JPWO2018105559A1 - Carbon material, method for producing the same, and electron emission material - Google Patents

Carbon material, method for producing the same, and electron emission material Download PDF

Info

Publication number
JPWO2018105559A1
JPWO2018105559A1 JP2018554991A JP2018554991A JPWO2018105559A1 JP WO2018105559 A1 JPWO2018105559 A1 JP WO2018105559A1 JP 2018554991 A JP2018554991 A JP 2018554991A JP 2018554991 A JP2018554991 A JP 2018554991A JP WO2018105559 A1 JPWO2018105559 A1 JP WO2018105559A1
Authority
JP
Japan
Prior art keywords
carbon
membered ring
carbon material
ring structure
nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018554991A
Other languages
Japanese (ja)
Other versions
JP7092306B2 (en
Inventor
和幸 田路
義倫 佐藤
洋次 尾本
良憲 佐藤
慧 石丸
浩典 松下
雅士 山本
哲郎 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Stella Chemifa Corp
Original Assignee
Tohoku University NUC
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Stella Chemifa Corp filed Critical Tohoku University NUC
Publication of JPWO2018105559A1 publication Critical patent/JPWO2018105559A1/en
Application granted granted Critical
Publication of JP7092306B2 publication Critical patent/JP7092306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Conductive Materials (AREA)

Abstract

電気伝導性に優れた炭素材料、その製造方法及び電子放出材料を提供する。本発明にかかる炭素材料は、炭素六員環ネットワークを有する炭素材料であって、前記炭素六員環ネットワーク中に、再配列構造である炭素五員環構造と炭素七員環構造がそれぞれ組み込まれていることを特徴とする。A carbon material having excellent electrical conductivity, a method for producing the same, and an electron emission material are provided. The carbon material according to the present invention is a carbon material having a carbon six-membered ring network, and a carbon five-membered ring structure and a carbon seven-membered ring structure, which are rearranged structures, are respectively incorporated in the carbon six-membered ring network. It is characterized by.

Description

本発明は、炭素材料、その製造方法及び電子放出材料に関し、より詳細には導電性に優れ、電界電子放出型ディスプレイ(FED)のエミッタや電界効果トランジスタ、陰極線管、電子銃等の電子デバイスへの応用が可能な炭素材料、その製造方法及び電子放出材料に関する。   The present invention relates to a carbon material, a method for producing the same, and an electron emission material, and more particularly, to an electronic device such as an emitter of a field electron emission display (FED), a field effect transistor, a cathode ray tube, and an electron gun. The present invention relates to a carbon material, a manufacturing method thereof, and an electron emission material.

単層カーボンナノチューブ(single-walled carbon nanotubes、以下「SWCNT」という場合がある。)は炭素原子のみから構成される中空円筒状の炭素材料であり、その特徴的な構造ゆえに優れた機械特性や電気伝導性を示す。また、SWCNTは巻き方(カイラリティ)によって金属型にも半導体型にもなるという特異な性質を備えている。特に、その優れた電気伝導性を活かしてナノ配線や超軽量電線、その他電子デバイスへの応用が期待されているが、未だ実現には至っていない。   Single-walled carbon nanotubes (hereinafter sometimes referred to as “SWCNT”) are hollow cylindrical carbon materials composed only of carbon atoms, and because of their characteristic structure, they have excellent mechanical properties and electrical properties. Shows conductivity. Further, SWCNT has a unique property that it can be either a metal type or a semiconductor type depending on the winding method (chirality). In particular, it is expected to be applied to nanowiring, ultralight wires, and other electronic devices by taking advantage of its excellent electrical conductivity, but has not yet been realized.

その原因の一つとして、SWCNTの合成過程、精製過程又は表面の化学修飾過程等で、その炭素骨格に構造上の欠陥が導入されることが挙げられる。構造上の欠陥は、SWCNTの電気伝導性をはじめとする幾つかの特性の低下又は変化を招来するためである。その結果、構造欠陥を有しないSWCNTの研究・開発が進められているが、その合成は困難であるという問題がある。尚、ここでいう構造上の欠陥とは、導入された官能基、STW(Stone-Thrower-Wales)欠陥、炭素原子以外の原子(例えば、水素原子や酸素原子、窒素原子、金属原子等)が存在することによる欠陥、空孔欠陥等を意味する。   One of the causes is that structural defects are introduced into the carbon skeleton during the SWCNT synthesis process, purification process, or surface chemical modification process. This is because structural defects cause a decrease or change in some properties including the electrical conductivity of SWCNTs. As a result, research and development of SWCNTs that do not have structural defects are underway, but there is a problem that their synthesis is difficult. The structural defects mentioned here are introduced functional groups, STW (Stone-Thrower-Wales) defects, and atoms other than carbon atoms (for example, hydrogen atoms, oxygen atoms, nitrogen atoms, metal atoms, etc.). It means defects due to existence, vacancy defects, and the like.

S.Iijima、 Nature Vol.354、 p.56(1991)S.Iijima, Nature Vol.354, p.56 (1991)

本発明は前記問題点に鑑みなされたものであり、その目的は、電気伝導性に優れた炭素材料、その製造方法及び電子放出材料を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a carbon material excellent in electrical conductivity, a manufacturing method thereof, and an electron emission material.

本願発明者等は、SWCNT等の炭素材料を実用化するにあたって、空孔欠陥が発生するのを防止するのではなく、当該空孔欠陥を積極的に利用することで、電気伝導性等の特性の制御が可能になることを見出し、本願発明を完成させるに至った。   The inventors of the present application do not prevent the occurrence of vacancy defects when putting carbon materials such as SWCNTs into practical use, but actively utilize the vacancy defects, thereby providing characteristics such as electrical conductivity. As a result, the present invention has been completed.

すなわち、本発明の炭素材料は、前記の課題を解決する為に、炭素六員環ネットワークを有する炭素材料であって、前記炭素六員環ネットワーク中に、再配列構造である炭素五員環構造と炭素七員環構造がそれぞれ組み込まれているものであることを特徴とする。   That is, in order to solve the above problems, the carbon material of the present invention is a carbon material having a carbon six-membered ring network, and a carbon five-membered ring structure that is a rearranged structure in the carbon six-membered ring network. And a carbon seven-membered ring structure.

前記の構成に於いて、前記炭素六員環ネットワークを有する炭素材料がカーボンナノチューブであり、前記再配列構造である炭素五員環構造と炭素七員環構造が、前記カーボンナノチューブの少なくとも側面にそれぞれ組み込まれていることが好ましい。   In the above configuration, the carbon material having the carbon six-membered ring network is a carbon nanotube, and the carbon five-membered ring structure and the carbon seven-membered ring structure, which are the rearranged structures, are provided on at least side surfaces of the carbon nanotube. It is preferably incorporated.

前記の構成に於いては、前記カーボンナノチューブが、ジグザグ型単層カーボンナノチューブ、アームチェア型単層カーボンナノチューブ又はキラル型単層カーボンナノチューブであることが好ましい。   In the above configuration, the carbon nanotube is preferably a zigzag single-walled carbon nanotube, an armchair single-walled carbon nanotube, or a chiral single-walled carbon nanotube.

前記の構成に於いては、前記炭素六員環ネットワークを有する炭素材料がグラフェンであることが好ましい。   In the above configuration, the carbon material having the carbon six-membered ring network is preferably graphene.

