JP2004352608A - Method for dispersing carbon nano-structure - Google Patents

Method for dispersing carbon nano-structure Download PDF

Info

Publication number
JP2004352608A
JP2004352608A JP2004159946A JP2004159946A JP2004352608A JP 2004352608 A JP2004352608 A JP 2004352608A JP 2004159946 A JP2004159946 A JP 2004159946A JP 2004159946 A JP2004159946 A JP 2004159946A JP 2004352608 A JP2004352608 A JP 2004352608A
Authority
JP
Japan
Prior art keywords
carbon nanostructure
carbon
fluorinated
dispersion
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004159946A
Other languages
Japanese (ja)
Other versions
JP3831387B2 (en
Inventor
Eiki Lee
永煕 李
Keihyoku An
啓▲ひょく▼ 安
Kyotaku Tei
京澤 鄭
Seoghyun Cho
碩顯 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Precision Materials Co Ltd
Original Assignee
Samsung Corning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Corning Co Ltd filed Critical Samsung Corning Co Ltd
Publication of JP2004352608A publication Critical patent/JP2004352608A/en
Application granted granted Critical
Publication of JP3831387B2 publication Critical patent/JP3831387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved method for dispersing a carbon nano-structure. <P>SOLUTION: The surface of the carbon nano-structure is fluorinated with a fluorine-containing gas and the fluorinated carbon nano-structure is dispersed in a solvent. The resultant carbon nano-structure dispersion is useful in various industrial fields. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭素ナノ構造体(carbon nano-strucutre)の表面をフッ素化する方式で溶媒中での炭素ナノ構造体の分散性を改善する方法に関する。   The present invention relates to a method for improving the dispersibility of a carbon nano-structure in a solvent by fluorinating the surface of the carbon nano-structure.

炭素ナノ繊維、フラーレン、炭素ナノチューブおよび炭素ナノホーンのような炭素ナノ構造体は、これらの優れた物理的、化学的および電気的特性によって、電磁波遮蔽、電子装置または無機−有機複合体などの様々な分野に用いられている。   Carbon nanostructures, such as carbon nanofibers, fullerenes, carbon nanotubes and carbon nanohorns, can be used in various fields such as electromagnetic wave shielding, electronic devices or inorganic-organic composites due to their excellent physical, chemical and electrical properties. Used in the field.

しかし、このような炭素ナノ構造体は基質中に混入されると凝集し、そのユニークな特性が劣化する傾向にある。したがって、基質中で凝集しない分散性のよい炭素ナノ構造体を開発しようとする多くの試みがあった。   However, such carbon nanostructures tend to aggregate when mixed into a substrate, deteriorating their unique properties. Therefore, there have been many attempts to develop carbon nanostructures with good dispersibility that do not aggregate in the substrate.

たとえば、界面活性剤を用いて炭素ナノチューブを溶媒中に分散する方法が開示されているが(特許文献1参照)、この方法では完全に分散された炭素ナノチューブ分散液が得られない。   For example, a method of dispersing carbon nanotubes in a solvent using a surfactant has been disclosed (see Patent Document 1), but this method does not provide a completely dispersed carbon nanotube dispersion.

そこで、本発明者らは、炭素ナノ構造体を表面処理することによって、炭素ナノ構造体の分散性を改善させるための方法を開発することによって本発明を完成した。
韓国特許公開第2002−77506号
Therefore, the present inventors have completed the present invention by developing a method for improving the dispersibility of the carbon nanostructure by performing a surface treatment on the carbon nanostructure.
Korean Patent Publication No. 2002-77506

したがって、本発明の目的は、炭素ナノ構造体を溶媒中に個別的に分離させるのに効果的な方法を提供することである。   Therefore, an object of the present invention is to provide an effective method for individually separating carbon nanostructures in a solvent.

本発明の一実施態様によって、本発明では、炭素ナノ構造体の表面を含フッ素ガスでフッ素化処理した後、フッ素化処理された炭素ナノ構造体を溶媒中に分散させることを含む、炭素ナノ構造体の分散方法が提供される。   According to one embodiment of the present invention, the present invention provides a method for producing a carbon nanostructure, comprising: fluorinating the surface of a carbon nanostructure with a fluorine-containing gas, and then dispersing the fluorinated carbon nanostructure in a solvent. A method for dispersing a structure is provided.

