WO2015046626A1 - Phosphorus-containing epoxy resin composition and cured article - Google Patents

Phosphorus-containing epoxy resin composition and cured article Download PDF

Info

Publication number
WO2015046626A1
WO2015046626A1 PCT/JP2014/076481 JP2014076481W WO2015046626A1 WO 2015046626 A1 WO2015046626 A1 WO 2015046626A1 JP 2014076481 W JP2014076481 W JP 2014076481W WO 2015046626 A1 WO2015046626 A1 WO 2015046626A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
epoxy resin
containing epoxy
resin composition
parts
Prior art date
Application number
PCT/JP2014/076481
Other languages
French (fr)
Japanese (ja)
Inventor
康幸 高尾
真也 河崎
司 後藤
一男 石原
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2015539481A priority Critical patent/JP6596751B2/en
Priority to KR1020167007473A priority patent/KR102192792B1/en
Priority to CN201480053661.9A priority patent/CN105555866B/en
Publication of WO2015046626A1 publication Critical patent/WO2015046626A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3272Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1405Polycondensates modified by chemical after-treatment with inorganic compounds
    • C08G59/1422Polycondensates modified by chemical after-treatment with inorganic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/304Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/30Environmental or health characteristics, e.g. energy consumption, recycling or safety issues

Definitions

  • the present invention relates to a phosphorus-containing epoxy resin composition having a flame retardancy composed of a phosphorus-containing epoxy resin and a phosphorus-containing phenol compound, and a cured product thereof.
  • Epoxy resins are widely used in industrial applications including the electric and electronic fields because of their excellent adhesiveness, heat resistance, and moldability.
  • flame retardancy is strongly demanded from the viewpoint of safety such as the purpose of preventing the occurrence of a fire when the device is used.
  • brominated flame retardants, nitrogen-based flame retardants, and phosphorus-based flame retardants alone or in combination as a method for imparting flame retardancy to laminates, and furthermore, a system using an inorganic flame retardant aid for the flame retardant Many have been applied.
  • Patent Documents 1 and 2 disclose 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide (trade name HCA-HQ, manufactured by Sanko Co., Ltd.). Thermosetting resins and compositions obtained by reacting epoxy resins with epoxy resins at a predetermined molar ratio are disclosed.
  • Patent Document 3 discloses a phosphorus-containing epoxy resin obtained by reacting a resin having a bifunctional or higher functional epoxy group with diphenylphosphinylhydroquinone.
  • the phosphorus-containing epoxy resin obtained by the reaction between such a phosphorus compound and the epoxy resin has a high molecular weight as the phosphorus content increases, so that the resin varnish that provides sufficient flame retardancy has a high viscosity, There was a problem that workability in handling and impregnation into a substrate such as glass cloth deteriorated. Furthermore, since the molecular weight of the phosphorus-containing epoxy resin is increased, the crosslink density of the cured product is reduced, and thus it is difficult to obtain a high glass transition temperature.
  • Patent Document 4 discloses a method of reducing the molecular weight and decreasing the viscosity by using a phosphorus-containing epoxy resin that leaves a hydroxyl group derived from a phosphorus-containing phenol compound.
  • Patent Document 5 discloses a method for increasing the phosphorus content by dissolving a phosphorus compound in a phosphorus-containing epoxy resin varnish because sufficient flame retardancy cannot be obtained only by the phosphorus-containing epoxy resin.
  • Patent Document 6 discloses a method of dispersing HCA-HQ in a resin varnish by finely pulverizing HCA-HQ to an average particle size of 10 ⁇ m and a maximum particle size of 40 ⁇ m.
  • a phosphorus compound is dissolved using a high boiling point solvent. The viscosity is likely to be higher than that of the case, and there has been a problem that the curing conditions must be sufficiently examined in order to sufficiently perform the curing reaction.
  • Japanese Patent No. 3092009 JP-A-11-279258 Japanese Patent Laid-Open No. 5-214070 JP 2012-172079 A JP 2002-249540 A JP 2003-011269 A JP 60-126293 A JP-A-61-2236787
  • the phosphorus-containing epoxy resin or the phosphorus-containing epoxy resin composition that has been used so far, if the phosphorus content is increased in order to improve the flame retardancy, the solubility in the solvent becomes worse, and the viscosity is higher. Therefore, it was difficult to apply to a laminated board. Furthermore, the phosphorus-containing phenol compound has poor solubility in an organic solvent, and it has been difficult to apply it as a uniform resin varnish for use as a formulation for a substrate.
  • the present invention has been made in view of the above-described problems of the prior art, and has a low viscosity and good solubility in organic solvents while having sufficient flame retardancy by increasing the phosphorus content.
  • An epoxy resin composition having excellent workability such as impregnation into a fibrous base material is provided.
  • the present invention (1). It is represented by the following general formula (2) of 5 to 45 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin having a phosphorus content having the structure of the following general formula (1) in the range of 2 to 7% by mass.
  • a phosphorus-containing epoxy resin composition that dissolves a phosphorus-containing phenol compound and has no precipitation at room temperature, (Wherein R 1 and R 2 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different, and may be cyclic with a phosphorus atom.
  • I is 0 or 1) To express.) (Wherein R 3 and R 4 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different and may be cyclic with a phosphorus atom. N is 0 or 1) A represents an arenetriyl group having 6 to 20 carbon atoms.) (2). A phosphorus-containing epoxy resin composition obtained by blending an epoxy resin (B) with the phosphorus-containing epoxy resin composition described in the item (1), (3). (2) A phosphorus-containing epoxy resin composition characterized in that the phosphorus content in the phosphorus-containing epoxy resin composition according to item (2) is 2% by mass or more, (4).
  • the phosphorus-containing epoxy resin composition of the present invention has been found out that a phosphorus-containing phenol compound, which has been difficult to dissolve in the past, can be dissolved in a specific phosphorus-containing epoxy resin, and has completed the present invention, and has a high phosphorus content It achieves both the flame retardancy due to and improved workability due to low resin viscosity. Since the phosphorus-containing epoxy resin composition of the present invention facilitates impregnation of fibrous materials such as glass cloth in the production of laminates and improves flame retardancy, printed wiring board materials and sealing materials in the electronic and electrical fields It is useful in fields requiring flame retardancy such as casting materials, adhesive materials, aerospace, and composite materials used in vehicles, bridges, windmills, and the like.
  • the phosphorus-containing epoxy resin used in the present invention is a phosphorus-containing epoxy resin having a chemical structure represented by the following general formula (1) in its molecule, for example, the following general formula (2) and / or the following general formula It can be synthesized by reacting the phosphorus compound shown in (3) with an epoxy resin.
  • R 1 and R 2 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different, and may be cyclic with a phosphorus atom.
  • R 3 and R 4 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different and may be cyclic with a phosphorus atom.
  • N is 0 or 1
  • A represents an arenetriyl group having 6 to 20 carbon atoms.
  • R 5 and R 6 represent a hydrocarbon group having 1 to 6 carbon atoms, which may be the same or different, and may be cyclic with a phosphorus atom.
  • Examples of the phosphorus compound represented by the general formula (2) or the general formula (3) include 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide (Sanko) Product name HCA-HQ), 10- (1,4-dioxynaphthalene) -10H-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter referred to as HCA-NQ), diphenylphosphini Luhydroquinone (made by Hokuko Chemical Co., Ltd., trade name PPQ), diphenylphosphenyl-1,4-dioxynaphthalene, 1,4-cyclooctylenephosphinyl-1,4-phenyldiol (Nippon Chemical Industry Co., Ltd.) Manufactured, trade name CPHO-HQ), 1,5-cyclooctylenephosphinyl-1,4-phenyldio
  • the epoxy resin that reacts with the above-described phosphorus compound when synthesizing the phosphorus-containing epoxy resin has at least 1.5 epoxy groups in the molecule, and more preferably has two or more epoxy groups. good.
  • the phosphorus compound of general formula (3) it is preferable to use what has 3 or more as an epoxy group.
  • epoxy resins examples include Epototo YD-128, Epototo YD-8125 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol A type epoxy resin), Epototo YDF-170, Epototo YDF-8170 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol F) Type epoxy resin), YSLV-80XY (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., tetramethylbisphenol F type epoxy resin), Epototo YDC-1312 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., hydroquinone type epoxy resin), jER YX-4000H (Mitsubishi Chemical) Co., Ltd., biphenyl type epoxy resin), Epototo YDPN-638, Epototo YDPN-63X (manufactured by Nippon Steel & Sumi
  • the reaction between the phosphorus compound of the general formula (2) and / or the general formula (3) and the epoxy resin is as follows.
  • Known and publicly known methods such as the advance method, which is a reaction method of a phenol compound and an epoxy resin, including the methods described in Patent Documents 1, 2, and 3 can be used.
  • the ratio of the phosphorus compound to the epoxy resin should be such that the phosphorus content of the phosphorus-containing epoxy resin obtained after the reaction is in the range of 2 to 7% by mass, more preferably in the range of 2.5 to 5% by mass. It is.
  • the solubility of the phosphorus-containing phenol compound and the phosphorus-containing epoxy resin used in the present invention may be deteriorated. If the phosphorus content is high, the viscosity of the phosphorus-containing epoxy resin will increase, It can be difficult to dissolve. In the reaction between the phosphorus compound and the epoxy resin, a reaction catalyst can be used as needed to promote the reaction.
  • Examples of the catalyst that can be used include phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine, quaternary phosphonium salts such as n-butyltriphenylphosphonium bromide and ethyltriphenylphosphonium iodide, 2- Known and commonly used catalysts include imidazoles such as ethyl-4-methylimidazole and 2-phenylimidazole, quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide, and tertiary amines such as triethylamine and benzyldimethylamine.
  • phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine
  • quaternary phosphonium salts such as n-butyltriphen
  • the amount used is preferably in the range of 0.002 to 2 parts by mass relative to 100 parts by mass of the total mass of the epoxy resin and the phosphorus compound. If the amount is large, the stability of the phosphorus-containing epoxy resin composition of the present invention may be adversely affected.
  • the phosphorus-containing phenol compound dissolved in the phosphorus-containing epoxy resin is a phosphorus-containing phenol compound having a structure represented by the general formula (2). Specific examples include phosphorus-containing phenols such as HCA-HQ, HCA-NQ, PPQ, diphenylphosphenyl-1,4-dioxynaphthalene, CPHO-HQ, and CPHO-HQ.
  • These phosphorus-containing phenol compounds can be used in combination of two or more.
  • These phosphorus-containing phenol compounds are compounds of the general formula (3), specifically, phosphorus compounds having an active hydrogen group directly connected to a phosphorus atom such as HCA and diphenylphosphine, 1,4-benzoquinone and 1 , 4-naphthoquinone and other quinones.
  • the synthesis methods are shown in Patent Document 7, Patent Document 8, and Non-Patent Document 1, but are not limited thereto.
  • a phosphorus-containing phenol compound may be synthesized in a phosphorus-containing epoxy resin.
  • the present invention is characterized in that a specific phosphorus-containing phenol compound is dissolved in a specific phosphorus-containing epoxy resin, but the state in which the phosphorus-containing phenol compound is dissolved in the phosphorus-containing epoxy resin is the state of the phosphorus-containing phenol resin at room temperature. It means that no solid is observed in the phosphorus-containing epoxy resin. Specifically, when the phosphorus-containing epoxy resin composition is solid, it is degassed by heat melting or the like, and when it is liquid, it is degassed as it is, and the phosphorus-containing phenol compound is used in a 23 ° C. atmosphere using a 20 ⁇ microscope. The state which has confirmed that the solid derived from this has not precipitated.
  • the solid derived from a phosphorus containing phenol compound does not precipitate by observing with a 20 time microscope as it is at room temperature.
  • the method for dissolving the phosphorus-containing phenol compound in the phosphorus-containing epoxy resin is not particularly specified, and a phosphorus-containing phenol compound synthesized in advance or commercially available may be mixed in the phosphorus-containing epoxy resin, or the phosphorus-containing epoxy
  • the target phosphorus-containing epoxy resin composition can also be obtained by synthesizing a phosphorus-containing phenol compound in the resin.
  • the remaining phosphorus compound can be dissolved while synthesizing the phosphorus-containing epoxy resin.
  • the phosphorus-containing phenol compound can be dissolved in the phosphorus-containing epoxy resin without solvent or in combination with a solvent, and can be dissolved by heating and stirring to such an extent that the reaction between the phosphorus-containing epoxy resin and the phosphorus-containing phenol compound does not occur. .
  • the phosphorus compound of the general formula (3) and the quinone compound can be charged and reacted in the phosphorus-containing epoxy resin.
  • a solvent is preferably used in combination.
  • an aprotic solvent is preferable, and examples thereof include toluene, xylene, methanol, ethanol, 2-butoxyethanol, dialkyl ether, glycol ether, propylene glycol monomethyl ether, dioxane and the like. These reaction solvents may be used alone or in combination of two or more.
  • the epoxy resin composition in which the phosphorus-containing phenol compound is dissolved in the phosphorus-containing epoxy resin can also be adjusted by adjusting the reaction ratio and reaction conditions when reacting the phosphorus-containing phenol compound with epihalohydrin.
  • Phosphorus-containing phenolic compounds are poorly soluble in organic solvents, so if any amount of solvent is used by any method, the phosphorus-containing phenolic compound will not dissolve in the phosphorus-containing epoxy resin and may precipitate.
  • the amount of the organic solvent is preferably 50% by mass or less based on the total mass of the phosphorus-containing epoxy resin composition.
  • the temperature at the time of dissolution is preferably 100 to 200 ° C, more preferably 120 to 160 ° C. If the dissolution temperature is low, the dissolution rate may be slow, and if the dissolution temperature is high, the reaction between the phenol group and the epoxy group occurs in parallel with the dissolution and the viscosity increases, which may make handling difficult.
  • the phosphorus-containing phenol compound used here needs to be 5 to 45 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin, and it is flame retardant to be 10 to 45 parts by mass. Further desirable from the viewpoint of sex. If the phosphorus-containing phenol compound is less than 5 parts by mass, the phosphorus content of the phosphorus-containing epoxy resin must be increased in order to obtain flame retardancy, and it becomes difficult to dissolve the phosphorus-containing phenol resin because the resin viscosity increases. When the phosphorus content of the phosphorus-containing epoxy resin is low, dissolution is easy but flame retardancy is not obtained. When there are many phosphorus containing phenol compounds, there exists a possibility that it may become completely insoluble.
  • the phosphorus-containing epoxy resin composition of the present invention is a phosphorus-containing epoxy compound having a structure represented by the general formula (1) and a phosphorus-containing phenol compound represented by the general formula (2) unless otherwise specified.
  • a phosphorus-containing epoxy resin composition (c1) comprising (b), a phosphorus-containing epoxy resin having a structure of the general formula (1), a phosphorus-containing phenol compound represented by the general formula (2), and a curing agent (C);
  • a phosphorus-containing epoxy resin having a structure of the general formula (1), a phosphorus-containing phenol compound represented by the general formula (2), an epoxy resin (B), and a curing agent (C) It is used in the sense to include all of the epoxy resin composition (c2)
  • each phosphorus-containing epoxy resin composition when something is further blended in each phosphorus-containing epoxy resin composition, the total sum of each component constituting each phosphorus-containing epoxy resin composition is used as a reference. That is, when something is further blended in the phosphorus-containing epoxy resin composition (a), two components of the phosphorus-containing epoxy resin having the structure of the general formula (1) and the phosphorus-containing phenol compound represented by the general formula (2) In the case where something is further added to the phosphorus-containing epoxy resin composition (c2), the phosphorus-containing epoxy resin having the structure of the general formula (1) and the phosphorus-containing content represented by the general formula (2) The total amount of the four components of the phenol compound, the epoxy resin (B), and the curing agent (C) is a standard.
  • An epoxy resin (B) can be further added to the phosphorus-containing epoxy resin composition (a) of the present invention.
  • the method of mixing the epoxy resin (B) is not particularly defined, and can be performed using a generally used method. Moreover, when mixing by heating, it is desirable to carry out at 200 degrees C or less, and it is more desirable to carry out at 160 degrees C or less. When the mixing temperature is 200 ° C. or higher, the reaction of the epoxy group in the phosphorus-containing epoxy resin composition (b) occurs, the viscosity becomes high, and handling may be difficult.
  • the epoxy resin (B) used here has at least 1.5 epoxy groups in the molecule as in the epoxy resin used when synthesizing the phosphorus-containing epoxy resin, more preferably two or more.
  • the amount of the epoxy resin (B) is preferably 2% by mass or more of the total phosphorus-containing epoxy resin composition (b) added with the epoxy resin (B) from the viewpoint of flame retardancy. If the phosphorus content in the phosphorus-containing epoxy resin composition (b) is low, flame retardancy may not be exhibited.
  • the curing agent (C) that can be used in the phosphorus-containing epoxy resin composition [(a) or (b)] of the present invention known and publicly used ones used for epoxy resins can be used.
  • Hydroxybenzenes such as resorcinol and hydroquinone, binaphthols, biphenols, trisphenols, bisphenol A, bisphenol F, bisphenol S, trishydroxyphenylmethane, trishydroxyphenylethane, shounol BRG-555 (Phenol made by Showa Denko KK Novolak resin), cresol novolak resin, alkylphenol novolak resin, aralkylphenol novolak resin, triazine ring-containing phenol novolak resin, biphenylaralkylphenol resin, resin top TPM-10 (Gunei Chemical Industry Co., Ltd., trishydroxyphenylmethane type novolak resin), compounds having two or more phenolic hydroxyl groups in one molecule such as aralkyl naphthalene diol resin, hydrazides such as adipic acid dihydrazide and sebacic acid dihydrazide , Imidazole compounds and salts thereof, dic
  • the amount of the curing agent (C) used is the active hydrogen equivalent of the phosphorus-containing phenol compound contained in the phosphorus-containing epoxy resin composition from the epoxy group equivalent in the phosphorus-containing epoxy resin composition [(a) or (b)].
  • the functional group of the curing agent (C) is preferably in the range of 0.1 to 1.3 equivalent, more preferably 0.2 to 1.0 equivalent. If the functional group equivalent of the curing agent is small, the curing reaction of the epoxy group does not proceed sufficiently so that it cannot be obtained as a cured product. If it is large, unreacted curing agent remains, and the cured product has sufficient mechanical properties. There is a risk that you will not be able to get.
  • a diluent when adjusting fluidity, viscosity, etc., it is possible to use a diluent as long as the physical properties are not impaired.
  • the diluent is preferably a reactive diluent, but may be a non-reactive diluent.
  • monofunctional such as allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, bifunctional such as resorcinol glycidyl ether, neopentyl glycol glycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol
  • polyfunctional glycidyl ethers such as polyglycidyl ether, trimethylolpropane polyglycidyl ether, and pentaerythritol polyglycidyl ether.
  • Non-reactive diluents include benzyl alcohol, butyl diglycol, pine oil and the like. These diluents are preferably 30 parts by mass or less with respect to 100 parts by mass of the phosphorus-containing epoxy resin composition. If the amount of diluent added is large, bleed out from the cured product may occur in the case of a non-reactive diluent, and in the case of a reactive diluent, the curing reaction may not sufficiently proceed to bleed out. . Moreover, it is possible to use a hardening accelerator as needed for the phosphorus-containing epoxy resin composition of the present invention.
  • phosphines for example, phosphines, quaternary phosphonium salts, tertiary amines, quaternary ammonium salts, imidazole compounds, boron trifluoride complexes, 3- (3,4-dichlorodiphenyl) -1,1-dimethylurea, 3 -(4-Chlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea and the like.
  • curing accelerators depend on the epoxy resin used, the type of epoxy resin curing agent used together, the molding method, the curing temperature, and other required characteristics, but 0.01 to 10 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin composition.
  • the range of is preferable.
  • the phosphorus-containing epoxy resin composition of the present invention may be blended with other thermosetting resins and thermoplastic resins as long as the characteristics are not impaired.
  • thermosetting resins and thermoplastic resins for example, phenol resin, acrylic resin, petroleum resin, indene resin, coumarone indene resin, phenoxy resin, polyurethane, polyester, polyamide, polyimide, polyamideimide, polyetherimide, polyethersulfone, polysulfone, polyetheretherketone, polyphenylene sulfide, Examples thereof include, but are not limited to, polyvinyl formal and styrene maleic acid resin.
  • thermosetting resins and thermoplastic resins are desirably blended so as not to exceed 50 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin composition. If the blending amount exceeds 50 parts by mass, the phosphorus content in the cured product will decrease, and sufficient flame retardancy may not be obtained.
  • the phosphorus containing epoxy resin composition of this invention can mix
  • fillers include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, boehmite, talc, calcined talc, clay, kaolin, mica, calcium carbonate, calcium silicate, calcium hydroxide, magnesium hydroxide, Magnesium carbonate, barium carbonate, barium sulfate, boron nitride, titanium oxide, glass powder, silica balloon, carbon, carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon carbide fiber, polyester fiber, cellulose fiber, aramid fiber, synthetic Examples thereof include fibers and ceramic fibers.
  • the fillers are preferably 1 to 80 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin composition. If the amount is too small, the properties of the inorganic filler and the organic filler will not be exhibited. If the amount is too large, the material becomes brittle even after curing, and the cured product may not be able to obtain sufficient mechanical properties.
  • the phosphorus-containing epoxy resin composition of the present invention further includes various kinds of silane coupling agents, antioxidants, mold release agents, antifoaming agents, emulsifiers, thixotropic agents, smoothing agents, flame retardants, pigments and the like as necessary. Additives can be blended.
  • the phosphorus-containing epoxy resin composition of the present invention can be cured by the same method as known epoxy resin compositions to obtain a cured product.
  • the phenol compound dissolved in the phosphorus-containing epoxy resin causes a curing reaction with the epoxy group of the phosphorus-containing epoxy resin or the epoxy resin (B) and contributes to curing.
  • the curing method can be the same as that of a known epoxy resin composition, and the method unique to the resin composition of the present invention is unnecessary.
  • the phosphorus-containing epoxy resin composition of the present invention can make a prepreg used in a printed wiring board or the like by impregnating a fibrous base material.
  • the fibrous base material inorganic fibers such as glass, and woven or non-woven fabrics of organic fibers such as polyester, polyamine, polyacryl, polyimide, Kevlar, etc. can be used, but are not limited thereto.
  • the method for producing the prepreg from the phosphorus-containing epoxy resin composition of the present invention is not particularly limited.
  • the resin-varnish prepared by adjusting the viscosity of the phosphorus-containing epoxy resin composition with a solvent is impregnated. Thereafter, the resin component is obtained by heat-drying and semi-curing (B-stage).
  • the resin component can be heat-dried at 100 to 200 ° C. for 1 to 40 minutes.
  • the amount of resin in the prepreg is preferably 30 to 80% by mass.
  • the laminated board hardening method generally used when manufacturing a printed wiring board it is not limited to this.
  • the laminated board hardening method generally used when manufacturing a printed wiring board it is not limited to this.
  • the metal foil a single, alloy, or composite metal foil of copper, aluminum, brass, nickel or the like can be used.
  • the laminate prepared here can be heated under pressure to cure the prepreg to obtain a laminate.
  • the temperature is 160 to 220 ° C.
  • the pressure is 50 to 500 N / cm 2
  • the heating and pressing time is 40.
  • the target cured product can be obtained by setting it to ⁇ 240 minutes. If the heating temperature is low, the curing reaction does not proceed sufficiently, and if it is high, the phosphorus-containing epoxy resin composition may start to decompose. Moreover, when the pressurizing pressure is low, the resin flows, and a cured product having a desired thickness may not be obtained. Furthermore, if the heating and pressing time is short, the curing reaction may not proceed sufficiently, and if it is long, the phosphorus-containing epoxy resin composition in the prepreg may be thermally decomposed. Therefore, it is preferable to manage under the above conditions.
  • the phosphorus-containing epoxy resin composition of the present invention has excellent flame retardancy because it has a high phosphorus content, and because of its low viscosity, it has good impregnation into fibrous substrates such as glass cloth. Excellent workability. Phosphorus-containing epoxy resin cured products have good flame retardancy, heat resistance, and adhesiveness. Sealing materials used in electrical and electronic parts, copper-clad laminates, insulating paints, flame retardant paints, composite materials, insulating flame retardants It was found useful as a material for adhesives and the like.
  • the phenolic hydroxyl group was determined as the weight of the sample per equivalent of hydroxyl group.
  • Viscosity Measured at 25 ° C. using a B-type viscometer TVB-10H manufactured by Toki Sangyo Co., Ltd.
  • Phosphorus content Sulfuric acid, hydrochloric acid and perchloric acid were added to the sample and heated to wet ash to convert all phosphorus atoms to orthophosphoric acid. Metavanadate and molybdate were reacted in a sulfuric acid acidic solution, the absorbance at 420 nm of the resulting limpavande molybdate complex was measured, and the phosphorus atom content determined by a previously prepared calibration curve was expressed in%.
  • the phosphorus content of the laminate was expressed as the content relative to the resin content of the laminate.
  • Glass transition temperature Measured according to IPC-TM650 2.4.25c.
  • Flame retardancy Measurement was carried out according to UL (Underwriter Laboratories) standards. Evaluation was described by V-0, V-1, and V-2. Moreover, the sum total of 5 after-flame time was described as the after-flame time total.
  • Solubility In the case of a solid, it is degassed by heating and melting, and in the case of a liquid, it is degassed as it is, and a solid derived from a phosphorus-containing phenol compound is precipitated using a 20-fold microscope in an atmosphere at 23 ° C. Confirmed that there is no.
  • Example 1 57 A phenol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name Epototo YDPN-638) as an epoxy resin in a four-necked Separa brasso equipped with a stirrer, a thermometer, a cooling pipe and a nitrogen gas introduction pipe. Put 72.3 parts and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (trade name HCA, manufactured by Sanko Co., Ltd.) as a phosphorus compound, and react at 160 ° C. for 5 hours.
  • HCA 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • a phosphorus-containing epoxy resin having an epoxy equivalent of 766 g / eq and a phosphorus content of 6.0% was obtained.
  • 10 parts of 10- (1,4-dioxynaphthalene) -10H-9-oxa-10-phosphaphenanthrene (manufactured by Sanko Co., Ltd., trade name HCA-NQ) is added as a phosphorus-containing phenol compound,
  • the desired phosphorus-containing epoxy resin composition was obtained by stirring for 2 hours.
  • the obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 6.2%.
  • the viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting the phosphorus-containing epoxy resin composition with methyl ethyl ketone (hereinafter, MEK) to a solid content of 70% was 9800 mPa ⁇ s.
  • Example 2 66.2 parts YDPN-638 as an epoxy resin, 33.8 parts HCA as a phosphorus compound, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene as a phosphorus-containing phenol compound
  • a phosphorus-containing epoxy having an epoxy equivalent of 460 g / eq and a phosphorus content of 4.2%, except that 10-oxide (trade name HCA-HQ, manufactured by Sanko Co., Ltd.) was changed to 20 parts.
  • HCA-NQ was dissolved to obtain the intended phosphorus-containing epoxy resin composition.
  • the obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 5.6%.
  • Example 3 The viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition with MEK to a solid content of 70% was 1040 mPa ⁇ s.
  • Example 3 The same procedure as in Example 1 was carried out except that 71.8 parts of YDPN-638 was used as the epoxy resin, 28.2 parts of HCA was used as the phosphorus compound, and 45 parts of HCA-NQ was used as the phosphorus-containing phenol compound. After obtaining a phosphorus-containing epoxy resin having 363 g / eq and a phosphorus content of 4.0%, HCA-NQ was dissolved to obtain a target phosphorus-containing epoxy resin composition.
  • Example 4 The same procedure as in Example 1 was carried out except that 84.5 parts of YDPN-638 was used as the epoxy resin, 15.5 parts of HCA was used as the phosphorus compound, and 40 parts of HCA-NQ was used as the phosphorus-containing phenol compound.
  • Example 5 63.8 parts of YDPN-638 as epoxy resin, 10 parts of bisphenol F type liquid epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name Epototo YDF-170), 15.6 parts of HCA as phosphorus compound and HCA-HQ was changed to 10.6 parts, and the HCA-NQ was changed to 5 parts as a phosphorus-containing phenol compound, and the same operation as in Example 1 was carried out.
  • a phosphorus-containing epoxy resin having an epoxy equivalent of 355 g / eq and a phosphorus content of 3.2% After obtaining HCA-NQ, the intended phosphorus-containing epoxy resin composition was obtained.
  • the obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 3.5%.
  • the viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition with MEK to a solid content of 70% was 650 mPa ⁇ s.
  • Example 6 Orthocresol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name Epototo YDCN-700-7) as epoxy resin, 55.6 parts and YDF-170 as 20 parts, HCA as phosphorous compound as 16.4 parts and HCA A phosphorus-containing epoxy resin having an epoxy equivalent of 365 g / eq and a phosphorus content of 3.0%, except that -NQ was changed to 80 parts and the HCA-HQ was changed to 8 parts as a phosphorus-containing phenol compound. After obtaining HCA-NQ, the intended phosphorus-containing epoxy resin composition was obtained.
  • the obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 3.5%.
  • the viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition with MEK to a solid content of 70% was 600 mPa ⁇ s.
  • Comparative Example 1 100 parts of YDPN-638 and 28 parts of HCA-NQ were added into a four-necked separabrasco equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe, and stirring was carried out at 120 ° C. for 6 hours. It was not possible to completely dissolve even with stirring.
  • Comparative Example 2 The same operation as in Example 1 was carried out except that 88 parts of YDPN-638 as an epoxy resin, 12 parts of HCA as a phosphorus compound, and 4 parts of HCA-HQ as a phosphorus-containing phenol compound were used, and an epoxy equivalent of 226 g / eq, After obtaining a phosphorus-containing epoxy resin having a phosphorus content of 1.7%, HCA-NQ was dissolved to obtain a target phosphorus-containing epoxy resin composition. The obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 2.0%.
  • the viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition with MEK to a solid content of 70% was 500 mPa ⁇ s.
  • Comparative Example 3 The same operation as in Example 1 was carried out except that 88 parts of YDPN-638 as the epoxy resin, 12 parts of HCA as the phosphorus compound, and 13 parts of HCA-HQ as the phosphorus-containing phenol compound were obtained, and an epoxy equivalent of 226 g / eq, After obtaining a phosphorus-containing epoxy resin having a phosphorus content of 1.7%, HCA-NQ crystals did not dissolve, and the intended phosphorus-containing epoxy resin composition could not be obtained.
  • Comparative Example 4 The same procedure as in Example 1 was carried out except that 49.3 parts of YDPN-638 was used as the epoxy resin, 50.7 parts of HCA was used as the phosphorus compound, and 8 parts of HCA-HQ was used as the phosphorus-containing phenol compound. After obtaining a phosphorus-containing epoxy resin having 2285 g / eq and a phosphorus content of 7.2%, HCA-NQ crystals did not dissolve, and the target phosphorus-containing epoxy resin composition could not be obtained.
  • the solubility of the phosphorus-containing epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 is shown in Table 1.
  • Example 7 75 parts of the phosphorus-containing epoxy resin composition obtained in Example 3 and 25 parts of trisphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name EPPN-501H) as an epoxy resin (B), curing agent (C) 25.6 parts of phenol novolac resin (manufactured by Showa Denko Co., Ltd., trade name Shonor BRG-557), 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name Curazole 2E4MZ as a curing catalyst) ) was added, and a resin varnish was obtained using MEK so as to have a nonvolatile content of 50%.
  • trisphenylmethane type epoxy resin manufactured by Nippon Kayaku Co., Ltd., trade name EPPN-501H
  • epoxy resin (B) curing agent
  • C 25.6 parts of phenol novolac resin
  • a glass cloth (model number survey) was impregnated with the obtained resin varnish, followed by drying at 150 ° C. for 10 minutes to obtain a prepreg.
  • the obtained four prepregs and copper foil (made by Mitsui Mining & Smelting Co., Ltd., trade name 3EC-III, thickness 35 ⁇ m) are stacked and vacuum pressed at a pressure of 2 MPa under a temperature condition of 130 ° C. ⁇ 15 minutes + 190 ° C. ⁇ 80 minutes. To obtain a cured product of a 0.5 mm thick laminate.
  • Example 8 70 parts of the phosphorus-containing epoxy resin composition obtained in Example 3 and 30 parts of a styrene-modified phenol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name TX-1210-90) as the epoxy resin (B)
  • a cured product of a prepreg and a laminate was obtained in the same manner as in Example 7, except that 2.0 parts of dicyandiamide (DICY) was used as the curing agent (C) and 0.9 part of 2E4MZ was used as the curing catalyst.
  • DIX-1210-90 styrene-modified phenol novolac type epoxy resin
  • Example 9 70 parts of the phosphorus-containing epoxy resin composition obtained in Example 3, 30 parts of TX-1210-90 as epoxy resin (B), 19.9 parts of BRG-557 as curing agent (C), curing catalyst As a result, a cured product of a prepreg and a laminate was obtained in the same manner as in Example 7, except that 0.9 part of 2E4MZ was used.
  • Example 10 85 parts of the phosphorus-containing epoxy resin composition obtained in Example 3 and 15 parts of bisphenol A type solid epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name Epototo YD-903N) as the epoxy resin (B), cured A cured product of a prepreg and a laminate was obtained in the same manner as in Example 7, except that 1.3 parts of DICY was used as the agent (C) and 0.9 parts of 2E4MZ was used as the curing catalyst.
  • bisphenol A type solid epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name Epototo YD-903N
  • Comparative Example 5 70 parts of the phosphorus-containing epoxy resin composition obtained in Comparative Example 2, 30 parts of TX-1210-90 as the epoxy resin (B), 4.4 parts of DICY as the curing agent (C), and 2E4MZ as the curing catalyst A cured product of a prepreg and a laminate was obtained in the same manner as in Example 7 except that the content was 0.9 parts.
  • Comparative Example 6 Put 43.5 parts of HCA, 4.3 parts of 1,4-naphthoquinone, and 100 parts of toluene in a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introduction device. The mixture was stirred at 75 ° C.
  • TPP triphenylphosphine
  • Example 7 70 parts of the obtained phosphorus-containing epoxy resin, 30 parts of TX-1210-90 as the epoxy resin (B), 24.3 parts of BRG-557 as the curing agent (C), 0.92 of 2E4MZ as the curing catalyst A cured product of a prepreg and a laminate was obtained in the same manner as in Example 7 except that the parts were used.
  • Comparative Example 7 In a four-neck Separabrasco equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe, 64.1 parts of YDPN-638 as an epoxy resin, 20.9 parts of HCA as a phosphorus compound, and HCA-HQ By putting 15 parts and reacting at 160 ° C.
  • a phosphorus-containing epoxy resin having an epoxy equivalent of 444 g / eq, a phenolic hydroxyl group equivalent of 1750 g / eq, and a phosphorus content of 3.0% was obtained.
  • the viscosity of the phosphorus-containing epoxy resin varnish obtained by diluting this phosphorus-containing epoxy resin with MEK to a solid content of 70% was 440 mPa ⁇ s.
  • Comparative Example 4 the phosphorus-containing epoxy resin was used to dissolve the phosphorus-containing phenol resin. However, since the phosphorus content in the phosphorus-containing epoxy resin composition exceeded 7%, the viscosity of the phosphorus-containing epoxy resin was increased. The contained phenol resin could not be dissolved. Comparative Example 6 was an evaluation using a laminate using the phosphorus-containing epoxy resin of Patent Document 2, but the flame retardancy was slightly worse and the heat resistance was also slightly worse.
  • Comparative Example 7 was an evaluation using a laminate using the phosphorus-containing epoxy resin of Patent Document 4, but the flame retardancy was slightly worse and the heat resistance was also slightly worse.
  • the specific phosphorus-containing epoxy compound was dissolved in the specific phosphorus-containing epoxy resin, and had low viscosity, excellent workability, and high flame retardancy. Further, it was found that the composition of the present invention can obtain flame retardancy even when an epoxy resin (B) that improves heat resistance, dielectric constant, and adhesive strength is blended, and particularly has low dielectric properties.