本発明に係る炭素材料の製造方法は、前記の課題を解決する為に、炭素六員環ネットワークを有する炭素材料に、フッ素含有ガスを含む処理ガスを接触させて、当該炭素材料の表面にフッ素基を導入するフッ素化処理工程と、前記フッ素化処理工程後の炭素材料を、温度400℃〜1500℃の条件下でアニール処理することにより、前記フッ素基を脱離させて炭素六員環構造に空孔を生じさせ、再配列構造である炭素五員環構造と炭素七員環構造をそれぞれ導入するアニール処理工程とを含むことを特徴とする。   In order to solve the above-described problem, a method for producing a carbon material according to the present invention comprises bringing a treatment gas containing a fluorine-containing gas into contact with a carbon material having a carbon six-membered ring network, and applying fluorine to the surface of the carbon material. A fluorination treatment step for introducing a group, and a carbon material after the fluorination treatment step is annealed under conditions of a temperature of 400 ° C. to 1500 ° C. And an annealing treatment step for introducing a carbon five-membered ring structure and a carbon seven-membered ring structure, which are rearranged structures, respectively.

前記の構成に於いては、前記炭素六員環ネットワークを有する炭素材料としてカーボンナノチューブを用い、前記アニール処理により、前記再配列構造である炭素五員環構造と炭素七員環構造を、前記カーボンナノチューブの側面にそれぞれ導入することが好ましい。   In the above-described configuration, carbon nanotubes are used as the carbon material having the carbon six-membered ring network, and the carbon five-membered ring structure and the carbon seven-membered ring structure as the rearranged structure are converted into the carbon by the annealing treatment. It is preferable to introduce each into the side surface of the nanotube.

前記の構成に於いては、前記カーボンナノチューブとして、ジグザグ型単層カーボンナノチューブ、アームチェア型単層カーボンナノチューブ又はキラル型単層カーボンナノチューブを用いることが好ましい。   In the above configuration, it is preferable to use a zigzag single-walled carbon nanotube, an armchair single-walled carbon nanotube, or a chiral single-walled carbon nanotube as the carbon nanotube.

前記の構成に於いては、前記炭素六員環ネットワークを有する炭素材料としてグラフェンを用いたことが好ましい。   In the above configuration, graphene is preferably used as the carbon material having the carbon six-membered ring network.

本発明の炭素材料によれば、これを構成する炭素六員環ネットワーク中には、炭素五員環構造及び炭素七員環構造がそれぞれ組み込まれている。そして、炭素五員環構造及び炭素七員環構造は、本来、空孔欠陥が生じていた部分の炭素原子を再配列させた構造である。そのため、前記構成の炭素材料は、空孔欠陥を有する炭素材料と比較して、電気伝導性の向上を図ることができる。   According to the carbon material of the present invention, a carbon five-membered ring structure and a carbon seven-membered ring structure are respectively incorporated in the carbon six-membered ring network constituting the carbon material. The carbon five-membered ring structure and the carbon seven-membered ring structure are structures in which the carbon atoms of the part where the vacancy defects are originally generated are rearranged. Therefore, the carbon material having the above-described configuration can improve electrical conductivity as compared with the carbon material having vacancy defects.

また、本発明の炭素材料の製造方法によれば、炭素六員環ネットワークを有する炭素材料にフッ素含有ガスを含む処理ガスを接触させることにより、炭素材料の表面にフッ素基を導入してフッ素化処理を行う。次いで、アニール処理を行うことでフッ素基を脱離させ、炭素六員環ネットワークに空孔欠陥を生じさせた後に、当該空孔欠陥部分の炭素原子を再配列させる。これにより、炭素六員環ネットワーク中に再配列構造である炭素五員環構造及び炭素七員環構造が導入され、電気伝導性に優れた炭素材料の製造が可能になる。   Further, according to the method for producing a carbon material of the present invention, a fluorine gas is introduced to the surface of the carbon material by bringing a treatment gas containing a fluorine-containing gas into contact with the carbon material having a carbon six-membered ring network, thereby fluorinating. Process. Next, annealing is performed to desorb the fluorine group and cause a vacancy defect in the carbon six-membered ring network, and then rearrange the carbon atoms in the vacancy defect portion. As a result, a carbon five-membered ring structure and a carbon seven-membered ring structure, which are rearranged structures, are introduced into the carbon six-membered ring network, and a carbon material having excellent electrical conductivity can be produced.

単層カーボンナノチューブの構造を概略的に表す部分拡大図であって、同図(a)は単層カーボンナノチューブがジグザグ型である場合を表し、同図(b)は当該ジグザグ型の単層カーボンナノチューブに再配列構造が導入された場合を表し、同図(c)は単層カーボンナノチューブがアームチェア型である場合を表し、同図(d)は当該アームチェア型の単層カーボンナノチューブに再配列構造が導入された場合を表す。It is the elements on larger scale showing the structure of a single wall carbon nanotube roughly, Comprising: The same figure (a) represents the case where a single wall carbon nanotube is a zigzag type, The same figure (b) is the said zigzag type single wall carbon. The figure shows a case where a rearranged structure is introduced into the nanotube. FIG. 10C shows the case where the single-walled carbon nanotube is an armchair type, and FIG. This represents the case where an array structure is introduced. 本発明の実施の一形態に係る炭素材料の製造方法を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of the carbon material which concerns on one Embodiment of this invention.

(炭素材料)
本発明の実施の一形態に係る炭素材料について、以下に説明する。
本実施の形態の炭素材料は、炭素六員環ネットワークを有し、さらに炭素六員環ネットワークに再配列構造である炭素五員環構造と炭素七員環構造がそれぞれ組み込まれた構造を有する。炭素骨格である炭素六員環ネットワーク中に、炭素五員環構造及び炭素七員環構造が組み込まれることにより、当該炭素材料の電気伝導性の向上が図れる。
(Carbon material)
A carbon material according to an embodiment of the present invention will be described below.
The carbon material of the present embodiment has a carbon six-membered ring network, and further has a structure in which a carbon five-membered ring structure and a carbon seven-membered ring structure, which are rearranged structures, are respectively incorporated in the carbon six-membered ring network. By incorporating a carbon five-membered ring structure and a carbon seven-membered ring structure into a carbon six-membered ring network that is a carbon skeleton, the electrical conductivity of the carbon material can be improved.

本発明において「炭素六員環ネットワーク」とは、炭素原子のみで構成される六員環構造(ハニカム構造)を一単位として、当該六員環構造がネットワーク状に結合した炭素骨格を意味する。「炭素六員環ネットワーク」は水素原子及び置換基を含まない骨組みであって、全て炭素原子からなる。また、本発明において「再配列構造」とは、炭素六員環ネットワークに存在していた空孔欠陥部分において、炭素原子を再配列させたことにより形成される構造を意味し、より具体的には炭素五員環構造及び炭素七員環構造をいう。さらに、前記「空孔欠陥」とは、炭素六員環ネットワークにおいて、当該ネットワークを構成する炭素原子の一部が存在せず、構造上の欠陥として空孔が生じた状態を意味する。   In the present invention, the “carbon six-membered ring network” means a carbon skeleton in which a six-membered ring structure (honeycomb structure) composed of only carbon atoms is used as a unit and the six-membered ring structure is bonded in a network. A “carbon six-membered ring network” is a framework that does not contain hydrogen atoms and substituents, and consists entirely of carbon atoms. In the present invention, the “rearrangement structure” means a structure formed by rearranging carbon atoms in a vacancy defect portion existing in the carbon six-membered ring network, and more specifically. Refers to a carbon five-membered ring structure and a carbon seven-membered ring structure. Further, the “vacancy defect” means a state in which, in the carbon six-membered ring network, a part of the carbon atoms constituting the network does not exist and a void is generated as a structural defect.

前記炭素材料としては、炭素原子からなる炭素六員環ネットワークを備えるものであれば特に限定されず、例えば、活性炭、カーボンナノコイル、グラファイト、カーボンブラック、ダイヤモンドライクカーボン、炭素繊維、グラフェン、非晶質カーボン、フラーレン、カーボンナノチューブ等が挙げられる。さらに、このような炭素材料の基本構造を有する類縁体も本発明にかかる炭素材料に含まれる。これらの炭素材料のうち本実施の形態においては、カーボンナノチューブやグラフェン等が好ましい。尚、フラーレンは、炭素六員環構造の他に炭素五員環構造を本来的に有するものであるが、当該炭素五員環構造は炭素六員環ネットワークに存在していた空孔欠陥部分の炭素原子を再配列させたことにより形成されるものではない。従って、本発明にいう再配列構造である炭素五員環構造とは異なる。   The carbon material is not particularly limited as long as it has a carbon six-membered ring network composed of carbon atoms. For example, activated carbon, carbon nanocoil, graphite, carbon black, diamond-like carbon, carbon fiber, graphene, amorphous Carbon, fullerene, carbon nanotube and the like. Furthermore, analogs having such a basic structure of the carbon material are also included in the carbon material according to the present invention. Among these carbon materials, carbon nanotubes, graphene, and the like are preferable in the present embodiment. Fullerenes inherently have a carbon five-membered ring structure in addition to a carbon six-membered ring structure, and the carbon five-membered ring structure is a vacancy defect portion that was present in the carbon six-membered ring network. It is not formed by rearranging carbon atoms. Therefore, it is different from the carbon five-membered ring structure which is a rearranged structure in the present invention.

炭素材料がカーボンナノチューブである場合、再配列構造である炭素五員環構造及び炭素七員環構造は、当該カーボンナノチューブの少なくとも側面に組み込まれる。カーボンナノチューブの側面に再配列構造である炭素五員環構造及び炭素七員環構造を組み込むことにより、カーボンナノチューブの電気伝導性の向上が図れる。   When the carbon material is a carbon nanotube, the carbon five-membered ring structure and the carbon seven-membered ring structure, which are rearranged structures, are incorporated on at least the side surface of the carbon nanotube. By incorporating a carbon five-membered ring structure and a carbon seven-membered ring structure, which are rearranged structures, on the side surfaces of the carbon nanotube, the electrical conductivity of the carbon nanotube can be improved.

前記カーボンナノチューブとしては、6角網目のチューブ(グラフェンシート)が1枚の構造である単層カーボンナノチューブ(SWCNT:Single Wall Carbon Nanotube)や、多層のグラフェンシートから構成されている多層カーボンナノチューブ(MWCNT:Maluti Wall Carbon Nanotube)、フラーレンチューブ、バッキーチューブ、グラファイトフィブリルが挙げられる。   Examples of the carbon nanotubes include single-walled carbon nanotubes (SWCNTs) having a single hexagonal tube (graphene sheet), and multi-walled carbon nanotubes (MWCNTs) composed of multi-layered graphene sheets. : Fulli Wall Carbon Nanotube), fullerene tube, bucky tube, and graphite fibril.

さらに、単層カーボンナノチューブとしては、六員環構造の配列の観点から、ジグザグ型(金属型)単層カーボンナノチューブ、アームチェア型(半導体型)単層カーボンナノチューブ、キラル型単層カーボンナノチューブが挙げられる。   Furthermore, examples of single-walled carbon nanotubes include zigzag (metal) single-walled carbon nanotubes, armchair-type (semiconductor-type) single-walled carbon nanotubes, and chiral-type single-walled carbon nanotubes from the viewpoint of the arrangement of a six-membered ring structure. It is done.

単層カーボンナノチューブがジグザグ型(金属型)である場合、再配列構造が導入される前の単層カーボンナノチューブは、図1(a)に示すような炭素六員環ネットワークの構造となっている。このジグザグ型単層カーボンナノチューブの炭素六員環ネットワークに、再配列構造である炭素五員環構造及び炭素七員環構造が導入されると、図1(b)に示す様な構造となる。また、単層カーボンナノチューブがアームチェア型(半導体型)である場合、再配列構造が導入される前の単層カーボンナノチューブは、図1(c)に示すような炭素六員環ネットワークの構造となっている。このアームチェア型単層カーボンナノチューブの炭素六員環ネットワークに、再配列構造である炭素五員環構造及び炭素七員環構造が導入されると、図1(d)に示す様な構造となる。尚、図1は、単層カーボンナノチューブの構造を概略的に表す部分拡大図であって、同図(a)は単層カーボンナノチューブがジグザグ型である場合を表し、同図(b)は当該ジグザグ型の単層カーボンナノチューブに再配列構造が導入された場合を表し、同図(c)は単層カーボンナノチューブがアームチェア型である場合を表し、同図(d)は当該アームチェア型の単層カーボンナノチューブに再配列構造が導入された場合を表す。   When the single-walled carbon nanotube is a zigzag type (metal type), the single-walled carbon nanotube before the rearrangement structure is introduced has a carbon six-membered ring network structure as shown in FIG. . When a carbon five-membered ring structure and a carbon seven-membered ring structure, which are rearranged structures, are introduced into the carbon six-membered ring network of the zigzag single-walled carbon nanotube, the structure shown in FIG. 1B is obtained. When the single-walled carbon nanotube is an armchair type (semiconductor type), the single-walled carbon nanotube before the rearrangement structure is introduced has a structure of a carbon six-membered ring network as shown in FIG. It has become. When a carbon five-membered ring structure and a carbon seven-membered ring structure, which are rearranged structures, are introduced into the carbon six-membered ring network of the armchair type single-walled carbon nanotube, the structure shown in FIG. . FIG. 1 is a partially enlarged view schematically showing the structure of a single-walled carbon nanotube, in which FIG. 1 (a) shows a case where the single-walled carbon nanotube is a zigzag type, and FIG. The case where the rearrangement structure is introduced into the zigzag type single-walled carbon nanotube is shown, FIG. 6C shows the case where the single-walled carbon nanotube is an armchair type, and FIG. This represents a case where a rearranged structure is introduced into the single-walled carbon nanotube.

単層カーボンナノチューブは、その末端の一方又は両方が開放された構造であってもよく、あるいは閉鎖された構造であってもよい。閉鎖された構造である場合には、単層カーボンナノチューブの末端に炭素五員環構造が組み込まれる。この場合、その先端形状は炭素五員環構造の数や配置位置に応じて適宜変更可能である。尚、単層カーボンナノチューブの末端を閉鎖した構造とするために導入される炭素五員環構造は、空孔欠陥部分の炭素原子を再配列させて形成されるものではない。従って、本発明にいう再配列構造である炭素五員環構造とは異なる。   The single-walled carbon nanotube may have a structure in which one or both ends thereof are open, or may have a closed structure. In the case of a closed structure, a carbon five-membered ring structure is incorporated at the end of the single-walled carbon nanotube. In this case, the tip shape can be appropriately changed according to the number of carbon five-membered ring structures and the arrangement position. In addition, the carbon five-membered ring structure introduced in order to make the structure which closed the terminal of the single-walled carbon nanotube is not formed by rearranging the carbon atoms of the vacancy defect part. Therefore, it is different from the carbon five-membered ring structure which is a rearranged structure in the present invention.

(炭素材料の製造方法)
次に、本実施の形態に係る炭素材料の製造方法について、図2に基づき以下に説明する。図2は、前記炭素材料の製造方法を説明するための説明図である。
(Method for producing carbon material)
Next, a method for manufacturing the carbon material according to the present embodiment will be described below with reference to FIG. FIG. 2 is an explanatory diagram for explaining a method for producing the carbon material.

図2に示すように、本実施の形態の炭素材料の製造方法は、炭素材料のフッ素化処理工程と、フッ素化処理後の炭素材料をアニール処理するアニール処理工程とを少なくとも有する。   As shown in FIG. 2, the carbon material manufacturing method of the present embodiment includes at least a carbon material fluorination treatment step and an annealing treatment step of annealing the fluorinated carbon material.

前記フッ素化処理工程は、炭素材料に少なくともフッ素含有ガスを含む処理ガスを接触させることにより、気相中でその表面をフッ素化処理する工程である。例えば、図2に示すように、炭素材料が単層カーボンナノチューブ11である場合、本工程は単層カーボンナノチューブ11の表面に炭素−フッ素結合によるフッ素基12を導入するものである。本工程は、例えば、炭素六角網面のエッジ部分に水酸基、カルボニル基又はカルボキシル基等の含酸素官能基を付与する酸化処理とは異なり、炭素材料にダメージを与えたり分解させる等の構造欠陥を生じさせることなく、その表面をフッ素化することができる。   The fluorination treatment step is a step of subjecting the carbon material to a fluorination treatment in a gas phase by bringing a treatment gas containing at least a fluorine-containing gas into contact with the carbon material. For example, as shown in FIG. 2, when the carbon material is a single-walled carbon nanotube 11, this step introduces a fluorine group 12 by a carbon-fluorine bond on the surface of the single-walled carbon nanotube 11. This step is different from, for example, an oxidation treatment in which an oxygen-containing functional group such as a hydroxyl group, a carbonyl group, or a carboxyl group is added to the edge portion of the carbon hexagonal network surface, and structural defects such as damage or decomposition of the carbon material are performed. The surface can be fluorinated without causing it.

前記処理ガスとしては、全体積に対し0.01〜100vol%、好ましくは0.1〜80vol%、より好ましくは1〜50vol%のフッ素含有ガスを含むものが用いられる。フッ素含有ガスの濃度を0.01vol%以上にすることにより、炭素材料表面のフッ素化が不十分となるのを防止することができる。   As said process gas, what contains 0.01-100 vol%, Preferably it is 0.1-80 vol%, More preferably, 1-50 vol% of fluorine-containing gas is used with respect to the whole volume. By setting the concentration of the fluorine-containing gas to 0.01 vol% or more, the fluorination of the carbon material surface can be prevented from becoming insufficient.

前記フッ素含有ガスとはフッ素原子を含む気体を意味し、本実施の形態に於いてはフッ素原子を含むものであれば特に限定されない。前記フッ素含有ガスとしては、例えば、フッ素(F)、フッ化水素(HF)、三フッ化塩素(ClF)、四フッ化硫黄(SF)、三フッ化ホウ素(BF)、三フッ化窒素(NF)、フッ化カルボニル(COF)等が挙げられる。これらは単独で、又は二種以上を混合して用いてもよい。The fluorine-containing gas means a gas containing a fluorine atom, and is not particularly limited in the present embodiment as long as it contains a fluorine atom. Examples of the fluorine-containing gas include fluorine (F 2 ), hydrogen fluoride (HF), chlorine trifluoride (ClF 3 ), sulfur tetrafluoride (SF 4 ), boron trifluoride (BF 3 ), three Examples thereof include nitrogen fluoride (NF 3 ) and carbonyl fluoride (COF 2 ). You may use these individually or in mixture of 2 or more types.

前記処理ガスには不活性ガスが含まれていてもよい。不活性ガスとしては特に限定されないが、フッ素含有ガスと反応して炭素材料のフッ素化処理に悪影響を与えるもの、炭素材料と反応して悪影響を与えるもの、及び当該悪影響を与える不純物を含むものは好ましくない。具体的には、例えば、窒素、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等が挙げられる。これらは単独で、又は2種以上を混合して用いることができる。また、不活性ガスの純度としては特に限定されないが、当該悪影響を与える不純物については100ppm以下であることが好ましく、10ppm以下であることがより好ましく、1ppm以下であることが特に好ましい。   The processing gas may contain an inert gas. The inert gas is not particularly limited, but those that react with the fluorine-containing gas and adversely affect the fluorination treatment of the carbon material, those that react with the carbon material and adversely affect, and those that contain impurities that adversely affect the carbon material It is not preferable. Specific examples include nitrogen, argon, helium, neon, krypton, and xenon. These may be used alone or in admixture of two or more. In addition, the purity of the inert gas is not particularly limited, but the impurities that have an adverse effect are preferably 100 ppm or less, more preferably 10 ppm or less, and particularly preferably 1 ppm or less.

尚、前記処理ガス中には酸素原子を含むガスを含まないことが好ましい。酸素原子を含むガスを含有させることにより、炭素材料の表面に水酸基やカルボキシル基等が導入され、炭素材料に大きなダメージを与える場合があるからである。尚、酸素原子を含むガスとは、酸素ガスや硝酸ガスを意味する。   The processing gas preferably does not contain a gas containing oxygen atoms. This is because by containing a gas containing oxygen atoms, a hydroxyl group, a carboxyl group, or the like is introduced on the surface of the carbon material, and the carbon material may be seriously damaged. The gas containing oxygen atoms means oxygen gas or nitric acid gas.

処理ガスの接触方法としては特に限定されず、例えば、処理ガスのフロー下で、又は密閉状態にした容器内の、当該処理ガスの雰囲気下で、炭素材料に接触させることにより行うことができる。   The method for contacting the processing gas is not particularly limited, and for example, it can be performed by contacting the carbon material under a processing gas flow or in an atmosphere of the processing gas in a sealed container.

前記フッ素化処理を行う際の処理温度は特に限定されないが、好ましくは0℃〜1500℃の範囲内であり、より好ましくは0℃〜800℃、さらに好ましくは0℃〜600℃である。処理温度を0℃以上にすることにより、フッ素化処理の促進が図られる。その一方、処理温度を1500℃以下にすることにより、炭素材料表面へのフッ素基の導入に伴って発生する炭素骨格への欠陥が過度に増大するのを抑制し、炭素骨格の過度の破壊及び炭素材料の機械的強度が減少するのを防止することができる。さらに、炭素材料に熱変形が生じるのを防止し、歩留まりの低下を抑制することができる。   Although the processing temperature at the time of performing the said fluorination process is not specifically limited, Preferably it exists in the range of 0 degreeC-1500 degreeC, More preferably, it is 0 degreeC-800 degreeC, More preferably, it is 0 degreeC-600 degreeC. By setting the treatment temperature to 0 ° C. or higher, the fluorination treatment can be promoted. On the other hand, by setting the treatment temperature to 1500 ° C. or less, it is possible to suppress an excessive increase in defects in the carbon skeleton that accompanies the introduction of fluorine groups on the surface of the carbon material. It is possible to prevent the mechanical strength of the carbon material from decreasing. Furthermore, it is possible to prevent the carbon material from being thermally deformed and suppress a decrease in yield.

前記フッ素化処理の処理時間(反応時間)は特に限定されないが、1秒〜24時間の範囲内であり、好ましくは1秒〜12時間、より好ましくは1秒〜9時間である。処理時間を1秒以上にすることにより、炭素材料表面のフッ素化を十分なものにすることができる。その一方、処理時間を24時間以下にすることにより、製造時間の長期化による製造効率の低下を防止することができる。   The treatment time (reaction time) of the fluorination treatment is not particularly limited, but is in the range of 1 second to 24 hours, preferably 1 second to 12 hours, and more preferably 1 second to 9 hours. By setting the treatment time to 1 second or longer, the fluorination of the carbon material surface can be made sufficient. On the other hand, by setting the treatment time to 24 hours or less, it is possible to prevent a decrease in production efficiency due to an increase in production time.

フッ素化処理を行う際の圧力条件としては特に限定されず、常圧下、加圧下又は減圧下で行うことができる。経済上・安全上の観点からは、常圧下で行うのが好ましい。フッ素化処理を行うための反応容器としては特に限定されず、固定床、流動床等の従来公知のものを採用することができる。   It does not specifically limit as a pressure condition at the time of performing a fluorination process, It can carry out under a normal pressure, pressurization, or pressure reduction. From the viewpoint of economy and safety, it is preferable to carry out under normal pressure. The reaction vessel for performing the fluorination treatment is not particularly limited, and conventionally known ones such as a fixed bed and a fluidized bed can be employed.

炭素材料に対する処理ガスの接触方法としては特に限定されず、例えば、当該処理ガスのフロー下で接触させることができる。   It does not specifically limit as a contact method of the process gas with respect to a carbon material, For example, it can contact under the flow of the said process gas.

前記アニール処理工程は、フッ素化処理工程後の炭素材料を所定の温度で加熱する工程である。例えば、図2に示す単層カーボンナノチューブ11の場合、先ず、当該単層カーボンナノチューブ11の表面に導入されたフッ素基12を脱離させて炭素六員環構造に空孔欠陥13を生じさせる。その後、空孔欠陥13における炭素原子を再配列させ、炭素五員環構造14及び炭素七員環構造15を導入する。   The annealing treatment step is a step of heating the carbon material after the fluorination treatment step at a predetermined temperature. For example, in the case of the single-walled carbon nanotube 11 shown in FIG. 2, first, the fluorine group 12 introduced to the surface of the single-walled carbon nanotube 11 is desorbed to generate a vacancy defect 13 in the carbon six-membered ring structure. Thereafter, the carbon atoms in the vacancy defects 13 are rearranged to introduce the carbon five-membered ring structure 14 and the carbon seven-membered ring structure 15.

アニール処理を行う際の処理温度は400℃〜1500℃の範囲内であり、好ましくは600℃〜1500℃、より好ましくは800℃〜1500℃である。アニール処理の温度を400℃以上にすることにより、フッ素基を十分に脱離させ、再配列構造の生成を促進することができる。その一方、アニール処理の温度を1500℃以下にすることにより、炭素六員環ネットワークに新たな構造上の欠陥が過度に導入されるのを抑制し、炭素骨格の過度の破壊及び炭素材料の機械的強度が減少するのを防止することができる。さらに、炭素材料に熱変形が生じるのを防止し、歩留まりの低下を抑制することができる。   The treatment temperature at the time of annealing treatment is in the range of 400 ° C to 1500 ° C, preferably 600 ° C to 1500 ° C, more preferably 800 ° C to 1500 ° C. By setting the annealing temperature to 400 ° C. or higher, the fluorine group can be sufficiently desorbed and the generation of the rearranged structure can be promoted. On the other hand, by setting the annealing temperature to 1500 ° C. or less, it is possible to suppress excessive introduction of new structural defects into the carbon six-membered ring network. It is possible to prevent a decrease in the mechanical strength. Furthermore, it is possible to prevent the carbon material from being thermally deformed and suppress a decrease in yield.

前記アニール処理を行う際の処理時間は特に限定されないが、1秒〜24時間の範囲内であり、好ましくは1秒〜12時間、より好ましくは1秒〜9時間である。処理時間を1秒以上にすることにより、フッ素基を十分に脱離させ、再配列構造の生成を促進することが可能になる。その一方、処理時間を24時間以下にすることにより、炭素材料の劣化を防止することができる。   The treatment time for performing the annealing treatment is not particularly limited, but is within the range of 1 second to 24 hours, preferably 1 second to 12 hours, and more preferably 1 second to 9 hours. By setting the treatment time to 1 second or longer, it is possible to sufficiently remove the fluorine group and promote the generation of a rearranged structure. On the other hand, deterioration of the carbon material can be prevented by setting the treatment time to 24 hours or less.

前記アニール処理を行う際の圧力条件としては特に限定されないが、大気圧に対し減圧下又は高真空下で行うことが好ましい。圧力条件を大気圧よりも減圧下にすることにより、フッ素基の脱離による空孔欠陥の生成を促進することができる。尚、大気圧とは、大気の標準状態近傍における圧力(標準大気圧)のことを意味し、大気の標準状態とは、約25℃近傍の温度、絶対圧で101kPa近傍の大気圧条件のことを意味する。さらに、前記「大気圧」には標準大気圧に対し僅かに陽圧又は陰圧の場合も含む。   The pressure condition for performing the annealing treatment is not particularly limited, but it is preferably performed under reduced pressure or high vacuum with respect to atmospheric pressure. By setting the pressure condition to be lower than the atmospheric pressure, it is possible to promote the generation of vacancy defects due to the elimination of the fluorine group. The atmospheric pressure means the pressure in the vicinity of the atmospheric standard state (standard atmospheric pressure), and the atmospheric standard state is the atmospheric pressure condition in which the temperature is approximately 25 ° C. and the absolute pressure is approximately 101 kPa. Means. Further, the “atmospheric pressure” includes a case where the pressure is slightly positive or negative with respect to the standard atmospheric pressure.

また、アニール処理工程は、炭素材料からフッ素基を脱離させて空孔欠陥を生じさせる段階と、その後、炭素原子を再配列させて再配列構造を導入する段階とで、それぞれ処理条件を異ならせてもよい。   In addition, the annealing treatment process has different treatment conditions for a stage in which a fluorine group is eliminated from a carbon material to cause vacancy defects and a stage in which a rearranged structure is introduced by rearranging carbon atoms. It may be allowed.

また、アニール処理工程後の炭素材料について、電気伝導性の向上の観点からはフッ素基が残存していないことが望ましいが、例えば、当該炭素材料の溶媒への分散性の向上等の機能を付与したい場合には、電気伝導性への影響を及ぼさない範囲でフッ素基が残存していてもよい。   In addition, it is desirable that the carbon material after the annealing treatment process does not have a fluorine group from the viewpoint of improving electrical conductivity. For example, the carbon material is provided with a function of improving dispersibility of the carbon material in a solvent. If desired, the fluorine group may remain within a range that does not affect the electrical conductivity.

以上より、本実施の形態の製造方法であると、炭素六員環ネットワーク中に、再配列構造である五員環構造及び七員環構造が組み込まれた炭素材料を製造することができる。これにより、本実施の形態においては、空孔欠陥を有する従来の炭素材料と比較して、電気伝導性に優れた炭素材料を製造することができる。   As described above, according to the manufacturing method of the present embodiment, it is possible to manufacture a carbon material in which a five-membered ring structure and a seven-membered ring structure that are rearranged structures are incorporated in a carbon six-membered ring network. Thereby, in this Embodiment, compared with the conventional carbon material which has a void defect, the carbon material excellent in electrical conductivity can be manufactured.

尚、炭素材料の電気伝導性は、例えば、大気圧下における電気伝導率(S/m)に対して減圧下での電気伝導率(S/m)が10%以上向上していることが好ましく、好ましくは20%以上、より好ましくは40%以上である。   The electrical conductivity of the carbon material is preferably improved by 10% or more in electrical conductivity (S / m) under reduced pressure relative to electrical conductivity (S / m) under atmospheric pressure, for example. , Preferably 20% or more, more preferably 40% or more.

(電子放出材料)
本実施の形態の炭素材料は、例えば、電子放出材料として利用可能である。電子放出材料は電界電子放出型ディスプレイ(FED)のエミッタ、電界効果トランジスタ、陰極線管、電子銃等に適用することができる。
(Electron emission material)
The carbon material of the present embodiment can be used as an electron emission material, for example. The electron emission material can be applied to an emitter of a field electron emission display (FED), a field effect transistor, a cathode ray tube, an electron gun and the like.

(その他)
本実施の形態においては、フッ素化処理工程後にアニール処理工程を行う態様について説明した。但し、本発明はこの態様に限定されるものではなく、例えば、フッ素化処理とアニール処理を1つの工程中に同時に行ってもよい。これにより、炭素材料の製造時間の短縮化が図れる。尚、フッ素化処理とアニール処理を同時に行う場合の処理条件については、前述の通りである。
(Other)
In the present embodiment, the mode in which the annealing process is performed after the fluorination process has been described. However, the present invention is not limited to this embodiment. For example, the fluorination treatment and the annealing treatment may be performed simultaneously in one step. Thereby, the manufacturing time of a carbon material can be shortened. The processing conditions when the fluorination treatment and the annealing treatment are performed simultaneously are as described above.

(実施例1)
PTFE(ポリテトラフルオロエチレン)容器(容量5mL)に、アームチェア型(半導体型)の単層カーボンナノチューブ10mgを導入し、本容器を電解研磨されたSUS316L製チャンバー(容量30mL)に設置した。単層カーボンナノチューブとしては、両端が閉鎖された構造のものを用いた。更に、チャンバー内を、窒素ガスの気流(20mL/min)下で、4℃/minの昇温速度で250℃まで昇温した後、温度250℃で1時間の恒温処理を行った。
Example 1
10 mg of armchair type (semiconductor type) single-walled carbon nanotubes were introduced into a PTFE (polytetrafluoroethylene) container (capacity 5 mL), and this container was placed in an electropolished chamber made of SUS316L (capacity 30 mL). A single-walled carbon nanotube having a structure in which both ends are closed was used. Further, the chamber was heated to 250 ° C. at a rate of 4 ° C./min under a nitrogen gas stream (20 mL / min), and then subjected to a constant temperature treatment at a temperature of 250 ° C. for 1 hour.

次に、チャンバー内を処理ガスに真空置換し、流量25mL/minで処理ガスを流して、フッ素化処理をした。フッ素化処理の処理時間は4時間とした。また、処理ガスとしては、フッ素(F)ガスと窒素ガスの混合ガスを用いた。さらに、フッ素ガスの濃度は処理ガスの全体積に対し20vol%とした。フッ素化処理後、チャンバー内を窒素ガスに真空置換し、窒素気流(20mL/min)の下、室温まで放冷し、その後、チャンバーからフッ素化処理後の単層カーボンナノチューブを取り出した。Next, the inside of the chamber was vacuum-replaced with a processing gas, and the processing gas was flowed at a flow rate of 25 mL / min to perform fluorination treatment. The treatment time for the fluorination treatment was 4 hours. Further, a mixed gas of fluorine (F 2 ) gas and nitrogen gas was used as the processing gas. Further, the concentration of the fluorine gas was 20 vol% with respect to the total volume of the processing gas. After the fluorination treatment, the inside of the chamber was vacuum-replaced with nitrogen gas, allowed to cool to room temperature under a nitrogen stream (20 mL / min), and then the single-walled carbon nanotubes after the fluorination treatment were taken out from the chamber.

次に、アルミナ容器にフッ素化処理後の単層カーボンナノチューブを入れ、本容器を電気管状炉内に設置して真空アニール処理を行った。すなわち、電気管状炉内を1.0×10−5Paまで真空引きし、当該圧力条件下で、昇温速度3.5℃/minにて、450℃まで昇温させた。昇温後、450℃で1時間の恒温処理を行った。この450℃までの昇温と、450℃・1時間での高温処理とにより、単層カーボンナノチューブからフッ素基を脱離させ、空孔欠陥を生成させた。続いて、前記圧力条件下で、昇温速度2.5℃/minにて、1200℃まで昇温させた。昇温後、温度1200℃で3時間の恒温処理を行った。この1200℃までの昇温と、1200℃・3時間での高温処理とにより、単層カーボンナノチューブに生成させた空孔欠陥における炭素原子を再配列させて再配列構造を導入した。その後、電気管状炉内を室温まで放冷した後、チャンバー内を窒素ガスに置換し、本実施例に係る単層カーボンナノチューブを製造した。Next, the single-walled carbon nanotubes after the fluorination treatment were placed in an alumina container, and this container was placed in an electric tubular furnace to perform a vacuum annealing treatment. That is, the inside of the electric tubular furnace was evacuated to 1.0 × 10 −5 Pa, and the temperature was increased to 450 ° C. at a temperature increase rate of 3.5 ° C./min under the pressure condition. After the temperature increase, a constant temperature treatment was performed at 450 ° C. for 1 hour. By this temperature increase to 450 ° C. and high temperature treatment at 450 ° C. for 1 hour, fluorine groups were detached from the single-walled carbon nanotubes to generate vacancy defects. Subsequently, the temperature was increased to 1200 ° C. at a temperature increase rate of 2.5 ° C./min under the pressure condition. After the temperature increase, a constant temperature treatment was performed at 1200 ° C. for 3 hours. By this temperature increase to 1200 ° C. and high-temperature treatment at 1200 ° C. for 3 hours, the carbon atoms in the vacancy defects generated in the single-walled carbon nanotubes were rearranged to introduce a rearranged structure. Thereafter, the inside of the electric tubular furnace was allowed to cool to room temperature, and then the inside of the chamber was replaced with nitrogen gas to produce single-walled carbon nanotubes according to this example.

(比較例1)
本比較例においては、アームチェア型(半導体型)の単層カーボンナノチューブに対し、フッ素化処理を行わず真空アニール処理のみを行った。それ以外は、実施例1と同様にして本比較例に係る単層カーボンナノチューブを製造した。尚、単層カーボンナノチューブとしては、両端が閉鎖された構造のものを用いた。
(Comparative Example 1)
In this comparative example, armchair type (semiconductor type) single-walled carbon nanotubes were only subjected to vacuum annealing treatment without fluorination treatment. Other than that was carried out similarly to Example 1, and manufactured the single-walled carbon nanotube concerning this comparative example. As the single-walled carbon nanotube, one having a structure in which both ends are closed was used.

(元素分析)
処理前の単層カーボンナノチューブ、並びに実施例1及び比較例1に係る単層カーボンナノチューブのそれぞれについて、X線光電子分光法(Thermo Fisher Scientific社製、商品名:K−Alpha)を用いて元素分析を行った。
(Elemental analysis)
Elemental analysis of single-walled carbon nanotubes before treatment and single-walled carbon nanotubes according to Example 1 and Comparative Example 1 using X-ray photoelectron spectroscopy (manufactured by Thermo Fisher Scientific, trade name: K-Alpha) Went.

(電気伝導性の評価)   (Evaluation of electrical conductivity)

<大気下での導電率測定>
処理前の単層カーボンナノチューブ、並びに実施例1及び比較例1に係る単層カーボンナノチューブのそれぞれについて、5mgを50mLのエタノール中に入れ、15分間の超音波処理を実施して分散液を調製した。その後、分散液を減圧濾過し、縦1cm×横1cm×厚さ0.5mmの薄膜サンプルを作製した。
<Conductivity measurement in the atmosphere>
For each of the single-walled carbon nanotubes before the treatment and the single-walled carbon nanotubes according to Example 1 and Comparative Example 1, 5 mg was put in 50 mL of ethanol and subjected to ultrasonic treatment for 15 minutes to prepare a dispersion. . Thereafter, the dispersion was filtered under reduced pressure to prepare a thin film sample having a length of 1 cm, a width of 1 cm, and a thickness of 0.5 mm.

続いて、それぞれの薄膜サンプルの四隅に金電極が当接するように取り付け、さらに各金電極からリード線を試料ホルダーに取り付けた。そして、4端子法により各薄膜サンプルの比抵抗を測定し、電気伝導率を算出した。測定は、大気圧下、気温25℃、相対湿度35%の条件で行った。測定の結果を下記表1に示す。   Then, it attached so that a gold electrode might contact | abut on the four corners of each thin film sample, and also attached the lead wire from each gold electrode to the sample holder. And the specific resistance of each thin film sample was measured by the 4-terminal method, and the electrical conductivity was calculated. The measurement was performed under conditions of atmospheric pressure, temperature of 25 ° C., and relative humidity of 35%. The measurement results are shown in Table 1 below.

<真空下における導電率測定>
また、前記薄膜サンプルの減圧下での導電率について、4端子法により測定を行った。すなわち、各薄膜サンプルの四隅に金電極が当接するように取り付け、さらに各金電極からリード線を試料ホルダーに取り付けた。続いて、各薄膜サンプルを備えた試料ホルダーをそれぞれチャンバー内に入れ、ロータリーポンプでチャンバー内を1.0×10−5Paまで真空引きした。その後、チャンバー内を減圧条件下で300℃にて加熱処理し、薄膜サンプルに吸着している酸素原子を除去した。続いて、減圧条件下でチャンバー内を室温まで冷却し、4端子法により各薄膜サンプルの比抵抗を測定し、電気伝導率を算出した。測定は、圧力1.0×10−5Paの下、気温25℃、相対湿度35%の条件で行った。測定の結果を下記表1に示す。
<Conductivity measurement under vacuum>
Further, the conductivity of the thin film sample under reduced pressure was measured by a four-terminal method. That is, each thin film sample was attached so that the gold electrode was in contact with the four corners, and a lead wire was attached to the sample holder from each gold electrode. Then, the sample holder provided with each thin film sample was put in the chamber, respectively, and the inside of the chamber was evacuated to 1.0 × 10 −5 Pa with a rotary pump. Thereafter, the inside of the chamber was heat-treated at 300 ° C. under reduced pressure to remove oxygen atoms adsorbed on the thin film sample. Subsequently, the inside of the chamber was cooled to room temperature under reduced pressure conditions, the specific resistance of each thin film sample was measured by a four-terminal method, and the electric conductivity was calculated. The measurement was performed under conditions of a temperature of 25 ° C. and a relative humidity of 35% under a pressure of 1.0 × 10 −5 Pa. The measurement results are shown in Table 1 below.

Figure 2018105559
Figure 2018105559

(結果)
表1から分かる通り、処理前及び比較例1の単層カーボンナノチューブの場合、大気圧下における比抵抗は減圧下における比抵抗と比べ小さい値となっており、大気圧下での導電率が高いことがわかる。一方、本実施例の単層カーボンナノチューブでは、大気圧下における比抵抗が減圧下における比抵抗よりも高い値となっており、減圧下において電気伝導率が45%以上向上していることが確認された。
(result)
As can be seen from Table 1, in the case of the single-walled carbon nanotubes before treatment and Comparative Example 1, the specific resistance under atmospheric pressure is smaller than the specific resistance under reduced pressure, and the electrical conductivity under atmospheric pressure is high. I understand that. On the other hand, in the single-walled carbon nanotube of this example, the specific resistance under atmospheric pressure is higher than the specific resistance under reduced pressure, and it is confirmed that the electrical conductivity is improved by 45% or more under reduced pressure. It was done.

また、元素分析の結果、処理前、実施例1及び比較例1の各単層カーボンナノチューブのいずれにおいてもフッ素原子は検出されなかった(フッ素原子の原子組成百分率0at%)。このうち、実施例1に係る単層カーボンナノチューブについては、大気圧下の比抵抗と減圧下の比抵抗の値の変化がフッ素基の存在によるものではないことが確認された。その結果、実施例1の単層カーボンナノチューブにおいては、再配列構造である炭素五員環構造と炭素七員環構造が導入されていることが示された。

Further, as a result of elemental analysis, fluorine atoms were not detected in any of the single-walled carbon nanotubes of Example 1 and Comparative Example 1 before the treatment (atomic composition percentage of fluorine atoms 0 at%). Among these, for the single-walled carbon nanotube according to Example 1, it was confirmed that the change in the value of the specific resistance under atmospheric pressure and the specific resistance under reduced pressure was not due to the presence of fluorine groups. As a result, it was shown that in the single-walled carbon nanotube of Example 1, a carbon five-membered ring structure and a carbon seven-membered ring structure, which are rearranged structures, were introduced.

Claims (9)

炭素六員環ネットワークを有する炭素材料であって、
前記炭素六員環ネットワーク中に、再配列構造である炭素五員環構造と炭素七員環構造がそれぞれ組み込まれている炭素材料。
A carbon material having a carbon six-membered ring network,
A carbon material in which a carbon five-membered ring structure and a carbon seven-membered ring structure, which are rearranged structures, are respectively incorporated in the carbon six-membered ring network.
前記炭素六員環ネットワークを有する炭素材料がカーボンナノチューブであり、
前記再配列構造である炭素五員環構造と炭素七員環構造が、前記カーボンナノチューブの少なくとも側面にそれぞれ組み込まれている請求項1に記載の炭素材料。
The carbon material having the carbon six-membered ring network is a carbon nanotube,
The carbon material according to claim 1, wherein the rearranged carbon five-membered ring structure and carbon seven-membered ring structure are respectively incorporated on at least side surfaces of the carbon nanotube.
前記カーボンナノチューブが、ジグザグ型単層カーボンナノチューブ、アームチェア型単層カーボンナノチューブ又はキラル型単層カーボンナノチューブである請求項2に記載の炭素材料。   The carbon material according to claim 2, wherein the carbon nanotube is a zigzag single-walled carbon nanotube, an armchair single-walled carbon nanotube, or a chiral single-walled carbon nanotube. 前記炭素六員環ネットワークを有する炭素材料がグラフェンである請求項1に記載の炭素材料。   The carbon material according to claim 1, wherein the carbon material having the carbon six-membered ring network is graphene. 炭素六員環ネットワークを有する炭素材料に、フッ素含有ガスを含む処理ガスを接触させて、当該炭素材料の表面にフッ素基を導入するフッ素化処理工程と、
前記フッ素化処理工程後の炭素材料を、温度400℃〜1500℃の条件下でアニール処理することにより、前記フッ素基を脱離させて炭素六員環構造に空孔を生じさせ、再配列構造である炭素五員環構造と炭素七員環構造をそれぞれ導入するアニール処理工程とを含む炭素材料の製造方法。
A fluorination treatment step of introducing a fluorine group into the surface of the carbon material by bringing a treatment gas containing a fluorine-containing gas into contact with the carbon material having a carbon six-membered ring network;
The carbon material after the fluorination treatment step is annealed under conditions of a temperature of 400 ° C. to 1500 ° C., thereby removing the fluorine group to generate vacancies in the carbon six-membered ring structure, and rearranging the structure. A carbon material manufacturing method including an annealing treatment step for introducing a carbon five-membered ring structure and a carbon seven-membered ring structure, respectively.
前記炭素六員環ネットワークを有する炭素材料としてカーボンナノチューブを用い、
前記アニール処理により、前記再配列構造である炭素五員環構造と炭素七員環構造を、前記カーボンナノチューブの側面にそれぞれ導入する請求項5に記載の炭素材料の製造方法。
Using carbon nanotubes as a carbon material having the carbon six-membered ring network,
The method for producing a carbon material according to claim 5, wherein the rearrangement structure introduces a carbon five-membered ring structure and a carbon seven-membered ring structure to the side surfaces of the carbon nanotubes.
前記カーボンナノチューブとして、ジグザグ型単層カーボンナノチューブ、アームチェア型単層カーボンナノチューブ又はキラル型単層カーボンナノチューブを用いる請求項6に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 6, wherein a zigzag single-walled carbon nanotube, an armchair single-walled carbon nanotube, or a chiral single-walled carbon nanotube is used as the carbon nanotube. 前記炭素六員環ネットワークを有する炭素材料としてグラフェンを用いた請求項5に記載の炭素材料の製造方法。   The method for producing a carbon material according to claim 5, wherein graphene is used as the carbon material having the carbon six-membered ring network. 請求項1〜4の何れか1項に記載の炭素材料を含む電子放出材料。

The electron emission material containing the carbon material of any one of Claims 1-4.

JP2018554991A 2016-12-06 2017-12-04 Carbon material, its manufacturing method and electron emission material Active JP7092306B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016236704 2016-12-06
JP2016236704 2016-12-06
PCT/JP2017/043491 WO2018105559A1 (en) 2016-12-06 2017-12-04 Carbon material, production method therefor, and electron-releasing material

Publications (2)

Publication Number Publication Date
JPWO2018105559A1 true JPWO2018105559A1 (en) 2019-10-24
JP7092306B2 JP7092306B2 (en) 2022-06-28

Family

ID=62491934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018554991A Active JP7092306B2 (en) 2016-12-06 2017-12-04 Carbon material, its manufacturing method and electron emission material

Country Status (2)

Country Link
JP (1) JP7092306B2 (en)
WO (1) WO2018105559A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102654642B1 (en) * 2021-05-24 2024-04-04 (주)에스그래핀 Graphene nanopore manufacturing method using detachable functional groups and graphene sheet having graphene nanoholes formed thereby

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352608A (en) * 2003-05-28 2004-12-16 Samsung Corning Co Ltd Method for dispersing carbon nano-structure
WO2010074000A1 (en) * 2008-12-24 2010-07-01 国立大学法人東北大学 Dispersion of carbon material and process for producing same
JP2013075783A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Fluorinated carbon nanofiber, method for producing the same and application thereof
JP2013529176A (en) * 2010-06-10 2013-07-18 ザ・ユニバーシティ・オブ・マンチェスター Functionalized graphene
JP2014533973A (en) * 2011-09-23 2014-12-18 パルティ、ヨーラム Gas exchange device comprising a nanotube and an artificial lung
JP2016113364A (en) * 2014-12-16 2016-06-23 国立大学法人東北大学 Nitrogen-containing carbon material and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352608A (en) * 2003-05-28 2004-12-16 Samsung Corning Co Ltd Method for dispersing carbon nano-structure
WO2010074000A1 (en) * 2008-12-24 2010-07-01 国立大学法人東北大学 Dispersion of carbon material and process for producing same
JP2013529176A (en) * 2010-06-10 2013-07-18 ザ・ユニバーシティ・オブ・マンチェスター Functionalized graphene
JP2014533973A (en) * 2011-09-23 2014-12-18 パルティ、ヨーラム Gas exchange device comprising a nanotube and an artificial lung
JP2013075783A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Fluorinated carbon nanofiber, method for producing the same and application thereof
JP2016113364A (en) * 2014-12-16 2016-06-23 国立大学法人東北大学 Nitrogen-containing carbon material and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
溝口 則幸: "Ston-wales欠陥をもつアームチェア炭素ナノチューブのHOMO-LUMOギャップのチューブ長依存性", ケモインフォマティクス討論会予稿集, JPN6018004044, 6 November 2011 (2011-11-06), JP, pages 6, ISSN: 0004664896 *

Also Published As

Publication number Publication date
JP7092306B2 (en) 2022-06-28
WO2018105559A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6805402B2 (en) Nitrogen-containing carbon material and its manufacturing method
Dyatkin et al. Effects of structural disorder and surface chemistry on electric conductivity and capacitance of porous carbon electrodes
Inagaki et al. Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne
US11155465B2 (en) Cross-linked structure of carbon material and method for producing same
WO2002064868A1 (en) Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
CN107792846B (en) Method for purifying carbon nanotubes
JP7092296B2 (en) Carbon material and its manufacturing method
US10343921B1 (en) Method for preparing fluorinated graphene nanoribbons
Hussain et al. Growth and plasma functionalization of carbon nanotubes
JP7092306B2 (en) Carbon material, its manufacturing method and electron emission material
JP2006273622A (en) Composition containing double-walled carbon nanotube
Kang et al. Fluorination and defluorination of carbon nanotubes: a nanoscale perspective
Fedoseeva et al. XANES investigation of pristine and fluorinated single-walled carbon nanotubes before and after annealing
Lee et al. Influence of the nitrogen content on the electrochemical capacitor characteristics of vertically aligned carbon nanotubes
Desforges et al. Improvement of carbon nanotube stability by high temperature oxygen/chlorine gas treatment
JP5449987B2 (en) Method for concentrating semiconducting single-walled carbon nanotubes
KR102190466B1 (en) Reduced carbon nanotube oxide and their fabrication methods
JP2006240938A (en) Fluorine-modified double-walled carbon nanotube
JP2007022875A (en) Composite material and molded item using it
CN110371956B (en) Nitrogen-doped carbon nanotube/graphene composite film and preparation method thereof
Yokoyama et al. Controlled introduction of defects into single-walled carbon nanotubes via a fluorination–defluorination strategy using xenon difluoride and their alkaline oxygen reduction reaction catalytic activity
Hattori et al. Fluorination–Defluorination and Fluorine Storage Properties of Single-Wall Carbon Nanotubes and Carbon Nanohorns
JP5194350B2 (en) Gas adsorption material
Heya et al. Reduction of graphene oxide by atomic hydrogen annealing
Liu et al. A fast response gas sensor based on fluorine plasma modified single wall carbon nanotubes

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20190226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7092306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150