本発明によれば、分散前にフッ素化処理された炭素ナノ構造体は均一な粒子サイズで溶媒中に分散できる。   According to the present invention, a carbon nanostructure that has been fluorinated before dispersion can be dispersed in a solvent with a uniform particle size.

以下、本発明をさらに詳細に説明する。
本発明に係る方法は、炭素ナノ構造体を分散前に予めフッ素化処理することを特徴とする。
Hereinafter, the present invention will be described in more detail.
The method according to the present invention is characterized in that the carbon nanostructure is preliminarily fluorinated before being dispersed.

図1に概略的に示すように、本発明の一実施態様によれば、炭素ナノ構造体を必要に応じて精製し、フッ素化処理(S10)した後、フッ素化処理された炭素ナノ構造体を溶媒に分散させる(S20)。任意に、フッ素化処理された炭素ナノ構造体分散液を超音波処理し(S30)、酸やアルカリ溶液を用いて分散液のpHを目的とする範囲に調節する(S40)。その後、本発明の分散方法によって得られた炭素ナノ構造体分散液の分散度を分析する(S50)。   As schematically shown in FIG. 1, according to one embodiment of the present invention, the carbon nanostructure is purified if necessary, fluorinated (S10), and then fluorinated. Is dispersed in a solvent (S20). Optionally, the fluorinated carbon nanostructure dispersion is subjected to ultrasonic treatment (S30), and the pH of the dispersion is adjusted to a target range using an acid or alkali solution (S40). Then, the degree of dispersion of the carbon nanostructure dispersion obtained by the dispersion method of the present invention is analyzed (S50).

具体的に、本発明の方法において、分散される炭素ナノ構造体としては、公知の合成法、たとえば、化学蒸着法(CVD)、アーク(arc)法、レーザ・アブレーション(laser ablation)などによって合成されたどのような種類の炭素ナノ構造体も用いられる。   Specifically, in the method of the present invention, the carbon nanostructure to be dispersed may be synthesized by a known synthesis method, for example, a chemical vapor deposition method (CVD), an arc method, an laser ablation method, or the like. Any type of carbon nanostructure that has been used can be used.

このような炭素ナノ構造体は、場合に応じて公知の方法、たとえば、400〜800℃の空気のような酸化ガス雰囲気中で熱処理するか、塩酸、硝酸、フッ酸または硫酸のような無機強酸で処理することによって、非晶質炭素または触媒金属を除去して精製してもよい。   Such a carbon nanostructure may be heat-treated in a known manner, for example, in an oxidizing gas atmosphere such as air at 400 to 800 ° C., or may be an inorganic strong acid such as hydrochloric acid, nitric acid, hydrofluoric acid or sulfuric acid. , The amorphous carbon or the catalytic metal may be removed for purification.

本発明によれば、精製されたか、または精製されていない炭素ナノ構造体を−20〜500℃でフッ素ガスで処理する。前記フッ素ガスは、炭素に対するフッ素の原子比が0.001〜50:100、好ましくは0.001〜30:100、さらに好ましくは0.001〜5:100の範囲の量で使用する。このようなフッ素化処理によって、フッ素基が炭素ナノ構造体の表面の一部を覆うことによって、溶媒中で炭素ナノ構造体粒子の粒子間の相互作用を減少させて炭素ナノ構造体の凝集を抑制する。フッ素化処理された炭素ナノ構造体は個別粒子(単一壁炭素ナノチューブの場合、粒子サイズが1〜3nmである)として溶媒中に分散され、炭素ナノ構造体自体のユニークな特徴が発揮できる。   According to the present invention, the purified or unpurified carbon nanostructure is treated with fluorine gas at -20 to 500C. The fluorine gas is used at an atomic ratio of fluorine to carbon of 0.001 to 50: 100, preferably 0.001 to 30: 100, and more preferably 0.001 to 5: 100. By such a fluorination treatment, the fluorine group covers a part of the surface of the carbon nanostructure, thereby reducing the interaction between the carbon nanostructure particles in the solvent and reducing the aggregation of the carbon nanostructure. Suppress. The fluorinated carbon nanostructure is dispersed in a solvent as individual particles (in the case of a single-walled carbon nanotube, the particle size is 1 to 3 nm), and the unique characteristics of the carbon nanostructure itself can be exhibited.