Abstract

 Provided is a phosphorus-containing epoxy resin composition having adequate flame retardancy which is obtained by increasing the phosphorous content, while having a low viscosity and excellent solubility in organic solvents. This phosphorous-containing epoxy resin composition does not precipitate at room temperature, and is obtained by dissolving 5-45 parts by mass of a phosphorous-containing phenol compound represented by general formula (2) in 100 parts by mass of a phosphorous-containing epoxy resin represented by the general formula (1) and having a phosphoric content that falls within the range of 2-7 mass%. [Compound represented by formula 1] (in the formula, R1 and R2 represent C1-6 hydrocarbon groups, which may be the same or different , and may form a ring together with phosphorus atoms. i represents 0 or 1. [Compound represented by formula 2] (in the formula, R3 and R4 represent C1-6 hydrocarbon groups, which may be the same or different, and may form a ring together with phosphorus atoms. n represents 0 or 1. A represents a C6-20 arene-triyl group.)

Description

リン含有エポキシ樹脂組成物および硬化物Phosphorus-containing epoxy resin composition and cured product
 本発明は、リン含有エポキシ樹脂とリン含有フェノール化合物とからなる難燃性を有する、リン含有エポキシ樹脂組成物及びその硬化物に関するものである。 The present invention relates to a phosphorus-containing epoxy resin composition having a flame retardancy composed of a phosphorus-containing epoxy resin and a phosphorus-containing phenol compound, and a cured product thereof.
 エポキシ樹脂は接着性、耐熱性、成形性に優れていることから電気・電子分野をはじめとして産業用途に幅広く用いられている。特に電気・電子分野に用いられる積層板の場合は、機器の使用時の火災発生を防ぐ目的等安全性の面から難燃性が強く要求されている。従来、積層板に難燃性を付与する手法として臭素系難燃剤、窒素系難燃剤、そしてリン系難燃剤の単独または組み合わせ、さらには前記難燃剤に無機系難燃助剤を使用するシステムが多く適用されてきた。しかしながら、近年の環境問題においてハロゲン化合物を使用した際、その積層板が燃焼処理される過程において有害なハロゲン化物の生成が疑われ、臭素系難燃剤を使用しない、いわゆるハロゲンフリー難燃システムの要求が強くなっている。そこで、従来の技術において積層板に臭素系難燃剤を使用しないで難燃性を付与するには窒素系難燃剤、リン系難燃剤を使用せざるをえなくなるが、窒素系難燃剤は難燃性を付与するには不十分であり、リン系難燃剤のうち赤リンは安全性が不十分であり、リン酸系化合物は液状であるためブリードアウトの問題が発生しやすく、リン酸エステル類を使用した場合はハンダ耐熱性や接着性が低下してしまい、積層板として使用することが困難であった。
 前記問題に対して、特許文献1、2には10−(2、5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製 商品名HCA−HQ)とエポキシ樹脂類とを所定のモル比で反応させて得られる熱硬化性樹脂及び組成物が開示されている。また、特許文献3に2官能以上のエポキシ基を有する樹脂とジフェニルホスフィニルヒドロキノンとを反応させてなるリン含有エポキシ樹脂が開示されている。ところが、このようなリン化合物とエポキシ樹脂との反応によって得られるリン含有エポキシ樹脂は、リン含有率が高くなるにつれて分子量が大きくなるため、十分な難燃性が得られる樹脂ワニスは粘度が高く、取り扱ううえでの作業性やガラスクロス等の基材への含浸性が悪くなる問題があった。さらに、リン含有エポキシ樹脂の分子量が高くなったことで、硬化物の架橋密度が低下するため、高いガラス転移温度が得られ難かった。
 これに対して特許文献4ではリン含有フェノール化合物由来の水酸基を残したリン含有エポキシ樹脂とすることで分子量を小さくし、粘度を低くする方法が開示されている。しかしながら、この方法ではリン含有フェノール化合物をエポキシ樹脂とある程度反応させる必要があるため、粘度の低減という点では不十分であった。
 また、特許文献5にはリン含有エポキシ樹脂のみでは十分な難燃性が得られないため、リン化合物をリン含有エポキシ樹脂ワニスに溶解してリン含有率を高める方法が開示されているが、溶媒にN、N−ジメチルホルムアミド等の高沸点溶媒を使用しなければならず、リン化合物が析出しやすいという問題もあった。特許文献6ではHCA−HQを平均粒径10μm、最大粒径40μmの大きさに微粉砕することによって樹脂ワニスに分散させる方法が開示されているが、高沸点溶媒を用いてリン化合物を溶解させた場合よりも粘度が高くなり易く、硬化反応を十分行うには硬化条件の検討を十分行わなければならないという問題があった。
Epoxy resins are widely used in industrial applications including the electric and electronic fields because of their excellent adhesiveness, heat resistance, and moldability. In particular, in the case of a laminated board used in the electric / electronic field, flame retardancy is strongly demanded from the viewpoint of safety such as the purpose of preventing the occurrence of a fire when the device is used. Conventionally, brominated flame retardants, nitrogen-based flame retardants, and phosphorus-based flame retardants alone or in combination as a method for imparting flame retardancy to laminates, and furthermore, a system using an inorganic flame retardant aid for the flame retardant Many have been applied. However, when halogen compounds are used for environmental problems in recent years, the generation of harmful halides is suspected in the process of burning the laminates, and so-called halogen-free flame retardant systems that do not use brominated flame retardants are required. Is getting stronger. Therefore, in order to impart flame retardancy without using brominated flame retardants to laminates in the conventional technology, it is necessary to use nitrogen flame retardants and phosphorus flame retardants, but nitrogen flame retardants are flame retardant. Of phosphorous flame retardants, red phosphorus is insufficient in safety, and phosphoric acid compounds are in liquid form, thus causing bleed-out problems. When used, solder heat resistance and adhesiveness are lowered, making it difficult to use as a laminate.
For the above problem, Patent Documents 1 and 2 disclose 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide (trade name HCA-HQ, manufactured by Sanko Co., Ltd.). Thermosetting resins and compositions obtained by reacting epoxy resins with epoxy resins at a predetermined molar ratio are disclosed. Patent Document 3 discloses a phosphorus-containing epoxy resin obtained by reacting a resin having a bifunctional or higher functional epoxy group with diphenylphosphinylhydroquinone. However, the phosphorus-containing epoxy resin obtained by the reaction between such a phosphorus compound and the epoxy resin has a high molecular weight as the phosphorus content increases, so that the resin varnish that provides sufficient flame retardancy has a high viscosity, There was a problem that workability in handling and impregnation into a substrate such as glass cloth deteriorated. Furthermore, since the molecular weight of the phosphorus-containing epoxy resin is increased, the crosslink density of the cured product is reduced, and thus it is difficult to obtain a high glass transition temperature.
On the other hand, Patent Document 4 discloses a method of reducing the molecular weight and decreasing the viscosity by using a phosphorus-containing epoxy resin that leaves a hydroxyl group derived from a phosphorus-containing phenol compound. However, in this method, it is necessary to react the phosphorus-containing phenol compound with the epoxy resin to some extent, which is insufficient in terms of reducing the viscosity.
Patent Document 5 discloses a method for increasing the phosphorus content by dissolving a phosphorus compound in a phosphorus-containing epoxy resin varnish because sufficient flame retardancy cannot be obtained only by the phosphorus-containing epoxy resin. In addition, a high boiling point solvent such as N, N-dimethylformamide has to be used, and there is a problem that phosphorus compounds are likely to precipitate. Patent Document 6 discloses a method of dispersing HCA-HQ in a resin varnish by finely pulverizing HCA-HQ to an average particle size of 10 μm and a maximum particle size of 40 μm. However, a phosphorus compound is dissolved using a high boiling point solvent. The viscosity is likely to be higher than that of the case, and there has been a problem that the curing conditions must be sufficiently examined in order to sufficiently perform the curing reaction.
特許−3092009号公報Japanese Patent No. 3092009 特開平11−279258号公報JP-A-11-279258 特開平5−214070号公報Japanese Patent Laid-Open No. 5-214070 特開2012−172079号公報JP 2012-172079 A 特開2002−249540号公報JP 2002-249540 A 特開2003−011269号公報JP 2003-011269 A 特開昭60−126293号公報JP 60-126293 A 特開昭61−236787号公報JP-A-61-2236787
 zh.Obshch.Khim,42(11)、第2415−2418頁(1972年) Zh. Obshch. Khim, 42 (11), 2415-2418 (1972).
 これまで用いられてきたリン含有エポキシ樹脂または、リン含有エポキシ樹脂組成物においては難燃性を向上するためにリン含有率を高めようとすると溶剤への溶解性が悪くなり、さらには粘度が高くなるため、積層板に適用することが困難であった。更にリン含有フェノール化合物は有機溶剤への溶解性が乏しく、基板用途の配合物として利用するには均一な樹脂ワニスとして適用することが困難であった。本発明は上記従来技術の有する課題に鑑みてなされたものであり、リン含有率を高くすることで十分な難燃性を有しながらも粘度が低く、有機溶剤への溶解性が良好であり、繊維状基材への含浸性等の作業性に非常に優れたエポキシ樹脂組成物を提供するものである。 In the phosphorus-containing epoxy resin or the phosphorus-containing epoxy resin composition that has been used so far, if the phosphorus content is increased in order to improve the flame retardancy, the solubility in the solvent becomes worse, and the viscosity is higher. Therefore, it was difficult to apply to a laminated board. Furthermore, the phosphorus-containing phenol compound has poor solubility in an organic solvent, and it has been difficult to apply it as a uniform resin varnish for use as a formulation for a substrate. The present invention has been made in view of the above-described problems of the prior art, and has a low viscosity and good solubility in organic solvents while having sufficient flame retardancy by increasing the phosphorus content. An epoxy resin composition having excellent workability such as impregnation into a fibrous base material is provided.
 すなわち本発明は、
(1).下記一般式(1)の構造を有するリン含有率が2~7質量%の範囲内であるリン含有エポキシ樹脂100質量部に対して、5~45質量部の下記一般式(2)で示されるリン含有フェノール化合物を溶解し、室温において析出の無いリン含有エポキシ樹脂組成物であり、
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRは炭素数1~6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。iは0または1を表す。)
Figure JPOXMLDOC01-appb-C000004
(式中、R及びRは炭素数1~6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。nは0または1を表す。Aは炭素数6~20のアレーントリイル基を表す。)
(2).(1)項に記載のリン含有エポキシ樹脂組成物にエポキシ樹脂(B)を配合してなるリン含有エポキシ樹脂組成物であり、
(3).(2)項に記載のリン含有エポキシ樹脂組成物中のリン含有率が2質量%以上であることを特徴とするリン含有エポキシ樹脂組成物であり、
(4).(1)~(3)項のいずれかに記載のリン含有エポキシ樹脂組成物に硬化剤(C)を配合してなるリン含有エポキシ樹脂組成物であり、
(5).(1)~(4)のいずれかに記載のリン含有エポキシ樹脂組成物を繊維状基材に含浸してなるプリプレグであり、
(6).(1)~(4)のいずれかに記載のリン含有エポキシ樹脂組成物を硬化させた硬化物であり、
(7).(5)項に記載のプリプレグを硬化させた硬化物である。
That is, the present invention
(1). It is represented by the following general formula (2) of 5 to 45 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin having a phosphorus content having the structure of the following general formula (1) in the range of 2 to 7% by mass. A phosphorus-containing epoxy resin composition that dissolves a phosphorus-containing phenol compound and has no precipitation at room temperature,
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 and R 2 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different, and may be cyclic with a phosphorus atom. I is 0 or 1) To express.)
Figure JPOXMLDOC01-appb-C000004
(Wherein R 3 and R 4 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different and may be cyclic with a phosphorus atom. N is 0 or 1) A represents an arenetriyl group having 6 to 20 carbon atoms.)
(2). A phosphorus-containing epoxy resin composition obtained by blending an epoxy resin (B) with the phosphorus-containing epoxy resin composition described in the item (1),
(3). (2) A phosphorus-containing epoxy resin composition characterized in that the phosphorus content in the phosphorus-containing epoxy resin composition according to item (2) is 2% by mass or more,
(4). (1) A phosphorus-containing epoxy resin composition obtained by blending a curing agent (C) with the phosphorus-containing epoxy resin composition according to any one of (3),
(5). (1) A prepreg formed by impregnating a fibrous base material with the phosphorus-containing epoxy resin composition according to any one of (4),
(6). (1) to a cured product obtained by curing the phosphorus-containing epoxy resin composition according to any one of (4),
(7). A cured product obtained by curing the prepreg described in the item (5).
 本発明のリン含有エポキシ樹脂組成物は従来、溶解させることが困難であったリン含有フェノール化合物が特定のリン含有エポキシ樹脂中に溶解できることを見出し本発明を完成したものであり、高いリン含有率による難燃性と低い樹脂粘度による作業性の向上を両立したものである。本発明のリン含有エポキシ樹脂組成物は、積層板作成においてガラスクロス等繊維状機材への含浸が容易になるとともに難燃性が向上するので、電子、電気分野におけるプリント配線基板材料、封止材料、注型材料、接着材料をはじめ航空宇宙分野や車両、橋梁、風車等に用いられる複合材料等の難燃性を必要とする分野において有用である。 The phosphorus-containing epoxy resin composition of the present invention has been found out that a phosphorus-containing phenol compound, which has been difficult to dissolve in the past, can be dissolved in a specific phosphorus-containing epoxy resin, and has completed the present invention, and has a high phosphorus content It achieves both the flame retardancy due to and improved workability due to low resin viscosity. Since the phosphorus-containing epoxy resin composition of the present invention facilitates impregnation of fibrous materials such as glass cloth in the production of laminates and improves flame retardancy, printed wiring board materials and sealing materials in the electronic and electrical fields It is useful in fields requiring flame retardancy such as casting materials, adhesive materials, aerospace, and composite materials used in vehicles, bridges, windmills, and the like.
 以下、本発明の実施形態について詳細に説明する。
本発明で用いられるリン含有エポキシ樹脂は下記一般式(1)で示される化学構造をその分子内に持ったリン含有エポキシ樹脂であって、例えば、下記一般式(2)及び/または下記一般式(3)で示すリン化合物とエポキシ樹脂を反応させて合成することができる。
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは炭素数1~6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。iは0または1を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R及びRは炭素数1~6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。nは0または1を表す。Aは炭素数6~20のアレーントリイル基を表す。)
(式中、R及びRは炭素数1~6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。jは0または1を表す。)
 前記一般式(2)または前記一般式(3)で示されるリン化合物としては、例えば10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製、商品名HCA−HQ)、10−(1,4−ジオキシナフタレン)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド(以下HCA−NQと記す)、ジフェニルホスフィニルヒドロキノン(北興化学工業株式会社製、商品名PPQ)、ジフェニルホスフェニル−1,4−ジオキシナフタリン、1,4−シクロオクチレンホスフィニル−1,4−フェニルジオール(日本化学工業株式会社製、商品名CPHO−HQ)、1,5−シクロオクチレンホスフィニル−1、4−フェニルジオール(日本化学工業株式会社製、商品名CPHO−HQ)等のリン含有フェノール類、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製、商品名HCA)、1,4−シクロオクチレンホスフィンオキシドと、5−シクロオクチレンフォスフィンオキシドの混合物(日本化学工業株式会社製、商品名CPHO)、ジフェニルホスフィンオキシド等が挙げられるがこれらに限定されるものではない。
 また、リン含有エポキシ樹脂を合成する際に前述のリン化合物と反応するエポキシ樹脂は、分子内にエポキシ基を少なくとも1.5個有しており、より好ましくは2個以上有しているものが良い。特に一般式(3)のリン化合物を併用する場合はエポキシ基として3個以上有しているものを使用することが好ましい。エポキシ樹脂の例としては、エポトートYD−128、エポトートYD−8125(新日鉄住金化学株式会社製、ビスフェノールA型エポキシ樹脂)、エポトートYDF−170、エポトートYDF−8170(新日鉄住金化学株式会社製、ビスフェノールF型エポキシ樹脂)、YSLV−80XY(新日鉄住金化学株式会社製、テトラメチルビスフェノールF型エポキシ樹脂)、エポトートYDC−1312(新日鉄住金化学株式会社製、ヒドロキノン型エポキシ樹脂)、jER YX−4000H(三菱化学株式会社製、ビフェニル型エポキシ樹脂)、エポトートYDPN−638、エポトートYDPN−63X(新日鉄住金化学株式会社製、フェノールノボラック型エポキシ樹脂)、エポトートYDCN−701(新日鉄住金化学株式会社製、クレゾールノボラック型エポキシ樹脂)、エポトートZX−1201(新日鉄住金化学株式会社製、ビスフェノールフルオレン型エポキシ樹脂)、TX−0710(新日鉄住金化学株式会社製、ビスフェノールS型エポキシ樹脂)、エピクロンEXA−1515(大日本化学工業株式会社製、ビスフェノールS型エポキシ樹脂)、NC−3000(日本化薬株式会社製、ビフェニルアラルキルフェノール型エポキシ樹脂)、エポトートZX−1355、エポトートZX−1711(新日鉄住金化学株式会社製、ナフタレンジオール型エポキシ樹脂)、エポトートESN−155(新日鉄住金化学株式会社製、β−ナフトールアラルキル型エポキシ樹脂)、エポトートESN−355、エポトートESN−375(新日鉄住金化学株式会社製、ジナフトールアラルキル型エポキシ樹脂)、エポトートESN475V,エポトートESN−485(新日鉄住金化学株式会社製、α−ナフトールアラルキル型エポキシ樹脂)、EPPN−501H(日本化薬株式会社製、トリスフェニルメタン型エポキシ樹脂)、スミエポキシTMH−574(住友化学株式会社製、トリスフェニルメタン型エポキシ樹脂)、YSLV−120TE(新日鉄住金化学株式会社製、ビスチオエーテル型エポキシ樹脂)、エポトートZX−1684(新日鉄住金化学株式会社製、レゾルシノール型エポキシ樹脂)、デナコールEX−201(ナガセケムテックス株式会社製、レゾルシノール型エポキシ樹脂)、エピクロンHP−7200H(DIC株式会社製、ジシクロペンタジエン型エポキシ樹脂)等の多価フェノール樹脂のフェノール化合物とエピハロヒドリンとから製造されるエポキシ樹脂、TX−0929、TX−0934、TX−1032(新日鉄住金化学株式会社製 アルキレングリコール型エポキシ樹脂)等のアルコール化合物とエピハロヒドリンとから製造されるエポキシ樹脂、セロキサイド2021(ダイセル化学工業株式会社製、脂肪族環状エポキシ樹脂)、エポトートYH−434、(新日鉄住金化学株式会社製、ジアミノジフェニルメタンテトラグリシジルアミン)等のアミン化合物とエピハロヒドリンとから製造されるエポキシ樹脂、jER 630(三菱化学株式会社製、アミノフェノール型エポキシ樹脂)、エポトートFX−289B、エポトートFX−305、TX−0932A(新日鉄住金化学株式会社製、リン含有エポキシ樹脂)等のエポキシ樹脂をリン化合物等の変性剤と反応して得られるリン含有エポキシ樹脂、ウレタン変性エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂等が挙げられるが、これらに限定されるものではない。また、これらのエポキシ樹脂は単独で使用しても2種類以上を併用して使用してもよい
 前記一般式(2)及び/または前記一般式(3)のリン化合物とエポキシ樹脂との反応は特許文献1、2、3に記載されている方法を含めフェノール化合物とエポキシ樹脂の反応方法であるアドバンス法等の公知公用の方法を用いることができる。この時、リン化合物とエポキシ樹脂の比率は、反応後に得られるリン含有エポキシ樹脂のリン含有率が2~7質量%の範囲にする必要があり、より好ましくは2.5~5質量%の範囲である。リン含有率が少ないと本発明で用いるリン含有フェノール化合物とリン含有エポキシ樹脂の溶解性が悪化する恐れがあり、リン含有率が多いとリン含有エポキシ樹脂の粘度が高くなり、リン含有フェノール化合物を溶解させることも困難となる恐れがある。
 また、リン化合物とエポキシ樹脂の反応においては、必要に応じて反応を促進するために反応触媒を使用する事ができる。使用できる触媒としては、例えば、トリフェニルホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン等のホスフィン類、n−ブチルトリフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムヨージド等の四級ホスホニウム塩類、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムブロミド等の四級アンモニウム塩類、トリエチルアミン、ベンジルジメチルアミン等の三級アミン類等、公知慣用の触媒が挙げられ、これらに限定されるものではない。これら触媒を使用する場合の使用量は、エポキシ樹脂とリン化合物の合計質量100部に対して0.002~2質量部の範囲が好ましい。量が多くなると本発明のリン含有エポキシ樹脂組成物における安定性に悪影響を及ぼす恐れがある。
 リン含有エポキシ樹脂に溶解させるリン含有フェノール化合物としては前記一般式(2)に示される構造を持つリン含有フェノール化合物である。具体的には例えば、HCA−HQ、HCA−NQ、PPQ、ジフェニルホスフェニル−1,4−ジオキシナフタリン、CPHO−HQ、CPHO−HQ等のリン含有フェノール類を挙げる事ができるが、これらに限定されるものではない。また、これらのリン含有フェノール化合物は2種類以上を併用して使用する事もできる。
 また、これらのリン含有フェノール化合物は前記一般式(3)の化合物、具体的には例えばHCAやジフェニルホスフィン等のリン原子に直結した活性水素基を有するリン化合物と、1,4−ベンゾキノンや1,4−ナフトキノン等のキノン類との反応で得る事ができる。これらの合成法については特許文献7、特許文献8、非特許文献1に合成方法が示されているが、これに限定されるものではない。また、リン含有エポキシ樹脂中でリン含有フェノール化合物を合成してもよい。
 本発明では特定のリン含有エポキシ樹脂に特定のリン含有フェノール化合物を溶解させることを特徴とするが、リン含有エポキシ樹脂中にリン含有フェノール化合物を溶解した状態とは室温にてリン含有フェノール樹脂の固体がリン含有エポキシ樹脂中で観察されないことをいう。具体的にはリン含有エポキシ樹脂組成物が固体の場合は加熱溶融等により脱泡し、液体の場合はそのまま脱泡して、23℃の雰囲気化において20倍の顕微鏡を用いてリン含有フェノール化合物に由来する固体が析出していないことを確認できた状態のことをいう。また、リン含有エポキシ樹脂組成物が溶媒に溶解している場合はそのまま室温にて20倍の顕微鏡で観察することでリン含有フェノール化合物に由来する固体が析出していない状態をいう。
 リン含有エポキシ樹脂にリン含有フェノール化合物を溶解する方法については特に規定するものではなく、事前に合成または市販されているリン含有フェノール化合物をリン含有エポキシ樹脂内に混ぜてもよく、またリン含有エポキシ樹脂内でリン含有フェノール化合物を合成することでも目的とするリン含有エポキシ樹脂組成物を得ることができる。更にはリン含有フェノール化合物をエピハロヒドリンと反応することによってリン含有エポキシ樹脂を合成しながら残存するリン化合物を溶解することもできる。
リン含有エポキシ樹脂へのリン含有フェノール化合物の溶解は無溶媒または溶媒を併用して行うことができ、リン含有エポキシ樹脂とリン含有フェノール化合物の反応が起きない程度の加熱撹拌を行うことで溶解できる。
 リン含有エポキシ樹脂中でリン含有フェノール化合物を合成する場合には、リン含有エポキシ樹脂中に前記一般式(3)のリン化合物とキノン化合物を仕込み反応することができる。この反応では好ましくは溶媒を併用する。使用可能な溶媒としては非プロトン性溶媒が好ましく、例えば、トルエン、キシレン、メタノール、エタノール、2−ブトキシエタノール、ジアルキルエーテル、グリコールエーテル、プロピレングリコールモノメチルエーテル、ジオキサン等が挙げられる。これらの反応溶媒は単独で、あるいは2種類以上を同時に使用してもよい。
 リン含有フェノール化合物とエピハロヒドリンを反応する際の反応比率、反応条件を調整することにおいてもリン含有エポキシ樹脂にリン含有フェノール化合物が溶解したエポキシ樹脂組成物を調整可能である。
 リン含有フェノール化合物は有機溶剤への溶解性が乏しいため、いずれの方法によっても溶媒の使用量が多すぎるとリン含有フェノール化合物がリン含有エポキシ樹脂中に溶解せず、析出する恐れがあるため、有機溶剤量としてはリン含有エポキシ樹脂組成物全質量中の50質量%以下が好ましい。
 また、いずれの方法においても溶解を行う時の温度は100~200℃が好ましく、120~160℃がより好ましい。溶解温度が低いと溶解速度が遅くなる恐れがあり、溶解温度が高いと溶解と並行してフェノール基とエポキシ基の反応が起こり、粘度が高くなるため、扱いが困難となる恐れがある。
 また、ここで用いるリン含有フェノール化合物はリン含有エポキシ樹脂100質量部に対して5~45質量部になるようにすることが必要であり、10~45質量部になるようにすることが難燃性の観点からさらに望ましい。リン含有フェノール化合物が5質量部より少ない場合は難燃性を得るためにリン含有エポキシ樹脂のリン含有率を高めなければならず、樹脂粘度高くなることからリン含有フェノール樹脂の溶解が難しくなり、リン含有エポキシ樹脂のリン含有率が低い場合、溶解は容易であるが難燃性は得られない。リン含有フェノール化合物が多い場合は完全に溶解しなくなる恐れがある。
 なお、本発明のリン含有エポキシ樹脂組成物というときは、特に断りがない限り、一般式(1)の構造を有するリン含有エポキシ樹脂と一般式(2)で示されるリン含有フェノール化合物からなるリン含有エポキシ樹脂組成物(a)と、一般式(1)の構造を有するリン含有エポキシ樹脂と一般式(2)で示されるリン含有フェノール化合物とエポキシ樹脂(B)からなるリン含有エポキシ樹脂組成物(b)と、一般式(1)の構造を有するリン含有エポキシ樹脂と一般式(2)で示されるリン含有フェノール化合物と硬化剤(C)からなるリン含有エポキシ樹脂組成物(c1)と、一般式(1)の構造を有するリン含有エポキシ樹脂と一般式(2)で示されるリン含有フェノール化合物とエポキシ樹脂(B)と硬化剤(C)からなるリン含有エポキシ樹脂組成物(c2)との全てを含む意味で使用されるが、文脈上明らかな場合は、それぞれのいずれかのリン含有エポキシ樹脂組成物を示す。また、各リン含有エポキシ樹脂組成物に更に何かを配合する場合は、各リン含有エポキシ樹脂組成物を構成する各成分の総合計を基準とする。即ち、リン含有エポキシ樹脂組成物(a)に更に何かを配合する場合は、一般式(1)の構造を有するリン含有エポキシ樹脂と一般式(2)で示されるリン含有フェノール化合物の2成分の合計量が基準となり、リン含有エポキシ樹脂組成物(c2)に更に何かを配合する場合は、一般式(1)の構造を有するリン含有エポキシ樹脂と一般式(2)で示されるリン含有フェノール化合物とエポキシ樹脂(B)と硬化剤(C)の4成分の合計量が基準となる。
 本発明のリン含有エポキシ樹脂組成物(a)にはエポキシ樹脂(B)を更に添加することができる。この場合、エポキシ樹脂(B)を混合する方法は特に規定するものではなく、一般に用いられる方法を用いて行うことができる。また、加熱して混合する場合は200℃以下で行うことが望ましく、160℃以下で行うことがさらに望ましい。混合温度が200℃以上ではリン含有エポキシ樹脂組成物(b)中のエポキシ基の反応が起こってしまい、粘度が高くなり、取り扱いが困難となる可能性がある。
 ここで用いられるエポキシ樹脂(B)としてはリン含有エポキシ樹脂を合成する際に用いられるエポキシ樹脂と同様に分子内にエポキシ基を少なくとも1.5個有しており、より好ましくは2個以上有しているものが良い。これらのエポキシ樹脂は単独、または2種類以上を合わせて用いることができる。
 このとき、エポキシ樹脂(B)の量はエポキシ樹脂(B)を加えたリン含有エポキシ樹脂組成物(b)全体のリン含有率が2質量%以上にすることが難燃性の観点から好ましい。リン含有エポキシ樹脂組成物(b)中のリン含有率が少ないと、難燃性が発現しない恐れがある。
 本発明のリン含有エポキシ樹脂組成物[(a)または(b)]に使用できる硬化剤(C)としては、エポキシ樹脂に用いられる公知公用のものが使用でき、具体的には例えば、カテコール、レゾルシノール、ヒドロキノン等のヒドロキシベンゼン類、ビナフトール類、ビフェノール類、トリスフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、トリスヒドロキシフェニルメタン、トリスヒドロキシフェニルエタン、ショウノール BRG−555(昭和電工株式会社製 フェノールノボラック樹脂)、クレゾールノボラック樹脂、アルキルフェノールノボラック樹脂、アラルキルフェノールノボラック樹脂、トリアジン環含有フェノールノボラック樹脂、ビフェニルアラルキルフェノール樹脂、レヂトップ TPM−100(群栄化学工業株式会社製、トリスヒドロキシフェニルメタン型ノボラック樹脂)、アラルキルナフタレンジオール樹脂等の一分子中に2個以上のフェノール性水酸基と有する化合物類、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジド類、イミダゾール化合物類及びその塩類、ジシアンジアミド、アミノ安息香酸エステル類、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メタキシレンジアミン、イソホロンジアミン等の脂肪族アミン類、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノエチルベンゼン等の芳香族アミン類、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸等の酸無水物類等、2メチルイミダゾール、2エチル4メチルイミダゾール、2フェニルイミダゾール等のイミダゾール類が挙げられ、これら硬化剤を2種類以上併用しても構わない。硬化剤(C)の使用量は、リン含有エポキシ樹脂組成物[(a)または(b)]中のエポキシ基当量からリン含有エポキシ樹脂組成物中に含まれるリン含有フェノール化合物の活性水素当量を引いた値を1当量とした場合、硬化剤(C)の官能基が0.1~1.3当量の範囲が望ましく、0.2~1.0当量がさらに望ましい。硬化剤の官能基の当量が少ないとエポキシ基の硬化反応が十分に進行しないため硬化物として得ることができず、多いと未反応の硬化剤が残ってしまうため、硬化物が十分な機械物性を得ることができなくなる恐れがある。
 本発明のリン含有エポキシ樹脂組成物には、流動性や粘度等を調整する場合は、物性を損ねない範囲で希釈剤を使用することが可能である。希釈剤は反応性希釈剤が好ましいが、非反応性希釈剤でも構わない。反応性希釈剤としては、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル等の単官能、レゾルシノールグリシジルエーテル、ネオペンチルグリコールグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル等の二官能、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等の多官能グリシジルエーテル類が挙げられる。非反応性希釈剤としては、ベンジルアルコール、ブチルジグリコール、パインオイル等が挙げられる。これら希釈剤はリン含有エポキシ樹脂組成物100質量部に対して30質量部以下となるようにすることが好ましい。希釈剤の添加量が多いと非反応性希釈剤の場合は硬化物からのブリードアウトが起こる恐れがあり、反応性希釈剤の場合も硬化反応が十分に進行せずにブリードアウトする恐れがある。
 また、本発明のリン含有エポキシ樹脂組成物には必要に応じて硬化促進剤を使用することが可能である。例えば、ホスフィン類、四級ホスホニウム塩類、三級アミン類、四級アンモニウム塩類、イミダゾール化合物類、三フッ化ホウ素錯体類、3−(3,4−ジクロロジフェニル)−1,1−ジメチルウレア、3−(4−クロロフェニル)−1,1−ジメチルウレア、3−フェニル−1,1−ジメチルウレア等が挙げられる。これら硬化促進剤は使用するエポキシ樹脂、併用するエポキシ樹脂硬化剤の種類、成形方法、硬化温度、その他要求特性によるが、リン含有エポキシ樹脂組成物100質量部に対して0.01~10質量部の範囲が好ましい。
 本発明のリン含有エポキシ樹脂組成物は、特性を損ねない範囲で他の熱硬化性樹脂、熱可塑性樹脂を配合してもよい。例えばフェノール樹脂、アクリル樹脂、石油樹脂、インデン樹脂、クマロンインデン樹脂、フェノキシ樹脂、ポリウレタン、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリビニルホルマール、スチレンマレイン酸樹脂等が挙げられるがこれらに限定されるものではない。これら熱硬化性樹脂、熱可塑性樹脂はリン含有エポキシ樹脂組成物100質量部に対して50質量部を超えないように配合することが望ましい。配合量が50質量部を超える場合、硬化物中のリン含有率が低下してしまい、十分な難燃性が得られない恐れがある。
 本発明のリン含有エポキシ樹脂組成物は、必要に応じて無機充填剤、有機充填剤を配合することができる。充填剤の例としては、溶融シリカ、結晶シリカ、アルミナ、窒化ケイ素、水酸化アルミニウム、ベーマイト、タルク、焼成タルク、クレー、カオリン、マイカ、炭酸カルシウム、ケイ酸カルシウム、水酸化カルシウム、水酸化マグネシウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、窒化ホウ素、酸化チタン、ガラス粉末、シリカバルーン、炭素、炭素繊維、ガラス繊維、アルミナ繊維、シリカアルミナ繊維、炭化ケイ素繊維、ポリエステル繊維、セルロース繊維、アラミド繊維、合成繊維、セラミック繊維等が挙げられる。これら充填剤はリン含有エポキシ樹脂組成物100質量部に対して1~80質量部が好ましい。少ないと無機充填剤、有機充填剤の特性が発現せず、多いと硬化後においても脆くなり、硬化物が十分な機械物性を得ることができなくなる恐れがある。
 本発明のリン含有エポキシ樹脂組成物は、さらに必要に応じてシランカップリング剤、酸化防止剤、離型剤、消泡剤、乳化剤、揺変性付与剤、平滑剤、難燃剤、顔料等の各種添加剤を配合することができる。これらの添加剤は樹脂組成物全質量中の0.01~20質量%の範囲が好ましい。
 本発明のリン含有エポキシ樹脂組成物は、公知のエポキシ樹脂組成物と同様な方法により硬化して硬化物とすることができる。リン含有エポキシ樹脂に溶解したフェノール化合物はリン含有エポキシ樹脂またはエポキシ樹脂(B)のエポキシ基と硬化反応を起こし、硬化に寄与する。しかし、硬化方法は公知のエポキシ樹脂組成物と同様の方法をとることができ、本発明の樹脂組成物固有の方法は不要である。
 本発明のリン含有エポキシ樹脂組成物は繊維状基材に含浸させることによりプリント配線板等で用いられるプリプレグを作成することができる。繊維状基材としてはガラス等の無機繊維や、ポリエステル等、ポリアミン、ポリアクリル、ポリイミド、ケブラー等の有機質繊維の織布または不織布を用いることができるがこれに限定されるものではない。本発明のリン含有エポキシ樹脂組成物からプリプレグを製造する方法としては、特に限定するものではなく、例えば上記リン含有エポキシ樹脂組成物を溶剤で粘度調整して作成した樹脂ワニスに浸漬して含浸した後、加熱乾燥して樹脂成分を半硬化(Bステージ化)して得られるものであり、例えば100~200℃で1~40分間加熱乾燥することができる。ここで、プリプレグ中の樹脂量は、樹脂分30~80質量%とすることが好ましい。
 また、前記にて作成したプリプレグを硬化するには一般にプリント配線板を製造するときに用いられる積層板の硬化方法を用いることができるがこれに限定されるものではない。例えば、プリプレグを用いて積層板を形成する場合、プリプレグを一枚または複数枚積層し、片側または両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を用いることができる。ここで作成した積層物を加圧加熱することでプリプレグを硬化させ、積層板を得ることができるが、温度としては160~220℃、圧力を50~500N/cm、加熱加圧時間を40~240分間とすることで目的とする硬化物を得ることができる。加熱温度が低いと硬化反応が十分に進行せず、高いとリン含有エポキシ樹脂組成物の分解が始まる恐れがある。また、加圧圧力が低いと樹脂が流れてしまい、希望する厚みの硬化物が得られない可能性ある。さらに、加熱加圧時間が短いと十分に硬化反応が進行しない可能性があり、長いとプリプレグ中のリン含有エポキシ樹脂組成物の熱分解が起こる可能性がある。そのため上記条件で管理することが好ましい。
 本発明のリン含有エポキシ樹脂組成物は高いリン含有率であることから優れた難燃性を有しており、低粘度であることからガラスクロス等の繊維状基材への含浸性が良好であり作業性に優れている。リン含有エポキシ樹脂硬化物は難燃性や耐熱性、接着性が良好であり、電気・電子部品に用いられる封止材、銅張り積層板、絶縁塗料、難燃塗料、複合材、絶縁難燃接着剤等の材料として有用であることが判った。
Hereinafter, embodiments of the present invention will be described in detail.
The phosphorus-containing epoxy resin used in the present invention is a phosphorus-containing epoxy resin having a chemical structure represented by the following general formula (1) in its molecule, for example, the following general formula (2) and / or the following general formula It can be synthesized by reacting the phosphorus compound shown in (3) with an epoxy resin.
Figure JPOXMLDOC01-appb-C000005
(Wherein R 1 and R 2 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different, and may be cyclic with a phosphorus atom. I is 0 or 1) To express.)
Figure JPOXMLDOC01-appb-C000006
(Wherein R 3 and R 4 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different and may be cyclic with a phosphorus atom. N is 0 or 1) A represents an arenetriyl group having 6 to 20 carbon atoms.)
(In the formula, R 5 and R 6 represent a hydrocarbon group having 1 to 6 carbon atoms, which may be the same or different, and may be cyclic with a phosphorus atom. J is 0 or 1) To express.)
Examples of the phosphorus compound represented by the general formula (2) or the general formula (3) include 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide (Sanko) Product name HCA-HQ), 10- (1,4-dioxynaphthalene) -10H-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter referred to as HCA-NQ), diphenylphosphini Luhydroquinone (made by Hokuko Chemical Co., Ltd., trade name PPQ), diphenylphosphenyl-1,4-dioxynaphthalene, 1,4-cyclooctylenephosphinyl-1,4-phenyldiol (Nippon Chemical Industry Co., Ltd.) Manufactured, trade name CPHO-HQ), 1,5-cyclooctylenephosphinyl-1,4-phenyldiol (Nippon Chemical Industry Co., Ltd.) Phosphorus-containing phenols such as company-made product name CPHO-HQ), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., trade name HCA), 1,4- Examples include, but are not limited to, a mixture of cyclooctylene phosphine oxide and 5-cyclooctylene phosphine oxide (manufactured by Nippon Chemical Industry Co., Ltd., trade name CPHO), diphenylphosphine oxide, and the like.
In addition, the epoxy resin that reacts with the above-described phosphorus compound when synthesizing the phosphorus-containing epoxy resin has at least 1.5 epoxy groups in the molecule, and more preferably has two or more epoxy groups. good. When using together the phosphorus compound of general formula (3), it is preferable to use what has 3 or more as an epoxy group. Examples of epoxy resins include Epototo YD-128, Epototo YD-8125 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol A type epoxy resin), Epototo YDF-170, Epototo YDF-8170 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol F) Type epoxy resin), YSLV-80XY (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., tetramethylbisphenol F type epoxy resin), Epototo YDC-1312 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., hydroquinone type epoxy resin), jER YX-4000H (Mitsubishi Chemical) Co., Ltd., biphenyl type epoxy resin), Epototo YDPN-638, Epototo YDPN-63X (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., phenol novolac type epoxy resin), Epototo YDCN-701 (Nippon Steel & Sumikin Chemical Co., Ltd.) Cresol novolac type epoxy resin), Epototo ZX-1201 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol fluorene type epoxy resin), TX-0710 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisphenol S type epoxy resin), Epicron EXA- 1515 (Dainippon Chemical Co., Ltd., bisphenol S type epoxy resin), NC-3000 (Nippon Kayaku Co., Ltd., biphenyl aralkyl phenol type epoxy resin), Epototo ZX-1355, Epototo ZX-1711 (Nippon Steel & Sumikin Chemical Co., Ltd.) Company, naphthalenediol type epoxy resin), Epototo ESN-155 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., β-naphthol aralkyl type epoxy resin), Epototo ESN-355, Epototo ESN-375 (Nippon Steel & Sumikin Chemical Co., Ltd.) , Dinaphthol aralkyl epoxy resin), Epototo ESN475V, Epototo ESN-485 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., α-naphthol aralkyl epoxy resin), EPPN-501H (Nippon Kayaku Co., Ltd., trisphenylmethane epoxy) Resin), Sumiepoxy TMH-574 (manufactured by Sumitomo Chemical Co., Ltd., trisphenylmethane type epoxy resin), YSLV-120TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., bisthioether type epoxy resin), Epototo ZX-1684 (Nippon Steel & Sumikin Chemical Co., Ltd.) Manufactured, resorcinol type epoxy resin), Denacol EX-201 (manufactured by Nagase ChemteX Corporation, resorcinol type epoxy resin), Epicron HP-7200H (manufactured by DIC Corporation, dicyclopentadiene type epoxy resin), etc. An epoxy resin produced from a phenolic compound of a polyhydric phenol resin and an epihalohydrin, produced from an alcohol compound such as TX-0929, TX-0934, TX-1032 (an alkylene glycol type epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and an epihalohydrin Epoxy resin, Celoxide 2021 (produced by Daicel Chemical Industries, Ltd., aliphatic cyclic epoxy resin), Epototo YH-434, (produced by Nippon Steel & Sumikin Chemical Co., Ltd., diaminodiphenylmethane tetraglycidylamine) and the like and epihalohydrin Epoxy resin, jER 630 (Mitsubishi Chemical Corporation, aminophenol type epoxy resin), Epototo FX-289B, Epototo FX-305, TX-0932A (Nippon Steel & Sumikin Chemical Co., Ltd., phosphorus Phosphorus-containing epoxy resin, urethane-modified epoxy resin, oxazolidone ring-containing epoxy resin, and the like obtained by reacting an epoxy resin such as a phosphorus-containing epoxy resin with a modifier such as a phosphorus compound, but are not limited thereto. . These epoxy resins may be used alone or in combination of two or more. The reaction between the phosphorus compound of the general formula (2) and / or the general formula (3) and the epoxy resin is as follows. Known and publicly known methods such as the advance method, which is a reaction method of a phenol compound and an epoxy resin, including the methods described in Patent Documents 1, 2, and 3 can be used. At this time, the ratio of the phosphorus compound to the epoxy resin should be such that the phosphorus content of the phosphorus-containing epoxy resin obtained after the reaction is in the range of 2 to 7% by mass, more preferably in the range of 2.5 to 5% by mass. It is. If the phosphorus content is low, the solubility of the phosphorus-containing phenol compound and the phosphorus-containing epoxy resin used in the present invention may be deteriorated. If the phosphorus content is high, the viscosity of the phosphorus-containing epoxy resin will increase, It can be difficult to dissolve.
In the reaction between the phosphorus compound and the epoxy resin, a reaction catalyst can be used as needed to promote the reaction. Examples of the catalyst that can be used include phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine, quaternary phosphonium salts such as n-butyltriphenylphosphonium bromide and ethyltriphenylphosphonium iodide, 2- Known and commonly used catalysts include imidazoles such as ethyl-4-methylimidazole and 2-phenylimidazole, quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide, and tertiary amines such as triethylamine and benzyldimethylamine. However, it is not limited to these. When these catalysts are used, the amount used is preferably in the range of 0.002 to 2 parts by mass relative to 100 parts by mass of the total mass of the epoxy resin and the phosphorus compound. If the amount is large, the stability of the phosphorus-containing epoxy resin composition of the present invention may be adversely affected.
The phosphorus-containing phenol compound dissolved in the phosphorus-containing epoxy resin is a phosphorus-containing phenol compound having a structure represented by the general formula (2). Specific examples include phosphorus-containing phenols such as HCA-HQ, HCA-NQ, PPQ, diphenylphosphenyl-1,4-dioxynaphthalene, CPHO-HQ, and CPHO-HQ. It is not limited. These phosphorus-containing phenol compounds can be used in combination of two or more.
These phosphorus-containing phenol compounds are compounds of the general formula (3), specifically, phosphorus compounds having an active hydrogen group directly connected to a phosphorus atom such as HCA and diphenylphosphine, 1,4-benzoquinone and 1 , 4-naphthoquinone and other quinones. Regarding these synthesis methods, the synthesis methods are shown in Patent Document 7, Patent Document 8, and Non-Patent Document 1, but are not limited thereto. Further, a phosphorus-containing phenol compound may be synthesized in a phosphorus-containing epoxy resin.
The present invention is characterized in that a specific phosphorus-containing phenol compound is dissolved in a specific phosphorus-containing epoxy resin, but the state in which the phosphorus-containing phenol compound is dissolved in the phosphorus-containing epoxy resin is the state of the phosphorus-containing phenol resin at room temperature. It means that no solid is observed in the phosphorus-containing epoxy resin. Specifically, when the phosphorus-containing epoxy resin composition is solid, it is degassed by heat melting or the like, and when it is liquid, it is degassed as it is, and the phosphorus-containing phenol compound is used in a 23 ° C. atmosphere using a 20 × microscope. The state which has confirmed that the solid derived from this has not precipitated. Moreover, when the phosphorus containing epoxy resin composition is melt | dissolving in the solvent, the solid derived from a phosphorus containing phenol compound does not precipitate by observing with a 20 time microscope as it is at room temperature.
The method for dissolving the phosphorus-containing phenol compound in the phosphorus-containing epoxy resin is not particularly specified, and a phosphorus-containing phenol compound synthesized in advance or commercially available may be mixed in the phosphorus-containing epoxy resin, or the phosphorus-containing epoxy The target phosphorus-containing epoxy resin composition can also be obtained by synthesizing a phosphorus-containing phenol compound in the resin. Further, by reacting a phosphorus-containing phenol compound with epihalohydrin, the remaining phosphorus compound can be dissolved while synthesizing the phosphorus-containing epoxy resin.
The phosphorus-containing phenol compound can be dissolved in the phosphorus-containing epoxy resin without solvent or in combination with a solvent, and can be dissolved by heating and stirring to such an extent that the reaction between the phosphorus-containing epoxy resin and the phosphorus-containing phenol compound does not occur. .
In the case of synthesizing a phosphorus-containing phenol compound in a phosphorus-containing epoxy resin, the phosphorus compound of the general formula (3) and the quinone compound can be charged and reacted in the phosphorus-containing epoxy resin. In this reaction, a solvent is preferably used in combination. As a usable solvent, an aprotic solvent is preferable, and examples thereof include toluene, xylene, methanol, ethanol, 2-butoxyethanol, dialkyl ether, glycol ether, propylene glycol monomethyl ether, dioxane and the like. These reaction solvents may be used alone or in combination of two or more.
The epoxy resin composition in which the phosphorus-containing phenol compound is dissolved in the phosphorus-containing epoxy resin can also be adjusted by adjusting the reaction ratio and reaction conditions when reacting the phosphorus-containing phenol compound with epihalohydrin.
Phosphorus-containing phenolic compounds are poorly soluble in organic solvents, so if any amount of solvent is used by any method, the phosphorus-containing phenolic compound will not dissolve in the phosphorus-containing epoxy resin and may precipitate. The amount of the organic solvent is preferably 50% by mass or less based on the total mass of the phosphorus-containing epoxy resin composition.
In any method, the temperature at the time of dissolution is preferably 100 to 200 ° C, more preferably 120 to 160 ° C. If the dissolution temperature is low, the dissolution rate may be slow, and if the dissolution temperature is high, the reaction between the phenol group and the epoxy group occurs in parallel with the dissolution and the viscosity increases, which may make handling difficult.
Further, the phosphorus-containing phenol compound used here needs to be 5 to 45 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin, and it is flame retardant to be 10 to 45 parts by mass. Further desirable from the viewpoint of sex. If the phosphorus-containing phenol compound is less than 5 parts by mass, the phosphorus content of the phosphorus-containing epoxy resin must be increased in order to obtain flame retardancy, and it becomes difficult to dissolve the phosphorus-containing phenol resin because the resin viscosity increases. When the phosphorus content of the phosphorus-containing epoxy resin is low, dissolution is easy but flame retardancy is not obtained. When there are many phosphorus containing phenol compounds, there exists a possibility that it may become completely insoluble.
The phosphorus-containing epoxy resin composition of the present invention is a phosphorus-containing epoxy compound having a structure represented by the general formula (1) and a phosphorus-containing phenol compound represented by the general formula (2) unless otherwise specified. -Containing epoxy resin composition (a), a phosphorus-containing epoxy resin composition comprising a phosphorus-containing epoxy resin having a structure of the general formula (1), a phosphorus-containing phenol compound represented by the general formula (2), and an epoxy resin (B) A phosphorus-containing epoxy resin composition (c1) comprising (b), a phosphorus-containing epoxy resin having a structure of the general formula (1), a phosphorus-containing phenol compound represented by the general formula (2), and a curing agent (C); A phosphorus-containing epoxy resin having a structure of the general formula (1), a phosphorus-containing phenol compound represented by the general formula (2), an epoxy resin (B), and a curing agent (C) It is used in the sense to include all of the epoxy resin composition (c2), when context clearly indicates the respective one of the phosphorus-containing epoxy resin composition. Moreover, when something is further blended in each phosphorus-containing epoxy resin composition, the total sum of each component constituting each phosphorus-containing epoxy resin composition is used as a reference. That is, when something is further blended in the phosphorus-containing epoxy resin composition (a), two components of the phosphorus-containing epoxy resin having the structure of the general formula (1) and the phosphorus-containing phenol compound represented by the general formula (2) In the case where something is further added to the phosphorus-containing epoxy resin composition (c2), the phosphorus-containing epoxy resin having the structure of the general formula (1) and the phosphorus-containing content represented by the general formula (2) The total amount of the four components of the phenol compound, the epoxy resin (B), and the curing agent (C) is a standard.
An epoxy resin (B) can be further added to the phosphorus-containing epoxy resin composition (a) of the present invention. In this case, the method of mixing the epoxy resin (B) is not particularly defined, and can be performed using a generally used method. Moreover, when mixing by heating, it is desirable to carry out at 200 degrees C or less, and it is more desirable to carry out at 160 degrees C or less. When the mixing temperature is 200 ° C. or higher, the reaction of the epoxy group in the phosphorus-containing epoxy resin composition (b) occurs, the viscosity becomes high, and handling may be difficult.
The epoxy resin (B) used here has at least 1.5 epoxy groups in the molecule as in the epoxy resin used when synthesizing the phosphorus-containing epoxy resin, more preferably two or more. What you are doing is good. These epoxy resins can be used alone or in combination of two or more.
At this time, the amount of the epoxy resin (B) is preferably 2% by mass or more of the total phosphorus-containing epoxy resin composition (b) added with the epoxy resin (B) from the viewpoint of flame retardancy. If the phosphorus content in the phosphorus-containing epoxy resin composition (b) is low, flame retardancy may not be exhibited.
As the curing agent (C) that can be used in the phosphorus-containing epoxy resin composition [(a) or (b)] of the present invention, known and publicly used ones used for epoxy resins can be used. Hydroxybenzenes such as resorcinol and hydroquinone, binaphthols, biphenols, trisphenols, bisphenol A, bisphenol F, bisphenol S, trishydroxyphenylmethane, trishydroxyphenylethane, shounol BRG-555 (Phenol made by Showa Denko KK Novolak resin), cresol novolak resin, alkylphenol novolak resin, aralkylphenol novolak resin, triazine ring-containing phenol novolak resin, biphenylaralkylphenol resin, resin top TPM-10 (Gunei Chemical Industry Co., Ltd., trishydroxyphenylmethane type novolak resin), compounds having two or more phenolic hydroxyl groups in one molecule such as aralkyl naphthalene diol resin, hydrazides such as adipic acid dihydrazide and sebacic acid dihydrazide , Imidazole compounds and salts thereof, dicyandiamide, aminobenzoic acid esters, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, metaxylenediamine, isophoronediamine and other aliphatic amines, diaminodiphenylmethane, diaminodiphenylsulfone, diaminoethylbenzene Aromatic amines such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride Examples include acid anhydrides such as hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methylnadic anhydride, and imidazoles such as 2methylimidazole, 2ethyl4methylimidazole, and 2phenylimidazole. You may use more than one kind together. The amount of the curing agent (C) used is the active hydrogen equivalent of the phosphorus-containing phenol compound contained in the phosphorus-containing epoxy resin composition from the epoxy group equivalent in the phosphorus-containing epoxy resin composition [(a) or (b)]. When the subtracted value is 1 equivalent, the functional group of the curing agent (C) is preferably in the range of 0.1 to 1.3 equivalent, more preferably 0.2 to 1.0 equivalent. If the functional group equivalent of the curing agent is small, the curing reaction of the epoxy group does not proceed sufficiently so that it cannot be obtained as a cured product. If it is large, unreacted curing agent remains, and the cured product has sufficient mechanical properties. There is a risk that you will not be able to get.
In the phosphorus-containing epoxy resin composition of the present invention, when adjusting fluidity, viscosity, etc., it is possible to use a diluent as long as the physical properties are not impaired. The diluent is preferably a reactive diluent, but may be a non-reactive diluent. As reactive diluent, monofunctional such as allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, bifunctional such as resorcinol glycidyl ether, neopentyl glycol glycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol And polyfunctional glycidyl ethers such as polyglycidyl ether, trimethylolpropane polyglycidyl ether, and pentaerythritol polyglycidyl ether. Non-reactive diluents include benzyl alcohol, butyl diglycol, pine oil and the like. These diluents are preferably 30 parts by mass or less with respect to 100 parts by mass of the phosphorus-containing epoxy resin composition. If the amount of diluent added is large, bleed out from the cured product may occur in the case of a non-reactive diluent, and in the case of a reactive diluent, the curing reaction may not sufficiently proceed to bleed out. .
Moreover, it is possible to use a hardening accelerator as needed for the phosphorus-containing epoxy resin composition of the present invention. For example, phosphines, quaternary phosphonium salts, tertiary amines, quaternary ammonium salts, imidazole compounds, boron trifluoride complexes, 3- (3,4-dichlorodiphenyl) -1,1-dimethylurea, 3 -(4-Chlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea and the like. These curing accelerators depend on the epoxy resin used, the type of epoxy resin curing agent used together, the molding method, the curing temperature, and other required characteristics, but 0.01 to 10 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin composition. The range of is preferable.
The phosphorus-containing epoxy resin composition of the present invention may be blended with other thermosetting resins and thermoplastic resins as long as the characteristics are not impaired. For example, phenol resin, acrylic resin, petroleum resin, indene resin, coumarone indene resin, phenoxy resin, polyurethane, polyester, polyamide, polyimide, polyamideimide, polyetherimide, polyethersulfone, polysulfone, polyetheretherketone, polyphenylene sulfide, Examples thereof include, but are not limited to, polyvinyl formal and styrene maleic acid resin. These thermosetting resins and thermoplastic resins are desirably blended so as not to exceed 50 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin composition. If the blending amount exceeds 50 parts by mass, the phosphorus content in the cured product will decrease, and sufficient flame retardancy may not be obtained.
The phosphorus containing epoxy resin composition of this invention can mix | blend an inorganic filler and an organic filler as needed. Examples of fillers include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, boehmite, talc, calcined talc, clay, kaolin, mica, calcium carbonate, calcium silicate, calcium hydroxide, magnesium hydroxide, Magnesium carbonate, barium carbonate, barium sulfate, boron nitride, titanium oxide, glass powder, silica balloon, carbon, carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon carbide fiber, polyester fiber, cellulose fiber, aramid fiber, synthetic Examples thereof include fibers and ceramic fibers. These fillers are preferably 1 to 80 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin composition. If the amount is too small, the properties of the inorganic filler and the organic filler will not be exhibited. If the amount is too large, the material becomes brittle even after curing, and the cured product may not be able to obtain sufficient mechanical properties.
The phosphorus-containing epoxy resin composition of the present invention further includes various kinds of silane coupling agents, antioxidants, mold release agents, antifoaming agents, emulsifiers, thixotropic agents, smoothing agents, flame retardants, pigments and the like as necessary. Additives can be blended. These additives are preferably in the range of 0.01 to 20% by mass based on the total mass of the resin composition.
The phosphorus-containing epoxy resin composition of the present invention can be cured by the same method as known epoxy resin compositions to obtain a cured product. The phenol compound dissolved in the phosphorus-containing epoxy resin causes a curing reaction with the epoxy group of the phosphorus-containing epoxy resin or the epoxy resin (B) and contributes to curing. However, the curing method can be the same as that of a known epoxy resin composition, and the method unique to the resin composition of the present invention is unnecessary.
The phosphorus-containing epoxy resin composition of the present invention can make a prepreg used in a printed wiring board or the like by impregnating a fibrous base material. As the fibrous base material, inorganic fibers such as glass, and woven or non-woven fabrics of organic fibers such as polyester, polyamine, polyacryl, polyimide, Kevlar, etc. can be used, but are not limited thereto. The method for producing the prepreg from the phosphorus-containing epoxy resin composition of the present invention is not particularly limited. For example, the resin-varnish prepared by adjusting the viscosity of the phosphorus-containing epoxy resin composition with a solvent is impregnated. Thereafter, the resin component is obtained by heat-drying and semi-curing (B-stage). For example, the resin component can be heat-dried at 100 to 200 ° C. for 1 to 40 minutes. Here, the amount of resin in the prepreg is preferably 30 to 80% by mass.
Moreover, in order to harden the prepreg produced above, although the laminated board hardening method generally used when manufacturing a printed wiring board can be used, it is not limited to this. For example, when forming a laminate using prepreg, one or more prepregs are laminated, metal foil is placed on one or both sides to form a laminate, and this laminate is heated and pressurized to form a laminate. Turn into. Here, as the metal foil, a single, alloy, or composite metal foil of copper, aluminum, brass, nickel or the like can be used. The laminate prepared here can be heated under pressure to cure the prepreg to obtain a laminate. The temperature is 160 to 220 ° C., the pressure is 50 to 500 N / cm 2 , and the heating and pressing time is 40. The target cured product can be obtained by setting it to ~ 240 minutes. If the heating temperature is low, the curing reaction does not proceed sufficiently, and if it is high, the phosphorus-containing epoxy resin composition may start to decompose. Moreover, when the pressurizing pressure is low, the resin flows, and a cured product having a desired thickness may not be obtained. Furthermore, if the heating and pressing time is short, the curing reaction may not proceed sufficiently, and if it is long, the phosphorus-containing epoxy resin composition in the prepreg may be thermally decomposed. Therefore, it is preferable to manage under the above conditions.
The phosphorus-containing epoxy resin composition of the present invention has excellent flame retardancy because it has a high phosphorus content, and because of its low viscosity, it has good impregnation into fibrous substrates such as glass cloth. Excellent workability. Phosphorus-containing epoxy resin cured products have good flame retardancy, heat resistance, and adhesiveness. Sealing materials used in electrical and electronic parts, copper-clad laminates, insulating paints, flame retardant paints, composite materials, insulating flame retardants It was found useful as a material for adhesives and the like.
 以下、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、特に断りがない限り、部は「質量部」を表し、%は「質量%」を表す。なお、実施例及び比較例における分析方法、測定方法は以下の方法にて実施した。
エポキシ当量:JIS K7236に準じた。
フェノール性水酸基当量:試料に4%のメタノールを含むTHFを加え、10%テトラブチルアンモニウムヒドロキシドを加えて、紫外可視分光光度計を用いて波長400nmから260nm間の吸光度を測定した。同様の測定方法より求めた検量線より、フェノール性水酸基を水酸基1当量当たりの試料の重量として求めた。
粘度:東機産業株式会社製、B型粘度計TVB−10Hを用い、25℃にて測定を行った。
リン含有率:試料に硫酸、塩酸、過塩素酸を加え、加熱して湿式灰化し、全てのリン原子をオルトリン酸とした。硫酸酸性溶液中でメタバナジン酸塩及びモリブデン酸塩を反応させ、生じたリンバナードモリブデン酸錯体の420nmにおける吸光度を測定し、予め作成した検量線により求めたリン原子含有量を%で表した。積層板のリン含有率は、積層板の樹脂分に対する含有率として表した。
ガラス転移温度:IPC−TM650 2.4.25cに準じて測定を行った。
難燃性:UL(Underwriter Laboratorics)規格に準じて測定を実施した。評価はV−0、V−1、V−2で記した。また、5本の残炎時間の合計を残炎時間合計として記した。
溶解性:固体の場合は加熱溶融等により脱泡し、液体の場合はそのまま脱泡して、23℃の雰囲気化において20倍の顕微鏡を用いてリン含有フェノール化合物に由来する固体が析出していないことを確認した。析出していないものを○、析出したものを×で示した。
実施例1
撹拌装置、温度計、冷却管、窒素ガス導入管を備えた4つ口のセパラブラスコ中に、エポキシ樹脂としてフェノールノボラック型エポキシ樹脂(新日鉄住金化学株式会社製、商品名エポトートYDPN−638)を57.7部およびリン化合物として9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製、商品名HCA)を42.3部入れ、160℃で5時間反応させることで、エポキシ当量766g/eq、リン含有率6.0%のリン含有エポキシ樹脂を得た。この中にリン含有フェノール化合物として10−(1,4−ジオキシナフタレン)−10H−9−オキサ−10−ホスファフェナントレン(三光株式会社製、商品名HCA−NQ)を10部加え、120℃で2時間撹拌することで目的とするリン含有エポキシ樹脂組成物を得た。得られたリン含有エポキシ樹脂組成物は均一に溶解しており、リン含有率は6.2%であった。このリン含有エポキシ樹脂組成物をメチルエチルケトン(以下、MEK)にて固形分70%に希釈したリン含有エポキシ樹脂組成物ワニスの粘度は9800mPa・sであった。
実施例2
エポキシ樹脂としてYDPN−638を66.2部、リン化合物としてHCAを33.8部、リン含有フェノール化合物として10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド(三光株式会社製、商品名HCA−HQ)を20部に変えた以外は実施例1と同様の操作を行い、エポキシ当量460g/eq、リン含有率4.2%のリン含有エポキシ樹脂を得た後にHCA−NQを溶解し目的とするリン含有エポキシ樹脂組成物を得た。得られたリン含有エポキシ樹脂組成物は均一に溶解しており、リン含有率は5.6%であった。このリン含有エポキシ樹脂組成物をMEKにて固形分70%に希釈したリン含有エポキシ樹脂組成物ワニスの粘度は1040mPa・sであった。
実施例3
エポキシ樹脂としてYDPN−638を71.8部、リン化合物としてHCAを28.2部、リン含有フェノール化合物としてHCA−NQを45部に変えた以外は実施例1と同様の操作を行い、エポキシ当量363g/eq、リン含有率4.0%のリン含有エポキシ樹脂を得た後にHCA−NQを溶解し目的とするリン含有エポキシ樹脂組成物を得た。得られたリン含有エポキシ樹脂組成物は均一に溶解しており、リン含有率は5.3%であった。このリン含有エポキシ樹脂組成物をMEKにて固形分70%に希釈したリン含有エポキシ樹脂組成物ワニスの粘度は1010mPa・sであった。
実施例4
エポキシ樹脂としてYDPN−638を84.5部、リン化合物としてHCAを15.5部、リン含有フェノール化合物としてHCA−NQを40部に変えた以外は実施例1と同様の操作を行い、エポキシ当量247g/eq、リン含有率2.2%のリン含有エポキシ樹脂を得た後にHCA−NQを溶解し目的とするリン含有エポキシ樹脂組成物を得た。得られたリン含有エポキシ樹脂組成物は均一に溶解しており、リン含有率は3.9%であった。このリン含有エポキシ樹脂組成物をMEKにて固形分70%に希釈したリン含有エポキシ樹脂組成物ワニスの粘度は530mPa・sであった。
実施例5
エポキシ樹脂としてYDPN−638を63.8部とビスフェノールF型液状エポキシ樹脂(新日鉄住金化学株式会社製、商品名エポトートYDF−170)を10部、リン化合物としてHCAを15.6部とHCA−HQを10.6部、リン含有フェノール化合物としてHCA−NQを5部に変えた以外は実施例1と同様の操作を行い、エポキシ当量355g/eq、リン含有率3.2%のリン含有エポキシ樹脂を得た後にHCA−NQを溶解し目的とするリン含有エポキシ樹脂組成物を得た。得られたリン含有エポキシ樹脂組成物は均一に溶解しており、リン含有率は3.5%であった。このリン含有エポキシ樹脂組成物をMEKにて固形分70%に希釈したリン含有エポキシ樹脂組成物ワニスの粘度は650mPa・sであった。
実施例6
エポキシ樹脂としてオルソクレゾールノボラック型エポキシ樹脂(新日鉄住金化学株式会社製、商品名エポトートYDCN−700−7)を55.6部とYDF−170を20部、リン化合物としてHCAを16.4部とHCA−NQを80部、リン含有フェノール化合物としてHCA−HQを8部に変えた以外は実施例1と同様の操作を行い、エポキシ当量365g/eq、リン含有率3.0%のリン含有エポキシ樹脂を得た後にHCA−NQを溶解し目的とするリン含有エポキシ樹脂組成物を得た。得られたリン含有エポキシ樹脂組成物は均一に溶解しており、リン含有率は3.5%であった。このリン含有エポキシ樹脂組成物をMEKにて固形分70%に希釈したリン含有エポキシ樹脂組成物ワニスの粘度は600mPa・sであった。
比較例1
撹拌装置、温度計、冷却管、窒素ガス導入管を備えた4つ口のセパラブラスコ中にYDPN−638を100部とHCA−NQを28部加え、120℃で撹拌を実施したが、6時間の撹拌でも完全に溶解することができなかった。
比較例2
エポキシ樹脂としてYDPN−638を88部、リン化合物としてHCAを12部、リン含有フェノール化合物としてHCA−HQを4部に変えた以外は実施例1と同様の操作を行い、エポキシ当量226g/eq、リン含有率1.7%のリン含有エポキシ樹脂を得た後にHCA−NQを溶解し目的とするリン含有エポキシ樹脂組成物を得た。得られたリン含有エポキシ樹脂組成物は均一に溶解しており、リン含有率は2.0%であった。このリン含有エポキシ樹脂組成物をMEKにて固形分70%に希釈したリン含有エポキシ樹脂組成物ワニスの粘度は500mPa・sであった。
比較例3
エポキシ樹脂としてYDPN−638を88部、リン化合物としてHCAを12部、リン含有フェノール化合物としてHCA−HQを13部に変えた以外は実施例1と同様の操作を行い、エポキシ当量226g/eq、リン含有率1.7%のリン含有エポキシ樹脂を得た後にHCA−NQの結晶が溶解せず、目的とするリン含有エポキシ樹脂組成物を得ることができなかった。
比較例4
エポキシ樹脂としてYDPN−638を49.3部、リン化合物としてHCAを50.7部、リン含有フェノール化合物としてHCA−HQを8部に変えた以外は実施例1と同様の操作を行い、エポキシ当量2285g/eq、リン含有率7.2%のリン含有エポキシ樹脂を得た後にHCA−NQの結晶が溶解せず、目的とするリン含有エポキシ樹脂組成物を得ることができなかった。
 実施例1~6、および比較例1~4のリン含有エポキシ樹脂組成物の溶解性を表1に示した。
Figure JPOXMLDOC01-appb-T000008
実施例7
実施例3で得られたリン含有エポキシ樹脂組成物を75部に、エポキシ樹脂(B)としてトリスフェニルメタン型エポキシ樹脂(日本化薬株式会社製、商品名EPPN−501H)を25部、硬化剤(C)としてフェノールノボラック樹脂(昭和電工株式会社製、商品名ショウノールBRG−557)を25.6部、硬化触媒として2−エチル−4−メチルイミダゾール(四国化成株式会社製、商品名キュアゾール2E4MZ)を0.1部加え、MEKを用いて不揮発分50%となるようにして樹脂ワニスを得た。得られた樹脂ワニスをガラスクロス(型番調査)に含浸後、150℃、10分の乾燥を行うことでプリプレグを得た。得られたプリプレグ4枚と銅箔(三井金属鉱業株式会社製、商品名3EC−III、厚み35μm)を重ねて130℃×15分+190℃×80分の温度条件で2MPaの圧力にて真空プレスを行い0.5mm厚の積層板の硬化物を得た。
実施例8
実施例3で得られたリン含有エポキシ樹脂組成物を70部に、エポキシ樹脂(B)としてスチレン変性フェノールノボラック型エポキシ樹脂(新日鉄住金化学株式会社製、商品名TX−1210−90)を30部、硬化剤(C)としてジシアンジアミド(DICY)を2.0部、硬化触媒として2E4MZを0.9部とした以外は実施例7と同様の方法でプリプレグ及び積層板の硬化物を得た。
実施例9
実施例3で得られたリン含有エポキシ樹脂組成物を70部に、エポキシ樹脂(B)としてTX−1210−90を30部、硬化剤(C)としてBRG−557を19.9部、硬化触媒として2E4MZを0.9部とした以外は実施例7と同様の方法でプリプレグ及び積層板の硬化物を得た。
実施例10
実施例3で得られたリン含有エポキシ樹脂組成物を85部に、エポキシ樹脂(B)としてビスフェノールA型固形エポキシ樹脂(新日鉄住金化学株式会社製、商品名エポトートYD−903N)を15部、硬化剤(C)としてDICYを1.3部、硬化触媒として2E4MZを0.9部とした以外は実施例7と同様の方法でプリプレグ及び積層板の硬化物を得た。
比較例5
比較例2で得られたリン含有エポキシ樹脂組成物を70部に、エポキシ樹脂(B)としてTX−1210−90を30部、硬化剤(C)としてDICYを4.4部、硬化触媒として2E4MZを0.9部とした以外は実施例7と同様の方法でプリプレグ及び積層板の硬化物を得た。
比較例6
撹拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコにHCAを23.5部、1,4−ナフトキノンを4.3部、及びトルエンを100部入れて、75℃で30分間撹拌した後、110℃で90分間脱水反応させた後にYDPN−638を72.2部を加えた後、昇温してトルエンの除去を行った。その後、触媒としてトリフェニルホスフィン(TPP)を0.01部加えて、160℃で4時間反応させることで、エポキシ当量348g/eq、リン含有率1.5%のリン含有エポキシ樹脂を得た。このリン含有エポキシ樹脂をMEKにて固形分70%に希釈したリン含有エポキシ樹脂ワニスの粘度は1730mPa・sであった。
得られたリン含有エポキシ樹脂を70部に、エポキシ樹脂(B)としてTX−1210−90を30部、硬化剤(C)としてBRG−557を24.3部、硬化触媒として2E4MZを0.9部とした以外は実施例7と同様の方法でプリプレグ及び積層板の硬化物を得た。
比較例7
撹拌装置、温度計、冷却管、窒素ガス導入管を備えた4つ口のセパラブラスコ中に、エポキシ樹脂としてYDPN−638を64.1部およびリン化合物としてHCAを20.9部とHCA−HQを15部入れ、160℃で5時間反応させることで、エポキシ当量444g/eq、フェノール性水酸基当量1750g/eq、リン含有率3.0%のリン含有エポキシ樹脂を得た。このリン含有エポキシ樹脂をMEKにて固形分70%に希釈したリン含有エポキシ樹脂ワニスの粘度は440mPa・sであった。得られたリン含有エポキシ樹脂を70部に、エポキシ樹脂(B)としてTX−1210−90を30部、硬化剤(C)としてBRG−557を29.4部、硬化触媒として2E4MZを0.9部とした以外は実施例7と同様の方法でプリプレグ及び積層板の硬化物を得た。
 実施例7~10、および比較例5~7の積層板の物性結果を表2に示した。
Figure JPOXMLDOC01-appb-T000009
実施例で示したようにリン含有エポキシ樹脂中にリン含有フェノール樹脂を加えたものについては所定の条件にて樹脂中に溶解し、均一な組成物を得ることができることを確認した。これらの化合物は十分に粘度が低く、ハンドリング性も良好であることが確認できた。また、得られた硬化物についても十分な難燃性が発現することを確認した。
これに対して、比較例1ではリン不含有エポキシ樹脂中にリン含有フェノール樹脂を溶解させようと試みたが、リン含有フェノール化合物が完全に溶解せず、不均一な状態であることを確認した。
比較例2ではリン含有エポキシ樹脂を用いてリン含有フェノール樹脂を溶解させたが、リン含有エポキシ樹脂組成物中のリン含有率が2%を下回っていたため、溶解できるリン含有フェノール樹脂の量が少なく、そのリン含有エポキシ樹脂組成物を用いた積層板の難燃性は低かった(比較例5)。また、リン含有フェノール樹脂をさらに溶解させようと試みたが完全には溶解せず、比較例3の量では目視でもリン含有フェノール樹脂の析出が確認できた。
比較例4ではリン含有エポキシ樹脂を用いてリン含有フェノール樹脂を溶解させたが、リン含有エポキシ樹脂組成物中のリン含有率が7%を越えていたため、リン含有エポキシ樹脂の粘度が高くなりリン含有フェノール樹脂を溶解させることができなかった。比較例6は特許文献2のリン含有エポキシ樹脂を用いた積層板での評価だが、難燃性が若干悪く、耐熱性も若干悪かった。
比較例7は特許文献4のリン含有エポキシ樹脂を用いた積層板での評価だが、難燃性が若干悪く、耐熱性も若干悪かった。
実施例、比較例からわかる様に特定のリン含有エポキシ樹脂には特定のリン含有フェノール化合物が溶解し、低粘度で作業性に優れ高い難燃性を示した。また、本発明の組成物は耐熱性、誘電率、接着力を向上するエポキシ樹脂(B)を配合しても難燃性が得られ、特に誘電特性は低くなることが分かった。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to a following example. Moreover, unless otherwise indicated, a part represents "mass part" and% represents "mass%". In addition, the analysis method and the measuring method in an Example and a comparative example were implemented with the following method.
Epoxy equivalent: Conforms to JIS K7236.
Phenolic hydroxyl group equivalent: THF containing 4% methanol was added to a sample, 10% tetrabutylammonium hydroxide was added, and the absorbance between 400 nm and 260 nm was measured using an ultraviolet-visible spectrophotometer. From the calibration curve obtained from the same measurement method, the phenolic hydroxyl group was determined as the weight of the sample per equivalent of hydroxyl group.
Viscosity: Measured at 25 ° C. using a B-type viscometer TVB-10H manufactured by Toki Sangyo Co., Ltd.
Phosphorus content: Sulfuric acid, hydrochloric acid and perchloric acid were added to the sample and heated to wet ash to convert all phosphorus atoms to orthophosphoric acid. Metavanadate and molybdate were reacted in a sulfuric acid acidic solution, the absorbance at 420 nm of the resulting limpavande molybdate complex was measured, and the phosphorus atom content determined by a previously prepared calibration curve was expressed in%. The phosphorus content of the laminate was expressed as the content relative to the resin content of the laminate.
Glass transition temperature: Measured according to IPC-TM650 2.4.25c.
Flame retardancy: Measurement was carried out according to UL (Underwriter Laboratories) standards. Evaluation was described by V-0, V-1, and V-2. Moreover, the sum total of 5 after-flame time was described as the after-flame time total.
Solubility: In the case of a solid, it is degassed by heating and melting, and in the case of a liquid, it is degassed as it is, and a solid derived from a phosphorus-containing phenol compound is precipitated using a 20-fold microscope in an atmosphere at 23 ° C. Confirmed that there is no. Those not precipitated are indicated by ◯, and those that have been precipitated are indicated by ×.
Example 1
57. A phenol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name Epototo YDPN-638) as an epoxy resin in a four-necked Separa brasso equipped with a stirrer, a thermometer, a cooling pipe and a nitrogen gas introduction pipe. Put 72.3 parts and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (trade name HCA, manufactured by Sanko Co., Ltd.) as a phosphorus compound, and react at 160 ° C. for 5 hours. Thus, a phosphorus-containing epoxy resin having an epoxy equivalent of 766 g / eq and a phosphorus content of 6.0% was obtained. 10 parts of 10- (1,4-dioxynaphthalene) -10H-9-oxa-10-phosphaphenanthrene (manufactured by Sanko Co., Ltd., trade name HCA-NQ) is added as a phosphorus-containing phenol compound, The desired phosphorus-containing epoxy resin composition was obtained by stirring for 2 hours. The obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 6.2%. The viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting the phosphorus-containing epoxy resin composition with methyl ethyl ketone (hereinafter, MEK) to a solid content of 70% was 9800 mPa · s.
Example 2
66.2 parts YDPN-638 as an epoxy resin, 33.8 parts HCA as a phosphorus compound, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene as a phosphorus-containing phenol compound A phosphorus-containing epoxy having an epoxy equivalent of 460 g / eq and a phosphorus content of 4.2%, except that 10-oxide (trade name HCA-HQ, manufactured by Sanko Co., Ltd.) was changed to 20 parts. After obtaining the resin, HCA-NQ was dissolved to obtain the intended phosphorus-containing epoxy resin composition. The obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 5.6%. The viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition with MEK to a solid content of 70% was 1040 mPa · s.
Example 3
The same procedure as in Example 1 was carried out except that 71.8 parts of YDPN-638 was used as the epoxy resin, 28.2 parts of HCA was used as the phosphorus compound, and 45 parts of HCA-NQ was used as the phosphorus-containing phenol compound. After obtaining a phosphorus-containing epoxy resin having 363 g / eq and a phosphorus content of 4.0%, HCA-NQ was dissolved to obtain a target phosphorus-containing epoxy resin composition. The obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 5.3%. The viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition to a solid content of 70% with MEK was 1010 mPa · s.
Example 4
The same procedure as in Example 1 was carried out except that 84.5 parts of YDPN-638 was used as the epoxy resin, 15.5 parts of HCA was used as the phosphorus compound, and 40 parts of HCA-NQ was used as the phosphorus-containing phenol compound. After obtaining a phosphorus-containing epoxy resin having 247 g / eq and a phosphorus content of 2.2%, HCA-NQ was dissolved to obtain a target phosphorus-containing epoxy resin composition. The obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 3.9%. The viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition to a solid content of 70% with MEK was 530 mPa · s.
Example 5
63.8 parts of YDPN-638 as epoxy resin, 10 parts of bisphenol F type liquid epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name Epototo YDF-170), 15.6 parts of HCA as phosphorus compound and HCA-HQ Was changed to 10.6 parts, and the HCA-NQ was changed to 5 parts as a phosphorus-containing phenol compound, and the same operation as in Example 1 was carried out. A phosphorus-containing epoxy resin having an epoxy equivalent of 355 g / eq and a phosphorus content of 3.2% After obtaining HCA-NQ, the intended phosphorus-containing epoxy resin composition was obtained. The obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 3.5%. The viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition with MEK to a solid content of 70% was 650 mPa · s.
Example 6
Orthocresol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name Epototo YDCN-700-7) as epoxy resin, 55.6 parts and YDF-170 as 20 parts, HCA as phosphorous compound as 16.4 parts and HCA A phosphorus-containing epoxy resin having an epoxy equivalent of 365 g / eq and a phosphorus content of 3.0%, except that -NQ was changed to 80 parts and the HCA-HQ was changed to 8 parts as a phosphorus-containing phenol compound. After obtaining HCA-NQ, the intended phosphorus-containing epoxy resin composition was obtained. The obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 3.5%. The viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition with MEK to a solid content of 70% was 600 mPa · s.
Comparative Example 1
100 parts of YDPN-638 and 28 parts of HCA-NQ were added into a four-necked separabrasco equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe, and stirring was carried out at 120 ° C. for 6 hours. It was not possible to completely dissolve even with stirring.
Comparative Example 2
The same operation as in Example 1 was carried out except that 88 parts of YDPN-638 as an epoxy resin, 12 parts of HCA as a phosphorus compound, and 4 parts of HCA-HQ as a phosphorus-containing phenol compound were used, and an epoxy equivalent of 226 g / eq, After obtaining a phosphorus-containing epoxy resin having a phosphorus content of 1.7%, HCA-NQ was dissolved to obtain a target phosphorus-containing epoxy resin composition. The obtained phosphorus-containing epoxy resin composition was uniformly dissolved, and the phosphorus content was 2.0%. The viscosity of the phosphorus-containing epoxy resin composition varnish obtained by diluting this phosphorus-containing epoxy resin composition with MEK to a solid content of 70% was 500 mPa · s.
Comparative Example 3
The same operation as in Example 1 was carried out except that 88 parts of YDPN-638 as the epoxy resin, 12 parts of HCA as the phosphorus compound, and 13 parts of HCA-HQ as the phosphorus-containing phenol compound were obtained, and an epoxy equivalent of 226 g / eq, After obtaining a phosphorus-containing epoxy resin having a phosphorus content of 1.7%, HCA-NQ crystals did not dissolve, and the intended phosphorus-containing epoxy resin composition could not be obtained.
Comparative Example 4
The same procedure as in Example 1 was carried out except that 49.3 parts of YDPN-638 was used as the epoxy resin, 50.7 parts of HCA was used as the phosphorus compound, and 8 parts of HCA-HQ was used as the phosphorus-containing phenol compound. After obtaining a phosphorus-containing epoxy resin having 2285 g / eq and a phosphorus content of 7.2%, HCA-NQ crystals did not dissolve, and the target phosphorus-containing epoxy resin composition could not be obtained.
The solubility of the phosphorus-containing epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 is shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Example 7
75 parts of the phosphorus-containing epoxy resin composition obtained in Example 3 and 25 parts of trisphenylmethane type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name EPPN-501H) as an epoxy resin (B), curing agent (C) 25.6 parts of phenol novolac resin (manufactured by Showa Denko Co., Ltd., trade name Shonor BRG-557), 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name Curazole 2E4MZ as a curing catalyst) ) Was added, and a resin varnish was obtained using MEK so as to have a nonvolatile content of 50%. A glass cloth (model number survey) was impregnated with the obtained resin varnish, followed by drying at 150 ° C. for 10 minutes to obtain a prepreg. The obtained four prepregs and copper foil (made by Mitsui Mining & Smelting Co., Ltd., trade name 3EC-III, thickness 35 μm) are stacked and vacuum pressed at a pressure of 2 MPa under a temperature condition of 130 ° C. × 15 minutes + 190 ° C. × 80 minutes. To obtain a cured product of a 0.5 mm thick laminate.
Example 8
70 parts of the phosphorus-containing epoxy resin composition obtained in Example 3 and 30 parts of a styrene-modified phenol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name TX-1210-90) as the epoxy resin (B) A cured product of a prepreg and a laminate was obtained in the same manner as in Example 7, except that 2.0 parts of dicyandiamide (DICY) was used as the curing agent (C) and 0.9 part of 2E4MZ was used as the curing catalyst.
Example 9
70 parts of the phosphorus-containing epoxy resin composition obtained in Example 3, 30 parts of TX-1210-90 as epoxy resin (B), 19.9 parts of BRG-557 as curing agent (C), curing catalyst As a result, a cured product of a prepreg and a laminate was obtained in the same manner as in Example 7, except that 0.9 part of 2E4MZ was used.
Example 10
85 parts of the phosphorus-containing epoxy resin composition obtained in Example 3 and 15 parts of bisphenol A type solid epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name Epototo YD-903N) as the epoxy resin (B), cured A cured product of a prepreg and a laminate was obtained in the same manner as in Example 7, except that 1.3 parts of DICY was used as the agent (C) and 0.9 parts of 2E4MZ was used as the curing catalyst.
Comparative Example 5
70 parts of the phosphorus-containing epoxy resin composition obtained in Comparative Example 2, 30 parts of TX-1210-90 as the epoxy resin (B), 4.4 parts of DICY as the curing agent (C), and 2E4MZ as the curing catalyst A cured product of a prepreg and a laminate was obtained in the same manner as in Example 7 except that the content was 0.9 parts.
Comparative Example 6
Put 43.5 parts of HCA, 4.3 parts of 1,4-naphthoquinone, and 100 parts of toluene in a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introduction device. The mixture was stirred at 75 ° C. for 30 minutes and then subjected to a dehydration reaction at 110 ° C. for 90 minutes. After adding 72.2 parts of YDPN-638, the temperature was raised to remove toluene. Thereafter, 0.01 part of triphenylphosphine (TPP) was added as a catalyst and reacted at 160 ° C. for 4 hours to obtain a phosphorus-containing epoxy resin having an epoxy equivalent of 348 g / eq and a phosphorus content of 1.5%. The viscosity of the phosphorus-containing epoxy resin varnish obtained by diluting the phosphorus-containing epoxy resin with MEK to a solid content of 70% was 1730 mPa · s.
70 parts of the obtained phosphorus-containing epoxy resin, 30 parts of TX-1210-90 as the epoxy resin (B), 24.3 parts of BRG-557 as the curing agent (C), 0.92 of 2E4MZ as the curing catalyst A cured product of a prepreg and a laminate was obtained in the same manner as in Example 7 except that the parts were used.
Comparative Example 7
In a four-neck Separabrasco equipped with a stirrer, thermometer, cooling pipe, and nitrogen gas introduction pipe, 64.1 parts of YDPN-638 as an epoxy resin, 20.9 parts of HCA as a phosphorus compound, and HCA-HQ By putting 15 parts and reacting at 160 ° C. for 5 hours, a phosphorus-containing epoxy resin having an epoxy equivalent of 444 g / eq, a phenolic hydroxyl group equivalent of 1750 g / eq, and a phosphorus content of 3.0% was obtained. The viscosity of the phosphorus-containing epoxy resin varnish obtained by diluting this phosphorus-containing epoxy resin with MEK to a solid content of 70% was 440 mPa · s. 70 parts of the obtained phosphorus-containing epoxy resin, 30 parts of TX-1210-90 as the epoxy resin (B), 29.4 parts of BRG-557 as the curing agent (C), 0.92 of 2E4MZ as the curing catalyst A cured product of a prepreg and a laminate was obtained in the same manner as in Example 7 except that the parts were used.
Table 2 shows the physical property results of the laminates of Examples 7 to 10 and Comparative Examples 5 to 7.
Figure JPOXMLDOC01-appb-T000009
As shown in the examples, the phosphorus-containing epoxy resin added with the phosphorus-containing phenol resin was dissolved in the resin under predetermined conditions, and it was confirmed that a uniform composition could be obtained. These compounds were confirmed to have sufficiently low viscosity and good handling properties. Moreover, it confirmed that sufficient flame retardance was expressed also about the obtained hardened | cured material.
In contrast, in Comparative Example 1, an attempt was made to dissolve the phosphorus-containing phenol resin in the phosphorus-free epoxy resin, but it was confirmed that the phosphorus-containing phenol compound was not completely dissolved and was in a non-uniform state. .
In Comparative Example 2, the phosphorus-containing epoxy resin was used to dissolve the phosphorus-containing phenol resin. However, since the phosphorus content in the phosphorus-containing epoxy resin composition was less than 2%, the amount of the phosphorus-containing phenol resin that can be dissolved is small. The flame retardancy of the laminate using the phosphorus-containing epoxy resin composition was low (Comparative Example 5). Moreover, although it tried to melt | dissolve a phosphorus containing phenol resin further, it did not melt | dissolve completely and the precipitation of phosphorus containing phenol resin was able to be confirmed visually also in the quantity of the comparative example 3.
In Comparative Example 4, the phosphorus-containing epoxy resin was used to dissolve the phosphorus-containing phenol resin. However, since the phosphorus content in the phosphorus-containing epoxy resin composition exceeded 7%, the viscosity of the phosphorus-containing epoxy resin was increased. The contained phenol resin could not be dissolved. Comparative Example 6 was an evaluation using a laminate using the phosphorus-containing epoxy resin of Patent Document 2, but the flame retardancy was slightly worse and the heat resistance was also slightly worse.
Comparative Example 7 was an evaluation using a laminate using the phosphorus-containing epoxy resin of Patent Document 4, but the flame retardancy was slightly worse and the heat resistance was also slightly worse.
As can be seen from the Examples and Comparative Examples, the specific phosphorus-containing epoxy compound was dissolved in the specific phosphorus-containing epoxy resin, and had low viscosity, excellent workability, and high flame retardancy. Further, it was found that the composition of the present invention can obtain flame retardancy even when an epoxy resin (B) that improves heat resistance, dielectric constant, and adhesive strength is blended, and particularly has low dielectric properties.

Claims (7)

  1. 下記一般式(1)の構造を有するリン含有率が2~7質量%の範囲内であるリン含有エポキシ樹脂100質量部に対して、5~45質量部の下記一般式(2)で示されるリン含有フェノール化合物を溶解し、室温において析出の無いリン含有エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは炭素数1~6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。iは0または1を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは炭素数1~6の炭化水素基を表し、同一であっても異なっていてもよく、リン原子と共に環状になっていてもよい。nは0または1を表す。Aは炭素数6~20のアレーントリイル基を表す。)
    It is represented by the following general formula (2) of 5 to 45 parts by mass with respect to 100 parts by mass of the phosphorus-containing epoxy resin having a phosphorus content having the structure of the following general formula (1) in the range of 2 to 7% by mass. A phosphorus-containing epoxy resin composition that dissolves a phosphorus-containing phenol compound and has no precipitation at room temperature.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 and R 2 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different, and may be cyclic with a phosphorus atom. I is 0 or 1) To express.)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 3 and R 4 represent a hydrocarbon group having 1 to 6 carbon atoms, and may be the same or different and may be cyclic with a phosphorus atom. N is 0 or 1) A represents an arenetriyl group having 6 to 20 carbon atoms.)
  2. 請求項1に記載のリン含有エポキシ樹脂組成物にエポキシ樹脂(B)を配合してなるリン含有エポキシ樹脂組成物。 The phosphorus containing epoxy resin composition formed by mix | blending an epoxy resin (B) with the phosphorus containing epoxy resin composition of Claim 1.
  3. 請求項2に記載のリン含有エポキシ樹脂組成物中のリン含有率が2質量%以上であることを特徴とするリン含有エポキシ樹脂組成物。 A phosphorus-containing epoxy resin composition having a phosphorus content in the phosphorus-containing epoxy resin composition according to claim 2 of 2% by mass or more.
  4. 請求項1~3のいずれかの項記載のリン含有エポキシ樹脂組成物に硬化剤(C)を配合してなるリン含有エポキシ樹脂組成物。 A phosphorus-containing epoxy resin composition comprising the phosphorus-containing epoxy resin composition according to any one of claims 1 to 3 and a curing agent (C).
  5. 請求項1~4のいずれかに記載のリン含有エポキシ樹脂組成物を繊維状基材に含浸してなるプリプレグ。 A prepreg obtained by impregnating a fibrous base material with the phosphorus-containing epoxy resin composition according to any one of claims 1 to 4.
  6. 請求項1~4のいずれかに記載のリン含有エポキシ樹脂組成物を硬化させた硬化物。 A cured product obtained by curing the phosphorus-containing epoxy resin composition according to any one of claims 1 to 4.
  7. 請求項5に記載のプリプレグを硬化させた硬化物。 A cured product obtained by curing the prepreg according to claim 5.
PCT/JP2014/076481 2013-09-30 2014-09-26 Phosphorus-containing epoxy resin composition and cured article WO2015046626A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015539481A JP6596751B2 (en) 2013-09-30 2014-09-26 Phosphorus-containing epoxy resin composition and cured product
KR1020167007473A KR102192792B1 (en) 2013-09-30 2014-09-26 Phosphorus-containing epoxy resin composition and cured article
CN201480053661.9A CN105555866B (en) 2013-09-30 2014-09-26 Phosphorous epoxy resin composition and solidfied material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013203407 2013-09-30
JP2013-203407 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046626A1 true WO2015046626A1 (en) 2015-04-02

Family

ID=52743745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076481 WO2015046626A1 (en) 2013-09-30 2014-09-26 Phosphorus-containing epoxy resin composition and cured article

Country Status (5)

Country Link
JP (1) JP6596751B2 (en)
KR (1) KR102192792B1 (en)
CN (1) CN105555866B (en)
TW (2) TWI679240B (en)
WO (1) WO2015046626A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6688065B2 (en) * 2015-12-18 2020-04-28 ナミックス株式会社 Epoxy resin composition
CN106047146A (en) * 2016-07-19 2016-10-26 董芬芳 Anticorrosion and antirust paint for metal
CN112409572A (en) * 2019-08-22 2021-02-26 苏州巨峰新材料科技有限公司 Phosphorus-containing flame-retardant low-thermal-expansion-coefficient epoxy resin, preparation method thereof, related intermediate product and application

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309624A (en) * 1999-02-23 2000-11-07 Dainippon Ink & Chem Inc Flame-retardant epoxy resin composition and its production
JP2001072742A (en) * 1999-09-03 2001-03-21 Toshiba Chem Corp Flame-retardant epoxy resin composition, prepreg, and laminate
JP2002097249A (en) * 2000-06-29 2002-04-02 Nippon Chem Ind Co Ltd Epoxy resin containing phosphorous, its production method, flame retardant epoxy resin composition, and sealant and laminated sheet using the same
JP2002179887A (en) * 2000-12-19 2002-06-26 Toshiba Chem Corp Halogen-free flame-retardant epoxy resin composition and prepreg, laminate, copper-clad laminate and printed wiring board comprising the same
JP2002265562A (en) * 2001-03-08 2002-09-18 Japan Epoxy Resin Kk Phosphorus-containing epoxy resin and flame-retardant resin composition
JP2003040969A (en) * 2001-07-26 2003-02-13 Toto Kasei Co Ltd Phosphorus-containing phenolic resin and epoxy resin composition using the same
JP2003040968A (en) * 2001-07-26 2003-02-13 Toto Kasei Co Ltd Novel phosphorus-containing epoxy resin and flame- retardant resin composition containing the same
JP2003105167A (en) * 2001-07-27 2003-04-09 Toray Ind Inc Flame-retardant resin composition and adhesive sheet for semiconductor device using the same, cover lay film and flexible printed circuit board

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126293A (en) 1983-12-09 1985-07-05 Sanko Kaihatsu Kagaku Kenkyusho:Kk Cyclic organic phosphorus compound and production thereof
JPS61236787A (en) 1985-04-15 1986-10-22 Sanko Kagaku Kk Cyclic organic phosphorus compound and production thereof
JPH0784509B2 (en) 1991-08-02 1995-09-13 北興化学工業株式会社 Method for producing phosphorus-containing epoxy resin
JP3533973B2 (en) 1998-01-27 2004-06-07 東都化成株式会社 Phosphorus-containing epoxy resin composition
JP4837175B2 (en) 2001-02-23 2011-12-14 新日鐵化学株式会社 Phosphorus-containing epoxy resin composition
JP2003011269A (en) 2001-06-28 2003-01-15 Hitachi Chem Co Ltd Manufacturing method of insulating material with copper leaf
JP3092009U (en) 2002-08-08 2003-02-28 有限会社ボディエッセンス Brassiere and brassier
JP5633931B2 (en) 2011-02-22 2014-12-03 新日鉄住金化学株式会社 Phosphorus-containing epoxy resin, resin composition, and cured product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309624A (en) * 1999-02-23 2000-11-07 Dainippon Ink & Chem Inc Flame-retardant epoxy resin composition and its production
JP2001072742A (en) * 1999-09-03 2001-03-21 Toshiba Chem Corp Flame-retardant epoxy resin composition, prepreg, and laminate
JP2002097249A (en) * 2000-06-29 2002-04-02 Nippon Chem Ind Co Ltd Epoxy resin containing phosphorous, its production method, flame retardant epoxy resin composition, and sealant and laminated sheet using the same
JP2002179887A (en) * 2000-12-19 2002-06-26 Toshiba Chem Corp Halogen-free flame-retardant epoxy resin composition and prepreg, laminate, copper-clad laminate and printed wiring board comprising the same
JP2002265562A (en) * 2001-03-08 2002-09-18 Japan Epoxy Resin Kk Phosphorus-containing epoxy resin and flame-retardant resin composition
JP2003040969A (en) * 2001-07-26 2003-02-13 Toto Kasei Co Ltd Phosphorus-containing phenolic resin and epoxy resin composition using the same
JP2003040968A (en) * 2001-07-26 2003-02-13 Toto Kasei Co Ltd Novel phosphorus-containing epoxy resin and flame- retardant resin composition containing the same
JP2003105167A (en) * 2001-07-27 2003-04-09 Toray Ind Inc Flame-retardant resin composition and adhesive sheet for semiconductor device using the same, cover lay film and flexible printed circuit board

Also Published As

Publication number Publication date
CN105555866B (en) 2018-04-20
TW201529698A (en) 2015-08-01
TWI684624B (en) 2020-02-11
KR102192792B1 (en) 2020-12-18
TWI679240B (en) 2019-12-11
CN105555866A (en) 2016-05-04
JP6596751B2 (en) 2019-10-30
JPWO2015046626A1 (en) 2017-03-09
KR20160065823A (en) 2016-06-09
TW201943793A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
JP5633931B2 (en) Phosphorus-containing epoxy resin, resin composition, and cured product
TWI786271B (en) Phosphorus-containing phenoxy resin, resin composition thereof, and cured product thereof
JP6193689B2 (en) Phosphorus-containing epoxy resin and composition, cured product
KR20120140648A (en) Method for producing a phosphorus-containing epoxy resin, epoxy resin composition, and cured product thereof
JP5793086B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP6596751B2 (en) Phosphorus-containing epoxy resin composition and cured product
JP7132784B2 (en) Epoxy resin composition, prepreg, laminate and printed wiring board
JP5153000B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP5441477B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
JP5399733B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
KR101954455B1 (en) Phosphorus-containing phenolic resin and the producing method, phenolic resin composition and cured product thereof
KR102021616B1 (en) Process for producing phosphorus-containing epoxy resin
JP5653374B2 (en) Phosphorus-containing epoxy resin, epoxy resin composition containing the resin, curable epoxy resin composition containing the resin, and cured product obtained therefrom
JP6113454B2 (en) Epoxy resin composition and cured product
TWI513728B (en) Phosphorus-containing phenol resin, the resin composition and cured article
JP2014108976A (en) Epoxy resin composition and cured article
KR101844073B1 (en) Phosphorus-containing phenol resin, phenol resin compositions and cured products using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053661.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167007473

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015539481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848367

Country of ref document: EP

Kind code of ref document: A1