이 가능하며, 이로 인해 이후 경쟁 해소 과정이 필요하다. 반면, 전용 임의 접속 과정에서 UE는 eNB가 해당 UE에게 유일하게 할당한 RACH 프리앰블 시퀀스를 사용한다. 따라서, 다른 UE와의 충돌없이 임의 접속 과정을 수행할 수 있다.The random access process is also referred to as a random access channel (RACH) process. The random access procedure is used for initial access, the random access procedure is used for various purposes such as initial access, uplink synchronization coordination, resource allocation, handover, and the like. The random access process is classified into a contention-based process and a dedicated (ie non-competition-based) process. The contention-based random access procedure is generally used, including initial access, and the dedicated random access procedure is limited to handover and the like. In the contention-based random access procedure, the UE randomly selects a RACH preamble sequence. Therefore, it is possible for a plurality of UEs to transmit the same RACH preamble sequence at the same time, which requires a contention cancellation process later. On the other hand, in the dedicated random access process, the UE uses the RACH preamble sequence that is allocated only to the UE by the eNB. Therefore, the random access procedure can be performed without collision with another UE.
경쟁-기반 임의 접속 과정은 다음의 4 단계를 포함한다. 이하, 단계 1~4에서 전송되는 메시지는 각각 메시지 1~4(Msg1 ~ Msg4)로 지칭될 수 있다.The contention-based random access procedure includes four steps. Hereinafter, the messages transmitted in steps 1 to 4 may be referred to as messages 1 to 4 (Msg1 to Msg4), respectively.
- 단계 1: RACH 프리앰블(via PRACH)(UE to eNB)Step 1: RACH preamble (via PRACH) (UE to eNB)
- 단계 2: 임의 접속 응답(random access response, RAR)(via PDCCH 및 PDSCH)(eNB to UE)Step 2: random access response (RAR) (via PDCCH and PDSCH) (eNB to UE)
- 단계 3: 레이어 2 / 레이어 3 메시지(via PUSCH)(UE to eNB)Step 3: Layer 2 / Layer 3 message (via PUSCH) (UE to eNB)
- 단계 4: 경쟁 해소(contention resolution) 메시지(eNB to UE)Step 4: Contention Resolution Message (eNB to UE)
전용 임의 접속 과정은 다음의 3 단계를 포함한다. 이하, 단계 0~2에서 전송되는 메시지는 각각 메시지 0~2(Msg0 ~ Msg2)로 지칭될 수 있다. 도시하지는 않았지만, 임의 접속 과정의 일부로 RAR에 대응하는 상향링크 전송(즉, 단계 3)도 수행될 수 있다. 전용 임의 접속 과정은 기지국이 RACH 프리앰블 전송을 명령하는 용도의 PDCCH(이하, PDCCH 오더(order))를 이용하여 트리거링될 수 있다.The dedicated random access procedure includes three steps. Hereinafter, the messages transmitted in steps 0 to 2 may be referred to as messages 0 to 2 (Msg0 to Msg2), respectively. Although not shown, uplink transmission (ie, step 3) corresponding to the RAR may also be performed as part of the random access procedure. The dedicated random access procedure may be triggered using a PDCCH (hereinafter, referred to as a PDCCH order) for the purpose of instructing the base station to transmit the RACH preamble.
- 단계 0: 전용 시그널링을 통한 RACH 프리앰블 할당(eNB to UE)Step 0: RACH preamble allocation via dedicated signaling (eNB to UE)
- 단계 1: RACH 프리앰블(via PRACH)(UE to eNB)Step 1: RACH preamble (via PRACH) (UE to eNB)
- 단계 2: 임의 접속 응답(RAR)(via PDCCH 및 PDSCH)(eNB to UE)Step 2: Random Access Response (RAR) (via PDCCH and PDSCH) (eNB to UE)
RACH 프리앰블을 전송한 뒤, UE는 미리-설정된 시간 윈도우 내에서 임의 접속 응답(RAR) 수신을 시도한다. 구체적으로, UE는 시간 윈도우 내에서 RA-RNTI(Random Access RNTI)를 갖는 PDCCH(이하, RA-RNTI PDCCH)(예, PDCCH에서 CRC가 RA-RNTI로 마스킹됨)의 검출을 시도한다. RA-RNTI PDCCH 검출 시, UE는 RA-RNTI PDCCH에 대응하는 PDSCH 내에 자신을 위한 RAR이 존재하는지 확인한다. RAR은 UL 동기화를 위한 타이밍 오프셋 정보를 나타내는 타이밍 어드밴스(timing advance, TA) 정보, UL 자원 할당 정보(UL 그랜트 정보), 임시 식별자(예, temporary cell-RNTI, TC-RNTI) 등을 포함한다. UE는 RAR 내의 자원 할당 정보 및 TA 값에 따라 UL 전송(예, Msg3)을 수행할 수 있다. RAR에 대응하는 UL 전송에는 HARQ가 적용된다. 따라서, UE는 Msg3 전송한 후, Msg3에 대응하는 수신 응답 정보(예, PHICH)를 수신할 수 있다.After transmitting the RACH preamble, the UE attempts to receive a random access response (RAR) within a pre-set time window. Specifically, the UE attempts to detect a PDCCH (hereinafter, RA-RNTI PDCCH) having a random access RNTI (RA-RNTI) (eg, CRC in the PDCCH is masked to RA-RNTI) within a time window. Upon detecting the RA-RNTI PDCCH, the UE checks whether there is a RAR for itself in the PDSCH corresponding to the RA-RNTI PDCCH. The RAR includes timing advance (TA) information indicating timing offset information for UL synchronization, UL resource allocation information (UL grant information), a temporary identifier (eg, temporary cell-RNTI, TC-RNTI), and the like. The UE may perform UL transmission (eg, Msg3) according to the resource allocation information and the TA value in the RAR. HARQ is applied to UL transmission corresponding to the RAR. Therefore, after transmitting the Msg3, the UE may receive reception response information (eg, PHICH) corresponding to the Msg3.
도 3은 무선 통신 시스템에서 사용되는 하향링크 서브프레임(subframe) 구조를 예시한 것이다.3 illustrates a downlink subframe structure used in a wireless communication system.
도 3을 참조하면, DL 서브프레임은 시간 도메인에서 제어 영역(control region)과 데이터 영역(data region)으로 구분된다. 도 3을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역(control region)에 대응한다. 이하, DL 서브프레임에서 PDCCH 전송에 이용가능한 자원 영역(resource region)을 PDCCH 영역이라 칭한다. 제어 영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared CHannel)가 할당되는 데이터 영역(data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용 가능한 자원 영역을 PDSCH 영역이라 칭한다. 3GPP LTE에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송에 대한 응답으로서 HARQ(Hybrid Automatic Repeat Request) ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다.Referring to FIG. 3, a DL subframe is divided into a control region and a data region in the time domain. Referring to FIG. 3, up to three (or four) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated. Hereinafter, a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region. The remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHannel (PDSCH) is allocated. Hereinafter, a resource region available for PDSCH transmission in a DL subframe is called a PDSCH region. Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like. The PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe. The PHICH carries a Hybrid Automatic Repeat Request (HARQ) ACK / NACK (acknowledgment / negative-acknowledgment) signal as a response to the UL transmission.
PDCCH를 통해 전송되는 제어 정보를 상향링크 제어 정보(downlink control information, DCI)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷(Transmit Format) 및 자원 할당 정보는 DL 스케줄링 정보 혹은 DL 그랜트(DL grant)라고도 불리며, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보는 UL 스케줄링 정보 혹은 UL 그랜트(UL grant)라고도 불린다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 코딩 레이트에 따라 그 크기가 달라질 수 있다. 현재 3GPP LTE 시스템에서는 상향링크용으로 포맷 0 및 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A 등의 다양한 포맷이 정의되어 있다. DCI 포맷 각각의 용도에 맞게, 호핑 플래그, RB 할당(RB allocation), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), 순환 천이 DMRS(cyclic shift demodulation reference signal), UL 인덱스, CQI(channel quality information) 요청, DL 할당 인덱스(DL assignment index), HARQ 프로세스 넘버, TPMI(transmitted precoding matrix indicator), PMI(precoding matrix indicator) 정보 등의 제어정보가 취사 선택된 조합이 하향링크 제어정보로서 UE 에게 전송된다.Control information transmitted through the PDCCH is referred to as downlink control information (DCI). DCI includes resource allocation information and other control information for the UE or UE group. The transmission format and resource allocation information of a downlink shared channel (DL-SCH) may also be called DL scheduling information or a DL grant, and may be referred to as an uplink shared channel (UL-SCH). The transmission format and resource allocation information is also called UL scheduling information or UL grant. The DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate. In the current 3GPP LTE system, various formats such as formats 0 and 4 for uplink and formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, and 3A are defined for uplink. Hopping flag, RB allocation, modulation coding scheme (MCS), redundancy version (RV), new data indicator (NDI), transmit power control (TPC), and cyclic shift DMRS Control information such as shift demodulation reference signal (UL), UL index, CQI request, DL assignment index, HARQ process number, transmitted precoding matrix indicator (TPMI), and precoding matrix indicator (PMI) information The selected combination is transmitted to the UE as downlink control information.
복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. UE는 복수의 PDCCH 를 모니터링 할 수 있다. eNB 는 UE에게 전송될 DCI에 따라 DCI 포맷을 결정하고, DCI에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹(또는 스크램블)된다. 예를 들어, PDCCH가 특정 UE을 위한 것일 경우, 해당 UE의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIB))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다. CRC 마스킹(또는 스크램블)은 예를 들어 비트 레벨에서 CRC와 RNTI를 XOR 연산하는 것을 포함한다.A plurality of PDCCHs may be transmitted in the control region. The UE may monitor the plurality of PDCCHs. The eNB determines the DCI format according to the DCI to be transmitted to the UE, and adds a cyclic redundancy check (CRC) to the DCI. The CRC is masked (or scrambled) with an identifier (eg, a radio network temporary identifier (RNTI)) depending on the owner or purpose of use of the PDCCH. For example, when the PDCCH is for a specific UE, an identifier (eg, cell-RNTI (C-RNTI)) of the UE may be masked to the CRC. If the PDCCH is for a paging message, a paging identifier (eg, paging-RNTI (P-RNTI)) may be masked to the CRC. When the PDCCH is for system information (more specifically, a system information block (SIB)), a system information RNTI (SI-RNTI) may be masked to the CRC. If the PDCCH is for a random access response, a random access-RNTI (RA-RNTI) may be masked to the CRC. CRC masking (or scramble) includes, for example, XORing the CRC and RNTI at the bit level.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 4개의 RE에 대응한다. 4개의 QPSK 심볼이 각각의 REG에 맵핑된다. 참조신호(RS)에 의해 점유된 자원요소(RE)는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 RS의 존재 여부에 따라 달라진다. REG 개념은 다른 하향링크 제어채널(즉, PCFICH 및 PHICH)에도 사용된다. DCI 포맷 및 DCI 비트의 개수는 CCE의 개수에 따라 결정된다. CCE들은 번호가 매겨져 연속적으로 사용되고, 복호 과정을 간단히 하기 위해, n개 CCE들로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하는 번호를 가지는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송에 사용되는 CCE의 개수는 채널 상태에 따라 네트워크 혹은 eNB 에 의해 결정된다. 예를 들어, 좋은 하향링크 채널을 가지는 UE(예, eNB 에 인접함)을 위한 PDCCH의 경우 하나의 CCE로도 충분할 수 있다. 그러나, 열악한 채널을 가지는 UE(예, 셀 경계에 근처에 존재)를 위한 PDCCH의 경우 충분한 강건성(robustness)을 얻기 위해서는 8개의 CCE가 요구될 수 있다. 또한, PDCCH의 파워 레벨은 채널 상태에 맞춰 조정될 수 있다.The PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs). CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions. The CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs. Four QPSK symbols are mapped to each REG. The resource element RE occupied by the reference signal RS is not included in the REG. Thus, the number of REGs within a given OFDM symbol depends on the presence of RS. The REG concept is also used for other downlink control channels (ie, PCFICH and PHICH). The DCI format and the number of DCI bits are determined according to the number of CCEs. CCEs are numbered and used consecutively, and to simplify the decoding process, a PDCCH having a format consisting of n CCEs can be started only in a CCE having a number corresponding to a multiple of n. The number of CCEs used for transmission of a specific PDCCH is determined by the network or eNB according to the channel state. For example, in case of PDCCH for a UE having a good downlink channel (eg, adjacent to an eNB), one CCE may be sufficient. However, in case of PDCCH for a UE having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness. In addition, the power level of the PDCCH may be adjusted according to the channel state.
3GPP LTE/LTE-A 시스템의 경우, 각각의 UE을 위해 PDCCH가 위치할 수 있는 CCE들의 모음(set)을 정의하였다. UE가 자신의 PDCCH를 발견할 수 있는 CCE들의 모음을 PDCCH 탐색 공간, 간단히 탐색 공간(Search Space, SS)라고 지칭한다. 탐색 공간 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보(candidate)라고 지칭한다. UE가 모니터링(monitoring)할 PDCCH 후보들의 모음은 탐색 공간으로 정의된다. 탐색 공간은 다른 크기를 가질 수 있으며, 전용(dedicated) 탐색 공간과 공통(common) 탐색 공간이 정의되어 있다. 전용 탐색 공간은 UE 특정적 탐색 공간(UE-specific search space, USS)이며, 각각의 개별 UE을 위해 설정된다(configured). 공통 탐색 공간(common search space, CSS)은 복수의 UE들을 위해 설정된다. In the 3GPP LTE / LTE-A system, a set of CCEs in which a PDCCH can be located for each UE is defined. The collection of CCEs in which a UE can discover its PDCCH is referred to as a PDCCH search space, simply a search space (SS). An individual resource to which a PDCCH can be transmitted in a search space is called a PDCCH candidate. The collection of PDCCH candidates that the UE will monitor is defined as a search space. The search space may have a different size, and a dedicated search space and a common search space are defined. The dedicated search space is a UE-specific search space (USS) and is configured for each individual UE. A common search space (CSS) is set for a plurality of UEs.
eNB 는 탐색 공간 내의 임의의 PDCCH 후보 상에서 실제 PDCCH (DCI)를 전송하고, UE 는 PDCCH (DCI)를 찾기 위해 탐색 공간을 모니터링한다. 여기서, 모니터링이라 함은 모든 모니터링되는 DCI 포맷들에 따라 해당 탐색 공간 내의 각 PDCCH의 복호(decoding)를 시도(attempt)하는 것을 의미한다. UE 는 상기 복수의 PDCCH를 모니터링하여, 자신의 PDCCH를 검출할 수 있다. 기본적으로 UE 는 자신의 PDCCH가 전송되는 위치를 모르기 때문에, 매 서브프레임마다 해당 DCI 포맷의 모든 PDCCH를 자신의 식별자를 가진 PDCCH를 검출할 때까지 PDCCH의 복호를 시도하는데, 이러한 과정을 블라인드 검출(blind detection)(블라인드 복호(blind decoding, BD))이라고 한다.The eNB sends the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the UE monitors the search space to find the PDCCH (DCI). Here, monitoring means attempting decoding of each PDCCH in a corresponding search space according to all monitored DCI formats. The UE may detect its own PDCCH by monitoring the plurality of PDCCHs. Basically, since the UE does not know where its PDCCH is transmitted, every subframe attempts to decode the PDCCH until all PDCCHs of the corresponding DCI format have detected a PDCCH having their own identifiers. It is called blind detection (blind decoding).
예를 들어, 특정 PDCCH 가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC(cyclic redundancy check) 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 DL 서브프레임을 통해 전송된다고 상정(assume)한다. UE는 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH 를 모니터링하고, "A"라는 RNTI를 가지고 있는 UE는 PDCCH를 검출하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.For example, a specific PDCCH is masked with a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, frequency location) of "B" and a transmission of "C". Assume that information about data to be transmitted using format information (eg, transport block size, modulation scheme, coding information, etc.) is transmitted through a specific DL subframe. The UE monitors the PDCCH using its own RNTI information, and the UE having the RNTI "A" detects the PDCCH, and the PDSCH indicated by "B" and "C" through the received PDCCH information. Receive
한편, 데이터 영역(예, PDSCH를 위한 자원 영역) 내에 PDCCH가 추가로 할당될 수 있다. 데이터 영역에 할당된 PDCCH를 EPDCCH라고 지칭한다. 도시된 바와 같이, EPDCCH를 통해 제어 채널 자원을 추가 확보함으로써, PDCCH 영역의 제한된 제어 채널 자원으로 인한 스케줄링 제약을 완화할 수 있다. PDCCH와 마찬가지로, EPDCCH는 DCI를 나른다. 예를 들어, EPDCCH는 하향링크 스케줄링 정보, 상향링크 스케줄링 정보를 나를 수 있다. 예를 들어, UE는 EPDCCH를 수신하고 EPDCCH에 대응되는 PDSCH를 통해 데이터/제어 정보를 수신할 수 있다. 또한, UE는 EPDCCH를 수신하고 EPDCCH에 대응되는 PUSCH를 통해 데이터/제어 정보를 송신할 수 있다. 셀 타입에 따라 EPDCCH/PDSCH는 서브프레임의 첫 번째 OFDM 심볼부터 할당될 수 있다. 특별히 구별하지 않는 한, 본 명세서에서 PDCCH는 PDCCH와 EPDCCH를 모두 포함한다.Meanwhile, a PDCCH may be additionally allocated in a data region (eg, a resource region for PDSCH). The PDCCH allocated to the data region is called an EPDCCH. As illustrated, by additionally securing control channel resources through the EPDCCH, scheduling constraints due to limited control channel resources in the PDCCH region may be relaxed. Like the PDCCH, the EPDCCH carries a DCI. For example, the EPDCCH may carry downlink scheduling information and uplink scheduling information. For example, the UE may receive an EPDCCH and receive data / control information through a PDSCH corresponding to the EPDCCH. In addition, the UE may receive the EPDCCH and transmit data / control information through a PUSCH corresponding to the EPDCCH. The EPDCCH / PDSCH may be allocated from the first OFDM symbol of the subframe according to the cell type. Unless otherwise specified, in the present specification, the PDCCH includes both PDCCH and EPDCCH.
도 4는 무선 통신 시스템에 사용되는 상향링크(uplink, UL) 서브프레임 구조의 일례를 나타낸 것이다.4 illustrates an example of an uplink (UL) subframe structure used in a wireless communication system.
도 4를 참조하면, UL 서브프레임은 주파수 도메인에서 제어 영역과 데이터 영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 상향링크 제어 정보(uplink control information, UCI)를 나르기 위해, 상기 제어 영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, UL 서브프레임의 데이터 영역에 할당될 수 있다.Referring to FIG. 4, the UL subframe may be divided into a control region and a data region in the frequency domain. One or several physical uplink control channels (PUCCHs) may be allocated to the control region to carry uplink control information (UCI). One or several physical uplink shared channels (PUSCHs) may be allocated to a data region of a UL subframe to carry user data.
UL 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어 영역으로 활용된다. 다시 말해, UL 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로서, 주파수 상향변환 과정에서 반송파 주파수 f 0로 맵핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다.In the UL subframe, subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region. In other words, subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information. The DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion. The PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots. The PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.PUCCH may be used to transmit the following control information.
● SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.SR (Scheduling Request): Information used to request an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
● HARQ-ACK: PDCCH에 대한 응답 및/또는 PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. PDCCH 혹은 PDSCH가 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 HARQ-ACK 1 비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 HARQ-ACK 2 비트가 전송된다. HARQ-ACK: A response to a PDCCH and / or a response to a downlink data packet (eg, codeword) on a PDSCH. This indicates whether the PDCCH or PDSCH is successfully received. HARQ-ACK 1 bit is transmitted in response to a single downlink codeword, HARQ-ACK 2 bits are transmitted in response to two downlink codewords.
예를 들어, 단일 반송파 상의 1개 서브프레임 내에서 수신된 PDCCH 혹은 PDSCH에 대한 HARQ-ACK은 1 비트로 표현될 수 있다. UE가 PDCCH는 검출하고 PDSCH를 성공적으로 복호하면 ACK을 나타내는 비트(예, 1b)를 피드백하고, PDCCH의 검출에 실패하거나 혹은 PDSCH의 복호에 실패하면 NACK을 나타내는 비트(예, 0b)를 피드백한다. 복수 반송파들 상에서의 PDCCH/PDSCH들 혹은 복수 서브프레임들 내에서의 PDCCH/PDSCH들에 대한 HARQ-ACK은 2 비트로 표현될 수 있다. 예를 들어, 2개 반송파 상 혹은 2개 서브프레임 내에서의 PDCCH/PDSCH들에 대한 HARQ-ACK을 피드백할 경우, 2개 반송파 혹은 2개 서브프레임 중 하나에서는 PDCCH를 검출하고 그에 따른 PDSCH를 복호할 경우, 상기 PDSCH의 복호 결과에 따라 해당 ACK/NACK 비트를 설정할 수 있다. 상기 2개 반송파 혹은 2개 서브프레임 중 나머지에서 PDCCH를 검출하지 못하면, 해당 HARQ-ACK은 DTX에 해당하나, UE는 2 비트 HARQ-ACK을 eNB에게 피드백해야 하므로, 2 비트 HARQ-ACK 중 나머지 비트를 NACK으로 설정하여, eNB에게 피드백한다.For example, HARQ-ACK for a PDCCH or PDSCH received in one subframe on a single carrier may be represented by 1 bit. When the UE detects the PDCCH and successfully decodes the PDSCH, it feeds back a bit (eg, 1b) indicating an ACK, and if the UE fails to detect the PDCCH or fails to decode the PDSCH, it feeds back a bit (eg, 0b) indicating a NACK. . HARQ-ACK for PDCCH / PDSCHs on multiple carriers or PDCCH / PDSCHs in multiple subframes may be represented by 2 bits. For example, when feeding back HARQ-ACK for PDCCH / PDSCHs on two carriers or within two subframes, one of the two carriers or two subframes detects the PDCCH and decodes the PDSCH accordingly. In this case, a corresponding ACK / NACK bit may be set according to the decoding result of the PDSCH. If the PDCCH is not detected in the other of the two carriers or two subframes, the corresponding HARQ-ACK corresponds to DTX, but since the UE must feed back a 2-bit HARQ-ACK to the eNB, the remaining bits of the 2-bit HARQ-ACK Is set to NACK to feed back to the eNB.
HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(이하, NACK), DTX(Discontinuous Transmission) 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK이라는 용어는 HARQ ACK/NACK, ACK/NACK과 혼용된다.HARQ-ACK response includes a positive ACK (simple, ACK), negative ACK (hereinafter, NACK), DTX (Discontinuous Transmission) or NACK / DTX. Here, the term HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
● CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보(feedback information)이다. CSI는 채널 품질 지시자(channel quality information, CQI), 프리코딩 행렬 지시자(precoding matrix indicator, PMI), 프리코딩 타입 지시자(precoding type indicator, PTI), 및/또는 랭크 지시(rank indication, RI)로 구성될 수 있다. 이들 중 MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI 및 PMI를 포함한다. RI는 UE가 동일 시간-주파수 자원을 통해 수신할 수 있는 스트림의 개수 혹은 레이어(layer)의 개수를 의미한다. PMI는 채널의 공간(space) 특성을 반영한 값으로서, UE가 SINR 등의 메트릭(metric)을 기준으로 하향링크 신호 전송을 위해 선호하는 프리코딩 행렬의 인덱스를 나타낸다. CQI는 채널의 세기를 나타내는 값으로서 통상 eNB가 PMI를 이용했을 때 UE가 얻을 수 있는 수신 SINR을 나타낸다.Channel State Information (CSI): Feedback information for the downlink channel. CSI consists of channel quality information (CQI), precoding matrix indicator (PMI), precoding type indicator (PTI), and / or rank indication (RI) Can be. Of these, Multiple Input Multiple Output (MIMO) -related feedback information includes RI and PMI. RI means the number of streams or the number of layers that a UE can receive through the same time-frequency resource. PMI is a value reflecting a space characteristic of a channel and indicates an index of a precoding matrix that a UE prefers for downlink signal transmission based on a metric such as SINR. The CQI is a value indicating the strength of the channel and typically indicates the received SINR that the UE can obtain when the eNB uses PMI.
이하, 특별히, SR 전송을 위해 할당되는 PUCCH를 SR PUCCH, HARQ-ACK 전송을 위해 할당되는 PUCCH를 ACK/NACK PUCCH, CSI 전송을 위해 할당되는 PUCCH를 CSI PUCCH라 칭한다.In particular, the PUCCH allocated for SR transmission is called SR PUCCH, and the PUCCH allocated for HARQ-ACK transmission is called ACK / NACK PUCCH, and the PUCCH allocated for CSI transmission is called CSI PUCCH.
도 5는 단일 반송파 통신과 다중 반송파 통신을 설명하기 위한 도면이다. 특히, 도 5(a)는 단일 반송파의 서브프레임 구조를 도시한 것이고 도 5(b)는 다중 반송파의 서브프레임 구조를 도시한 것이다.5 is a diagram for describing single carrier communication and multicarrier communication. In particular, FIG. 5 (a) shows a subframe structure of a single carrier and FIG. 5 (b) shows a subframe structure of a multicarrier.
도 5(a)를 참조하면, 일반적인 무선 통신 시스템은 하나의 DL 대역과 이에 대응하는 하나의 UL 대역을 통해 데이터 전송 혹은 수신을 수행(주파수분할듀플렉스(frequency division duplex, FDD) 모드의 경우)하거나, 소정 무선 프레임(radio frame)을 시간 도메인(time domain)에서 상향링크 시간 유닛과 하향링크 시간 유닛으로 구분하고, 상/하향링크 시간 유닛을 통해 데이터 전송 혹은 수신을 수행(시분할듀플렉스(time division duplex, TDD) 모드의 경우)한다. 그러나, 최근 무선 통신 시스템에서는 보다 넓은 주파수 대역을 사용하기 위하여 복수의 UL 및/또는 DL 주파수 블록을 모아 더 큰 UL/DL 대역폭을 사용하는 반송파 집성(carrier aggregation 또는 bandwidth aggregation) 기술의 도입이 논의되고 있다. 반송파 집성(carrier aggregation, CA)은 복수의 반송파 주파수를 사용하여 DL 혹은 UL 통신을 수행한다는 점에서, 복수의 직교하는 부반송파로 분할된 기본 주파수 대역을 하나의 반송파 주파수에 실어 DL 혹은 UL 통신을 수행하는 OFDM(orthogonal frequency division multiplexing) 시스템과 구분된다. 이하, 반송파 집성에 의해 집성되는 반송파 각각을 요소 반송파(component carrier, CC)라 칭한다. 도 5(b)를 참조하면, UL 및 DL 에 각각 3개의 20MHz CC 들이 모여서 60MHz 의 대역폭이 지원될 수 있다. 각각의 CC들은 주파수 도메인에서 서로 인접하거나 비-인접할 수 있다. 도 5(b)는 편의상 UL CC의 대역폭과 DL CC의 대역폭이 모두 동일하고 대칭인 경우가 도시되었으나, 각 CC의 대역폭은 독립적으로 정해질 수 있다. 또한, UL CC의 개수와 DL CC의 개수가 다른 비대칭적 반송파 집성도 가능하다. 특정 UE에게 한정된 DL/UL CC를 특정 UE 에서의 설정된(configured) 서빙 (serving) UL/DL CC라고 부를 수 있다.Referring to FIG. 5 (a), a general wireless communication system performs data transmission or reception through one DL band and one UL band corresponding thereto (in a frequency division duplex (FDD) mode) or In addition, a predetermined radio frame is divided into an uplink time unit and a downlink time unit in a time domain, and data transmission or reception is performed through an uplink / downlink time unit (time division duplex). , TDD) mode). However, in recent wireless communication systems, the introduction of a carrier aggregation or bandwidth aggregation technique using a larger UL / DL bandwidth by collecting a plurality of UL and / or DL frequency blocks in order to use a wider frequency band has been discussed. have. Carrier aggregation (CA) performs DL or UL communication by using a plurality of carrier frequencies, and performs DL or UL communication by putting a fundamental frequency band divided into a plurality of orthogonal subcarriers on one carrier frequency. It is distinguished from an orthogonal frequency division multiplexing (OFDM) system. Hereinafter, each carrier aggregated by carrier aggregation is called a component carrier (CC). Referring to FIG. 5 (b), three 20 MHz CCs may be gathered in the UL and the DL to support a 60 MHz bandwidth. Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain. 5 (b) shows a case where both the bandwidth of the UL CC and the bandwidth of the DL CC are the same and symmetrical, the bandwidth of each CC may be determined independently. In addition, asymmetrical carrier aggregation in which the number of UL CCs and the number of DL CCs are different is possible. A DL / UL CC limited to a specific UE may be referred to as a configured serving UL / DL CC in a specific UE.
한편, 3GPP LTE-A 표준은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 무선 자원과 연관된 "셀"이라 함은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL CC 와 UL CC의 조합으로 정의된다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 설정될(configured) 수 있다. 반송파 집성이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 예를 들어, 시스템 정보 블록 타입 2(System Information Block Type2, SIB2) 링키지(linkage)에 의해서 DL 자원과 UL 자원의 조합이 지시될 수 있다. 여기서, 반송파 주파수라 함은 각 셀 혹은 CC의 중심 주파수(center frequency)를 의미한다. 이하에서는 1차 주파수(primary frequency) 상에서 동작하는 셀을 1차 셀(primary cell, Pcell) 혹은 PCC로 지칭하고, 2차 주파수(Secondary frequency)(또는 SCC) 상에서 동작하는 셀을 2차 셀(secondary cell, Scell) 혹은 SCC로 칭한다. 하향링크에서 Pcell에 대응하는 반송파는 하향링크 1차 CC(DL PCC)라고 하며, 상향링크에서 Pcell에 대응하는 반송파는 UL 1차 CC(DL PCC)라고 한다. Scell이라 함은 RRC(Radio Resource Control) 연결 개설(connection establishment)이 이루어진 이후에 설정 가능하고 추가적인 무선 자원을 제공을 위해 사용될 수 있는 셀을 의미한다. UE의 성능(capabilities)에 따라, Scell이 Pcell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)을 형성할 수 있다. 하향링크에서 Scell에 대응하는 반송파는 DL 2차 CC(DL SCC)라 하며, 상향링크에서 상기 Scell에 대응하는 반송파는 UL 2차 CC(UL SCC)라 한다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, Pcell로만 설정된 서빙 셀이 단 하나 존재한다.Meanwhile, the 3GPP LTE-A standard uses the concept of a cell to manage radio resources. A "cell" associated with a radio resource is defined as a combination of DL resources and UL resources, that is, a combination of a DL CC and a UL CC. The cell may be configured with DL resources alone or with a combination of DL resources and UL resources. If carrier aggregation is supported, the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is indicated by system information. Can be. For example, a combination of DL and UL resources may be indicated by a System Information Block Type 2 (SIB2) linkage. Here, the carrier frequency means a center frequency of each cell or CC. Hereinafter, a cell operating on a primary frequency is referred to as a primary cell (Pcell) or a PCC, and a cell operating on a secondary frequency (or SCC) is referred to as a secondary cell. cell, Scell) or SCC. The carrier corresponding to the Pcell in downlink is called a DL primary CC (DL PCC), and the carrier corresponding to the Pcell in the uplink is called a UL primary CC (DL PCC). Scell refers to a cell that can be configured after RRC (Radio Resource Control) connection establishment is made and can be used for providing additional radio resources. Depending on the capabilities of the UE, the Scell may form a set of serving cells for the UE with the Pcell. The carrier corresponding to the Scell in downlink is called a DL secondary CC (DL SCC), and the carrier corresponding to the Scell in the uplink is called a UL secondary CC (UL SCC). In case of the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell configured only for the Pcell.
eNB는 상기 UE에 설정된 서빙 셀들 중 일부 또는 전부를 활성화(activate)하거나, 일부를 비활성화(deactivate)함으로써, UE와의 통신에 사용할 수 있다. 상기 eNB는 활성화/비활성화되는 셀을 변경할 수 있으며, 활성화/비활성화되는 셀의 개수를 변경할 수 있다. eNB가 UE에 이용 가능한 셀을 셀-특정적 혹은 UE-특정적으로 할당하면, 상기 UE에 대한 셀 할당이 전면적으로 재설정(reconfigure)되거나 상기 UE가 핸드오버(handover)하지 않는 한, 일단 할당된 셀들 중 적어도 하나는 비활성화되지 않는다. UE에 대한 셀 할당의 전면적인 재설정이 아닌 한 비활성화되지 않는 셀이 Pcell이라고 할 수 있다. eNB가 자유롭게 활성화/비활성화할 수 있는 셀이 Scell이라고 할 수 있다. Pcell과 Scell은 제어정보를 기준으로 구분될 수도 있다. 예를 들어, 특정 제어정보는 특정 셀을 통해서만 전송/수신되도록 설정될 수 있는데, 이러한 특정 셀이 Pcell이라 지칭되고, 나머지 셀(들)이 Scell로 지칭될 수 있다.The eNB may be used for communication with the UE by activating some or all of the serving cells configured in the UE or by deactivating some. The eNB may change a cell that is activated / deactivated and may change the number of cells that are activated / deactivated. Once the eNB assigns a cell-specific or UE-specifically available cell to a UE, once the cell assignment for the UE is fully reconfigured or the UE does not handover, At least one of the cells is not deactivated. A cell that is not deactivated may be referred to as a Pcell unless a global reset of cell allocation for the UE is performed. A cell that an eNB can freely activate / deactivate may be referred to as an Scell. Pcell and Scell may be classified based on control information. For example, specific control information may be set to be transmitted / received only through a specific cell. This specific cell may be referred to as a Pcell, and the remaining cell (s) may be referred to as an Scell.
도 6은 반송파 집성을 지원하는 시스템에서 셀들의 상태를 예시한 것이다.6 illustrates states of cells in a system supporting carrier aggregation.
도 6에서, 설정된 셀(configured cell)이라 함은 eNB의 셀들 중에서 다른 eNB 혹은 UE로부터의 측정 보고를 근거로 UE를 위해 반송파 집성이 수행된 셀로서, UE별로 설정된다. UE에게 설정된 셀은 해당 UE의 관점에서는 서빙 셀이라고 할 수 있다. UE에 설정된 셀, 즉, 서빙 셀은 PDSCH 전송에 대한 ACK/NACK 전송을 위한 자원이 미리 예약된다. 활성화된 셀은 상기 UE에 설정된 셀들 중에서 실제로 PDSCH/PUSCH 전송에 이용되도록 설정된 셀로서, PDSCH/PUSCH 전송을 위한 CSI 보고와 SRS 전송이 활성화된 셀 상에서 수행된다. 비활성화된 셀은 eNB의 명령 혹은 타이머(timer)의 동작에 의해서 PDSCH/PUSCH 전송에 이용되지 않도록 설정된 셀로서, 해당 셀이 비활성화되면 CSI 보고 및 SRS 전송도 해당 셀에서 중단된다. 참고로 도 6에서 CI는 서빙 셀 인덱스를 의미하며, CI=0가 Pcell 을 위해 적용된다. 서빙 셀 인덱스는 서빙 셀을 식별하기 위해 사용되는 짧은 식별자(short identity)로서, 예를 들어, 0부터 'UE에게 한 번에 설정될 수 있는 반송파 주파수의 최대 개수 - 1'까지의 정수 중 어느 하나가 서빙 셀 인덱스로서 일 서빙 셀에 할당될 수 있다. 즉 서빙 셀 인덱스는 전체 반송파 주파수들 중에서 특정 반송파 주파수를 식별하는 데 사용되는 물리 인덱스라기보다는 UE에게 할당된 셀들 중에서만 특정 서빙 셀을 식별하는 데 사용되는 논리 인덱스라고 할 수 있다.In FIG. 6, a configured cell is a cell in which carrier aggregation is performed for a UE based on a measurement report from another eNB or a UE among cells of an eNB, and is configured for each UE. The cell configured for the UE may be referred to as a serving cell from the viewpoint of the UE. In the cell configured in the UE, that is, the serving cell, resources for ACK / NACK transmission for PDSCH transmission are reserved in advance. The activated cell is a cell configured to be actually used for PDSCH / PUSCH transmission among cells configured in the UE, and is performed on a cell in which CSI reporting and SRS transmission are activated for PDSCH / PUSCH transmission. The deactivated cell is a cell configured not to be used for PDSCH / PUSCH transmission by the operation of a eNB or a timer. When the cell is deactivated, CSI reporting and SRS transmission are also stopped in the cell. For reference, in FIG. 6, CI means a serving cell index, and CI = 0 is applied for a Pcell. The serving cell index is a short identity used to identify the serving cell, for example, one of an integer from 0 to 'the maximum number of carrier frequencies that can be set to the UE at one time-1'. May be assigned to one serving cell as the serving cell index. That is, the serving cell index may be referred to as a logical index used to identify a specific serving cell only among cells allocated to the UE, rather than a physical index used to identify a specific carrier frequency among all carrier frequencies.
앞서 언급한 바와 같이, 반송파 집성에서 사용되는 셀이라는 용어는 일 eNB 혹은 일 안테나 그룹에 의해 통신 서비스가 제공되는 일정 지리적 영역을 지칭하는 셀이라는 용어와 구분된다. As mentioned above, the term cell used in carrier aggregation is distinguished from the term cell which refers to a certain geographic area where communication service is provided by one eNB or one antenna group.
특별한 언급이 없는 한, 본 발명에서 언급되는 셀은 UL CC와 DL CC의 조합인 반송파 집성의 셀을 의미한다.Unless otherwise specified, a cell referred to in the present invention refers to a cell of carrier aggregation which is a combination of a UL CC and a DL CC.
한편, 단일 반송파를 이용한 통신의 경우, 단 하나의 서빙 셀만이 존재하므로, UL/DL 그랜트를 나르는 PDCCH와 해당 PUSCH/PDSCH는 동일한 셀에서 전송된다. 다시 말해, 단일 반송파 상황 하의 FDD의 경우, 특정 DL CC에서 전송될 PDSCH에 대한 DL 그랜트를 위한 PDCCH는 상기 특정 CC에서 전송되며, 특정 UL CC에서 전송될 PUSCH에 대한 UL 그랜트를 위한 PDSCH는 상기 특정 UL CC와 링크된 DL CC에서 전송된다. 단일 반송파 상황 하의 TDD의 경우, 특정 CC에서 전송될 PDSCH에 대한 DL 그랜트를 위한 PDCCH는 상기 특정 CC에서 전송되며, 특정 CC에서 전송될 PUSCH에 대한 UL 그랜트를 위한 PDSCH는 상기 특정 CC에서 전송된다. In the case of communication using a single carrier, since only one serving cell exists, the PDCCH carrying the UL / DL grant and the corresponding PUSCH / PDSCH are transmitted in the same cell. In other words, in the case of FDD under a single carrier situation, the PDCCH for the DL grant for the PDSCH to be transmitted in a specific DL CC is transmitted in the specific CC, and the PDSCH for the UL grant for the PUSCH to be transmitted in the specific UL CC is determined by the specific CC. It is transmitted on the DL CC linked with the UL CC. In the case of TDD under a single carrier situation, the PDCCH for the DL grant for the PDSCH to be transmitted in a specific CC is transmitted in the specific CC, and the PDSCH for the UL grant for the PUSCH to be transmitted in the specific CC is transmitted in the specific CC.
이에 반해, 다중 반송파 시스템에서는, 복수의 서빙 셀이 설정될 수 있으므로, 채널상황이 좋은 서빙 셀에서 UL/DL 그랜트가 전송되는 것이 허용될 수 있다. 이와 같이, 스케줄링 정보인 UL/DL 그랜트를 나르는 셀과 UL/DL 그랜트에 대응하는 UL/DL 전송이 수행되는 셀이 다른 경우, 이를 크로스-반송파 스케줄링이라 한다.In contrast, in a multi-carrier system, since a plurality of serving cells can be configured, UL / DL grant can be allowed to be transmitted in a serving cell having a good channel condition. As such, when a cell carrying UL / DL grant, which is scheduling information, and a cell in which UL / DL transmission corresponding to a UL / DL grant is performed, this is called cross-carrier scheduling.
이하에서는, 셀이 해당 셀 자체, 즉, 자기 자신으로부터 스케줄링되는 경우와 셀이 다른 셀로부터 스케줄링되는 경우를 각각 셀프-CC 스케줄링과 크로스-CC 스케줄링으로 칭한다.In the following description, a case where a cell is scheduled from a corresponding cell itself, that is, itself and a case where a cell is scheduled from another cell, is called self-CC scheduling and cross-CC scheduling, respectively.
3GPP LTE/LTE-A는 데이터 전송률 개선 및 안정적인 제어 시그널링을 위하여 복수 CC의 병합 및 이를 기반으로 한 크로스 반송파-스케줄링 동작을 지원할 수 있다. 3GPP LTE / LTE-A may support a merge of multiple CCs and a cross carrier-scheduling operation based on the same for improving data rate and stable control signaling.
크로스-반송파 스케줄링 (또는 크로스-CC 스케줄링)이 적용될 경우, DL CC B 또는 DL CC C를 위한 하향링크 할당, 즉, DL 그랜트를 나르는 PDCCH는 DL CC A로 전송되고, 해당 PDSCH는 DL CC B 또는 DL CC C로 전송될 수 있다. 크로스-CC 스케줄링을 위해, 반송파 지시 필드(carrier indicator field, CIF)가 도입될 수 있다. PDCCH 내에서 CIF의 존재 여부는 상위 레이어 시그널링(예, RRC 시그널링)에 의해 반-정적 및 UE-특정(또는 UE 그룹-특정) 방식으로 설정될 수 있다. PDCCH 전송의 베이스 라인을 요약하면 다음과 같다.When cross-carrier scheduling (or cross-CC scheduling) is applied, downlink allocation for DL CC B or DL CC C, that is, PDCCH carrying DL grant is transmitted to DL CC A, and the corresponding PDSCH is DL CC B or DL CC C may be transmitted. For cross-CC scheduling, a carrier indicator field (CIF) may be introduced. The presence or absence of the CIF in the PDCCH may be set in a semi-static and UE-specific (or UE group-specific) manner by higher layer signaling (eg, RRC signaling). The baseline of PDCCH transmission is summarized as follows.
■ CIF 불능화(disabled): DL CC 상의 PDCCH는 동일한 DL CC 상의 PDSCH 자원을 할당하거나 하나의 링크된 UL CC 상의 PUSCH 자원을 할당■ CIF disabled: PDCCH on DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on one linked UL CC
■ CIF 없음■ No CIF
■ LTE PDCCH 구조(동일한 코딩, 동일한 CCE-기반 자원 맵핑) 및 DCI 포맷과 동일■ LTE PDCCH structure (same coding, same CCE-based resource mapping) and same as DCI format
■ CIF 가능화(enabled): DL CC 상의 PDCCH는 CIF를 이용하여 복수의 병합된 DL/UL CC 중에서 특정 DL/UL CC 상의 PDSCH/PUSCH 자원을 할당 가능■ CIF enabled: PDCCH on DL CC can allocate PDSCH / PUSCH resource on a specific DL / UL CC among a plurality of merged DL / UL CCs using CIF
● CIF를 가지는 확장된 LTE DCI 포맷Extended LTE DCI format with CIF
- CIF (설정될 경우)는 고정된 x-비트 필드(예, x=3)CIF (if set) is a fixed x-bit field (eg x = 3)
- CIF (설정될 경우) 위치는 DCI 포맷 사이즈에 관계없이 고정됨-CIF (if set) position is fixed regardless of DCI format size
● LTE PDCCH 구조를 재사용 (동일한 코딩, 동일한 CCE-기반 자원 맵핑)Reuse LTE PDCCH structure (same coding, same CCE-based resource mapping)
하나의 UE에 대하여 하나 이상의 스케줄링 셀이 설정될 수 있으며, 이 중 1개의 스케줄링 셀이 특정 DL 제어 시그널링 및 UL PUCCH 전송을 전담하는 PCC가 될 수 있다. 스케줄링 셀 세트는 UE-특정, UE 그룹-특정 또는 셀-특정 방식으로 설정될 수 있다. 스케줄링 셀의 경우, 적어도 자기 자신을 직접 스케줄링할 수 있도록 설정될 수 있다. 즉, 스케줄링 셀은 자기 자신의 피스케줄링(scheduled) 셀이 될 수 있다. 본 발명에서는, PDCCH를 나르는 셀을 스케줄링 셀, 모니터링 셀 혹은 MCC로 칭하며, 상기 PDCCH에 의해 스케줄링된 PDSCH/PUSCH를 나르는 셀을 피스케줄링(scheduled) 셀이라고 칭한다. One or more scheduling cells may be configured for one UE, and one of these scheduling cells may be a PCC dedicated to specific DL control signaling and UL PUCCH transmission. The scheduling cell set may be set in a UE-specific, UE group-specific or cell-specific manner. In the case of a scheduling cell, it may be configured to at least schedule itself. In other words, the scheduling cell may be its own scheduled cell. In the present invention, a cell carrying a PDCCH is called a scheduling cell, a monitoring cell, or an MCC, and a cell carrying a PDSCH / PUSCH scheduled by the PDCCH is called a scheduled cell.
스케줄링 셀은 반송파 집성된 전체 셀들 중 일부로서, DL CC를 포함하고, UE는 해당 DL CC 상에서만 PDCCH의 검출(detect)/복호(decode)를 수행한다. 여기서, 스케줄링 셀 혹은 피스케줄링 셀의 PDSCH/PUSCH라 함은 해당 셀 상에서 전송되도록 구성된 PDSCH/PUSCH를 의미하며, 스케줄링 셀 혹은 피스케줄링 셀의 PHICH라 함은 해당 셀 상에서 전송된 PUSCH에 대한 ACK/NACK을 나르는 PHICH를 의미한다.The scheduling cell is part of all carrier aggregated cells, and includes a DL CC, and the UE detects / decodes a PDCCH only on the corresponding DL CC. Here, PDSCH / PUSCH of a scheduling cell or a scheduled cell refers to a PDSCH / PUSCH configured to be transmitted on a corresponding cell, and PHICH of a scheduling cell or a scheduled cell refers to an ACK / NACK for a PUSCH transmitted on a corresponding cell. It means PHICH to carry.
스케줄링의 수신/전송과 상기 스케줄링에 따른 데이터 전송/수신, 상기 데이터 전송에 대한 ACK/NACK 수신/전송이 이루어진 뒤에, 데이터 재전송이 수행될 때까지는 시간 지연(delay)이 발생한다. 이러한 시간 지연은 채널 전파 지연(channel propagation delay), 데이터 복호(decoding)/부호화(encoding)에 걸리는 시간으로 인해 발생한다. 따라서, 현재 진행 중인 HARQ 프로세스가 끝난 후에 새로운 데이터를 보내는 경우, 시간 지연으로 인해 데이터 전송에 공백이 발생한다. 따라서, 시간 지연 구간 동안에 데이터 전송에 공백이 생기는 것을 방지하기 위하여 복수의 독립적인 HARQ 프로세스(HARQ process, HARQ)이 사용된다. 예를 들어, 초기 전송과 재전송 사이의 간격이 7개의 서브프레임인 경우, 7개의 독립적인 HARQ 프로세스를 운영하여 공백 없이 데이터 전송을 할 수 있다. 복수의 병렬 HARQ 프로세스는 이전 UL/DL 전송에 대한 HARQ 피드백을 기다리는 동안 UL/DL 전송이 연속적으로 수행되게 한다. 각각의 HARQ 프로세스는 MAC(Medium Access Control) 계층의 HARQ 버퍼와 연관된다. 각각의 HARQ 프로세스는 버퍼 내의 MAC PDU(Physical Data Block)의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전(redundancy version) 등에 관한 상태 변수를 관리한다.After reception / transmission of scheduling, data transmission / reception according to the scheduling, and ACK / NACK reception / transmission for the data transmission are performed, a time delay occurs until data retransmission is performed. This time delay occurs because of the time required for channel propagation delay, data decoding / encoding. Therefore, when new data is sent after the current HARQ process is completed, a space delay occurs in the data transmission due to a time delay. Therefore, a plurality of independent HARQ processes (HARQ process, HARQ) is used to prevent the occurrence of a gap in the data transmission during the time delay period. For example, when the interval between initial transmission and retransmission is seven subframes, seven independent HARQ processes may be operated to transmit data without a space. Multiple parallel HARQ processes allow UL / DL transmissions to be performed continuously while waiting for HARQ feedback for previous UL / DL transmissions. Each HARQ process is associated with a HARQ buffer of a medium access control (MAC) layer. Each HARQ process manages state variables related to the number of transmissions of the MAC Physical Data Block (PDU) in the buffer, HARQ feedback for the MAC PDU in the buffer, the current redundancy version, and the like.
DL 전송에 대한 ACK/NACK의 전송 타이밍 (혹은 HARQ 타이밍)을 설명한다. UE는 M개의 DL 서브프레임(Subframe, SF) 상에서 하나 이상의 PDSCH 혹은 SPS 해제를 지시하는 PDCCH를 수신할 수 있다(M≥1). 각각의 PDSCH 신호는 전송 모드에 따라 하나 또는 복수(예, 2개)의 전송 블록(transport block, TB)을 포함할 수 있다. M개의 DL 서브프레임에 PDSCH 신호 및/또는 SPS 해제 PDCCH 신호가 존재하면, UE는 ACK/NACK 전송을 위한 과정(예, ACK/NACK (페이로드) 생성, ACK/NACK 자원 할당 등)을 거쳐, M개의 DL 서브프레임에 대응하는 하나의 UL 서브프레임을 통해 ACK/NACK을 전송한다. ACK/NACK은 PDSCH 신호 및/또는 SPS 해제 PDCCH 신호에 대한 수신 응답 정보를 포함한다. ACK/NACK은 기본적으로 PUCCH를 통해 전송되지만, ACK/NACK 전송 시점에 PUSCH 할당이 있는 경우 PUSCH를 통해 전송된다. UE에게 복수의 CC가 구성된 경우, PUCCH는 Pcell 상에서만 전송되고, PUSCH는 스케줄링된 CC 상에서 전송된다. ACK/NACK 전송을 위해 다양한 PUCCH 포맷이 사용될 수 있다. ACK/NACK 비트 수를 줄이기 위해 ACK/NACK 번들링(bundling), ACK/NACK 채널 선택(Channel selection, CHsel)과 같은 다양한 방법이 사용될 수 있다.The transmission timing (or HARQ timing) of ACK / NACK for DL transmission will be described. The UE may receive a PDCCH indicating one or more PDSCH or SPS releases on M DL subframes (SF) (M ≧ 1). Each PDSCH signal may include one or more (eg, two) transport blocks (TBs) according to a transmission mode. If there are PDSCH signals and / or SPS release PDCCH signals in the M DL subframes, the UE goes through a process for ACK / NACK transmission (eg, ACK / NACK (payload) generation, ACK / NACK resource allocation, etc.) ACK / NACK is transmitted through one UL subframe corresponding to M DL subframes. The ACK / NACK includes reception response information for the PDSCH signal and / or the SPS release PDCCH signal. The ACK / NACK is basically transmitted through the PUCCH, but is transmitted through the PUSCH when there is a PUSCH assignment at the time of the ACK / NACK transmission. When a plurality of CCs are configured for the UE, the PUCCH is transmitted only on the Pcell, and the PUSCH is transmitted on the scheduled CC. Various PUCCH formats may be used for ACK / NACK transmission. Various methods such as ACK / NACK bundling and ACK / NACK channel selection (CHsel) may be used to reduce the number of ACK / NACK bits.
FDD에서 M=1이고, TDD에서 M은 1 이상의 정수이다. TDD에서 M개의 DL 서브프레임과 ACK/NACK이 전송되는 UL 서브프레임의 관계는 DASI(Downlink Association Set Index)에 의해 주어진다.M = 1 in FDD and M is an integer greater than or equal to 1 in TDD. The relationship between M DL subframes and a UL subframe in which ACK / NACK is transmitted in TDD is given by a Downlink Association Set Index (DASI).
표 3은 LTE(-A)에 정의된 DASI(K:{k0,k1,...,kM-1})를 나타낸다. 서브프레임 n-k (k∈K)에 PDSCH 전송 및/또는 SPS 해제(Semi-Persistent Scheduling release)를 지시하는 PDCCH가 있는 경우, UE는 서브프레임 n에서 ACK/NACK을 전송한다. FDD에서 DASI(편의상, dF)=4이다.Table 3 shows DASI (K: {k 0 , k 1 , ..., k M-1 }) defined in LTE (-A). If there is a PDCCH indicating PDSCH transmission and / or Semi-Persistent Scheduling release in subframe nk (k∈K), the UE transmits ACK / NACK in subframe n. DASI (for convenience, d F ) = 4 in FDD.
TDD UL-DLConfigurationTDD UL-DLConfiguration Subframe n Subframe n
00 1One 22 33 44 55 66 77 88 99
00 -- -- 66 -- 44 -- -- 66 -- 44
1One -- -- 7, 67, 6 44 -- -- -- 7, 67, 6 44 --
22 -- -- 8, 7, 4, 68, 7, 4, 6 -- -- -- -- 8, 7, 4, 68, 7, 4, 6 -- --
33 -- -- 7, 6, 117, 6, 11 6, 56, 5 5, 45, 4 -- -- -- -- --
44 -- -- 12, 8, 7, 1112, 8, 7, 11 6, 5, 4, 76, 5, 4, 7 -- -- -- -- -- --
55 -- -- 13, 12, 9, 8, 7, 5, 4, 11, 613, 12, 9, 8, 7, 5, 4, 11, 6 -- -- -- -- -- -- --
66 -- -- 77 77 55 -- -- 77 77 --
TDD 방식으로 동작 시, UE는 M개의 DL 서브프레임(subframe, SF)를 통해 수신한 하나 이상의 DL 전송(예, PDSCH)에 대한 ACK/NACK 신호를 하나의 UL SF를 통해 전송해야 한다. 복수의 DL SF에 대한 ACK/NACK을 하나의 UL SF를 통해 전송하는 방식은 다음과 같다.When operating in the TDD scheme, the UE should transmit ACK / NACK signals for one or more DL transmissions (eg, PDSCHs) received through M DL subframes (SFs) through one UL SF. A method of transmitting ACK / NACK for a plurality of DL SFs through one UL SF is as follows.
1) ACK/NACK 번들링(ACK/NACK bundling): 복수의 데이터 유닛(예, PDSCH, 준-지속적 스케줄링(semi-persistent scheduling, SPS) 해제 PDCCH 등)에 대한 ACK/NACK 비트가 논리 연산(예, 논리-AND 연산)에 의해 결합된다. 예를 들어, 모든 데이터 유닛이 성공적으로 복호되면, 수신단(예, UE)는 ACK 신호를 전송한다. 반면, 데이터 유닛 중 하나라도 복호(또는 검출)가 실패하면, UE는 NACK 신호를 전송하거나 아무것도 전송하지 않는다.1) ACK / NACK bundling: ACK / NACK bits for a plurality of data units (e.g. PDSCH, semi-persistent scheduling (SPS) release PDCCH, etc.) are logical operations (e.g., Logical-AND operation). For example, if all data units are successfully decoded, the receiving end (eg, UE) sends an ACK signal. On the other hand, if decoding (or detection) of any of the data units fails, the UE transmits a NACK signal or nothing.
2) 채널 선택(channel selection, CHsel): 복수의 데이터 유닛(예, PDSCH, SPS 해제 PDCCH 등)을 수신하는 UE는 ACK/NACK 전송을 위해 복수의 PUCCH 자원들을 점유한다. 복수의 데이터 유닛에 대한 ACK/NACK 응답은 실제 ACK/NACK 전송에 사용된 PUCCH 자원과 전송된 ACK/NACK 내용(예, 비트 값, QPSK 심볼 값)의 조합에 의해 식별된다. 채널 선택 방식은 ACK/NACK 선택 방식, PUCCH 선택 방식으로도 지칭된다.2) channel selection (CHsel): A UE receiving a plurality of data units (eg, PDSCH, SPS release PDCCH, etc.) occupies a plurality of PUCCH resources for ACK / NACK transmission. The ACK / NACK response for the plurality of data units is identified by the combination of the PUCCH resource used for the actual ACK / NACK transmission and the transmitted ACK / NACK content (eg, bit value, QPSK symbol value). The channel selection method is also referred to as an ACK / NACK selection method and a PUCCH selection method.
3GPP LTE/LTE-A 시스템에는 채널 정보의 피드백 없이 운용되는 개루프(open-loop) MIMO와 채널 정보의 피드백을 이용하는 폐루프(closed-loop MIMO) 두 가지 전송 방식이 존재한다. 폐루프 MIMO의 경우, 전송단과 수신단은 각각 MIMO 안테나의 다중화 이득(multiplexing gain)을 얻기 위해 채널 정보, 즉, CSI를 바탕으로 빔포밍(beamforming)을 수행한다. CSI를 보고하기 위해 UE에 의해 사용될 수 있는 시간 및 주파수 자원들은 eNB에 의해 제어된다. 예를 들어 eNB는 하향링크 CSI를 얻기 위해 UE에게 PUCCH 또는 PUSCH를 할당하여 하향링크 CSI를 피드백하도록 명령한다. In 3GPP LTE / LTE-A system, there are two transmission schemes, an open-loop MIMO operated without feedback of channel information and a closed-loop MIMO using feedback of channel information. In the closed loop MIMO, the transmitter and the receiver perform beamforming based on channel information, that is, CSI, to obtain multiplexing gains of the MIMO antenna, respectively. The time and frequency resources that can be used by the UE to report CSI are controlled by the eNB. For example, the eNB instructs the UE to feed back the downlink CSI by allocating a PUCCH or a PUSCH to obtain the downlink CSI.
CSI 보고는 주기적 혹은 비주기적으로 설정된다. 주기적 CSI 보고는, 특별한 경우(예를 들어, UE가 동시적인(simultaneous) PUSCH 및 PUCCH 전송을 위해 설정되지 않고 PUCCH 전송 시점이 PUSCH 할당이 있는 서브프레임(subframe with PUSCH allocation)과 충돌하는 경우)가 아닌 한, PUCCH 상에서 UE에 의해 전송된다. CSI 중 RI는 장주기 페이딩(long term fading)에 의해 지배적(dominant)으로 결정되므로 PMI 및 CQI보다 통상 더 긴 주기로 UE에서 eNB로 피드백된다. 반면에 비주기적 CSI 보고는 PUSCH 상에서 전송된다. 비주기적 CSI 보고는 상향링크 데이터의 스케줄링을 위한 DCI (예를 들어, DCI 포맷 0 혹은 4의 DCI) (이하 상향링크 DCI 포맷)에 포함된 CSI 요청 필드(CSI request field)에 의해 트리거(trigger)된다. 서브프레임 n에서 특정 서빙 셀(이하, 서빙 셀 c)를 위한 상향링크 DCI 포맷 혹은 임의 접속 응답 그랜트(random access response grant)를 복호한 UE는, 해당 CSI 요청 필드가 CSI 보고를 트리거하도록 맞춰져 있고 해당 CSI 요청 필드가 유보된(reserved) 것이 아니면, 상기 서빙 셀 c 상의 서브프레임 n+k에서 PUSCH를 이용하여 비주기적 CSI 보고를 수행한다. 상기 PUSCH는 서브프레임 n에서 복호된 상향링크 DCI 포맷에 따라 서브프레임 n+k에서 전송되는 PUSCH이다. FDD의 경우, k=4이다. TDD의 경우, k는 다음 표에 의해 주어진다.CSI reporting is set up periodically or aperiodically. Periodic CSI reporting is a special case (e.g., when the UE is not configured for simultaneous PUSCH and PUCCH transmission and the PUCCH transmission time collides with a subframe with PUSCH allocation). If not, it is sent by the UE on PUCCH. Since the RI of the CSI is determined to be dominant by long term fading, it is fed back from the UE to the eNB in a longer period than the PMI and the CQI. On the other hand, the aperiodic CSI report is transmitted on the PUSCH. Aperiodic CSI reporting is triggered by a CSI request field included in DCI (eg, DCI of DCI format 0 or 4) (hereinafter, referred to as uplink DCI format) for scheduling of uplink data. do. A UE that has decoded an uplink DCI format or random access response grant for a specific serving cell (hereinafter, serving cell c ) in subframe n , is configured such that the corresponding CSI request field is triggered to trigger CSI reporting. If the CSI request field is not reserved, aperiodic CSI reporting is performed using the PUSCH in subframe n + k on the serving cell c . The PUSCH is a PUSCH transmitted in subframe n + k in accordance with the UL DCI format decoded in sub frame n. In the case of FDD, k = 4. For TDD, k is given by the following table.
TDD UL/DLConfigurationTDD UL / DLConfiguration subframe number n subframe number n
00 1One 22 33 44 55 66 77 88 99
00 44 66 44 66
1One 66 44 66 44
22 44 44
33 44 44 44
44 44 44
55 44
66 77 77 77 77 55
예를 들어, TDD UL/DL 설정이 6인 UE가 서브프레임 9에서 서빙 셀 c에 대한 상향링크 DCI 포맷을 검출하면, 상기 UE는 서브프레임 9+5, 즉, 상기 상향링크 DCI 포맷이 검출된 서브프레임 9를 포함하는 무선 프레임에 뒤따르는 무선 프레임의 서브프레임 4에서 상기 서빙 셀 c의 PUSCH 상에서 상기 검출된 상향링크 DCI 포맷 내 CSI 요청 필드에 의해 트리거된 비주기적 CSI 보고를 수행한다. For example, if a UE having a TDD UL / DL configuration of 6 detects an uplink DCI format for serving cell c in subframe 9, the UE detects subframe 9 + 5, that is, the uplink DCI format is detected. In subframe 4 of the radio frame following the radio frame including subframe 9, aperiodic CSI reporting triggered by the CSI request field in the detected uplink DCI format is performed on the PUSCH of the serving cell c .
CSI 요청 필드의 길이는 1 비트 혹은 2 비트이다. CSI 요청 필드가 1 비트이면, '1'로 맞춰진 CSI 요청 필드는 서빙 셀 c에 대한 비주기적 CSI 보고를 트리거한다. CSI 요청 필드가 2 비트이고 하나 이상의 Scell이 설정된 UE가 모든 셀들에 대해 전송 모드 1-9로 설정되면, 다음 표의 값에 대응하는 비주기적 CSI 보고가 트리거된다. 다음 표는 UE 특정적 탐색 공간 내 상향링크 DCI 포맷을 갖는(with) PDCCH/EPDCCH에 대한 CSI 요청 필드를 나타낸다.The length of the CSI request field is 1 bit or 2 bits. If the CSI request field is 1 bit, the CSI request field set to '1' triggers aperiodic CSI reporting for the serving cell c . If the CSI request field is 2 bits and a UE configured with one or more Scells is set to transmission mode 1-9 for all cells, aperiodic CSI reporting corresponding to the values in the following table is triggered. The following table shows a CSI request field for a PDCCH / EPDCCH with an uplink DCI format in a UE specific search space.
Value of CSI request fieldValue of CSI request field DescriptionDescription
'00''00' No aperiodic CSI report is triggeredNo aperiodic CSI report is triggered
'01''01' Aperiodic CSI report is triggered for serving cell c Aperiodic CSI report is triggered for serving cell c
'10''10' Aperiodic CSI report is triggered for a 1st set of serving cells configured by higher layersAperiodic CSI report is triggered for a 1 st set of serving cells configured by higher layers
'11''11' Aperiodic CSI report is triggered for a 2nd set of serving cells configured by higher layersAperiodic CSI report is triggered for a 2 nd set of serving cells configured by higher layers
위 표에서 어떤 서빙 셀(들)에 대해 비주기적 CSI 보고가 CSI 요청 필드 '10' 및/또는 CSI 요청 필드 '11'에 의해 트리거되는지가 상위 계층 신호(예, RRC 신호)에 의해 설정될 수 있다. 상기 상위 계층 신호는 CSI 요청 필드 '10'에 의해 트리거될 셀(들)을 나타내는 8-비트의 비트맵과 CSI 요청 필드 '11'에 의해 트리거될 셀(들)을 8-비트의 비트맵을 포함할 수 있다. 각 비트맵에서 최저 비트인 비트 0부터 최고 비트인 비트 7이 서빙 셀 인덱스가 0인 셀(즉, Pcell)부터 서빙 셀 인덱스가 7인 셀에 일대일로 대응한다. CSI 요청 필드 '10'용 비트맵에서 1로 세팅된 비트에 대응하는 셀은 CSI 요청 필드 값 '10'에 의해 비주기적 CSI 보고가 트리거되는 셀을 의미하며, 0으로 세팅된 비트에 대응하는 셀은 CSI 요청 필드 값 '10'에 의해 비주기적 CSI 보고가 트리거되지 않는 셀을 의미한다. CSI 요청 필드 '11'용 비트맵에서 1로 세팅된 비트에 대응하는 셀은 CSI 요청 필드 값 '11'에 의해 비주기적 CSI 보고가 트리거되는 셀을 의미하며, 0으로 세팅된 비트에 대응하는 셀은 CSI 요청 필드 값 '11'에 의해 비주기적 CSI 보고가 트리거되지 않는 셀을 의미한다.In the above table, for which serving cell (s) aperiodic CSI reporting is triggered by CSI request field '10' and / or CSI request field '11' may be set by a higher layer signal (e.g., RRC signal). have. The upper layer signal includes an 8-bit bitmap indicating a cell (s) to be triggered by the CSI request field '10' and an 8-bit bitmap indicating a cell (s) to be triggered by the CSI request field '11'. It may include. In each bitmap, bit 0, which is the lowest bit, to bit 7, which is the highest bit, correspond one-to-one to cells with a serving cell index of 0 (that is, Pcell) to cells with a serving cell index of 7. A cell corresponding to a bit set to 1 in the bitmap for the CSI request field '10' means a cell in which an aperiodic CSI report is triggered by the CSI request field value '10', and a cell corresponding to a bit set to 0 Denotes a cell in which aperiodic CSI reporting is not triggered by the CSI request field value '10'. A cell corresponding to a bit set to 1 in the bitmap for the CSI request field '11' means a cell in which an aperiodic CSI report is triggered by the CSI request field value '11', and a cell corresponding to a bit set to 0 Denotes a cell in which aperiodic CSI reporting is not triggered by the CSI request field value '11'.
최근, LTE/LTE-A 시스템에 CoMP 기술을 적용하는 것이 고려되고 있다. CoMP 기술은 복수의 노드들을 수반(involve)한다. CoMP 기술이 LTE/LTE-A 시스템에 도입되면 CoMP 기술과 연관된 새로운 전송 모드가 정의될 수 있다. 복수의 노드들이 통신에 참여하는 방식에 따라 UE가 수신하는 CSI-RS들의 설정이 다양하게 존재할 수 있다. 이때문에, 기존 LTE 시스템에서는 UE가 CSI-RS에 대해 비-제로 전송 전력을 상정해야 하는 CSI-RS 설정 혹은 CSI-RS 자원 설정이 최대 1개 사용될 수 있었음에 반해, CoMP가 설정된 UE, 즉, CoMP 모드로 설정된 UE의 경우, 상기 UE를 위해 사용될 수 있는 CSI 자원 설정들의 최대 개수가 1개보다 많다. UE가 하나 이상(one or more)의 CSI-RS 자원 설정들로써 설정될 수 있는 모드로 설정된 경우, 즉, UE가 CoMP 모드로 설정된 경우, 상기 UE는 하나 이상의 CSI-RS 자원 설정들에 관한 정보를 포함하는 상위 계층 신호를 수신할 수 있다. CoMP뿐만 아니라 반송파 집성(이하 CA)도 UE에게 설정된 경우, 서빙 셀별로 하나 이상의 CSI-RS 자원 설정들이 사용될 수 있다. Recently, applying CoMP technology to LTE / LTE-A system has been considered. CoMP technology involves a plurality of nodes. When CoMP technology is introduced into the LTE / LTE-A system, a new transmission mode associated with CoMP technology may be defined. There may be various configurations of CSI-RSs received by the UE depending on how a plurality of nodes participate in the communication. For this reason, in the existing LTE system, up to one CSI-RS configuration or CSI-RS resource configuration in which the UE should assume non-zero transmission power for CSI-RS could be used. In case of a UE set to CoMP mode, the maximum number of CSI resource settings that can be used for the UE is more than one. When the UE is set to a mode that can be set with one or more CSI-RS resource settings, that is, when the UE is set to CoMP mode, the UE can provide information about one or more CSI-RS resource settings. A higher layer signal may be received. When not only CoMP but also carrier aggregation (hereinafter CA) is configured for the UE, one or more CSI-RS resource configurations may be used for each serving cell.
기존 LTE/LTE-A 시스템에서는 UE는 특정 서빙 셀 상에서는 하나의 노드에게/로부터 신호를 전송/수신하였다. 즉 기존 LTE/LTE-A 시스템에서는 하나의 서빙 셀 상에는 하나의 무선 링크만이 존재하므로, 하나의 서빙 셀에 대해 하나의 CSI만이 UE에 의해 계산될 수 있었다. 이에 반해 복수의 노드들이 수반되는 CoMP에서는 노드별 혹은 노드들의 조합별로 하향링크 채널 상태가 다를 수 있다. 노드 혹은 노드의 조합에 따라 CSI-RS 자원 설정이 달라질 수 있으므로 CSI는 CSI-RS 자원과 연관된다. 또한 CoMP에 참여하는 노드들 사이의 간섭 환경에 따라서도 채널 상태가 다를 수 있다. 다시 말해 CoMP가 설정되면 노드별 혹은 노드의 조합별로 UE에 의해 측정될 수 있고 간섭 환경별로 CSI가 존재할 수 있으므로 UE의 서빙 셀별로 계산될 수 있는 CSI의 최대 개수가 1보다 큰 정수일 수 있다. UE가 CSI를 얻어내기 위해서 UE가 어떤 CSI를 어떻게 보고해야 하는지가 상위 계층에 의해 설정될 수 있다. CoMP가 설정되면 UE에 의해 1개 CSI가 계산될 수 있을 뿐만 아니라 복수의 CSI들도 계산될 수 있다. 따라서 UE가 CoMP 모드로 설정되면, 주기적 혹은 비주기적 CSI 보고를 위해, 상기 UE의 서빙 셀별로 하나 이상의 CSI들에 대한 CSI 보고가 설정될 수 있다. In the existing LTE / LTE-A system, the UE transmits / receives a signal to / from one node on a specific serving cell. That is, in the existing LTE / LTE-A system, since only one radio link exists on one serving cell, only one CSI for one serving cell could be calculated by the UE. On the other hand, in CoMP involving a plurality of nodes, the downlink channel state may be different for each node or a combination of nodes. CSI is associated with CSI-RS resources because CSI-RS resource configuration may vary depending on the node or combination of nodes. In addition, depending on the interference environment between the nodes participating in the CoMP channel state may be different. In other words, when CoMP is configured, the maximum number of CSIs that can be calculated for each serving cell of the UE may be an integer greater than 1 since it may be measured by the UE for each node or a combination of nodes and CSI may exist for each interference environment. How the CSI should report the CSI in order for the UE to obtain the CSI may be set by the upper layer. If CoMP is set, not only one CSI can be calculated by the UE but also a plurality of CSIs. Therefore, if the UE is set to CoMP mode, CSI reporting for one or more CSI can be configured for each serving cell of the UE for periodic or aperiodic CSI reporting.
한편 앞서 언급한 바와 같이 CoMP에서 CSI는 채널 측정에 사용되는 CSI-RS 자원과 간섭 측정에 사용되는 자원(이하 간섭 측정(interference measurement, IM) 자원)과 연관된다. 이하 신호 측정을 위한 하나의 CSI-RS 자원과 간섭 측정을 위한 하나의 IM 자원의 연관(association)을 CSI 프로세스(CSI process)라 칭한다. 즉 CSI 프로세스는 하나의 CSI-RS 자원 및 IM 자원(IM resource, IMR)과 연관될 수 있다. Meanwhile, as mentioned above, in CoMP, CSI is associated with a CSI-RS resource used for channel measurement and a resource used for interference measurement (hereinafter, referred to as an interference measurement (IM) resource). Hereinafter, the association of one CSI-RS resource for signal measurement and one IM resource for interference measurement is called a CSI process. That is, the CSI process may be associated with one CSI-RS resource and IM resource (IM resource, IMR).
UE가 연결된 eNB 혹은 상기 UE가 위치한 셀의 노드를 관리하는 eNB(이하 서빙 eNB)는 IM 자원 상에서는 아무런 신호를 전송하지 않는 것이 바람직하다. 따라서 IM 자원은 제로-전력 CSI-RS와 마찬가지의 방식으로 UE에게 설정될(configured) 수 있다. 예를 들어, eNB는 UE가 간섭 측정에 사용한 자원요소들을 앞서 설명한 제로 전력 CSI-RS 패턴을 지시하는 16-비트의 비트맵 및 CSI-RS 서브프레임 설정을 이용하여 UE에게 알려줄 수 있다. 이와 같이 IM 자원이 명시적으로 UE에게 설정되는 경우, UE는 상기 IM 자원에서 간섭을 측정하고 이 간섭이 CSI 측정의 기준이 되는 CSI 참조 자원에서의 간섭이라고 상정하고 CSI를 계산한다. 조금 더 구체적으로 UE는 CSI-RS 혹은 CRS를 바탕으로 채널 측정을 수행하고 IM 자원을 바탕으로 간섭 측정을 수행하여, 상기 채널 측정과 상기 간섭 측정을 기반으로 CSI를 얻어낼 수 있다.It is preferable that the eNB to which the UE is connected or the eNB (hereinafter, the serving eNB) managing the node of the cell where the UE is located transmits no signal on the IM resource. Thus, the IM resource may be configured for the UE in the same manner as the zero-power CSI-RS. For example, the eNB may inform the UE of the resource elements used by the UE for interference measurement using a 16-bit bitmap and CSI-RS subframe configuration indicating the zero power CSI-RS pattern described above. As such, when the IM resource is explicitly set to the UE, the UE measures the interference in the IM resource and assumes that the interference is an interference in the CSI reference resource that is the basis of the CSI measurement, and calculates the CSI. More specifically, the UE may perform channel measurement based on CSI-RS or CRS and perform interference measurement based on IM resources, thereby obtaining CSI based on the channel measurement and the interference measurement.
따라서 UE에 의해 보고되는 하나의 CSI는 하나의 CSI 프로세스에 대응할 수 있다. 각 CSI 프로세스는 독립적인 CSI 피드백 설정을 가질 수 있다. 독립적인 피드백 설정이라 함은 피드백 모드, 피드백 주기 및 피드백 오프셋 등을 의미한다. 피드백 오프셋은 무선 프레임 내 서브프레임들 중 피드백이 있는 시작 서브프레임에 대응한다. 피드백 모드는 RI, CQI, PMI 및 TPMI 중 피드백되는 CSI가 포함하는 CQI가 광대역(wideband)에 대한 CQI인지, 서브밴드(subband)에 대한 CQI인지, UE에 의해 선택된 서브밴드에 CQI인지에 따라, 그리고 CSI가 PMI를 포함하는지 여부와 단일 PMI를 포함하는지 복수의 PMI들을 포함하는지에 따라 다르게 정의될 수 있다.Thus, one CSI reported by the UE may correspond to one CSI process. Each CSI process may have an independent CSI feedback setting. Independent feedback setting means a feedback mode, a feedback period, and a feedback offset. The feedback offset corresponds to a starting subframe with feedback among the subframes in the radio frame. The feedback mode depends on whether the CQI included in the fed back CSI among the RI, CQI, PMI, and TPMI is the CQI for the wideband, the CQI for the subband, or the CQI for the subband selected by the UE. The CSI may be defined differently depending on whether the CSI includes a PMI, whether a CSI includes a single PMI, or a plurality of PMIs.
CSI 요청 필드가 2 비트이고 UE가 적어도 한 셀에 대해 하나 이상의 CSI 프로세스가 설정될 수 있는 모드(에, 전송 모드 10)으로 설정되면, 다음 표의 값에 대응하는 비주기적 CSI 보고가 트리거된다. 다음 표는 UE 특정적 탐색 공간 내 상향링크 DCI 포맷을 갖는(with) PDCCH/EPDCCH에 대한 CSI 요청 필드를 나타낸다.If the CSI request field is 2 bits and the UE is set to a mode in which one or more CSI processes can be configured for at least one cell (eg, transmission mode 10), then aperiodic CSI reporting corresponding to the values in the following table is triggered. The following table shows a CSI request field for a PDCCH / EPDCCH with an uplink DCI format in a UE specific search space.
Value of CSI request fieldValue of CSI request field DescriptionDescription
'00''00' No aperiodic CSI report is triggeredNo aperiodic CSI report is triggered
'01''01' Aperiodic CSI report is triggered for a set of CSI process(es) configured by higher layers for serving cell c Aperiodic CSI report is triggered for a set of CSI process (es) configured by higher layers for serving cell c
'10''10' Aperiodic CSI report is triggered for a 1st set of CSI process(es) configured by higher layersAperiodic CSI report is triggered for a 1 st set of CSI process (es) configured by higher layers
'11''11' Aperiodic CSI report is triggered for a 2nd set of CSI process(es) configured by higher layersAperiodic CSI report is triggered for a 2 nd set of CSI process (es) configured by higher layers
위 표에서 어떤 CSI 셀(들)에 대해 비주기적 CSI 보고가 CSI 요청 필드 '01', CSI 요청 필드 '10' 및/또는 CSI 요청 필드 '11'에 의해 트리거되는지가 상위 계층 신호(예, RRC 신호)에 의해 설정될 수 있다. 상위 계층에 의해 서빙 셀에 CSI 프로세스가 설정될 때, 각 CSI 프로세스별로 CSI 요청 필드 '01', CSI 요청 필드 '10' 및 CSI 요청 필드 '11'에 의해 비주기적 CSI 보고가 트리거되는지 여부가 설정된다. CSI 프로세스에 대한 트리거01은 '01'로 세팅된 CSI 요청 필드에 의해 해당 CSI 프로세스가 트리거되는지 여부를 나타내고, 트리거10은 '10'으로 세팅된 CSI 요청 필드에 의해 해당 CSI 프로세스가 트리거되는지 여부를 나타내며, 트리거 11은 '11'로 세팅된 CSI 요청 필드에 의해 해당 CSI 프로세스가 트리거되는지 여부를 나타낸다. CSI 프로세스에 대한 트리거01, 트리거10 및 트리거 11에 따라 해당 CSI 프로세스는 CSI 요청 필드 '01', CSI 요청 필드 '10' 및 CSI 요청 필드 '11' 모두에 의해 비주기적 CSI 보고가 트리거될 수도 있고, 어느 것에 의해서도 비주기적 CSI 보고가 트리거되지 않을 수도 있으며, 일부에 의해서만 비주기적 CSI 보고가 트리거될 수도 있다.In the table above, for which CSI cell (s) the aperiodic CSI reporting is triggered by CSI request field '01', CSI request field '10' and / or CSI request field '11', the higher layer signal (e.g. RRC Signal). When a CSI process is set in a serving cell by a higher layer, it is set whether aperiodic CSI reporting is triggered by a CSI request field '01', a CSI request field '10', and a CSI request field '11' for each CSI process. do. The trigger 01 for the CSI process indicates whether the corresponding CSI process is triggered by the CSI request field set to '01', and the trigger 10 indicates whether the corresponding CSI process is triggered by the CSI request field set to '10'. The trigger 11 indicates whether the corresponding CSI process is triggered by the CSI request field set to '11'. Depending on trigger 01, trigger 10, and trigger 11 for the CSI process, the CSI process may trigger aperiodic CSI reporting by both CSI request field '01', CSI request field '10', and CSI request field '11'. In either case, aperiodic CSI reporting may not be triggered by any of them, and only a part may trigger aperiodic CSI reporting.
상기 상위 계층 신호는 CSI 요청 필드 '10'에 의해 트리거될 셀(들)을 나타내는 8-비트의 비트맵과 CSI 요청 필드 '11'에 의해 트리거될 셀(들)을 8-비트의 비트맵을 포함할 수 있다. 각 비트맵에서 최저 비트인 비트 0부터 최고 비트인 비트 7이 서빙 셀 인덱스가 0인 셀(즉, Pcell)부터 서빙 셀 인덱스가 7인 셀에 일대일로 대응한다. CSI 요청 필드 '10'용 비트맵에서 1로 세팅된 비트에 대응하는 셀은 CSI 요청 필드 값 '10'에 의해 비주기적 CSI 보고가 트리거되는 셀을 의미하며, 0으로 세팅된 비트에 대응하는 셀은 CSI 요청 필드 값 '10'에 의해 비주기적 CSI 보고가 트리거되지 않는 셀을 의미한다. CSI 요청 필드 '11'용 비트맵에서 1로 세팅된 비트에 대응하는 셀은 CSI 요청 필드 값 '11'에 의해 비주기적 CSI 보고가 트리거되는 셀을 의미하며, 0으로 세팅된 비트에 대응하는 셀은 CSI 요청 필드 값 '11'에 의해 비주기적 CSI 보고가 트리거되지 않는 셀을 의미한다.The upper layer signal includes an 8-bit bitmap indicating a cell (s) to be triggered by the CSI request field '10' and an 8-bit bitmap indicating a cell (s) to be triggered by the CSI request field '11'. It may include. In each bitmap, bit 0, which is the lowest bit, to bit 7, which is the highest bit, correspond one-to-one to cells with a serving cell index of 0 (that is, Pcell) to cells with a serving cell index of 7. A cell corresponding to a bit set to 1 in the bitmap for the CSI request field '10' means a cell in which an aperiodic CSI report is triggered by the CSI request field value '10', and a cell corresponding to a bit set to 0 Denotes a cell in which aperiodic CSI reporting is not triggered by the CSI request field value '10'. A cell corresponding to a bit set to 1 in the bitmap for the CSI request field '11' means a cell in which an aperiodic CSI report is triggered by the CSI request field value '11', and a cell corresponding to a bit set to 0 Denotes a cell in which aperiodic CSI reporting is not triggered by the CSI request field value '11'.
도 7에서 도 9는 PUCCH 포맷을 PUCCH 자원에 물리적으로 맵핑하는 예를 나타낸 것이다.7 to 9 illustrate examples of physically mapping a PUCCH format to PUCCH resources.
도 7은 PUCCH 포맷의 슬롯 레벨 구조를 예시한 것이다. 특히, 도 7은 정규 순환 전치(normal cyclic prefix)인 경우의 PUCCH 포맷 1a와 1b의 구조를 나타낸다. 7 illustrates a slot level structure of a PUCCH format. In particular, FIG. 7 shows the structures of PUCCH formats 1a and 1b in the case of a normal cyclic prefix.
PUCCH 포맷 1a와 1b는 동일한 내용의 제어 정보가 서브프레임 내에서 슬롯 단위로 반복된다. 각 UE에서 ACK/NACK 신호는 CG-CAZAC(Computer-Generated Constant Amplitude Zero Auto Correlation) 시퀀스의 서로 다른 순환 천이(cyclic shift, CS)(주파수 도메인 코드)와 직교 커버(orthogonal cover) 시퀀스(OCC(orthogonal cover code)라고도 함)(시간 도메인 확산 코드)로 구성된 서로 다른 자원을 통해 전송된다. OC 시퀀스는 예를 들어 왈쉬(Walsh)/DFT 직교 코드를 포함한다. CS의 개수가 6개이고 OC 시퀀스의 개수가 3개이면, 단일 안테나를 기준으로 총 18개의 UE가 동일한 PRB(Physical Resource Block) 안에서 다중화 될 수 있다. 직교 시퀀스 [w(0) w(1) w(2) w(3)]는 (FFT 변조 후에) 임의의 시간 도메인에서 또는 (FFT 변조 전에) 임의의 주파수 도메인에서 적용될 수 있다. In PUCCH formats 1a and 1b, control information having the same content is repeated in a slot unit in a subframe. In each UE, the ACK / NACK signal has different cyclic shift (CS) (frequency domain codes) and orthogonal cover sequences (OCCs) of a computer-generated constant amplitude zero auto correlation (CG-CAZAC) sequence. (also called a cover code) (time domain spreading code). The OC sequence includes, for example, Walsh / DFT orthogonal code. If the number of CSs is six and the number of OC sequences is three, a total of 18 UEs may be multiplexed in the same physical resource block (PRB) based on a single antenna. The orthogonal sequence [w (0) w (1) w (2) w (3)] can be applied in any time domain (after FFT modulation) or in any frequency domain (before FFT modulation).
SR과 지속적 스케줄링(persistent scheduling)을 위해, CS, OC 시퀀스 및 PRB(Physical Resource Block)로 구성된 PUCCH 자원은 RRC(Radio Resource Control)를 통해 UE에게 주어질 수 있다. 동적 ACK/NACK과 비지속적 스케줄링(non-persistent scheduling)을 위해, PUCCH 자원은 PDSCH에 대응하는 PDCCH의 가장 작은(lowest) CCE(Control Channel Element) 인덱스에 의해 암묵적으로(implicitly) UE에게 주어질 수 있다. For SR and persistent scheduling, PUCCH resources composed of CS, OC sequence and Physical Resource Block (PRB) may be given to the UE through RRC (Radio Resource Control). For dynamic ACK / NACK and non-persistent scheduling, PUCCH resources may be implicitly given to the UE by the lowest CCE (Control Channel Element) index of the PDCCH corresponding to the PDSCH. .
도 8은 정규 CP를 갖는 UL 슬롯에서 PUCCH 포맷 2/2a/2b를 이용하여 채널상태정보를 전송하는 예를 나타낸 것이다.8 shows an example of transmitting channel state information using a PUCCH format 2 / 2a / 2b in a UL slot having a regular CP.
도 8을 참조하면, 정규 CP의 경우, 하나의 UL 서브프레임은 UL 참조신호(reference signal, RS)를 나르는 심볼을 제외하면 10개의 OFDM 심볼로 구성된다. 채널상태정보는 블록코딩을 통해 10개의 전송심볼(복소변조심볼이라고도 함)로 코딩된다. 상기 10개의 전송 심볼은 각각 상기 10개의 OFDM 심볼로 맵핑되어 eNB로 전송된다.Referring to FIG. 8, in the case of a normal CP, one UL subframe includes 10 OFDM symbols except for a symbol carrying a UL reference signal (RS). The channel state information is coded into 10 transmission symbols (also called complex modulation symbols) through block coding. The 10 transmission symbols are respectively mapped to the 10 OFDM symbols and transmitted to the eNB.
도 9는 블록-확산을 기반으로 한 PUCCH 포맷을 예시한 것이다.9 illustrates a PUCCH format based on block-spreading.
블록-확산 기법은 심볼 시퀀스를 OCC(Orthogonal Cover Code)(직교 시퀀스(orthogonal sequence)라고도 함)에 의해 시간-도메인 확산하여 전송한다. 블록-확산 기법에 의하면, OCC에 의해 여러 UE들의 제어 신호들이 동일한 RB에 다중화되어 eNB에게 전송될 수 있다. PUCCH 포맷 2의 경우, 하나의 심볼 시퀀스가 시간-도메인에 걸쳐 전송되되, UE들의 UCI들이 CAZAC 시퀀스의 순환 천이(CCS)를 이용하여 다중화되어 eNB에게 전송된다. 반면에, 블록-확산 기반의 새로운 PUCCH 포맷(이하, PUCCH 포맷 3)의 경우, 하나의 심볼 시퀀스가 주파수-도메인에 걸쳐 전송되되, UE들의 UCI들이 OCC 기반의 시간-도메인 확산을 이용하여 UE들의 UCI들이 다중화되어 eNB에게 전송된다. 예를 들어, 도 9를 참조하면, 하나의 심볼 시퀀스가 길이-5(즉, SF=5)의 OCC에 의해 확산되어 5개의 SC-FDMA 심볼들에게 매핑된다. 도 9에서는 1개의 슬롯 동안 총 2개의 RS 심볼들이 사용되는 경우가 예시되었으나, 3개의 RS 심볼들이 사용되고 SF=4의 OCC가 심볼 시퀀스의 확산 및 UE 다중화에 이용될 수도 있다. 여기서, RS 심볼은 특정 순환 천이를 갖는 CAZAC 시퀀스로부터 생성될 수 있으며, 시간 도메인에서 복수의 RS 심볼들에 특정 OCC가 적용된/곱해진 형태로 UE로부터 eNB에게 전송될 수도 있다. 도 9에서 FFT(Fast Fourier Transform)는 OCC 전에 미리 적용될 수도 있으며, FFT 대신 DFT(Discrete Fourier Transform)이 적용될 수도 있다.The block-spreading technique transmits a symbol sequence by time-domain spreading by an orthogonal cover code (OCC) (also called an orthogonal sequence). According to the block-spreading technique, control signals of several UEs may be multiplexed on the same RB and transmitted to the eNB by the OCC. In PUCCH format 2, one symbol sequence is transmitted over time-domain, but UCIs of UEs are multiplexed using cyclic shift (CCS) of a CAZAC sequence and transmitted to an eNB. On the other hand, in the case of a block-spread based new PUCCH format (hereinafter, PUCCH format 3), one symbol sequence is transmitted across a frequency-domain, where UCIs of UEs use OCC based time-domain spreading of UEs. UCIs are multiplexed and sent to the eNB. For example, referring to FIG. 9, one symbol sequence is spread by an OCC of length-5 (ie SF = 5) and mapped to five SC-FDMA symbols. In FIG. 9, a case in which a total of two RS symbols are used during one slot is illustrated, but three RS symbols are used and an OCC of SF = 4 may be used for spreading a symbol sequence and UE multiplexing. Here, the RS symbol may be generated from a CAZAC sequence having a specific cyclic shift, and may be transmitted from the UE to the eNB in a specific OCC applied / multiplied form to a plurality of RS symbols in the time domain. In FIG. 9, the Fast Fourier Transform (FFT) may be applied before the OCC, or the Discrete Fourier Transform (DFT) may be applied instead of the FFT.
설명의 편의를 위해, PUCCH 포맷 2 또는 PUCCH 포맷 3을 사용하는 이러한 채널 코딩 기반의 복수 ACK/NACK 전송 방식을 "멀티-비트 ACK/NACK 코딩" 전송 방법이라 칭한다. 이 방법은 복수 DL CC의 PDSCH(들), 즉, 복수 DL CC 상에서 전송된 PDSCH(들)에 대한 ACK/NACK 또는 DTX 정보(PDCCH를 수신/검출하지 못함을 의미)들을 채널 코딩하여 생성된 ACK/NACK 코드화(coded) 블록을 전송하는 방법을 나타낸다. 예를 들어 UE가 어떤 DL CC에서 SU-MIMO(Single User MIMO) 모드로 동작하여 2개의 코드워드(CW)를 수신한다면 상기 DL CC에 대해 CW 별로 ACK/ACK, ACK/NACK, NACK/ACK, NACK/NACK의 총 4개의 피드백 상태(feedback state) 중 하나를 전송하거나, DTX까지 포함하여 최대 5개의 피드백 상태 중 하나를 전송 수 있다. 또한 만약 UE가 단일(single) CW 수신을 한다면 ACK, NACK, DTX의 최대 3개의 피드백 상태가 있을 수 있다(만약, NACK을 DTX와 동일하게 처리한다면 ACK, NACK/DTX의 총 2개 피드백 상태가 있을 수 있다). 따라서 UE에 최대 5개의 DL CC가 집성되고 모든 CC에서 SU-MIMO 모드로 동작한다면 최대 55개의 전송 가능한 피드백 상태가 있을 수 있고, 이를 표현하기 위한 ACK/NACK 페이로드(payload) 크기는 총 12 비트가 된다. 만약, DTX를 NACK과 동일하게 처리한다면 피드백 상태의 수는 45개가 되고, 이를 표현하기 위한 ACK/NACK 페이로드 크기는 총 10 비트가 된다. For convenience of description, this channel coding based multiple ACK / NACK transmission scheme using PUCCH format 2 or PUCCH format 3 is referred to as a "multi-bit ACK / NACK coding" transmission method. This method generates an ACK generated by channel coding ACK / NACK or DTX information (meaning that a PDCCH cannot be received / detected) for PDSCH (s) of multiple DL CCs, that is, PDSCH (s) transmitted on multiple DL CCs. / NACK This indicates a method of transmitting a coded block. For example, if a UE operates in a single user MIMO (SU-MIMO) mode in a DL CC and receives two codewords (CW), ACK / ACK, ACK / NACK, NACK / ACK, One of a total of four feedback states of NACK / NACK may be transmitted, or one of a maximum of five feedback states including up to DTX may be transmitted. In addition, if the UE receives a single CW, there may be up to three feedback states of ACK, NACK, and DTX (if the NACK is treated the same as DTX, two feedback states of ACK, NACK / DTX May be). Thus, to be a maximum of 5 DL CC laminated to the UE, if operating in SU-MIMO mode for all CC may have up to 55 of the transferable feedback state, ACK / NACK payload (payload) size to represent this, a total of 12 Bit. If, if the same handle DTX and NACK the number of feedback state is a dog 4 5, ACK / NACK payload size for representing this is a total of 10 bits.
도 7에서 도 9에서 예시된 바와 같이, 일 PUCCH가 나르는 UCI는 PUCCH 포맷에 따라서 그 크기와 용도가 다르며, 코딩 레이트에 따라 그 크기가 달라질 수 있다. 다음 표는 PUCCH 포맷과 UCI의 매핑 관계를 예시한다.As illustrated in FIG. 7 and FIG. 9, the UCI carried by one PUCCH may have a different size and use depending on the PUCCH format, and may vary in size depending on a coding rate. The following table illustrates the mapping relationship between the PUCCH format and UCI.
예를 들어, 다음과 같은 PUCCH 포맷이 정의될 수 있다.For example, the following PUCCH format may be defined.
PUCCH formatPUCCH format Modulation schemeModulation scheme Number of bits per subframeNumber of bits per subframe UsageUsage Etc.Etc.
1One N/AN / A N/A (exist or absent)N / A (exist or absent) SR (Scheduling Request)SR (Scheduling Request)
1a1a BPSKBPSK 1One ACK/NACK orSR + ACK/NACKACK / NACK orSR + ACK / NACK One codewordOne codeword
1b1b
QPSKQPSK 22 ACK/NACK orSR + ACK/NACKACK / NACK orSR + ACK / NACK Two codewordTwo codeword
22 QPSK QPSK 2020 CQI/PMI/RICQI / PMI / RI Joint coding ACK/NACK (extended CP)Joint coding ACK / NACK (extended CP)
2a2a QPSK+BPSKQPSK + BPSK 2121 CQI/PMI/RI + ACK/NACKCQI / PMI / RI + ACK / NACK Normal CP onlyNormal CP only
2b2b QPSK+QPSKQPSK + QPSK 2222 CQI/PMI/RI + ACK/NACKCQI / PMI / RI + ACK / NACK Normal CP onlyNormal CP only
33 QPSKQPSK 4848 ACK/NACK orSR + ACK/NACK orCQI/PMI/RI + ACK/NACKACK / NACK orSR + ACK / NACK orCQI / PMI / RI + ACK / NACK
위 표를 참조하면, PUCCH 포맷 1 계열은 주로 ACK/NACK 정보를 전송하는 데 사용되며, PUCCH 포맷 2 계열은 주로 CQI/PMI/RI 등의 채널상태정보(channel state information, CSI)를 나르는 데 사용되고, PUCCH 포맷 3 계열은 주로 ACK/NACK 정보를 전송하는 데 사용된다. Referring to the above table, the PUCCH format 1 series is mainly used to transmit ACK / NACK information, and the PUCCH format 2 series is mainly used to carry channel state information (CSI) such as CQI / PMI / RI. In particular, the PUCCH format 3 series is mainly used to transmit ACK / NACK information.
UE는 상위 계층 신호 혹은 동적 제어 신호 혹은 암묵적 방식에 의해 eNB로부터 UCI의 전송을 위한 PUCCH 자원을 할당받는다. PUCCH를 위해 사용되는 물리자원들은 상위 계층에 의해 주어지는 2개의 파라미터, N (2) RBN (1) cs에 의존한다. 변수 N (2) RB≥0은 각 슬롯에서 PUCCH 포맷 2/2a/2b 전송에 이용가능한 대역폭을 나타내며, N RB sc개의 정수배로 표현된다. 변수 N (1) cs는 포맷 1/1a/1b 및 2/2a/2b의 혼합을 위해 사용되는 자원블록에서 PUCCH 포맷 1/1a/1b를 위해 사용된 순환 천이(cyclic shift, CS)의 개수를 나타낸다. N (1) cs의 값은 {0, 1,..., 7}의 범위 내에서 △PUCCH shift의 정수배가 된다. △PUCCH shift는 상위 계층에 의해 제공된다. N (1) cs=0이면 혼합된 자원블록이 없게 되며, 각 슬롯에서 많아야 1개 자원블록이 포맷 1/1a/1b 및 2/2a/2b의 혼합을 지원한다. 안테나 포트 p에 의해 PUCCH 포맷 1/1a/1b, 2/2a/2b 및 3의 전송을 위해 사용되는 자원들은 음이 아닌 정수 인덱스인 n (1,p) PUCCH, n (2,p) PUCCH < N (2) RB N RB sc + ceil(N (1) cs/8)·(N RB sc - N (1) cs - 2), 및 n (3,p) PUCCH에 의해 각각 표현된다.The UE is allocated a PUCCH resource for transmission of UCI from the eNB by a higher layer signal or a dynamic control signal or an implicit method. The physical resources used for the PUCCH depend on two parameters given by higher layers, N (2) RB and N (1) cs . The variable N (2) RB ≧ 0 represents the bandwidth available for PUCCH format 2 / 2a / 2b transmission in each slot and is expressed as N RB sc integer multiples. Variable N (1) cs is the number of cyclic shifts (CS) used for PUCCH format 1 / 1a / 1b in the resource block used for mixing of formats 1 / 1a / 1b and 2 / 2a / 2b. Indicates. The value of N (1) cs becomes an integer multiple of Δ PUCCH shift within the range of {0, 1, ..., 7}. Δ PUCCH shift is provided by a higher layer. If N (1) cs = 0, there are no mixed resource blocks, and at most one resource block in each slot supports mixing of formats 1 / 1a / 1b and 2 / 2a / 2b. The resources used for transmission of PUCCH formats 1 / 1a / 1b, 2 / 2a / 2b, and 3 by antenna port p are non-negative integer indexes n (1, p) PUCCH , n (2, p) PUCCH < N (2) RB N RB sc + ceil ( N (1) cs / 8). ( N RB sc - N (1) cs -2), and n (3, p) PUCCH , respectively.
구체적으로, PUCCH 포맷별로 기정의된 특정 규칙에 따라, PUCCH 자원 인덱스로부터 해당 UCI에 적용될 직교시퀀스 및/또는 순환 천이가 결정되며 PUCCH가 맵핑될, 서브프레임 내 2개 자원블록들의 자원 인덱스들이 주어진다. 예를 들어, 슬롯 n s에서 PUCCH의 전송을 위한 PRB가 다음과 같이 주어진다.Specifically, according to a specific rule defined for each PUCCH format, an orthogonal sequence and / or cyclic shift to be applied to a corresponding UCI is determined from a PUCCH resource index, and resource indexes of two resource blocks in a subframe to which a PUCCH is mapped are given. For example, a PRB for transmission of a PUCCH in slot n s is given as follows.
Figure PCTKR2015014592-appb-M000001
Figure PCTKR2015014592-appb-M000001
수학식 1에서, 변수 m은 PUCCH 포맷에 의존하며, PUCCH 포맷 1/1a/1b, PUCCH 포맷 2/2a/2b 및 PUCCH 포맷 3에 수학식 2, 수학식 3, 수학식 4와 같이 각각 주어진다.In Equation 1, the variable m depends on the PUCCH format, and is given to the PUCCH format 1 / 1a / 1b, the PUCCH format 2 / 2a / 2b, and the PUCCH format 3 by Equation 2, Equation 3, and Equation 4, respectively.
수학식 2에서, n (1,p) PUCCH는 PUCCH 포맷 1/1a/1b을 위한 안테나 포트 p의 PUCCH 자원 인덱스로서, ACK/NACK PUCCH의 경우, 해당 PDSCH의 스케줄링 정보를 나르는 PDCCH의 첫번째 CCE 인덱스에 의해 암묵적으로 정해지는 값이다. In Equation 2, n (1, p) PUCCH is a PUCCH resource index of the antenna port p for the PUCCH format 1 / 1a / 1b, in the case of ACK / NACK PUCCH, the first CCE index of the PDCCH carrying the scheduling information of the PDSCH This is an implicit value.
Figure PCTKR2015014592-appb-M000003
Figure PCTKR2015014592-appb-M000003
n (2) PUCCH는 PUCCH 포맷 2/2a/2b을 위한 안테나 포트 p의 PUCCH 자원 인덱스로서, 상위 레이어 시그널링에 의해 eNB로부터 UE에 전송되는 값이다. n (2) PUCCH is a PUCCH resource index of antenna port p for PUCCH format 2 / 2a / 2b, and is a value transmitted from eNB to UE by higher layer signaling.
Figure PCTKR2015014592-appb-M000004
Figure PCTKR2015014592-appb-M000004
n (3) PUCCH는 PUCCH 포맷 2/2a/2b을 위한 안테나 포트 p의 PUCCH 자원 인덱스로서, 상위 계층 시그널링에 의해 eNB로부터 UE에 전송되는 값이다. N PUCCH SF,0는 서브프레임의 첫 번째 슬롯을 위한 확장 인자(spreading factor, SF)를 나타낸다. 일반 PUCCH 포맷 3을 사용하는 서브프레임 내 2개 슬롯 모두에 대해 N PUCCH SF,0는 5이며, 축소된 PUCCH 포맷 3을 사용하는 서브프레임에서 첫 번째 슬롯 및 두 번째 슬롯에 대해 N PUCCH SF,0는 각각 5와 4이다. n (3) PUCCH is a PUCCH resource index of antenna port p for PUCCH format 2 / 2a / 2b, and is a value transmitted from eNB to UE by higher layer signaling. N PUCCH SF, 0 represents a spreading factor (SF) for the first slot of a subframe. N PUCCH for all within two slot sub-frame using a common PUCCH Format 3 SF, 0 to 5, and, N PUCCH for the first slot and the second slot from using a reduced PUCCH Format 3 sub-frames SF, 0 Are 5 and 4, respectively.
수학식 2를 참조하면, ACK/NACK을 위한 PUCCH 자원은 각 UE에 미리 할당되어 있지 않고, 복수의 PUCCH 자원들을 셀 내의 복수의 UE들이 매 시점마다 나눠서 사용한다. 구체적으로, UE가 ACK/NACK을 전송하는 데 사용하는 PUCCH 자원은 해당 하향링크 데이터를 나르는 PDSCH에 대한 스케줄링 정보를 나르는 PDCCH 혹은 SPS 해제를 지시하는 PDCCH를 기반으로 동적으로 결정된다. 각각의 DL 서브프레임에서 PDCCH가 전송되는 전체 영역은 복수의 CCE(Control Channel Element)로 구성되고, UE에게 전송되는 PDCCH는 하나 이상의 CCE로 구성된다. UE는 자신이 수신한 PDCCH를 구성하는 CCE들 중 특정 CCE(예를 들어, 최저 인덱스 CCE)에 링크된 PUCCH 자원을 통해 ACK/NACK을 전송한다. Referring to Equation 2, PUCCH resources for ACK / NACK is not allocated to each UE in advance, a plurality of PUCCH resources are used by each of the plurality of UEs in the cell divided at each time point. Specifically, the PUCCH resource used by the UE to transmit ACK / NACK is dynamically determined based on a PDCCH carrying scheduling information for a PDSCH carrying corresponding downlink data or a PDCCH indicating SPS release. The entire region in which the PDCCH is transmitted in each DL subframe consists of a plurality of control channel elements (CCEs), and the PDCCH transmitted to the UE consists of one or more CCEs. The UE transmits ACK / NACK through a PUCCH resource linked to a specific CCE (for example, the lowest index CCE) among the CCEs constituting the PDCCH received by the UE.
각각의 PUCCH 자원 인덱스는 ACK/NACK을 위한 PUCCH 자원에 대응된다. 예를 들어, 4~6번 CCE로 구성된 PDCCH를 통해 PDSCH에 대한 스케줄링 정보가 UE에 전송되고, 4번 CCE가 PUCCH 자원 인덱스 4에 링킹된다고 가정할 경우, 상기 UE는 상기 PDCCH를 구성하는 4번 CCE에 대응하는 4번 PUCCH 자원을 통해 상기 PDSCH에 대한 ACK/NACK을 eNB에 전송한다. 구체적으로, 3GPP LTE(-A) 시스템에서 2개 안테나 포트(p 0p 1)에 의한 전송을 위한 PUCCH 자원 인덱스는 다음과 같이 정해진다.Each PUCCH resource index corresponds to a PUCCH resource for ACK / NACK. For example, assuming that scheduling information for a PDSCH is transmitted to a UE through a PDCCH configured with 4 to 6 CCEs, and the 4 CCE is linked to a PUCCH resource index 4, the UE configures the PDCCH 4 times. The ACK / NACK for the PDSCH is transmitted to the eNB through the PUCCH resource 4 corresponding to the CCE. Specifically, the PUCCH resource index for transmission by two antenna ports p 0 and p 1 in 3GPP LTE (-A) system is determined as follows.
Figure PCTKR2015014592-appb-M000005
Figure PCTKR2015014592-appb-M000005
Figure PCTKR2015014592-appb-M000006
Figure PCTKR2015014592-appb-M000006
여기서, n (1,p=p0) PUCCH는 안테나 포트 p 0가 사용할 ACK/NACK PUCCH 자원의 인덱스(즉, 번호)를 나타내고, n (1,p=p1) PUCCH는 안테나 포트 p 1이 사용할 ACK/NACK PUCCH 자원 인덱스를 나타내며, N (1) PUCCH는 상위 계층으로부터 전달받는 시그널링 값을 나타낸다. n CCE는 PDCCH 전송에 사용된 CCE 인덱스들 중에서 가장 작은 값에 해당한다. 예를 들어, CCE 집성 레벨이 2이상인 경우에는 PDCCH 전송을 위해 집성된 복수의 CCE들의 인덱스들 중 첫 번째 CCE 인덱스가 ACK/NACK PUCCH 자원의 결정에 사용된다. n (1) PUCCH로부터 PUCCH 포맷을 위한 CS(Cyclic Shift), OC(Orthogonal Code) 및 PRB가 얻어진다.Here, n (1, p = p0) PUCCH represents an index (ie, number) of the ACK / NACK PUCCH resource to be used by antenna port p 0 , and n (1, p = p1) PUCCH is an ACK to be used by antenna port p 1 / NACK represents a PUCCH resource index, N (1) PUCCH represents a signaling value received from a higher layer. n CCE corresponds to the smallest value among the CCE indexes used for PDCCH transmission. For example, when the CCE aggregation level is 2 or more, the first CCE index among the indexes of the plurality of CCEs aggregated for PDCCH transmission is used for determining the ACK / NACK PUCCH resource. n (1) a CS (Cyclic Shift), OC ( Orthogonal Code) and PRB for PUCCH format is obtained from the PUCCH.
ACK/NACK 전송을 위해 PUCCH 포맷 3이 설정된 경우, 상위 계층(예, RRC)에 의해 할당된 복수 PUCCH 포맷 3 자원 인덱스들 (n (3) PUCCH) 중 특정 하나의 PUCCH 포맷 3 자원 인덱스가 DL 그랜트 PDCCH의 ARI(ACK/NACK Resource Indicator) 값에 의해 지시될 수 있다(명시적(explicit PUCCH 자원)). ARI는 Scell의 PDSCH를 스케줄링 하는 PDCCH의 TPC 필드를 통해 전송된다. n (3) PUCCH로부터 PUCCH 포맷 3을 위한 OC 및 PRB가 얻어진다.When PUCCH format 3 is configured for ACK / NACK transmission, a specific PUCCH format 3 resource index among the plurality of PUCCH format 3 resource indexes ( n (3) PUCCH ) allocated by a higher layer (eg, RRC) is a DL grant. It may be indicated by an ACK / NACK Resource Indicator (ARI) value of the PDCCH (explicit PUCCH resource). The ARI is transmitted through the TPC field of the PDCCH scheduling the PDSCH of the Scell. n (3) and an OC PRB for PUCCH Format 3 is obtained from the PUCCH.
한편, EPDCCH 기반 스케줄링의 경우에도, DL 그랜트 EPDCCH에 의해 스케줄링 된 DL 데이터에 대한 ACK/NACK 전송 자원은 DL 그랜트 EPDCCH를 구성하는 특정 ECCE 인덱스(예, 최소 ECCE 인덱스) 혹은 여기에 특정 오프셋 값이 추가된 ECCE 인덱스에 링크된 PUCCH 자원으로 결정될 수 있다. 또한, ACK/NACK 피드백 전송 자원은 DL 그랜트 EPDCCH를 구성하는 특정 ECCE 인덱스(예, 최소 ECCE 인덱스)에 링크된 PUCCH 자원 혹은 여기에 특정 오프셋 값이 추가된 PUCCH 자원으로 결정될 수 있다. 여기서, 특정 오프셋 값은 DL 그랜트 EPDCCH 내 ARO(ACK/NACK Resource Offset) 필드를 통해 직접 시그널링 되는 값 및/또는 안테나 포트별로 전용(dedicated)으로 지정되는 값 등에 의해 결정될 수 있다. 구체적으로, 프레임 구조 타입(예, FDD 또는 TDD) 및 ACK/NACK 피드백 전송 방식(예, PUCCH 포맷 3 또는 채널 선택)에 따라 DL 그랜트 EPDCCH 내의 TPC 필드 및 ARO 필드를 통해 시그널링 되는 정보는 다음과 같이 구성될 수 있다. 편의상, PUCCH 전력 제어를 위한 TPC 커맨드를 "TPC 값", 암묵적 PUCCH 인덱스 결정 시 추가되는 오프셋 값을 "ARO 값", RRC로 할당된 복수 PUCCH 포맷 3 인덱스들 혹은 복수 PUCCH 포맷 1 인덱스들 (복수 PUCCH 포맷 1 인덱스 그룹들) 중 특정 하나를 지시하는 ARI를 "ARI 값"이라고 정의한다. 또한, 아무런 정보를 포함하지 않고 (가상 CRC 등의 용도를 위해) 삽입되는 고정된 값(예, '0')을 "고정 값(fixed value)"이라고 정의한다.Meanwhile, even in the case of EPDCCH-based scheduling, the ACK / NACK transmission resource for the DL data scheduled by the DL grant EPDCCH has a specific ECCE index (eg, a minimum ECCE index) constituting the DL grant EPDCCH or a specific offset value added thereto. It may be determined as a PUCCH resource linked to the ECCE index. In addition, the ACK / NACK feedback transmission resource may be determined as a PUCCH resource linked to a specific ECCE index (eg, a minimum ECCE index) constituting a DL grant EPDCCH or a PUCCH resource added with a specific offset value. Here, the specific offset value may be determined by a value directly signaled through an ACK / NACK Resource Offset (ARO) field in the DL grant EPDCCH and / or a value designated as dedicated for each antenna port. Specifically, the information signaled through the TPC field and the ARO field in the DL grant EPDCCH according to the frame structure type (eg, FDD or TDD) and ACK / NACK feedback transmission scheme (eg, PUCCH format 3 or channel selection) is as follows. Can be configured. For convenience, a TPC command for PUCCH power control is a "TPC value", an offset value added when the implicit PUCCH index is determined is an "ARO value", a plurality of PUCCH format 3 indexes assigned to RRC or a plurality of PUCCH format 1 indexes (multiple PUCCHs). An ARI indicating a specific one of format 1 index groups) is defined as an "ARI value". In addition, a fixed value (eg, '0') that is inserted without any information (for a purpose such as a virtual CRC) is defined as a "fixed value".
DL 서브프레임에서 Pcell 상의 PDCCH/EPDCCH의 검출에 의해, 상기 DL 서브프레임을 위한 ACK/NACK 전송 타이밍에 해당하는 UL 서브프레임에서 상기 Pcell 상에 동적(즉, 암묵적으로) 정해지는 (ACK/NACK) PUCCH 자원(들)을 제외한 나머지 SR, ACK/NACK 및/또는 CSI용 PUCCH 자원(들)은 상위 계층에 의해 설정된다. (ACK / NACK) determined dynamically (ie, implicitly) on the Pcell in the UL subframe corresponding to the ACK / NACK transmission timing for the DL subframe by detection of PDCCH / EPDCCH on the Pcell in the DL subframe The remaining PUCCH resource (s) for the SR, ACK / NACK and / or CSI except the PUCCH resource (s) are set by the higher layer.
한편, 동일한 UL-DL 서브프레임 설정을 갖는 복수 CC의 병합뿐만 아니라, 상이한 UL-DL 서브프레임 설정을 갖는 복수 CC의 병합도 가능하다. 예를 들어, 상이한 UL-DL 서브프레임 설정을 갖는 복수 CC의 병합은 서로 다른 UL-DL 구성으로 설정된 복수 CC의 병합(편의상, 상이한(different) TDD CA라고 지칭), TDD CC와 FDD CC의 병합을 포함한다.  On the other hand, not only the merging of multiple CCs having the same UL-DL subframe configuration but also the merging of multiple CCs having different UL-DL subframe configuration is possible. For example, merging of multiple CCs with different UL-DL subframe settings is merging of multiple CCs configured with different UL-DL configurations (referred to as different TDD CAs for convenience), merging of TDD CCs and FDD CCs. It includes.
상이한 서브프레임 설정을 갖는 복수 CC가 병합된 경우에도 크로스-CC 스케줄링이 지원될 수 있다. 이 경우, 스케줄링 CC와 피스케줄링 CC 각각에 설정된 HARQ 타이밍이 서로 다를 수 있다. 따라서, 스케줄링 CC UL SF, 및 스케줄링 CC를 통해 크로스-CC 스케줄링되는 피스케줄링 CC UL SF를 통해 전송되는 UL 데이터에 대한 UL 그랜트 및/또는 PHICH 전송을 스케줄링 CC를 통해 수행하기 위해, 각 CC별로 동일 혹은 상이한 (특정 UL-DL 설정에 설정된) HARQ 타이밍을 적용하거나, 특정 UL-DL 구성에 설정된 HARQ 타이밍을 모든 CC(즉, PCC (또는 스케줄링 CC)/SCC)에 공통으로 적용하는 방안을 고려할 수 있다. 특정 UL-DL 설정(이하, 기준 구성(Reference Configuration, Ref-Cfg))은 PCC (또는 스케줄링 CC)에 설정된 UL-DL 구성(MCC-Cfg) 또는 SCC에 설정된 UL-DL 구성(SCC-Cfg)과 동일하거나, 그 이외의 다른 UL-DL 구성으로 결정될 수 있다. 여기서, UL 그랜트 또는 PHICH 타이밍은 특정 UL 서브프레임의 UL 데이터를 스케줄링하는 UL 그랜트 및 해당 UL 데이터 전송에 대한 PHICH를 전송/수신할 수 있도록 설정된 DL 서브프레임을 의미하거나, 이들의 타이밍 관계를 의미할 수 있다. 구체적으로, 특정 CC(즉, Ref-CC) 혹은 특정 Ref-cfg에 설정된 UL 그랜트 또는 PHICH 타이밍을 적용한다는 것은 특정 CC의 UL-이 설정(UD-Cfg) 혹은 특정 UD-cfg에 해당하는 파라미터 값을 사용하는 것을 의미할 수 있다.Cross-CC scheduling may be supported even when multiple CCs having different subframe configurations are merged. In this case, the HARQ timing set in each of the scheduling CC and the scheduled CC may be different. Accordingly, in order to perform UL grant and / or PHICH transmission for the scheduling CC UL SF and the UL data transmitted through the scheduling CC UL SF that is cross-CC scheduled through the scheduling CC, the same for each CC, Alternatively, consider applying different HARQ timings (set in a specific UL-DL configuration) or applying HARQ timings set in a specific UL-DL configuration to all CCs (ie, PCC (or scheduling CC) / SCC) in common. have. Specific UL-DL settings (hereinafter referred to as Reference Configurations (Ref-Cfg)) are either UL-DL configurations (MCC-Cfg) set in the PCC (or scheduling CC) or UL-DL configurations (SCC-Cfg) set in the SCC. It may be determined the same as or other UL-DL configuration. Here, the UL grant or PHICH timing may mean a DL subframe configured to transmit / receive a UL grant for scheduling UL data of a specific UL subframe and a PHICH for corresponding UL data transmission, or may mean a timing relationship thereof. Can be. Specifically, applying the UL grant or PHICH timing set in a specific CC (ie, Ref-CC) or a specific Ref-cfg means that a parameter value corresponding to UL-is set (UD-Cfg) or a specific UD-cfg of a specific CC is applied. This may mean using.
한편, TDD PCell-FDD SCell CA에서 FDD 셀의 PDSCH에 대하여 기존 FDD 셀의 PDCCH/PDSCH-to-ACK/NACK 타이밍(예, 4 ms)을 그대로 적용하면 ACK/NACK 전송 타이밍에 TDD PCell이 DL SF로 정의된 경우 ACK/NACK을 전송할 수 없다. 따라서, 기존 FDD 셀에 정의된 PDCCH/PDSCH-to-ACK/NACK 타이밍이 아닌 새로운 DL HARQ 타이밍을 적용할 수 있다. 마찬가지로 UL HARQ 타이밍도 새로운 HARQ 타이밍을 적용할 수 있다. 예를 들어, 다음과 같은 DL HARQ 타이밍이 있을 수 있다.On the other hand, if the TDD PCell-FDD SCell CA applies the PDCCH / PDSCH-to-ACK / NACK timing (eg 4 ms) of the existing FDD cell to the PDSCH of the FDD cell as it is, the TDD PCell is DL SF in the ACK / NACK transmission timing. If defined as ACK / NACK can not be transmitted. Therefore, new DL HARQ timing may be applied instead of the PDCCH / PDSCH-to-ACK / NACK timing defined in the existing FDD cell. Likewise, the UL HARQ timing may apply the new HARQ timing. For example, there may be the following DL HARQ timing.
1) FDD Pcell의 경우에 TDD Scell을 위한 DL HARQ 타이밍 (PDSCH to HARQ-ACK timing)1) DL HARQ timing for TDD Scell in case of FDD Pcell (PDSCH to HARQ-ACK timing)
A. 셀프-스케줄링 케이스: FDD Pcell의 DL HARQ 타이밍을 따른다.A. Self-Scheduling Case: Follow the DL HARQ timing of FDD Pcell.
B. 크로스-반송파 스케줄링 케이스: FDD Pcell의 DL HARQ 타이밍을 따른다.B. Cross-carrier scheduling case: follows the DL HARQ timing of the FDD Pcell.
2) TDD Pcell의 경우에 FDD Scell을 위한 DL HARQ 타이밍 (PDSCH to HARQ-ACK timing)2) DL HARQ timing for FDD Scell in case of TDD Pcell (PDSCH to HARQ-ACK timing)
A. 셀프-스케줄링 케이스A. Self-Scheduling Case
i. 옵션 1: 각 TDD Pcell U/D 설정을 위해, TDD Pcell 타이밍 + TDD Pcell 타이밍에 DL HARQ 타이밍이 정의되지 않은 DL 서브프레임들을 위한 추가적인 새로운 타이밍들 (또는 TDD Pcell에 정의된 것보다 많은 DL 서브프레임들을 다루기(address)기 위한 각 TDD Pcell U/D 설정별 새로운 타이밍들)을 따른다. i. Option 1: For each TDD Pcell U / D configuration, additional new timings (or more DL subframes than those defined in the TDD Pcell) for DL subframes where DL HARQ timing is not defined in TDD Pcell timing + TDD Pcell timing. New timings for each TDD Pcell U / D configuration to address them.
ii. 옵션 2: 상기 FDD Scell을 위해 정의된 (혹은 설정된) 기준 U/D 설정을 따른다. (설정 가능한) 기준 U/D 설정은 상기 TDD Pcell의 U/D 설정에 의존한다. (새로운 타이밍은 더 많은 DL 서브프레임들을 지원하기 위해 상기 참조 U/D 설정에 부가될 수 있다.)ii. Option 2: Follow the defined (or set) reference U / D settings for the FDD Scell. The reference U / D setting (configurable) depends on the U / D setting of the TDD Pcell. (New timing can be added to the reference U / D configuration above to support more DL subframes.)
B. 크로스-반송파 스케줄링 케이스: 셀프-스케줄링 케이스와 동일 옵션들(옵션 1 및 옵션 2), 또는 그밖에는 TDD Pcell 타이밍만을 따른다.B. Cross-carrier scheduling case: Same options as the self-scheduling case (option 1 and option 2), or else only follow the TDD Pcell timing.
LTE 이후 차기 시스템에서는 TDD 상황에서 eIMTA(enhanced interference mitigation and traffic adaptation) 등을 목적으로 UL/DL SF 방향(direction)을 재설정/변경하면서 동작하는 방식이 고려되고 있다. 이를 위해, TDD 셀 (혹은 CC)의 기본 UL-DL 구성(UD-cfg)을 상위 계층 시그널링(예, SIB)을 이용하여 (반-)정적으로 설정한 뒤, 해당 셀(혹은 CC)의 동작 UD-cfg를 하위 계층 시그널링(예, L1(Layer1) 시그널링 (예, PDCCH))을 이용하여 동적으로 재설정/변경하는 방식이 고려되고 있다. 편의상, 기본 UD-cfg를 SIB-cfg라고 지칭하고, 동작 UD-cfg를 actual-cfg라고 지칭한다. UD-cfg에 따른 서브프레임 구성은 표 1에 기반하여 설정된다. 또한, DL SF, UL SF, 및 스페셜 SF를 각각 D와 U, 및 S라고 하면, D => U (혹은 S) 재설정은 해당 D에서 CRS를 이용한 기존 (레거시) 의 DL 수신/측정 등을 고려했을 때 용이하지 않거나 열화를 야기시킬 수 있다. 반면, U (혹은 S) => D 재설정의 경우에는 기지국이 해당 U를 통해 레거시 UE로부터 송신될 수 있는 UL 신호를 의도적으로 스케줄링/설정하지 않음으로써 eIMTA UE에게 추가적인 DL 자원을 제공할 수 있다.In the future system after LTE, a method of operating while reconfiguring / changing a UL / DL SF direction for the purpose of enhanced interference mitigation and traffic adaptation (eIMTA) in a TDD situation has been considered. To this end, the basic UL-DL configuration (UD-cfg) of the TDD cell (or CC) is (semi-) statically configured using higher layer signaling (eg, SIB), and then the operation of the corresponding cell (or CC) is performed. A method of dynamically reconfiguring / modifying UD-cfg using lower layer signaling (eg, L1 (Layer1) signaling (eg, PDCCH)) has been considered. For convenience, the base UD-cfg is called SIB-cfg, and the operational UD-cfg is called actual-cfg. Subframe configuration according to UD-cfg is set based on Table 1. In addition, if DL SF, UL SF, and special SF are D, U, and S, respectively, D => U (or S) resetting takes into account existing (legacy) DL reception / measurement using CRS in the corresponding D. May not be easy or may cause deterioration. On the other hand, in the case of U (or S) => D reconfiguration, the base station may provide additional DL resources to the eIMTA UE by not intentionally scheduling / configuring UL signals that may be transmitted from the legacy UE through the corresponding U.
이를 감안하면, actual-cfg는 SIB-cfg 상의 D를 모두 포함하는 UD-cfg (SIB-cfg 포함)들 중에서만 선택적으로 결정될 수 있다. 즉, SIB-cfg 상의 D 위치에 모두 D가 배치된 UD-cfg는 actual-cfg로 결정될 수 있으나, SIB-cfg 상의 D 위치에 U가 배치된 UD-cfg는 actual-cfg로 결정될 수 없다. 한편, eIMTA에서는 DL 스케줄링에 대한 HARQ 타이밍(예, HARQ-ACK 피드백 전송 타이밍)을 설정하기 위해 기준(reference) UD-cfg(이하, D-ref-cfg)가 상위 계층 (시그널링)에 의해 별도로 설정될 수 있다. 이를 고려하면, actual-cfg은 D-ref-cfg 상의 U를 모두 포함하는 UD-cfg (D-ref-cfg 포함)들 중에서만 선택적으로 결정될 수 있다. 따라서, D-ref-cfg상의 U 위치에 D가 배치된 UD-cfg는 actual-cfg로 결정될 수 없다.In view of this, the actual-cfg may be selectively determined only among UD-cfg (including SIB-cfg) including all D's on the SIB-cfg. That is, the UD-cfg in which all Ds are placed in the D position on the SIB-cfg may be determined as actual-cfg, but the UD-cfg in which the U is disposed in the D position in the SIB-cfg cannot be determined as the actual-cfg. Meanwhile, in eIMTA, a reference UD-cfg (hereinafter, D-ref-cfg) is separately set by a higher layer (signaling) to set HARQ timing (eg, HARQ-ACK feedback transmission timing) for DL scheduling. Can be. In consideration of this, the actual-cfg may be selectively determined only among UD-cfg (including D-ref-cfg) including all U on the D-ref-cfg. Therefore, the UD-cfg in which D is placed at the U position on the D-ref-cfg cannot be determined as the actual-cfg.
따라서, D-ref-cfg는 가능한 actual-cfg 후보들 상의 D를 모두 포함하는 UD-cfg로 설정되고, SIB-cfg는 가능한 actual-cfg 후보들 상의 U를 모두 포함하는 UD-cfg로 설정될 수 있다. 즉, D-ref-cfg는 가능한 actual-cfg 후보들에 대한 D 슈퍼셋(superset) UD-cfg로 설정되고, SIB-cfg는 가능한 actual-cfg 후보들에 대한 U 슈퍼셋 UD-cfg로 설정될 수 있다. UL 스케줄링에 대한 HARQ 타이밍(예, UG/PUSCH/PHICH 전송 타이밍)의 레퍼런스 UD-cfg (이하, U-ref-cfg)는 SIB-cfg로 설정될 수 있다. 이에 따라, D-ref-cfg 상의 U는 고정된(fixed) U로 고려되고, SIB-cfg 상의 D는 고정된 D로 고려될 수 있다. 따라서, D-ref-cfg에서 D이면서 SIB-cfg에서 U인 SF만이 U => D로 재설정/변경될 수 있는 플렉서블(flexible) U로 고려될 수 있다. 플렉서블 U는 actual-cfg에 의해 U => D로 재설정/변경될 수 있다.Thus, D-ref-cfg may be set to UD-cfg including all Ds on possible actual-cfg candidates, and SIB-cfg may be set to UD-cfg including all U on possible actual-cfg candidates. That is, D-ref-cfg may be set to D superset UD-cfg for possible actual-cfg candidates, and SIB-cfg may be set to U superset UD-cfg for possible actual-cfg candidates. . A reference UD-cfg (hereinafter, U-ref-cfg) of HARQ timing (eg, UG / PUSCH / PHICH transmission timing) for UL scheduling may be set to SIB-cfg. Accordingly, U on D-ref-cfg may be considered fixed U and D on SIB-cfg may be considered fixed D. Thus, only SF, which is D in D-ref-cfg and U in SIB-cfg, can be considered as flexible U, which can be reset / changed as U => D. Flexible U can be reset / changed to U => D by actual-cfg.
즉, 상위 계층 (시그널링)에 의해 SIB-cfg/D-ref-cfg가 설정된 뒤, SIB-cfg 상의 D를 모두 포함하고 D-ref-cfg 상의 U를 모두 포함하는 UD-cfg(들) 중 하나가 L1 시그널링에 의해 actual-cfg로 설정될 수 있다.That is, after SIB-cfg / D-ref-cfg is set by higher layer (signaling), one of the UD-cfg (s) that includes all D on SIB-cfg and all U on D-ref-cfg Can be set to actual-cfg by L1 signaling.
FDD 시스템에서도 UL 반송파 상의 일부 UL SF를 DL SF (및/또는 스페셜 SF)로 재설정하는 방식으로 eIMTA를 적용할 수 있다(이하, FDD eIMTA). 일 예로, UL 반송파 상의 UL SF를 TDD UL-DL 구성에 맞춰 (동적으로) 재설정/변경하면서 동작하는 방식을 고려할 수 있다.In the FDD system, the eIMTA may be applied by resetting some UL SFs on the UL carrier to DL SF (and / or special SF) (hereinafter, referred to as FDD eIMTA). For example, a method of operating while reconfiguring / modifying UL SF on a UL carrier (dynamically) in accordance with a TDD UL-DL configuration may be considered.
하나의 서브프레임에서 복수 UCI들, 복수 PUCCH들 혹은 복수 PUSCH들이 충돌할 수 있다. 단일 상향링크 채널에서 전송될 수 있는 UCI 페이로드의 제약, 일 UE가 Pcell을 통해 복수 PUCCH들을 동시 전송하는 것이 허용되지 않는 점 등 때문에 상향링크 신호 전송에 대한 우선 순위가 정해진다. 높은 우선 순위의 신호(들)만이 해당 서브프레임에서 전송되고 우선 순위가 낮은 신호(들)은 해당 서브프레임에서 드랍된다. A plurality of UCIs, a plurality of PUCCHs or a plurality of PUSCHs may collide in one subframe. Priority for uplink signal transmission is determined because of limitations of the UCI payload that can be transmitted in a single uplink channel and the fact that one UE is not allowed to simultaneously transmit a plurality of PUCCHs through a Pcell. Only high priority signal (s) are transmitted in that subframe and low priority signal (s) are dropped in that subframe.
다음 표는 PUCCH 보고 타입에 따른 CSI 정보, 모드 상태, PUCCH 보고 모드에 따른 페이로드(대역폭 파트(bandwidth part, BP)당 비트들, bits/BP)를 예시한 것이다. The following table illustrates CSI information according to a PUCCH report type, a mode state, and payloads (bits per bandwidth part (BP), bits / BP) according to a PUCCH report mode.
PUCCH Reporting TypePUCCH Reporting Type ReportedReported Mode StateMode state PUCCH Reporting ModesPUCCH Reporting Modes
Mode1-1Mode1-1 Mode2-1Mode2-1 Mode1-0Mode1-0 Mode2-0Mode2-0
1One Sub-bandCQISub-bandCQI RI=1RI = 1 NANA 4+L4 + L NANA 4+L4 + L
RI>1RI> 1 NANA 7+L7 + L NANA 4+L4 + L
1a1a Sub-band CQI/second PMISub-band CQI / second PMI 8 antenna ports RI=18 antenna ports RI = 1 NANA 8+L8 + L NANA NANA
8 antenna ports 1<RI< 58 antenna ports 1 <RI <5 NANA 9+L9 + L NANA NANA
8 antenna ports RI> 48 antenna ports RI> 4 NANA 7+L7 + L NANA NANA
4 antenna ports RI=14 antenna ports RI = 1 NANA 8+L8 + L NANA NANA
4 antenna ports 1<RI≤44 antenna ports 1 <RI≤4 NANA 9+L9 + L NANA NANA
22 WidebandCQI/PMIWidebandCQI / PMI 2 antenna ports RI=12 antenna ports RI = 1 66 66 NANA NANA
4 antenna ports RI=14 antenna ports RI = 1 88 88 NANA NANA
2 antenna ports RI>12 antenna ports RI> 1 88 88 NANA NANA
4 antenna ports RI>14 antenna ports RI> 1 1111 1111 NANA NANA
2a2a Widebandfirst PMIWidebandfirst PMI 8 antenna ports RI<38 antenna ports RI <3 NANA 44 NANA NANA
8 antenna ports 2<RI<88 antenna ports 2 <RI <8 NANA 22 NANA NANA
8 antenna ports RI = 88 antenna ports RI = 8 NANA 00 NANA NANA
4 antenna ports 1≤RI≤24 antenna ports 1≤RI≤2 NANA 44 NANA NANA
4 antenna ports 2≤RI≤44 antenna ports 2≤RI≤4 NANA NANA NANA NANA
2b2b Wideband CQI/second PMIWideband CQI / second PMI 8 antenna ports RI=18 antenna ports RI = 1 88 88 NANA NANA
8 antenna ports 1<RI<48 antenna ports 1 <RI <4 1111 1111 NANA NANA
8 antenna ports RI=48 antenna ports RI = 4 1010 1010 NANA NANA
8 antenna ports RI>48 antenna ports RI> 4 77 77 NANA NANA
4 antenna ports RI=14 antenna ports RI = 1 88 88 NANA NANA
4 antenna port 1<RI≤44 antenna port 1 <RI≤4 1111 1111 NANA NANA
2c2c Wideband CQI/first PMI/second PMIWideband CQI / first PMI / second PMI 8 antenna ports RI = 18 antenna ports RI = 1 88 NANA NANA NANA
8 antenna ports 1<RI≤48 antenna ports 1 <RI≤4 1111 NANA NANA NANA
8 antenna ports 4<RI≤78 antenna ports 4 <RI≤7 99 NANA NANA NANA
8 antenna ports RI=88 antenna ports RI = 8 77 NANA NANA NANA
4 antenna ports RI=14 antenna ports RI = 1 88 NANA NANA NANA
4 antenna port 1<RI≤44 antenna port 1 <RI≤4 1111 NANA NANA NANA
33 RIRI 2/4 antenna ports, 2-layer spatial multiplexing2/4 antenna ports, 2-layer spatial multiplexing 1One 1One 1One 1One
8 antenna ports, 2-layer spatial multiplexing8 antenna ports, 2-layer spatial multiplexing 1One NANA NANA NANA
4 antenna ports, 4-layer spatial multiplexing4 antenna ports, 4-layer spatial multiplexing 22 22 22 22
8 antenna ports, 4-layer spatial multiplexing8 antenna ports, 4-layer spatial multiplexing 22 NANA NANA NANA
8-layer spatial multiplexing8-layer spatial multiplexing 33 NANA NANA NANA
44 Wideband CQIWideband CQI RI=1 or RI>1RI = 1 or RI> 1 NANA NANA 44 44
55 RI /first PMIRI / first PMI 8 antenna ports, 2-layer spatial multiplexing8 antenna ports, 2-layer spatial multiplexing 44 NANA NANA NANA
8 antenna ports, 4 and 8-layer spatial multiplexing8 antenna ports, 4 and 8-layer spatial multiplexing 55
4 antenna ports, 2-layer spatial multiplexing4 antenna ports, 2-layer spatial multiplexing 44
4 antenna ports, 4-layer spatial multiplexing4 antenna ports, 4-layer spatial multiplexing 55
66 RI/PTIRI / PTI 8 antenna ports, 2-layer spatial multiplexing8 antenna ports, 2-layer spatial multiplexing NANA 22 NANA NANA
8 antenna ports, 4-layer spatial multiplexing8 antenna ports, 4-layer spatial multiplexing NANA 33 NANA NANA
8 antenna ports, 8-layer spatial multiplexing8 antenna ports, 8-layer spatial multiplexing NANA 44 NANA NANA
4 antenna ports, 2-layer spatial multiplexing4 antenna ports, 2-layer spatial multiplexing NANA 22 NANA NANA
4 antenna ports, 4-layer spatial multiplexing4 antenna ports, 4-layer spatial multiplexing NANA 33 NANA NANA
위 표를 참조하면, 일 서빙 셀의 PUCCH 보고 타입 3, 5 또는 6인 CSI 보고가 동일 서빙 셀의 PUCCH 보고 타입 1, 1a, 2, 2a, 2b, 2c 또는 4와 충돌하는 경우, 즉, 해당 보고 타이밍이 동일 서브프레임인 경우, 후자의 PUCCH 보고 타입의 CSI 보고가 낮은 우선순위(priority)를 가지며 해당 보고 타이밍에서 드랍된다. 전송 모드 10으로 설정된 UE에 대해, 동일 우선순위의 PUCCH 보고 타입을 갖는 동일 서빙 셀의 CSI 보고들끼리의 충돌하고 상기 CSI 보고들이 서로 다른 CSI 프로세스들에 대응하면 최저 CSI 프로세스 ID를 갖는 CSI 프로세스를 제외한 CSI 프로세스들에 대응하는 모든 CSI 보고들은 드랍된다. 전송 모드 1-9로 설정되고 서빙 셀에 대해 상위 계층 신호에 의해 CSI 서브프레임 세트 CCSI,0 및 CSI 서브프레임 세트 CCSI,1로써 설정된 UE에 대해 동일 우선순위의 PUCCH 보고 타입을 갖는 동일 서빙 셀의 CSI 보고들끼리의 충돌의 경우, CSI 서브프레임 세트 CCSI,1에 대응하는 CSI 보고가 드랍된다. 전송 모드 10으로 설정되고 서빙 셀에 대해 상위 계층 신호에 의해 CSI 서브프레임 세트 CCSI,0 및 CSI 서브프레임 세트 CCSI,1로써 설정된 UE에 대해, 동일 우선순위의 PUCCH 보고 타입을 갖는 동일 서빙 셀의 CSI 보고들이 충돌하고 상기 CSI 보고들이 동일 CSI-프로세스 ID를 갖는 CSI 프로세스들에 대응하면, SI 서브프레임 세트 CCSI,1에 대응하는 CSI 보고가 드랍된다. UE가 하나보다 많은 서빙 셀들로써 설정되면, 상기 UE는 주어진 서브프레임에서 오직 한 서빙 셀만의 CSI 보고를 전송한다. 주어진 서브프레임에 대해, 일 서빙 셀의 PUCCH 보고 타입 3, 5, 6 또는 2a인 CSI 보고와 다른 서빙 셀의 PUCCH 보고 타입 1, 1a, 2, 2b, 2c 또는 4인 CSI 보고가 충돌하면, 후자의 CSI 보고가 낮은 우선순위를 가지며 상기 서브프레임(즉, 해당 전송 타이밍)에서 드랍된다. 주어진 서브프레임에 대해, 일 서빙 셀의 PUCCH 보고 타입 2, 2b, 2c 또는 4인 CSI 보고와 다른 서빙 셀의 PUCCH 보고 타입 1 또는 1a인 CSI 보고가 충돌하면, 후자의 CSI 보고가 낮은 우선순위를 가지며 상기 서브프레임(즉, 해당 전송 타이밍)에서 드랍된다. 주어진 서브프레임에서 UE가 전송 모드 1-9로 설정된 서빙 셀들에 대해, 동일 우선순위의 PUCCH 보고 타입을 갖는 다른 서빙 셀들의 CSI 보고들끼리 충돌하는 경우, 최저 서빙 셀 인덱스를 갖는 서빙 셀을 제외한 서빙 셀들에 대한 CSI 보고들은 모두 드랍된다. 주어진 서브프레임에서 UE가 전송 모드 10으로 설정된 서빙 셀들에 대해, 동일 우선순위의 PUCCH 보고 타입을 갖는 다른 서빙 셀들의 CSI 보고들끼리 충돌하고 상기 CSI 보고들이 동일 CSI-프로세스 ID를 갖는 CSI 프로세스들에 대응하는 경우, 최저 서빙 셀 인덱스를 갖는 서빙 셀을 제외한 서빙 셀들에 대한 CSI 보고들은 모두 드랍된다. 주어진 서브프레임에서 UE가 전송 모드 10으로 설정된 서빙 셀들에 대해, 동일 우선순위의 PUCCH 보고 타입을 갖는 다른 서빙 셀들의 CSI 보고들끼리 충돌하고 상기 CSI 보고들이 다른 CSI-프로세스 ID를 갖는 CSI 프로세스들에 대응하는 경우, 최저 CSI-프로세스 ID를 갖는 CSI 프로세스에 대응하는 CSI 보고들을 갖는 서빙 셀을 제외한 모든 서빙 셀의 CSI 보고들이 드랍된다. 주어진 서브프레임에서 UE가 전송 모드 1-9로 설정된 서빙 셀의 CSI 보고와 상기 UE가 전송 모드 10으로 설정된 다른 서빙 셀의 CSI 프로세스(들)에 대응하는 CSI 보고(들)이 충돌하고, 상기 서빙 셀들의 상기 CSI 보고들이 동일 우선순위의 PUCCH 보고 타입이면, 상기 다른 서빙 셀의 CSI 프로세스 ID > 1인 CSI 프로세스(들)에 대응하는 CSI 보고(들)이 드랍된다. 주어진 서브프레임에서, UE가 전송 모드 1-9로 설정된 서빙 셀의 CSI 보고와 상기 UE가 전송 모드 10으로 설정된 다른 서빙 셀의 CSI 프로세스 ID = 1인 CSI 프로세스에 대응하는 CSI 보고가 충돌하고, 상기 서빙 셀들의 상기 CSI 보고들이 동일 우선순위의 PUCCH 보고 타입이면, 최고 서빙 셀 인덱스를 갖는 서빙 셀의 CSI 보고가 드랍된다.Referring to the above table, when a CSI report of PUCCH report type 3, 5 or 6 of one serving cell collides with PUCCH report type 1, 1a, 2, 2a, 2b, 2c or 4 of the same serving cell, that is, If the report timing is the same subframe, the latter CSI report of the PUCCH report type has a low priority and is dropped at the corresponding report timing. For the UE set to transmission mode 10, if the CSI reports of the same serving cell having the same priority PUCCH report type collide with each other and the CSI reports correspond to different CSI processes, the CSI process having the lowest CSI process ID is selected. All CSI reports corresponding to the excluded CSI processes are dropped. Same serving with PUCCH report type of equal priority for UE set to transmission mode 1-9 and set to CSI subframe set C CSI, 0 and CSI subframe set C CSI, 1 by higher layer signal for serving cell In case of collision between CSI reports of a cell, the CSI report corresponding to the CSI subframe set C CSI, 1 is dropped. The same serving cell with the PUCCH report type of the same priority, for a UE set to transmission mode 10 and set as CSI subframe set C CSI, 0 and CSI subframe set C CSI, 1 by higher layer signal for the serving cell If the CSI reports of C collisions and the CSI reports correspond to CSI processes with the same CSI-process ID, then the CSI report corresponding to the SI subframe set C CSI, 1 is dropped. If the UE is configured with more than one serving cells, the UE transmits CSI report of only one serving cell in a given subframe. For a given subframe, if the CSI report of PUCCH report type 3, 5, 6 or 2a of one serving cell collides with the CSI report of PUCCH report type 1, 1a, 2, 2b, 2c or 4 of another serving cell, the latter The CSI report of has a low priority and is dropped in the subframe (ie, corresponding transmission timing). For a given subframe, if a CSI report of PUCCH report type 2, 2b, 2c or 4 of one serving cell collides with a CSI report of PUCCH report type 1 or 1a of another serving cell, the latter CSI report has a lower priority. And drop in the subframe (ie, corresponding transmission timing). For serving cells in which UE is set to transmission mode 1-9 in a given subframe, if the CSI reports of other serving cells having the same priority PUCCH report type collide with each other, serving except the serving cell having the lowest serving cell index All CSI reports for the cells are dropped. For serving cells in which a UE is set to transmission mode 10 in a given subframe, CSI reports of other serving cells having the same priority PUCCH report type collide with each other and the CSI reports have CSI processes with the same CSI-process ID. If corresponding, all CSI reports for serving cells except the serving cell with the lowest serving cell index are dropped. For serving cells in which a UE is set to transmission mode 10 in a given subframe, CSI reports of other serving cells having the same priority PUCCH report type collide with each other and the CSI reports are sent to CSI processes with different CSI-process ID. If corresponding, CSI reports of all serving cells except the serving cell with CSI reports corresponding to the CSI process with the lowest CSI-process ID are dropped. In a given subframe, the CSI report of the serving cell in which the UE is set to transmission mode 1-9 and the CSI report (s) corresponding to the CSI process (s) of another serving cell in which the UE is set to transmission mode 10 collide, and the serving If the CSI reports of cells are of the same priority PUCCH report type, then the CSI report (s) corresponding to the CSI process (s) with CSI process ID> 1 of the other serving cell are dropped. In a given subframe, the CSI report of the serving cell in which the UE is set to transmission mode 1-9 and the CSI report corresponding to the CSI process of CSI process ID = 1 of another serving cell in which the UE is set to transmission mode 10 are collided, and If the CSI reports of the serving cells are of the same priority PUCCH report type, the CSI report of the serving cell with the highest serving cell index is dropped.
UE가 동시 PUSCH 및 PUCCH 전송을 위해 설정되지 않으면, 또는 상기 UE가 동시 PUSCH 및 PUCCH 전송을 위해 설정되나 PUSCH를 전송할 타이밍이 아니면, 동일 서브프레임에서 CSI와 포지티브 SR이 충돌하는 경우, CSI가 드랍된다.If the UE is not configured for simultaneous PUSCH and PUCCH transmission, or if the UE is configured for simultaneous PUSCH and PUCCH transmission but not timing to transmit PUSCH, CSI is dropped if CSI and positive SR collide in the same subframe .
UE에 대해 주기적 CSI 보고와 HARQ-ACK이 PUSCH가 없는 동일 서브프레임에서 충돌하는 경우, 상기 주기적 CSI 보고와 상기 HARQ-ACK이 단일 상향링크 채널에서 전송될 수 없으면(예, 상위 계층에 의해 제공되는 동시 ACK/NACK 및 CQI 파라미터가 거짓으로 설정되면), 상기 주기적 CSI 보고는 드랍된다. 단일 서빙 셀로써 설정되고 PUCCH 포맷 3로써 설정되지 않은 UE에 대해 주기적 CSI 보고와 HARQ-ACK이 PUSCH가 없는 동일 서브프레임에서 충돌하는 경우, 상위 계층에 의해 제공되는 동시 ACK/NACK 및 CQI 파라미터가 참으로 설정되면 상기 주기적 CSI 보고가 PUCCH 상에 HARQ-ACK과 다중화되고, 그렇지 않으면 상기 CSI는 드랍된다.If the periodic CSI report and the HARQ-ACK for the UE collide in the same subframe without the PUSCH, if the periodic CSI report and the HARQ-ACK cannot be transmitted in a single uplink channel (e.g., provided by a higher layer) If the simultaneous ACK / NACK and CQI parameters are set to false), the periodic CSI report is dropped. If the periodic CSI reporting and HARQ-ACK collide in the same subframe without PUSCH for a UE configured as a single serving cell and not configured as PUCCH format 3, the simultaneous ACK / NACK and CQI parameters provided by the higher layer are true. If set to, the periodic CSI report is multiplexed with HARQ-ACK on PUCCH, otherwise the CSI is dropped.
UE가 동시 PUSCH 및 PUCCH 전송을 위해 설정되지 않으면, 상기 UE는 PUSCH 할당이 없는 서브프레임에서는 PUCCH를 통해 주기적 CSI 보고를 전송하고 PUSCH 할당이 있는 서브프레임에서는 최저 서빙 셀 인덱스를 갖는 서빙 셀의 PUSCH 상에서 상기 주기적 CSI 보고를 전송한다. 주기적 CSI 보고와 비주기적 CSI 보고가 동일 서브프레임에서 발생하면, UE는 해당 서브프레임에서 비주기적 CSI 보고만을 전송한다.If the UE is not configured for simultaneous PUSCH and PUCCH transmission, the UE transmits the periodic CSI report on the PUCCH in a subframe without PUSCH assignment and on the PUSCH of the serving cell with the lowest serving cell index in the subframe with PUSCH assignment. Send the periodic CSI report. If the periodic CSI report and the aperiodic CSI report occur in the same subframe, the UE transmits only the aperiodic CSI report in the subframe.
SR과 ACK/NACK이 충돌하면 SR과 ACK/NACK은 다중화되어 함께 전송될 수 있다.If SR and ACK / NACK collide, SR and ACK / NACK may be multiplexed and transmitted together.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라서 차기 무선 통신 시스템에서 제한된 주파수 대역의 효율적 활용은 점점 더 중요한 요구가 되고 있다. 3GPP LTE/LTE-A 시스템과 같은 셀룰라 통신 시스템도 기존의 WiFi 시스템이 사용하는 2.4GHz 대역과 같은 비면허(unlicensed) 대역이나 새로 주목 받고 있는 5GHz 대역과 같은 비면허 대역을 트래픽 오프로딩(offloading)에 활용하는 방안이 검토 중이다. As more communication devices demand larger communication capacities, efficient utilization of limited frequency bands becomes an increasingly important requirement in future wireless communication systems. Cellular communication systems, such as 3GPP LTE / LTE-A systems, also utilize unlicensed bands, such as the 2.4GHz band used by existing WiFi systems, or unlicensed bands, such as the emerging 5GHz band, for traffic offloading. How to do this is under consideration.
기본적으로 비면허 대역은 각 통신 노드 간의 경쟁을 통해 무선 송수신을 하는 방식을 가정하므로, 각 통신 노드가 신호를 전송하기 전에 채널 감지(channel sensing)을 수행하여 다른 통신 노드가 신호 전송을 하지 않음을 확인할 것이 요구된다. 이를 CCA(clear channel assessment)라고 부르며, LTE 시스템의 eNB나 UE도 비면허 대역(이하, LTE-U 대역으로 칭함)에서의 신호 전송을 위해서는 CCA를 수행해야 할 수 있다. 또한 LTE 시스템의 eNB나 UE가 신호를 전송할 때에 WiFi 등 다른 통신 노드들도 CCA를 수행하여 간섭을 일으키지 않아야 한다. 예를 들어서 WiFi 표준(예, 801.11ac)에서 CCA 임계치(threshold)는 비-WiFi(non-WiFi) 신호에 대하여 -62dBm, WiFi 신호에 대하여 -82dBm으로 규정되어 있으며, 이는 STA이나 AP는, 예를 들어서, WiFi 이외의 신호가 -62dBm 이상의 전력으로 수신되면 간섭을 일으키지 않도록 신호 전송을 하지 않음을 의미한다. 특징적으로 WiFi 시스템에서 STA나 AP는 4us 이상 동안 CCA 임계치 이상의 신호를 검출하지 않으면 CCA를 수행하고 신호 전송을 수행할 수 있다.Basically, the unlicensed band assumes a method of wireless transmission and reception through competition between communication nodes, so that channel communication is performed before each communication node transmits a signal to confirm that other communication nodes do not transmit a signal. Is required. This is called a clear channel assessment (CCA), and an eNB or a UE of an LTE system may also need to perform CCA for signal transmission in an unlicensed band (hereinafter, referred to as LTE-U band). In addition, when the eNB or the UE of the LTE system transmits a signal, other communication nodes such as WiFi should also perform CCA to not cause interference. For example, in the WiFi standard (e.g., 801.11ac), the CCA threshold is defined as -62dBm for non-WiFi signals and -82dBm for WiFi signals, which means that either STA or AP, For example, if a signal other than WiFi is received at power of -62dBm or more, it means that no signal transmission is performed so as not to cause interference. Characteristically, in a WiFi system, an STA or an AP may perform CCA and perform signal transmission if it does not detect a signal above the CCA threshold for 4us or more.
LTE-A 대역과 LTE-U 대역의 CA 상황 하에서 eNB가 UE에게 신호를 송신하거나 UE가 eNB로 신호를 송신할 수 있다. 이하의 설명에서는 제안 방식에 대한 설명의 편의를 위해서, UE가 면허 대역과 비면허 대역 각각에서 2개의 요소 반송파(component carrier, CC)를 통하여 무선 통신을 수행하도록 설정된 상황을 가정하였다. 여기서, 일 예로, 면허 대역의 반송파는 1차 요소 반송파, 비면허 대역의 반송파는 2차 요소 반송파로 설정(configure)될 수 있다. 하지만, 본 발명의 실시예들은 다수 개의 면허 대역과 다수 개의 비면허 대역들이 반송파 집성 기법으로 이용되는 상황에서도 확장 적용이 가능하며, 또한 비면허 대역만으로 eNB와 UE 사이의 신호 송수신이 이루어지는 경우에도 적용 가능하다. 또한, 본 발명의 실시예들은 3GPP LTE/LTE-A 시스템뿐만 아니라 다른 특성의 시스템 상에서도 확장 적용이 가능하다.In a CA situation of the LTE-A band and the LTE-U band, the eNB may transmit a signal to the UE or the UE may transmit a signal to the eNB. In the following description, for the convenience of explanation of the proposed scheme, it is assumed that the UE is configured to perform wireless communication through two component carriers (CC) in each of the licensed band and the unlicensed band. Here, as an example, the carrier of the licensed band may be configured as a primary component carrier and the carrier of an unlicensed band may be configured as a secondary component carrier. However, embodiments of the present invention can be extended and applied even in a situation where a plurality of licensed bands and a plurality of unlicensed bands are used as a carrier aggregation technique, and can also be applied to signal transmission and reception between an eNB and a UE using only an unlicensed band. . In addition, embodiments of the present invention can be extended and applied to not only 3GPP LTE / LTE-A system but also other system characteristics.
이하에서는 설명의 편의를 위하여, 3GPP LTE/LTE-A을 위한 면허 대역에 설정되어 3GPP LTE/LTE-A 방식으로 동작하는 셀을 Lcell로 칭하고, LTE-U 방식으로 동작하는 비면허 대역에 설정되어 LTE-U 방식으로 동작하는 셀을 Ucell이라 칭한다.Hereinafter, for convenience of description, a cell set in a licensed band for 3GPP LTE / LTE-A and operating in a 3GPP LTE / LTE-A scheme is referred to as an Lcell, and is set in an unlicensed band operated in an LTE-U scheme. A cell operating in the -U manner is called a Ucell.
LTE-U 대역에서 eNB와 UE가 통신을 수행하기 위해서는, 우선 해당 대역이 비면허 스펙트럼이므로 LTE/LTE-A와 무관한 다른 통신(e.g., WiFi) 시스템과의 경쟁을 통해서 해당 대역을 특정 시간 구간 동안 점유/확보할 수 있어야 한다. 이하에서는 편의상, LTE-U 대역에서 통신을 위해 점유/확보된 시간 구간을 예약 자원 구간(reserved resource period, RRP)으로 칭한다. 이러한 RRP를 확보하기 위해서는 여러 가지 방법이 존재할 수 있다. 대표적으로는 WiFi 등 다른 통신 시스템 장치들이 해당 무선 채널이 바쁨(busy)으로 인식할 수 있도록 특정 예약 신호(reservation signal)을 전송하거나, RRP 동안 특정 전력 레벨 이상의 신호가 끊임없이 전송되도록 RS 및/또는 데이터 신호를 지속적으로 전송하는 방법이 가능하다. In order for the eNB and the UE to communicate in the LTE-U band, first, because the corresponding band is an unlicensed spectrum, the band is allocated for a specific time interval through competition with other communication (eg, WiFi) systems unrelated to LTE / LTE-A. Must be able to seize / acquire Hereinafter, for convenience, a time period occupied / obtained for communication in the LTE-U band is referred to as a reserved resource period (RRP). There may be various ways to secure such RRP. Typically, other communication system devices, such as WiFi, send a specific reservation signal so that the radio channel is busy, or RS and / or data to continuously transmit a signal above a certain power level during RRP. It is possible to transmit a signal continuously.
RRP는 eNB에 의한 반송파 감지에 의해 설정될 수 있다. eNB가 LTE-U 대역을 점유하고자 하는 RRP를 미리 결정하였다면, UE에게 이를 미리 알려줌으로써 UE로 하여금 해당 지시된 RRP 동안 통신 전송/수신 링크를 유지하고 있도록 할 수 있다. UE에게 해당 RRP 정보를 알려주는 방식으로는 상기 반송파 집성 형태로 연결되어 있는 또 다른 CC(예, 상기 LTE-A 대역)를 통해서 해당 RRP 정보를 전달해 줄 수 있다.RRP may be set by carrier detection by the eNB. If the eNB has previously determined the RRP to occupy the LTE-U band, it can inform the UE in advance so that the UE can maintain the communication transmit / receive link during the indicated RRP. In order to inform the UE of the RRP information, the corresponding RRP information may be delivered through another CC (eg, the LTE-A band) connected in the carrier aggregation form.
DL 전송인지 UL 전송인지에 따라 RRP 결정 주체가 달라질 수도 있다. 예를 들어, DL 전송을 위한 RRP(이하, DL RPP)는 eNB에 의한 반송파 감지를 기반으로 상기 eNB에 의해 결정될 수 있다. UL 전송을 위한 RRP(UL RRP)는 eNB에 의한 반송파 감지를 기반으로 상기 eNB에 의해 결정되어 UE에게 지시될 수 있다. 혹은, UE가 신호 전송 전에 채널 상태를 확인함으로써, 즉, 상기 UE 자신에 의한 반송파 감지를 통해 서브프레임 단위로 UL RRP를 확인 혹은 결정할 수도 있다.The RRP determination agent may vary depending on whether the DL transmission or the UL transmission. For example, RRP (DL RPP) for DL transmission may be determined by the eNB based on carrier detection by the eNB. UL RRP (UL RRP) for UL transmission may be determined by the eNB based on the carrier detection by the eNB and may be indicated to the UE. Alternatively, the UE may check or determine the UL RRP in units of subframes by checking the channel state before signal transmission, that is, through carrier detection by the UE itself.
기존 CA에 사용되던 셀, 즉, Lcell 상에서는 PSS/SSS/PBCH, CRS 및/또는 CSI-RS 등의 채널 동기화용 RS 혹은 채널 측정용 RS가 주기적 그리고 연속적으로 나타난다. 이에 반해, Ucell의 경우, 상기 Ucell이 유휴 상태여야 eNB가 RRP를 설정하고 상기 RRP 상에서 채널 측정용 RS를 전송하는 것이 가능해진다. 따라서, Ucell 상에서는 동기화용/측정용 RS들이 비주기적으로 및/또는 비연속적으로 나타나게 될 것이다.In the cell used for the existing CA, that is, the Lcell, RS for channel synchronization or RS for channel measurement such as PSS / SSS / PBCH, CRS and / or CSI-RS appears periodically and continuously. In contrast, in the case of a Ucell, the eNB may set an RRP and transmit a channel measurement RS on the RRP only when the Ucell is idle. Thus, on the Ucell, synchronization / measurement RSs will appear aperiodically and / or discontinuously.
한편, Lcell의 경우, UE는 Lcell이 활성화된 시간 구간 동안 RS(들)을 검출 또는 상기 RS(들)을 이용하여 동기화 혹은 측정을 수행하도록 설정되지만, Lcell이 비활성화된 시간 구간에서 상기 RS(들)이 아예 전송되지 않는 것은 아니다. Lcell의 활성화 혹은 비활성화와 관계없이 동기화용/측정용 RS들은 지속적으로 전송되나, UE는 활성화된 시간 구간 동안에만 동기화용/측정용 RS들을 검출하도록 설정된다. 이와 달리, Ucell의 경우, RRP 동안에만 eNB가 동기화용 혹은 측정용 RS(들)을 전송하고, 비-RRP 동안의 무선 통신 매체는 다른 장치들에 의해 점유되므로, 상기 eNB의 동기화용 혹은 측정용 RS(들)은 원칙적으로 비-RRP 동안에는 전송되지 않는다.Meanwhile, in the case of the Lcell, the UE is configured to detect the RS (s) during the time period in which the Lcell is activated or to perform synchronization or measurement using the RS (s), but the RS (s) in the time interval in which the Lcell is inactive. ) Is not sent at all. The synchronization / measurement RSs are continuously transmitted regardless of the activation or deactivation of the Lcell, but the UE is configured to detect the synchronization / measurement RSs only during the activated time interval. In contrast, in the case of Ucell, the eNB transmits synchronization or measurement RS (s) only during the RRP, and the wireless communication medium during the non-RRP is occupied by other devices, so that the synchronization or measurement of the eNB is performed. RS (s) are in principle not transmitted during non-RRP.
경쟁 기반의 임의 접속 방식으로 동작하는 비면허 대역 동작의 또 다른 일 예로, eNB는 데이터 전송/수신 전에, 먼저 반송파 감지(CS)를 수행할 수 있다. Scell의 현재 채널 상태가 바쁨(busy)인지 유휴(idle)인지를 체크하고 유휴라고 판단되면, eNB는 Pcell의 PDCCH를 통해(즉, 크로스 반송파 스케줄링으로) 혹은 Scell의 PDCCH를 통해 스케줄링 그랜트를 전송하고, 데이터 전송/수신을 시도할 수 있다. 이때, 예를 들어, M개의 연속된 서브프레임들(SF들)으로 구성된 RRP를 설정될 수 있다. 여기서, M값 및 M개의 SF 용도를 사전에 eNB가 UE에게 (Pcell을 이용한) 상위 계층 시그널링이나 물리 제어/데이터 채널을 통해 알려줄 수 있다. RRP의 시작 시점은 상위 계층 시그널링에 의해 주기적으로 혹은 준-정적(semi-static)으로 설정되어 있을 수 있다. 또는, RRP 시작 지점을 SF #n으로 설정되어야 하는 경우, SF #n에서 혹은 SF #(n-k)에서 물리 계층 시그널링을 통해 상기 RRP의 시작 지점이 지정될 수도 있다.As another example of the unlicensed band operation operating in a contention-based random access scheme, the eNB may first perform carrier detection (CS) before data transmission / reception. If the Scell checks whether the current channel state is busy or idle, and determines that it is idle, the eNB transmits a scheduling grant over the Pcell's PDCCH (ie, cross-carrier scheduling) or over the Scell's PDCCH. You can try to send / receive data. In this case, for example, an RRP configured of M consecutive subframes (SFs) may be set. Here, the eNB may inform the UE of the M values and the M SFs in advance through higher layer signaling (using a Pcell) or a physical control / data channel. The starting point of the RRP may be set periodically or semi-statically by higher layer signaling. Alternatively, when the RRP start point should be set to SF #n, the start point of the RRP may be designated through physical layer signaling in SF #n or SF # (n-k).
도 10은 예약 자원 구간(reserved resource period, RRP)의 서브프레임 구성을 예시한 것이다.10 illustrates a subframe configuration of a reserved resource period (RRP).
RRP은 RRP를 구성하는 서브프레임(들)의 경계는, 도 10(a)에서와 같이 Pcell 상에 설정된 서브프레임(들)의 경계(boundary)와 일치하는 형태로 구성되거나, 혹은 도 10(b)에서와 같이 Pcell 상에 설정된 서브프레임(들)의 경계(boundary)와 일치되지 않은 형태까지 지원되도록 구성될 수 있다. In the RRP, the boundary of the subframe (s) constituting the RRP is configured to match the boundary of the subframe (s) set on the Pcell as shown in FIG. 10 (a), or FIG. 10 (b). As shown in FIG. 2), the configuration may be configured to support a form that does not match the boundary of the subframe (s) set on the Pcell.
앞서 언급된 바와 같이 비면허 대역에서의 반송파 감지(carrier sensing) 등을 통한 경쟁을 기반으로 동작하는 LTE-U 시스템의 경우, 반송파 감지 결과 등에 따라 가용 (예를 들어, 데이터 전송/스케줄링 용도로 사용 가능한) 자원 구간이 비주기적으로 확보/구성될 수 있다. 상기와 같은 LTE-U 방식으로 동작하는 셀/반송파를 편의상 Ucell이라 칭하고 Ucell 상에서 비주기적으로 구성되는 자원 구간을 RRP라고 정의하면, eNB는 Ucell 상에 RRP 구간이 확보되면 해당 Ucell을 설정받은 UE를 대상으로 해당 RRP 구간을 통해서만 기회적으로 데이터 전송을 스케줄링하는 상황을 고려할 수 있다. As mentioned above, the LTE-U system operating based on competition through carrier sensing in the unlicensed band is available depending on the carrier detection result (eg, available for data transmission / scheduling purposes). ) Resource intervals can be secured / configured aperiodically. When the cell / carrier that operates in the LTE-U method is called a Ucell for convenience, and a resource section configured aperiodically on the Ucell is defined as RRP, the eNB identifies a UE configured with the Ucell when the RRP section is secured on the Ucell. As a target, we can consider the situation of scheduling data transmission only through the corresponding RRP interval.
UE에 복수 셀들이 설정된 경우, LTE-A 시스템은 하나의 특정 셀(예, PCC 또는 Pcell)에 적용 가능한 타이밍 어드밴스(timing advance, TA) 값을 상기 복수 셀들에 공통으로 적용한다. 하지만, 서로 다른 주파수 밴드에 속한(즉, 주파수 상에서 크게 이격된) Ucell과 비-Ucell이 반송파 집성되거나, 혹은 반송파 집성되는 Ucell과 비-Ucell의 전파(propagation) 특성이 다를 수 있다. 또한, 특정 셀의 경우에는 커버리지 확대, 혹은 커버리지 홀의 제거를 위해 RRH와 같은 장치들이 셀 내에 배치되는 상황이 발생할 수 있다. 이 경우, 하나의 TA 값을 반송파 집성된 복수의 셀들에 공통으로 적용하는 방식을 사용하여 UL 전송을 수행할 경우에는 상기 복수의 셀들 상에서 전송되는 UL 신호의 동기에 심각한 영향을 끼칠 수 있다. When a plurality of cells are configured in the UE, the LTE-A system commonly applies a timing advance (TA) value applicable to one specific cell (eg, PCC or Pcell) to the plurality of cells. However, Ucells and non-Ucells belonging to different frequency bands (ie, greatly spaced apart on a frequency) may be carrier aggregated, or propagation characteristics of the carrier aggregated Ucell and non-Ucell may be different. In addition, in the case of a specific cell, a situation may occur in which devices such as an RRH are disposed in a cell in order to expand coverage or to remove a coverage hole. In this case, when UL transmission is performed using a method in which one TA value is commonly applied to a plurality of carrier aggregated cells, it may seriously affect synchronization of UL signals transmitted on the plurality of cells.
UE가 2개의 셀들(예, PCell과 SCell)로써 설정되어 있고, 각 셀에 대해 서로 다른 TA를 적용하여 UL 신호를 전송될 수 있다. 예를 들어, PCell의 UL 전송에 TA 1이 적용되고, SCell의 UL 전송에 TA 2가 적용될 수 있다. DL 서브프레임의 수신 종료 시점을 기준으로 UL 서브프레임/신호(예, PUSCH, PUCCH, SRS 등)의 전송 종료 시점을 TA만큼 앞당길 수 있다. 등가적으로, DL 서브프레임의 수신 시작 시점을 기준으로 UL 서브프레임/신호(예, PUSCH, PUCCH, SRS 등)의 전송 시작 시점을 TA만큼 앞당길 수 있다.The UE is configured as two cells (eg, PCell and SCell), and a UL signal may be transmitted by applying a different TA for each cell. For example, TA 1 may be applied to UL transmission of a PCell and TA 2 may be applied to UL transmission of a SCell. The transmission end time of the UL subframe / signal (eg, PUSCH, PUCCH, SRS, etc.) may be advanced by TA based on the reception end time of the DL subframe. Equivalently, the transmission start time of the UL subframe / signal (eg, PUSCH, PUCCH, SRS, etc.) may be advanced by TA based on the reception start time of the DL subframe.
따라서, 셀 그룹별로/단위로 TA를 독립적으로 할당하는 것이 고려될 수 있다. 이하에서는 상위 계층(예, RRC)에 의해 설정되고 UL이 설정된 셀들에 대해 동일한 타이밍 참조 셀 및 동일한 TA 값을 사용하는, 셀들의 그룹을 TA 그룹(TA group, TAG)라고 칭한다. TAG는 하나 이상의 셀(CC)를 포함할 수 있다. TAG 내의 셀(들)에는 하나의 TA가 공통으로 적용될 수 있다. TAG는 Pcell을 포함하는 1차 TAG(primary TAG, PTAG)와, Pcell을 포함하지 않으면서 설정된 UL이 있는 서빙 셀을 적어도 하나 포함하는 2차 TAG(secondary TAG, STAG)로 구분될 수 있다. Pcell이 속한 PTAG의 경우, Pcell를 기준으로 결정되는, 혹은 Pcell에 수반되는 임의 접속 과정을 통해 조정되는 TA가 PTAG 내의 모든 셀(들)에 적용될 수 있다. 반면, Pcell을 포함하지 않는, 즉, Scell(들)로만 구성된 STAG의 경우, 상기 STAG 내 특정 Scell를 기준으로 결정되는 TA가 STAG 내의 모든 Scell(들)에 적용될 수 있다. 이를 위해, Pcell을 통해 임의 접속 과정이 수행될 수 있을 뿐만 아니라, Scell을 통해서도 임의 접속 과정이 수행될 수 있다. Scell에 수반되는 임의 접속 과정은 UE가 트리거링 하는 경쟁 기반 방식이 아닌, eNB가 RACH 프리앰블 전송을 명령하는 용도의 PDCCH(즉, PDCCH 오더(order))를 이용해 트리거링하는 비-경쟁 기반의 임의 접속 과정이 수행될 수 있다.Therefore, it may be considered to allocate TA independently per cell group / unit. Hereinafter, a group of cells using the same timing reference cell and the same TA value for cells set by a higher layer (eg, RRC) and configured with UL is referred to as a TA group (TA group, TAG). The TAG may include one or more cells CC. One TA may be commonly applied to the cell (s) in the TAG. The TAG may be classified into a primary TAG (PTAG) including a Pcell and a secondary TAG (STAG) including at least one serving cell with a UL set without including the Pcell. In the case of a PTAG to which a Pcell belongs, a TA determined based on the Pcell or adjusted through a random access procedure accompanying the Pcell may be applied to all cell (s) in the PTAG. On the other hand, in the case of an STAG that does not include a Pcell, that is, composed of only Scell (s), a TA determined based on a specific Scell in the STAG may be applied to all Scell (s) in the STAG. To this end, the random access procedure may be performed not only through the Pcell but also through the Scell. The random access procedure accompanying the Scell is a non-competitive random access procedure triggered using a PDCCH (i.e., PDCCH order) for the eNB to command the RACH preamble transmission, rather than a contention based scheme triggered by the UE. This can be done.
현재까지의 LTE/LTE-A 시스템의 경우 하나의 UE에 대해 최대 5개까지의 셀/반송파/CC(이하, 셀로 통칭)에 대한 CA를 지원할 수 있으며, 듀얼 연결(dual connectivity, DC)가 설정된 경우를 제외하면, 해당 복수 셀들에 연관된 UCI(예를 들어, HARQ-ACK, CSI 등)를 나르는 PUCCH의 경우 Pcell 하나만을 통해 전송될 수 있다. 마스터 셀 그룹(master cell group, MCG) 또는 2차 셀 그룹(secondary cell group, SCG)로써 설정되면 RRC_연결 상태의 UE는 DC로써 설정된다. UE의 서빙 셀들 각각은 MCG 혹은 SCG에 배타적으로 속하게 된다. UE가 DC로써 설정되면, 사실상 상기 UE가 2개의 eNB들에 동시에 연결되어 있음을 의미하며, MCG는 상기 2개의 eNB들 중 상기 UE가 먼저 접속한 eNB(이하, eNB M)가 관리하는 셀(들)로 이루어지고, 나머지 SCG는 상기 UE가 eNB M에 연결한 후에 추가로 연결한 eNB(이하, eNB S)가 관리하는 셀(들)로 이루어진다고 할 수 있다. 결국, DC로써 설정된 UE는 2개의 eNB, 즉, 2개의 스케줄러에 연결되어 있으므로, MCG에 대한 DL/UL 스케줄링, UCI 전송 등은 MCG의 셀들에 국한되어 수행되며, SCG에 대한 DL/UL 스케줄링, UCI 전송 등은 SCG의 셀들에 국한되어 수행된다. 따라서, 크로스-반송파 스케줄링의 경우, 스케줄링 셀이 MCG에 속하면 상기 스케줄링 셀의 피스케줄링 셀도 MCG에 속하고, 스케줄링 셀이 SCG에 속하면 상기 스케줄링 셀의 피스케줄링 셀도 SCG에 속하고, MCG의 셀과 SCG의 셀 사이의 크로스-스케줄링이 수행되지 않는다. 다시 말해, 스케줄링 셀과 해당 피스케줄링 셀은 다른 CG에 속하지 않는다. 또한, DC로써 설정된 UE는 각 eNB별로 하나씩 2개의 Pcell을 가지며, MCG에 대한 UCI는 MCG의 Pcell 상의 PUCCH를 통해서 전송되고 SCG에 대한 UCI는 SCG의 Pcell 상의 PUCCH를 통해 전송되며, MCG에 대한 UCI가 SCG에서 혹은 SCG에 대한 UCI가 MCG에서 전송될 수는 없다.To date, LTE / LTE-A systems can support CAs for up to five cells / carriers / CCs (hereinafter collectively referred to as cells) for a single UE, and dual connectivity (DC) is established. Except for the case, the PUCCH carrying UCI (eg, HARQ-ACK, CSI, etc.) associated with the plurality of cells may be transmitted through only one Pcell. When configured as a master cell group (MCG) or secondary cell group (SCG), the UE in the RRC_connected state is configured as DC. Each serving cell of the UE belongs exclusively to the MCG or SCG. When the UE is configured as DC, it means that the UE is connected to two eNBs at the same time, and MCG is a cell managed by an eNB (hereinafter, eNB M) to which the UE first connects among the two eNBs. ), And the remaining SCG is composed of cell (s) managed by an eNB (hereinafter, referred to as eNB S) further connected after the UE connects to eNB M. After all, since the UE configured as DC is connected to two eNBs, that is, two schedulers, DL / UL scheduling, UCI transmission, etc. for MCG are performed to be limited to cells of MCG, and DL / UL scheduling for SCG, UCI transmission is performed limited to the cells of the SCG. Therefore, in the case of cross-carrier scheduling, if the scheduling cell belongs to the MCG, the scheduling cell of the scheduling cell also belongs to the MCG, and if the scheduling cell belongs to the SCG, the scheduling cell of the scheduling cell also belongs to the SCG, Cross-scheduling between the cells of and the cells of the SCG is not performed. In other words, the scheduling cell and the corresponding scheduled cell do not belong to another CG. In addition, a UE configured as DC has two Pcells, one for each eNB, UCI for MCG is transmitted through PUCCH on Pcell of MCG, and UCI for SCG is transmitted on PUCCH on Pcell of SCG, and UCI for MCG The UCI for the SCG or for the SCG cannot be transmitted in the MCG.
한편, 차기 시스템에서는 보다 높은 데이터 전송률을 목적으로 하나의 UE에 대해 5개 이상의 복수 셀들 대한 CA를 지원하도록 고려될 수 있다. 이 경우 (CA를 구성하는 셀들의 개수 증가에 의한) UCI 전송 빈도수/사이즈 증가 및 이로 인한 Pcell에서의 PUCCH 자원 부담을 경감시키기 위하여, (Pcell에 추가로) 특정 Scell(이하, Acell)을 통해서도 PUCCH (이를 통한 UCI) 전송이 가능하도록 설정하는 방안이 고려될 수 있다. MCG의 Pcell과 SCG의 Pcell이 독립적인 스케줄러들에 의해 제어됨에 반해, 본 발명에 따른 Pcell과 Acell은 단일 스케줄러에 의해 제어된다는 점에서 차이가 있다. Meanwhile, the next system may be considered to support CAs of five or more cells for one UE for a higher data rate. In this case, in order to reduce the UCI transmission frequency / size (by increasing the number of cells constituting the CA) and thereby reduce the PUCCH resource burden on the Pcell, PUCCH may also be performed through a specific Scell (hereinafter, Acell). (UCI through this) may be considered to enable the transmission. While the Pcell of the MCG and the Pcell of the SCG are controlled by independent schedulers, the Pcell and Acell according to the present invention are controlled by a single scheduler.
본 발명에서는 CA 상황에서 Acell을 통한 PUCCH 전송이 가능하도록 설정된 경우에 적합한 PUCCH/PUSCH를 통한 UCI 전송 구조 및 방법을 제안한다. 기본적으로, 전체 CA가 2개의 셀 그룹(cell group, CG)인 CG1 및 CG2로써 설정된 상태에서 Acell을 통한 HARQ-ACK PUCCH 전송이 가능하도록 설정되면, CG1(이를 통한 DL 데이터 수신)에 대한 HARQ-ACK을 나르는 PUCCH의 경우에는 Pcell을 통해, CG2에 대한 HARQ-ACK을 나르는 PUCCH의 경우에는 해당 Acell을 통해 각각 전송될 수 있으며, 여기서 Pcell은 CG1에, Acell은 CG2에 각각 포함될 수 있다. 설명의 편의상 Pcell이 CG1에 속하고 Acell이 CG2에 속한 경우를 예로 들어 본 발명의 실시예들이 설명되나, Pcell이 CG2에 속하고 Acell이 CG1에 속한 경우에도 본 발명의 실시예들이 마찬가지로 적용될 수 있다. 또한, 설명의 편의상 1개의 Acell 및 2개의 CG가 설정된 상황을 고려하였으나, 2개 이상의 Acell 및 3개 이상의 CG가 설정된 경우에도 본 발명의 제안 원리 및 동작이 유사하게 확장 적용될 수 있다. The present invention proposes a UCI transmission structure and method through PUCCH / PUSCH suitable for a case where PUCCH transmission through Acell is configured to be possible in a CA. Basically, if the entire CA is configured to enable transmission of HARQ-ACK PUCCH through Acell in a state in which two cell groups (CGs) are set as CG1 and CG2, HARQ- for CG1 (DL data reception through it) is set. In the case of a PUCCH carrying an ACK, a PUCCH carrying a HARQ-ACK for a CG2 may be transmitted through a corresponding Acell, where the Pcell may be included in the CG1 and the Acell may be included in the CG2. For convenience of description, embodiments of the present invention will be described taking the case where Pcell belongs to CG1 and Acell belongs to CG2 as an example. However, embodiments of the present invention may be similarly applied when Pcell belongs to CG2 and Acell belongs to CG1. . In addition, although a situation in which one Acell and two CGs are set for convenience of description, even if two or more Acells and three or more CGs are set, the proposed principle and operation of the present invention may be similarly applied.
Acell 상의 동적 PUCCH 자원은 Acell 상에서 전송되는 DL 그랜트 PDCCH 혹은 SPS 해지 PDCCH의 최저 CCE 인덱스 혹은 EPDCCH의 최저 CCE 인덱스를 기반으로 결정될 수 있다. Acell 상의 명시적 PUCCH 자원 혹은 명시적 PUCCCH 자원 후보들은 상위 계층에 신호에 의해 설정될 수 있다. PUCCH 자원 후보들 중 실제 사용되는 PUCCH 자원은 ARI에 의해 지시될 수 있다.The dynamic PUCCH resource on the Acell may be determined based on the lowest CCE index of the DL grant PDCCH or SPS release PDCCH transmitted on the Acell or the lowest CCE index of EPDCCH. Explicit PUCCH resources or explicit PUCCCH resource candidates on the Acell may be set by a signal to a higher layer. PUCCH resources actually used among the PUCCH resource candidates may be indicated by the ARI.
Scell에 PUCCH 전송이 설정된 상황에서의 UCI 전송 cell 선택 방법 Scell UCI transmission cell selection method when PUCCH transmission is set
CA 상황에서 Acell에 PUCCH 전송이 설정된 경우, 보다 유연하고 효율적인 UCI 전송을 위해 다음과 같은 방식으로 UCI 전송 셀을 선택하는 것을 고려할 수 있다. When PUCCH transmission is configured in Acell in CA, it may be considered to select a UCI transmission cell in the following manner for more flexible and efficient UCI transmission.
도 11 내지 도 14는 본 발명의 실시예들에 따른 UCI 전송을 예시한 것이다.11 through 14 illustrate UCI transmission according to embodiments of the present invention.
케이스 1) 일 CG 내에 아무런 UL 채널 전송이 없음 또는 PUSCH 전송만 존재Case 1) No UL channel transmission or only PUSCH transmission within one CG
특정 CG 전체에 대해 아무런 UL 채널 전송(예, PUCCH 또는 PUSCH)이 없거나 혹은 PUSCH 전송만 존재하는 경우 (동시에, 다른 CG를 통해 복수 UCI의 동시 전송이 요구되는 경우), 다른 CG (예를 들어, 해당 CG에 속해있는 PUCCH 전송 셀)을 통한 복수 PUCCH들의 동시 전송이 허용될 수 있다. 이하에서 동시 전송이라 함은 단일 서브프레임에서 해당 신호들이 전송됨을 의미한다.If there are no UL channel transmissions (e.g., PUCCH or PUSCH) for all of the specific CGs or only PUSCH transmissions exist (at the same time, simultaneous transmission of multiple UCIs via different CGs is required), another CG (e.g., Simultaneous transmission of a plurality of PUCCHs through a PUCCH transmission cell belonging to the corresponding CG may be allowed. Simultaneous transmission hereinafter means that corresponding signals are transmitted in a single subframe.
예를 들어, 도 11(a)를 참조하면, (PUCCH를 통한 ACK/NACK(이하, A/N)과 CSI의 동시전송이 설정되지 않은 상태에서) CG1을 통해 (혹은 CG1에 대한) A/N 전송과 CSI 전송이 동시에 요구되는 상황에서 CG2 전체에 아무런 PUCCH 또는 PUSCH 전송이 없거나(즉, 아무런 PUCCH도 없고, 아무런 PUSCH도 없는 경우) 혹은 PUSCH 전송만 존재하는 경우, (CG1에 대한) A/N을 나르는 PUCCH와 (CG1에 대한) CSI를 나르는 PUCCH가 모두 CG1 (예를 들어, Pcell)을 통해 동시에 전송될 수 있다. 다른 예로, 도 11(b)를 참조하면, (PUCCH를 통한 A/N과 CSI의 동시 전송이 설정되지 않은 상태에서) CG1을 통해 (혹은 CG1에 대한) A/N 전송과 CSI 전송이 동시에 요구되는 상황에서, CG2에 PUCCH 및 PUSCH 전송이 있거나 혹은 PUCCH 전송이 존재하는 경우, (CG1에 대한) CSI의 전송은 생략/포기(즉, 드랍)되고 (CG1에 대한) A/N을 나르는 하나의 PUCCH만 CG1(예, Pcell)을 통해 전송될 수 있다. For example, referring to FIG. 11 (a), through A / N (or CG1) through CG1 (with or without simultaneous transmission of ACK / NACK (hereinafter, A / N) and CSI over PUCCH) If there is no PUCCH or PUSCH transmission (ie, no PUCCH and no PUSCH) in the entire CG2 in the case where N transmission and CSI transmission are required at the same time, or only PUSCH transmission exists, A / (for CG1) Both PUCCH carrying N and PUCCH carrying CSI (for CG1) may be transmitted simultaneously over CG1 (eg, Pcell). As another example, referring to FIG. 11 (b), A / N transmission and CSI transmission are simultaneously required through CG1 (or CG1) while the simultaneous transmission of A / N and CSI over PUCCH is not set. In a situation where there is a PUCCH and PUSCH transmission in CG2 or a PUCCH transmission, the transmission of CSI (for CG1) is omitted / discarded (i.e., dropped) and one A / N carrying (for CG1) Only PUCCH may be transmitted through CG1 (eg, Pcell).
한편, CG1을 통해 SR 전송과 CSI 전송이 동시에 요구되는 경우에도 상기 예들에서와 유사한 동작이 적용될 수 있다. 예를 들어, 상기 예들에서 A/N을 SR로 대체하는 방식이 고려될 수 있다.On the other hand, when SR transmission and CSI transmission are simultaneously required through CG1, an operation similar to the above examples may be applied. For example, in the above examples, a manner of replacing A / N with SR may be considered.
케이스 2) 다른 CG 내 UCI보다 높은 우선순위를 갖는 일 CG 내 다중(multiple) UCI들Case 2) Multiple UCIs in one CG having higher priority than UCIs in other CGs
특정 CG를 통해 전송이 요구되는 복수의 UCI들(예, A/N, CSI 및/또는 SR)가 다른 CG를 통해 전송이 요구되는 UCI보다 높은 우선순위(priority)를 가질 경우, 상기 특정 CG(예를 들어, 상기 특정 CG에 속한 PUCCH 전송용 셀)을 통한 복수 PUCCH의 동시 전송이 허용될 수 있다. When a plurality of UCIs (eg, A / N, CSI, and / or SR) requiring transmission through a specific CG have a higher priority than UCIs requiring transmission through another CG, the specific CG ( For example, simultaneous transmission of a plurality of PUCCHs through a PUCCH transmission cell belonging to the specific CG may be allowed.
예를 들어, (PUCCH를 통한 A/N과 CSI의 동시 전송이 설정되지 않은 상태에서) CG1을 통해서는 (혹은 CG1에 대해서는) A/N 전송과 CSI(즉, CG1-CSI) 전송이, CG2를 통해서는 (혹은 CG2에 대해서는) CSI(즉, CG2-CSI) 전송이 동시에 요구되는 상황에서, CG1-CSI가 CG2-CSI보다 높은 우선순위를 가질 경우, CG2-CSI의 전송은 드랍되고 (CG1에 대한) A/N을 나르는 PUCCH와 CG1-CSI를 나르는 PUCCH가 모두 CG1 (예, Pcell)을 통해 동시에 전송될 수 있다. 도 12(a) 및 도 12(b)를 참조하면, 서브프레임에서 CG1 상에 전송이 설정된 A/N PUCCH과 CSI PUCCH가 있고 동일 서브프레임에서 CG2 상에 전송이 설정된 (우선순위가 높은) PUCCH가 없으면, 기존 시스템에서와 달리, A/N PUCCH와 CSI PUCCH가 상기 서브프레임에서 CG1 상으로 동시에 전송된다. 도 12에서 P1과 P2는 우선순위를 의미하며, P1의 CSI는 P2의 CSI보다 우선순위가 높다고 가정한다.For example, A / N transmission and CSI (i.e., CG1-CSI) transmission over CG1 (or CG1) with CG1 (with no simultaneous transmission of A / N and CSI set on PUCCH), CG2 If (CG2) CSI (i.e., CG2-CSI) transmissions are required at the same time, if CG1-CSI has a higher priority than CG2-CSI, then the transmission of CG2-CSI is dropped (CG1). The PUCCH carrying A / N and the PUCCH carrying CG1-CSI may be simultaneously transmitted through the CG1 (eg, Pcell). 12 (a) and 12 (b), there are A / N PUCCH and CSI PUCCH in which transmission is set on CG1 in a subframe, and PUCCH (high priority) in which transmission is set on CG2 in the same subframe. If is not present, unlike the existing system, A / N PUCCH and CSI PUCCH are simultaneously transmitted on the CG1 in the subframe. In FIG. 12, P1 and P2 mean priority, and it is assumed that CSI of P1 has higher priority than CSI of P2.
다른 예로, (PUCCH를 통한 A/N과 CSI의 동시 전송이 설정되지 않은 상태에서) CG1을 통해서는 (혹은 CG1에 대해서는) A/N 전송과 CSI(즉, CG1-CSI) 전송이, CG2를 통해서는 (혹은 CG2에 대해서는) CSI(즉, CG2-CSI) 전송이 동시에 요구되는 상황에서, CG1-CSI가 CG2-CSI보다 낮은 우선순위를 가질 경우, CG1-CSI의 전송은 드랍되고 A/N을 나르는 PUCCH는 CG1(예, Pcell)을 통해, 그리고 CG2-CSI를 나르는 PUCCH는 CG2(예, Acell)을 통해 각각 전송될 수 있다. 도 12(c)를 참조하면, 서브프레임에서 CG1 상에 전송이 설정된 A/N PUCCH과 우선순위 P2인 CSI PUCCH가 있고 동일 서브프레임에서 CG2 상에 전송이 설정된 우선순위 P1인 CSI PUCCH가 있으면, 해당 서브프레임에서 A/N PUCCH는 CG1 상으로 전송되고 우선순위 P1인 CSI가 CG2의 PUCCH 상으로 동시에 전송된다. 해당 서브프레임에서 우선순위 P2인 CSI는 드랍된다. As another example, A / N and CSI (i.e., CG1-CSI) transmissions over CG1 (or CG1) with CG1 (with or without simultaneous transmission of A / N and CSI on PUCCH) set to CG2. If (CG2) CSI (i.e., CG2-CSI) transmissions are required at the same time, if CG1-CSI has a lower priority than CG2-CSI, then transmission of CG1-CSI is dropped and A / N The PUCCH carrying the CG1 (eg, Pcell) and the PUCCH carrying the CG2-CSI may be transmitted via the CG2 (eg, Acell). Referring to FIG. 12 (c), if there is an A / N PUCCH with transmission set on CG1 in a subframe and a CSI PUCCH having priority P2 and a CSI PUCCH having priority P1 with transmission set on CG2 in the same subframe, In this subframe, the A / N PUCCH is transmitted on the CG1 and the CSI having priority P1 is transmitted on the PUCCH of the CG2 at the same time. In the corresponding subframe, the CSI having priority P2 is dropped.
한편, CG1을 통해 SR 전송과 CSI 전송이 동시에 요구되는 경우에도 상기 예들에서와 유사한 동작이 적용될 수 있다. 예를 들어, 상기 예들에서 A/N을 SR로 대체하는 방식이 고려될 수 있다.On the other hand, when SR transmission and CSI transmission are simultaneously required through CG1, an operation similar to the above examples may be applied. For example, in the above examples, a manner of replacing A / N with SR may be considered.
케이스 3) 일 CG 내에서의 다중 UCI들의 충돌Case 3) collision of multiple UCIs within one CG
특정 CG를 통해 복수 UCI들의 동시전송이 요구되는 경우 (동시에, 다른 CG 전체에 대해 아무런 PUCCH 또는 PUSCH 전송이 없거나(즉, 아무런 PUCCH도 없고, 아무런 PUSCH도 없는 경우), 혹은 PUSCH 전송만 존재하는 경우, 상기 복수 UCI들 중 특정 일부(예를 들어, 더 낮은 우선순위를 갖는 UCI)가 다른 CG를 통해 전송될 수 있다. 도 13에서 P1과 P2가 우선순위를 나타내고 P1이 P2보다 우선순위가 높다고 가정한다. 도 13을 참조하면, 일 CG에서 전송이 설정된 우선순위 P1인 UCI와 우선순위 P2인 UCI가 동일 서브프레임에서 발생(occur)하면 상기 UCI들이 단일 PUCCH 혹은 PUSCH를 통해 전송될 수 없다면, 우선순위 P2인 UCI가 다른 CG 상에서 전송된다.When simultaneous transmission of multiple UCIs is required through a specific CG (at the same time, there is no PUCCH or PUSCH transmission for all other CGs (ie, no PUCCH and no PUSCH), or only PUSCH transmission exists) A specific portion of the plurality of UCIs (eg, a UCI having a lower priority) may be transmitted through another CG. In FIG. 13, P1 and P2 indicate a priority, and P1 has a higher priority than P2. 13, if UCI with priority P1 and UCI with priority P2 configured for transmission in one CG occur in the same subframe, if the UCIs cannot be transmitted through a single PUCCH or PUSCH, UCI with priority P2 is transmitted on another CG.
예를 들어, (PUCCH를 통한 A/N과 CSI의 동시전송이 설정되지 않은 상태에서) CG1을 통해 (혹은 CG1에 대한) A/N 전송과 CSI 전송이 동시에 요구되는 상황에서 CG2 전체에 아무런 PUCCH 또는 PUSCH 전송이 없거나(즉, 아무런 PUCCH도 없고, 아무런 PUSCH도 없는 경우) 혹은 PUSCH 전송만 존재하는 경우, (CG1에 대한) A/N은 CG1(예, Pcell) 상의 PUCCH를 통해, (CG1에 대한) CSI는 CG2(예, Acell) 상의 PUCCH 혹은 PUSCH를 통해 각각 전송될 수 있다. 이 때 사용되는 CG2 상의 PUCCH 자원은, 예를 들어, CG2 상의 해당 CSI PUCCH 자원은 상위 계층 신호(예, RRC 신호)에 의해 미리 설정될 수 있다. 이 때 사용되는 CG2 상의 PUSCH 자원은 셀프-CC 스케줄링 설정 혹은 크로스-CC 스케줄링 설정에 따라 특정 셀 상에서 전송된 UL 그랜트를 통해 할당될 수 있다.For example, if no simultaneous transmission of A / N and CSI over PUCCH is set, and no PUCCH is sent to the entire CG2 in a situation where A / N transmission and CSI transmission are simultaneously required through CG1 (or CG1). Or if there is no PUSCH transmission (i.e. no PUCCH and no PUSCH) or only PUSCH transmission is present, the A / N (for CG1) via the PUCCH on CG1 (e.g. Pcell), CSI may be transmitted through PUCCH or PUSCH on CG2 (eg, Acell), respectively. In this case, the PUCCH resource on the CG2 used, for example, the corresponding CSI PUCCH resource on the CG2 may be preset by an upper layer signal (eg, an RRC signal). PUSCH resources on the CG2 used at this time may be allocated through the UL grant transmitted on a specific cell according to the self-CC scheduling configuration or cross-CC scheduling configuration.
다른 예로, CG1을 통해 (혹은 CG1에 대한) 비주기적 CSI(이하, a-CSI) 전송과 주기적 CSI(이하, p-CSI) 전송이 동시에 요구되는 상황에서 CG2 전체에 아무런 PUCCH 또는 PUSCH 전송이 없거나(즉, 아무런 PUCCH도 없고, 아무런 PUSCH도 없는 경우) 혹은 PUSCH 전송만 존재하는 경우, 상기 a-CSI는 CG1상의 PUSCH를 통해, 상기 p-CSI는 CG2(예, Acell) 상의 PUCCH 혹은 PUSCH를 통해 각각 전송될 수 있다. 만약 다른 CG에서 전송이 요구되는 UCI가 있는 경우, 각 CG 내에서 우선 순위를 따져 해당 CG 내에서 낮은 우선 순위의 UCI는 드랍된다. 이 경우, 일 CG(예, CG1) 내에서 낮은 우선 순위의 UCI가, 다른 CG(예, CG2) 내에서 가장 높은 우선 순위의 UCI 보다는 우선 순위가 높더라도, CG1의 UCI가 드랍되는 경우가 발생할 수 있다. As another example, there is no PUCCH or PUSCH transmission in the entire CG2 in a situation where aperiodic CSI (hereinafter referred to as a-CSI) transmission through CG1 (or to CG1) and periodic CSI (hereinafter referred to as p-CSI) transmission are simultaneously required. (I.e., no PUCCH, no PUSCH) or only PUSCH transmission, the a-CSI is via PUSCH on CG1 and the p-CSI is via PUCCH or PUSCH on CG2 (e.g., Acell). Each can be sent. If there is a UCI that needs to be transmitted from another CG, the UCI of the lower priority within the CG is dropped by prioritizing within each CG. In this case, even if a low priority UCI in one CG (eg, CG1) is higher than the highest priority UCI in another CG (eg, CG2), the UCI of CG1 may be dropped. Can be.
한편, CG1을 통해 SR 전송과 CSI 전송이 동시에 요구되는 경우에도 상기 예들에서와 유사한 동작이 적용될 수 있다. 예를 들어, 상기 예들에서 A/N을 SR로 대체하는 방식을 고려할 수 있다.On the other hand, when SR transmission and CSI transmission are simultaneously required through CG1, an operation similar to the above examples may be applied. For example, in the above examples, a method of replacing A / N with SR may be considered.
케이스 4) CG들에 걸친(over) 다중 UCI들의 충돌Case 4) collision of multiple UCIs over CGs
특정 CG를 통해 전송이 요구되는 복수의 UCI들(이하, UCI-a)가 다른 CG를 통해 전송이 요구되는 UCI(들)(이하, UCI-b)보다 높은 우선순위를 가질 경우, 상기 UCI-a의 특정 일부(예, 더 낮은 우선순위를 갖는 UCI)가 다른 CG를 통해 전송될 수 있다. 도 14에서 우선순위 P1이 우선순위 P2보다 높고, 우선순위 P2가 우선순위 P3보다 높다고 가정한다. 도 14(a) 및 14(b)를 참조하면, CG1 상에 전송이 설정된 우선순위 P1인 UCI와 우선순위 P2인 UCI가 동일 서브프레임에서 발생하고, 상기 UCI들이 단일 PUCCH 또는 PUSCH 상으로 전송될 수 없는 경우, 해당 서브프레임에서 전송될 CG2 상으로 전송될 P1 및 P2보다 높은 우선순위의 UCI가 없으면, 상기 서브프레임에서, 높은 우선순위 P1의 UCI는 원래 전송이 설정된 CG1 상으로 전송되고 낮은 우선순위 P2의 UCI는 CG2 상의 PUCCH 혹은 PUSCH를 통해 전송된다. 도 14(b)를 참조하면, 상기 서브프레임에서 CG2 상으로 전송될 P1 및 P2보다 낮은 우선순위의 UCI는 드랍된다. 도 14(c)를 참조하면, CG1에 전송이 설정된 UCI들보다 높은 우선순위의 UCI가 CG2에 있으면, CG2의 UCI보다 우선순위가 낮은 CG1의 UCI(들)은 해당 서브프레임에서 전송이 드랍된다.If a plurality of UCIs (hereinafter, UCI-a) required to be transmitted through a specific CG has a higher priority than UCI (s) (hereinafter, UCI-b) required to be transmitted through another CG, the UCI- Certain portions of a (eg, UCIs with lower priorities) may be sent over other CGs. In FIG. 14, it is assumed that priority P1 is higher than priority P2 and priority P2 is higher than priority P3. Referring to FIGS. 14A and 14B, UCI with priority P1 and UCI with priority P2 having transmission set on CG1 may occur in the same subframe, and the UCIs may be transmitted on a single PUCCH or PUSCH. If there is no UCI of higher priority than P1 and P2 to be transmitted on the CG2 to be transmitted in the corresponding subframe, the UCI of the higher priority P1 is transmitted on the CG1 to which the original transmission was set and the lower priority. UCI of rank P2 is transmitted through PUCCH or PUSCH on CG2. Referring to FIG. 14 (b), UCIs having a lower priority than P1 and P2 to be transmitted on CG2 in the subframe are dropped. Referring to FIG. 14 (c), if the UCI having a higher priority than the UCIs configured for transmission in the CG1 is present in the CG2, the UCI (s) of the CG1 having a lower priority than the UCI of the CG2 are dropped in the corresponding subframe. .
예를 들어, (PUCCH를 통한 A/N과 CSI의 동시전송이 설정되지 않은 상태에서) CG1을 통해서는 (혹은 CG1에 대해서는) A/N 전송과 CSI(이하, CG1-CSI) 전송이 요구되고 CG2를 통해서는 (혹은 CG2에 대해서는) CSI(이하, CG2-CSI) 전송이 동시에 요구되는 상황에서 CG1-CSI가 CG2-CSI보다 높은 우선순위를 가질 경우, CG2-CSI의 전송은 드랍되고 (CG1에 대한) A/N은 CG1(예, Pcell) 상의 PUCCH를 통해, 상기 CG1-CSI는 CG2(예, Acell) 상의 PUCCH 혹은 PUSCH를 통해 각각 전송될 수 있다. For example, A / N transmission and CSI (hereinafter, CG1-CSI) transmission are required through CG1 (or CG1) without simultaneous transmission of A / N and CSI through PUCCH. If CG1-CSI has higher priority than CG2-CSI when CSI (or CG2-CSI) transmission is required through CG2 (or CG2) at the same time, transmission of CG2-CSI is dropped and (CG1 A / N may be transmitted through PUCCH on CG1 (eg, Pcell), and the CG1-CSI may be transmitted on PUCCH or PUSCH on CG2 (eg, Acell).
다른 예로, CG1을 통해서는 (혹은 CG1에 대해서는) a-CSI 전송 및 p-CSI(이하, CG1-CSI) 전송이 요구되고 CG2를 통해서는 (혹은 CG2에 대해서는) p-CSI(이하, CG2-CSI) 전송이 동시에 요구되는 상황에서 CG1-CSI가 CG2-CSI보다 높은 우선순위를 가질 경우, CG2-CSI의 전송은 드랍되고 상기 a-CSI는 CG1 상의 PUSCH를 통해, 상기 CG1-CSI는 CG2(예, Acell) 상의 PUCCH 혹은 PUSCH를 통해 각각 전송될 수 있다. 여기서, 상기 CG1-CSI의 전송에 사용되는 CG2 상의 PUCCH는 (CG 구분 없이) 전송용으로 설정된 PUCCH 자원일 수 있다. 상기 CG1-CSI의 전송에 사용되는 CG2 상의 PUSCH는 UCI에 관계없이 셀프/크로스-CC 스케줄링 설정에 따라 특정 셀 상에 전송된 UL 그랜트를 통해 CG2 상에 할당될 수 있다. As another example, a-CSI transmission and p-CSI (hereinafter CG1-CSI) transmission are required through CG1 (or CG1) and p-CSI (or CG2-) through CG2 (or CG2). When CG) transmission is simultaneously required, when CG1-CSI has a higher priority than CG2-CSI, transmission of CG2-CSI is dropped and the a-CSI is transmitted through PUSCH on CG1, and the CG1-CSI is CG2 ( For example, it may be transmitted through PUCCH or PUSCH on Acell. Here, the PUCCH on the CG2 used for the transmission of the CG1-CSI may be a PUCCH resource set for transmission (without CG classification). The PUSCH on the CG2 used for the transmission of the CG1-CSI may be allocated on the CG2 through the UL grant transmitted on the specific cell according to the self / cross-CC scheduling configuration regardless of the UCI.
한편, CG1을 통해 SR 전송과 CSI 전송이 동시에 요구되는 경우에도 상기 예들에서와 유사한 동작이 적용될 수 있다. 예를 들어, 상기 예들에서 A/N을 SR로 대체하는 방식을 고려할 수 있다.On the other hand, when SR transmission and CSI transmission are simultaneously required through CG1, an operation similar to the above examples may be applied. For example, in the above examples, a method of replacing A / N with SR may be considered.
전술한 케이스 1 내지 케이스 4의 실시예들에서 일 서브프레임에서 동시에 전송되는 PUCCH들 혹은 UCI들의 개수는 셀 그룹의 개수 혹은 PUCCH 전송용 셀(즉, Pcell 및 Acell)들의 개수에 의존할 수 있다.In the above-described embodiments of Cases 1 to 4, the number of PUCCHs or UCIs transmitted simultaneously in one subframe may depend on the number of cell groups or the number of cells for PUCCH transmission (ie, Pcell and Acell).
CG간 크로스-CC 스케줄링 설정이 허용된 상황에서의 UCI 전송 방법 UCI transmission method when cross-CC scheduling setting is allowed between CGs
CA 상황에서 Scell(즉, Acell) 상에 PUCCH 전송이 설정된 경우, eNB로부터의 a-CSI 요청 및 UE로부터의 a-CSI 보고는 기본적으로 각 CG별로 수행될 수 있다. a-CSI 측정 대상으로 (상위계층 (e.g. RRC) 시그널링을 통해) 설정되는 셀 세트 또는 CSI 프로세스 세트 역시 각 CG별로 구성될 수 있다. When PUCCH transmission is configured on an Scell (that is, Acell) in a CA situation, an a-CSI request from an eNB and an a-CSI report from a UE may be basically performed for each CG. A cell set or a CSI process set configured as an a-CSI measurement target (via upper layer (e.g. RRC) signaling) may also be configured for each CG.
Acell PUCCH 전송이 설정된 CA 상황에서 CG간 크로스-CC 스케줄링 설정이 허용되는 경우, 특정 (스케줄링) 셀 1과 상기 셀 1으로부터 스케줄링되도록 설정되는 (피스케줄링) 셀 2가 서로 다른 CG에 속하게 될 수 있다. 예를 들어, 스케줄링 셀인 셀 1의 경우 CG1에, 피스케줄링 셀인 셀 2의 경우 CG2에 속할 수 있다.. 이때, 셀 1 상의 UL 그랜트 DCI 전송을 통해 셀 2 상의 PUSCH가 스케줄링됨과 동시에 상기 DCI를 통해 a-CSI 전송이 지시된 경우, 상기 a-CSI 요청에 대응되는 a-CSI 측정/보고 대상 셀(들) 또는 CSI 프로세스(들)은, 피스케줄링 셀인 셀 2 및 상기 셀 2가 속한 CG2에 설정된 a-CSI 측정 대상 셀 (또는 CSI 프로세스) 세트를 기준으로 결정될 수 있다. 예를 들어, CSI 요청 필드 값 XX에 의해 a-CSI가 트리거되는지 여브를 나타내는 triggerXX(여기서, XX는 01, 10, 11)가 해당 CG 내 셀들 (또는 CSI 프로세스들)을 대상으로만 구성/설정될 수 있다. 이 방식은, Scell PUCCH 전송 설정이 없는 상황에서 a-CSI 요청/보고 및 이를 위한 a-CSI 측정 대상 셀 (또는 CSI 프로세스) 세트 구성/설정이 셀 그룹별로 수행되는 경우에도 동일하게 적용될 수 있다. 즉, Acell이 아예 설정이 안 된 상태에서 셀들이 a-CSI 측정을 위한 셀 그룹으로 구분될 수 있다. When cross-CC scheduling is set between CGs in a CA situation in which Acell PUCCH transmission is configured, a specific (scheduling) cell 1 and a (pic scheduling) cell 2 configured to be scheduled from the cell 1 may belong to different CGs. . For example, cell 1, which is a scheduling cell, may belong to CG1, and cell 2, which is a scheduled cell, may belong to CG2. At this time, a PUSCH on cell 2 is scheduled through UL grant DCI transmission on cell 1 and at the same time, through DCI. When a-CSI transmission is indicated, the a-CSI measurement / reporting cell (s) or CSI process (s) corresponding to the a-CSI request are configured in cell 2, which is a scheduled cell, and CG2 to which cell 2 belongs. It may be determined based on a-CSI measurement target cell (or CSI process) set. For example, a triggerXX that indicates whether a-CSI is triggered by the CSI request field value XX (where XX is 01, 10, 11) is configured / set only for cells (or CSI processes) within that CG. Can be. This method may be equally applied to a-CSI request / report and a-CSI measurement target cell (or CSI process) set configuration / configuration for each cell group in the absence of Scell PUCCH transmission setting. That is, in the state where Acell is not configured at all, the cells may be divided into cell groups for a-CSI measurement.
한편, PUCCH 전송이 하나의 Pcell을 통해서만 수행되는 기존 CA의 경우 스케줄링 셀 1과 상기 셀 1으로부터 스케줄링되도록 설정되는 피스케줄링 셀 2, 그리고 상기 셀 2에 대한 UCI(예, A/N) PUCCH가 전송되는 Pcell이 모두 동일한 CG에 속해있는 상황으로 생각될 수 있다. 이 경우 상기 셀 2에서의 DL 데이터 수신에 대한 HARQ-ACK 전송 타이밍(혹은 HARQ-ACK 전송 타이밍 결정을 위한 기준 UL/DL 설정)은, 상기 셀 2가 다른 셀로부터 크로스-CC 스케줄링되도록 설정되었는지의 여부에 따라 다르게 결정될 수 있다. 이하에서는, 셀 2가 다른 셀에 의해 스케줄링되도록 설정된 경우에 적용되는 타이밍을 크로스-HARQ 타이밍이라 하고, 셀 2가 다른 셀에 의해 스케줄링되도록 설정되지 않은 경우에 적용되는 타이밍을 셀프-HARQ 타이밍이라 칭한다. Meanwhile, in the case of the existing CA in which PUCCH transmission is performed only through one Pcell, scheduling cell 1 and scheduled cell 2 configured to be scheduled from cell 1 and UCI (eg, A / N) PUCCH for cell 2 are transmitted. It can be considered that all Pcells belong to the same CG. In this case, the HARQ-ACK transmission timing (or reference UL / DL setting for HARQ-ACK transmission timing determination) for DL data reception in the cell 2 is determined whether the cell 2 is configured to be cross-CC scheduled from another cell. It may be determined differently depending on whether or not. Hereinafter, the timing applied when Cell 2 is set to be scheduled by another cell is referred to as cross-HARQ timing, and the timing applied when Cell 2 is not set to be scheduled by another cell is called self-HARQ timing. .
PUCCH 전송이 하나의 Pcell을 통해서만 수행되는 기존 CA와 달리, Acell PUCCH 전송이 설정된 CA 상황에서 CG간 크로스-CC 스케줄링 설정이 허용되는 경우, 스케줄링 셀 1과 이로부터 스케줄링되도록 설정되는 피스케줄링 셀 2는 서로 다른 CG에 속해 있으면서, 셀 2와 상기 셀 2에 대한 UCI(예, A/N) PUCCH가 전송되는 셀은 동일한 CG에 속하게 될 수 있다. 예를 들어, 스케줄링 셀인 셀 1은 CG1에, 피스케줄링 셀인 셀 2는 CG2에 속하면서, 상기 셀 2에 대한 UCI(예, A/N) PUCCH가 전송되는 셀이 상기 셀 2와 동일한 CG인 CG2에 속하게 될 수 있다. 이 경우 비효율적인 HARQ-ACK 타이밍 설정/적용으로 인한 불필요한 DL 스케줄링 제한을 줄이기 위하여,Unlike the existing CA in which PUCCH transmission is performed only through one Pcell, when cross-CC scheduling is set between CGs in a CA where Acell PUCCH transmission is configured, scheduling cell 1 and scheduled cell 2 configured to be scheduled therefrom are While belonging to different CGs, a cell in which UCI (eg, A / N) PUCCH for cell 2 and cell 2 are transmitted may belong to the same CG. For example, cell 1, which is a scheduling cell, belongs to CG1, and cell 2, which is a scheduled cell, belongs to CG2, and a cell to which UCI (eg, A / N) PUCCH for cell 2 is transmitted is in CG2, which is the same CG as cell 2. Can belong. In this case, to reduce unnecessary DL scheduling restrictions due to inefficient HARQ-ACK timing setting / application,
Alt 1) 셀 2가 상기 셀 2가 속한 CG2에 설정된 PUCCH 전송 셀(즉, Pcell 혹은 Acell)로부터 크로스-CC 스케줄링되도록 설정되었는지의 여부에 따라, 혹은 Alt 1) whether or not cell 2 is configured to be cross-CC scheduled from a PUCCH transmission cell (i.e., Pcell or Acell) configured in CG2 to which cell 2 belongs, or
Alt 2) 셀 2가 상기 CG2에 속한 임의의 셀로부터 크로스-CC 스케줄링되도록 설정되었는지의 여부에 따라 대응되는 HARQ-ACK 타이밍이 다르게 결정될 수 있다. Alt 2) The corresponding HARQ-ACK timing may be determined differently according to whether cell 2 is set to be cross-CC scheduled from any cell belonging to the CG2.
예를 들어, 셀 2에 대한 (Alt 1 혹은 Alt 2 기반의) 크로스-CC 스케줄링 설정이 있는 경우에는 크로스-HARQ 타이밍이 적용되고, 셀 2에 대한 (Alt 1 혹은 Alt 2 기반의) 크로스-CC 스케줄링 설정이 없는 경우에는 셀프-HARQ 타이밍이 적용될 수 있다. 예를 들어, Alt 1의 경우에는 CG2에 속한 셀 2가 CG2에 설정된 PUCCH 전송 셀이 아닌 다른 (CG1 또는 CG2에 속한) 임의의 셀로부터 스케줄링되도록 설정된 경우, Alt 2의 경우에는 CG2에 속한 셀 2가 CG1에 속한 임의의 셀로부터 스케줄링되도록 설정된 경우), 셀프-HARQ 타이밍이 적용될 수 있다. 상기에서 Alt 1 방식의 경우에는 Scell PUCCH 전송 설정이 없는 CA 상황에도 동일하게 적용될 수 있다. For example, if there is a cross-CC scheduling configuration (based on Alt 1 or Alt 2) for cell 2, cross-HARQ timing is applied, and cross-CC (based on Alt 1 or Alt 2) for cell 2 If there is no scheduling configuration, self-HARQ timing may be applied. For example, in the case of Alt 1, if cell 2 belonging to CG2 is set to be scheduled from any cell (belonging to CG1 or CG2) other than the PUCCH transmission cell configured in CG2, cell 2 belonging to CG2 in Alt 2 Is set to be scheduled from any cell belonging to CG1), self-HARQ timing may be applied. In the case of the Alt 1 scheme, the same may be applied to a CA situation in which there is no Scell PUCCH transmission setting.
한편, 전체 CA 관점에서는 Acell 역시 하나의 Scell에 해당하므로 일반적인 Scell과 유사하게 비활성화(deactivate)시키는 방안을 고려될 수 있다. 이 경우에는 기본적으로 상기 Acell을 포함하는 CG에 속한 모든 셀이 동시에 일괄적으로 비활성화될 수 있다. 이때에, CG간 크로스-CC 스케줄링 설정이 허용되는 경우에는 비활성화된 Acell 및 이를 포함하는 CG(예, CG2)에 속한 셀(이하, CG2 스케줄링 셀)로부터 크로스-CC 스케줄링되도록 설정된 다른 CG(예, CG1) 내의 셀(이하, CG1 피스케줄링 셀) 역시 함께 비활성화될 수 있다. 이러한 CG1 피스케줄링 셀의 경우에는 상기 Acell과 CG2 스케줄링이 모두 활성화된 상황에서만 활성화될 수 있다. On the other hand, since the Acell also corresponds to one Scell from the perspective of the entire CA, a method of deactivating similarly to the general Scell may be considered. In this case, basically all cells belonging to the CG including the Acell may be simultaneously deactivated in a batch. In this case, when cross-CC scheduling between CGs is allowed, another CG (eg, CG2 scheduling cell) configured to be cross-CC scheduled from the deactivated Acell and a cell belonging to the CG (eg, CG2) including the same (hereinafter, CG2 scheduling cell). The cells in CG1) (hereinafter, CG1 scheduled cells) may also be deactivated together. In the case of such a CG1 scheduled cell, it can be activated only when both the Acell and CG2 scheduling are activated.
도 15는 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.15 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22) 등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13, 23)을 제어하도록 구성된(configured) 프로세서(11, 21)를 각각 포함한다.The transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system. The device is operatively connected to components such as the memory 12 and 22, the RF unit 13 and 23, and the memory 12 and 22, which store various types of information related to communication, and controls the components. And a processor (11, 21) configured to control the memory (12, 22) and / or the RF unit (13, 23), respectively, to perform at least one of the embodiments of the invention described above.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다.The memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information. The memories 12 and 22 may be utilized as buffers.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(400a, 400b)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.The processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention. The processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like. The processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof. When implementing the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays) may be provided in the processors 400a and 400b. Meanwhile, when implementing the present invention using firmware or software, the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention. The firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K 개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 N t 개(N t 는 1 보다 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.The processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13. For example, the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation. The coded data string is also called a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer. One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers. The RF unit 13 may include an oscillator for frequency upconversion. The RF unit 13 may include N t transmit antennas, where N t is a positive integer greater than or equal to one.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 N r 개의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.The signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10. Under the control of the processor 21, the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10. The RF unit 23 may include N r receive antennas, and the RF unit 23 frequency down-converts each of the signals received through the receive antennas to restore the baseband signal. . The RF unit 23 may include an oscillator for frequency downconversion. The processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될(configured) 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더는 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다.The RF units 13, 23 have one or more antennas. The antenna transmits a signal processed by the RF units 13 and 23 to the outside under the control of the processors 11 and 21, or receives a radio signal from the outside to receive the RF unit 13. , 23). Antennas are also called antenna ports. Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements. The signal transmitted from each antenna can no longer be decomposed by the receiver 20. A reference signal (RS) transmitted in correspondence with the corresponding antenna defines the antenna as viewed from the perspective of the receiver 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna. Regardless of whether it is a composite channel from a plurality of physical antenna elements, the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered. In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
본 발명의 실시예들에 있어서, UE 는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, eNB 는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다. 이하, UE 에 구비된 프로세서, RF 유닛 및 메모리를 UE 프로세서, UE RF 유닛 및 UE 메모리라 각각 칭하고, eNB 에 구비된 프로세서, RF 유닛 및 메모리를 eNB 프로세서, eNB RF 유닛 및 eNB 메모리라 각각 칭한다.In the embodiments of the present invention, the UE operates as the transmitter 10 in the uplink and operates as the receiver 20 in the downlink. In the embodiments of the present invention, the eNB operates as the receiving device 20 in the uplink, and operates as the transmitting device 10 in the downlink. Hereinafter, the processor, the RF unit and the memory provided in the UE will be referred to as a UE processor, the UE RF unit and the UE memory, respectively, and the processor, the RF unit and the memory provided in the eNB will be referred to as an eNB processor, the eNB RF unit and the eNB memory, respectively.
본 발명의 실시예에 따른 eNB 프로세스는 UE를 위해 상기 UE의 서빙 셀들을 둘 이상의 셀 그룹으로 나눌 수 있다. 예를 들어, 상기 eNB 프로세서는 적어도 Pcell을 포함하는 Pcell 그룹 하나와, 각각이 하나 이상의 Scell들로 구성된 Scell 그룹을 하나 이상 UE에 설정할 수 있다. 상기 eNB 프로세서는 Scell 그룹별로 해당 Scell 그룹의 Scell 하나를 Acell로 설정할 수 있다. 상기 eNB 프로세서는 Scell 그룹에 대한 정보와 상기 Scell 그룹의 Scell(들) 중 어떤 Scell이 Acell인지를 나타내는 정보를 전송하도록 eNB RF 유닛을 제어할 수 있다. 또한, 상기 eNB 프로세서는 Pcell과 Acell에 암묵적 및/또는 명시적으로 PUCCH 자원(들)을 설정할 수 있다. 예를 들어, 상기 eNB 프로세서는 Pcell과 Acell 각각에 대해 SR PUCCH 자원, ACK/NACK PUCCH 자원, CSI PUCCH 자원을 설정하고, 이에 대한 정보를 UE에게 전송하도록 상기 eNB RF 유닛을 제어할 수 있다. 상기 eNB 프로세서는 상기 UE의 셀들 중 하나 이상의 셀 혹은 하나 이상의 셀 그룹에 대한 UCI 설정 정보를 UE에게 전송하도록 eNB RF 유닛을 제어할 수 있다. 예를 들어, 동적 PUCCH 자원과 연관된 PDCCH, SR PUCCH 설정, 주기적/비주기적 CSI 보고 설정 등이 상기 UCI 설정 정보에 해당할 수 있다.An eNB process according to an embodiment of the present invention may divide the serving cells of the UE into two or more cell groups for the UE. For example, the eNB processor may configure at least one Pcell group including at least one Pcell and at least one Scell group each consisting of one or more Scells. The eNB processor may set one Scell of the corresponding Scell group as an Acell for each Scell group. The eNB processor may control the eNB RF unit to transmit the information on the Scell group and information indicating which of the Scell (s) of the Scell group is the Acell. In addition, the eNB processor may configure PUCCH resource (s) implicitly and / or explicitly in Pcell and Acell. For example, the eNB processor may control the eNB RF unit to set an SR PUCCH resource, an ACK / NACK PUCCH resource, and a CSI PUCCH resource for each of the Pcell and the Acell, and transmit information about the same to the UE. The eNB processor may control the eNB RF unit to transmit UCI configuration information for one or more cells or one or more cell groups among the cells of the UE to the UE. For example, PDCCH, SR PUCCH configuration, periodic / aperiodic CSI reporting configuration, etc. associated with dynamic PUCCH resources may correspond to the UCI configuration information.
본 발명의 eNB 프로세서는 본 발명의 실시예들 중 어느 하나에 따라 서브프레임에서 복수 PUCCH들 혹은 복수 UCI들을 동시에 수신할 수 있다. 본 발명의 실시예들 중 어느 하나에 따라 구성된 eNB 프로세서는 해당 실시예에 따라 구성된 UE가 어떤 PUCCH 혹은 UCI를 어떤 CG 상에서 전송할지 그리고 어떤 PUCCH 혹은 UCI가 드랍될지를 알고 있으므로, 해당 상향링크 신호를 해당 CG 내 해당 셀 상에서 수신하도록 eNB RF 유닛을 제어할 수 있다. 상기 eNB 프로세서는 UE에 의해 드랍되는 PUCCH 혹은 UCI에 대해서는 수신을 기대하지 않을 수 있다. The eNB processor of the present invention may simultaneously receive a plurality of PUCCHs or a plurality of UCIs in a subframe according to any one of embodiments of the present invention. The eNB processor configured according to any one of the embodiments of the present invention knows which PUCCH or UCI the UE configured according to the embodiment will transmit on which CG and which PUCCH or UCI will be dropped, so that the corresponding uplink signal is transmitted. The eNB RF unit may be controlled to receive on the corresponding cell in the corresponding CG. The eNB processor may not expect reception for the PUCCH or UCI dropped by the UE.
본 발명의 UE 프로세서는 전술한 셀 그룹 정보, 해당 셀 그룹에 대한 Acell 정보, PUCCH 자원 정보 및/또는 UCI 설정 정보 등을 수신하도록 UE RF 유닛을 제어할 수 있다.The UE processor of the present invention may control the UE RF unit to receive the aforementioned cell group information, Acell information for the cell group, PUCCH resource information, and / or UCI configuration information.
본 발명의 UE 프로세서는 Pcell 및 0개 이상의 Scell로 구성된 셀 그룹 1개와, Pcell이 있는 셀 그룹에 속하지 않는 하나 이상의 Scell로 구성된 셀 그룹을 적어도 하나 설정할 수 있다. 상기 UE 프로세서는 Scell(들)로만 구성된 셀 그룹의 Scell(들) 중 하나를 PUCCH 전송용 셀(즉, Acell)로서 설정할 수 있다. 상기 UE 프로세서는 셀 그룹 정보 및 Acell 정보를 바탕으로 셀 그룹(들) 및 Acell을 설정할 수 있다.The UE processor of the present invention may configure at least one cell group consisting of a Pcell and zero or more Scells and a cell group consisting of one or more Scells that do not belong to a cell group in which the Pcell is located. The UE processor may set one of the Scell (s) of the cell group consisting of only the Scell (s) as a cell for PUCCH transmission (ie, an Acell). The UE processor may configure cell group (s) and Acell based on cell group information and Acell information.
상기 UE 프로세서는 상기 PUCCH 자원 정보, UL 그랜트 및/또는 UCI 설정 정보 등을 바탕으로 서브프레임에서 복수 상향링크 채널들(PUCCH들, PUSCH들, 혹은 PUCCH 및 PUSCH) 혹은 복수 UCI들의 전송이 요구되는지를 판단할 수 있다. 본 발명의 UE 프로세서는 본 발명의 실시예들 중 어느 하나에 따라 서브프레임에서 복수 PUCCH들 혹은 복수 UCI들을 동시에 전송할 수 있다. The UE processor determines whether transmission of a plurality of uplink channels (PUCCHs, PUSCHs, or PUCCHs and PUSCHs) or a plurality of UCIs is required in a subframe based on the PUCCH resource information, UL grant and / or UCI configuration information, and the like. You can judge. The UE processor of the present invention may simultaneously transmit a plurality of PUCCHs or a plurality of UCIs in a subframe according to one of the embodiments of the present invention.
또한, 본 발명의 eNB 프로세서는 본 발명의 일 실시예들 중 어느 하나에 따른 HARQ 타이밍에 따라 신호를 전송/수신하도록 eNB RF 유닛을 제어할 수 있다. In addition, the eNB processor of the present invention may control the eNB RF unit to transmit / receive a signal according to HARQ timing according to any one of the embodiments of the present invention.
본 발명의 UE 프로세서는 본 발명의 일 실시예들 중 어느 하나에 따른 HARQ 타이밍에 따라 신호를 전송/수신하도록 UE RF 유닛을 제어할 수 있다. The UE processor of the present invention may control the UE RF unit to transmit / receive a signal according to HARQ timing according to any one of the embodiments of the present invention.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable those skilled in the art to implement and practice the invention. Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. I can understand that you can. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
본 발명의 실시예들은 무선 통신 시스템에서, 기지국 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.Embodiments of the present invention may be used in a base station or user equipment or other equipment in a wireless communication system.

Claims (12)

  1. 복수의 셀 그룹들이 설정된 사용자기기가 상향링크 신호를 전송함에 있어서,In transmitting a UL signal by a user equipment configured with a plurality of cell groups,
    상기 복수의 셀 그룹들 적어도 하나를 통해 서브프레임 n에서 전송되도록 설정된 복수의 상향링크 제어 정보(uplink control information, UCI)에 대한 UCI 전송 정보를 수신; 및Receiving UCI transmission information for a plurality of uplink control information (UCI) configured to be transmitted in subframe n through at least one of the plurality of cell groups; And
    상기 UCI 전송 정보를 바탕으로, 상기 서브프레임 n에서, 상기 복수의 UCI 중 적어도 최상위 우선순위의 제1 UCI와 차상위 우선순위의 제2 UCI를 전송하는 것을 포함하되,On the basis of the UCI transmission information, in the subframe n, comprising transmitting a first UCI of at least the highest priority and a second higher priority of the next plurality of UCI,
    상기 제1 UCI와 상기 제2 UCI가 모두 제1 셀 그룹에 설정된 경우, 상기 제1 UCI는 상기 제1 셀 그룹 상에서 전송되고 상기 제2 UCI는 상기 제1 셀 그룹이 아닌 제2 셀 그룹 상에서 전송되는,When both the first UCI and the second UCI are configured in a first cell group, the first UCI is transmitted on the first cell group and the second UCI is transmitted on a second cell group other than the first cell group. felled,
    상향링크 신호 전송 방법.Uplink signal transmission method.
  2. 제1 항에 있어서,According to claim 1,
    상기 제1 셀 그룹과 상기 제2 셀 그룹 중 하나는 1차 셀을 갖는 1차 셀 그룹이고, 상기 제2 셀 그룹은 상기 1차 셀이 없으면서 상기 1차 셀 그룹에 속하지 않는 하나 이상의 2차 셀로 구성된 2차 셀 그룹인,One of the first cell group and the second cell group is a primary cell group having a primary cell, and the second cell group is one or more secondary cells that do not belong to the primary cell group without the primary cell. A group of secondary cells,
    상향링크 신호 전송 방법.Uplink signal transmission method.
  3. 제2 항에 있어서,The method of claim 2,
    상기 1차 셀 그룹에 속한 상기 하나 이상의 2차 셀들 중 물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송을 위한 특별 2차 셀을 지시하는 정보를 수신하는 것을 더 포함하는,Receiving information indicating a special secondary cell for transmitting a physical uplink control channel (PUCCH) among the one or more secondary cells belonging to the primary cell group;
    상향링크 신호 전송 방법.Uplink signal transmission method.
  4. 제1 항에 있어서,According to claim 1,
    제1 UCI와 상기 제2 UCI는 단일 물리 상향링크 채널 상에서 동시 전송이 허용되지 않는,The first UCI and the second UCI is not allowed to transmit simultaneously on a single physical uplink channel,
    상향링크 전송 방법.Uplink transmission method.
  5. 제1 항에 있어서,According to claim 1,
    상기 서브프레임 n에 상기 제1 셀 그룹 또는 상기 제2 셀 그룹에 설정된, 상기 제1 UCI와 상기 제2 UCI보다 낮은 우선순위의 제3 UCI가 있는 경우, 상기 제3 UCI의 전송을 드랍하는 것을 더 포함하는,If there is a third UCI having a lower priority than the first UCI and the second UCI set in the first cell group or the second cell group in the subframe n, dropping transmission of the third UCI Including more,
    상향링크 전송 방법. Uplink transmission method.
  6. 복수의 셀 그룹들이 설정된 사용자기기가 상향링크 신호를 전송함에 있어서,In transmitting a UL signal by a user equipment configured with a plurality of cell groups,
    무선 주파수(radio frequency, RF) 유닛, 및A radio frequency (RF) unit, and
    상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는:A processor configured to control the RF unit, the processor comprising:
    상기 복수의 셀 그룹들 적어도 하나를 통해 서브프레임 n에서 전송되도록 설정된 복수의 상향링크 제어 정보(uplink control information, UCI)에 대한 UCI 전송 정보를 수신하도록 상기 RF 유닛을 제어하고; Control the RF unit to receive UCI transmission information for a plurality of uplink control information (UCI) configured to be transmitted in subframe n through at least one of the plurality of cell groups;
    상기 UCI 전송 정보를 바탕으로, 상기 서브프레임 n에서, 상기 복수의 UCI 중 적어도 최상위 우선순위의 제1 UCI와 차상위 우선순위의 제2 UCI를 전송하도록 상기 RF 유닛을 제어하되,On the basis of the UCI transmission information, in the subframe n, the RF unit is controlled to transmit a first UCI of at least the highest priority and a second UCI of the next higher priority among the plurality of UCI,
    상기 제1 UCI와 상기 제2 UCI가 모두 제1 셀 그룹에 설정된 경우, 상기 제1 UCI는 상기 제1 셀 그룹 상에서 전송되고 상기 제2 UCI는 상기 제1 셀 그룹이 아닌 제2 셀 그룹 상에서 전송되는,When both the first UCI and the second UCI are configured in a first cell group, the first UCI is transmitted on the first cell group and the second UCI is transmitted on a second cell group other than the first cell group. felled,
    사용자기기.User device.
  7. 제6 항에 있어서,The method of claim 6,
    상기 제1 셀 그룹과 상기 제2 셀 그룹 중 하나는 1차 셀을 갖는 1차 셀 그룹이고, 상기 제2 셀 그룹은 상기 1차 셀이 없으면서 상기 1차 셀 그룹에 속하지 않는 하나 이상의 2차 셀로 구성된 2차 셀 그룹인,One of the first cell group and the second cell group is a primary cell group having a primary cell, and the second cell group is one or more secondary cells that do not belong to the primary cell group without the primary cell. A group of secondary cells,
    사용자기기.User device.
  8. 제7 항에 있어서,The method of claim 7, wherein
    상기 1차 셀 그룹에 속한 상기 하나 이상의 2차 셀들 중 물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송을 위한 특별 2차 셀을 지시하는 정보를 수신하는 것을 더 포함하는,Receiving information indicating a special secondary cell for transmitting a physical uplink control channel (PUCCH) among the one or more secondary cells belonging to the primary cell group;
    사용자기기.User device.
  9. 제6 항에 있어서,The method of claim 6,
    제1 UCI와 상기 제2 UCI는 단일 물리 상향링크 채널 상에서 동시 전송이 허용되지 않는,The first UCI and the second UCI is not allowed to transmit simultaneously on a single physical uplink channel,
    사용자기기.User device.
  10. 제6 항에 있어서,The method of claim 6,
    상기 서브프레임 n에 상기 제1 셀 그룹 또는 상기 제2 셀 그룹에 설정된, 상기 제1 UCI와 상기 제2 UCI보다 낮은 우선순위의 제3 UCI가 있는 경우, 상기 제3 UCI의 전송을 드랍하는 것을 더 포함하는,If there is a third UCI having a lower priority than the first UCI and the second UCI set in the first cell group or the second cell group in the subframe n, dropping transmission of the third UCI Including more,
    사용자기기. User device.
  11. 기지국이 복수의 셀 그룹들이 설정된 사용자기기가 상향링크 신호를 수신함에 있어서,When the base station receives the uplink signal from the user equipment configured with a plurality of cell groups,
    상기 복수의 셀 그룹들 적어도 하나를 통해 서브프레임 n에서 전송되도록 설정된 복수의 상향링크 제어 정보(uplink control information, UCI)에 대한 UCI 전송 정보를 전송; 및Transmitting UCI transmission information for a plurality of uplink control information (UCI) configured to be transmitted in subframe n through at least one of the plurality of cell groups; And
    상기 UCI 전송 정보를 바탕으로, 상기 서브프레임 n에서, 상기 복수의 UCI 중 적어도 최상위 우선순위의 제1 UCI와 차상위 우선순위의 제2 UCI를 수신하는 것을 포함하되,Based on the UCI transmission information, in the subframe n, receiving a first UCI of at least a highest priority and a second UCI of a next higher priority among the plurality of UCIs,
    상기 제1 UCI와 상기 제2 UCI가 모두 제1 셀 그룹에 설정된 경우, 상기 제1 UCI는 상기 제1 셀 그룹 상에서 수신되고 상기 제2 UCI는 상기 제1 셀 그룹이 아닌 제2 셀 그룹 상에서 수신되는,When both the first UCI and the second UCI are configured in a first cell group, the first UCI is received on the first cell group and the second UCI is received on a second cell group other than the first cell group. felled,
    상향링크 신호 수신 방법.Uplink signal receiving method.
  12. 기지국이 복수의 셀 그룹들이 설정된 사용자기기가 상향링크 신호를 수신함에 있어서,When the base station receives the uplink signal from the user equipment configured with a plurality of cell groups,
    무선 주파수(radio frequency, RF) 유닛, 및A radio frequency (RF) unit, and
    상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는:A processor configured to control the RF unit, the processor comprising:
    상기 복수의 셀 그룹들 적어도 하나를 통해 서브프레임 n에서 전송되도록 설정된 복수의 상향링크 제어 정보(uplink control information, UCI)에 대한 UCI 전송 정보를 전송하도록 상기 RF 유닛을 제어하고; Control the RF unit to transmit UCI transmission information for a plurality of uplink control information (UCI) configured to be transmitted in subframe n through at least one of the plurality of cell groups;
    상기 UCI 전송 정보를 바탕으로, 상기 서브프레임 n에서, 상기 복수의 UCI 중 적어도 최상위 우선순위의 제1 UCI와 차상위 우선순위의 제2 UCI를 수신하도록 상기 RF 유닛을 제어하되,On the basis of the UCI transmission information, in the subframe n, the RF unit is controlled to receive a first UCI of at least the highest priority and a second UCI of the next higher priority among the plurality of UCI,
    상기 제1 UCI와 상기 제2 UCI가 모두 제1 셀 그룹에 설정된 경우, 상기 제1 UCI는 상기 제1 셀 그룹 상에서 수신되고 상기 제2 UCI는 상기 제1 셀 그룹이 아닌 제2 셀 그룹 상에서 수신되는,When both the first UCI and the second UCI are configured in a first cell group, the first UCI is received on the first cell group and the second UCI is received on a second cell group other than the first cell group. felled,
    기지국.Base station.
PCT/KR2015/014592 2014-12-31 2015-12-31 Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station WO2016108674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/540,552 US10264560B2 (en) 2014-12-31 2015-12-31 Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201462098342P 2014-12-31 2014-12-31
US62/098,342 2014-12-31
US201562104044P 2015-01-15 2015-01-15
US62/104,044 2015-01-15
US201562109639P 2015-01-30 2015-01-30
US62/109,639 2015-01-30
US201562128989P 2015-03-05 2015-03-05
US62/128,989 2015-03-05
US201562135121P 2015-03-18 2015-03-18
US62/135,121 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016108674A1 true WO2016108674A1 (en) 2016-07-07

Family

ID=56284715

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2015/014591 WO2016108673A1 (en) 2014-12-31 2015-12-31 Uplink control information transmitting method and user equipment, and uplink control information receiving method and base station
PCT/KR2015/014592 WO2016108674A1 (en) 2014-12-31 2015-12-31 Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014591 WO2016108673A1 (en) 2014-12-31 2015-12-31 Uplink control information transmitting method and user equipment, and uplink control information receiving method and base station

Country Status (2)

Country Link
US (2) US10433288B2 (en)
WO (2) WO2016108673A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016290464B2 (en) * 2015-07-08 2020-12-03 Sharp Kabushiki Kaisha Terminal device, base station device, communication method, and integrated circuit
TWI823210B (en) * 2016-08-10 2023-11-21 美商內數位專利控股公司 Methods and apparatus for coding control information

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108673A1 (en) * 2014-12-31 2016-07-07 엘지전자 주식회사 Uplink control information transmitting method and user equipment, and uplink control information receiving method and base station
CN105871525B (en) * 2015-01-19 2020-09-15 夏普株式会社 Base station, user equipment and method thereof
JP2018050089A (en) * 2015-01-29 2018-03-29 シャープ株式会社 Terminal device, base station device, integrated circuit and communication method
CN107432015B (en) * 2015-04-02 2021-12-07 株式会社Ntt都科摩 User terminal, radio base station, and radio communication method
WO2016159738A1 (en) * 2015-04-03 2016-10-06 엘지전자 주식회사 Method and device for transmitting and receiving signal in wireless communication system
WO2017026873A1 (en) * 2015-08-13 2017-02-16 엘지전자 주식회사 Method for reporting channel state information of terminal in wireless communication system and device using the method
KR102375582B1 (en) * 2015-10-20 2022-03-17 삼성전자주식회사 Communication device and control method thereof
US10397906B2 (en) 2015-11-13 2019-08-27 Lg Electronics Inc. Method for transmitting wireless signals and apparatus therefor
MX2018009197A (en) * 2016-02-03 2018-11-09 Sony Corp Terminal device, base station device, and communications method.
WO2017132986A1 (en) * 2016-02-05 2017-08-10 华为技术有限公司 Method and apparatus for transmitting control data
WO2017164623A2 (en) 2016-03-22 2017-09-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink control information in wireless communication system
KR102458077B1 (en) 2016-03-22 2022-10-25 삼성전자 주식회사 Method and apparatus for transmitting uplink control information in wireless communication
US10097254B2 (en) * 2016-04-18 2018-10-09 Qualcomm Incorporated Channel state information estimation and channel information reporting
US10608856B2 (en) * 2016-06-16 2020-03-31 Samsung Electronics Co., Ltd. Transmission of reference signals in a communication system
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
CN106255124B (en) * 2016-09-09 2022-12-20 宇龙计算机通信科技(深圳)有限公司 Communication method and communication device
CN106255123B (en) * 2016-09-09 2022-10-21 宇龙计算机通信科技(深圳)有限公司 Communication method and communication device
CN106255122B (en) * 2016-09-09 2022-12-20 宇龙计算机通信科技(深圳)有限公司 Communication method and communication device
WO2018141246A1 (en) * 2017-02-03 2018-08-09 Huawei Technologies Co., Ltd. Downlink control information for network coordination schemes
CN108633021B (en) * 2017-03-23 2024-01-19 华为技术有限公司 Resource mapping method and device for uplink control channel
US11251923B2 (en) * 2017-07-31 2022-02-15 Qualcomm Incorporated Uplink ACK/NACK and SR in short durations
US11419112B2 (en) * 2017-09-19 2022-08-16 Ntt Docomo, Inc. User device
KR102414678B1 (en) * 2018-01-08 2022-06-29 삼성전자주식회사 Method and apparatus for controlling uplink transmission power in wireless communication system
CN110034848B (en) * 2018-01-12 2021-03-23 华为技术有限公司 Information transmission method and device
EP3528399B1 (en) * 2018-02-15 2020-11-18 Nokia Technologies Oy Selection of beam failure recovery request resource
CN110519027B (en) 2018-05-21 2020-12-22 华为技术有限公司 Method and device for transmitting uplink control information
CN110536393B (en) * 2018-08-10 2022-07-15 中兴通讯股份有限公司 Power control method, device and computer readable storage medium
EP3837910B1 (en) * 2018-08-16 2022-06-08 Telefonaktiebolaget LM Ericsson (publ) Shared resource configuration for bandwidth parts
WO2020051767A1 (en) 2018-09-11 2020-03-19 Oppo广东移动通信有限公司 Method for transmitting information and receiving information and communication device
EP3949521B1 (en) * 2019-03-28 2024-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for cell selection in a wireless communication network
US20220256575A1 (en) * 2019-05-13 2022-08-11 Telefonaktieboaget Lm Ericsson (Publ) Methods, Terminal Device and Network Node for Uplink Transmission
WO2020261461A1 (en) * 2019-06-26 2020-12-30 株式会社Nttドコモ Terminal
CN111835480B (en) * 2019-07-05 2021-11-19 维沃移动通信有限公司 UCI transmission method, UCI receiving method, terminal and network equipment
WO2023115378A1 (en) * 2021-12-22 2023-06-29 Zte Corporation Methods and systems for multi-cell transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192738A1 (en) * 2013-01-10 2014-07-10 Samsung Electronics Co., Ltd. Uplink control information transmissions/receptions in wireless networks
WO2014157927A1 (en) * 2013-03-28 2014-10-02 주식회사 케이티 Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2706687B1 (en) 2011-05-03 2018-12-19 LG Electronics Inc. Method and apparatus for receiving control information in wireless communication system
TW201731266A (en) 2011-05-10 2017-09-01 內數位專利控股公司 Method and apparatus for obtaining uplink timing alignment on a secondary cell
KR102078370B1 (en) 2012-07-11 2020-02-17 엘지전자 주식회사 Method for performing measurement of terminal in wireless communication system and apparatus therefor
WO2014107050A1 (en) * 2013-01-03 2014-07-10 엘지전자 주식회사 Method and apparatus for transmitting uplink signals in wireless communication system
KR101645265B1 (en) 2013-01-07 2016-08-03 삼성전자 주식회사 Methods and apparatus for inter-enb carrier aggregation
JP6484857B2 (en) 2013-03-14 2019-03-20 シャープ株式会社 Terminal apparatus, base station apparatus, and communication method
KR101566943B1 (en) * 2013-03-28 2015-11-06 주식회사 케이티 Methods of controlling the transmission of uplink control information in multiple serving cells and apparatuses thereof
CN111405623A (en) * 2013-08-09 2020-07-10 三菱电机株式会社 Mobile communication system, base station, and mobile terminal
US9264963B2 (en) 2013-08-21 2016-02-16 Intel Corporation User equipment and method for enhanced uplink power control
US20160004460A1 (en) * 2013-10-29 2016-01-07 Hitachi, Ltd. Computer system and control method
US9900923B2 (en) * 2013-11-01 2018-02-20 Qualcomm Incorporated Techniques for using carrier aggregation in dual connectivity wireless communications
US9635621B2 (en) * 2014-01-17 2017-04-25 Samsung Electronics Co., Ltd. Adaptations of dual connectivity operation to UE capability
US20150215957A1 (en) 2014-01-23 2015-07-30 Humax Holdings Co., Ltd. System and method for channel state information transmission on lte dual connectivity
WO2015137189A1 (en) * 2014-03-11 2015-09-17 Ntn株式会社 Status monitoring system and status monitoring method
JP6341490B2 (en) 2014-03-14 2018-06-13 インテル・コーポレーション Uplink channel transmission in dual connectivity
KR102184585B1 (en) * 2014-03-21 2020-11-30 후아웨이 테크놀러지 컴퍼니 리미티드 Method and apparatus for pusch/pucch power scaling considering dual connectivity in power limited case
US9357510B2 (en) 2014-03-31 2016-05-31 Qualcomm Incorporated Power sharing and power headroom reporting in dual connectivity scenarios
US20150327243A1 (en) * 2014-05-08 2015-11-12 Sharp Laboratories Of America, Inc. Systems and methods for dual-connectivity operation
JP6568058B2 (en) 2014-05-30 2019-08-28 シャープ株式会社 Terminal apparatus, base station apparatus, and communication method
JP6602756B2 (en) * 2014-06-05 2019-11-06 シャープ株式会社 Terminal apparatus and method
EP3160196A4 (en) * 2014-06-20 2017-12-20 Sharp Kabushiki Kaisha Terminal device, base station device, and communication method
WO2015194631A1 (en) 2014-06-20 2015-12-23 シャープ株式会社 Terminal device, base-station device, and communication method
US9867146B2 (en) 2014-08-06 2018-01-09 Sharp Kabushiki Kaisha Systems and methods for dual-connectivity operation
EP3200535A4 (en) 2014-09-25 2018-02-28 Ntt Docomo, Inc. User terminal, wireless communication system, and wireless communication method
WO2016108673A1 (en) * 2014-12-31 2016-07-07 엘지전자 주식회사 Uplink control information transmitting method and user equipment, and uplink control information receiving method and base station
EP3322211B1 (en) 2015-07-08 2020-08-05 Sharp Kabushiki Kaisha Terminal device, base station device and communication methods for reporting channel state information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192738A1 (en) * 2013-01-10 2014-07-10 Samsung Electronics Co., Ltd. Uplink control information transmissions/receptions in wireless networks
WO2014157927A1 (en) * 2013-03-28 2014-10-02 주식회사 케이티 Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Open Issues on Dual Connectivity Power Control", R1- 143746, 3GPP TSG RAN WG1 MEETING #78BIS, 27 September 2014 (2014-09-27), Ljubljana, Slovenia *
HUAWEI ET AL.: "Extending PUCCH on PCell and pSCell to Carrier Aggregation", R1-142337, 3GPP TSG RAN WG1 MEETING #77, 10 May 2014 (2014-05-10), Seoul, Korea *
QUALCOMM INCORPORATED: "Remaining Details for PUCCH on SCell", R1-142953, 3GPP TSG RAN WG1 MEETING #78, 10 August 2014 (2014-08-10), Dresden, Germany *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016290464B2 (en) * 2015-07-08 2020-12-03 Sharp Kabushiki Kaisha Terminal device, base station device, communication method, and integrated circuit
TWI823210B (en) * 2016-08-10 2023-11-21 美商內數位專利控股公司 Methods and apparatus for coding control information

Also Published As

Publication number Publication date
WO2016108673A1 (en) 2016-07-07
US20180007681A1 (en) 2018-01-04
US20170373741A1 (en) 2017-12-28
US10264560B2 (en) 2019-04-16
US10433288B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2016108674A1 (en) Uplink signal transmitting method and user equipment, and uplink signal receiving method and base station
WO2016114593A1 (en) Method and user equipment for sending uplink signal, and method and base station for receiving uplink signal
WO2017099526A1 (en) Downlink channel reception method and user equipment, and downlink channel transmission method and base station
WO2017052199A1 (en) Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information
WO2018030766A1 (en) Method for transmitting and receiving wireless signal and device for same
WO2016122258A1 (en) Signal receiving method and user equipment, and signal receiving method and base station
WO2017018758A1 (en) Downlink control information receiving method and user equipment, and downlink control information transmission method and base station
WO2017069474A1 (en) Method and user equipment for receiving downlink signal, and method and base station for transmitting downlink signal
WO2016018056A1 (en) Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information
WO2017018759A1 (en) Downlink signal reception method, user equipment, downlink signal transmission method and base station
WO2017010798A1 (en) Method and user equipment for receiving downlink signal, and method and base station for transmitting downlink signal
WO2016021957A1 (en) Ack/nack feedback method and user equipment
WO2016021958A1 (en) Method for transmitting uplink signal and user equipment, and method for receiving uplink signal and base station
WO2018203628A1 (en) Method for transmitting random access channel signal, user equipment, method for receiving random access channel signal, and base station
WO2018084663A1 (en) Method and user equipment for transmitting random access signals, and method and base station for receiving random access signals
WO2016167606A1 (en) Method for performing feedback by terminal in wireless communication system and apparatus therefor
WO2016163802A1 (en) Method for performing cca in wireless access system supporting unlicensed band, and apparatus for supporting same
WO2017155238A1 (en) System information signal reception method, user equipment, system information signal transmitting method and base station
WO2017014549A1 (en) Downlink control information receiving method and user equipment, and downlink control information transmitting method and base station
WO2017209547A1 (en) Downlink signal reception method and user equipment, and downlink signal transmission method and base station
WO2016159740A1 (en) Method for transmitting and receiving signal in wireless communication system and device therefor
WO2018016923A1 (en) Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
WO2017099461A1 (en) Uplink channel transmitting method and user device, and uplink channel receiving method and base station
WO2017078372A1 (en) Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel
WO2016093621A1 (en) Method for terminal for reporting channel status information in wireless communication system supporting carrier aggregation, and apparatus for the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15540552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875768

Country of ref document: EP

Kind code of ref document: A1