本発明において、マトリックスとして使用され得る溶媒の例としては、蒸留水、イソプロパノール、ジメチルホルムアミド、クロロホルム、ジクロロエタン、メチルピロリドン、テトラヒドロフラン、デカンまたはこれらの混合物がある。   In the present invention, examples of solvents that can be used as a matrix include distilled water, isopropanol, dimethylformamide, chloroform, dichloroethane, methylpyrrolidone, tetrahydrofuran, decane or a mixture thereof.

前記溶媒は、分散剤として任意に界面活性剤、水溶性高分子またはこれらの混合物を、溶媒に対して0.001〜5.0重量%の量で含んでもよい。界面活性剤および水溶性高分子は、好ましくは1:0.8の重量比で混合してもよい。   The solvent may optionally contain a surfactant, a water-soluble polymer or a mixture thereof as a dispersant in an amount of 0.001 to 5.0% by weight based on the solvent. The surfactant and the water-soluble polymer may be mixed preferably in a weight ratio of 1: 0.8.

前記界面活性剤の例としては、ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸ナトリウム、ブチルベンゼン硫酸ナトリウム、臭化ドデシルトリメチルアンモニウム、トリトン(Triton)X−100、塩化ベンズアルコニウムまたはこれらの混合物がある。   Examples of the surfactant include sodium dodecyl sulfate, sodium dodecyl benzene sulfate, sodium butyl benzene sulfate, dodecyl trimethyl ammonium bromide, Triton X-100, benzalkonium chloride or a mixture thereof.

前記水溶性高分子の例としては、アカシア、シクロデキストリン、ポリビニルピロリドン、カルボキシルメチルセルロースまたはこれらの混合物がある。   Examples of the water-soluble polymer include acacia, cyclodextrin, polyvinylpyrrolidone, carboxymethylcellulose or a mixture thereof.

本発明の方法において、炭素ナノ構造体分散液を場合に応じて100〜750Wの超音波で10分〜2時間処理して炭素ナノ構造体の分散を促進できる。   In the method of the present invention, the dispersion of the carbon nanostructure can be promoted by treating the carbon nanostructure dispersion liquid with ultrasonic waves of 100 to 750 W for 10 minutes to 2 hours as appropriate.

さらに、場合に応じて、炭素ナノ構造体分散液に酸またはアルカリ溶液を添加して分散液のpHを8〜14の範囲に調節することによって分散効果を高めることができる。   Further, if necessary, an acid or alkali solution is added to the carbon nanostructure dispersion to adjust the pH of the dispersion to a range of 8 to 14, so that the dispersion effect can be enhanced.

(実施例)
以下、本発明を下記実施例によってさらに詳細に説明する。ただし、これらは本発明を例示するためのものであり、本発明の範囲を制限しない。
(Example)
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these are only for illustrating the present invention, and do not limit the scope of the present invention.

[実施例1]
通常のCVD方法で合成した単一壁炭素ナノチューブを、管状反応器を用いて400℃の温度で空気で酸化処理することによって精製した。精製された炭素ナノチューブをさらに0.1barのフッ素ガス(F2)の雰囲気下、40℃で30分間フッ素化処理した。フッ素化処理された炭素ナノチューブをクロロホルムに分散して炭素ナノチューブ分散液を得た。
[Example 1]
Single-walled carbon nanotubes synthesized by a conventional CVD method were purified by oxidation treatment with air at a temperature of 400 ° C. using a tubular reactor. The purified carbon nanotubes were further fluorinated at 40 ° C. for 30 minutes under an atmosphere of 0.1 bar of fluorine gas (F 2 ). The fluorinated carbon nanotubes were dispersed in chloroform to obtain a carbon nanotube dispersion.

[比較例1]
通常のアーク法で合成した単一壁炭素ナノチューブを管状反応器を用いて400℃の温度で空気で酸化処理することによって精製した。精製された炭素ナノチューブを実施例1のフッ素化処理工程を省略し、蒸留水に分散して炭素ナノチューブ分散液を得た。
[Comparative Example 1]
The single-walled carbon nanotubes synthesized by the conventional arc method were purified by oxidation treatment with air at 400 ° C. using a tubular reactor. The purified carbon nanotubes were dispersed in distilled water by omitting the fluorination treatment step of Example 1 to obtain a carbon nanotube dispersion.

[比較例2]
蒸留水に500Wの超音波を30分間加えたことを除いては、比較例1と同様な方法で炭素ナノチューブ分散液を得た。
[Comparative Example 2]
A carbon nanotube dispersion was obtained in the same manner as in Comparative Example 1, except that 500 W of ultrasonic waves was applied to distilled water for 30 minutes.

[実施例2]
実施例1に従ってフッ素化処理された炭素ナノチューブを0.01重量%のドデシルベンゼン硫酸ナトリウム水溶液に分散し、これに500Wの超音波を30分間加えて炭素ナノチューブ分散液を得た。
[Example 2]
The fluorinated carbon nanotubes according to Example 1 were dispersed in a 0.01% by weight aqueous solution of sodium dodecylbenzene sulfate, and 500 W ultrasonic waves were applied thereto for 30 minutes to obtain a carbon nanotube dispersion.

[実施例3]
ドデシルベンゼン硫酸ナトリウム水溶液の代わりに、カルボキシルメチルセルロース水溶液0.1重量%を用いたことを除いては、前記実施例2と同様な方法で炭素ナノチューブ分散液を得た。
[Example 3]
A carbon nanotube dispersion was obtained in the same manner as in Example 2, except that 0.1% by weight of an aqueous solution of carboxymethyl cellulose was used instead of the aqueous solution of sodium dodecylbenzene sulfate.

[比較例3]
フッ素化処理された炭素ナノチューブの代わりに、フッ素化処理されていない炭素ナノチューブを用いたことを除いては、前記実施例2と同様な方法で炭素ナノチューブ分散液を得た。
[Comparative Example 3]
A carbon nanotube dispersion was obtained in the same manner as in Example 2, except that a non-fluorinated carbon nanotube was used instead of the fluorinated carbon nanotube.

[実施例4]
単一壁炭素ナノチューブおよび蒸留水の代わりに、それぞれ多重壁炭素ナノチューブおよびイソプロピルアルコールを用いたことを除いては、前記実施例1と同様な方法で炭素ナノチューブ分散液を得た。
[Example 4]
A carbon nanotube dispersion was obtained in the same manner as in Example 1, except that the single-walled carbon nanotube and isopropyl alcohol were used instead of the single-walled carbon nanotube and distilled water, respectively.

[実験例1]炭素ナノチューブ分散液の粒子サイズ分布
前記比較例1〜3および実施例1〜3で得られた炭素ナノチューブ分散液の粒子サイズ分布を粒度分析計(ELS−8000;大塚電子株式会社製)を用いて測定した後、その結果をそれぞれ図2〜7に示す。図2〜7において、横軸は測定された炭素ナノチューブまたは炭素ナノチューブ束の直径を示し、縦軸は相対分布度を示す。
Experimental Example 1 Particle Size Distribution of Carbon Nanotube Dispersion The particle size distribution of the carbon nanotube dispersions obtained in Comparative Examples 1 to 3 and Examples 1 to 3 was measured using a particle size analyzer (ELS-8000; Otsuka Electronics Co., Ltd.). The results are shown in FIGS. 2 to 7, respectively. 2 to 7, the horizontal axis indicates the measured diameter of the carbon nanotube or the carbon nanotube bundle, and the vertical axis indicates the relative distribution.

図2は、前記比較例1に従って、フッ素化処理なしに精製工程のみを行うことによって得られた炭素ナノチューブ分散液の粒子サイズ分布を示す図であって、炭素ナノチューブが100〜4,500nmの広範囲なサイズ範囲で分散されていることが分かる。   FIG. 2 is a diagram showing a particle size distribution of a carbon nanotube dispersion obtained by performing only a purification step without a fluorination treatment according to Comparative Example 1, wherein the carbon nanotubes have a wide range of 100 to 4,500 nm. It can be seen that they are dispersed in a wide range of sizes.

図3は、前記比較例2に従って、フッ素化処理なしに精製および超音波処理を行うことによって得られた炭素ナノチューブ分散液の粒子サイズ分布を示す図であって、炭素ナノチューブが100〜1,000nmと依然として広範囲なサイズ範囲で分散されていることが分かる。   FIG. 3 is a diagram showing a particle size distribution of a carbon nanotube dispersion obtained by performing purification and ultrasonic treatment without fluorination treatment according to Comparative Example 2, wherein the carbon nanotubes have a particle size of 100 to 1,000 nm. It can be seen that they are still distributed over a wide size range.

図4は、前記比較例3に従って、フッ素化処理なしに精製、界面活性剤および超音波処理を行うことによって得られた炭素ナノチューブ分散液の粒子サイズ分布を示す図であって、炭素ナノチューブが単一壁炭素ナノチューブの場合よりも大きい10〜15nmのサイズ範囲で分散されていることが分かる。   FIG. 4 is a diagram showing the particle size distribution of a carbon nanotube dispersion obtained by performing purification, surfactant and ultrasonic treatment without fluorination treatment according to Comparative Example 3, wherein the carbon nanotubes are single It can be seen that the particles are dispersed in a size range of 10 to 15 nm, which is larger than that of the single-walled carbon nanotube.

図5は、前記実施例1に従って、精製およびフッ素化処理を行うことによって得られた炭素ナノチューブ分散液の粒子サイズ分布を示す図であって、炭素ナノチューブが1〜2.5nmのサイズ範囲で分散されていることが分かる。   FIG. 5 is a diagram showing a particle size distribution of a carbon nanotube dispersion obtained by performing purification and fluorination treatment according to Example 1, wherein carbon nanotubes are dispersed in a size range of 1 to 2.5 nm. You can see that it is done.

図6は、前記実施例2に従って、精製、フッ素化処理、界面活性剤および超音波処理を行うことによって得られた炭素ナノチューブ分散液の粒子サイズ分布を示す図であって、炭素ナノチューブが1〜3nmのサイズ範囲で分散されていることが分かる。   FIG. 6 is a diagram showing a particle size distribution of a carbon nanotube dispersion obtained by performing purification, fluorination treatment, surfactant, and ultrasonic treatment in accordance with Example 2, wherein the carbon nanotubes are 1 to 3. It can be seen that the particles are dispersed in a size range of 3 nm.

図7は、前記実施例3に従って、精製、フッ素化処理、水溶性高分子および超音波処理を行うことによって得られた炭素ナノチューブ分散液の粒子サイズ分布を示す図であって、炭素ナノチューブが1.7〜3nmのサイズ範囲で分散されていることが分かる。   FIG. 7 is a diagram showing a particle size distribution of a carbon nanotube dispersion obtained by performing purification, fluorination treatment, water-soluble polymer, and ultrasonic treatment according to Example 3, wherein It can be seen that the particles are dispersed in a size range of 0.7 to 3 nm.

このように、フッ素化処理された炭素ナノチューブは単一壁炭素ナノチューブの直径に相応する3nm以下の均一な粒子サイズ範囲で分散できる。   Thus, the fluorinated carbon nanotubes can be dispersed in a uniform particle size range of 3 nm or less corresponding to the diameter of the single-walled carbon nanotube.

本発明の一実施態様に従って炭素ナノ構造体を個別粒子状態に分散させる方法を概略的に示すフローチャートである。3 is a flowchart schematically illustrating a method of dispersing carbon nanostructures into individual particles according to an embodiment of the present invention. 比較例1で得られた炭素ナノチューブ分散液の粒子サイズ分布を示す図である。FIG. 3 is a view showing a particle size distribution of the carbon nanotube dispersion obtained in Comparative Example 1. 比較例2で得られた炭素ナノチューブ分散液の粒子サイズ分布を示す図である。FIG. 9 is a view showing a particle size distribution of the carbon nanotube dispersion obtained in Comparative Example 2. 比較例3で得られた炭素ナノチューブ分散液の粒子サイズ分布を示す図である。FIG. 9 is a view showing a particle size distribution of the carbon nanotube dispersion obtained in Comparative Example 3. 本発明の実施例1に係る、フッ素化処理された炭素ナノチューブ分散液の粒子サイズ分布を示す図である。FIG. 2 is a view showing a particle size distribution of a fluorinated carbon nanotube dispersion liquid according to Example 1 of the present invention. 本発明の実施例2に係る、フッ素化処理された炭素ナノチューブ分散液の粒子サイズ分布を示す図である。It is a figure which shows the particle size distribution of the carbon nanotube dispersion liquid which carried out the fluorination process which concerns on Example 2 of this invention. 本発明の実施例3に係る、フッ素化処理された炭素ナノチューブ分散液の粒子サイズ分布を示す図である。FIG. 4 is a view showing a particle size distribution of a fluorinated carbon nanotube dispersion liquid according to Example 3 of the present invention.

Claims (12)

炭素ナノ構造体の表面を含フッ素ガスでフッ素化処理し、フッ素化処理された炭素ナノ構造体を溶媒中に分散させることを含む、炭素ナノ構造体の分散方法。   A method for dispersing a carbon nanostructure, comprising: fluorinating a surface of a carbon nanostructure with a fluorine-containing gas; and dispersing the fluorinated carbon nanostructure in a solvent. フッ素化処理が、−20〜500℃の温度で行われることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the fluorination treatment is performed at a temperature of -20 to 500C. フッ素化処理された炭素ナノ構造体中の炭素に対するフッ素の原子比が0.001〜50:100であることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the atomic ratio of fluorine to carbon in the fluorinated carbon nanostructure is 0.001 to 50: 100. フッ素化処理前に炭素ナノ構造体を精製することをさらに含むことを特徴とする請求項1記載の方法。   The method of claim 1, further comprising purifying the carbon nanostructure before the fluorination treatment. 精製過程が、炭素ナノ構造体を酸化性ガス雰囲気中で熱処理するか、無機強酸で処理することによって行われることを特徴とする請求項4記載の方法。   The method according to claim 4, wherein the purification step is performed by heat-treating the carbon nanostructure in an oxidizing gas atmosphere or by treating with a strong inorganic acid. 溶媒が、蒸留水、イソプロパノール、ジメチルホルムアミド、クロロホルム、ジクロロエタン、メチルピロリドン、テトラヒドロフラン、デカンおよびこれらの混合物からなる群から選ばれるものであることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the solvent is selected from the group consisting of distilled water, isopropanol, dimethylformamide, chloroform, dichloroethane, methylpyrrolidone, tetrahydrofuran, decane and mixtures thereof. 溶媒が、界面活性剤、水溶性高分子およびこれらの混合物からなる群から選ばれる分散剤を含むことを特徴とする請求項6記載の方法。   The method according to claim 6, wherein the solvent comprises a dispersant selected from the group consisting of a surfactant, a water-soluble polymer, and a mixture thereof. 界面活性剤が、ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸ナトリウム、ブチルベンゼン硫酸ナトリウム、臭化ドデシルトリメチルアンモニウム、トリトン(Triton)X−100、塩化ベンズアルコニウムおよびこれらの混合物からなる群から選ばれることを特徴とする請求項7記載の方法。   The surfactant is selected from the group consisting of sodium dodecyl sulfate, sodium dodecylbenzene sulfate, sodium butylbenzene sulfate, dodecyltrimethylammonium bromide, Triton X-100, benzalkonium chloride and mixtures thereof. The method according to claim 7, wherein 水溶性高分子が、アカシア、シクロデキストリン、ポリビニルピロリドン、カルボキシルメチルセルロースおよびこれらの混合物からなる群から選ばれることを特徴とする請求項7記載の方法。   The method according to claim 7, wherein the water-soluble polymer is selected from the group consisting of acacia, cyclodextrin, polyvinylpyrrolidone, carboxymethylcellulose, and a mixture thereof. フッ素化処理された炭素ナノ構造体分散液に超音波処理をさらに行うことを特徴とする請求項1記載の方法。   The method according to claim 1, further comprising subjecting the fluorinated carbon nanostructure dispersion to ultrasonic treatment. フッ素化処理された炭素ナノ構造体分散液のpHを8〜14の範囲に調節する段階を含む請求項1記載の方法。   The method according to claim 1, further comprising adjusting the pH of the fluorinated carbon nanostructure dispersion to a range of 8 to 14. 請求項1〜11のいずれか1項の方法によって得られた炭素ナノ構造体分散液。   A carbon nanostructure dispersion obtained by the method according to claim 1.
JP2004159946A 2003-05-28 2004-05-28 Dispersion method of carbon nanostructure Expired - Fee Related JP3831387B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20030034041 2003-05-28

Publications (2)

Publication Number Publication Date
JP2004352608A true JP2004352608A (en) 2004-12-16
JP3831387B2 JP3831387B2 (en) 2006-10-11

Family

ID=34056776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159946A Expired - Fee Related JP3831387B2 (en) 2003-05-28 2004-05-28 Dispersion method of carbon nanostructure

Country Status (2)

Country Link
JP (1) JP3831387B2 (en)
KR (1) KR100657351B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005095274A1 (en) * 2004-03-31 2008-02-21 ステラケミファ株式会社 Aggregate of carbon nanotubes, method for forming the same, and biocompatible material
US7682590B2 (en) 2003-11-27 2010-03-23 National Institute Of Advanced Industrial Science And Technology Carbon nanotube dispersed polar organic solvent and method for producing the same
WO2010074000A1 (en) * 2008-12-24 2010-07-01 国立大学法人東北大学 Dispersion of carbon material and process for producing same
KR100982326B1 (en) * 2008-05-13 2010-09-15 삼성에스디아이 주식회사 Membrane electrode assembly for fuel cell, and fuel cell system comprising the same
WO2015050257A1 (en) * 2013-10-03 2015-04-09 東洋炭素株式会社 Inorganic pigment particle and method for producing same
JP2015105211A (en) * 2013-11-29 2015-06-08 日本ゼオン株式会社 Carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
JP2016108234A (en) * 2014-12-02 2016-06-20 大日本印刷株式会社 Flaky graphite, graphite material and flaky graphite dispersion
WO2018105559A1 (en) * 2016-12-06 2018-06-14 国立大学法人東北大学 Carbon material, production method therefor, and electron-releasing material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773551B1 (en) 2006-04-14 2007-11-07 삼성전자주식회사 Carbon Nanotube dispersion solution and method for preparing the same
KR100928219B1 (en) * 2006-09-14 2009-11-25 한국전기연구원 Oil-Based Carbon Nanotube Paste Composition, Oil-Based Carbon Nanotube Electrode Using the Same, Manufacturing Method Thereof, and Dye-Sensitized Solar Cell Using the Oil-Based Carbon Nanotube Electrode
KR100926219B1 (en) * 2008-01-31 2009-11-09 경희대학교 산학협력단 Manufacturing Method of Field Emitter Improved in Electron Emission Characteristic

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682590B2 (en) 2003-11-27 2010-03-23 National Institute Of Advanced Industrial Science And Technology Carbon nanotube dispersed polar organic solvent and method for producing the same
JP5014786B2 (en) * 2004-03-31 2012-08-29 ステラケミファ株式会社 Aggregate of carbon nanotubes, method for forming the same, and biocompatible material
JPWO2005095274A1 (en) * 2004-03-31 2008-02-21 ステラケミファ株式会社 Aggregate of carbon nanotubes, method for forming the same, and biocompatible material
KR100982326B1 (en) * 2008-05-13 2010-09-15 삼성에스디아이 주식회사 Membrane electrode assembly for fuel cell, and fuel cell system comprising the same
JP5946242B2 (en) * 2008-12-24 2016-07-06 国立大学法人東北大学 Dispersion liquid of carbon material and manufacturing method thereof
US20110253945A1 (en) * 2008-12-24 2011-10-20 Stella Chemifa Corporation Dispersion of carbon material and process for producing same
CN102264640B (en) * 2008-12-24 2014-09-10 国立大学法人东北大学 Dispersion liquid of carbon material and process for producing same
EP2377814A4 (en) * 2008-12-24 2014-11-05 Univ Tohoku Nat Univ Corp Dispersion of carbon material and process for producing same
US9296613B2 (en) * 2008-12-24 2016-03-29 National University Corporation Tohoku University Dispersion of carbon material and process for producing same
WO2010074000A1 (en) * 2008-12-24 2010-07-01 国立大学法人東北大学 Dispersion of carbon material and process for producing same
WO2015050257A1 (en) * 2013-10-03 2015-04-09 東洋炭素株式会社 Inorganic pigment particle and method for producing same
JP2015105211A (en) * 2013-11-29 2015-06-08 日本ゼオン株式会社 Carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
JP2016108234A (en) * 2014-12-02 2016-06-20 大日本印刷株式会社 Flaky graphite, graphite material and flaky graphite dispersion
WO2018105559A1 (en) * 2016-12-06 2018-06-14 国立大学法人東北大学 Carbon material, production method therefor, and electron-releasing material
JPWO2018105559A1 (en) * 2016-12-06 2019-10-24 国立大学法人東北大学 Carbon material, method for producing the same, and electron emission material
JP7092306B2 (en) 2016-12-06 2022-06-28 国立大学法人東北大学 Carbon material, its manufacturing method and electron emission material

Also Published As

Publication number Publication date
JP3831387B2 (en) 2006-10-11
KR100657351B1 (en) 2006-12-14
KR20040103325A (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US7090819B2 (en) Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
JP3831387B2 (en) Dispersion method of carbon nanostructure
US6752977B2 (en) Process for purifying single-wall carbon nanotubes and compositions thereof
Ahlskog et al. Ring formations from catalytically synthesized carbon nanotubes
KR100912807B1 (en) Method of fabrication for carbon nanotubes uniformly coated with Titanium dioxide
JP4900376B2 (en) Method for treating carbon nanotubes
JP2017206413A (en) Carbon nanotubes and method for producing the same, and carbon nanotubes dispersion
CN1628075A (en) Method for cutting single-wall carbon nanotubes through fluorination
US20190077668A1 (en) Production of graphene sheets from highly aromatic molecules
Nair et al. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube
CN101589184A (en) Rapid microwave process for purification of nanocarbon preparations
JPWO2018168346A1 (en) Method for producing surface-treated carbon nanostructure
Stancu et al. Purification of multiwall carbon nanotubes obtained by AC arc discharge method
JP2005075661A (en) Carbon nanotube dispersed solution and method of manufacturing the same
JP2007055863A (en) Surface-modified carbon and its manufacturing method
Geng et al. Ect of carbon nanotube types in fabricating flexible transparent conducting films
Zhong et al. X-ray absorption near-edge structure and photoelectron spectroscopy of single-walled carbon nanotubes modified by a HBr solution
US9181099B2 (en) Purification of carbon nanotubes using agarose column and density gradient ultracentrifugation
Sundaram et al. Purifying carbon nanotube wires by vacuum annealing
JP4791697B2 (en) Method for producing silicon particles
JP4567319B2 (en) Method for producing carbon nanotube
Li et al. Polymerization of short single-walled carbon nanotubes into large strands
EP1583716A1 (en) Purification of nanotubes
Tseng et al. Nondestructive purification of single-walled carbon nanotube rope through a battery-induced ignition and chemical solution approach
Mohammed et al. Purification and functionalization of carbon nanotubes based on hydrogen peroxide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees