JP6688065B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP6688065B2
JP6688065B2 JP2015247112A JP2015247112A JP6688065B2 JP 6688065 B2 JP6688065 B2 JP 6688065B2 JP 2015247112 A JP2015247112 A JP 2015247112A JP 2015247112 A JP2015247112 A JP 2015247112A JP 6688065 B2 JP6688065 B2 JP 6688065B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
alumina filler
present
underfill material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015247112A
Other languages
Japanese (ja)
Other versions
JP2017110146A (en
Inventor
将宏 長谷川
将宏 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2015247112A priority Critical patent/JP6688065B2/en
Priority to CN201680070570.5A priority patent/CN108368326A/en
Priority to KR1020187016315A priority patent/KR102626002B1/en
Priority to PCT/JP2016/083071 priority patent/WO2017104298A1/en
Priority to TW105139260A priority patent/TWI711132B/en
Publication of JP2017110146A publication Critical patent/JP2017110146A/en
Application granted granted Critical
Publication of JP6688065B2 publication Critical patent/JP6688065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)

Description

本発明は、半導体封止材もしくは接着剤として用いられるエポキシ樹脂組成物に関する。   The present invention relates to an epoxy resin composition used as a semiconductor encapsulant or an adhesive.

電子機器の小型化、軽量化、高性能化に伴い半導体の実装形態がワイヤーボンド型からフリップチップ型へと変化してきている。
フリップチップ型の半導体装置は、バンプ電極を介して基板上の電極部と半導体素子とが接続された構造を持っている。この構造の半導体装置は、温度サイクル等の熱付加が加わった際に、エポキシ樹脂等の有機材料製の基板と、半導体素子と、の熱膨張係数の差によってバンプ電極に応力がかかり、バンプ電極にクラック等の不良が発生することが問題となっている。この不良発生を抑制するために、アンダーフィル材と呼ばれる液状の半導体封止材を用いて、半導体素子と基板との間のギャップを封止し、両者を互いに固定することによって、耐サーマルサイクル性を向上させることが広く行われている。
As electronic devices have become smaller, lighter and more sophisticated, the mounting form of semiconductors has changed from the wire bond type to the flip chip type.
The flip-chip type semiconductor device has a structure in which an electrode portion on a substrate and a semiconductor element are connected via a bump electrode. In the semiconductor device having this structure, when heat such as temperature cycle is applied, stress is applied to the bump electrode due to the difference in thermal expansion coefficient between the substrate made of an organic material such as epoxy resin and the semiconductor element, and the bump electrode is affected. The problem is that defects such as cracks occur in the. In order to suppress the occurrence of this defect, a liquid semiconductor encapsulant called an underfill material is used to seal the gap between the semiconductor element and the substrate, and the two are fixed to each other to prevent thermal cycle resistance. It is widely practiced to improve.

アンダーフィル材の供給方法としては、半導体素子と、基板上の電極部と、を接続させた後、半導体素子の外周に沿ってアンダーフィル材を塗布(ディスペンス)し、毛細管現象を利用して、両者の間隙にアンダーフィル材を注入するキャピラリーフローが一般的である。アンダーフィル材の注入後、該アンダーフィル材を加熱硬化させることで両者の接続部位を補強する。   As a method of supplying the underfill material, after connecting the semiconductor element and the electrode portion on the substrate, the underfill material is applied (dispensed) along the outer periphery of the semiconductor element, and the capillary phenomenon is utilized. Capillary flow in which an underfill material is injected into the gap between the two is common. After the underfill material is injected, the underfill material is heated and hardened to reinforce the connection site between the two.

アンダーフィル材は、注入性、接着性、硬化性、保存安定性等に優れることが求められる。また、アンダーフィル材で封止した部位が、耐湿性、耐サーマルサイクル性等に優れることが求められる。   The underfill material is required to have excellent injectability, adhesiveness, curability, storage stability, and the like. Further, the portion sealed with the underfill material is required to have excellent moisture resistance and thermal cycle resistance.

上記の要求を満足するため、アンダーフィル材としては、エポキシ樹脂を主剤とするものが広く用いられている。
アンダーフィル材によって封止した部位の耐湿性および耐サーマルサイクル性、特に耐サーマルサイクル性を向上させるためには、無機物質からなる充填材(以下、「無機充填材」という。)をアンダーフィル材に添加することにより、エポキシ樹脂等の有機材料製の基板と、半導体素子と、の熱膨張係数差のコントロールを行うことや、バンプ電極を補強することが有効であることが知られている(特許文献1参照)。
この目的で添加される無機充填材としては、電気絶縁性が高いこと、および、熱膨張係数が低いことから、シリカフィラーが好ましく用いられている。
In order to satisfy the above-mentioned requirements, as the underfill material, those mainly containing epoxy resin are widely used.
In order to improve the moisture resistance and thermal cycle resistance of the part sealed with the underfill material, particularly the thermal cycle resistance, a filler made of an inorganic substance (hereinafter referred to as “inorganic filler”) is used as the underfill material. It is known that it is effective to control the difference in thermal expansion coefficient between the substrate made of an organic material such as an epoxy resin and the semiconductor element and to reinforce the bump electrode by adding to ( See Patent Document 1).
As the inorganic filler to be added for this purpose, a silica filler is preferably used because of its high electric insulation and low thermal expansion coefficient.

一方、高密度・高機能実装を実現するために、通常の平面的な配置の二次元実装から、部品を積み重ねて実装を行った三次元実装に移行してきている。三次元実装としては、ベアチップを積層した三次元パッケージ(例えば、スタック型CSP)を用いたものや、半導体チップを独立単体の仮パッケージとした後にこれを複数重ね合わせて三次元化を図ったパッケージ積層三次元モジュールを用いたもの等が挙げられる。さらには、電子部品(半導体チップ、受動部品など)を実装した配線基板を多段化することにより、高密度・高機能実装を実現する技術もある。   On the other hand, in order to realize high-density and high-performance mounting, the two-dimensional mounting which is normally arranged in a plane has been shifted to the three-dimensional mounting in which components are stacked and mounted. The three-dimensional mounting uses a three-dimensional package (for example, a stack type CSP) in which bare chips are stacked, or a package in which a plurality of semiconductor chips are stacked and then stacked to achieve three-dimensional packaging. An example using a laminated three-dimensional module is given. Furthermore, there is also a technology that realizes high-density and high-performance mounting by making a wiring board on which electronic components (semiconductor chips, passive components, etc.) are mounted in multiple stages.

従来の二次元実装ではチップが露出していたので、チップからの発熱の放熱は問題とならなかったが、複数のチップが積層された構造の三次元実装では、放熱されにくくなるため熱設計が大きな問題となる。熱設計を容易にするためには、アンダーフィル材の熱伝導率は高い方が好ましい。
無機充填材として、広く用いられるシリカフィラーは、熱伝導率は決して高くない。そのため、三次元実装に用いるアンダーフィル材には、シリカフィラーよりも熱伝導率が高い無機充填材を使用することが好ましい。シリカフィラーよりも熱伝導率が高い無機充填材としては、アルミナフィラーや、酸化マグネシウム、窒化ホウ素、窒化アルミ、ダイヤモンドなどのフィラーが挙げられる。これらの中でも、アルミナフィラーが、低コストであること、真球度を高くしやすいこと、耐湿性に優れることから好ましい。
Since the chip was exposed in the conventional two-dimensional mounting, heat dissipation from the chip was not a problem, but in three-dimensional mounting with a structure in which multiple chips are stacked, it is difficult to dissipate heat, so the thermal design It becomes a big problem. In order to facilitate the thermal design, it is preferable that the underfill material has a high thermal conductivity.
The silica filler, which is widely used as an inorganic filler, has a high thermal conductivity. Therefore, it is preferable to use an inorganic filler having a higher thermal conductivity than silica filler for the underfill material used for three-dimensional mounting. Examples of the inorganic filler having a higher thermal conductivity than the silica filler include alumina fillers and fillers such as magnesium oxide, boron nitride, aluminum nitride and diamond. Of these, alumina fillers are preferable because they are low in cost, easy to increase the sphericity, and excellent in moisture resistance.

また、α線の影響を受け易いデバイスにおける誤動作を防止するため、アンダーフィル材に含まれる無機充填材中のウラン、トリウム、その壊変物質から放出されるα線を低減することが必要である(特許文献2〜4)。アルミナフィラーは、上記で例示したシリカフィラーよりも熱伝導率が高い無機充填材の中では、α線の放出量は少ないが、α線の放出量をさらに低減することが求められる。   Further, in order to prevent a malfunction in a device susceptible to α rays, it is necessary to reduce α rays emitted from uranium and thorium in the inorganic filler contained in the underfill material and its decay material ( Patent documents 2-4). Among the inorganic fillers having a higher thermal conductivity than the silica filler exemplified above, the alumina filler emits less α-rays, but it is required to further reduce the amount of α-rays emitted.

特許文献2〜4では、原料として用いる水酸化アルミニウム粉末中、若しくは、水酸化アルミニウム粉末から製造されるアルミナフィラー中のウラン、トリウムの合計量が10ppb未満とされている。
しかしながら、特許文献2〜4により得られる従来のアルミナフィラーは、レーザー回析散乱法による平均粒子径D50が2μm以上と大きいため、三次元実装に用いるアンダーフィル材に添加した際に、該アンダーフィル材の充填性が低いため、充填時にボイドが発生しやすかった。
In Patent Documents 2 to 4, the total amount of uranium and thorium in the aluminum hydroxide powder used as a raw material or the alumina filler produced from the aluminum hydroxide powder is less than 10 ppb.
However, since the conventional alumina fillers obtained in Patent Documents 2 to 4 have a large average particle diameter D50 by the laser diffraction scattering method of 2 μm or more, when they are added to the underfill material used for three-dimensional mounting, the underfill material Since the filling property of the material was low, voids were likely to occur during filling.

特開平10−4.93103号公報Japanese Patent Laid-Open No. 10-4.93103 特開2005−248087号公報JP, 2005-248087, A 特開2014−5359号公報JP, 2014-5359, A 特開2011−236118号公報JP, 2011-236118, A

本発明は、上記した従来技術における問題点を解決するため、ウラン含有量が低く、三次元実装用のアンダーフィル材として使用した際に、該アンダーフィル材の充填性に優れ、かつ、ボイドの発生が抑制されたエポキシ樹脂組成物を提供することを目的とする。   The present invention, in order to solve the above problems in the prior art, low uranium content, when used as an underfill material for three-dimensional mounting, excellent filling properties of the underfill material, and void of An object is to provide an epoxy resin composition in which generation is suppressed.

上記の目的を達成するため、本発明は、(A)液状エポキシ樹脂、(B)硬化剤、(C)アルミナフィラーを含むエポキシ樹脂組成物であって、
前記(C)アルミナフィラーの平均粒径が0.1〜4.9μmであり、かつ、ウラン含有量が0.1〜9ppb、であることを特徴とするエポキシ樹脂組成物を提供する。
In order to achieve the above object, the present invention provides an epoxy resin composition containing (A) a liquid epoxy resin, (B) a curing agent, and (C) an alumina filler,
There is provided an epoxy resin composition characterized in that the (C) alumina filler has an average particle size of 0.1 to 4.9 μm and a uranium content of 0.1 to 9 ppb.

本発明のエポキシ樹脂組成物において、前記(B)硬化剤は、芳香族アミン硬化剤であることが好ましい。
本発明のエポキシ樹脂組成物において、芳香族アミン硬化剤の含有量が、前記(A)液状エポキシ樹脂のエポキシ当量に対して、0.5〜1.5当量であることが好ましい
In the epoxy resin composition of the present invention, the (B) curing agent is preferably an aromatic amine curing agent.
In the epoxy resin composition of the present invention, the content of the aromatic amine curing agent is preferably 0.5 to 1.5 equivalents based on the epoxy equivalent of the liquid epoxy resin (A).

本発明のエポキシ樹脂組成物において、前記(C)アルミナフィラーの含有量は、エポキシ樹脂組成物の全成分の合計質量100質量部に対し、45〜90質量部であることが好ましい。   In the epoxy resin composition of the present invention, the content of the (C) alumina filler is preferably 45 to 90 parts by mass with respect to 100 parts by mass as the total mass of all components of the epoxy resin composition.

本発明のエポキシ樹脂組成物は、硬化物におけるα線量が0.0020count/cm2・h以下であることが好ましい。 In the epoxy resin composition of the present invention, the α dose in the cured product is preferably 0.0020 count / cm 2 · h or less.

本発明のエポキシ樹脂組成物は、さらに、(D)シランカップリング剤を含有してもよい。   The epoxy resin composition of the present invention may further contain (D) a silane coupling agent.

本発明のエポキシ樹脂組成物は、前記(C)アルミナフィラーの真円度が0.9以上であることが好ましい。   In the epoxy resin composition of the present invention, the roundness of the (C) alumina filler is preferably 0.9 or more.

また、本発明は、本発明のエポキシ樹脂組成物を含む半導体封止剤を提供する。   The present invention also provides a semiconductor encapsulant containing the epoxy resin composition of the present invention.

また、本発明は、本発明のエポキシ樹脂組成物を含む接着剤を提供する。   The present invention also provides an adhesive containing the epoxy resin composition of the present invention.

また、本発明は、本発明のエポキシ樹脂組成物を加熱することで得られる樹脂硬化物を提供する。   The present invention also provides a resin cured product obtained by heating the epoxy resin composition of the present invention.

また、本発明は、本発明の半導体封止材を用いて封止されたフリップチップ型半導体素子を有する半導体装置を提供する。   The present invention also provides a semiconductor device having a flip-chip type semiconductor element sealed with the semiconductor sealing material of the present invention.

本発明のエポキシ樹脂組成物は、無機充填材として、アルミナフィラーを使用しているため、三次元実装のアンダーフィル材として使用する際に、熱設計が容易である。
本発明のエポキシ樹脂組成物は、無機充填材として、ウラン含有量が0.1〜9ppbのアルミナフィラーを使用しているため、その硬化物におけるα線量が0.0020count/cm2・h以下と低く、アンダーフィル材として使用した際に、α線の影響を受け易いデバイスにおける誤動作を防止できる。
本発明のエポキシ樹脂組成物は、無機充填材として、平均粒径が0.1〜4.9μmのアルミナフィラーを使用しているため、三次元実装のアンダーフィル材として使用した際に、充填性が良好であり、かつ、ボイドの発生が抑制される。
Since the epoxy resin composition of the present invention uses the alumina filler as the inorganic filler, the thermal design is easy when used as an underfill material for three-dimensional mounting.
Since the epoxy resin composition of the present invention uses an alumina filler having a uranium content of 0.1 to 9 ppb as the inorganic filler, the α dose in the cured product is 0.0020 count / cm 2 · h or less. It is low, and when it is used as an underfill material, it is possible to prevent malfunction in a device that is easily affected by α rays.
Since the epoxy resin composition of the present invention uses an alumina filler having an average particle diameter of 0.1 to 4.9 μm as an inorganic filler, it has a filling property when used as an underfill material for three-dimensional mounting. Is good, and the generation of voids is suppressed.

以下、本発明について詳細に説明する。
本発明のエポキシ樹脂組成物は、以下に示す(A)〜(C)成分を必須成分として含有する。
(A)液状エポキシ樹脂
(A)成分の液状エポキシ樹脂は、本発明のエポキシ樹脂組成物の主剤をなす成分である。
本発明において、液状エポキシ樹脂とは常温で液状のエポキシ樹脂を意味する。
本発明における液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂の平均分子量が約400以下のもの;p−グリシジルオキシフェニルジメチルトリスビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;フェノールノボラック型エポキシ樹脂の平均分子量が約570以下のもの;ビニル(3,4−シクロヘキセン)ジオキシド、3,4−エポキシシクロヘキシルカルボン酸(3,4−エポキシシクロヘキシル)メチル、アジピン酸ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)、2−(3,4−エポキシシクロヘキシル)5,1−スピロ(3,4−エポキシシクロヘキシル)−m−ジオキサンのような脂環式エポキシ樹脂;3,3´,5,5´−テトラメチル−4,4´−ジグリシジルオキシビフェニルのようなビフェニル型エポキシ樹脂;ヘキサヒドロフタル酸ジグリシジル、3−メチルヘキサヒドロフタル酸ジグリシジル、ヘキサヒドロテレフタル酸ジグリシジルのようなグリシジルエステル型エポキシ樹脂;ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジル−p−アミノフェノール、テトラグリシジル−m−キシリレンジアミン、テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ樹脂;ならびに1,3−ジグリシジル−5−メチル−5−エチルヒダントインのようなヒダントイン型エポキシ樹脂;ナフタレン環含有エポキシ樹脂が例示される。また、1,3−ビス(3−グリシドキシプロピル)−1,1,3,3−テトラメチルジシロキサンのようなシリコーン骨格をもつエポキシ樹脂も使用することができる。さらに、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグルシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテルのようなジエポキシド化合物;トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテルのようなトリエポキシド化合物等も例示される。
中でも好ましくは、液状ビスフェノール型エポキシ樹脂、液状アミノフェノール型エポキシ樹脂、シリコーン変性エポキシ樹脂、ナフタレン型エポキシ樹脂である。さらに好ましくは液状ビスフェノールA型エポキシ樹脂、液状ビスフェノールF型エポキシ樹脂、p−アミノフェノール型液状エポキシ樹脂、1,3−ビス(3−グリシドキシプロピル)テトラメチルジシロキサン、ナフタレン型エポキシ樹脂である。
(A)成分としての液状エポキシ樹脂は、単独でも、2種以上併用してもよい。
また、常温で固体のエポキシ樹脂であっても、液状のエポキシ樹脂と併用することにより、混合物として液状を示す場合は用いることができる。
Hereinafter, the present invention will be described in detail.
The epoxy resin composition of the present invention contains the following components (A) to (C) as essential components.
(A) Liquid Epoxy Resin The liquid epoxy resin of the component (A) is a main component of the epoxy resin composition of the present invention.
In the present invention, the liquid epoxy resin means an epoxy resin which is liquid at room temperature.
As the liquid epoxy resin in the present invention, a bisphenol A type epoxy resin having an average molecular weight of about 400 or less; a branched polyfunctional bisphenol A type epoxy resin such as p-glycidyloxyphenyldimethyltrisbisphenol A diglycidyl ether; bisphenol F type epoxy resin; phenol novolac type epoxy resin having an average molecular weight of about 570 or less; vinyl (3,4-cyclohexene) dioxide, 3,4-epoxycyclohexylcarboxylic acid (3,4-epoxycyclohexyl) methyl, adipic acid Alicyclic epoxy resins such as bis (3,4-epoxy-6-methylcyclohexylmethyl), 2- (3,4-epoxycyclohexyl) 5,1-spiro (3,4-epoxycyclohexyl) -m-dioxane ; 3,3 ' Biphenyl type epoxy resin such as 5,5'-tetramethyl-4,4'-diglycidyloxybiphenyl; diglycidyl hexahydrophthalate, diglycidyl 3-methylhexahydrophthalate, glycidyl ester such as diglycidyl hexahydroterephthalate Type epoxy resin; glycidyl amine type epoxy resin such as diglycidyl aniline, diglycidyl toluidine, triglycidyl-p-aminophenol, tetraglycidyl-m-xylylenediamine, tetraglycidyl bis (aminomethyl) cyclohexane; and 1,3 Examples thereof include hydantoin-type epoxy resins such as diglycidyl-5-methyl-5-ethylhydantoin; naphthalene ring-containing epoxy resins. Also, an epoxy resin having a silicone skeleton such as 1,3-bis (3-glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane can be used. Further, diepoxide compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, cyclohexanedimethanol diglycidyl ether; trimethylolpropane triglycidyl Triepoxide compounds such as ether and glycerin triglycidyl ether are also exemplified.
Among these, liquid bisphenol type epoxy resin, liquid aminophenol type epoxy resin, silicone modified epoxy resin, and naphthalene type epoxy resin are preferable. More preferred are liquid bisphenol A type epoxy resin, liquid bisphenol F type epoxy resin, p-aminophenol type liquid epoxy resin, 1,3-bis (3-glycidoxypropyl) tetramethyldisiloxane, and naphthalene type epoxy resin. .
The liquid epoxy resin as the component (A) may be used alone or in combination of two or more kinds.
Further, even an epoxy resin which is solid at room temperature can be used in the case where it shows a liquid state as a mixture by using it together with a liquid epoxy resin.

(B)硬化剤
(B)成分の硬化剤は、エポキシ樹脂の硬化剤であれば、特に限定されず、公知のものを使用することができ、アミン系硬化剤、酸無水物系硬化剤、および、フェノール系硬化剤のいずれも使用できる。
(B) Curing agent The curing agent of the component (B) is not particularly limited as long as it is a curing agent of an epoxy resin, and known ones can be used, such as amine curing agents, acid anhydride curing agents, Also, any of the phenolic curing agents can be used.

アミン系硬化剤の具体例としては、トリエチレンテトラアミン、テトラエチレンペンタミン、m−キシレンジアミン、トリメチルヘキサメチレンジアミン、2−メチルペンタメチレンジアミンなどの脂肪族ポリアミン、イソフォロンジアミン、1,3−ビスアミノメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2−ジアミノシクロヘキサンなどの脂環式ポリアミン、N−アミノエチルピペラジン、1,4−ビス(2−アミノ−2−メチルプロピル)ピペラジンなどのピペラジン型のポリアミン、ジエチルトルエンジアミン、ジメチルチオトルエンジアミン、4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン、ビス(メチルチオ)トルエンジアミン、ジアミノジフェニルメタン、m−フェニレンジアミン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、トリメチレンビス(4−アミノベンゾエート)、ポリテトラメチレンオキシド−ジ−p−アミノベンゾエートなどの芳香族ポリアミン類が挙げられる。また、市販品として、T−12(商品名、三洋化成工業製)(アミン当量116)が挙げられる。   Specific examples of the amine-based curing agent include aliphatic polyamines such as triethylenetetramine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine and 2-methylpentamethylenediamine, isophoronediamine, 1,3- Alicyclic polyamines such as bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperazine, 1,4-bis (2-amino-2-methylpropyl) ) Piperazine-type polyamines such as piperazine, diethyltoluenediamine, dimethylthiotoluenediamine, 4,4'-diamino-3,3'-diethyldiphenylmethane, bis (methylthio) toluenediamine, diaminodiphenylmethane, m Phenylenediamine, diaminodiphenyl sulfone, diethyl toluene diamine, trimethylene bis (4-aminobenzoate), polytetramethylene oxide - aromatic polyamines such as di -p- amino benzoate. Further, as a commercially available product, T-12 (trade name, manufactured by Sanyo Chemical Industry) (amine equivalent 116) can be mentioned.

酸無水物系硬化剤の具体例としては、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物等のアルキル化テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルハイミック酸無水物、アルケニル基で置換されたコハク酸無水物、メチルナジック酸無水物、グルタル酸無水物等が例示される。   Specific examples of the acid anhydride-based curing agent, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride such as methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, Examples thereof include methyl hymic acid anhydride, succinic acid anhydride substituted with an alkenyl group, methyl nadic acid anhydride, and glutaric acid anhydride.

フェノール系硬化剤の具体例としては、フェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般を指し、例えば、フェノールノボラック樹脂およびそのアルキル化物またはアリル化物、クレゾールノボラック樹脂、フェノールアラルキル(フェニレン、ビフェニレン骨格を含む)樹脂、ナフトールアラルキル樹脂、トリフェノールメタン樹脂、ジシクロペンタジエン型フェノール樹脂等が挙げられる。   Specific examples of the phenol-based curing agent include monomers having a phenolic hydroxyl group, oligomers, and polymers in general, and include, for example, phenol novolac resin and its alkylated or allylated compounds, cresol novolac resin, phenol aralkyl (phenylene, biphenylene skeleton). ) Resin, naphthol aralkyl resin, triphenol methane resin, dicyclopentadiene type phenol resin and the like.

これらの中でも、アミン系硬化剤が、耐湿性および耐サーマルサイクル性に優れることから好ましく、中でも、ジエチルトルエンジアミン、ジメチルチオトルエンジアミン、4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン等の芳香族アミン硬化剤が、耐熱性、機械的特性、密着性、電気的特性、耐湿性の観点から好ましい。また、常温で液状を呈する点も、本発明のエポキシ樹脂組成物におけるエポキシ樹脂の硬化剤として好ましい。   Among these, amine curing agents are preferable because they are excellent in moisture resistance and thermal cycle resistance, and among them, diethyltoluenediamine, dimethylthiotoluenediamine, 4,4′-diamino-3,3′-diethyldiphenylmethane and the like are preferable. Aromatic amine curing agents are preferable from the viewpoint of heat resistance, mechanical properties, adhesion, electrical properties, and moisture resistance. Further, the fact that it is liquid at room temperature is also preferable as a curing agent for the epoxy resin in the epoxy resin composition of the present invention.

(B)成分の硬化剤は、単独でも、2種以上併用してもよい。   The curing agent as the component (B) may be used alone or in combination of two or more kinds.

本発明の樹脂組成物において、(B)成分の硬化剤の配合割合は特に限定されないが、芳香族アミン硬化剤の場合、(A)成分の液状エポキシ樹脂のエポキシ基1当量に対して、0.5〜1.5当量であることが好ましく、0.7〜1.3当量であることがより好ましい。   In the resin composition of the present invention, the mixing ratio of the curing agent as the component (B) is not particularly limited, but in the case of an aromatic amine curing agent, it is 0 per 1 equivalent of the epoxy group of the liquid epoxy resin as the component (A). It is preferably 0.5 to 1.5 equivalents, and more preferably 0.7 to 1.3 equivalents.

(C)アルミナフィラー
(C)成分のアルミナフィラーは、本発明のエポキシ樹脂組成物をアンダーフィル材として使用した際に、封止した部位の耐湿性および耐サーマルサイクル性、特に耐サーマルサイクル性を向上させる目的で添加される。アルミナフィラーの添加により耐サーマルサイクル性が向上するのは、線膨張係数を下げることにより、サーマルサイクルによる、エポキシ樹脂組成物の硬化物の膨張・収縮を抑制できるからである。
(C)成分としてアルミナフィラーを使用するのは、上述したように、シリカフィラーに比べて、熱伝導率が高いため、三次元実装に用いるアンダーフィル材として使用する際に、熱設計が容易になるからである。また、上記で例示したシリカフィラーよりも熱伝導率が高い他の無機充填材に対し、低コストであり、真球度を高くしやすく、耐湿性に優れるからである。
(C) Alumina Filler The alumina filler of the component (C) has moisture resistance and thermal cycle resistance, especially thermal cycle resistance, of a sealed part when the epoxy resin composition of the present invention is used as an underfill material. It is added for the purpose of improving. The reason why the thermal cycle resistance is improved by adding the alumina filler is that the expansion / shrinkage of the cured product of the epoxy resin composition due to the thermal cycle can be suppressed by lowering the linear expansion coefficient.
As described above, the use of the alumina filler as the component (C) has a higher thermal conductivity than that of the silica filler, which facilitates thermal design when used as an underfill material used for three-dimensional mounting. Because it will be. Moreover, it is because the cost is low, the sphericity is easily increased, and the moisture resistance is excellent as compared with other inorganic fillers having higher thermal conductivity than the silica fillers exemplified above.

また、α線の影響を受け易いデバイスにおける誤動作を防止するため、アンダーフィル材に含まれる無機充填材中のウラン、トリウム、その壊変物質から放出されるα線を低減することが必要である(特許文献2〜4)。   Further, in order to prevent a malfunction in a device susceptible to α rays, it is necessary to reduce α rays emitted from uranium and thorium in the inorganic filler contained in the underfill material and its decay material ( Patent documents 2-4).

本発明のエポキシ樹脂組成物において、(C)成分のアルミナフィラーは、平均粒径が0.1〜4.9μmである。その理由は、三次元実装用のアンダーフィル材として使用した際に、充填性に優れ、かつ、ボイドの発生が抑制されるためである。(C)成分のアルミナフィラーの平均粒径が0.1μm未満だと、エポキシ樹脂組成物の粘度が非常に高くなるため、三次元実装用のアンダーフィル材として使用した際に、充填性、作業性が悪化する。
一方、(C)成分のアルミナフィラーの平均粒径が4.9μm超だと、三次元実装用のアンダーフィル材として使用した際に、大きな粒子がギャップ間で詰まることにより充填不良が発生するおそれがある。また充填できたとしても充填時にボイドを巻き込むため、不適切である。
(C)成分のアルミナフィラーの平均粒径は0.1〜3.0μmであることがより好ましく、0.1〜1.7μmであることがさらに好ましい。
In the epoxy resin composition of the present invention, the alumina filler as the component (C) has an average particle size of 0.1 to 4.9 μm. The reason is that when used as an underfill material for three-dimensional mounting, the filling property is excellent and the generation of voids is suppressed. If the average particle size of the alumina filler of the component (C) is less than 0.1 μm, the viscosity of the epoxy resin composition will be very high, so when used as an underfill material for three-dimensional mounting, the filling property and workability are improved. Sex deteriorates.
On the other hand, if the average particle size of the component (C) alumina filler exceeds 4.9 μm, when used as an underfill material for three-dimensional mounting, large particles may become clogged in the gap, resulting in poor filling. There is. Even if it can be filled, voids are involved during filling, which is inappropriate.
The average particle size of the component (C) alumina filler is more preferably 0.1 to 3.0 μm, and even more preferably 0.1 to 1.7 μm.

(C)成分のアルミナフィラーの形状は特に限定されず、粒状、粉末状、りん片等のいずれの形態であってもよい。なお、アルミナフィラーの形状が粒状以外の場合、アルミナフィラーの平均粒径とはアルミナフィラーの平均最大径を意味する。
但し、(C)成分のアルミナフィラーの真円度が0.9以上であることが、エポキシ樹脂組成物中でのアルミナフィラーの分散性、および、三次元実装用のアンダーフィル材として使用する際の注入性が向上するとともに、アルミナフィラーをより最密充填状態に近づけるという観点から好ましい。本明細書における「真円度」は、走査型電子顕微鏡(SEM)で観察した二次元像における「粒子の最大径に対する最小径の比」と定義する。すなわち、走査型電子顕微鏡(SEM)で観察した二次元像における最大径に対する最小径の比が0.9以上であることを指す。
The shape of the alumina filler as the component (C) is not particularly limited, and may be any form such as granular, powdery, and flaky. When the shape of the alumina filler is other than granular, the average particle diameter of the alumina filler means the average maximum diameter of the alumina filler.
However, when the roundness of the alumina filler of the component (C) is 0.9 or more, the dispersibility of the alumina filler in the epoxy resin composition and the use as an underfill material for three-dimensional mounting It is preferable from the viewpoint of improving the injection property of (1) and making the alumina filler closer to the closest packed state. The "roundness" in this specification is defined as the "ratio of the minimum diameter to the maximum diameter of particles" in a two-dimensional image observed with a scanning electron microscope (SEM). That is, it means that the ratio of the minimum diameter to the maximum diameter in a two-dimensional image observed by a scanning electron microscope (SEM) is 0.9 or more.

上述したように、アルミナフィラーは、シリカフィラーに比べて、熱伝導率が高いため、三次元実装に用いるアンダーフィル材として使用する際に、熱設計が容易になる。
しかしながら、アルミナフィラーは、その製造原料であるボーキサイトが不可避不純物としてウランを含有し、製造されたアルミナフィラーも不可避不純物としてウランするため、三次元実装に用いるアンダーフィル材として使用した場合に、ウランから放出されるα線により、デバイスが誤動作するおそれがある。
本発明の樹脂組成物では、(C)成分のアルミナフィラーのウラン含有量が0.1〜9ppbであるため、樹脂組成物の硬化物からのα線量が、デバイスを誤作動させない程度まで低減される。具体的には、樹脂組成物の硬化物からのα線量が0.0020count/cm2・h以下に低減される。
本発明の樹脂組成物において、(C)成分のアルミナフィラーのウラン含有量が0.1〜4.9ppb以下であることが好ましい。
As described above, since the alumina filler has a higher thermal conductivity than the silica filler, the thermal design becomes easy when used as an underfill material used for three-dimensional mounting.
However, alumina filler contains uranium as an unavoidable impurity in its manufacturing raw material bauxite, and the produced alumina filler also contains uranium as an unavoidable impurity, so when used as an underfill material used for three-dimensional mounting, The emitted α rays may cause the device to malfunction.
In the resin composition of the present invention, since the uranium content of the alumina filler of the component (C) is 0.1 to 9 ppb, the α dose from the cured product of the resin composition is reduced to the extent that the device does not malfunction. It Specifically, the α dose from the cured product of the resin composition is reduced to 0.0020 count / cm 2 · h or less.
In the resin composition of the present invention, the uranium content of the component (C) alumina filler is preferably 0.1 to 4.9 ppb or less.

特許文献2〜4に記載の方法によれば、水酸化アルミニウム粉末から、ウラン、トリウムの合計量が10ppb未満のアルミナフィラーを製造できるが、このアルミナフィラーは、レーザー回析散乱法による平均粒子径D50が2μm以上であり、平均粒径が0.1〜4.9μmのアルミナフィラーを製造することができなかった。
平均粒径が0.1〜4.9μm、かつ、ウラン含有量が0.1〜9ppbのアルミナフィラーは、例えば、特開2002−285003号公報、特開2003−119019号公報、VMC法(Vapourized Metal Combution Method)により製造できる。VMC法とは、酸素を含む雰囲気内においてバーナーにより化学炎を形成し、この化学炎中に目的とする酸化物微粒子(ここでは、アルミナフィラー、以下、同様)の一部を形成する金属(ここでは、Al、以下同様)粉末を粉塵雲が形成される程度の量投入し、爆燃を起こさせて酸化物微粒子を合成する方法である。
VMC法の作用について説明すれば以下のようになる。まず容器中に反応ガスである酸素を含有するガスを充満させ、この反応ガス中化学炎を形成する。次いでこの化学炎に金属粉末を投入し高濃度(500g/m3以上)の粉塵雲を形成する。すると、化学炎により金属粉末表面に熱エネルギが与えられ、金属粉末の表面温度が上昇し、金属粉末表面から金属の蒸気が周囲に広がる。この金属蒸気粉末が酸素ガスと反応して発火し火炎を生じる。この火炎により生じた熱は、さらに金属粉末の気化を促進し、生じた金属蒸気と反応ガスが混合され、連鎖的に発火伝播する。このとき金属粉末自体も破壊して飛散し、火炎伝播を促す。燃焼後に生成ガスが自然冷却されることにより、酸化物微粒子の雲ができる。得られた酸化物微粒子は、電気集塵器等により帯電させて捕獲することができる。
VMC法は粉塵爆発の原理を利用するものであり、瞬時に大量の酸化物微粒子が得られ、その微粒子は、略真球の形状をなす。投入する粉末の粒子径、投入量、火炎温度等を調整することにより、微粒子の粒径を調整することが可能であり、平均粒径が0.1〜4.9μmのアルミナフィラーを合成可能である。
According to the methods described in Patent Documents 2 to 4, an alumina filler having a total amount of uranium and thorium of less than 10 ppb can be produced from aluminum hydroxide powder, but this alumina filler has an average particle diameter by a laser diffraction scattering method. It was impossible to produce an alumina filler having a D50 of 2 μm or more and an average particle diameter of 0.1 to 4.9 μm.
Alumina fillers having an average particle size of 0.1 to 4.9 μm and a uranium content of 0.1 to 9 ppb are disclosed in, for example, JP 2002-285003 A, JP 2003-119019 A, and the VMC method (Vapourized). It can be manufactured by Metal Combination Method). The VMC method is a method of forming a chemical flame with a burner in an atmosphere containing oxygen, and forming a part of the target oxide fine particles (herein, alumina filler, the same hereinafter) in the chemical flame (here Then, Al, the same shall apply hereinafter) is a method of synthesizing oxide fine particles by charging powder in an amount such that a dust cloud is formed and causing deflagration.
The operation of the VMC method will be described below. First, the reaction gas is filled with a gas containing oxygen as a reaction gas to form a chemical flame in the reaction gas. Then, metal powder is introduced into this chemical flame to form a high-concentration (500 g / m 3 or more) dust cloud. Then, thermal energy is given to the surface of the metal powder by the chemical flame, the surface temperature of the metal powder rises, and the vapor of the metal spreads from the surface of the metal powder to the surroundings. This metal vapor powder reacts with oxygen gas and ignites to generate a flame. The heat generated by this flame further promotes the vaporization of the metal powder, the generated metal vapor and the reaction gas are mixed, and the ignition spreads in a chain. At this time, the metal powder itself is also destroyed and scattered to promote flame propagation. After the combustion, the produced gas is naturally cooled to form a cloud of oxide fine particles. The obtained oxide fine particles can be charged and captured by an electrostatic precipitator or the like.
The VMC method uses the principle of dust explosion, and a large amount of oxide fine particles can be obtained instantaneously, and the fine particles have a substantially spherical shape. It is possible to adjust the particle size of the fine particles by adjusting the particle size of the powder to be charged, the amount to be charged, the flame temperature, etc., and it is possible to synthesize an alumina filler having an average particle size of 0.1 to 4.9 μm. is there.

本発明の樹脂組成物において、(C)成分のアルミナフィラーの含有量は、樹脂組成物の全成分の合計質量100質量部に対し、45〜90質量部であることが好ましい。
(C)成分のアルミナフィラーの含有量が45質量部未満だと、樹脂組成物の線膨張係数が大きくなり、三次元実装に用いるアンダーフィル材として使用した場合に、封止した部位の耐サーマルサイクル性が低下する。
一方、(C)成分のアルミナフィラーの含有量が90質量部超だと、樹脂組成物の粘度が増加し、三次元実装に用いるアンダーフィル材として使用した場合に、フリップチップパッケージ用液状封止材として使用した場合に、半導体素子と基板とのギャップへの注入性が低下する。
(C)成分のアルミナフィラーの含有量は、樹脂組成物の全成分の合計質量100質量部に対し、50〜80質量部であることがより好ましく、55〜75質量部であることがさらに好ましい。
In the resin composition of the present invention, the content of the alumina filler as the component (C) is preferably 45 to 90 parts by mass with respect to 100 parts by mass as the total mass of all the components of the resin composition.
When the content of the alumina filler of the component (C) is less than 45 parts by mass, the linear expansion coefficient of the resin composition becomes large, and when used as an underfill material used for three-dimensional mounting, the thermal resistance of the sealed part is high. Cycle performance is reduced.
On the other hand, when the content of the alumina filler as the component (C) exceeds 90 parts by mass, the viscosity of the resin composition increases, and when used as an underfill material used for three-dimensional mounting, liquid sealing for flip chip packages is performed. When used as a material, the injection property into the gap between the semiconductor element and the substrate decreases.
The content of the alumina filler as the component (C) is more preferably 50 to 80 parts by mass and further preferably 55 to 75 parts by mass with respect to 100 parts by mass as the total mass of all the components of the resin composition. .

本発明のエポキシ樹脂組成物は、上記(A)〜(C)成分以外に、以下に述べる成分を必要に応じて含有してもよい。
(D)カップリング剤
本発明のエポキシ樹脂組成物は、三次元実装に用いるアンダーフィル材として使用した際の密着性を向上させるために、(D)成分としてカップリング剤を含有してもよい。
(D)成分のカップリング剤としては、エポキシ系、アミノ系、ビニル系、メタクリル系、アクリル系、メルカプト系等の各種シランカップリング剤を用いることができる。これらの中でも、エポキシ系シランカップリング剤が、エポキシ樹脂組成物を三次元実装に用いるアンダーフィル材として使用した際の密着性および機械的強度を向上させる効果に優れることから好ましい。
The epoxy resin composition of the present invention may contain the following components, if necessary, in addition to the components (A) to (C).
(D) Coupling Agent The epoxy resin composition of the present invention may contain a coupling agent as the (D) component in order to improve the adhesiveness when used as an underfill material used for three-dimensional mounting. .
As the coupling agent as the component (D), various silane coupling agents such as epoxy-based, amino-based, vinyl-based, methacrylic-based, acrylic-based, and mercapto-based silane coupling agents can be used. Among these, epoxy-based silane coupling agents are preferable because they are excellent in the effect of improving adhesion and mechanical strength when the epoxy resin composition is used as an underfill material used for three-dimensional mounting.

エポキシ系シランカップリング剤の具体例としては、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(商品名:KBM−303、信越化学株式会社製)、3−グリシドキシプロピルメチルジメトキシシラン(商品名:KBM−402、信越化学株式会社製)、3−グリシドキシプロピルトリメトキシシラン(商品名:KBM−403、信越化学株式会社製)、3−グリシドキシプロピルメチルジエトキシシラン、(商品名:KBE−402、信越化学株式会社製)、3−グリシドキシプロピルトリエトキシシラン(商品名:KBE−403、信越化学株式会社製)等が挙げられる。   Specific examples of the epoxy-based silane coupling agent include 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (trade name: KBM-303, manufactured by Shin-Etsu Chemical Co., Ltd.). , 3-glycidoxypropylmethyldimethoxysilane (trade name: KBM-402, manufactured by Shin-Etsu Chemical Co., Ltd.), 3-glycidoxypropyltrimethoxysilane (trade name: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), 3 -Glycidoxypropylmethyldiethoxysilane, (trade name: KBE-402, manufactured by Shin-Etsu Chemical Co., Ltd.), 3-glycidoxypropyltriethoxysilane (trade name: KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd.), etc. Can be mentioned.

(D)成分としてシランカップリング剤を含有させる場合、(A)成分の液状エポキシ樹脂、および、(B)成分の硬化剤の合計質量に対する質量百分率で0.1〜3.0質量%であることが好ましく、0.3〜2.0質量%であることがより好ましく、0.5〜1.5質量%であることがさらに好ましい。   When a silane coupling agent is contained as the component (D), the liquid epoxy resin as the component (A) and the curing agent as the component (B) are in a mass percentage of 0.1 to 3.0% by mass. It is preferably 0.3 to 2.0% by mass, more preferably 0.5 to 1.5% by mass.

(E)硬化促進剤
本発明の液状封止材は、(E)成分として硬化促進剤を含有してもよい。(B)成分の硬化剤として、酸無水物系硬化剤やフェノール系硬化剤を使用する場合は、(E)成分として硬化促進剤を含有することが好ましい。
(E)成分としての硬化促進剤は、エポキシ樹脂の硬化促進剤であれば、特に限定されず、公知のものを使用することができる。例えば、イミダゾール系硬化促進剤(マイクロカプセル型、エポキシアダクト型を含む)、第三級アミン系硬化促進剤、リン化合物系硬化促進剤等が挙げられる。
これらの中でもイミダゾール系硬化促進剤が、半導体樹脂封止材の他の成分との相溶性、および、半導体樹脂封止材の硬化速度という点で優れることから好ましい。
(E) Curing Accelerator The liquid sealing material of the present invention may contain a curing accelerator as the component (E). When an acid anhydride type curing agent or a phenol type curing agent is used as the component (B) curing agent, it is preferable to include a curing accelerator as the component (E).
The curing accelerator as the component (E) is not particularly limited as long as it is a curing accelerator for the epoxy resin, and known ones can be used. Examples thereof include imidazole curing accelerators (including microcapsule type and epoxy adduct type), tertiary amine curing accelerators, phosphorus compound curing accelerators and the like.
Among these, imidazole-based curing accelerators are preferable because they are excellent in compatibility with other components of the semiconductor resin encapsulant and in curing rate of the semiconductor resin encapsulant.

イミダゾール系硬化促進剤の具体例としては、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール化合物等が挙げられる。
また、マイクロカプセル型イミダゾールやエポキシアダクト型イミダゾールと呼ばれるカプセル化イミダゾールも用いることができる。すなわち、イミダゾール化合物を尿素やイソシアネート化合物でアダクトし、さらにその表面をイソシアネート化合物でブロックすることによりカプセル化したイミダゾール系潜在性硬化剤や、イミダゾール化合物をエポキシ化合物でアダクトし、さらにその表面をイソシアネート化合物でブロックすることによりカプセル化したイミダゾール系潜在性硬化剤も用いることができる。具体的には、例えば、ノバキュアHX3941HP、ノバキュアHXA3042HP、ノバキュアHXA3922HP、ノバキュアHXA3792、ノバキュアHX3748、ノバキュアHX3721、ノバキュアHX3722、ノバキュアHX3088、ノバキュアHX3741、ノバキュアHX3742、ノバキュアHX3613(いずれも旭化成ケミカルズ社製、商品名)等、アミキュアPN−40J(味の素ファインテクノ株式会社製、商品名)、フジキュアFXR−1121富士化成工業株式会社製、商品名)を挙げることができる。
Specific examples of the imidazole-based curing accelerator include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole. Imidazole compounds and the like.
Further, an encapsulated imidazole called a microcapsule type imidazole or an epoxy adduct type imidazole can also be used. That is, the imidazole compound is adducted with urea or an isocyanate compound, and the surface is blocked with an isocyanate compound to encapsulate the imidazole-based latent curing agent, or the imidazole compound is adducted with an epoxy compound, and the surface is further subjected to an isocyanate compound. It is also possible to use an imidazole-based latent curing agent encapsulated by blocking with. Specifically, for example, Novacure HX3941HP, Novacure HXA3042HP, Novacure HXA3922HP, Novacure HXA3792, Novacure HX3748, Novacure HX3721, Novacure HX3722, Novacure HX3072, Novacure HX3072, Novacure HX3721 and Novacure HX3741, Novacure HX3741, Novacure HX3741, Novacure HX3741, Amicure PN-40J (manufactured by Ajinomoto Fine-Techno Co., Inc., trade name), Fujicure FXR-1121 manufactured by Fuji Kasei Kogyo Co., Ltd., trade name).

(その他の配合剤)
本発明の液状封止材は、上記(A)〜(E)成分以外の成分を必要に応じてさらに含有してもよい。このような成分の具体例としてはエラストマー、硬化促進剤、金属錯体、レベリング剤、着色剤、イオントラップ剤、消泡剤、難燃剤などを配合することができる。各配合剤の種類、配合量は常法通りである。
(Other compounding agents)
The liquid sealing material of the present invention may further contain components other than the components (A) to (E) as required. As specific examples of such components, an elastomer, a curing accelerator, a metal complex, a leveling agent, a coloring agent, an ion trap agent, a defoaming agent, a flame retardant and the like can be blended. The type and amount of each compounding agent are in the usual manner.

(エポキシ樹脂組成物の調製)
本発明の液状封止材は、上記(A)〜(C)成分、および、含有させる場合はさらに(D)成分、(E)成分、ならびに、さらに必要に応じて配合するその他の配合剤を混合し、攪拌して調製される。
混合攪拌は、ロールミルを用いて行うことができるが、勿論、これに限定されない。(A)成分のエポキシ樹脂が固形の場合には、加熱などにより液状化ないし流動化し混合することが好ましい。
各成分を同時に混合しても、一部成分を先に混合し、残り成分を後から混合するなど、適宜変更しても差支えない。
(Preparation of epoxy resin composition)
The liquid encapsulating material of the present invention comprises the above-mentioned components (A) to (C), and, if contained, the component (D), the component (E), and other compounding agents to be further compounded as necessary. Prepared by mixing and stirring.
The mixing and stirring can be performed using a roll mill, but of course, it is not limited to this. When the epoxy resin as the component (A) is solid, it is preferable to liquefy or fluidize it by heating and mix it.
The components may be mixed at the same time, or some components may be mixed first, and the remaining components may be mixed later, or the like, which may be appropriately changed.

次に本発明のエポキシ樹脂組成物の特性について述べる。   Next, the characteristics of the epoxy resin composition of the present invention will be described.

本発明のエポキシ樹脂組成物は、常温(25℃)での粘度が200Pa・s以下であることが好ましく、三次元実装に用いるアンダーフィル材として使用した際に注入性が良好である。
本発明のエポキシ樹脂組成物は、常温(25℃)での粘度が150Pa・s以下であることがより好ましい。
The epoxy resin composition of the present invention preferably has a viscosity at room temperature (25 ° C.) of 200 Pa · s or less, and has good injection properties when used as an underfill material used for three-dimensional mounting.
The epoxy resin composition of the present invention more preferably has a viscosity at room temperature (25 ° C.) of 150 Pa · s or less.

また、本発明のエポキシ樹脂組成物は、加熱硬化物のガラス転移温度(Tg)が50℃以上であることが好ましく、三次元実装に用いるアンダーフィル材として使用した場合に、アンダーフィル材で封止した部位が耐サーマルサイクル性に優れている。
本発明のエポキシ樹脂組成物は、加熱硬化物のガラス転移温度(Tg)が、80℃以上であることがより好ましい。
Further, the epoxy resin composition of the present invention preferably has a glass transition temperature (Tg) of 50 ° C. or higher in a heat-cured product, and when used as an underfill material used for three-dimensional mounting, it is sealed with an underfill material. The stopped part has excellent thermal cycle resistance.
The epoxy resin composition of the present invention more preferably has a glass transition temperature (Tg) of 80 ° C. or higher when cured by heating.

また、本発明のエポキシ樹脂組成物は、加熱硬化物の熱伝導率が0.3W/(m・K)以上であることが好ましく、三次元実装のアンダーフィル材として使用する際に、熱設計が容易である。
本発明のエポキシ樹脂組成物は、加熱硬化物の熱伝導率が0.5W/(m・K)以上であることがより好ましく、0.7W/(m・K)以上であることがさらに好ましい。
In addition, the epoxy resin composition of the present invention preferably has a thermal conductivity of 0.3 W / (m · K) or more, and has a thermal design when used as an underfill material for three-dimensional mounting. Is easy.
The epoxy resin composition of the present invention preferably has a thermal conductivity of 0.5 W / (m · K) or more, more preferably 0.7 W / (m · K) or more. .

また、本発明のエポキシ樹脂組成物は、硬化物におけるα線量が0.0020count/cm2・h以下であることが好ましく、三次元実装のアンダーフィル材として使用した際に、α線の影響を受け易いデバイスにおける誤動作を防止できる。
また、本発明のエポキシ樹脂組成物は、硬化物におけるα線量が0.0015count/cm・h以下であることがより好ましく、0.0010count/cm2・h以下であることがさらに好ましい。
In addition, the epoxy resin composition of the present invention preferably has an α dose of 0.0020 count / cm 2 · h or less in the cured product, and when used as an underfill material for three-dimensional mounting, the influence of α rays It is possible to prevent malfunction in a device that is easily received.
The epoxy resin composition of the present invention, more preferably the dose α in the cured product is less than 0.0015count / cm 2 · h, more preferably not more than 0.0010count / cm 2 · h.

また、本発明のエポキシ樹脂組成物は、三次元実装に用いるアンダーフィル材として使用した場合に、キャピラリーフローによる注入性が良好である。具体的には、後述する実施例に記載の手順でギャップへの注入性を評価した際に、20μmギャップへの注入時間が800秒以下であることが好ましく、750秒以下であることがより好ましく、650秒以下であることがさらに好ましい。
また、ギャップの注入時にボイドが発生することがない。
Further, the epoxy resin composition of the present invention has good injectability by capillary flow when used as an underfill material used for three-dimensional mounting. Specifically, when the injection property into the gap is evaluated by the procedure described in Examples described later, the injection time into the 20 μm gap is preferably 800 seconds or less, more preferably 750 seconds or less. , 650 seconds or less is more preferable.
Further, no void is generated when the gap is injected.

次に本発明のエポキシ樹脂組成物の使用方法を、アンダーフィル材としての使用を挙げて説明する。
本発明のエポキシ樹脂組成物をアンダーフィル材として使用する場合、以下の手順で基板と半導体素子との間のギャップに本発明のエポキシ樹脂組成物を充填する。
基板をたとえば70〜130℃に加熱しながら、半導体素子の一端に本発明のエポキシ樹脂組成物を塗布すると、毛細管現象によって、基板と半導体素子との間のギャップに本発明のエポキシ樹脂組成物が充填される。この際、本発明のエポキシ樹脂組成物の充填に要する時間を短くするため、基板を傾斜させたり、該ギャップ内外に圧力差を生じさせてもよい。
該ギャップに本発明のエポキシ樹脂組成物を充填させた後、該基板を所定温度で所定時間、具体的には、80〜200℃で0.2〜6時間加熱して、エポキシ樹脂組成物を加熱硬化させることによって、該ギャップを封止する。
Next, a method of using the epoxy resin composition of the present invention will be described by using it as an underfill material.
When the epoxy resin composition of the present invention is used as an underfill material, the gap between the substrate and the semiconductor element is filled with the epoxy resin composition of the present invention by the following procedure.
When the epoxy resin composition of the present invention is applied to one end of the semiconductor element while heating the substrate to, for example, 70 to 130 ° C., the epoxy resin composition of the present invention is provided in the gap between the substrate and the semiconductor element due to a capillary phenomenon. Is filled. At this time, in order to shorten the time required to fill the epoxy resin composition of the present invention, the substrate may be tilted or a pressure difference may be generated between the inside and the outside of the gap.
After filling the gap with the epoxy resin composition of the present invention, the substrate is heated at a predetermined temperature for a predetermined time, specifically, at 80 to 200 ° C. for 0.2 to 6 hours to form an epoxy resin composition. The gap is sealed by heat curing.

本発明の半導体装置は、本発明のエポキシ樹脂組成物をアンダーフィル材として使用し、上記の手順で封止部位、すなわち、基板と半導体素子との間のギャップを封止したものである。ここで封止を行う半導体素子としては、集積回路、大規模集積回路、トランジスタ、サイリスタおよびダイオードおよびコンデンサ等で特に限定されるものではない。
但し、上述した加熱硬化物の熱伝導率の高さにより、ベアチップを積層した三次元パッケージ(例えば、スタック型CSP)を用いたものや、半導体チップを独立単体の仮パッケージとした後にこれを複数重ね合わせて三次元化を図ったパッケージ積層三次元モジュールを用いたものといった、三次元実装構造を有する半導体装置であることが好ましい。
The semiconductor device of the present invention uses the epoxy resin composition of the present invention as an underfill material, and seals the sealing part, that is, the gap between the substrate and the semiconductor element, by the above procedure. The semiconductor element to be sealed here is not particularly limited to an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, a capacitor, and the like.
However, due to the high thermal conductivity of the above-mentioned heat-cured product, a three-dimensional package (for example, a stack type CSP) in which bare chips are stacked is used, or a plurality of semiconductor chips are formed after forming a temporary package of an independent single body. It is preferable that the semiconductor device has a three-dimensional mounting structure, such as one using a package laminated three-dimensional module in which the three-dimensional package is stacked.

また、本発明のエポキシ樹脂組成物は、接着剤、ソルダーレジスト等の用途にも用いることができる。   The epoxy resin composition of the present invention can also be used for applications such as adhesives and solder resists.

以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

(実施例1〜4、比較例1〜2)
下記表に示す配合割合となるように、ロールミルを用いて原料を混練して実施例1〜4、比較例1〜2のエポキシ樹脂組成物を調製した。なお、表中の各組成に関する数値は質量部を表している。
(Examples 1-4, Comparative Examples 1-2)
The raw materials were kneaded using a roll mill so that the blending ratios shown in the following table were obtained, and the epoxy resin compositions of Examples 1 to 4 and Comparative Examples 1 and 2 were prepared. In addition, the numerical value regarding each composition in the table represents the mass part.

(A)エポキシ樹脂
エポキシ樹脂A1:ビスフェノールF型エポキシ樹脂、製品名YDF8170、新日鐵化学株式会社製、エポキシ当量158g/eq
(A) Epoxy resin Epoxy resin A1: Bisphenol F type epoxy resin, product name YDF8170, manufactured by Nippon Steel Chemical Co., Ltd., epoxy equivalent 158 g / eq.

(B)硬化剤
硬化剤B1:アミン系硬化剤、4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン、製品名カヤハードA−A、日本化薬株式会社製
(B) Hardener Hardener B1: Amine hardener, 4,4′-diamino-3,3′-diethyldiphenylmethane, product name Kayahard AA, manufactured by Nippon Kayaku Co., Ltd.

(C)アルミナフィラー
アルミナフィラーC1:平均粒径0.7μm、ウラン含有量0.1ppb
アルミナフィラーC2:平均粒径0.7μm、ウラン含有量3ppb
アルミナフィラーC3:平均粒径0.7μm、ウラン含有量9ppb
アルミナフィラーC4:平均粒径0.7μm、ウラン含有量16ppb
アルミナフィラーC5:平均粒径4.9μm、ウラン含有量9ppb
アルミナフィラーC6:平均粒径5μm、ウラン含有量9ppb
(C) Alumina filler Alumina filler C1: average particle size 0.7 μm, uranium content 0.1 ppb
Alumina filler C2: average particle size 0.7 μm, uranium content 3 ppb
Alumina filler C3: average particle size 0.7 μm, uranium content 9 ppb
Alumina filler C4: average particle size 0.7 μm, uranium content 16 ppb
Alumina filler C5: average particle size 4.9 μm, uranium content 9 ppb
Alumina filler C6: average particle size 5 μm, uranium content 9 ppb

(D)カップリング剤
カップリング剤D1:エポキシ系シランカップリング剤(3−グリシドキシプロピルトリメトキシシラン)、製品名KBM403(信越化学工業株式会社製)
(D) Coupling agent Coupling agent D1: Epoxy-based silane coupling agent (3-glycidoxypropyltrimethoxysilane), product name KBM403 (manufactured by Shin-Etsu Chemical Co., Ltd.)

調製したエポキシ樹脂組成物を評価用試料として以下の評価を実施した。   The following evaluation was implemented using the prepared epoxy resin composition as a sample for evaluation.

(粘度)
ブルックフィールド粘度計を用いて、液温25℃、50rpmで調製直後の評価用試料の粘度を測定した。
(viscosity)
Using a Brookfield viscometer, the viscosity of the evaluation sample immediately after preparation was measured at a liquid temperature of 25 ° C. and 50 rpm.

(ガラス転移温度(Tg))
評価用試料を165℃で120min加熱硬化させ8mmφ×200mmの円柱状に成形した硬化物について、ブルカーASX製TMA4000SAを用いて、TMA法によりガラス転移温度を測定した。
(Glass transition temperature (Tg))
The glass transition temperature was measured by the TMA method using a TMA4000SA manufactured by Bruker ASX for a cured product obtained by heating and curing the evaluation sample at 165 ° C. for 120 minutes to form a column of 8 mmφ × 200 mm.

(熱伝導率)
下記手順で評価用試料の硬化物の熱伝導率を測定した。
評価用試料を165℃で120min加熱硬化させた樹脂硬化物を10mm×10mmにカットし、熱伝導率測定装置(LFA447ナノフラッシュ、NETZSCH社製)を用いて熱伝導率の測定を行った。
(Thermal conductivity)
The thermal conductivity of the cured product of the evaluation sample was measured by the following procedure.
A resin cured product obtained by heating and curing the evaluation sample at 165 ° C. for 120 minutes was cut into 10 mm × 10 mm, and the thermal conductivity was measured using a thermal conductivity measuring device (LFA447 nanoflash, manufactured by NETZSCH).

(注入性)
2枚のガラス基板の間にアルミテープを用いて20μmのギャップを設けて、半導体素子の代わりにガラス板を固定した試験片を作製した。この試験片を110℃に設定したホットプレート上に置き、ガラス板の一端側に評価用試料を塗布し、注入距離が20mmに達するまでの時間を測定した。この手順を2回実施し、測定値の平均値を注入時間の測定値とした。
また、注入された評価用試料におけるボイドの有無を目視により確認した。
(Injectability)
An aluminum tape was used to provide a gap of 20 μm between two glass substrates, and a test piece in which a glass plate was fixed instead of the semiconductor element was produced. This test piece was placed on a hot plate set at 110 ° C., the evaluation sample was applied to one end side of the glass plate, and the time until the injection distance reached 20 mm was measured. This procedure was performed twice, and the average value of the measured values was used as the measured value of the injection time.
Further, the presence or absence of voids in the injected evaluation sample was visually confirmed.

実施例1〜4は、いずれも常温(25℃)での粘度が200Pa・s以下であり、加熱硬化物のTgが200℃以下であり、熱伝導率が0.3W/(m・K)以上であり、α線量が0.020count/cm・h以下であり、20μmギャップへの注入時間が800秒以下であり、注入時にボイドが確認されなかった。(C)成分のアルミナフィラーのウラン含有量が9ppb超の比較例1は、硬化物におけるα線量が0.020count/cm2・h超であった。(C)成分のアルミナフィラーの平均粒径が4.9μm超の比較例2は、20μmギャップへの注入時間が800秒超であり、注入時にボイドが確認された。 In each of Examples 1 to 4, the viscosity at room temperature (25 ° C.) is 200 Pa · s or less, the Tg of the heat-cured product is 200 ° C. or less, and the thermal conductivity is 0.3 W / (m · K). Above, the α dose was 0.020 count / cm 2 · h or less, the implantation time into the 20 μm gap was 800 seconds or less, and no void was confirmed during implantation. In Comparative Example 1 in which the uranium content of the alumina filler of the component (C) was more than 9 ppb, the α dose in the cured product was more than 0.020 count / cm 2 · h. In Comparative Example 2 in which the average particle size of the component (C) alumina filler was more than 4.9 μm, the injection time into the 20 μm gap was more than 800 seconds, and voids were confirmed during the injection.

Claims (8)

(A)液状エポキシ樹脂、(B)硬化剤、(C)アルミナフィラーを含むエポキシ樹脂組成物であって、
前記(B)硬化剤が芳香族アミン硬化剤であり、前記芳香族アミン硬化剤の含有量が、前記(A)液状エポキシ樹脂のエポキシ当量に対して0.5〜1.5当量であり、
前記(C)アルミナフィラーの平均粒径が0.1〜1.7μmであり、かつ、ウラン含有量が0.1〜9ppbであり、
前記(C)アルミナフィラーの含有量が、エポキシ樹脂組成物の全成分の合計質量100質量部に対し、45〜90質量部であることを特徴とするエポキシ樹脂組成物。
An epoxy resin composition comprising (A) a liquid epoxy resin, (B) a curing agent, and (C) an alumina filler,
The (B) curing agent is an aromatic amine curing agent, and the content of the aromatic amine curing agent is 0.5 to 1.5 equivalents relative to the epoxy equivalent of the (A) liquid epoxy resin,
The (C) alumina filler has an average particle size of 0.1 to 1.7 μm, and a uranium content of 0.1 to 9 ppb,
Content of the said (C) alumina filler is 45-90 mass parts with respect to 100 mass parts of total mass of all the components of an epoxy resin composition, The epoxy resin composition characterized by the above-mentioned.
硬化物におけるα線量が0.0020count/cm2・h以下である、請求項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 , wherein the α-ray dose in the cured product is 0.0020 count / cm 2 · h or less. さらに、(D)シランカップリング剤を含有する、請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2 , further comprising (D) a silane coupling agent. 前記(C)アルミナフィラーの真円度が0.8以上である、請求項1〜のいずれかに記載のエポキシ樹脂組成物。 Wherein (C) the circularity of the alumina filler is 0.8 or more, epoxy resin composition according to any one of claims 1-3. 請求項1〜のいずれかに記載のエポキシ樹脂組成物を含む半導体封止剤。 Semiconductor sealant comprising the epoxy resin composition according to any one of claims 1-4. 請求項1〜のいずれかに記載のエポキシ樹脂組成物を含む接着剤。 Adhesives comprising epoxy resin composition according to any one of claims 1-4. 請求項1〜のいずれかに記載のエポキシ樹脂組成物を加熱することで得られる樹脂硬化物。 The epoxy resin composition cured resin obtained by heating according to any one of claims 1-4. 請求項に記載の半導体封止材を用いて封止されたフリップチップ型半導体素子を有する半導体装置。 A semiconductor device having a flip-chip type semiconductor element sealed with the semiconductor sealing material according to claim 5 .
JP2015247112A 2015-12-18 2015-12-18 Epoxy resin composition Active JP6688065B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015247112A JP6688065B2 (en) 2015-12-18 2015-12-18 Epoxy resin composition
CN201680070570.5A CN108368326A (en) 2015-12-18 2016-11-08 Composition epoxy resin
KR1020187016315A KR102626002B1 (en) 2015-12-18 2016-11-08 Epoxy resin composition
PCT/JP2016/083071 WO2017104298A1 (en) 2015-12-18 2016-11-08 Epoxy resin composition
TW105139260A TWI711132B (en) 2015-12-18 2016-11-29 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015247112A JP6688065B2 (en) 2015-12-18 2015-12-18 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2017110146A JP2017110146A (en) 2017-06-22
JP6688065B2 true JP6688065B2 (en) 2020-04-28

Family

ID=59056021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015247112A Active JP6688065B2 (en) 2015-12-18 2015-12-18 Epoxy resin composition

Country Status (5)

Country Link
JP (1) JP6688065B2 (en)
KR (1) KR102626002B1 (en)
CN (1) CN108368326A (en)
TW (1) TWI711132B (en)
WO (1) WO2017104298A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109654388A (en) * 2018-12-06 2019-04-19 安徽皇广实业有限公司 A kind of integrated high thermal conductivity substrate LED lamp
CN112080238B (en) * 2020-09-07 2022-05-27 江苏矽时代材料科技有限公司 Heat-conducting filling adhesive and preparation method and application thereof
KR20230101813A (en) 2020-11-02 2023-07-06 미쯔비시 케미컬 주식회사 Zeolite, method for producing zeolite, composition, liquid composition, liquid encapsulant, resin composite, encapsulant, method for producing encapsulant, and device
WO2023089878A1 (en) * 2021-11-16 2023-05-25 ナミックス株式会社 Epoxy resin composition, liquid compression mold material, glob-top material, and semiconductor device
KR20230108931A (en) 2022-01-12 2023-07-19 주식회사 이포트 Method of manufacturing alumina and alumina using thereof
CN114292613A (en) * 2022-02-16 2022-04-08 武汉市三选科技有限公司 Composite film, flip LED chip and manufacturing method thereof
CN116445117B (en) * 2023-04-23 2023-12-29 有行鲨鱼(上海)科技股份有限公司 Photo-thermal double-solid edge sealing adhesive for reinforcing large-size chip and preparation and use thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124647A (en) * 1983-12-09 1985-07-03 Sumitomo Bakelite Co Ltd Low-radiation epoxy resin composition
JPH0611845B2 (en) * 1986-07-02 1994-02-16 住友ベ−クライト株式会社 Low radiation epoxy resin composition
JPH10173103A (en) 1996-12-13 1998-06-26 Sumitomo Bakelite Co Ltd Epoxy resin compsn. for sealing semiconductor
JP3446730B2 (en) * 2000-09-26 2003-09-16 松下電工株式会社 Epoxy resin composition and semiconductor device
JP3446731B2 (en) * 2000-09-26 2003-09-16 松下電工株式会社 Epoxy resin composition and semiconductor device
JP2003160643A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
JP2003160644A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
JP2003160642A (en) * 2001-11-27 2003-06-03 Matsushita Electric Works Ltd Semiconductor sealing epoxy resin composition and semiconductor device
JP2003261647A (en) * 2002-03-08 2003-09-19 Toray Ind Inc Epoxy resin composition and semiconductor device
JP4631296B2 (en) * 2004-03-05 2011-02-16 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
CA2577681C (en) * 2004-08-18 2013-10-08 Kaneka Corporation Epoxy resin composition for semiconductor sealing agents and epoxy resin molding material
JP2007308678A (en) * 2005-11-02 2007-11-29 Shin Etsu Chem Co Ltd Liquid state epoxy resin composition
TWI494341B (en) * 2008-03-31 2015-08-01 Nippon Steel & Sumikin Chem Co Epoxy resin compositions and shaped articles
KR101349996B1 (en) * 2009-03-17 2014-01-13 닛뽕소다 가부시키가이샤 Inclusion complex, curing agent, cure accelerator, epoxy resin composition, and epoxy resin composition for encapsulation of semiconductor
JP5163912B2 (en) * 2010-02-16 2013-03-13 信越化学工業株式会社 Epoxy resin composition and semiconductor device
US8815205B2 (en) 2010-04-15 2014-08-26 Nippon Steel & Sumikin Materials Co., Ltd. Method for producing spherical alumina powder
JP5983085B2 (en) * 2012-06-25 2016-08-31 住友ベークライト株式会社 Epoxy resin composition and electronic component device
JP5968137B2 (en) * 2012-07-20 2016-08-10 ナミックス株式会社 Liquid encapsulant and electronic parts using it
KR102192792B1 (en) * 2013-09-30 2020-12-18 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Phosphorus-containing epoxy resin composition and cured article
JP5983590B2 (en) * 2013-12-13 2016-08-31 株式会社デンソー Curable resin composition, sealing material, and electronic device product using the same

Also Published As

Publication number Publication date
CN108368326A (en) 2018-08-03
JP2017110146A (en) 2017-06-22
TWI711132B (en) 2020-11-21
KR102626002B1 (en) 2024-01-16
WO2017104298A1 (en) 2017-06-22
TW201727848A (en) 2017-08-01
KR20180094882A (en) 2018-08-24

Similar Documents

Publication Publication Date Title
JP6688065B2 (en) Epoxy resin composition
JP6415104B2 (en) Liquid encapsulant and electronic parts using it
JP5968137B2 (en) Liquid encapsulant and electronic parts using it
JP6789495B2 (en) Resin composition for underfill, electronic component device and manufacturing method of electronic component device
JP7420559B2 (en) Sealing resin composition
JP5703489B2 (en) Manufacturing method and adjustment method of liquid resin composition for sealing, and semiconductor device and semiconductor element sealing method using the same
WO2023089878A1 (en) Epoxy resin composition, liquid compression mold material, glob-top material, and semiconductor device
JP6039837B2 (en) Liquid encapsulant and electronic parts using it
JP2016040393A (en) Liquid epoxy resin composition, and electronic component device
JP2015180760A (en) Liquid epoxy resin composition and electronic part device
JP2015110803A (en) Liquid epoxy resin composition and electronic part device
JP5924443B2 (en) Liquid epoxy resin composition and electronic component device
JP5929977B2 (en) Liquid epoxy resin composition and electronic component device
JP2013253195A (en) Epoxy resin composition
JP7095724B2 (en) Manufacturing method of resin composition for underfill, electronic component equipment and electronic component equipment
JP6405209B2 (en) Liquid encapsulant for copper bump and resin composition used therefor
JP2013067814A (en) Method for manufacturing resin-sealed semiconductor device, and resin-sealed semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200403

R150 Certificate of patent or registration of utility model

Ref document number: 6688065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250