WO2015050257A1 - Inorganic pigment particle and method for producing same - Google Patents

Inorganic pigment particle and method for producing same Download PDF

Info

Publication number
WO2015050257A1
WO2015050257A1 PCT/JP2014/076616 JP2014076616W WO2015050257A1 WO 2015050257 A1 WO2015050257 A1 WO 2015050257A1 JP 2014076616 W JP2014076616 W JP 2014076616W WO 2015050257 A1 WO2015050257 A1 WO 2015050257A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic pigment
fluorine
pigment particles
amount
vol
Prior art date
Application number
PCT/JP2014/076616
Other languages
French (fr)
Japanese (ja)
Inventor
崇洋 向井
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Publication of WO2015050257A1 publication Critical patent/WO2015050257A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to inorganic pigment particles suitable for various uses such as printing inks, paints, and inks for ink jet printers, and a method for producing the same.
  • Pigment particles using carbon-based powders are widely used in printing inks and paints. Moreover, in order to improve the dispersibility of a pigment particle, the technique which fluorinates a carbon-type particle
  • an object of the present invention is to provide inorganic pigment particles having superior dispersion stability and a method for producing the same.
  • fluorine, carbon, and oxygen are present up to a depth of 7 nm from the surface of the inorganic pigment particles, and the amount of fluorine present up to a depth of 7 nm from the surface of the inorganic pigment particles is less than 16 atom%.
  • the carbon content is 80 atom% or more
  • the oxygen content is 0.1 atom% or more.
  • the amount of fluorine existing from the surface of the inorganic pigment particle to a depth of 7 nm is 7.0 atom% or less and the oxygen amount is 0.1 atom% or more.
  • the inorganic pigment particles are formed by subjecting the base particles to fluorine treatment, and the main component of the base particles is preferably a carbon material.
  • Carbon materials are useful as inorganic pigment particles because they have good concealability, high coloring power, and high blackness.
  • the substrate particles are preferably carbon black. While using general inorganic pigment particles, inorganic pigment particles having excellent dispersibility can be produced.
  • the method for producing inorganic pigment particles of the present invention includes: Having a step of bringing a mixed gas containing fluorine gas and inert gas into contact with the substrate particles,
  • the mixed gas has a fluorine gas concentration of 0.1 vol% or more and 50 vol% or less, an inert gas concentration of 50 vol% or more, and the step is performed at 35 ° C. or more and 300 ° C. or less.
  • the surface portion of the substrate particles can be mainly fluorinated.
  • the treatment temperature is preferably 35 to 200 ° C., and when the fluorine gas is greater than 10 vol% and 50 vol% or less, the treatment temperature is It is preferable that it is 35 degreeC or more and less than 80 degreeC.
  • the fluorine gas concentration of the mixed gas is preferably 30 vol% or less. By setting the fluorine gas concentration within the above range, it is possible to mainly fluorinate the surface portion of the substrate particles and suppress fluorination inside the particles.
  • the inert gas concentration of the mixed gas is preferably 70 vol% or less.
  • the fluorine gas concentration in the mixed gas can be made a predetermined concentration or more. Thereby, the surface part can be reliably fluorinated among the substrate particles.
  • the base particle is carbon black. While using general inorganic pigment particles, inorganic pigment particles having excellent dispersibility can be produced.
  • fluorine, carbon, and oxygen are present on the surface portion of the inorganic pigment particles, and the amount of each element in the surface portion of the inorganic pigment particles is within a predetermined range, thereby making the dispersion stability more than conventional. Excellent inorganic pigment particles can be obtained.
  • the inorganic pigment particles of the present invention are obtained by subjecting substrate particles to fluorine treatment under predetermined conditions, and fluorine, carbon and oxygen are present on the surface of the inorganic pigment particles.
  • the “surface portion of the inorganic pigment particle” means “a portion from the surface of the inorganic pigment particle to a depth of 7 nm”.
  • the “surface of the inorganic pigment particles” is the outermost layer portion of the inorganic pigment particles.
  • grains in this invention show the secondary particle which a plurality of primary particles gathered like FIG.
  • Fluorine is preferably present on the surface of the inorganic pigment particles. Specifically, when fluorine exists from the surface of the inorganic pigment particles to a depth of 7 nm, the balance of the charge amount of the inorganic pigment particles is improved, and the dispersion of the inorganic pigment particles exhibits good dispersion stability.
  • the present inventors have found that excellent dispersibility of the inorganic pigment particles cannot be obtained only by fluorine, and the presence of oxygen is important. This is because oxygen forms a hydrophilic group. Further, it has been found that excellent dispersibility is exhibited by allowing fluorine and oxygen of a predetermined amount or more to be present on the surface portion of the inorganic pigment particles.
  • the amount of fluorine existing from the surface of the inorganic pigment particles to a depth of 7 nm is preferably 16 atom% or less, and more preferably 7 atom% or less. If the amount of fluorine in the surface portion of the inorganic pigment particles is too large, the surface portion of the inorganic pigment particles will be hydrophobic, so the dispersibility in the liquid will be poor. Becomes better.
  • the amount of fluorine existing from the surface of the inorganic pigment particle to a depth of 7 nm is preferably 0.1 atom% or more, and more preferably 0.4 atom% or more.
  • the amount of fluorine in the surface portion of the inorganic pigment particles is too small, the surface portion of the inorganic pigment particles is hardly charged and the dispersibility is poor. However, dispersibility is improved by setting the amount of fluorine within the above range.
  • the amount of oxygen existing from the surface of the inorganic pigment particles to a depth of 7 nm is preferably 2.0 atom% or less, and more preferably 1.7 atom% or less. If the amount of oxygen in the surface portion of the inorganic pigment particles is excessively large, the amount of fluorine is decreased and the dispersibility is deteriorated because it is hardly charged. However, dispersibility is improved by setting the amount of oxygen within the above range. Further, the amount of oxygen existing from the surface of the inorganic pigment particles to a depth of 7 nm is preferably 0.1 atom% or more, and more preferably 0.2 atom% or more. When the amount of oxygen in the surface portion of the inorganic pigment particles is too small, the hydrophilic group is decreased and the dispersibility is deteriorated. However, the dispersibility is improved by setting the above range.
  • the total amount of fluorine, oxygen, and carbon from the surface of the inorganic pigment particles to a depth of 7 nm (surface portion of the inorganic pigment particles) is 100 atom% or less. Elements other than carbon may be included. Further, it is desirable that the amount of fluorine is larger than the amount of oxygen, and the amount of fluorine is at least twice the amount of oxygen, preferably the amount of fluorine is about 2 to 6 times the amount of oxygen.
  • the surface portion of the inorganic pigment particles by setting the surface portion of the inorganic pigment particles to a predetermined composition, the balance of the charge polarity of the surface portion of the inorganic pigment particles is improved and the dispersibility in the liquid is improved.
  • the fluorine content is 7.0 atom% or less and the oxygen content is 0.1 atom% or more in the surface portion of the inorganic pigment particles, good dispersibility can be maintained over a long period of time.
  • dispersibility can be evaluated by specifying the amount of fluorine and the amount of oxygen in the surface portion of the inorganic pigment particles (from the surface of the inorganic pigment particles to a depth of 7 nm).
  • the amount of fluorine existing from the depth of 7 nm to the depth of 17 nm from the surface of the inorganic pigment particles is preferably 10 atom% or less, more preferably 5 atom% or less, and even more preferably 2 atom% or less. If too much fluorine is present in this region, the polarity of the inorganic pigment particles becomes high, and the chargeability of the surface portion of the inorganic pigment particles becomes uneven. In this state, since the positive and negative charges are dispersed and present on the surface portion of the inorganic pigment particles, the inorganic pigment particles are not dispersed and may be suspicious. Moreover, when there is too much fluorine in this region, the specific gravity may increase and the dispersibility may decrease.
  • the amount of oxygen existing from the depth of 7 nm to the depth of 17 nm from the surface of the inorganic pigment particles is preferably 1.8 atom% or less, and more preferably 1.0 atom% or less. If there is too much oxygen in this region, the specific gravity may increase and the dispersibility may decrease.
  • the amount of fluorine existing from the depth of 17 nm to the depth of 27 nm from the surface of the inorganic pigment particles is preferably 5 atom% or less, and more preferably 1 atom% or less.
  • the amount of fluorine is small in the inorganic pigment particles or fluorine is not present in the particles.
  • the specific gravity increases and the inorganic pigment particles themselves become heavy, and therefore, they are likely to precipitate in the dispersion medium.
  • dispersibility is improved by setting the amount of fluorine in the inorganic pigment particles within the above range.
  • the amount of each element such as the amount of fluorine and the amount of oxygen can be measured by, for example, X-ray electron spectroscopy (ESCA, XPS). Further, the amount of fluorine existing at a certain depth from the surface of the inorganic pigment particle is measured by the X-ray electron spectroscopy after removing a predetermined thickness from the surface of the inorganic pigment particle by performing an etching process or the like. be able to. A specific measurement method will be described in detail in the column of Examples.
  • the fluorine which exists in the surface part of an inorganic pigment particle may couple
  • a carbon-fluorine bond including a semiionic weak carbon-fluorine bond that brings about hydrophilicity
  • the amount of fluorine can include carbon-fluorine bonded fluorine.
  • oxygen is contained in the base particle or when oxygen is present on the surface of the base particle
  • a carbon-oxygen bond may be formed on the surface of the inorganic pigment particle.
  • the amount of fluorine on the surface portion of the inorganic pigment particles can include fluorine with a fluorine-oxygen bond.
  • oxygen present on the surface portion of the inorganic pigment particles may be bonded to other elements (carbon-oxygen bond, fluorine-oxygen bond, etc.), but oxygen bonded to other elements may be included in the oxygen amount. Is possible.
  • Base material particles those containing a carbon material, particularly those whose main component is a carbon material, are preferably used, and black carbon black, graphite or the like can be used.
  • the carbon material is the main component of the base particle means that 80% or more of the base particle is carbon. Carbon materials are useful as inorganic pigment particles because they have good concealability, high coloring power, and high blackness.
  • Fluorine treatment is performed on the carbon material under predetermined conditions so that fluorine, carbon, and oxygen are present on the surface portion of the inorganic pigment particles, and the total of these is 100 atom% or less.
  • the amount of carbon existing from the surface of the inorganic pigment particles to a depth of 7 nm is preferably 80 atom% or more.
  • the amount of carbon existing from the depth of 7 nm to the depth of 17 nm from the surface of the inorganic pigment particles is preferably 85 atom% or more.
  • the carbon content is within the above range, the inside of the inorganic pigment particles is hardly fluorinated, so that the inorganic pigment particles are hardly precipitated in the dispersion medium, and the dispersibility is good.
  • the inorganic pigment particles according to the present invention can be formed by bringing a mixed gas containing fluorine gas and inert gas into contact with particles serving as a substrate (fluorine gas treatment).
  • the fluorine gas concentration in the mixed gas is preferably 0.1 vol% or more, and more preferably 0.5 vol% or more. If the fluorine gas concentration in the mixed gas is too low, dispersibility is poor because almost no fluorine can be present on the surface of the inorganic pigment particles. However, by adjusting the fluorine gas concentration within the above range, A predetermined amount of fluorine can be present on the surface portion. Further, the fluorine gas concentration is preferably 50 vol% or less, more preferably 30 vol% or less, and even more preferably 20 vol% or less. If the fluorine gas concentration is too high, dispersibility is poor because the surface portion of the inorganic pigment particles becomes hydrophobic due to excessive progress of fluorination.
  • fluorination inside the inorganic pigment particles proceeds. Further, even when a black carbon-based material is used as the base particle, it may be changed to white CF 4 .
  • the progress of fluorination can be suppressed by setting the fluorine gas concentration within the above range, the dispersibility is improved. Further, fluorination can be suppressed mainly to the surface portion of the inorganic pigment particles, not to the entire inorganic pigment particles.
  • the inert gas concentration in the mixed gas is preferably 50 vol% or more, more preferably 70 vol% or more, and even more preferably 80 vol% or more. By setting the inert gas concentration within the above range, the fluorine gas concentration in the mixed gas can be reduced to a predetermined concentration or less, so that the progress of fluorination can be suppressed.
  • the inert gas include nitrogen gas, argon gas, and rare gases (helium, neon, etc.).
  • the total of the fluorine gas concentration and the inert gas concentration in the mixed gas is 100 vol% or less, and the mixed gas may contain a gas of an element other than the fluorine gas and the inert gas (oxygen gas or the like). Even when the mixed gas does not contain oxygen gas, the oxygen element is contained in the surface of the inorganic pigment particles after the fluorine treatment due to the oxygen element contained in the moisture or the like present in the substrate particles or on the surface of the substrate particles. Will exist.
  • the oxygen gas concentration in the mixed gas is preferably 0.1 vol% or more, and more preferably 0.2 vol% or more.
  • the surface can be hydrophilized by introducing oxygen atoms into the molecular structure near the surface.
  • the fluorine gas treatment is preferably performed at 35 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 80 ° C. or higher. If the treatment temperature is too low, the progress of the fluorine treatment becomes very slow, but this can be suppressed by setting the treatment temperature within the above range. Moreover, it is preferable that a fluorine gas process is performed at 300 degrees C or less, More preferably, it is 250 degrees C or less, More preferably, it is 200 degrees C or less. If the treatment temperature is too high, the fluorine gas treatment proceeds too much and the particles are fluorinated to the inside of the particles. However, by making the treatment temperature within the above range, the progress of fluorination can be suppressed.
  • the treatment temperature is preferably 35 to 200 ° C.
  • the fluorine gas concentration is higher than 10 vol% and lower than 50 vol%
  • the treatment temperature is preferably 35 ° C. or higher and lower than 80 ° C.
  • the treatment time is preferably 1 minute or longer, more preferably 5 minutes or longer, and even more preferably 30 minutes or longer. If the treatment time is too short, almost no fluorine can be present on the surface portion of the inorganic pigment particles, but if it is within the above range, a desired amount of fluorine can be present on the surface portion of the inorganic pigment particles.
  • the treatment time is preferably 240 minutes or less, more preferably 180 minutes or less, and even more preferably 120 minutes or less. If the treatment time is too long, the fluorine treatment proceeds and the inorganic pigment particles are fluorinated to the inside, but by making it within the above range, the progress of the fluorine treatment can be suppressed, and the surface portion of the base particle is mainly made of fluorine. It can be processed.
  • the pressure in the tank is preferably 1 kPa or more and 90 kPa or less, and more preferably 50 kPa or more and 90 kPa or less.
  • the volume average particle diameter of the inorganic pigment particles is preferably, for example, from 100 nm to 3000 nm, and more preferably from 100 nm to 2000 nm. If the volume average particle diameter of the inorganic pigment particles is within the above range, it is desirable because the inorganic pigment particles are stably dispersed without settling.
  • the volume average particle diameter of the inorganic pigment particles is determined by dispersing the inorganic pigment particles in pure water and using a dynamic light scattering particle size distribution measuring device (for example, “LB-500” manufactured by Horiba, Ltd.). It is calculated
  • the inorganic pigment particles of the present invention can be stably dispersed in various liquids due to the presence of fluorine and oxygen on the surface of the inorganic pigment particles.
  • the inorganic pigment particles are uniformly dispersed without requiring high dispersion energy, and thus can be usefully used for various applications.
  • it is suitable for various uses that require dispersion stability of pigment particles of printing ink, paint, and ink for ink jet printer.
  • a nonpolar dispersion medium or a polar dispersion medium can be used as the dispersion medium for the inorganic pigment particles.
  • the nonpolar dispersion medium include hydrocarbon nonpolar dispersion media such as hexane, cyclohexane, and cyclopentane; aromatic nonpolar dispersion media such as benzene, toluene, o-xylene, m-xylene, and p-xylene; And silicone oil nonpolar dispersion media such as silicone oil and methylphenyl silicone oil.
  • aprotic polar dispersion media such as acetone, tetrahydrofuran, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide; water, methanol, ethanol, 1-propanol, 2-propanol, n-butanol, formic acid And other protic polar dispersion media.
  • the dispersant that can be added to the dispersion medium is not particularly limited as long as it is a dispersant that can be used to assist the dispersion of the inorganic pigment particles in the dispersion medium.
  • Example 1 About 1 g of carbon black (Stream Chemicals “06-0026”, primary particle average particle size 10 nm (nominal value)) is spread thinly on a nickel tray and sealed in a cylindrical nickel container with a capacity of 3 L. did.
  • the nickel container is formed so that it can be heated and sealed.
  • the mixture was introduced at 80 ml at 0.5 ml / min, and the inside of the nickel container was filled with a mixed gas.
  • the measurement method will be described below. ⁇ Quantification of elements> The amount of fluorine was measured by the following method. First, the sample particle powder is set on a measurement substrate with a double-sided tape, and the detected atoms are identified by ESCA Wide Scan using an X-ray photoelectron spectrometer (“S-Probe” manufactured by Surface Science Instruments), and then each atom is detected. The measurement was carried out with a higher degree of quantification by performing a narrow scan, and the fluorine content of the sample particle surface layer was measured.
  • S-Probe X-ray photoelectron spectrometer
  • ESCA WideScan and Narrow Scan were performed, and the amount of fluorine at each depth was measured from the surface of the inorganic pigment particles by a method of measuring the amount of fluorine.
  • the amount of carbon and the amount of oxygen were also quantified by the same method as the amount of fluorine.
  • volume average particle size of the fluorine-treated carbon black was measured by placing sample particles in pure water, performing ultrasonic cleaning for 10 minutes, setting the uniformly dispersed dispersion in a measurement cell, and using a dynamic light scattering method. Using a particle size distribution measuring device (Zetasizer Nano ZS90 manufactured by Spectris Co., Ltd.), the volume average particle diameter of sample particles and suspected substances was measured. FIG. 2 shows the result.
  • zeta potential of the fluorine-treated carbon black was measured using a zeta potential measuring device (Spectasizer Nano ZS90 manufactured by Spectris).
  • ⁇ Viscosity> The viscosity of the fluorine-treated carbon black (inorganic pigment particles) was measured according to JIS K5101. Aggregated inorganic pigment particles have high resistance due to high resistance, but dispersed inorganic pigment particles have low resistance because of low resistance. Therefore, dispersibility can also be evaluated by viscosity.
  • Oil absorption amount The oil absorption of the fluorine-treated carbon black was measured according to JIS K5101. Aggregated inorganic pigment particles have a small surface area and therefore a small amount of oil absorption. However, dispersed inorganic pigment particles have a large amount of oil absorption because each particle absorbs oil from the entire surface. Therefore, dispersibility can also be evaluated by the amount of oil absorption.
  • Example 1 to 8 predetermined amounts of fluorine and oxygen are present on the surface of the carbon black.
  • the surface portion of the carbon black could be uniformly charged and the surface portion of the carbon black could be made hydrophilic, the dispersibility in the solvent was good.
  • the inorganic pigment particles were dispersed even after a long period of time of one week or longer.
  • the dispersibility of Example 8 is ⁇ , since there is no problem in dispersibility when used as inorganic pigment particles, it can be evaluated that the dispersibility is good.
  • Comparative Example 1 in which the fluorine treatment was not performed, fluorine was not present on the surface portion of the inorganic pigment particles, so the surface portion of the inorganic pigment particles was not charged and the dispersibility was poor.
  • Comparative Example 2 although fluorination was performed, fluorination progressed too much, so that it was fluorinated to the inside of the particles, the particle density increased, and it was considered that the particles were precipitated in the dispersion medium.
  • black carbon black was used, fluorination progressed too much, so that the color changed to white fluorocarbon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

In a zone lying between the surface of an inorganic pigment particle and a depth of 7 nm from the surface, fluorine, carbon and oxygen are present. The amounts of fluorine, carbon and oxygen present in the zone lying between the surface of the inorganic pigment particle and a depth of 7 nm from the surface are less than 16 atom%, 80 atom% or more and 0.1 atom% or more, respectively.

Description

無機顔料粒子及びその製造方法Inorganic pigment particles and method for producing the same
 本発明は、印刷インク、塗料、インクジェットプリンタ用インク等の各種用途に好適な無機顔料粒子及びその製造方法に関する。 The present invention relates to inorganic pigment particles suitable for various uses such as printing inks, paints, and inks for ink jet printers, and a method for producing the same.
 炭素系粉末を用いた顔料粒子は、印刷インクや塗料等に広く使用されている。また、顔料粒子の分散性を向上させるため、炭素系粒子をフッ素処理する技術が知られている(特許文献1等)。 Pigment particles using carbon-based powders are widely used in printing inks and paints. Moreover, in order to improve the dispersibility of a pigment particle, the technique which fluorinates a carbon-type particle | grain is known (patent document 1 etc.).
特開平6-256008号公報JP-A-6-256008
 上述した顔料粒子ではフッ素化が進行しすぎているため、粒子表面が疎水性となり、分散性が良好でない。また、黒色の炭素系粒子を用いているにもかかわらず、白色のフッ化カーボン(CF4)が生成しているため、黒色のインクが得られない。 In the above-described pigment particles, since fluorination has progressed too much, the particle surface becomes hydrophobic and dispersibility is not good. In addition, although black carbon-based particles are used, black ink cannot be obtained because white carbon fluoride (CF 4 ) is generated.
 そこで、本発明の目的は、従来よりも分散安定性が優れた無機顔料粒子及びその製造方法を提供することである。 Therefore, an object of the present invention is to provide inorganic pigment particles having superior dispersion stability and a method for producing the same.
 本発明の無機顔料粒子では、無機顔料粒子の表面から7nmの深さまでにフッ素と炭素と酸素とが存在し、前記無機顔料粒子の表面から7nmの深さまでに存在するフッ素量が16atom%未満であり、炭素量が80atom%以上であり、酸素量が0.1atom%以上である。 In the inorganic pigment particles of the present invention, fluorine, carbon, and oxygen are present up to a depth of 7 nm from the surface of the inorganic pigment particles, and the amount of fluorine present up to a depth of 7 nm from the surface of the inorganic pigment particles is less than 16 atom%. Yes, the carbon content is 80 atom% or more, and the oxygen content is 0.1 atom% or more.
 無機顔料粒子の表面部にフッ素と炭素と酸素とを存在させ、これらを上記範囲内とすることにより、従来よりも分散安定性に優れた無機顔料粒子が得られる。 By making fluorine, carbon, and oxygen present on the surface of the inorganic pigment particles and setting them within the above range, inorganic pigment particles having better dispersion stability than before can be obtained.
 また、無機顔料粒子の表面から7nmの深さまでに存在するフッ素量が7.0atom%以下であり、酸素量が0.1atom%以上であることが好ましい。無機顔料粒子の表面部を上記組成とすることにより、良好な分散性を長期に亘って持続させることができる。 Further, it is preferable that the amount of fluorine existing from the surface of the inorganic pigment particle to a depth of 7 nm is 7.0 atom% or less and the oxygen amount is 0.1 atom% or more. By setting the surface portion of the inorganic pigment particles to the above composition, good dispersibility can be maintained for a long time.
 さらに、無機顔料粒子は、基材粒子をフッ素処理して形成されたものであり、前記基材粒子の主成分が炭素材料であることが好ましい。炭素材料は、隠蔽性が良好であるとともに、着色力が高く、黒色度が高いため、無機顔料粒子として有用である。また、前記基材粒子はカーボンブラックであることが好ましい。一般的な無機顔料粒子を用いつつ、分散性が優れた無機顔料粒子を製造することができる。 Furthermore, the inorganic pigment particles are formed by subjecting the base particles to fluorine treatment, and the main component of the base particles is preferably a carbon material. Carbon materials are useful as inorganic pigment particles because they have good concealability, high coloring power, and high blackness. The substrate particles are preferably carbon black. While using general inorganic pigment particles, inorganic pigment particles having excellent dispersibility can be produced.
 また、本発明の無機顔料粒子の製造方法は、
 フッ素ガスと不活性ガスを含んだ混合ガスを基材粒子に接触させる工程を有しており、
 前記混合ガスのフッ素ガス濃度は0.1vol%以上50vol%以下であり、不活性ガス濃度は50vol%以上であり、前記工程は35℃以上300℃以下で行われる。
 基材粒子を上記条件で処理すると、基材粒子のうち主に表面部をフッ素化できる。これにより、上述した組成の無機顔料粒子を製造することができるため、分散性に優れた顔料粒子が得られる。
The method for producing inorganic pigment particles of the present invention includes:
Having a step of bringing a mixed gas containing fluorine gas and inert gas into contact with the substrate particles,
The mixed gas has a fluorine gas concentration of 0.1 vol% or more and 50 vol% or less, an inert gas concentration of 50 vol% or more, and the step is performed at 35 ° C. or more and 300 ° C. or less.
When the substrate particles are treated under the above conditions, the surface portion of the substrate particles can be mainly fluorinated. Thereby, since the inorganic pigment particle of the composition mentioned above can be manufactured, the pigment particle excellent in the dispersibility is obtained.
 また、上記方法では、フッ素ガス濃度が0.1vol%以上10vol%以下のとき、処理温度が35~200℃であることが好ましく、フッ素ガスが10vol%より大きく50vol%以下のとき、処理温度が35℃以上80℃未満であることが好ましい。フッ素ガス濃度にあわせて処理温度を調整することにより、基材粒子のうち主に表面部を確実にフッ素化できるため、分散安定性に優れた粒子を得ることができる。 In the above method, when the fluorine gas concentration is 0.1 vol% or more and 10 vol% or less, the treatment temperature is preferably 35 to 200 ° C., and when the fluorine gas is greater than 10 vol% and 50 vol% or less, the treatment temperature is It is preferable that it is 35 degreeC or more and less than 80 degreeC. By adjusting the treatment temperature according to the fluorine gas concentration, mainly the surface portion of the substrate particles can be fluorinated reliably, so that particles having excellent dispersion stability can be obtained.
 また、前記混合ガスのフッ素ガス濃度は30vol%以下であることが好ましい。フッ素ガス濃度を上記範囲内とすることにより、基材粒子のうち主に表面部をフッ素化し、粒子内部のフッ素化を抑制できる。 The fluorine gas concentration of the mixed gas is preferably 30 vol% or less. By setting the fluorine gas concentration within the above range, it is possible to mainly fluorinate the surface portion of the substrate particles and suppress fluorination inside the particles.
 さらに、前記混合ガスの不活性ガス濃度は70vol%以下であることが好ましい。不活性ガス濃度を上記範囲内とすることにより、混合ガス中のフッ素ガス濃度を所定の濃度以上にすることができる。これにより、基材粒子のうち表面部を確実にフッ素化することができる。 Further, the inert gas concentration of the mixed gas is preferably 70 vol% or less. By setting the inert gas concentration within the above range, the fluorine gas concentration in the mixed gas can be made a predetermined concentration or more. Thereby, the surface part can be reliably fluorinated among the substrate particles.
 また、前記基材粒子がカーボンブラックであることが好ましい。一般的な無機顔料粒子を用いつつ、分散性が優れた無機顔料粒子を製造することができる。 Further, it is preferable that the base particle is carbon black. While using general inorganic pigment particles, inorganic pigment particles having excellent dispersibility can be produced.
 本発明によると、無機顔料粒子の表面部にフッ素と炭素と酸素とを存在させるとともに、無機顔料粒子の表面部における各元素量を所定の範囲内とすることにより、従来よりも分散安定性に優れた無機顔料粒子が得られる。 According to the present invention, fluorine, carbon, and oxygen are present on the surface portion of the inorganic pigment particles, and the amount of each element in the surface portion of the inorganic pigment particles is within a predetermined range, thereby making the dispersion stability more than conventional. Excellent inorganic pigment particles can be obtained.
無機顔料粒子のSEM写真である。It is a SEM photograph of inorganic pigment particles. 実施例の体積平均粒子径の測定結果を示す図である。It is a figure which shows the measurement result of the volume average particle diameter of an Example.
 以下、本発明の好適な実施形態について、図面を参照しつつ説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
〔無機顔料粒子〕
 本発明の無機顔料粒子は、基材粒子を所定の条件でフッ素処理することによって得られたものであり、無機顔料粒子の表面部にフッ素、炭素及び酸素が存在している。ここで「無機顔料粒子の表面部」とは「無機顔料粒子の表面から7nmの深さまでの部分」を示す。また、「無機顔料粒子の表面」とは、無機顔料粒子の最表層部である。なお、本発明における無機顔料粒子とは図1のように、一次粒子が複数集合した二次粒子のことを示す。
[Inorganic pigment particles]
The inorganic pigment particles of the present invention are obtained by subjecting substrate particles to fluorine treatment under predetermined conditions, and fluorine, carbon and oxygen are present on the surface of the inorganic pigment particles. Here, the “surface portion of the inorganic pigment particle” means “a portion from the surface of the inorganic pigment particle to a depth of 7 nm”. The “surface of the inorganic pigment particles” is the outermost layer portion of the inorganic pigment particles. In addition, the inorganic pigment particle | grains in this invention show the secondary particle which a plurality of primary particles gathered like FIG.
 <フッ素、酸素>
 無機顔料粒子の表面部にフッ素を存在させることにより、分散媒中で無機顔料粒子の表面部が均一に帯電するようになる。この作用により、無機顔料粒子を安定して液中に分散させることが可能となる。
<Fluorine, oxygen>
By allowing fluorine to exist on the surface portion of the inorganic pigment particle, the surface portion of the inorganic pigment particle is uniformly charged in the dispersion medium. This action makes it possible to stably disperse the inorganic pigment particles in the liquid.
 フッ素は、無機顔料粒子の表面部に存在することが好ましい。具体的には、無機顔料粒子の表面から深さ7nmまでにフッ素が存在すると、無機顔料粒子の帯電量のバランスが良くなり、無機顔料粒子の分散液が良好な分散安定性を示す。 Fluorine is preferably present on the surface of the inorganic pigment particles. Specifically, when fluorine exists from the surface of the inorganic pigment particles to a depth of 7 nm, the balance of the charge amount of the inorganic pigment particles is improved, and the dispersion of the inorganic pigment particles exhibits good dispersion stability.
 また、本発明者らは、無機顔料粒子の優れた分散性は、フッ素だけでは得られず、酸素の存在が重要であるという知見を得た。これは、酸素が親水基を形成するためである。また、無機顔料粒子の表面部にフッ素と所定量以上の酸素を存在させることで、優れた分散性を発揮することを見出した。 Further, the present inventors have found that excellent dispersibility of the inorganic pigment particles cannot be obtained only by fluorine, and the presence of oxygen is important. This is because oxygen forms a hydrophilic group. Further, it has been found that excellent dispersibility is exhibited by allowing fluorine and oxygen of a predetermined amount or more to be present on the surface portion of the inorganic pigment particles.
 無機顔料粒子の表面から7nmの深さまでに存在するフッ素量は、16atom%以下が好ましく、より好適には7atom%以下である。無機顔料粒子の表面部でフッ素量が多くなりすぎると、無機顔料粒子の表面部が疎水性を示すため液中での分散性が悪くなるが、フッ素量を上記範囲内とすることにより分散性が良好となる。また、無機顔料粒子の表面から7nmの深さまでに存在するフッ素量は、0.1atom%以上が好ましく、より好適には0.4atom%以上である。無機顔料粒子の表面部のフッ素量が少なすぎると、無機顔料粒子の表面部が殆ど帯電しないため分散性が悪いが、フッ素量を上記範囲内とすることにより分散性が良好となる。 The amount of fluorine existing from the surface of the inorganic pigment particles to a depth of 7 nm is preferably 16 atom% or less, and more preferably 7 atom% or less. If the amount of fluorine in the surface portion of the inorganic pigment particles is too large, the surface portion of the inorganic pigment particles will be hydrophobic, so the dispersibility in the liquid will be poor. Becomes better. The amount of fluorine existing from the surface of the inorganic pigment particle to a depth of 7 nm is preferably 0.1 atom% or more, and more preferably 0.4 atom% or more. If the amount of fluorine in the surface portion of the inorganic pigment particles is too small, the surface portion of the inorganic pigment particles is hardly charged and the dispersibility is poor. However, dispersibility is improved by setting the amount of fluorine within the above range.
 また、無機顔料粒子の表面から7nmの深さまでに存在する酸素量は、2.0atom%以下が好ましく、より好適には1.7atom%以下である。無機顔料粒子の表面部の酸素量が多くなりすぎると、フッ素量が少なくなり、殆ど帯電しないため分散性が悪くなるが、酸素量を上記範囲内とすることにより分散性が良好となる。また、無機顔料粒子の表面から7nmの深さまでに存在する酸素量は、0.1atom%以上が好ましく、より好適には0.2atom%以上である。無機顔料粒子の表面部の酸素量が少なすぎると、親水基が少なくなるため分散性が悪くなるが、上記範囲とすることで分散性が良好となる。 Further, the amount of oxygen existing from the surface of the inorganic pigment particles to a depth of 7 nm is preferably 2.0 atom% or less, and more preferably 1.7 atom% or less. If the amount of oxygen in the surface portion of the inorganic pigment particles is excessively large, the amount of fluorine is decreased and the dispersibility is deteriorated because it is hardly charged. However, dispersibility is improved by setting the amount of oxygen within the above range. Further, the amount of oxygen existing from the surface of the inorganic pigment particles to a depth of 7 nm is preferably 0.1 atom% or more, and more preferably 0.2 atom% or more. When the amount of oxygen in the surface portion of the inorganic pigment particles is too small, the hydrophilic group is decreased and the dispersibility is deteriorated. However, the dispersibility is improved by setting the above range.
 なお、無機顔料粒子の表面から7nmの深さまで(無機顔料粒子の表面部)のフッ素量と酸素量と炭素量の合計は100atom%以下であり、無機顔料粒子の表面部にはフッ素と酸素と炭素以外の元素が含まれていてもよい。更に、フッ素量は酸素量より大きくしておくことが望ましく、フッ素量が酸素量の2倍以上、好ましくはフッ素量が酸素量の2~6倍程度である。 The total amount of fluorine, oxygen, and carbon from the surface of the inorganic pigment particles to a depth of 7 nm (surface portion of the inorganic pigment particles) is 100 atom% or less. Elements other than carbon may be included. Further, it is desirable that the amount of fluorine is larger than the amount of oxygen, and the amount of fluorine is at least twice the amount of oxygen, preferably the amount of fluorine is about 2 to 6 times the amount of oxygen.
 このように、無機顔料粒子の表面部を所定の組成とすることで、無機顔料粒子表面部の帯電極性のバランスが良くなり、液中での分散性が良好なものとなる。特に、無機顔料粒子の表面部においてフッ素量が7.0atom%以下であり、酸素量が0.1atom%以上である場合、良好な分散性を長期間に亘って持続できる。また、無機顔料粒子の表面部(無機顔料粒子の表面から7nmの深さまで)のフッ素量及び酸素量を特定することにより、分散性を評価できる。 Thus, by setting the surface portion of the inorganic pigment particles to a predetermined composition, the balance of the charge polarity of the surface portion of the inorganic pigment particles is improved and the dispersibility in the liquid is improved. In particular, when the fluorine content is 7.0 atom% or less and the oxygen content is 0.1 atom% or more in the surface portion of the inorganic pigment particles, good dispersibility can be maintained over a long period of time. Moreover, dispersibility can be evaluated by specifying the amount of fluorine and the amount of oxygen in the surface portion of the inorganic pigment particles (from the surface of the inorganic pigment particles to a depth of 7 nm).
 一方、無機顔料粒子の表面より7nmの深さから17nmの深さまでに存在するフッ素量は、10atom%以下が好ましく、より好適には5atom%以下であり、さらに好適には2atom%以下である。この領域でフッ素が多くなりすぎると、無機顔料粒子の極性が高くなり、無機顔料粒子の表面部の帯電性が不均―となる。この状態では、無機顔料粒子の表面部に正負の電荷が分散して存在するため、無機顔料粒子が分散せず疑集する虞があるため好ましくない。また、この領域でフッ素が多くなりすぎると、比重が大きくなることで、分散性が低下してしまう場合がある。 On the other hand, the amount of fluorine existing from the depth of 7 nm to the depth of 17 nm from the surface of the inorganic pigment particles is preferably 10 atom% or less, more preferably 5 atom% or less, and even more preferably 2 atom% or less. If too much fluorine is present in this region, the polarity of the inorganic pigment particles becomes high, and the chargeability of the surface portion of the inorganic pigment particles becomes uneven. In this state, since the positive and negative charges are dispersed and present on the surface portion of the inorganic pigment particles, the inorganic pigment particles are not dispersed and may be suspicious. Moreover, when there is too much fluorine in this region, the specific gravity may increase and the dispersibility may decrease.
 また、無機顔料粒子の表面より7nmの深さから17nmの深さまでに存在する酸素量は、1.8atom%以下が好ましく、より好適には1.0atom%以下である。この領域で酸素が多くなりすぎると、比重が大きくなることで、分散性が低下してしまう場合がある。 Further, the amount of oxygen existing from the depth of 7 nm to the depth of 17 nm from the surface of the inorganic pigment particles is preferably 1.8 atom% or less, and more preferably 1.0 atom% or less. If there is too much oxygen in this region, the specific gravity may increase and the dispersibility may decrease.
 また、無機顔料粒子の表面より17nmの深さから27nmの深さまでに存在するフッ素量は、5atom%以下が好ましく、より好適には1atom%以下である。 Further, the amount of fluorine existing from the depth of 17 nm to the depth of 27 nm from the surface of the inorganic pigment particles is preferably 5 atom% or less, and more preferably 1 atom% or less.
 このように、無機顔料粒子の表面部に所定量のフッ素を存在させるものの、無機顔料粒子内部ではフッ素量を少量とする又は粒子内部にフッ素を存在させないことが好ましい。無機顔料粒子内部のフッ素量が多くなると、比重が大きくなり、無機顔料粒子自体が重くなるため、分散媒中で沈殿しやすい。本発明では、無機顔料粒子内部のフッ素量を上記範囲内とすることで、分散性が良好となる。 As described above, although a predetermined amount of fluorine exists in the surface portion of the inorganic pigment particles, it is preferable that the amount of fluorine is small in the inorganic pigment particles or fluorine is not present in the particles. When the amount of fluorine inside the inorganic pigment particles increases, the specific gravity increases and the inorganic pigment particles themselves become heavy, and therefore, they are likely to precipitate in the dispersion medium. In the present invention, dispersibility is improved by setting the amount of fluorine in the inorganic pigment particles within the above range.
 フッ素量及び酸素量等の各元素量は、例えば、X線電子分光法(ESCA,XPS)等により計測することができる。また、無機顔料粒子の表面から一定の深さに存在するフッ素量は、エッチング処理等を施すことにより、無機顔料粒子の表面から所定厚さを取り除いた後、前記X線電子分光法により計測することができる。具体的な測定方法については、実施例の欄で詳述する。 The amount of each element such as the amount of fluorine and the amount of oxygen can be measured by, for example, X-ray electron spectroscopy (ESCA, XPS). Further, the amount of fluorine existing at a certain depth from the surface of the inorganic pigment particle is measured by the X-ray electron spectroscopy after removing a predetermined thickness from the surface of the inorganic pigment particle by performing an etching process or the like. be able to. A specific measurement method will be described in detail in the column of Examples.
 なお、無機顔料粒子の表面部に存在するフッ素は基材粒子中の元素と結合する場合がある。例えば、基材粒子として炭素材料を採用した場合、無機顔料粒子の表面部に炭素-フッ素結合(親水性をもたらす半イオン的な弱い炭素-フッ素結合を含む)が形成されていることがあるが、フッ素量には炭素-フッ素結合したフッ素を含めることが可能である。また、基材粒子に酸素が含まれている場合や基材粒子表面に酸素が存在した場合は、無機顔料粒子の表面部に炭素-酸素結合が形成されていることがある。この場合、無機顔料粒子の表面部のフッ素量にはフッ素-酸素結合したフッ素も含めることが可能である。 In addition, the fluorine which exists in the surface part of an inorganic pigment particle may couple | bond with the element in a base particle. For example, when a carbon material is employed as the base particle, a carbon-fluorine bond (including a semiionic weak carbon-fluorine bond that brings about hydrophilicity) may be formed on the surface portion of the inorganic pigment particle. The amount of fluorine can include carbon-fluorine bonded fluorine. Further, when oxygen is contained in the base particle or when oxygen is present on the surface of the base particle, a carbon-oxygen bond may be formed on the surface of the inorganic pigment particle. In this case, the amount of fluorine on the surface portion of the inorganic pigment particles can include fluorine with a fluorine-oxygen bond.
 また、無機顔料粒子の表面部に存在する酸素も他の元素と結合する場合があるが(炭素-酸素結合、フッ素-酸素結合等)、他の元素と結合した酸素も酸素量に含めることが可能である。 In addition, oxygen present on the surface portion of the inorganic pigment particles may be bonded to other elements (carbon-oxygen bond, fluorine-oxygen bond, etc.), but oxygen bonded to other elements may be included in the oxygen amount. Is possible.
<基材粒子>
 基材粒子としては、炭素材料を含むもの、特に主成分が炭素材料であるものが好適に用いられ、黒色系のカーボンブラック、黒鉛等を用いることができる。なお、基材粒子の主成分が炭素材料とは、基材粒子の80%以上が炭素であることを言う。炭素材料は、隠蔽性が良好であるとともに、着色力が高く、黒色度が高いため、無機顔料粒子として有用である。
<Base material particles>
As the base particles, those containing a carbon material, particularly those whose main component is a carbon material, are preferably used, and black carbon black, graphite or the like can be used. In addition, the carbon material is the main component of the base particle means that 80% or more of the base particle is carbon. Carbon materials are useful as inorganic pigment particles because they have good concealability, high coloring power, and high blackness.
 炭素材料を所定の条件でフッ素処理することにより、無機顔料粒子の表面部にフッ素、炭素及び酸素を存在させ、これらの合計が100atom%以下となるようにする。この場合、無機顔料粒子の表面から7nmの深さまでに存在する炭素量は、80atom%以上が好ましい。 Fluorine treatment is performed on the carbon material under predetermined conditions so that fluorine, carbon, and oxygen are present on the surface portion of the inorganic pigment particles, and the total of these is 100 atom% or less. In this case, the amount of carbon existing from the surface of the inorganic pigment particles to a depth of 7 nm is preferably 80 atom% or more.
 また、無機顔料粒子の表面より7nmの深さから17nmの深さまでに存在する炭素量は、85atom%以上が好ましい。炭素量が上記範囲内にある場合、無機顔料粒子内部が殆どフッ素化されていないため、無機顔料粒子が分散媒中で沈殿しにくく、分散性が良好である。 Further, the amount of carbon existing from the depth of 7 nm to the depth of 17 nm from the surface of the inorganic pigment particles is preferably 85 atom% or more. When the carbon content is within the above range, the inside of the inorganic pigment particles is hardly fluorinated, so that the inorganic pigment particles are hardly precipitated in the dispersion medium, and the dispersibility is good.
<無機顔料粒子及びその製造方法>
 本発明に係る無機顔料粒子は、基材となる粒子にフッ素ガスと不活性ガスを含んだ混合ガスを接触させる(フッ素ガス処理)ことにより形成することができる。
<Inorganic pigment particles and production method thereof>
The inorganic pigment particles according to the present invention can be formed by bringing a mixed gas containing fluorine gas and inert gas into contact with particles serving as a substrate (fluorine gas treatment).
 混合ガス中のフッ素ガス濃度は0.1vol%以上が好ましく、より好適には0.5vol%以上である。混合ガス中のフッ素ガス濃度が低すぎると、無機顔料粒子の表面部にフッ素を殆ど存在させることができないため分散性が悪いが、フッ素ガス濃度を上記範囲内とすることで、無機顔料粒子の表面部に所定量のフッ素を存在させることができる。また、フッ素ガス濃度は50vol%以下が好ましく、より好適には30vol%以下であり、更に好適には20vol%以下である。フッ素ガス濃度が高すぎると、フッ素化が進行しすぎることで無機顔料粒子の表面部が疎水性となるため分散性が悪い。また、無機顔料粒子内部のフッ素化が進行する。さらに、基材粒子として黒色系の炭素系材料を用いたとしても、白色のCF4へ変化してしまうことがある。本発明では、フッ素ガス濃度を上記範囲内とすることで、フッ素化の進行を抑止できるため、分散性が良好になる。また、フッ素化を無機顔料粒子全体でなく、主に無機顔料粒子の表面部だけに抑えることができる。 The fluorine gas concentration in the mixed gas is preferably 0.1 vol% or more, and more preferably 0.5 vol% or more. If the fluorine gas concentration in the mixed gas is too low, dispersibility is poor because almost no fluorine can be present on the surface of the inorganic pigment particles. However, by adjusting the fluorine gas concentration within the above range, A predetermined amount of fluorine can be present on the surface portion. Further, the fluorine gas concentration is preferably 50 vol% or less, more preferably 30 vol% or less, and even more preferably 20 vol% or less. If the fluorine gas concentration is too high, dispersibility is poor because the surface portion of the inorganic pigment particles becomes hydrophobic due to excessive progress of fluorination. Moreover, fluorination inside the inorganic pigment particles proceeds. Further, even when a black carbon-based material is used as the base particle, it may be changed to white CF 4 . In the present invention, since the progress of fluorination can be suppressed by setting the fluorine gas concentration within the above range, the dispersibility is improved. Further, fluorination can be suppressed mainly to the surface portion of the inorganic pigment particles, not to the entire inorganic pigment particles.
 混合ガス中の不活性ガス濃度は50vol%以上が好ましく、より好適には70vol%以上であり、更に好適には80vol%以上である。不活性ガス濃度を上記範囲内とすることで、混合ガス中のフッ素ガス濃度を所定の濃度以下にすることができるため、フッ素化の進行を抑止できる。不活性ガスとして、窒素ガス、アルゴンガス、希ガス(ヘリウム、ネオン等)等が挙げられる。 The inert gas concentration in the mixed gas is preferably 50 vol% or more, more preferably 70 vol% or more, and even more preferably 80 vol% or more. By setting the inert gas concentration within the above range, the fluorine gas concentration in the mixed gas can be reduced to a predetermined concentration or less, so that the progress of fluorination can be suppressed. Examples of the inert gas include nitrogen gas, argon gas, and rare gases (helium, neon, etc.).
 混合ガス中のフッ素ガス濃度と不活性ガス濃度の合計は100vol%以下であり、混合ガスにフッ素ガス、不活性ガス以外の元素のガス(酸素ガス等)が含まれていてもよい。なお、混合ガスに酸素ガスが含まれていない場合でも、基材粒子中あるいは基材粒子表面に存在する水分等に含まれる酸素元素によって、フッ素処理後の無機顔料粒子の表面部に酸素元素が存在することとなる。 The total of the fluorine gas concentration and the inert gas concentration in the mixed gas is 100 vol% or less, and the mixed gas may contain a gas of an element other than the fluorine gas and the inert gas (oxygen gas or the like). Even when the mixed gas does not contain oxygen gas, the oxygen element is contained in the surface of the inorganic pigment particles after the fluorine treatment due to the oxygen element contained in the moisture or the like present in the substrate particles or on the surface of the substrate particles. Will exist.
 混合ガスに酸素ガスが含まれる場合、混合ガス中の酸素ガス濃度は0.1vol%以上が好ましく、より好適には0.2vol%以上である。酸素ガス濃度を上記範囲内とすることで、表面付近の分子構造中に酸素原子を導入して表面の親水化を図ることができる。 When oxygen gas is contained in the mixed gas, the oxygen gas concentration in the mixed gas is preferably 0.1 vol% or more, and more preferably 0.2 vol% or more. By setting the oxygen gas concentration within the above range, the surface can be hydrophilized by introducing oxygen atoms into the molecular structure near the surface.
 また、フッ素ガス処理は、35℃以上で行われることが好ましく、より好適には50℃以上であり、更に好適には80℃以上である。処理温度が低すぎるとフッ素処理の進行が非常に遅くなるが、処理温度を上記範囲内とすることでこれを抑止できる。また、フッ素ガス処理は、300℃以下で行われることが好ましく、より好適には250℃以下であり、更に好適には200℃以下である。処理温度が高すぎるとフッ素ガス処理が進行しすぎて粒子内部までフッ素化されるが、処理温度を上記範囲内とすることにより、フッ素化の進行を抑止できる。 The fluorine gas treatment is preferably performed at 35 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 80 ° C. or higher. If the treatment temperature is too low, the progress of the fluorine treatment becomes very slow, but this can be suppressed by setting the treatment temperature within the above range. Moreover, it is preferable that a fluorine gas process is performed at 300 degrees C or less, More preferably, it is 250 degrees C or less, More preferably, it is 200 degrees C or less. If the treatment temperature is too high, the fluorine gas treatment proceeds too much and the particles are fluorinated to the inside of the particles. However, by making the treatment temperature within the above range, the progress of fluorination can be suppressed.
 また、フッ素ガス濃度が0.1vol%以上10vol%以下のとき、処理温度が35~200℃であることが好ましい。さらに、フッ素ガス濃度が10vol%より大きく50vol%以下のとき、処理温度が35℃以上80℃未満であることが好ましい。フッ素ガス濃度に応じて処理温度を調整することにより、基材粒子のうち主に表面部を確実にフッ素化できるため、分散安定性に優れた粒子を得ることができる。 Further, when the fluorine gas concentration is 0.1 vol% or more and 10 vol% or less, the treatment temperature is preferably 35 to 200 ° C. Furthermore, when the fluorine gas concentration is higher than 10 vol% and lower than 50 vol%, the treatment temperature is preferably 35 ° C. or higher and lower than 80 ° C. By adjusting the treatment temperature according to the fluorine gas concentration, mainly the surface portion of the substrate particles can be fluorinated reliably, so that particles having excellent dispersion stability can be obtained.
 さらに、処理時間は、1分以上が好ましく、より好適には5分以上であり、更に好適には30分以上である。処理時間が短すぎると無機顔料粒子の表面部にフッ素を殆ど存在させることができないが、上記範囲内とすることで無機顔料粒子の表面部に所望量のフッ素を存在させることができる。また、処理時間は、240分以下が好ましく、より好適には180分以下であり、更に好適には120分以下である。処理時間が長すぎるとフッ素処理が進行し、無機顔料粒子内部までフッ素化されるが、上記範囲内とすることで、フッ素処理の進行を抑止できるとともに、主に基材粒子の表面部をフッ素処理できる。 Furthermore, the treatment time is preferably 1 minute or longer, more preferably 5 minutes or longer, and even more preferably 30 minutes or longer. If the treatment time is too short, almost no fluorine can be present on the surface portion of the inorganic pigment particles, but if it is within the above range, a desired amount of fluorine can be present on the surface portion of the inorganic pigment particles. The treatment time is preferably 240 minutes or less, more preferably 180 minutes or less, and even more preferably 120 minutes or less. If the treatment time is too long, the fluorine treatment proceeds and the inorganic pigment particles are fluorinated to the inside, but by making it within the above range, the progress of the fluorine treatment can be suppressed, and the surface portion of the base particle is mainly made of fluorine. It can be processed.
 また、処理層内で基材粒子をフッ素ガス処理するときは、槽内の圧力を1kPa以上90kPa以下とすることが好ましく、より好適には50kPa以上90kPa以下である。槽内の圧力を上記範囲内とすることで、腐食性を有するフッ素ガスが処理層から漏洩することを抑止できる。 Further, when the substrate particles are treated with fluorine gas in the treatment layer, the pressure in the tank is preferably 1 kPa or more and 90 kPa or less, and more preferably 50 kPa or more and 90 kPa or less. By setting the pressure in the tank within the above range, leakage of corrosive fluorine gas from the treatment layer can be suppressed.
 無機顔料粒子の体積平均粒子径は、例えば、100nm以上3000nm以下であることが望ましく、より好適には100nm以上2000nm以下である。無機顔料粒子の体積平均粒子径が上記範囲内であれば、無機顔料粒子が沈降することなく、安定して分散するため望ましい。なお、無機顔料粒子の体積平均粒子径は、無機顔料粒子を純水に分散させ、動的光散乱式粒径分布測定装置(例えば、堀場製作所社製「LB-500」)を用いて、無機顔料粒子及び疑集物の体積平均粒子径を測定することにより求められる。 The volume average particle diameter of the inorganic pigment particles is preferably, for example, from 100 nm to 3000 nm, and more preferably from 100 nm to 2000 nm. If the volume average particle diameter of the inorganic pigment particles is within the above range, it is desirable because the inorganic pigment particles are stably dispersed without settling. The volume average particle diameter of the inorganic pigment particles is determined by dispersing the inorganic pigment particles in pure water and using a dynamic light scattering particle size distribution measuring device (for example, “LB-500” manufactured by Horiba, Ltd.). It is calculated | required by measuring the volume average particle diameter of a pigment particle and a suspected thing.
 本発明の無機顔料粒子では、無機顔料粒子の表面部にフッ素及び酸素が存在することにより、安定して各種液体に分散させることができる。無機顔料粒子の分散に際しては、高い分散エネルギーを必要とすることなく均―に分散するため、種々の用途に有用に用いることができる。用途としては、例えば、印刷インク、塗料、インクジェットプリンタ用インクの顔料粒子の分散安定性が要求される各種用途に好適である。 The inorganic pigment particles of the present invention can be stably dispersed in various liquids due to the presence of fluorine and oxygen on the surface of the inorganic pigment particles. In dispersing the inorganic pigment particles, the inorganic pigment particles are uniformly dispersed without requiring high dispersion energy, and thus can be usefully used for various applications. As a use, for example, it is suitable for various uses that require dispersion stability of pigment particles of printing ink, paint, and ink for ink jet printer.
 無機顔料粒子の分散媒としては、非極性分散媒、極性分散媒をそれぞれ使用することができる。非極性分散媒としては、例えば、ヘキサン、シクロヘキサン、シクロペンタン等の炭化水素系非極性分散媒;ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン等の芳香族系非極性分散媒;シリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル系非極性分散媒;等が挙げられる。また極性分散媒としては、アセトン、テトラヒドロフラン、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性分散媒;水、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、ギ酸等のプロトン性極性分散媒が挙げられる。 As the dispersion medium for the inorganic pigment particles, a nonpolar dispersion medium or a polar dispersion medium can be used. Examples of the nonpolar dispersion medium include hydrocarbon nonpolar dispersion media such as hexane, cyclohexane, and cyclopentane; aromatic nonpolar dispersion media such as benzene, toluene, o-xylene, m-xylene, and p-xylene; And silicone oil nonpolar dispersion media such as silicone oil and methylphenyl silicone oil. As polar dispersion media, aprotic polar dispersion media such as acetone, tetrahydrofuran, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide; water, methanol, ethanol, 1-propanol, 2-propanol, n-butanol, formic acid And other protic polar dispersion media.
 なお、無機顔料粒子の分散液には、適宜、分散剤、染料、粘性調整剤等を添加しても良い。 In addition, you may add a dispersing agent, dye, a viscosity modifier etc. to the dispersion liquid of an inorganic pigment particle suitably.
 分散媒に添加しうる分散剤としては、通常、分散媒中における無機顔料粒子の分散を補助するために用いることのできる分散剤であれば、特に限定されるものではないが、例えば、分散媒に溶解可能なアニオン性界面活性剤、カチオン性界面活性剤、両イオン性界面活性剤、非イオン性界面活性剤、フッ素系界面活性剤、ノルビタンセスキオレート等のノルビタン脂肪酸エステル界面活性剤、ブロック型ポリマー及びグラフト型ポリマー等の分散剤や、各種カップリング剤などが挙げられる。これらの分散剤は、単独で用いても2種以上を併用してもよい。 The dispersant that can be added to the dispersion medium is not particularly limited as long as it is a dispersant that can be used to assist the dispersion of the inorganic pigment particles in the dispersion medium. Anionic surfactant, cationic surfactant, amphoteric surfactant, nonionic surfactant, fluorosurfactant, norbitane fatty acid ester surfactant such as norbitane sesquiolate, block Examples thereof include dispersants such as mold polymers and graft polymers, and various coupling agents. These dispersants may be used alone or in combination of two or more.
 フッ素ガス処理条件を変えることにより、無機顔料粒子の表面部の組成を変えたときの分散性を調べた。 The dispersibility when the composition of the surface portion of the inorganic pigment particles was changed by changing the fluorine gas treatment conditions was examined.
(実施例1)
 カーボンブラック(Stream Chemicals社製「06-0026」、1次粒子の平均粒子径10nm(公称値))約1gを、ニッケル製のトレイに薄く広げ、容量3Lの円筒状のニッケル容器に入れて密閉した。ニッケル容器は加熱及び密閉可能に形成されている。ニッケル容器中の大気を真空排気し、真空状態でニッケル容器内を40℃に加熱し、ガス導入管からフッ素と窒素の混合ガス(混合比F2:N2=1vol%:99vol%)を流量0.5ml/分で80kPaとなるように導入し、ニッケル容器内を混合ガスで充填した。この状態を1時間保持してカーボンブラックのフッ素ガス処理を行った。
 1時間後、混合ガスを真空排気し、窒素ガスによるパージを行った。ニッケル容器からニッケル製のトレイを取り出し、フッ素処理されたカーボンブラック約1gを得た。そして、フッ素処理したカーボンブラックの炭素量、酸素量、フッ素量、ゼータ電位、流動性、吸油量、分散性及び変色の有無を測定した。結果を表1に示す。
(実施例2~8、比較例1,2)
 フッ素処理条件を表1に記載の条件に変更した以外は、実施例1と同様に行った。結果を表1に示す。なお、比較例1では、フッ素処理を行わなかった。
 また、表1において、フッ素処理したカーボンブラックの表面から所定の厚みにおける各元素量は、カーボンブラックにエッチングを施し、エッチング処理後における各元素量を示している。エッチング処理は、電圧500Vの条件下で行った。
Example 1
About 1 g of carbon black (Stream Chemicals “06-0026”, primary particle average particle size 10 nm (nominal value)) is spread thinly on a nickel tray and sealed in a cylindrical nickel container with a capacity of 3 L. did. The nickel container is formed so that it can be heated and sealed. The atmosphere in the nickel container is evacuated, the inside of the nickel container is heated to 40 ° C. in a vacuum state, and a mixed gas of fluorine and nitrogen (mixing ratio F 2 : N 2 = 1 vol%: 99 vol%) is flowed from the gas introduction pipe. The mixture was introduced at 80 ml at 0.5 ml / min, and the inside of the nickel container was filled with a mixed gas. This state was maintained for 1 hour, and the carbon black was treated with fluorine gas.
After 1 hour, the mixed gas was evacuated and purged with nitrogen gas. A nickel tray was taken out of the nickel container, and about 1 g of fluorine-treated carbon black was obtained. Then, the carbon amount, oxygen amount, fluorine amount, zeta potential, fluidity, oil absorption, dispersibility, and discoloration of the carbon black subjected to fluorine treatment were measured. The results are shown in Table 1.
(Examples 2 to 8, Comparative Examples 1 and 2)
The same procedure as in Example 1 was performed except that the fluorine treatment conditions were changed to those shown in Table 1. The results are shown in Table 1. In Comparative Example 1, no fluorine treatment was performed.
In Table 1, the amount of each element at a predetermined thickness from the surface of the fluorine-treated carbon black indicates the amount of each element after etching the carbon black. The etching process was performed under the condition of a voltage of 500V.
 以下に測定方法を説明する。
<元素の定量>
 フッ素量は次の方法により測定した。まず、試料粒子粉体を両面テープで測定基盤にセットし、X線光電子分光分析装置(Surface Science Instruments社製「S-Probe」)を用いて、ESCAWide Scanで検出原子を特定した後、原子毎にNarrowScanすることにより定量度を高めた測定を行い、試料粒子表層のフッ素量を測定した。
 次いで500Vアルゴンイオンを所定時間照射しエッチング処理を行った後、ESCA WideScan及びNarrow Scanを行い、フッ素量を測定する方法によって無機顔料粒子の表面からそれぞれの深さにおけるフッ素量の定量を行った。
 また、炭素量及び酸素量もフッ素量と同様な方法で定量した。
The measurement method will be described below.
<Quantification of elements>
The amount of fluorine was measured by the following method. First, the sample particle powder is set on a measurement substrate with a double-sided tape, and the detected atoms are identified by ESCA Wide Scan using an X-ray photoelectron spectrometer (“S-Probe” manufactured by Surface Science Instruments), and then each atom is detected. The measurement was carried out with a higher degree of quantification by performing a narrow scan, and the fluorine content of the sample particle surface layer was measured.
Next, after performing an etching treatment by irradiating with 500 V argon ions for a predetermined time, ESCA WideScan and Narrow Scan were performed, and the amount of fluorine at each depth was measured from the surface of the inorganic pigment particles by a method of measuring the amount of fluorine.
The amount of carbon and the amount of oxygen were also quantified by the same method as the amount of fluorine.
<分散性の評価>
 純水100ccに試料粒子1gを入れた。これを超音波浴槽を用いて超音波分散を10分間行い、分散性試験液を調製した。そして、純水中の試料粒子の分散状態を目視で確認し、下記の項目に基づき、試料粒子を評価した。
 ○:試料粒子の分散性が良好であり、1時間以上、分散状態を保持できる。
 △:試料粒子の分散性が向上し、純水には分散するが1時間以上の状態保持はできない。
 ×:純水に試料が分散しない。
<Evaluation of dispersibility>
1 g of sample particles was put in 100 cc of pure water. This was subjected to ultrasonic dispersion for 10 minutes using an ultrasonic bath to prepare a dispersibility test solution. And the dispersion state of the sample particle | grains in a pure water was confirmed visually, and sample particle | grains were evaluated based on the following item.
○: Dispersibility of the sample particles is good and the dispersion state can be maintained for 1 hour or more.
Δ: Dispersibility of the sample particles is improved, and the sample particles are dispersed in pure water but cannot be maintained for more than 1 hour.
X: The sample does not disperse in pure water.
<体積平均粒子径の測定>
 フッ素処理したカーボンブラックの体積平均粒子径は、純水中に試料粒子を投入し、超音波洗浄を10分行い、均一に分散させた分散液を測定用セルにセットし、動的光散乱式粒度分布測定装置(スペクトリス社製 Zetasizer Nano ZS90)を用いて、試料粒子及び疑集物の体積平均粒子径を測定することにより求めた。図2にこの結果を示す。
<Measurement of volume average particle size>
The volume average particle size of the fluorine-treated carbon black was measured by placing sample particles in pure water, performing ultrasonic cleaning for 10 minutes, setting the uniformly dispersed dispersion in a measurement cell, and using a dynamic light scattering method. Using a particle size distribution measuring device (Zetasizer Nano ZS90 manufactured by Spectris Co., Ltd.), the volume average particle diameter of sample particles and suspected substances was measured. FIG. 2 shows the result.
<ゼータ電位>
 フッ素処理したカーボンブラックのゼータ電位は、ゼータ電位測定装置(スペクトリス社製Zetasizer Nano ZS90)を用いて測定した。
<Zeta potential>
The zeta potential of the fluorine-treated carbon black was measured using a zeta potential measuring device (Spectasizer Nano ZS90 manufactured by Spectris).
<粘度>
 フッ素処理されたカーボンブラック(無機顔料粒子)の粘度をJIS K5101に準じて測定した。
 凝集した無機顔料粒子では抵抗が大きいため粘度が大きくなるが、分散した無機顔料粒子では抵抗が小さいため粘度が小さい。したがって粘度によっても分散性を評価できる。
<Viscosity>
The viscosity of the fluorine-treated carbon black (inorganic pigment particles) was measured according to JIS K5101.
Aggregated inorganic pigment particles have high resistance due to high resistance, but dispersed inorganic pigment particles have low resistance because of low resistance. Therefore, dispersibility can also be evaluated by viscosity.
<吸油量>
 フッ素処理されたカーボンブラックの吸油量をJIS K5101に準じて測定した。
 凝集した無機顔料粒子は表面積が小さくなるため吸油量が少ないが、分散した無機顔料粒子では各粒子が全表面から吸油するため吸油量が多い。したがって吸油量によっても分散性を評価できる。
<Oil absorption amount>
The oil absorption of the fluorine-treated carbon black was measured according to JIS K5101.
Aggregated inorganic pigment particles have a small surface area and therefore a small amount of oil absorption. However, dispersed inorganic pigment particles have a large amount of oil absorption because each particle absorbs oil from the entire surface. Therefore, dispersibility can also be evaluated by the amount of oil absorption.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~8では、カーボンブラックの表面部に所定量のフッ素及び酸素が存在している。実施例1~8では、カーボンブラックの表面部を均一に帯電できたとともにカーボンブラックの表面部を親水性にできたため、溶剤への分散性が良好であった。特に、実施例5では、1週間以上の長期間経過後でも無機顔料粒子が分散していた。なお、実施例8の分散性は△であるが、無機顔料粒子として用いた際の分散性に問題がないため、分散性が良好であると評価できる。 In Examples 1 to 8, predetermined amounts of fluorine and oxygen are present on the surface of the carbon black. In Examples 1 to 8, since the surface portion of the carbon black could be uniformly charged and the surface portion of the carbon black could be made hydrophilic, the dispersibility in the solvent was good. In particular, in Example 5, the inorganic pigment particles were dispersed even after a long period of time of one week or longer. In addition, although the dispersibility of Example 8 is Δ, since there is no problem in dispersibility when used as inorganic pigment particles, it can be evaluated that the dispersibility is good.
 一方、フッ素処理しなかった比較例1では、無機顔料粒子の表面部にフッ素が存在しないため、無機顔料粒子の表面部が帯電せず、分散性が悪かった。また、比較例2では、フッ素処理したものの、フッ素化が進行しすぎたため、粒子内部までフッ素化され、粒子密度が高くなり、分散媒中で沈殿したと考えられる。また、黒色のカーボンブラックを用いたものの、フッ素化が進行しすぎたため、白色のフッ化炭素に変化した。 On the other hand, in Comparative Example 1 in which the fluorine treatment was not performed, fluorine was not present on the surface portion of the inorganic pigment particles, so the surface portion of the inorganic pigment particles was not charged and the dispersibility was poor. Moreover, in Comparative Example 2, although fluorination was performed, fluorination progressed too much, so that it was fluorinated to the inside of the particles, the particle density increased, and it was considered that the particles were precipitated in the dispersion medium. In addition, although black carbon black was used, fluorination progressed too much, so that the color changed to white fluorocarbon.
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。そして、本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is indicated not by the above description but by the scope of claims for patent, and all modifications within the meaning and scope equivalent to the scope of claims for patent are included.

Claims (10)

  1.  無機顔料粒子の表面から7nmの深さまでにフッ素と炭素と酸素とが存在し、
     前記無機顔料粒子の表面から7nmの深さまでに存在するフッ素量が16atom%未満であり、炭素量が80atom%以上であり、酸素量が0.1atom%以上であることを特徴とする無機顔料粒子。
    Fluorine, carbon and oxygen exist from the surface of the inorganic pigment particles to a depth of 7 nm,
    Inorganic pigment particles, wherein the amount of fluorine existing from the surface of the inorganic pigment particles to a depth of 7 nm is less than 16 atom%, the carbon amount is 80 atom% or more, and the oxygen amount is 0.1 atom% or more. .
  2.  前記無機顔料粒子の表面から7nmの深さまでに存在するフッ素量が7.0atom%以下であり、酸素量が0.1atom%以上であることを特徴とする請求項1に記載の無機顔料粒子。 The inorganic pigment particles according to claim 1, wherein the amount of fluorine existing at a depth of 7 nm from the surface of the inorganic pigment particles is 7.0 atom% or less and the amount of oxygen is 0.1 atom% or more.
  3.  前記無機顔料粒子は、基材粒子をフッ素処理して形成されたものであり、
     前記基材粒子の主成分が炭素材料であることを特徴とする請求項1又は2に記載の無機顔料粒子。
    The inorganic pigment particles are formed by subjecting substrate particles to fluorine treatment,
    The inorganic pigment particles according to claim 1 or 2, wherein a main component of the substrate particles is a carbon material.
  4.  前記炭素材料はカーボンブラックであることを特徴とする請求項3に記載の無機顔料粒子。 4. The inorganic pigment particle according to claim 3, wherein the carbon material is carbon black.
  5.  前記無機顔料粒子の表面より17nmから27nmの深さまでのフッ素量が5atom%以下であることを特徴とする請求項1~4のいずれか1項に記載の無機顔料粒子。 The inorganic pigment particles according to any one of claims 1 to 4, wherein the amount of fluorine from the surface of the inorganic pigment particles to a depth of 17 nm to 27 nm is 5 atom% or less.
  6.  フッ素ガスと不活性ガスを含んだ混合ガスを基材粒子に接触させる工程を有しており、
     前記混合ガスのフッ素ガス濃度は0.1vol%以上50vol%以下であり、不活性ガス濃度は50vol%以上であり、
     前記工程は35℃以上300℃以下で行われることを特徴とする無機顔料粒子の製造方法。
    Having a step of bringing a mixed gas containing fluorine gas and inert gas into contact with the substrate particles,
    The fluorine gas concentration of the mixed gas is 0.1 vol% or more and 50 vol% or less, the inert gas concentration is 50 vol% or more,
    The said process is performed at 35 degreeC or more and 300 degrees C or less, The manufacturing method of the inorganic pigment particle characterized by the above-mentioned.
  7.  フッ素ガス濃度0.1vol%以上10vol%以下のとき、処理温度が35~200℃であり、
     フッ素ガス濃度10vol%より大きく50vol%以下のとき、処理温度が35℃以上80℃未満である、請求項6に記載の無機顔料粒子の製造方法。
    When the fluorine gas concentration is 0.1 vol% or more and 10 vol% or less, the treatment temperature is 35 to 200 ° C.,
    The method for producing inorganic pigment particles according to claim 6, wherein the treatment temperature is 35 ° C or higher and lower than 80 ° C when the fluorine gas concentration is higher than 10 vol% and lower than 50 vol%.
  8.  前記混合ガスのフッ素ガス濃度は30vol%以下であることを特徴とする請求項6に記載の無機顔料粒子の製造方法。 The method for producing inorganic pigment particles according to claim 6, wherein the mixed gas has a fluorine gas concentration of 30 vol% or less.
  9.  前記混合ガスの不活性ガス濃度は70vol%以上であることを特徴とする請求項6に記載の無機顔料粒子の製造方法。 The method for producing inorganic pigment particles according to claim 6, wherein an inert gas concentration of the mixed gas is 70 vol% or more.
  10.  前記基材粒子がカーボンブラックであることを特徴とする請求項6~9のいずれか1項に記載の無機顔料粒子の製造方法。 The method for producing inorganic pigment particles according to any one of claims 6 to 9, wherein the substrate particles are carbon black.
PCT/JP2014/076616 2013-10-03 2014-10-03 Inorganic pigment particle and method for producing same WO2015050257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-208120 2013-10-03
JP2013208120A JP2016204398A (en) 2013-10-03 2013-10-03 Inorganic pigment particle and production method therefor

Publications (1)

Publication Number Publication Date
WO2015050257A1 true WO2015050257A1 (en) 2015-04-09

Family

ID=52778840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076616 WO2015050257A1 (en) 2013-10-03 2014-10-03 Inorganic pigment particle and method for producing same

Country Status (3)

Country Link
JP (1) JP2016204398A (en)
TW (1) TW201529758A (en)
WO (1) WO2015050257A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053960A (en) * 2017-09-19 2019-04-04 セントラル硝子株式会社 Carbon black and method for manufacturing the same
JP6932589B2 (en) * 2017-09-19 2021-09-08 デンカ株式会社 Carbon black for batteries, coating liquid for batteries, positive electrode for non-aqueous batteries and non-aqueous batteries
JP2019053953A (en) * 2017-09-19 2019-04-04 セントラル硝子株式会社 Carbon black and method for manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196477A (en) * 1981-05-29 1982-12-02 Hitachi Ltd Conductive repellent and fuel cell electrode
JPH0368664A (en) * 1989-08-09 1991-03-25 Mitsubishi Materials Corp Surface-modified black carbon powder and production thereof
JPH061942A (en) * 1992-06-19 1994-01-11 Mitsubishi Pencil Co Ltd Pencil lead and its production
JPH0680923A (en) * 1992-08-31 1994-03-22 Mitsubishi Pencil Co Ltd Recording material coating modified carbon
JPH0940881A (en) * 1995-07-27 1997-02-10 Mitsubishi Chem Corp Method for modifying surface of carbon black
JPH09324128A (en) * 1996-06-05 1997-12-16 Daikin Ind Ltd Fluorocarbon composition, coating material and image forming member and composite material and its production
JP2004352608A (en) * 2003-05-28 2004-12-16 Samsung Corning Co Ltd Method for dispersing carbon nano-structure
WO2005095274A1 (en) * 2004-03-31 2005-10-13 Stella Chemifa Corporation Carbon nanotubes aggregate, method for forming same, and biocompatible material
JP2008019101A (en) * 2006-07-10 2008-01-31 Fujifilm Corp Surface-modified carbon material and its producing method
WO2010074000A1 (en) * 2008-12-24 2010-07-01 国立大学法人東北大学 Dispersion of carbon material and process for producing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196477A (en) * 1981-05-29 1982-12-02 Hitachi Ltd Conductive repellent and fuel cell electrode
JPH0368664A (en) * 1989-08-09 1991-03-25 Mitsubishi Materials Corp Surface-modified black carbon powder and production thereof
JPH061942A (en) * 1992-06-19 1994-01-11 Mitsubishi Pencil Co Ltd Pencil lead and its production
JPH0680923A (en) * 1992-08-31 1994-03-22 Mitsubishi Pencil Co Ltd Recording material coating modified carbon
JPH0940881A (en) * 1995-07-27 1997-02-10 Mitsubishi Chem Corp Method for modifying surface of carbon black
JPH09324128A (en) * 1996-06-05 1997-12-16 Daikin Ind Ltd Fluorocarbon composition, coating material and image forming member and composite material and its production
JP2004352608A (en) * 2003-05-28 2004-12-16 Samsung Corning Co Ltd Method for dispersing carbon nano-structure
WO2005095274A1 (en) * 2004-03-31 2005-10-13 Stella Chemifa Corporation Carbon nanotubes aggregate, method for forming same, and biocompatible material
JP2008019101A (en) * 2006-07-10 2008-01-31 Fujifilm Corp Surface-modified carbon material and its producing method
WO2010074000A1 (en) * 2008-12-24 2010-07-01 国立大学法人東北大学 Dispersion of carbon material and process for producing same

Also Published As

Publication number Publication date
TW201529758A (en) 2015-08-01
JP2016204398A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
US11975552B2 (en) Methods for preparing compositions comprising carbon black
TWI462876B (en) Graphite nanoplatelets and compositions
EP2900777B1 (en) Fluoropolymer coatings
JP6165307B2 (en) Non-aqueous dispersion of fluororesin
WO2017022229A1 (en) Composite resin material, slurry, molded composite resin material, and process for producing slurry
JP2011184664A (en) Carbon black dispersion
WO2018168346A1 (en) Method for producing surface-treated carbon nano-structure
WO2015050257A1 (en) Inorganic pigment particle and method for producing same
JP2008285632A (en) High jetness carbon black dispersion, process for producing the same, and coating material composition using the high jetness carbon black dispersion
WO2020129872A1 (en) Carbon nanotube dispersion liquid and method for producing same
JP5325070B2 (en) Fluorinated carbon fine particles
JP4681710B2 (en) Electroconductive high-concentration carbon black dispersion, method for producing the same, and composition comprising the same
TW201943741A (en) Polytetrafluoroethylene aqueous dispersion
JP2012507114A (en) Group IVA small particle compositions and related methods
JP5875311B2 (en) Conductive particles and uses thereof
JPH11158321A (en) Electroconductive highly concentrated carbon black dispersion, its production and composition comprising the dispersion
JP2020180185A (en) Composite material, method for producing the same and application thereof
JP2017031323A (en) Method for producing slurry and method for producing composite resin material
TWI816861B (en) Sealing material
JP2008200608A (en) Production method of conductive fluororesin thin film and conductive fluororesin thin film
US10216124B2 (en) Carbon nanoparticle and fluorpolymer fuser coating
JP5887773B2 (en) Dispersion containing diamond fine particles
JP5417116B2 (en) Organic solvent paint
Campos et al. Superhydrophobic and low reflectance carbon nanotubes buckypapers
JP2006199964A (en) Polymer dispersant, method for dispersing dispersoid and dispersion composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP