WO2015046590A1 - 積込機械 - Google Patents
積込機械 Download PDFInfo
- Publication number
- WO2015046590A1 WO2015046590A1 PCT/JP2014/076158 JP2014076158W WO2015046590A1 WO 2015046590 A1 WO2015046590 A1 WO 2015046590A1 JP 2014076158 W JP2014076158 W JP 2014076158W WO 2015046590 A1 WO2015046590 A1 WO 2015046590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ore
- loading machine
- machine
- vehicle body
- loading
- Prior art date
Links
- 230000000149 penetrating effect Effects 0.000 claims abstract description 98
- 230000032258 transport Effects 0.000 claims abstract description 84
- 238000005065 mining Methods 0.000 claims abstract description 30
- 230000007246 mechanism Effects 0.000 claims description 57
- 238000003825 pressing Methods 0.000 claims description 4
- 210000003462 vein Anatomy 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 62
- 238000003384 imaging method Methods 0.000 description 51
- 238000009412 basement excavation Methods 0.000 description 46
- 238000012986 modification Methods 0.000 description 42
- 230000004048 modification Effects 0.000 description 42
- 238000003860 storage Methods 0.000 description 40
- 238000004891 communication Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 29
- 230000035515 penetration Effects 0.000 description 27
- 238000001514 detection method Methods 0.000 description 25
- 238000007790 scraping Methods 0.000 description 21
- 230000002093 peripheral effect Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000001133 acceleration Effects 0.000 description 12
- 239000011435 rock Substances 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 238000012544 monitoring process Methods 0.000 description 10
- 239000003990 capacitor Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000004590 computer program Methods 0.000 description 7
- 239000010720 hydraulic oil Substances 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005007 materials handling Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C41/00—Methods of underground or surface mining; Layouts therefor
- E21C41/16—Methods of underground mining; Layouts therefor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F13/00—Transport specially adapted to underground conditions
- E21F13/06—Transport of mined material at or adjacent to the working face
- E21F13/063—Loading devices for use in mining
- E21F13/065—Scrapers
Definitions
- the present invention relates to a loading machine that is a work machine used for underground mining.
- Patent Document 1 describes a working machine that moves a tunnel while holding a drilled ore in a bucket after a vehicle that excavates ore with a bucket enters the tunnel and excavates the ore.
- Patent Literature 1 cannot sufficiently improve productivity because the ore excavating vehicle carries the ore while holding the ore.
- the present invention aims to improve productivity in underground mining.
- the present invention includes a transport device that loads the ore from a natural ore ground formed in a mining site installed in the ore body, transports the ore away from the natural ground, and discharges the ore.
- a penetrating member that penetrates into the natural ground, and a vehicle body to which the conveying device and the penetrating member are attached, and the penetrating member penetrates into the natural mountain while operating the conveying device.
- a loading machine including a traveling device.
- the penetration member is a cone-shaped member, and it is preferable that the top of the member penetrates into the natural ground.
- the penetrating member is attached to the first plate-like member so as to intersect the plate surface of the first plate-like member, the first plate-like member penetrating into the natural ground, and the transport device. And a second plate-like member provided on the insertion side.
- Rotating bodies are preferably provided on both sides in the direction orthogonal to the conveying direction of the conveying device, and the rotating body preferably rotates when the penetrating member penetrates into the ground.
- a switching mechanism for switching between discharging or stopping the ore is provided between a portion where the ore is loaded on the conveying device and a portion where the ore is discharged from the conveying device.
- the vehicle body has a fixing device that extends toward the outside of the vehicle body and is pressed against a wall surface of a tunnel that leads to the mining site.
- the penetrating member reciprocates in at least one direction of the rotation direction around an axis parallel to the vertical direction, the width direction, the front-rear direction, and the front-rear direction axis of the vehicle body.
- the present invention includes a transport device that loads the ore from a natural ore ground formed in a mining site installed in the ore body, transports the ore away from the natural ground, and discharges the ore.
- a penetrating member that penetrates into the natural ground, and a vehicle body to which the conveying device and the penetrating member are attached, and the penetrating member penetrates into the natural mountain while operating the conveying device.
- a rotating body provided on both sides in a direction orthogonal to the transport direction of the transport device, and when the penetrating member penetrates into the natural ground, the transport device transports the ore.
- the rotating body is a loading machine that rotates in a direction that presses the vehicle body against the ground when the penetrating member penetrates the ground.
- the present invention can improve productivity in underground mining.
- FIG. 1 is a mimetic diagram showing an example of the field where the conveyance machine and loading machine concerning this embodiment operate.
- FIG. 2 is a schematic diagram illustrating an example of a mine and a mine management system.
- FIG. 3 is an enlarged view of a part of FIG.
- FIG. 4 is a diagram showing excavation of ore from the natural ground by the loading machine and loading of the ore into the transporting machine.
- FIG. 5 is a diagram illustrating excavation of ore from the natural ground by the loading machine and loading of the ore into the transporting machine.
- FIG. 6 is an example of a functional block diagram of a management device provided in the mine management system.
- FIG. 7 is a perspective view of the transport machine according to the present embodiment.
- FIG. 8 is a side view of the transport machine according to the present embodiment.
- FIG. 9 is a diagram illustrating a support structure of a vessel provided in the transport machine according to the present embodiment.
- FIG. 10 is a top view of the transport machine according to the present embodiment.
- FIG. 11 is a diagram illustrating a state where the transport machine according to the present embodiment tilts the vessel.
- FIG. 12 is an example of a block diagram illustrating a control device included in the transport machine.
- FIG. 13 is a side view of the loading machine according to the present embodiment.
- FIG. 14 is a top view of the loading machine according to the present embodiment.
- FIG. 15 is a front view of the loading machine according to the present embodiment.
- FIG. 16 is a perspective view showing a rotating roller provided in the loading machine according to the present embodiment.
- FIG. 17 is a perspective view showing a penetrating member provided in the loading machine according to the present embodiment.
- FIG. 18A is a perspective view illustrating the penetrating member according to a modification.
- FIG. 18-2 is a perspective view of the penetrating member according to a modification.
- FIG. 19 is a diagram illustrating a posture when the loading machine according to the present embodiment travels.
- FIG. 20 is an example of a block diagram illustrating a control device included in the loading machine according to the present embodiment.
- FIG. 21 is a diagram for explaining a series of operations toward the other draw points after the loading machine enters the draw point and excavates the ore.
- FIG. 22 is a diagram for explaining a series of operations toward another draw point after the loading machine has entered the draw point and excavated ore.
- FIG. 23 is a diagram for explaining a series of operations toward another draw point after the loading machine enters the draw point and excavates ore.
- FIG. 24 is a diagram for explaining a series of operations toward another draw point after the loading machine has entered the draw point and excavated ore.
- FIG. 25 is a diagram for explaining a series of operations toward the other draw points after the loading machine enters the draw point and excavates the ore.
- FIG. 26 is a diagram for explaining a series of operations toward another draw point after the loading machine has entered the draw point and excavated ore.
- FIG. 27 is a diagram for explaining a series of operations toward another draw point after the loading machine enters the draw point and excavates ore.
- FIG. 28 is a diagram for explaining a series of operations toward another draw point after the loading machine has entered the draw point and excavated ore.
- FIG. 29 is a diagram for explaining control during excavation of the loading machine.
- FIG. 30 is a side view showing the loading machine and the scraping device according to the first modification.
- FIG. 31 is a plan view showing the loading machine and the scraping device according to the first modification.
- FIG. 32 is a plan view showing a loading machine and a scraping device according to a second modification.
- FIG. 33 is a side view showing a loading machine and a scraping device according to a second modification.
- FIG. 34 is a view showing a modification of the rotating roller.
- FIG. 35 is a plan view showing a loading machine and a scraping device according to a third modification.
- FIG. 36 is a side view showing a loading machine and a scraping device according to a third modification.
- the mine productivity can be based on the quotient of both as shown in the equation (1).
- $ / t is an index representing productivity
- t is a mining amount
- h time
- $ is cost.
- FIG. 1 is a schematic diagram illustrating an example of a site where the transport machine 10 and the loading machine 30 according to the present embodiment operate.
- the transporting machine 10 and the loading machine 30 are used for underground mining for mining ore from underground.
- the transport machine 10 is a type of work machine that transports a load in the mine shaft R
- the load machine 30 is a type of work machine that loads a load on the transport machine 10.
- ore is mined by the block caving method.
- the block caving method is the installation of an ore MR mining place (hereinafter referred to as a draw point) DP on the ore body (or vein) MG of the mine M and a mine channel R for transporting the mined ore. It is a method of mining the ore MR from the draw point DP by undercutting the upper part of the point DP and blasting to naturally collapse the ore MR.
- the draw point DP is installed inside the ore body MG or below the ore body MG.
- the block caving method is a method that uses the property that a fragile rock starts to naturally collapse when the lower part of the bedrock or ore body is undercut.
- the ore MR When the ore MR is mined from inside or below D of the ore body MG, the collapse propagates to the upper part. For this reason, when the block caving method is used, the ore MR of the ore body MG can be mined efficiently.
- a plurality of draw points DP are usually provided.
- the management device 3 is arranged on the ground.
- the management device 3 is installed in a management facility on the ground or in a mine. As described above, the management device 3 does not consider movement in principle.
- the management device 3 manages the mining site.
- the management device 3 can communicate with work machines in the mine including the transporting machine 10 and the loading machine 30 via a communication system including the wireless communication device 4 and the antenna 4A.
- the transporting machine 10 and the loading machine 30 are unmanned work machines, but may be manned work machines that are operated by an operator's operation.
- FIG. 2 is a schematic diagram illustrating an example of a mine MI and a mine management system.
- FIG. 3 is an enlarged view of a part of FIG.
- the mine shaft R installed below the mine MG includes a first mine shaft DR and a second mine shaft CR.
- the mine shaft R is installed, for example, inside the ore body MG or below the ore body MG.
- the second tunnel CR connects each draw point DP and the first tunnel DR.
- the loading machine 30 can approach the draw point DP through the second mine tunnel CR.
- the mine shaft R includes a third mine shaft TR.
- a plurality (two in this example) of third tunnels TR are connected to a plurality of first tunnels DR.
- the first mine tunnel DR is appropriately referred to as a drift DR
- the second mine tunnel CR is appropriately referred to as a cross-cut CR
- the third mine tunnel TR is appropriately referred to as an outer circumferential path TR.
- each outer peripheral path TR is not divided by the draw point DP like the cross cut CR.
- One outer peripheral path TR connects one end of each of the plurality of drifts DR, and the other outer peripheral path TR connects the other end of each of the plurality of drifts DR.
- all the drifts DR are connected to the two outer peripheral paths TR.
- the transport machine 10 and the loading machine 30 can enter from one outer circumferential path TR regardless of which drift DR. In the example illustrated in FIG. 3, the transport machine 10 and the loading machine 30 travel in the direction of the arrow FC in the drift DR.
- the loading position LP where the loading operation by the loading machine 30 to the transporting machine 10 is performed is determined at the crosscut CR or in the vicinity thereof.
- An area including the draw point DP and the loading position LP may be referred to as a loading place LA.
- the underground mine MI is provided with a soil removal place (or pass) DP from which ore MR as a load transported by the transporting machine 10 is discharged.
- a soil removal place (or pass) DP from which ore MR as a load transported by the transporting machine 10 is discharged.
- the transporting machine 10 travels on the drift DR and moves to the ore pass OP.
- the transporting machine 10 discharges the ore MR as a load to the arrived orpas OP.
- the transporting machine 10 shown in FIGS. 2 and 3 includes an electric motor for traveling and a capacitor that supplies electric power to the electric motor.
- a space SP is connected to the outer circumferential path TR.
- a storage battery exchanging device EX for replacing a storage battery mounted on the transporting machine 10 is installed.
- the capacitor exchange device EX also has a function of charging the capacitor 14.
- the road surface of the mine shaft R on which the transporting machine 10 travels and the XY plane are substantially parallel.
- the road surface of the mine shaft R is often uneven or has an uphill and a downhill.
- the mine management system 1 shown in FIG. 2 includes a management device 3 and a radio communication antenna 4A.
- the management device 3 manages the operation of the transporting machine 10 and the loading machine 30 that operate in the underground mine MI, for example.
- the management of operation includes allocation of the transporting machine 10 and the loading machine 30, collection of information on the operating states of the transporting machine 10 and the loading machine 30 (hereinafter, referred to as operation information as appropriate), management thereof, and the like.
- the operation information includes, for example, the operation time of the transporting machine 10 and the loading machine 30, the travel distance, the remaining capacity of the battery, the presence / absence of an abnormality, the location of the abnormality, the load amount, and the like.
- the operation information is mainly used for operation evaluation, preventive maintenance, abnormality diagnosis, and the like of the transporting machine 10 and the loading machine 30. Therefore, the operation information is useful to meet the needs for improving the productivity of the mine M or improving the operation of the mine M.
- the management device 3 includes a communication device as will be described later.
- the wireless communication device 4 provided with the antenna 4A is connected to this communication device.
- the management device 3 exchanges information with the transport machine 10 and the loading machine 30 operating in the underground mine MI, for example, via the communication device, the wireless communication device 4 and the antenna 4A.
- the management device 3 provided in the mine management system 1 manages the operation of the transporting machine 10 and the loading machine 30 as described above.
- the loading machine 30 travels with a traveling motor, and drives the stirrer with the motor to excavate the ore MR.
- a feeding cable 5 that supplies electric power to these electric motors from the outside of the loading machine 30 is provided in the mine channel R of the mine MI.
- the loading machine 30 is supplied with power from the power feeding cable 5 via, for example, a power feeding connector 6 as a power supply device provided in the loading place LA and a power cable 7 from the loading machine 30.
- the electric power supply apparatus mentioned above should just be provided in any one of drift DR or crosscut CR.
- the loading machine 30 may perform at least one of traveling and excavation with electric power supplied from the outside.
- the loading machine 30 may be equipped with a capacitor, and may receive at least one of traveling and excavation by receiving power supply from the capacitor. Further, the loading machine 30 may be equipped with a capacitor, and may receive at least one of traveling and excavation by receiving power supply from the capacitor. That is, the loading machine 30 performs at least one of traveling and excavation with at least one of electric power supplied from the outside and electric power supplied from the battery. For example, the loading machine 30 can perform excavation with electric power supplied from the outside and can travel with electric power supplied from the storage battery. Further, when traveling in the crosscut CR, the loading machine 30 may travel with electric power supplied from the outside.
- the loading machine 30 may excavate the ore MR by driving a hydraulic pump with an electric motor to generate hydraulic pressure and driving the hydraulic motor with this hydraulic pressure.
- the loading machine 30 may be provided with an electric storage device, run by electric power supplied from the electric storage device, and excavate.
- the connection between the power supply cable 5 and the power cable 7 from the loading machine 30 is not limited to the connector 6.
- an electrode provided on the tunnel R side and connected to the power supply cable 5 and an electrode connected to the power cable 7 from the loading machine 30 side are used as a power supply device, and both electrodes are brought into contact with each other.
- power may be supplied from the feeding cable 5 to the loading machine 30. If it does in this way, even if the positioning accuracy of both electrodes is low, both can be contacted and electric power can be supplied to loading machine 30.
- the loading machine 30 shall operate
- the loading machine 30 may be, for example, one that travels by an internal combustion engine or excavates the ore MR. In this case, the loading machine 30 drives a hydraulic pump by an internal combustion engine, and travels by driving a hydraulic motor, a hydraulic cylinder, or the like with hydraulic oil discharged from the hydraulic pump, or excavates the ore MR. Or you may.
- ⁇ Ore MR drilling and transportation> 4 and 5 are diagrams showing excavation of the ore MR of the natural ground RM by the loading machine 30 and loading of the ore MR into the transporting machine 10.
- a natural ground RM of the ore MR is formed at the draw point DP.
- the loading machine 30 is installed in the crosscut CR at the loading place LA, and the tip portion penetrates into the natural ground RM of the ore MR to excavate it.
- the loading machine 30 loads the excavated ore MR on the transporting machine 10 that is on the opposite side of the natural ground RM and is waiting in the drift DR.
- a power supply cable 5 for supplying power to the loading machine 30 is provided.
- the loading machine 30 includes a vehicle body 30BD, a feeder 31 as a conveying device, a rotating roller 33 as an excavating device, a support mechanism 32 that supports the rotating roller 33, and a traveling device. 34.
- the rotating roller 33 and the support mechanism 32 function as a scraping device that excavates the ore MR and sends it to the feeder 31.
- the support mechanism 32 is provided so as to be swingable in the undulation direction with respect to the vehicle body 30BD.
- the undulation direction is the vertical direction of the vehicle body 30BD.
- the support mechanism 32 includes a boom 32a as a first member attached to the vehicle body 30BD, and an arm 32b as a second member that is connected to the boom 32a and swings and rotatably supports the rotating roller 33.
- the vehicle body 30BD of the loading machine 30 includes a penetrating member 35 that penetrates into the natural ground RM of the ore MR, a rotating body 36, and a rock guard 37.
- the penetration member 35 penetrates the natural ground RM when excavating the ore MR.
- the rotating body 36 rotates when the penetrating member 35 of the loading machine 30 penetrates the natural ground RM, and assists the penetrating.
- the transporting machine 10 includes a vehicle body 10 ⁇ / b> B and a vessel 11.
- the vessel 11 is mounted on the vehicle body 10B.
- the vessel 11 loads the ore MR as a load.
- the vessel 11 moves in the width direction W of the vehicle body 10B, that is, in a direction parallel to the axle, as shown in FIGS.
- the vessel 11 is installed at the center in the width direction of the vehicle body 10B when the transporting machine 10 travels. Further, the vessel 11 moves outward in the width direction of the vehicle body 10B when the ore MR is loaded.
- the transporting machine 10 can bring the vessel 11 closer to the lower part D of the feeder 31 of the loading machine 30, the possibility that the ore MR transported by the feeder 31 falls outside the vessel 11, The ore MR can be reliably dropped into the vessel 11.
- the loading machine 30 excavates the ore MR and transports the excavated ore MR to the transporting machine 10 and loads it on the transporting machine 10.
- the transporting machine 10 transports the loaded ore MR to the ore pass OP shown in FIG. 2 and discharges it here.
- the loading machine 30 stays in the crosscut CR while leaving the space in which the transporting machine 10 travels in the drift DR, and excavates the ore MR at the draw point DP. Then, the loading machine 30 conveys the excavated ore MR in a direction away from the draw point DP and loads it on the transporting machine 10.
- the loading machine 30 does not move in a state where the excavated ore MR is loaded.
- the transport machine 10 loads the ore MR mined at the draw point DP, travels on the drift DR, and transports it to the ore pass OP shown in FIG.
- the mine management system 1 causes the loading machine 30 to perform only excavation and loading of the ore MR and causes the transport machine 10 to transport only the ore MR.
- the functions of both are separated.
- the loading machine 30 can concentrate on excavation work and conveyance work, and the conveyance machine 10 can concentrate on conveyance work. That is, the loading machine 30 may not have the function of transporting the ore MR, and the transporting machine 10 may not have the function of excavating and transporting the ore MR.
- the loading machine 30 can specialize in the function of excavation and conveyance, and the conveyance machine 10 can be specialized in the function of conveyance of the ore MR, each function can be exhibited to the maximum. As a result, the mine management system 1 can improve the productivity of the mine M.
- FIG. 6 is an example of a functional block diagram of the management device 3 included in the mine management system 1.
- the management device 3 includes a processing device 3C, a storage device 3M, and an input / output unit (I / O) 3IO. Further, in the management device 3, a display device 8, an input device 9, and a communication device 3R as an output device are connected to the input / output unit 3IO.
- the management device 3 is a computer, for example.
- the processing device 3C is, for example, a CPU (Central Processing Unit).
- the storage device 3M is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, a hard disk drive, or the like, or a combination thereof.
- the input / output unit 3IO is used for input / output (interface) of information between the processing device 3C and the display device 8, the input device 9, and the communication device 3R connected to the outside of the processing device 3C.
- the processing device 3C executes processing of the management device 3 such as allocation of the transporting machine 10 and the loading machine 30 and collection of operation information thereof. Processing such as vehicle allocation and collection of operation information is realized by the processing device 3C reading the corresponding computer program from the storage device 3M and executing it.
- the storage device 3M stores various computer programs for causing the processing device 3C to execute various processes.
- the computer program stored in the storage device 3M collects, for example, a computer program for dispatching the transporting machine 10 and the loading machine 30, and operation information of the transporting machine 10 and the loading machine 30.
- the display device 8 is, for example, a liquid crystal display or the like, and displays information necessary for dispatching the transporting machine 10 and the loading machine 30 and collecting operation information.
- the input device 9 is, for example, a keyboard, a touch panel, a mouse, or the like, and inputs information necessary for dispatching the transporting machine 10 and the loading machine 30 and collecting their operation information.
- the communication device 3R is connected to the wireless communication device 4 including the antenna 4A. As described above, the wireless communication device 4 and the antenna 4A are installed in the underground mine MI. The communication device 3R and the wireless communication device 4 are connected by wire.
- the communication device 3R and the transport machine 10 and the loading machine 30 in the underground mine MI can communicate with each other by, for example, a wireless LAN (Local Aria Network). Next, the transporting machine 10 will be described in more detail.
- FIG. 7 is a perspective view of the transport machine 10 according to the present embodiment.
- FIG. 8 is a side view of the transport machine 10 according to the present embodiment.
- the transporting machine 10 includes a vehicle body 10B, a vessel 11, and wheels 12A and 12B. Further, the transporting machine 10 includes a power storage device 14 as a power storage device, an antenna 15, imaging devices 16A and 16B, and non-contact sensors 17A and 17B.
- the wheels 12A and 12B are attached to the front and rear of the vehicle body 10B, respectively. In the present embodiment, the wheels 12A and 12B are driven by electric motors 13A and 13B mounted in the vehicle body 10B shown in FIG. Thus, in the transporting machine 10, all the wheels 12A and 12B are driving wheels.
- the wheels 12A and 12B are respectively steered wheels.
- the wheels 12A and 12B are, for example, solid tires. By doing in this way, since wheel 12A, 12B becomes a small diameter, the height of the materials handling machine 10 is suppressed.
- the transporting machine 10 can travel in any of the direction from the wheel 12A to the wheel 12B and the direction from the wheel 12B to the wheel 12A.
- the wheels 12A and 12B are not limited to solid tires, and may be pneumatic tires, for example. Further, only one of the wheels 12A and 12B may be a drive wheel.
- the vessel 11 is mounted above the vehicle body 10B and supported by the vehicle body 10B.
- a battery 14 for supplying electric power to the electric motors 13A and 13B is mounted on the vehicle body 10B.
- the external shape of the battery 14 is a rectangular parallelepiped shape.
- One battery 14 is mounted before and after the vehicle body 10B. By doing in this way, since the balance of the mass of front and back becomes close
- the battery 14 is detachably mounted on the vehicle body 10B.
- the electric motors 13 ⁇ / b> A and 13 ⁇ / b> B and the electronic device included in the transport machine 10 are operated by the electric power supplied from the battery 14.
- the transport machine 10 is electrically driven, but the internal combustion engine may be a power source.
- An antenna 15, imaging devices 16A and 16B, and non-contact sensors 17A and 17B are attached to the vehicle body 10B.
- the antenna 15 wirelessly communicates with the management device 3 via the antenna 4A and the communication device 3R illustrated in FIG.
- the imaging devices 16A and 16B photograph the load loaded on the vessel 11, that is, the state (packing state) of the ore MR shown in FIGS. 3 and 4 in this embodiment.
- the imaging devices 16A and 16B may be, for example, cameras that capture visible light or infrared cameras that capture infrared light.
- the imaging devices 16A and 16B are attached to the tips of support columns 16AS and 16BS attached to the upper surface of the vehicle body 10B, respectively. With such a structure, each of the imaging devices 16 ⁇ / b> A and 16 ⁇ / b> B can image the entire vessel 11 from above, so that the state of the ore MR loaded on the vessel 11 can be reliably imaged.
- Non-contact sensors 17A and 17B are attached to the front and rear of the vehicle body 10B, respectively.
- the non-contact sensors 17A and 17B detect an object existing around the transport machine 10, particularly on the traveling direction side, in a non-contact manner.
- radar devices are used as the non-contact sensors 17A and 17B.
- the non-contact sensors 17A and 17B can emit a radio wave or an ultrasonic wave, receive a radio wave reflected by the object, and detect a relative distance and direction from the object.
- the non-contact sensors 17A and 17B are not limited to radar devices.
- the non-contact sensors 17A and 17B may include at least one of a laser scanner and a three-dimensional distance sensor, for example.
- the transporting machine 10 includes peripheral monitoring cameras 17CA and 17CB as imaging devices before and after the vehicle body 10B.
- the peripheral monitoring cameras 17CA and 17CB image the periphery of the vehicle body 10B, particularly the front, and detect the shape of an object existing around the vehicle body 10B.
- the vehicle body 10B has a recess 10BU between the front and rear.
- Recess 10BU is arranged between wheel 12A and wheel 12B.
- the vessel 11 is a member on which ore MR as a load is loaded by the loading machine 30. At least a part of the vessel 11 is disposed in the recess 10BU.
- a part of the vehicle body 10B disposed on one side of the center portion AX of the vehicle body 10B and a part of the vehicle body 10B disposed on the other side in the front-rear direction of the vehicle body 10B are symmetric (front-back symmetry). Further, in the front-rear direction of the vehicle body 10B, a part of the vessel 11 arranged on one side of the center part AX of the vehicle body 10B and a part of the vessel 11 arranged on the other side are symmetrical (front-rear object). Further, the vehicle body 10B and the vessel 11 are symmetric (laterally symmetric) with respect to the central axis in the front-rear direction of the vehicle body 10B in plan view.
- the vessel 11 includes a bottom surface 11B and four side surfaces 11SF, 11SR, 11SA, and 11SB connected to the bottom surface 11B.
- the side surfaces 11SA and 11SB stand up vertically from the bottom surface 11B.
- the side surfaces 11SF and 11SR are inclined toward the wheels 12A and 12B, respectively, with respect to the bottom surface 11B.
- a recess 11U is formed by the bottom surface 11B and the four side surfaces 11SF, 11SR, 11SA, and 11SB. Ore MR as a load is loaded in the recess 11U.
- the recess 10BU of the vehicle body 10B has a shape along the outer shape of the vessel 11. Next, the support structure of the vessel 11 will be described.
- FIG. 9 is a diagram illustrating a support structure of the vessel 11 provided in the transport machine 10 according to the present embodiment.
- FIG. 10 is a top view of the transport machine 10 according to the present embodiment.
- FIG. 11 is a diagram illustrating a state in which the transport machine 10 according to the present embodiment tilts the vessel.
- the vessel 11 is placed on the upper surface of the table 11T via a hydraulic cylinder (hoist cylinder) 11Cb as an actuator for moving the vessel 11 up and down.
- a hydraulic cylinder (hoist cylinder) 11Cb as an actuator for moving the vessel 11 up and down.
- the table 11T is supported by the vehicle body 10B via a pair of support bodies 11R and 11R provided on the upper surface of the recess 10BU of the vehicle body 10B.
- the support 11R is a rod-like member extending in the width direction W of the vehicle body 10B.
- Each support 11R, 11R is fitted in a pair of grooves 11TU, 11TU provided in a portion of the table 11T facing the vehicle body 10B.
- the grooves 11TU and 11TU are provided in the direction in which the support 11R extends, that is, in the width direction W of the vehicle body 10B.
- the table 11T moves along the supports 11R and 11R. That is, the table 11T can move in the width direction W of the vehicle body 10B of the transport machine 10.
- a hydraulic cylinder (sliding cylinder) 11Ca is attached as an actuator for moving the table 11T in the width direction W of the vehicle body 10B between the table 11T and the vehicle body 10B.
- the hydraulic cylinder 11Ca expands and contracts, the table 11T moves to both sides in the width direction W of the vehicle body 10B. Since the vessel 11 is attached to the table 11T, as shown in FIG. 10, the vessel 11 can also move to both sides in the width direction W of the vehicle body 10B together with the table 11T.
- the vessel 11 moves to the loading machine 30 side as shown in FIG. By doing in this way, the conveyance machine 10 can load the ore MR on the vessel 11 reliably. Further, when the ore MR is loaded on one side of the vessel 11, the transporting machine 10 reciprocates the vessel 11 in the width direction W of the vehicle body 10 ⁇ / b> B, thereby dispersing the ore MR over the entire vessel 11, MR bias can be suppressed.
- FIG. 11 shows a state where the hydraulic cylinder 11Cb is extended and the vessel 11 is tilted. As shown in FIG. 11, the vessel 11 swings about an axis Zb on one side in the width direction W of the vehicle body 10B.
- the axis Zb is included in the table 11T and is parallel to the front-rear direction of the vehicle body 10B.
- the hydraulic cylinder 11Cb extends, the vessel 11 becomes higher on the side opposite to the axis Zb and protrudes from the recess 10BU of the vehicle body 10B.
- the vessel 11 is inclined, the lid 11CV on the axis Zb side is opened, and the ore MR is discharged from the axis Zb side.
- the hydraulic cylinder 11Cb contracts, the vessel 11 is received in the recess 10BU of the vehicle body 10B.
- the lid 11CV is interlocked with the operation in which the vessel 11 moves up and down by a link mechanism (not shown).
- the vessel 11 swings about only the axis Zb existing on one side in the width direction W of the vehicle body 10B, but is not limited to this.
- the vessel 11 may swing about another axis that is present on the other side and parallel to the longitudinal direction of the vehicle body 10B in addition to the axis Zb on one side of the vehicle body 10B. In this way, the transporting machine 10 can discharge the ore MR from both sides in the width direction W of the vehicle body 10B.
- FIG. 12 is an example of a block diagram illustrating the control device 70 provided in the transport machine 10.
- the control device 70 included in the transport machine 10 controls the travel of the transport machine 10 and the movement and elevation of the vessel 11 in the width direction.
- the control device 70 includes a processing device 71 and a storage device 72.
- the processing device 71 includes imaging devices 16A and 16B, non-contact sensors 17A and 17B, peripheral monitoring cameras 17CA and 17CB, a mass sensor 18, a reading device 19, a range sensor 20, a gyro sensor 21, a speed sensor 22, and an acceleration sensor 23.
- the drive control device 24, the communication device 25, the storage device 72, and the like are connected.
- the imaging devices 16A and 16B and the peripheral monitoring cameras 17CA and 17CB include an image sensor such as a CCD or a CMOS, and can acquire an optical image of an object and detect the outer shape of the object.
- at least one of the imaging devices 16A and 16B and the peripheral monitoring cameras 17CA and 17CB includes a stereo camera, and can acquire three-dimensional outline data of an object.
- the imaging devices 16A and 16B and the surrounding monitoring cameras 17CA and 17CB output the captured results to the processing device 71.
- the processing device 71 acquires the detection results of the imaging devices 16A and 16B, and acquires information related to the state of the ore MR in the vessel 11 based on the detection results.
- the outer shape of the ore MR loaded on the vessel 11 may be detected using at least one of a laser scanner and a three-dimensional distance sensor.
- the non-contact sensors 17A and 17B are connected to the processing device 71 and output the detection result to the processing device 71.
- the non-contact sensors 17A and 17B output the acquired results to the processing device 71.
- the mass sensor 18 detects the mass of the vessel 11 and the ore MR loaded on the vessel 11. Since the mass of the vessel 11 is known in advance, the mass of the ore MR loaded on the vessel 11 can be obtained by subtracting the mass of the vessel 11 from the detection result of the mass sensor 18.
- the mass sensor 18 is connected to the processing device 71 and outputs a detection result to the processing device 71.
- the processing device 71 Based on the detection result of the mass sensor 18, the processing device 71 obtains information on the mass of the ore MR loaded on the vessel 11 and whether or not the ore MR is loaded on the vessel 11.
- the mass sensor 18 may be, for example, a strain gauge type load cell provided between the vessel 11 and the table 11T, or may be a pressure sensor that detects the hydraulic pressure of the hydraulic cylinder 11Cb.
- the reading device 19 detects the identification information (unique information) of the mark provided in the drift DR.
- a plurality of marks are arranged along the drift DR.
- the mark may be an identifier (code) such as a barcode and a two-dimensional code, or may be an identifier (tag) such as an IC tag or RFID.
- the reading device 19 is connected to the processing device 71 and outputs a detection result to the processing device 71.
- the range sensor 20 is attached to the outside of the vehicle body 10B of the transporting machine 10, for example, forward and rearward, and acquires and outputs physical shape data of the space around the transporting machine 10.
- the gyro sensor 21 detects the direction (direction change amount) of the transport machine 10 and outputs the detection result to the processing device 71.
- the speed sensor 22 detects the traveling speed of the transport machine 10 and outputs the detection result to the processing device 71.
- the acceleration sensor 23 detects the acceleration of the transport machine 10 and outputs the detection result to the processing device 71.
- the drive control device 24 is, for example, a microcomputer.
- the drive control device 24 controls the operation of the electric motors 13A and 13B, the braking system 13BS, the steering system 13SS, and the electric motor 13C that drives the hydraulic pump 13P based on a command from the processing device 71.
- the hydraulic pump 13P is a device that supplies hydraulic oil to the hydraulic cylinders 11Ca and 11Cb.
- the transporting machine 10 travels using the traveling electric motors 13A and 13B, but is not limited thereto.
- the transporting machine 10 may travel by a hydraulic motor that is driven by hydraulic fluid discharged from the hydraulic pump 13P.
- the braking system 13BS and the steering system 13SS may also be electric, or may operate using hydraulic pressure.
- the information regarding the position (absolute position) where the mark is arranged in the drift DR is known information measured in advance.
- Information regarding the absolute position of the mark is stored in the storage device 72.
- the processing device 71 determines the absolute value of the transport machine 10 in the drift DR based on the mark detection result (mark identification information) detected by the reading device 19 provided in the transport machine 10 and the storage information in the storage device 72. The position can be determined.
- the range sensor 20 includes a scanning lightwave distance meter that can output physical shape data of a space.
- the range sensor 20 includes, for example, at least one of a laser scanner and a three-dimensional distance sensor, and can acquire and output two-dimensional or three-dimensional spatial data.
- the range sensor 20 detects at least one of the loading machine 30 and the wall surface of the drift DR.
- the range sensor 20 can acquire at least one of the shape data of the loading machine 30, the shape data of the wall surface of the drift DR, and the shape data of the load of the vessel 11.
- the range sensor 20 can detect at least one of a relative position (relative distance and direction) with the loading machine 30 and a relative position with the wall surface of the drift DR.
- the range sensor 20 outputs the detected information to the processing device 71.
- information regarding the wall surface of the drift DR is obtained in advance and stored in the storage device 72. That is, the information regarding the wall surface of the drift DR is known information measured in advance.
- the information regarding the wall surface of the drift DR includes information regarding each shape of the plurality of portions of the wall surface and information regarding the absolute position of each of the wall surface portions.
- the storage device 72 stores the relationship between the shapes of the plurality of wall portions and the absolute positions of the wall portions having the shapes.
- the processing device 71 transports in the drift DR based on the detection result (wall shape data) of the drift DR detected by the range sensor 20 provided in the transporting machine 10 and the storage information in the storage device 72. The absolute position and orientation of the machine 10 can be determined.
- the processing device 71 Based on the current position (absolute position) of the transporting machine 10 derived using at least one of the reading device 19 and the range sensor 20, the processing device 71 transports according to a determined route (target route) of the underground mine MI.
- the transporting machine 10 that travels the drift DR is controlled so that the machine 10 travels.
- the processing device 71 is, for example, a microcomputer including a CPU. Based on the detection results of the non-contact sensors 17A, 17B, the reading device 19, the range sensor 20, and the like, the processing device 71 is configured to use the electric motors 13A, 13B, the braking system 13BS, the wheels 12A, The steering system 13SS of 12B is controlled. Then, the processing device 71 causes the transport machine 10 to travel according to the target route described above at a predetermined traveling speed and acceleration.
- the storage device 72 includes at least one of a RAM, a ROM, a flash memory, and a hard disk drive, and is connected to the processing device 71.
- the storage device 72 stores a computer program and various information necessary for the processing device 71 to autonomously run the transporting machine 10.
- the communication device 25 is connected to the processing device 71 and performs data communication with at least one of the communication device mounted on the loading machine 30 and the management device 3.
- the transport machine 10 is an unmanned vehicle and can autonomously travel.
- the communication device 25 can receive information (including a command signal) transmitted from at least one of the management device 3 and the loading machine 30. Further, the communication device 25 can transmit information detected by the imaging devices 16A and 16B, the peripheral monitoring cameras 17CA and 17CB, the speed sensor 22, the acceleration sensor 23, and the like to at least one of the management device 3 and the loading machine 30.
- the transporting machine 10 transmits information about the periphery of the transporting machine 10 acquired by at least one of the peripheral monitoring cameras 17CA and 17CB and the non-contact sensors 17A and 17B to the management device 3, and the operator transports based on the peripheral information.
- the machine 10 can also be remotely controlled. Thus, the transport machine 10 can travel not only autonomously but also by an operator's operation, and can slide and lift the vessel 11.
- the management device 3 that has acquired the information detected by the speed sensor 22, the acceleration sensor 23, and the like accumulates this information in the storage device 3M, for example, as operation information of the transporting machine 10.
- the management device 3 acquires information captured by the peripheral monitoring cameras 17CA and 17CB
- the operator operates the transporting machine 10 while visually recognizing an image around the transporting machine 10 captured by the peripheral monitoring cameras 17CA and 17CB.
- the loading machine 30 which acquired the information regarding the mass of the ore MR of the vessel 11 detected by the mass sensor 18 can also control the loading amount of the ore MR on the vessel 11 based on this information. Next, the loading machine 30 will be described.
- FIG. 13 is a side view of the loading machine 30 according to the present embodiment.
- FIG. 14 is a top view of the loading machine 30 according to the present embodiment.
- FIG. 15 is a front view of the loading machine 30 according to the present embodiment.
- FIG. 16 is a perspective view showing a rotation roller 33 provided in the loading machine 30 according to the present embodiment.
- FIG. 17 is a perspective view showing the penetrating member 35 provided in the loading machine 30 according to the present embodiment.
- 18-1 and 18-2 are perspective views showing penetrating members 35a and 35b according to modified examples.
- FIG. 13 shows a state in which the loading machine 30 excavates the ore MR of the natural ground RM and conveys the excavated ore MR.
- the loading machine 30 excavates the natural ground RM of the ore MR in the crosscut CR, and loads the excavated ore MR on the vessel 11 of the transporting machine 10 shown in FIGS.
- a feeder 31, a support mechanism 32, a travel device 34, a penetrating member 35, a rotating body 36, and a rock guard 37 are attached to the vehicle body 30BD of the loading machine 30.
- the side on which the penetrating member 35 is provided is the front side of the loading machine 30, and the side opposite to the side on which the penetrating member 35 is provided is the rear side of the loading machine 30.
- the loading machine 30 may not include the rotating body 36 and the rock guard 37.
- the feeder 31 loads the ore MR from the natural ground RM, transports it in a direction away from the natural ground RM at the draw point DP, and then discharges it. That is, the feeder 31 conveys the ore MR loaded in front of the loading machine 30 toward the rear, and discharges it from the rear.
- the feeder 31 uses a transport belt as an endless transport body and rotates the belt around a pair of rollers to transport the ore MR from the loading side 31F to the discharge side 31E.
- the loading side 31F is the natural ground RM side
- the discharge side 31E is the opposite side to the loading side 31F. As shown in FIG.
- the feeder 31 is provided with a pair of guides 31 ⁇ / b> G and 31 ⁇ / b> G on both sides in the width direction W.
- the pair of guides 31 ⁇ / b> G and 31 ⁇ / b> G suppress the ore MR that is being transported from the feeder 31 from dropping off.
- the width direction W is a direction orthogonal to the direction F in which the feeder 31 transports the ore MR, and is a direction parallel to the rotation center axis of the pair of rollers provided in the feeder 31.
- the width direction W of the feeder 31 is also the width direction of the vehicle body 30BD.
- the feeder 31 includes a guide 39 for guiding the ore MR into the vessel 11 of the transporting machine 10 on the discharge side 31E.
- the feeder 31 swings around the axis of the front side of the vehicle body 30BD, that is, the loading side 31F of the feeder 31.
- the feeder 31 can change the angle ⁇ with respect to the ground G.
- the angle ⁇ is an angle formed between the straight line LC connecting the rotation center axes of the pair of rollers included in the feeder 31 and the ground G.
- Rotating roller 33 loads ore MR into feeder 31.
- the rotating roller 33 feeds the ore MR into the feeder 31 while rotating on the loading side 31F of the feeder 31, that is, in front of the feeder 31.
- the rotating roller 33 is installed on the loading side 31F of the feeder 31 by the support mechanism 32 including the boom 32a and the arm 32b.
- the rotating roller 33 includes a rotating member 33D that rotates around a predetermined axis Zr, and a contact member 33S that is provided on the outer periphery of the rotating member 33D and that contacts the ore MR and excavates.
- the contact member 33 ⁇ / b> S protrudes radially outward from the rotating member 33 ⁇ / b> D and is provided with a plurality of plate-like members provided at predetermined intervals along the circumferential direction of the rotating member 33 ⁇ / b> D It is.
- a plane parallel to the plate surface of the contact member 33S is not orthogonal to the axis Zr.
- a plane parallel to the plate surface of the contact member 33S is parallel to the axis Zr.
- the contact member 33S is provided with a plate-like member 33BB at the tip, that is, the end opposite to the rotating member 33D.
- the plate-like member 33BB extends from the tip of the contact member 33S in the direction of rotation of the rotary roller 33 during excavation (the direction indicated by the arrow in FIG. 16). With such a structure, during excavation, the plate-like member 33BB of the rotating roller 33 bites into the natural ground RM that is the excavation target. As a result, the ore MR can be efficiently excavated from the natural ground RM.
- the contact member 33S may not have the plate-like member 33BB.
- the number of contact members 33S is four, but is not limited to this, and may be two, three, or five or more.
- the number of contact members 33 ⁇ / b> S can be changed as appropriate according to at least one of the size and type of ore MR excavated by the loading machine 30.
- the contact member 33S moves away from the feeder 31 when positioned at the upper U, and approaches the feeder 31 when positioned at the lower D.
- the plurality of contact members 33S excavate the ore MR from the natural ground RM and send it to the feeder 31. Since the plurality of contact members 33S rotate together with the rotation member 33D, the ore MR can be continuously excavated and fed into the feeder 31.
- the support mechanism 32 that rotatably supports the rotating roller 33 includes a boom 32a attached to the vehicle body 30BD and an arm 32b connected to the boom 32a.
- the boom 32a is attached to the vehicle body 30BD of the loading machine 30 via, for example, a shaft 38A as a pin, and swings with respect to the vehicle body 30BD about the shaft 38A.
- the arm 32b is connected to the end of the boom 32a opposite to the vehicle body 30BD via a shaft 38B as a pin, and swings about the shaft 38B with respect to the boom 32a.
- the arm 32b is an end opposite to the end connected to the boom 32a, and rotatably supports the rotating roller 33.
- the boom 32a and the arm 32b may be driven to swing by a hydraulic cylinder as an actuator, or may be driven to swing by an electric motor or a hydraulic motor.
- the boom 32a swings around the first axis line Za with respect to the vehicle body 30BD
- the arm 32b swings around an axis line Za 'parallel to the first axis line Za.
- the first axis Za is the central axis of the shaft 38A that connects the boom 32a and the vehicle body 30BD
- the axis Za ′ that is parallel to the first axis Za is the center of the shaft 38B that connects the boom 32a and the arm 32b. Is the axis.
- the arm 32b may further swing around an axis parallel to the second axis perpendicular to the first axis Za. If it does in this way, since the range which can rotate rotation roller 33 becomes large, the freedom degree of excavation work improves.
- the boom 32a is a pair of rod-shaped members (first rod-shaped members) provided on both sides in the width direction W of the vehicle body 30BD, in this embodiment, on both sides in the width direction W of the feeder 31.
- the arms 32b are a pair of rod-shaped members (second rod-shaped members) connected to the respective booms 32a. As shown in FIG. 14, the pair of arms 32b supports the rotating roller 33 between them.
- the pair of booms 32a are connected by beams 32J. Since the rigidity of the support mechanism 32 is improved by such a structure, the excavation efficiency of the ore MR is reduced since the support mechanism 32 can reliably press the rotating roller 33 against the natural ground RM when excavating the ore MR. It is suppressed. Moreover, you may connect a pair of arm 32b with a rod-shaped or plate-shaped member. This is more preferable because the rigidity of the support mechanism 32 is further improved.
- the rotating roller 33 moves when the boom 32a swings with respect to the vehicle body 30BD and the arm 32b swings with respect to the boom 32a.
- the support mechanism 32 can change the relative positional relationship between the rotation roller 33, the feeder 31, and the vehicle body 30BD by moving the rotation roller 33.
- the support mechanism 32 excavates different positions of the natural ground RM by moving the rotating roller 33, or moves the rotating roller 33 from the natural ground RM toward the feeder 31 to ore MR from the natural ground RM. Can be scraped into the feeder 31 side.
- the support mechanism 32 uses the rotating roller 33 to scrape the object toward the feeder 31. , The object ahead of the loading machine 30 in the traveling direction can be removed.
- the rotating roller 33 is rotated by an electric motor 33M attached to the tip of the arm 32b as shown in FIG.
- the device for driving the rotating roller 33 is not limited to the electric motor 33M, and may be, for example, a hydraulic motor. Further, the location where the electric motor 33M is attached is not limited to the tip of the arm 32b.
- a traveling device 34 for traveling the vehicle body 30BD is attached.
- the travel device 34 includes a pair of crawler belts 34C provided on both sides in the width direction of the vehicle body 30BD, a pair of drive wheels 34D provided on both sides in the width direction of the vehicle body 30BD, and a pair of wheels provided on both sides in the width direction of the vehicle body 30BD.
- a driven wheel 34S a crawler belt 34C is wound around the drive wheel 34D and the driven wheel 34S.
- Each drive wheel 34D is driven separately and independently.
- the loading machine 30 includes a traveling electric motor for each drive wheel 34D. With such a structure, the pair of crawler belts 34C and 34C are driven independently.
- the penetration member 35 is provided on the loading side 31F of the feeder 31.
- the penetration member 35 may be attached to the loading side 31F of the feeder 31 or may be attached to the loading side 31F of the feeder 31.
- the penetrating member 35 is a member having a cone shape, and in the present embodiment, has a quadrangular pyramid shape.
- the penetrating member 35 has a rectangular (including square) bottom surface 35B and four side surfaces 35S connected to the bottom surface 35B.
- One of the four side surfaces 35S faces the ground G.
- a side surface 35S indicated by reference numeral 35U faces the ground G.
- the side surfaces 35S are all triangular.
- the bottom surface 35B is attached to the front of the vehicle body 30BD shown in FIG.
- the penetrating member 35 is attached to the vehicle body 30BD so that the top portion 35P of the cone is in front of the vehicle body 30BD.
- the shape of the penetrating member 35 is not limited to a quadrangular pyramid shape, and may be a triangular pyramid shape, for example, like a penetrating member 35a according to a modification shown in FIG.
- the penetrating member 35a has a triangular bottom surface 35Ba and three side surfaces 35Sa connected to the bottom surface 35Ba.
- the side surfaces 35Sa are all triangular.
- One of the three side surfaces 35Sa faces the ground G.
- the side surface 35Sa indicated by reference numeral 35Ua faces the ground G.
- the penetrating member 35b shown in FIG. 18-2 intersects the first plate-like member 35T penetrating the natural mountain RM and the plate surface of the first plate-like member 35T (in the present embodiment, it is orthogonal, but is not limited to this). And a second plate member 35F attached to the loading side 31F of the feeder 31 and attached to the first plate member 35T.
- the penetrating member 35b is relatively easy to manufacture because the shape of the penetrating member 35b is not a cone but an L-shaped cross section combining two plate-like members.
- the penetration members 35, 35a, and 35b are manufactured, for example, by welding a plurality of steel plates or casting using cast steel. The material and manufacturing method of the penetrating members 35, 35a, and 35b are not limited to the above.
- the penetrating member 35 penetrates the natural mountain RM from the top of the cone and breaks the natural mountain RM.
- the traveling device 34 causes the feeder 31 and the vehicle body 30BD to which the penetrating member 35 is attached to travel forward, and the feeder 31 is operated while the penetrating member 35 is moved to the natural ground RM. Intrude.
- the upper conveyor belt moves from the loading side 31F toward the discharging side 31E. That is, when the penetrating member 35 penetrates, the transport belt above the feeder 31 operates in the same direction as the transport direction of the ore MR.
- the loading machine 30 can penetrate deeper into the natural ground RM because the driving force of the feeder 31 can be used for penetration by operating the feeder 31 in this way during penetration.
- the penetrating members 35, 35a and 35b may reciprocate.
- the direction in which the penetrating members 35, 35a, and 35b reciprocate is at least one of the vertical direction, the width direction, the front-rear direction, and the rotational direction around the axis parallel to the front-rear direction axis of the vehicle body 30BD of the loading machine 30. I just need it.
- the rotation direction around the axis parallel to the longitudinal axis of the vehicle body 30BD is the direction in which the penetrating members 35, 35a and 35b rotate around the axis parallel to the axial line in the longitudinal direction of the vehicle body 30BD.
- the penetrating members 35, 35a, and 35b reciprocate in a state of penetrating the natural ground RM
- the penetrating members 35, 35a, and 35b swing the natural ground RM to move the ore MR from the natural ground RM toward the loading machine 30.
- the loading machine 30 can efficiently excavate the ore MR from the natural ground RM.
- a hydraulic cylinder or an air cylinder is used as a device for reciprocating the penetrating members 35, 35a and 35b.
- the timing at which the penetrating members 35, 35a, and 35b reciprocate may be, for example, when the rotating roller 33 is excavated, or the amount of ore MR sent from the rotating roller 33 to the feeder 31 falls below a predetermined threshold. It may be at the time, or after the start of excavation by the rotating roller 33 and every predetermined cycle.
- the rotating roller 33 and the feeder 31 may be stopped, may be moving, or one may be moved while the other is stopped.
- the rotary roller 33 and the feeder 31 are stopped when the penetrating members 35, 35a and 35b reciprocate, the energy consumption of the loading machine 30 can be reduced. If at least one of the rotating roller 33 and the feeder 31 is moving when the penetrating members 35, 35a and 35b reciprocate, the flow of the ore MR can be formed using these movements.
- the penetrating members 35, 35a and 35b reciprocate, it is preferable to reciprocate in at least one of the vertical direction and the front-rear direction of the vehicle body 30BD of the loading machine 30. If it does in this way, penetration members 35, 35a, and 35b which penetrated natural ground RM will become easy to produce the flow of ore MR which goes to natural loading machine 30 from natural ground RM.
- the penetrating members 35, 35 a, and 35 b reciprocate in the vertical direction and the front-rear direction of the vehicle body 30 BD of the loading machine 30, so that the penetrating members 35, 35 a, and 35 b move from the natural ground RM to the loading machine 30. It will be easier to create the flow.
- the penetration members 35, 35 a and 35 b may further reciprocate in the width direction of the vehicle body 30 BD of the loading machine 30, or may reciprocate only in the width direction of the vehicle body 30 BD of the loading machine 30. Further, the penetrating members 35, 35a and 35b may rotate around an axis parallel to the longitudinal axis of the vehicle body 30BD and reciprocate so that the rotation direction is switched.
- the penetrating members 35, 35a, and 35b When the penetrating members 35, 35a, and 35b reciprocate in the vertical direction and the front-rear direction of the vehicle body 30BD of the loading machine 30, the penetrating members 35, 35a, and 35b perform a reciprocating motion in the vertical direction and a reciprocating motion in the front-rear direction. It may be executed separately at different timings or may be executed simultaneously.
- the period and stroke of the reciprocating motion are appropriately set according to the type of the natural ground RM or the ore MR. At least one of the period and stroke of the reciprocating motion of the penetrating members 35, 35a and 35b may be variable.
- the reciprocating motion of the penetrating members 35, 35a, and 35b may be a reciprocating motion that rotates around the attachment portion with the vehicle body 30BD, or the entire penetrating members 35, 35a, and 35b are in the vertical direction, the width direction, and the front-back direction. It may be a reciprocating motion that moves in parallel with at least one direction.
- the penetrating member included in the loading machine 30 is not limited to the penetrating members 35, 35a, and 35b described above.
- the penetrating member may include a plurality of members in which the dimension in the front-rear direction of the loading machine 30 is larger than the dimension in the width direction.
- the penetrating member may have a comb shape. By having such a structure for the penetrating member, the penetrating member can easily penetrate the natural ground RM.
- a pair of rotating bodies 36 are provided on both sides in the width direction of the vehicle body 30BD, that is, on both sides in the direction orthogonal to the conveying direction of the feeder 31.
- the pair of rotating bodies 36 is disposed in front of the traveling device 34 and on the loading side 31 ⁇ / b> F of the feeder 31.
- the rotating body 36 is a structure in which a plurality of blades 36B are provided at predetermined intervals around a drum 36D that rotates around a predetermined axis.
- the rotating body 36 is driven by, for example, an electric motor.
- the rotating body 36 may be driven by an electric motor that drives the feeder 31.
- the driving of the feeder 31 and the driving of the rotating body 36 may be switched by a clutch or the like. For example, when the clutch is engaged, the feeder 31 and the rotator 36 rotate at the same time, and when the clutch is released, only the feeder 31 can rotate.
- the rotating body 36 rotates in a direction in which the vehicle body 30BD of the loading machine 30 is pressed against the ground G when the penetrating member 35 penetrates into the natural ground RM. Specifically, the rotating body 36 rotates so that the blade 36B on the natural mountain RM side is directed upward U from the lower side D, and the blade 36B on the traveling device 34 side is directed downward D from the upper side U. In this way, when the blade 36B on the natural ground RM side contacts the natural ground RM, the rotating body 36 pushes the front of the vehicle body 30BD downward D, so that the crawler belt 34C of the traveling device 34 is brought to the ground G. It is more strongly pressed against.
- the frictional force between the crawler belt 34C and the ground G increases, so that the traveling device 34 can easily allow the penetration member 35 to penetrate the natural ground RM.
- a rock guard 37 is provided between the rotating body 36 and the crawler belt 34 ⁇ / b> C of the traveling device 34.
- the rock guard 37 is attached to the vehicle body 30BD.
- the rock guard 37 protects the traveling device 34 from the ore MR flying from the rotating roller 33 during excavation, or protects the traveling device 34 from rocks or the like existing in the tunnel when the loading machine 30 travels. To do.
- the rock guard 37 suppresses a decrease in durability of the traveling device 34.
- the vehicle body 30BD includes a fixing device 30F that extends toward the outer side in the width direction of the vehicle body 30BD and is pressed against the wall surface CRW of the crosscut CR connected to the draw point DP.
- one fixing device 30F is provided on each side in the width direction of the vehicle body 30BD so as to face each other, but the number and installation locations of the fixing devices 30F are not limited thereto.
- the fixing device 30F may be provided above the vehicle body 30BD.
- the fixing device 30F includes, for example, a hydraulic cylinder 30FC and a pressing member 30FP provided at the tip of the piston of the hydraulic cylinder 30FC.
- the fixing device 30F fixes the loading machine 30 in the cross cut CR when the loading machine 30 is excavated and when the ore MR is conveyed. Specifically, the fixing device 30F extends the hydraulic cylinder 30FC and presses the pressing member 30FP against the wall surface CRW, thereby fixing the vehicle body 30BD of the loading machine 30 in the crosscut CR via these. By doing in this way, the reaction force generated when the loading machine 30 excavates the natural ground RM can be received by the cross cut CR via the fixing device 30F. As a result, since the posture of the loading machine 30 is stable, the natural ground RM can be excavated stably.
- a hydraulic cylinder may be provided between the fixing device 30F and the vehicle body 30B, and after fixing the fixing device 30F to the wall surface CRW of the crosscut CR, the vehicle body may be penetrated using the driving force of the hydraulic cylinder.
- the fixing device 30F When the fixing device 30F is provided on both sides or above the width direction of the vehicle body 30BD, the fixing by the fixing device 30F is released when the loading machine 30 penetrates.
- the hydraulic cylinder 30FC is contracted, and the pressing member 30FP does not press the wall surface CRW.
- the fixing device 30F operates to fix the loading machine 30 in the cross cut CR.
- the traveling device 34 moves the loading machine 30 after the fixing by the fixing device 30F is released. Move.
- a fixing device 30F is provided behind the vehicle body 30BD, that is, on the discharge side 31E of the feeder 31, and fixed between the reaction force receiver TG protruding from the ground G in the crosscut CR and the vehicle body 30BD. You may receive the reaction force mentioned above through the apparatus 30F. At the time of excavation, the reaction force in the front-rear direction of the loading machine 30 is large, but by using such a structure, the reaction force at the time of excavation can be more effectively received. Moreover, the loading machine 30 can also adjust the position of the loading machine 30 at the time of excavation by extending the fixing device 30F. Note that the loading machine 30 may not include the fixing device 30F.
- the loading machine 30 includes the ore MR between a portion where the ore MR is loaded on the feeder 31 (loading side 31F) and a portion where the ore MR is discharged from the feeder 31 (discharge side 31E).
- a switching mechanism 80 for switching between discharging and stopping discharging is provided.
- the switching mechanism 80 includes a support body 81, a lid 82, and a hydraulic cylinder 83 as an actuator that opens and closes the lid 82. As shown in FIG.
- the support body 81 has two leg portions 81 ⁇ / b> R that are attached to both sides in the width direction of the vehicle body 30 ⁇ / b> BD, specifically, both sides in the width direction of the feeder 31, and two leg portions 81 ⁇ / b> R. It is a gate-shaped member including a connecting portion 81C that connects them at the other end. The ore MR passes through a portion surrounded by the two leg portions 81R and the connecting portion 81C.
- the lid 82 is a plate-like member, and is provided at a portion surrounded by the two leg portions 81R and the connecting portion 81C.
- the lid 82 rotates around a predetermined axis Zg existing on the connecting portion 81C side of the support 81.
- a hydraulic cylinder 83 is provided between the lid 82 and the connecting portion 81 ⁇ / b> C of the support body 81. As the hydraulic cylinder 83 expands and contracts, the lid 82 opens and closes a portion surrounded by the two leg portions 81R and the connecting portion 81C. When the lid 82 is opened, the ore MR passes through a portion surrounded by the two leg portions 81R and the connecting portion 81C.
- the loading machine 30 includes an information collection device 40.
- the information collecting device 40 is attached to the loading side 31F of the vehicle body 30BD, that is, the front side. More specifically, the part where the information collecting device 40 collects information is attached to the loading side 31F of the vehicle body 30BD, that is, facing forward.
- the information collection device 40 is a device that acquires and outputs three-dimensional spatial data.
- the information collection device 40 acquires ore information as information relating to the state of the ore MR of the natural ground RM.
- the ore information is three-dimensional spatial data of the natural ground RM.
- the ore information may include information on the loading side 31 ⁇ / b> F of the vehicle body 30 ⁇ / b> BD, that is, forward information, in addition to information on the state of the ore MR of the natural ground RM. That is, in the present embodiment, the ore information is information indicating the loading side 31F of the vehicle body 30BD, that is, the front state.
- the information collection device 40 is, for example, a camera, a stereo camera, a laser scanner, a three-dimensional distance sensor, or the like.
- the part where the information collecting device 40 collects information is a lens in the case of a camera or a stereo camera, and a light receiving part in the case of a laser scanner and a three-dimensional distance sensor.
- a stereo camera is used as the information collection device 40.
- the loading machine 30 has three information collection devices 40 attached to the beam 32J of the support mechanism 32. That is, the plurality of information collection devices 40 are installed at a plurality of locations in the width direction of the vehicle body 30B. By doing in this way, even when the imaging target of one information collection device 40 is hidden in the arm 32b, the loading machine 30 can obtain the ore information of the imaging target by the other information collection device 40.
- the control device included in the loading machine 30 controls the operation of the loading machine 30 using the ore information collected by the information collecting device 40.
- the control device described above controls at least one of the feeder 31, the rotating roller 33, the support mechanism 32, and the traveling device 34 based on the ore information acquired by the information collecting device 40.
- the loading machine 30 includes an information collecting device 41 on the discharge side 31E of the vehicle body 30BD, that is, on the rear side. More specifically, the part where the information collection device 41 collects information is attached facing the discharge side 31E of the vehicle body 30BD, that is, the rear side.
- the information collection device 41 is a device that acquires and outputs three-dimensional spatial data, like the information collection device 40 described above.
- the information collection device 41 acquires load information as information regarding the state of the ore MR loaded on the vessel 11 of the transporting machine 10 illustrated in FIGS. 4 and 5.
- the cargo information is three-dimensional spatial data of the ore MR.
- the information collection device 41 is, for example, a camera, a stereo camera, a laser scanner, a three-dimensional distance sensor, or the like, similar to the information collection device 40 described above.
- the part where the information collecting device 41 collects information is a lens in the case of a camera or a stereo camera, and a light receiving part in the case of a laser scanner and a three-dimensional distance sensor.
- a stereo camera is used as the information collection device 41.
- the loading machine 30 has two information collection devices 41 attached to both sides of the feeder 31 in the width direction. That is, the plurality of information collection devices 41 are installed at a plurality of locations in the width direction of the vehicle body 30B. By doing in this way, the loading machine 30 can obtain the ore information of the imaging target by the other information collecting device 41 even when the imaging target of one information collecting device 41 is hidden in the shadow of the mine shaft.
- the control device provided in the loading machine 30 controls at least one of the loading machine 30 and the transporting machine 10 using the load information collected by the information collecting device 41.
- the control device described above controls the operation of the rotating roller 33, the feeder 31, the switching mechanism 80, or the like based on the load information acquired by the information collecting device 41, or the position or vessel of the vessel 11 provided in the transport machine 10. 11 movements are controlled.
- the loading machine 30 changes the conveyance amount of the ore MR or adjusts the position of the vessel 11 according to the state of the ore MR loaded on the vessel 11 of the transporting machine 10. Therefore, for example, the production efficiency of the mine M is improved.
- FIG. 19 is a view showing a posture when the loading machine 30 according to the present embodiment travels.
- the angle ⁇ of the feeder 31 with respect to the ground G is smaller than when the loading machine 30 excavates and conveys the ore MR (see FIG. 13). That is, the straight line LC connecting the rotation center axes of the pair of rollers provided in the feeder 31 is closer to the ground G. If it does in this way, since the loading side 31F of the feeder 31 arrange
- the penetrating member 35 also moves in conjunction with the feeder 31.
- the penetration member 35 is also separated from the ground. As a result, the possibility that the penetration member 35 and the ground G interfere with each other when the loading machine 30 is traveling is reduced.
- the support mechanism 32 is folded. Then, the rotating roller 33 moves to a position closer to the feeder 31 as compared with the case where the loading machine 30 excavates and conveys the ore MR (see FIG. 13).
- the position of the rotating roller 33 indicated by a solid line is a position during traveling
- the position of the rotating roller 33 indicated by a two-dot chain line is a position during excavation of the loading machine 30, for example.
- the traveling device 34 of the loading machine 30 travels the vehicle body 30BD including the feeder 31 and the like, the rotating roller 33 is provided on the discharge side 31E of the feeder 31 from the time of excavation of the ore MR.
- the rotating roller 33 is arranged closer to the vehicle body 30BD when the loading machine 30 is moved. For this reason, in the loading machine 30, the rotation roller 33 that exists at a position away from the center of gravity in the front-rear direction of the vehicle body 30 BD moves to a position closer to the center of gravity. To do. As a result, the loading machine 30 can travel stably.
- the position of the rotating roller 33 during traveling and the position during excavation are not limited to this example.
- FIG. 20 is an example of a block diagram illustrating a control device 75 provided in the loading machine 30 according to the present embodiment.
- the control device 75 included in the loading machine 30 controls the feeder 31, the support mechanism 32, the rotating roller 33, the traveling device 34, the rotating body 36, and the switching mechanism 80.
- the control device 75 includes a processing device 76 and a storage device 77.
- the processing device 76 includes a front imaging device 40C corresponding to the information collecting device 40, a rear imaging device 41C corresponding to the information collecting device 41, a non-contact sensor 42, a reading device 43, a range sensor 44, a gyro sensor 45, a speed sensor.
- the non-contact sensor 42, the reader 43, and the range sensor 44 are attached to the outside of the vehicle body 30BD of the loading machine 30.
- the front imaging device 40C and the rear imaging device 41C include an image sensor such as a CCD or a CMOS, and can acquire an optical image of an object and detect the outer shape of the object.
- the front imaging device 40C and the rear imaging device 41C include a stereo camera and can acquire three-dimensional outline data of an object.
- the front imaging device 40C and the rear imaging device 41C output the captured result to the processing device 76.
- the processing device 76 acquires the detection result of the front imaging device 40C, and obtains the ore information described above based on the detection result. Further, the processing device 76 acquires the detection result of the rear imaging device 41C, and obtains the load information described above based on the detection result.
- the outer shape of the ore MR of the natural ground RM and the outer shape of the ore MR loaded on the vessel 11 may be detected using at least one of a laser scanner and a three-dimensional distance sensor.
- the non-contact sensor 42 detects an object existing around the loading machine 30.
- the non-contact sensor 42 is connected to the processing device 76 and outputs a detection result to the processing device 76.
- the reading device 43 detects identification information (unique information) of marks provided on the drift DR or the cross cut CR. A plurality of marks are arranged along the drift DR or the crosscut CR.
- the reading device 43 is connected to the processing device 76 and outputs a detection result to the processing device 76.
- the mark may be an identifier (code) such as a barcode and a two-dimensional code, or may be an identifier (tag) such as an IC tag or RFID.
- the information regarding the position (absolute position) where the mark is arranged in the drift DR or the crosscut CR is known information measured in advance.
- Information regarding the absolute position of the mark is stored in the storage device 77.
- the processing device 76 Based on the mark detection result (mark identification information) detected by the reading device 43 provided in the loading machine 30 and the storage information of the storage device 77, the processing device 76 uses the drift DR or the crosscut CR. The absolute position of the loading machine 30 can be determined.
- the range sensor 44 acquires and outputs the physical shape data of the space.
- the gyro sensor 45 detects the direction (direction change amount) of the loading machine 30 and outputs the detection result to the processing device 76.
- the speed sensor 46 detects the traveling speed of the loading machine 30 and outputs the detection result to the processing device 76.
- the acceleration sensor 47 detects the acceleration of the loading machine 30 and outputs the detection result to the processing device 76.
- the drive control device 48 is, for example, a microcomputer.
- the drive control device 48 is based on a command from the processing device 76, and includes an electric motor 33M that drives the rotating roller 33 shown in FIG.
- the operation of the electric motor 50 that swings the arm 32b, the electric motor 51F that drives the feeder 31, the electric motor 51R that rotates the rotating body 36, and the electric motor 86 that drives the hydraulic pump 85 is controlled.
- the hydraulic pump 85 is a device that supplies hydraulic oil to the hydraulic cylinder 83 provided in the switching mechanism 80, the hydraulic cylinder 87 as an actuator that changes the posture of the feeder 31, and the hydraulic cylinder 30FC of the fixing device 30F.
- the boom 32a and the arm 32b may be swung by a hydraulic cylinder. In this case, hydraulic oil is supplied from the hydraulic pump 85 to the boom cylinder that swings the boom 32a and the arm cylinder that swings the arm 32b.
- Electric motor 48L drives one crawler belt 34C shown in FIG. 13, and electric motor 48R drives the other crawler belt 34C.
- the loading machine 30 travels by the electric motors 48L and 48R included in the travel device 34, but is not limited thereto.
- the loading machine 30 may travel by a hydraulic motor that is driven by hydraulic oil discharged from the hydraulic pump 85.
- the boom 32 a and the arm 32 b of the support mechanism 32, the rotating roller 33 and the rotating body 36, and the feeder 31 may also be driven by a hydraulic cylinder or a hydraulic motor that is driven by hydraulic oil discharged from the hydraulic pump 85.
- the range sensor 44 includes a scanning lightwave distance meter that can output physical shape data of a space.
- the range sensor 44 includes, for example, at least one of a laser scanner and a three-dimensional distance sensor, and can acquire and output three-dimensional spatial data.
- the range sensor 44 detects at least one of the wall surfaces of the transport machine 10, the drift DR, and the crosscut CR.
- the range sensor 44 can acquire at least one of the shape data of the transporting machine 10, the shape data of the wall surface of the drift DR or the crosscut CR, and the shape data of the load of the vessel 11 included in the transporting machine 10. is there.
- the range sensor 44 can detect at least one of a relative position (relative distance and direction) with the transporting machine 10 and a relative position with the wall surface of the drift DR or the crosscut CR. The range sensor 44 outputs the detected information to the processing device 76.
- information regarding the wall surfaces of the drift DR and the crosscut CR is obtained in advance and stored in the storage device 77. That is, the information regarding the wall surface of the drift DR is known information measured in advance.
- the information regarding the wall surface of the drift DR includes information regarding each shape of the plurality of portions of the wall surface and information regarding the absolute position of each of the wall surface portions.
- the storage device 77 stores the relationship between the shapes of the plurality of wall portions and the absolute positions of the wall portions having the shapes.
- the processing device 76 uses the drift DR wall surface detection result (wall surface shape data) detected by the range sensor 44 provided in the loading machine 30 and the storage information of the storage device 77 to determine whether the drift DR The absolute position and orientation of the loading machine 30 can be determined.
- the processing device 76 Based on the current position (absolute position) of the loading machine 30 derived using at least one of the reading device 43 and the range sensor 44, the processing device 76 follows a determined route (target route) of the underground mine MI. The loading machine 30 that travels in the drift DR or the cross-cut CR is controlled so that the loading machine 30 travels. At this time, the processing device 76 controls the loading machine 30 so as to be arranged at the designated draw point DP.
- the processing device 76 is a microcomputer including a CPU, for example.
- the processing device 76 controls the electric motors 48L and 48R included in the traveling device 34 via the drive control device 48 based on the detection results of the front imaging device 40C, the rear imaging device 41C, the non-contact sensor 42, the reading device 43, and the like. . Then, the processing device 76 causes the loading machine 30 to travel at a predetermined traveling speed and acceleration according to the above-described target route.
- the storage device 77 includes at least one of a RAM, a ROM, a flash memory, and a hard disk drive, and is connected to the processing device 76.
- the storage device 77 stores a computer program and various information necessary for the processing device 76 to autonomously run the loading machine 30.
- the communication device 52 is connected to the processing device 76 and performs data communication with at least one of the communication device mounted on the transporting machine 10 and the management device 3.
- the loading machine 30 is an unmanned vehicle and can autonomously travel.
- the communication device 52 can receive information (including a command signal) transmitted from at least one of the management device 3 and the transporting machine 10 via the antenna 53. Further, the communication device 52 manages information detected by the front imaging device 40C, the rear imaging device 41C, the non-contact sensor 42, the reading device 43, the range sensor 44, the gyro sensor 45, the speed sensor 46, the acceleration sensor 47, and the like. 3 and at least one of the transporting machines 10 can be transmitted via the antenna 53.
- the loading machine 30 is not limited to an unmanned vehicle capable of autonomous traveling.
- the management device 3 acquires an image captured by the front imaging device 40C and displays it on the display device 8 shown in FIG.
- the management device 3 acquires an image captured by the rear imaging device 41C and displays it on the display device 8 shown in FIG. 6, and the operator excavates and loads the loading machine 30 while visually checking the displayed image.
- the operation of the vessel 11 of the transporting machine 10 may be controlled by remote control.
- the management device 3 that has acquired information detected by the speed sensor 46, the acceleration sensor 47, and the like accumulates this information as operation information of the loading machine 30, for example, in the storage device 3M.
- the management device 3 acquires information captured by the front imaging device 40C or the rear imaging device 41C
- the operator visually recognizes an image around the loading machine 30 captured by the front imaging device 40C or the rear imaging device 41C.
- the loading machine 30 can also be operated.
- the transporting machine 10 that has acquired the information on the mass of the ore MR of the vessel 11 detected by the rear imaging device 41C controls the loading amount of the ore MR on the vessel 11 or the position of the vessel 11 based on this information. You can also.
- the loading machine 30 is electric, but the internal combustion engine may be a power source. Next, a control example of the loading machine 30 will be described.
- the management device 3 shown in FIG. 6 determines the draw point DP where the loading machine 30 is disposed, and the loading machine 30 moves to the draw point DP determined by the management device 3 and moves the ore. Drill the MR.
- the control device 75 shown in FIG. 20 receives a command from the management device 3 via the antenna 53 and the communication device 52, and moves to the designated draw point DP.
- the control device 75 transmits information regarding the production amount (mining amount) at the draw point DP, the current position, the state of the loading machine 30, and the like to the management device 3 as operation information of the loading machine 30.
- the loading machine 30 enters the draw point DP determined by the management device 3, excavates the ore MR, loads the ore MR into the transporting machine 10, and then relates to a series of operations toward another draw point DP. The control will be described.
- FIG. 21 to FIG. 28 are diagrams for explaining a series of operations toward the other draw point DP after the loading machine 30 enters the draw point DP and excavates the ore.
- the control apparatus 75 with which the loading machine 30 is provided acquires the information of the draw point DP which performs excavation and loading of the ore MR from the management apparatus 3 shown in FIG. As shown in FIG. 21, the loading machine 30 travels the drift DR in the direction indicated by the arrow FC and moves to the target draw point DP. At this time, the control device 75 sets the posture of the loading machine 30 to the posture during traveling shown in FIG. During traveling of the loading machine 30, the control device 75 stops the feeder 31, the rotating roller 33, and the rotating body 36.
- the loading machine 30 When the loading machine 30 arrives at the position of the target draw point DP, as shown in FIG. 22, the loading machine 30 changes direction at the intersection of the cross-cut CR where the target draw point DP exists and the drift DR currently running.
- the control device 75 controls the rotation speed of the traveling device 34, more specifically, the electric motors 48L and 48R shown in FIG. Also at this time, the feeder 31, the rotating roller 33, and the rotating body 36 are stopped.
- the control device 75 changes the posture of the loading machine 30 from the posture during traveling to the posture during penetration and excavation.
- the posture at the time of penetration and excavation is a posture in which the loading side 31F of the feeder 31 and the penetration member 35 are brought close to the ground G.
- the control device 75 activates the connection device for the power cable 7 to connect the power cable 7 to the power feeding connector 6 provided at the draw point DP. This is because the loading machine 30 travels with the electric power supplied from the power storage device mounted on the loading machine 30 while traveling, but is driven by the electric power supplied from the outside during penetration and excavation.
- the loading machine 30 enters the crosscut CR as shown in FIG. 24 and travels toward the natural ground RM of the ore MR existing behind the crosscut CR. 35 and the loading side 31F of the feeder 31 are penetrated.
- the control device 75 stops the rotating roller 33 and causes the loading machine 30 to travel toward the natural ground RM while driving the feeder 31 and the rotating body 36.
- the feeder 31 is driven in the same direction as the conveying direction of the ore MR with the upper conveying belt, and the rotating body 36 rotates so that the side of the blade 36B facing the natural mountain RM faces upward.
- the conveyance speed at the time of penetration of the feeder 31 is lower than at the time of excavation.
- the ore MR When the ore MR is placed on the feeder 31 at the time of penetration, the ore MR is transported to the discharge side 31F, and the clogging of the feeder 31 is suppressed. Further, when the rotating body 36 rotates in the above-described direction, the frictional force between the crawler belt 34C of the traveling device 34 and the ground G increases. As a result, the loading machine 30 can reliably penetrate the penetration member 35 and the loading side 31F of the feeder 31 into the natural ground RM. In addition, the rotating body 36 may disturb the ore MR of the natural ground RM, thereby facilitating the collapse of the ore MR, and may facilitate the penetration of the penetration member 35 and the loading side 31F of the feeder 31 into the natural ground RM. it can.
- the control device 75 extends the fixing device 30F toward the wall surface CRW of the crosscut CR, and puts the loading machine 30 into the crosscut CR. Fix it. Then, as shown in FIG. 25, when the transporting machine 10 arrives at the draw point DP, the loading machine 30 rotates the rotating roller 33 to excavate the ore MR from the natural ground RM and send it to the feeder 31.
- the feeder 31 transports the fed ore MR to the discharge side 31E, and loads the ore MR on the vessel 11 of the transporting machine 10 waiting on the discharge side 31E.
- the rotating direction of the rotating roller 33 during excavation rotates so that the side of the contact member 33S facing the natural ground RM faces downward.
- the control device 75 operates the support mechanism 32 and continues excavation while changing the position where the rotating roller 33 excavates the natural ground RM. At this time, the control device 75 advances the loading machine 30 toward the natural ground RM side or in a direction away from the natural ground RM according to the state of the ore MR such as the flow of the ore MR and the size of the ore. It may be moved.
- a hydraulic cylinder may be provided between the fixing device 30F and the vehicle body 30B, and after fixing the fixing device 30F to the wall surface CRW of the crosscut CR, the vehicle body 30B may be penetrated into the natural ground RM using the driving force of the hydraulic cylinder. .
- the loading machine 30 moves toward the intersection between the cross cut CR and the drift DR with an arrow FB.
- the control device 75 stops the rotating roller 33 and drives the feeder 31 in the direction opposite to the conveyance direction. By doing in this way, it becomes easy to remove the feeder 31 from the natural ground RM.
- the rotating body 36 may be stopped, but the rotating body 36 may rotate in the direction opposite to that at the time of penetration. By doing so, the feeder 31 and the penetrating member 35 are more easily removed from the natural ground RM.
- the control device 75 activates the connecting device of the power cable 7 and supplies power to the draw point DP.
- the power cable 7 is removed from the connector 6 for use.
- the control device 75 changes the posture of the loading machine 30 from the posture during penetration and excavation to the posture during traveling.
- the posture during traveling is a posture in which the loading side 31F of the feeder 31 and the penetrating member 35 are further away from the ground G than during penetrating and excavating.
- the control device 75 controls the traveling device 34 to turn the loading machine 30 in the direction indicated by the arrow FT, so that the drift DR extends along the front-rear axis of the loading machine 30. And parallel.
- the control device 75 controls the traveling device 34 to cause the loading machine 30 to travel in the direction indicated by the arrow FC in the drift DR and to move to the next draw point DP.
- the control device 75 causes the loading machine 30 to travel based on the information regarding the position of the next draw point DP acquired from the management device 3. By such a series of operations, the loading machine 30 can move between the draw points DP and excavate the ore MR. Next, control during excavation of the loading machine 30 will be described.
- FIG. 29 is a diagram for explaining control during excavation of the loading machine 30.
- the control device 75 based on the ore information acquired by the information collecting device 40, in this embodiment, the front imaging device 40C, the feeder 31, the rotating roller 33, the support mechanism 32, and the traveling device 34. Control at least one of When the loading machine 30 excavates, the front imaging device 40C images the situation where the rotary roller 33 excavates the ore MR of the natural ground RM. The image captured by the front imaging device 40C is ore information.
- the control device 75 performs image processing on an image captured by the front imaging device 40C, for example, and extracts the ore MR. And the control apparatus 75 calculates
- control device 75 determines from the change in the movement of the extracted ore MR that the clogging of the ore MR called “arching” (ore clogging) has occurred above the draw point DP, the control device 75 drives the support mechanism 32. Then, the rotating roller 33 is pressed against the portion to eliminate the clogging of the ore.
- Control example 1 When the ore information is information that the flow of ore MR moving from the natural ground RM toward the loading side 31F of the feeder 31 (hereinafter referred to as ore flow as appropriate) is relatively small, the ore MR sent to the feeder 31 Means less. Therefore, in such a case, the control device 75 controls to excavate more ore MR from the natural ground RM. Therefore, the control device 75 executes at least one of operating the support mechanism 32 so as to press the rotating roller 33 against the natural mountain RM and increasing the rotation speed of the rotating roller 33.
- the control device 75 acquires a plurality of images by causing the front imaging device 40C to capture the natural ground RM at a plurality of timings at different times. And the control apparatus 75 calculates
- Control example 2 When the ore information is information that the ore flow from the natural ground RM toward the feeder 31 is relatively large, it means that there is a large amount of ore MR sent to the feeder 31. In this case, if the ore MR that exceeds the transport capability of the feeder 31 is fed into the feeder 31, there is a possibility that the feeder 31 overflows. For this reason, the control device 75 executes at least one of operating the support mechanism 32 so as to keep the rotating roller 33 away from the natural ground RM and decreasing the rotation speed of the rotating roller 33. By doing in this way, since the quantity of the ore MR sent to the feeder 31 decreases, possibility that overflow will generate
- the control device 75 may push the rotating roller 33 against the natural ground RM depending on the magnitude of the ore flow, or may approach or separate from the natural ground RM according to the load of the rotating roller 33.
- the control device 75 may be kept away from the natural ground RM in order to protect the rotating roller when the load on the rotating roller 33 increases and the rotation speed decreases or the torque becomes excessive.
- Control example 3 When the ore information is information that ore clogging has occurred at the draw point DP, the ore MR cannot be mined from the draw point DP. In this case, the control device 75 operates the support mechanism 32 so as to press the rotating roller 33 against the place where the ore clogging has occurred. By doing in this way, the loading machine 30 can eliminate ore clogging and can continue ore mining. If the ore clogging cannot be resolved even when the loading machine 30 presses the rotary roller 33 to the location where the ore clogging occurs and excavates that portion, the control device 75 informs the management device 3 that information. Send. The management device 3 that has acquired this information moves the loading machine 30 that has transmitted this information to a draw point DP that is different from the draw point DP where the ore clogging could not be resolved.
- Control example 4 When the ore information is information that the ore flow from the natural ground RM to the feeder 31 is relatively small, if the feeder 31 is driven as in the case where the ore flow is relatively large, power is consumed wastefully. Will do. For this reason, the control apparatus 75 reduces the conveyance speed of the feeder 31. FIG. In this way, power consumption can be suppressed.
- the ore information is information that the ore flow from the natural ground RM toward the feeder 31 is relatively large, if the feeder 31 is driven as in the case where the ore flow is relatively small, the feeder 31 overflows. May occur. For this reason, the control device 75 increases the conveyance speed of the feeder 31. By doing in this way, possibility that overflow will occur in feeder 31 can be reduced.
- Control example 5 When the ore information is information that there is an ore MR exceeding the size that the feeder 31 can transport in the natural ground RM, the feeder 31 may be clogged with the ore MR. At such a draw point DP, the loading machine 30 can no longer excavate the ore MR. For this reason, the control apparatus 75 controls the traveling apparatus 34 so that the loading machine 30 moves in the direction away from the natural ground RM. By doing in this way, the management apparatus 3 makes the cross cut CR vacated by the movement of the loading machine 30 face the machine for crushing the ore MR, for example, or crush the ore MR, 30 can be moved to another draw point DP. The control device 75 transmits information to the management device 3 that there is an ore MR in the natural ground RM that exceeds the dimensions that the feeder 31 can transport.
- Control example 6 When the ore information is information that the ore MR of the natural mountain RM has a size that the feeder 31 can convey, the control device 75 controls the support mechanism 32 so as to press the rotating roller 33 against the ore MR that can be conveyed. To do. By doing in this way, loading machine 30 excavates natural ground RM with rotation roller 33, sends excavated ore MR to feeder 31, and continues mining of ore MR at draw point DP.
- the control device 75 transmits information regarding the size of the obtained ore MR to the management device 3 as ore information.
- the management device 3 stores the acquired ore information in the storage device 3M, and uses this ore information for management of the mine M.
- the control device 75 stops the rotating roller 33 and feeds the ore MR that can be conveyed by the rotating roller 33 to the feeder.
- the support mechanism 32 may be controlled to move to 31. Specifically, the control device 75 swings at least one of the boom 32 a and the arm 32 b of the support mechanism 32 shown in FIG. 29, scrapes the ore MR toward the feeder 31 with the rotating roller 33, and sends it to the feeder 31.
- the control device 75 may select either one of the rotation of the rotation roller 33 or the operation of the support mechanism 32 according to the state of the natural ground RM, and send the ore MR to the feeder 31.
- Control when traveling in drift DR When the loading machine 30 is traveling in the drift DR, when the front imaging device 40C acquires information that there is an obstacle such as a rock on the traveling direction side of the loading machine 30, the control device 75 The support mechanism 32 is controlled so that the rotating roller 33 is brought into contact with the obstacle and moved. The control device 75 transmits information regarding the obstacle to the management device 3. The management device 3 stores the acquired information in the storage device 3M, and uses this ore information for mine management. In contact with the obstacle, the control device 75 swings at least one of the boom 32 a and the arm 32 b of the support mechanism 32 shown in FIG. 29, and removes the obstacle from the path of the loading machine 30 with the rotating roller 33. In this case, the control device 75 may or may not rotate the rotating roller 33.
- control device 75 may scrape an obstacle toward the feeder 31 and load it on the feeder 31 to carry it.
- the control device 75 changes the posture of the feeder 31 to the posture at the time of excavation.
- the obstacle loaded on the feeder 31 is loaded on the transporting machine 10 when the loading machine 30 next excavates the ore MR, for example.
- the loading machine 30 can create a space that passes through the drift DR by using the scraping device 30DM having the support mechanism 32 and the rotating roller 33 to eliminate obstacles existing in the course.
- the control device 75 may control the operation of the switching mechanism 80 shown in FIGS. 13 to 15, for example. For example, when the control device 75 obtains ore information that the size of the ore MR of the natural ground RM can be conveyed by the feeder 31, the control device 75 opens the lid 82 of the switching mechanism 80 and passes the ore MR from between the supports 81. Let Moreover, the control apparatus 75 closes the lid
- the control device 75 may control the switching mechanism 80 in conjunction with the operation of the feeder 31.
- the control device 75 opens the lid 82 of the switching mechanism 80 when the feeder 31 is operating in the direction in which the ore MR is transported, and in the direction opposite to the direction in which the feeder 31 transports the ore MR.
- the lid 82 of the switching mechanism 80 is closed.
- the switching mechanism 80 may have the lid 82 closed except when the feeder 31 transports the ore MR.
- the control device 75 of the loading machine 30 performs the above-described control based on the image captured by the front imaging device 40C.
- a device capable of acquiring three-dimensional spatial data such as a stereo camera or a three-dimensional scanner is used as the front imaging device 40C.
- the management device 3 acquires the image captured by the front imaging device 40C as ore information, and the operator performs the above-described control by remote operation while visually recognizing the above-described image displayed on the display device 8. May be executed.
- the front imaging device 40C may be a device that cannot acquire three-dimensional spatial data, such as a normal camera.
- FIG. 30 is a side view showing the loading machine 30A and the scraping device 30DMA according to the first modification.
- FIG. 31 is a plan view showing the loading machine 30A and the scraping device 30DMA according to the first modification.
- the arm 32bA of the scraping device 30DMA provided in the loading machine 30A has both an axis Za ′ parallel to the first axis Za and an axis Zb parallel to the second axis perpendicular to the first axis Za. Can swing around.
- the scraping device 30DMA has a rotating roller 33A and a support mechanism 32A.
- the support mechanism 32A is attached to the vehicle body 30BD, has a boom 32aA that swings around the first axis Za, an arm 32bA that swings around an axis Za ′ parallel to the first axis Za, and a boom 32aA.
- a connecting member 32c for connecting the arm 32bA.
- the connecting member 32c is attached to the boom 32aA.
- the arm 32bA has a first arm 32d and a second arm 32e, and the first arm 32d is attached to the connecting member 32c.
- the boom 32aA includes two first rod members 32LB and 32LB and a beam 32JA that connects the two rod members 32LB and 32LB.
- the two first rod-like members 32LB and 32LB are provided on both sides of the vehicle body 10B.
- a plurality of front imaging devices 40 ⁇ / b> C are attached toward the width direction W of the loading machine 30 below the beam 32 ⁇ / b> JA.
- Each first rod-shaped member 32LB, 32LB of the boom 32aA is pin-coupled to the vehicle body 30BD by a pin parallel to the first axis Za. For this reason, the boom 32aA swings around the first axis line Za.
- the boom 32aA swings when a hydraulic cylinder 32C1 as an actuator provided between the first rod-shaped member 32LB and the vehicle body 30BD expands and contracts.
- the boom 32aA has two first rod-like members 32LB, and thus two hydraulic cylinders 32C1.
- the device for swinging the boom 32aA is not limited to the hydraulic cylinder 32C1, and may be, for example, an electric motor.
- the connecting member 32c and the beam 32JA of the boom 32aA are pin-coupled by a pin parallel to the axis Za 'parallel to the first axis Za. For this reason, the connecting member 32c swings around the axis line Za 'parallel to the first axis line Za with respect to the boom 32aA. As the connecting member 32c swings, the first roller 32d, the second arm 32e, and the rotary roller 33A attached to the tips of the second arms 32e are also rocked. In this modification, the connecting member 32c swings when a hydraulic cylinder 32C2 as an actuator provided between itself and the boom 32aA expands and contracts.
- the device for swinging the connecting member 32c is not limited to the hydraulic cylinder 32C2, and may be, for example, an electric motor.
- the scraping device 30DM includes two rotating rollers 33A.
- the two rotation rollers 33A are provided at the tip of the second arm 32e of the arm 32bA with the rotation roller 33A interposed therebetween.
- the second arm 32e is inserted into the first arm 32d and can move with respect to the longitudinal direction of the first arm 32d and the second arm 32e (the direction in which they extend).
- the second arm 32e expands and contracts in the longitudinal direction (the direction indicated by the arrow S in FIG. 30) with respect to the first arm 32d by an actuator (for example, a hydraulic cylinder) stored in the first arm 32d.
- an actuator for example, a hydraulic cylinder
- the rotating roller 33A may rotate around an axis parallel to the direction in which the arm 32bA expands and contracts. In this way, the range in which the rotating roller 33A can be excavated is further increased, so that the ore MR can be excavated more efficiently from the natural ground RM. In this modification, the expansion and contraction of the arm 32bA and the rotation of the rotation roller 33A around the axis parallel to the direction in which the arm 32bA expands and contracts are not essential.
- the connecting member 32c and the first arm 32d of the arm 32bA are pin-coupled by a pin parallel to the second axis Zb orthogonal to the first axis Za.
- hydraulic cylinders 32C3 are provided as actuators.
- the hydraulic cylinder 32C3 is provided between the first arm 32d and the connecting member 32c.
- the arm 32bA and the rotating roller 33A attached to the tip of the arm 32bA also swing around the second axis Zb (arrow in FIG. 31).
- the rotating roller 33A can move in the width direction W of the feeder 31 shown in FIG.
- the loading machine 30A can excavate the ore MR from the natural ground RM more efficiently because the range in which the rotating roller 33A can be excavated becomes large.
- the arm 32bA swings around the second axis Zb relative to the connecting member 32c, and the connecting member 32c swings around the axis Za ′ parallel to the first axis relative to the boom 32aA.
- the movable range of the rotating roller 33A can be increased.
- the range in which the rotating roller 33A can move is larger than that in the above-described embodiment, so the degree of freedom when the loading device 30A excavates the natural ground RM is improved.
- a second modification will be described.
- the configuration of the first modification can also be applied as appropriate in the following modifications.
- FIG. 32 is a plan view showing a loading machine 30B and a scraping device 30DMB according to a second modification.
- FIG. 33 is a side view showing a loading machine 30B and a scraping device 30DMB according to a second modification.
- FIG. 34 is a view showing a modification of the rotating roller 33B.
- the scraping device 30DMB of the second modified example is the same as the scraping device DMA of the first modified example.
- the two rotating rollers 33B are supported by the two arms 32bB, and the rotating rollers 33B are independent of each other. Is different.
- the scraping device 30DMB includes two rotating rollers (first rotating roller and second rotating roller) 33B and 33B, and a support mechanism 32B.
- the support mechanism 32B is attached to the vehicle body 30BD and includes a boom 32aB that swings around the first axis Za, and two arms 32bB that swing around an axis Za ′ parallel to the first axis Za.
- the boom 32aB and the arm 32bB have two connection members 32c and 32c.
- the two connecting members 32c are provided on a beam 32JB that connects the two first rod-shaped members 32LB and 32LB of the boom 32aB.
- Each arm 32bB, 32bB has a first arm 32d and a second arm 32e, and each first arm 32d, 32d is attached to the connecting members 32c, 32c.
- the structure of the boom 32aB is the same as the boom 32aA of the first modified example, except that the two connecting members 32c and 32c are attached to the beam 32JB.
- Each first arm 32d and each connecting member 32c are pin-coupled by a pin parallel to the axis Za '. For this reason, each first arm 32d swings around an axis line Za 'parallel to the first axis line Za relative to the connecting member 32c.
- the arm 32bB and the rotating roller 33B attached to the tip of the arm 32bB also swing. For this reason, the respective rotating rollers 33B and 33B can independently swing around an axis line Za 'parallel to the first axis line Za.
- the respective rotating rollers 33B and 33B are driven by separate electric motors 33M and 33M, respectively.
- the respective rotating rollers 33B and 33B are arranged to face each other between the two arms 32bB.
- two rotating rollers (first rotating roller and second rotating roller) 33Bs and 33Bs may be attached with one second arm 32e interposed therebetween.
- the structures of the arms 32bB and 32bB are the same as those of the arm 32bA of the first modification.
- the connecting members 32c and 32c and the beam 32JB of the boom 32aB are pin-coupled by pins parallel to the second axis Zb orthogonal to the first axis Za.
- Each connecting member 32c is provided with a hydraulic cylinder 32C3 as an actuator.
- the hydraulic cylinder 32C3 is provided between the connecting member 32c and the beam 32JB. As each hydraulic cylinder 32C3 expands and contracts, each connecting member 32c swings around the second axis Zb with respect to the boom 32aB.
- Each connecting member 32c swings around the second axis Zb, and each arm 32bB swings around the axis Za ′, whereby rotating rollers 33B and 33B attached to the tips of the respective arms 32bB.
- each rotation roller 33B and 33B can move independently in the width direction W of the feeder 31 shown to an up-down direction and FIG.
- the respective rotating rollers 33B and 33B move independently according to expansion and contraction in the longitudinal direction of each arm 32bB (direction indicated by the arrow S in FIG. 32).
- the loading machine 30B has a large range in which the rotating roller 33B can be excavated and has a high degree of freedom of operation, and therefore can ore MR can be excavated more efficiently from the natural ground RM.
- the present variation increases the range in which the rotary rollers 33B and 33B can move and increases the degree of freedom of operation. Therefore, when the loading device 30B excavates the natural ground RM. The degree of freedom is improved.
- a third modification will be described. The configurations of the first modification and the second modification can be applied as appropriate in the following modifications.
- FIG. 35 is a plan view showing a loading machine 30D and a scraping device 30DMD according to a third modification.
- FIG. 36 is a side view showing a loading machine 30D and a scraping device 30DMD according to a third modification.
- the scraping device 30DMD provided in the loading machine 30D includes two rotating rollers (first rotating roller and second rotating roller) 33Bs and 33Bs, and a support mechanism 32D.
- the support mechanism 32D has two booms 32aD that are rod-shaped members. One end of the boom 32aD is attached to the swing circles 32SC and 32SC, respectively.
- Each swing circle 32SC, 32SC is provided in the vehicle body 30BD, and rotates in a direction indicated by an arrow Ry in FIG. 35 around a second axis Zb orthogonal to the first axis Za.
- Each boom 32aD is supported by swing circles 32SC and 32SC, respectively, and swings around the first axis Za.
- the ends of the two booms 32aD opposite to the ends attached to the swing circle 32SC are coupled to the beam 32JD.
- the first arms 32d and 32d of the arms 32bD and 32bD and the first rod-like members 32LB and 32LB included in the boom 32aD are pin-coupled by pins parallel to the axis Za '.
- the axis Za ′ is parallel to the first axis Za.
- Hydraulic cylinders 32C2 as actuators are provided between the first arms 32d and 32d of the arms 32bD and 32bD and the booms 32aD, respectively.
- the arms 32bD and 32bD and the rotation rollers 33Bs and 33Bs supported by the arms 32bD and 32bD swing around the axis Za '.
- the rotation rollers 33Bs and 33Bs swing around the second axis Zb as the beam 32JD moves.
- the rotating rollers 33Bs and 33Bs attached to the tips of the respective arms 32bD swing independently about the axis line Za 'and the second axis line Zb. Further, the respective rotating rollers 33Bs and 33Bs move independently according to expansion and contraction in the longitudinal direction (direction indicated by arrow S in FIG. 32) of the respective arms 32bB. For this reason, in this modification, since the range in which the rotating rollers 33Bs and 33Bs can be excavated is large and the degree of freedom of operation increases, the loading machine 30D can excavate the ore MR from the natural ground RM more efficiently. .
- the mine management system 1 separates the functions of the loading machine 30 and the transporting machine 10. For this reason, since the loading machine 30 can specialize in excavation and conveyance, and the conveyance machine 10 can specialize in conveyance of the ore MR, each capability can be exhibited to the maximum. As a result, the mine management system 1 can improve the productivity of the mine M.
- the mine management system 1 allows the loading machine 30 and the transporting machine 10 to move, it can easily cope with a change in the situation of the excavation site. For example, when an ore clogging occurs at the draw point DP or a large block of ore MR that cannot be transported by the feeder 31 of the loading machine 30 appears at the draw point DP, the loading machine 30 moves to another draw point DP. Thus, the mining of the ore MR can be continued. For this reason, since the mine management system 1 can minimize the time during which the ore MR cannot be mined, the productivity of the mine M can be improved.
- the loading machine 30 includes the rotating roller 33 and the feeder 31, the ore MR can be continuously excavated and loaded on the transporting machine 10. For this reason, since the loading machine 30 can load the excavated ore MR on the transporting machine 10 quickly, the loading time can be reduced and the productivity of the mine M can be improved.
- the rotating rollers 33A, 33B and the like can be moved both in the vertical direction and in the width direction of the loading machines 30A, 30B and the like. For this reason, since this embodiment and its modification have a large range in which the rotating rollers 33A and 33B can be excavated and the degree of freedom of operation is large, the loading machines 30A and 30B and the like can extract the ore MR from the natural ground RM. Drilling more efficiently. As a result, this embodiment and its modification can improve the productivity of the mine M.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
Abstract
坑内採掘において、生産性を向上させることを課題とする。積込機械は、鉱脈の下方に設置された採掘場所に形成された鉱石の地山から前記鉱石を積み込んで、前記地山から離れる方向に搬送して排出する搬送装置と、前記搬送装置の積込側に設けられて、前記地山に貫入する貫入部材と、前記搬送装置及び前記貫入部材が取り付けられた車体を走行させ、かつ前記搬送装置を動作させながら前記地山に前記貫入部材を貫入させる走行装置と、を含む。
Description
本発明は、坑内採掘に用いられる作業機械である積込機械に関する。
鉱山における採掘方法として、地表から採掘する露天採掘と、地下から採掘する坑内採掘とが知られている。環境に対する負荷の低減及び鉱石の存在部位の深部化等により、近年においては、坑内採掘が採用されるケースが増えている。例えば、特許文献1には、鉱石をバケットで掘削する車両が坑道内に進入して鉱石を掘削した後、掘削した鉱石をバケットに保持した状態で坑道を移動する作業機械が記載されている。
一般に、鉱山においては、生産性を高くすることが要求される。これは、坑内採掘においても同様である。特許文献1に記載された技術は、鉱石を掘削する車両が鉱石を保持した状態で鉱石を運搬しているため、生産性を十分向上させることができない。
本発明は、坑内採掘において、生産性を向上させることを目的とする。
本発明は、鉱体の内部に設置された採掘場所に形成された鉱石の地山から前記鉱石を積み込んで、前記地山から離れる方向に搬送して排出する搬送装置と、前記搬送装置の積込側に設けられて、前記地山に貫入する貫入部材と、前記搬送装置及び前記貫入部材が取り付けられた車体を走行させ、かつ前記搬送装置を動作させながら前記地山に前記貫入部材を貫入させる走行装置と、を含む、積込機械である。
前記貫入部材は、錐体の形状をした部材であり、前記部材の頂部が前記地山に貫入することが好ましい。
前記貫入部材は、前記地山に貫入する第1の板状部材と、前記第1の板状部材の板面と交差して前記第1の板状部材に取り付けられ、かつ前記搬送装置の積込側に設けられる第2の板状部材と、を含むことが好ましい。
前記搬送装置の搬送方向と直交する方向における両側には、回転体が設けられ、前記回転体は、前記貫入部材が前記地山に貫入するときに回転することが好ましい。
前記搬送装置に前記鉱石が積み込まれる部分と、前記搬送装置から前記鉱石が排出される部分との間には、前記鉱石の排出と排出の停止とを切り替える切替機構が設けられることが好ましい。
前記車体は、前記車体の外側に向かって伸びて、前記採掘場所につながる坑道の壁面に押し付けられる固定装置を有することが好ましい。
前記貫入部材は、前記車体の上下方向、幅方向、前後方向及び前後方向軸と平行な軸線周りにおける回転方向の少なくとも1方向に往復運動することが好ましい。
本発明は、鉱体の内部に設置された採掘場所に形成された鉱石の地山から前記鉱石を積み込んで、前記地山から離れる方向に搬送して排出する搬送装置と、前記搬送装置の積込側に設けられて、前記地山に貫入する貫入部材と、前記搬送装置及び前記貫入部材が取り付けられた車体を走行させ、かつ前記搬送装置を動作させながら前記地山に前記貫入部材を貫入させる走行装置と、前記搬送装置の搬送方向と直交する方向における両側に設けられる回転体と、を含み、前記貫入部材が前記地山に貫入する場合には、前記搬送装置が前記鉱石の搬送方向と同一の方向に動作し、前記回転体は、前記貫入部材が前記地山に貫入するときには、前記車体を地面に押し付ける方向に回転する、積込機械である。
本発明は、坑内採掘において、生産性を向上させることができる。
本発明を実施するための形態(実施形態)について、図面を参照しつつ詳細に説明する。以下においては、所定面内の一方向をX軸方向、所定面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向をZ軸方向として、各部の位置関係を説明する。また、重力の作用方向を下方、重力の作用方向とは反対方向を上方という。鉱山の生産性は、単位時間あたりの採掘量(t/h)と単位時間量あたりのコスト($/h)との両方を含む。鉱山の生産性は、式(1)に示すように、両者の商を指標とすることができる。式(1)中の$/tは生産性を表す指標、tは採掘量、hは時間、$はコストである。式(1)で表される指標$/tが小さいほど、鉱山の生産性は高いことになる。
$/t=($/h)/(t/h)・・(1)
$/t=($/h)/(t/h)・・(1)
<採掘現場の概要>
図1は、本実施形態に係る運搬機械10及び積込機械30が稼働する現場の一例を示す模式図である。運搬機械10及び積込機械30は、地下から鉱石を採掘する坑内採掘に使用される。運搬機械10は、坑道Rにおいて積荷を運搬する作業機械の一種であり、積込機械30は、運搬機械10に積荷を積み込む作業機械の一種である。本実施形態においては、ブロックケービング工法により鉱石が採掘される。
図1は、本実施形態に係る運搬機械10及び積込機械30が稼働する現場の一例を示す模式図である。運搬機械10及び積込機械30は、地下から鉱石を採掘する坑内採掘に使用される。運搬機械10は、坑道Rにおいて積荷を運搬する作業機械の一種であり、積込機械30は、運搬機械10に積荷を積み込む作業機械の一種である。本実施形態においては、ブロックケービング工法により鉱石が採掘される。
ブロックケービング工法とは、鉱山Mの鉱体(鉱脈)MGに鉱石MRの採掘場所(以下、適宜ドローポイントという)DPと、採掘された鉱石を搬送するための坑道Rとを設置し、そのドローポイントDPの上部をアンダーカットして発破し、鉱石MRを自然崩落させることによって、そのドローポイントDPから鉱石MRを採掘する工法をいう。ドローポイントDPは、鉱体MGの内部又は鉱体MGの下方Dに設置される。ブロックケービング工法は、岩盤又は鉱体の下部をアンダーカットすると、脆弱な岩が自然崩壊を始める性質を利用した工法である。鉱体MGの内部又は下方Dから鉱石MRが採掘されると、崩落が上部まで伝播する。このため、ブロックケービング工法を用いると、鉱体MGの鉱石MRを効率よく採掘することができる。ブロックケービング工法において、通常、ドローポイントDPは複数設けられる。
本実施形態においては、地上に管理装置3が配置される。管理装置3は、地上又は坑内の管理施設内に設置される。このように、管理装置3は、原則として移動を考慮していないものである。管理装置3は、採掘現場を管理する。管理装置3は、無線通信装置4及びアンテナ4Aを備える通信システムを介して、運搬機械10及び積込機械30を含む坑内の作業機械と通信可能である。本実施形態において、運搬機械10及び積込機械30は、無人で稼働する作業機械であるが、オペレーターの操作により稼働する有人の作業機械であってもよい。
<坑内MIについて>
図2は、坑内MIの一例及び鉱山の管理システムを示す模式図である。図3は、図2の一部を拡大した図である。これらの図に示すように、鉱脈MGの下方Dに設置された坑道Rは、第1坑道DRと、第2坑道CRとを含む。坑道Rは、例えば、鉱体MGの内部又は鉱体MGの下方Dに設置される。本実施形態において、坑内MIには、第1坑道DR及び第2坑道CRは、それぞれ複数存在する。第2坑道CRは、それぞれのドローポイントDPと第1坑道DRとを接続する。積込機械30は、第2坑道CRを通ってドローポイントDPに接近することができる。本実施形態において、坑道Rは第3坑道TRを含む。本実施形態において、複数(この例では2本)の第3坑道TRが、複数の第1坑道DRと接続されている。以下において、第1坑道DRを適宜ドリフトDRといい、第2坑道CRを適宜クロスカットCRといい、第3坑道TRを適宜外周路TRという。
図2は、坑内MIの一例及び鉱山の管理システムを示す模式図である。図3は、図2の一部を拡大した図である。これらの図に示すように、鉱脈MGの下方Dに設置された坑道Rは、第1坑道DRと、第2坑道CRとを含む。坑道Rは、例えば、鉱体MGの内部又は鉱体MGの下方Dに設置される。本実施形態において、坑内MIには、第1坑道DR及び第2坑道CRは、それぞれ複数存在する。第2坑道CRは、それぞれのドローポイントDPと第1坑道DRとを接続する。積込機械30は、第2坑道CRを通ってドローポイントDPに接近することができる。本実施形態において、坑道Rは第3坑道TRを含む。本実施形態において、複数(この例では2本)の第3坑道TRが、複数の第1坑道DRと接続されている。以下において、第1坑道DRを適宜ドリフトDRといい、第2坑道CRを適宜クロスカットCRといい、第3坑道TRを適宜外周路TRという。
図2に示すように、坑内MIには、2本の外周路TRが設置されている。それぞれの外周路TRは、クロスカットCRのようにはドローポイントDPによって分断されていない。1本の外周路TRは、複数のドリフトDRのそれぞれの一端部を接続し、もう1本の外周路TRは、複数のドリフトDRのそれぞれの他端部を接続する。このように、すべてのドリフトDRは、2本の外周路TRと接続されている。本実施形態においては、運搬機械10及び積込機械30は、いずれのドリフトDRであっても一方の外周路TRから進入することができる。図3に示す例において、運搬機械10及び積込機械30は、ドリフトDR内を矢印FCの方向に進行する。
図2及び図3に示すように、運搬機械10に対する積込機械30による積込作業が行われる積込位置LPは、クロスカットCR又はその近傍に定められる。ドローポイントDP及び積込位置LPを含む領域を、積込場所LA、と称してもよい。
図2に示すように、坑内MIには、運搬機械10によって運搬された積荷としての鉱石MRが排出される排土場所(オアパス)DPが設けられる。運搬機械10は、ドローポイントDP近傍の積込場所LAにおいて積込機械30により積荷としての鉱石MRを積み込まれた後、ドリフトDRを走行して、オアパスOPまで移動する。運搬機械10は、到着したオアパスOPに積荷としての鉱石MRを排出する。
本実施形態において、図2及び図3に示す運搬機械10は、走行用の電動機と、この電動機に電力を供給する蓄電器とを有する。外周路TRには、空間SPが接続されている。外周路TRと接続する空間SPには、運搬機械10に搭載された蓄電器を交換する蓄電器交換装置EXが設置される。蓄電器交換装置EXは、蓄電器14を充電する機能も有している。
以下の説明においては、便宜上、運搬機械10が走行する坑道Rの路面とXY平面とが実質的に平行であることとする。なお、実際には、坑道Rの路面は、凹凸を有していたり、上り坂及び下り坂を有していたりする場合が多い。
図2に示す鉱山の管理システム1は、管理装置3と、無線通信用のアンテナ4Aとを含む。管理装置3は、例えば、坑内MIで稼働する運搬機械10及び積込機械30の運行を管理する。運行の管理には、運搬機械10及び積込機械30の配車、運搬機械10及び積込機械30の稼働状態に関する情報(以下、適宜稼働情報という)の収集及びその管理等が含まれる。稼働情報は、例えば、運搬機械10及び積込機械30の稼働時間、走行距離、蓄電器の残量、異常の有無、異常の箇所、積載量等が含まれる。稼働情報は、主として運搬機械10及び積込機械30の運転評価、予防保全及び異常診断等に用いられる。したがって、稼働情報は、鉱山Mの生産性向上又は鉱山Mのオペレーションの改善といったニーズに応えるために有用である。
管理装置3は、後述するように通信装置を備えている。アンテナ4Aを備えた無線通信装置4は、この通信装置と接続されている。管理装置3は、例えば、通信装置、無線通信装置4及びアンテナ4Aを介して、坑内MIで稼働する運搬機械10及び積込機械30との間で情報をやり取りする。鉱山の管理システム1が備える管理装置3は、前述したように運搬機械10及び積込機械30の運行を管理する。
本実施形態において、積込機械30は、走行用の電動機によって走行し、電動機によって掻き込み装置を駆動して鉱石MRを掘削する。図3に示すように、これらの電動機に積込機械30の外部から電力を供給する給電ケーブル5が坑内MIの坑道Rに設けられている。積込機械30は、例えば、積込場所LAに設けられた電力供給装置としての給電用のコネクタ6及び積込機械30からの電力ケーブル7を介して、給電ケーブル5からの電力の供給を受ける。前述した電力供給装置は、ドリフトDR又はクロスカットCRのいずれか一方に設けられていればよい。本実施形態において、積込機械30は、外部から供給される電力によって走行及び掘削の少なくとも一方を行ってもよい。また、積込機械30は、蓄電器を搭載し、この蓄電器から電力の供給を受けて走行及び掘削の少なくとも一方を行ってもよい。また、積込機械30は、蓄電器を搭載し、この蓄電器から電力の供給を受けて走行及び掘削の少なくとも一方を行ってもよい。すなわち、積込機械30は、外部から供給される電力及び蓄電器から供給される電力の少なくとも一方によって、走行及び掘削の少なくとも一方を行う。例えば、積込機械30は、外部から供給される電力によって掘削を行い、蓄電器から供給される電力によって走行することができる。また、積込機械30は、クロスカットCR内を走行する場合は、外部から供給される電力により走行してもよい。本実施形態において、積込機械30は、電動機によって油圧ポンプを駆動して油圧を発生させ、この油圧によって油圧モータを駆動することにより、鉱石MRを掘削してもよい。また、積込機械30は、蓄電器を備え、この蓄電器から供給される電力により走行し、掘削してもよい。
給電ケーブル5と積込機械30からの電力ケーブル7との接続は、コネクタ6に限定されるものではない。例えば、坑道R側に設けられ、かつ給電ケーブル5と接続された電極と、積込機械30側からの電力ケーブル7に接続された電極とを電力供給装置として用い、両方の電極を接触させて、給電ケーブル5から積込機械30に電力を供給してもよい。このようにすると、両方の電極の位置決め精度が低くても両者を接触させて電力を積込機械30に供給することができる。本実施形態では、積込機械30は電力で動作するものとしたが、このようなものには限定されない。積込機械30は、例えば、内燃機関によって走行したり鉱石MRを掘削したりするものであってもよい。この場合、積込機械30は、内燃機関によって油圧ポンプを駆動し、油圧ポンプから吐出される作動油によって、例えば、油圧モータ又は油圧シリンダ等を駆動することにより走行したり、鉱石MRを掘削したりしてもよい。
<鉱石MRの掘削及び運搬>
図4及び図5は、積込機械30による地山RMの鉱石MRの掘削及び運搬機械10への鉱石MRの積込を示す図である。積込場所LAは、ドローポイントDPに鉱石MRの地山RMが形成される。図4及び図5に示すように、積込機械30は、積込場所LAのクロスカットCR内に設置されて、先端部が鉱石MRの地山RMに貫入してこれを掘削する。積込機械30は、掘削した鉱石MRを、地山RMとは反対側であって、ドリフトDR内に待機している運搬機械10に積載する。ドリフトDR内には、積込機械30に電力を供給する給電ケーブル5が設けられている。
図4及び図5は、積込機械30による地山RMの鉱石MRの掘削及び運搬機械10への鉱石MRの積込を示す図である。積込場所LAは、ドローポイントDPに鉱石MRの地山RMが形成される。図4及び図5に示すように、積込機械30は、積込場所LAのクロスカットCR内に設置されて、先端部が鉱石MRの地山RMに貫入してこれを掘削する。積込機械30は、掘削した鉱石MRを、地山RMとは反対側であって、ドリフトDR内に待機している運搬機械10に積載する。ドリフトDR内には、積込機械30に電力を供給する給電ケーブル5が設けられている。
図4及び図5に示すように、積込機械30は、車体30BDと、搬送装置としてのフィーダー31と、掘削装置としての回転ローラー33と、回転ローラー33を支持する支持機構32と、走行装置34とを含む。回転ローラー33と支持機構32とは、鉱石MRを掘削してフィーダー31に送り込む掻き込み装置として機能する。
支持機構32は、車体30BDに対して、起伏方向に揺動可能に設けられている。起伏方向は、車体30BDの上下方向である。支持機構32は、車体30BDに取り付けられる第1部材としてのブーム32aと、これに連結されて揺動し、かつ回転ローラー33を回転可能に支持する第2部材としてのアーム32bとを有する。積込機械30の車体30BDは、鉱石MRの地山RMに貫入する貫入部材35と、回転体36と、岩石ガード37とを備える。貫入部材35は、鉱石MRの掘削時に地山RMに貫入する。回転体36は、積込機械30の貫入部材35が地山RMに貫入するときに回転して、貫入を補助する。
運搬機械10は、車体10Bと、ベッセル11とを含む。ベッセル11は、車体10Bに搭載される。ベッセル11は、鉱石MRを積荷として積載する。本実施形態において、ベッセル11は、図4及び図5に示すように、車体10Bの幅方向W、すなわち車軸と平行な方向に移動する。ベッセル11は、運搬機械10の走行時には車体10Bの幅方向中央に設置される。また、ベッセル11は、鉱石MRの積載時において、車体10Bの幅方向外側に移動する。その結果、運搬機械10は、ベッセル11を積込機械30のフィーダー31の下方Dに接近させることができるので、フィーダー31によって搬送された鉱石MRがベッセル11外に落下する可能性を低減し、鉱石MRをベッセル11内に確実に落下させることができる。
本実施形態では、図4及び図5に示すように、積込機械30は鉱石MRの掘削及び掘削した鉱石MRを運搬機械10に搬送しこれに積載する。運搬機械10は、積載された鉱石MRを、図2に示すオアパスOPまで搬送し、ここに排出する。このとき、積込機械30は、運搬機械10が走行する空間をドリフトDR内に残した状態でクロスカットCRに留まって、ドローポイントDPで鉱石MRを掘削する。そして、積込機械30は、掘削した鉱石MRをドローポイントDPから離れる方向に搬送して、運搬機械10に積み込む。積込機械30は、掘削した鉱石MRを積載した状態では移動しない。運搬機械10は、ドローポイントDPで採掘された鉱石MRを積載し、ドリフトDRを走行して図2に示すオアパスOPまで運搬する。
このように、本実施形態において、鉱山の管理システム1は、積込機械30には鉱石MRの掘削及び積込のみを行わせ、運搬機械10には鉱石MRの運搬のみを行わせるようにして、両者の機能を分離している。このため、積込機械30は掘削作業及び搬送作業に専念でき、運搬機械10は運搬作業に専念できる。すなわち、積込機械30は鉱石MRを運搬する機能を有していなくてもよく、運搬機械10は鉱石MRの掘削及び搬送する機能を有していなくてもよい。積込機械30は、掘削及び搬送の機能に特化でき、運搬機械10は鉱石MRの運搬の機能に特化できるので、それぞれの機能を最大限発揮させることができる。結果として、鉱山の管理システム1は、鉱山Mの生産性を向上させることができる。
<鉱山の管理システム1の管理装置3>
図6は、鉱山の管理システム1が備える管理装置3の機能ブロック図の一例である。管理装置3は、処理装置3Cと、記憶装置3Mと、入出力部(I/O)3IOとを含む。さらに、管理装置3は、入出力部3IOに、出力装置としての表示装置8と、入力装置9と、通信装置3Rとが接続されている。管理装置3は、例えば、コンピュータである。処理装置3Cは、例えば、CPU(Central Processing Unit)である。記憶装置3Mは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ若しくはハードディスクドライブ等又はこれらを組み合わせたものである。入出力部3IOは、処理装置3Cと、処理装置3Cの外部に接続する表示装置8、入力装置9及び通信装置3Rとの情報の入出力(インターフェース)に用いられる。
図6は、鉱山の管理システム1が備える管理装置3の機能ブロック図の一例である。管理装置3は、処理装置3Cと、記憶装置3Mと、入出力部(I/O)3IOとを含む。さらに、管理装置3は、入出力部3IOに、出力装置としての表示装置8と、入力装置9と、通信装置3Rとが接続されている。管理装置3は、例えば、コンピュータである。処理装置3Cは、例えば、CPU(Central Processing Unit)である。記憶装置3Mは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ若しくはハードディスクドライブ等又はこれらを組み合わせたものである。入出力部3IOは、処理装置3Cと、処理装置3Cの外部に接続する表示装置8、入力装置9及び通信装置3Rとの情報の入出力(インターフェース)に用いられる。
処理装置3Cは、運搬機械10及び積込機械30の配車並びにこれらの稼働情報の収集等といった管理装置3の処理を実行する。配車及び稼働情報の収集等の処理は、処理装置3Cがそれぞれに対応するコンピュータプログラムを記憶装置3Mから読み込んで実行することにより実現される。
記憶装置3Mは、処理装置3Cに各種の処理を実行させるための各種のコンピュータプログラムを記憶している。本実施形態において、記憶装置3Mが記憶しているコンピュータプログラムは、例えば、運搬機械10及び積込機械30の配車をするためのコンピュータプログラム、運搬機械10及び積込機械30の稼働情報を収集するためのコンピュータプログラム、稼働情報等に基づいて各種解析を実現するコンピュータプログラム等である。
表示装置8は、例えば、液晶ディスプレイ等であり、運搬機械10及び積込機械30の配車をしたり、稼働情報を収集したりする際に必要な情報を表示する。入力装置9は、例えば、キーボード、タッチパネル又はマウス等であり、運搬機械10及び積込機械30の配車をしたり、これらの稼働情報を収集したりする際に必要な情報を入力する。通信装置3Rは、アンテナ4Aを備えた無線通信装置4と接続されている。前述したように、無線通信装置4及びアンテナ4Aは坑内MIに設置される。通信装置3Rと無線通信装置4とは有線で接続される。通信装置3Rと坑内MIの運搬機械10及び積込機械30とは、例えば、無線LAN(Local Aria Network)によって通信することができる。次に、運搬機械10について、より詳細に説明する。
<運搬機械10>
図7は、本実施形態に係る運搬機械10の斜視図である。図8は、本実施形態に係る運搬機械10の側面図である。運搬機械10は、車体10Bと、ベッセル11と、車輪12A、12Bとを含む。さらに、運搬機械10は、蓄電器としての蓄電器14と、アンテナ15と、撮像装置16A、16Bと、非接触センサ17A、17Bとを有している。車輪12A、12Bは、車体10Bの前後にそれぞれ取り付けられる。本実施形態において、車輪12A、12Bは、図8に示す、車体10B内に搭載された電動機13A、13Bによって駆動される。このように、運搬機械10は、すべての車輪12A、12Bが駆動輪となる。また、本実施形態において、車輪12A、12Bは、それぞれ操舵輪となる。本実施形態において、車輪12A、12Bは、例えば、ソリッドタイヤである。このようにすることで、車輪12A、12Bが小径となるので、運搬機械10の高さが抑制される。運搬機械10は、車輪12Aから車輪12Bの方向及び車輪12Bから車輪12Aの方向のいずれにも走行することができる。車輪12A、12Bは、ソリッドタイヤに限定されるものではなく、例えば、空気入りタイヤ等であってもよい。また、車輪12A、12Bのうち、一方のみが駆動輪であってもよい。
図7は、本実施形態に係る運搬機械10の斜視図である。図8は、本実施形態に係る運搬機械10の側面図である。運搬機械10は、車体10Bと、ベッセル11と、車輪12A、12Bとを含む。さらに、運搬機械10は、蓄電器としての蓄電器14と、アンテナ15と、撮像装置16A、16Bと、非接触センサ17A、17Bとを有している。車輪12A、12Bは、車体10Bの前後にそれぞれ取り付けられる。本実施形態において、車輪12A、12Bは、図8に示す、車体10B内に搭載された電動機13A、13Bによって駆動される。このように、運搬機械10は、すべての車輪12A、12Bが駆動輪となる。また、本実施形態において、車輪12A、12Bは、それぞれ操舵輪となる。本実施形態において、車輪12A、12Bは、例えば、ソリッドタイヤである。このようにすることで、車輪12A、12Bが小径となるので、運搬機械10の高さが抑制される。運搬機械10は、車輪12Aから車輪12Bの方向及び車輪12Bから車輪12Aの方向のいずれにも走行することができる。車輪12A、12Bは、ソリッドタイヤに限定されるものではなく、例えば、空気入りタイヤ等であってもよい。また、車輪12A、12Bのうち、一方のみが駆動輪であってもよい。
ベッセル11は、車体10Bの上方に搭載されて、車体10Bに支持される。車体10Bには、電動機13A、13Bに電力を供給するための蓄電器14が搭載される。本実施形態において、蓄電器14の外形は、直方体状である。蓄電器14は、車体10Bの前後にそれぞれ1個ずつ搭載される。このようにすることで、運搬機械10は、前後の質量のバランスが均等に近くなるので、安定して走行することができる。蓄電器14は、車体10Bに対して着脱可能に搭載される。蓄電器14から供給される電力によって、運搬機械10が有する電動機13A、13B及び電子機器が作動する。本実施形態においては、運搬機械10は電動としているが、内燃機関が動力源であってもよい。
車体10Bには、アンテナ15と、撮像装置16A、16Bと、非接触センサ17A、17Bとが取り付けられる。アンテナ15は、図6に示すアンテナ4A及び通信装置3Rを介して、管理装置3と無線通信する。撮像装置16A、16Bは、ベッセル11に積載された積荷、本実施形態では図3及び図4等に示す鉱石MRの状態(荷姿)を撮影する。撮像装置16A、16Bは、例えば、可視光を撮像するカメラであってもよいし、赤外線を撮像する赤外線カメラであってもよい。撮像装置16A、16Bは、それぞれ車体10Bの上面に取り付けられた支持柱16AS、16BSの先端に取り付けられる。このような構造により、それぞれの撮像装置16A、16Bは、ベッセル11の全体を上方から撮像することができるので、ベッセル11に積載された鉱石MRの状態を確実に撮像することができる。
非接触センサ17A、17Bは、車体10Bの前後にそれぞれ取り付けられる。非接触センサ17A、17Bは、運搬機械10の周囲、特に進行方向側に存在する物体を非接触で検出する。非接触センサ17A、17Bは、例えば、レーダー装置が用いられる。非接触センサ17A、17Bは、電波又は超音波等を発射して、物体で反射した電波を受信して、物体との相対的な距離及び方位を検出可能である。非接触センサ17A、17Bは、レーダー装置に限定されるものではない。非接触センサ17A、17Bは、例えば、レーザスキャナ、及び3次元距離センサの少なくとも1つを含んでもよい。
運搬機械10は、車体10Bの前後に、それぞれ撮像装置としての周辺監視カメラ17CA、17CBを備えている。周辺監視カメラ17CA、17CBは、車体10Bの周囲、特に前方を撮像して、車体10Bの周囲に存在する物体の形状を検出する。
車体10Bは、前後の間に凹部10BUを有している。凹部10BUは、車輪12Aと車輪12Bとの間に配置される。ベッセル11は、積込機械30によって積荷としての鉱石MRが積み込まれる部材である。ベッセル11の少なくとも一部は、凹部10BUに配置される。
本実施形態において、車体10Bの前後方向において車体10Bの中心部AXの一方側に配置される車体10Bの一部分と他方側に配置される車体10Bの一部分とは対称(前後対称)である。また、車体10Bの前後方向において車体10Bの中心部AXの一方側に配置されるベッセル11の一部分と他方側に配置されるベッセル11の一部分とは対称(前後対象)である。また、車体10B及びベッセル11は、平面視において、車体10Bの前後方向の中心軸に対して対称(左右対称)である。
ベッセル11は、底面11Bと、底面11Bと接続する4個の側面11SF、11SR、11SA、11SBとを含む。側面11SA、11SBは、底面11Bから垂直に立ち上がっている。側面11SF、11SRは、底面11Bに対してそれぞれ車輪12A、12B側に傾斜している。底面11Bと、4個の側面11SF、11SR、11SA、11SBとによって凹部11Uが形成される。凹部11Uには、積荷としての鉱石MRが積載される。車体10Bの凹部10BUは、ベッセル11の外形に沿った形状を有する。次に、ベッセル11の支持構造について説明する。
図9は、本実施形態に係る運搬機械10が備えるベッセル11の支持構造を示す図である。図10は、本実施形態に係る運搬機械10の上面図である。図11は、本実施形態に係る運搬機械10がベッセルを傾斜させた状態を示す図である。ベッセル11は、テーブル11Tの上面に、ベッセル11を昇降させるアクチュエータとしての油圧シリンダ(ホイストシリンダ)11Cbを介して載置されている。
テーブル11Tは、車体10Bの凹部10BUの上面に設けられた一対の支持体11R、11Rを介して車体10Bに支持されている。支持体11Rは、車体10Bの幅方向Wに延在する棒状の部材である。それぞれの支持体11R、11Rは、テーブル11Tの車体10Bと対向する部分に設けられた一対の溝11TU、11TUに嵌め合わされている。溝11TU、11TUは、支持体11Rが延在する方向、すなわち、車体10Bの幅方向Wに向かって設けられている。このような構造により、テーブル11Tは、支持体11R、11Rに沿って移動する。すなわち、テーブル11Tは、運搬機械10の車体10Bの幅方向Wに向かって移動することができる。
テーブル11Tと車体10Bとの間には、テーブル11Tを車体10Bの幅方向Wに移動させるためのアクチュエータとして、油圧シリンダ(スライド用シリンダ)11Caが取り付けられている。油圧シリンダ11Caが伸縮することにより、テーブル11Tは、車体10Bの幅方向Wの両側に移動する。テーブル11Tにはベッセル11が取り付けられているので、図10に示すように、ベッセル11も、テーブル11Tとともに車体10Bの幅方向Wの両側に移動することができる。
積込機械30から鉱石MRがベッセル11に積載されるときには、図5に示すように、ベッセル11が積込機械30側に移動する。このようにすることで、運搬機械10は、鉱石MRを確実にベッセル11に積載することができる。また、ベッセル11の一方に鉱石MRが偏って積載された場合、運搬機械10は、ベッセル11を車体10Bの幅方向Wに往復運動させることにより、鉱石MRをベッセル11の全体に分散させ、鉱石MRの偏りを抑制することができる。
ベッセル11は、油圧シリンダ11Cbが伸縮することにより昇降する。図11は、油圧シリンダ11Cbが伸びてベッセル11が傾いた状態を示している。ベッセル11は、図11に示すように、車体10Bの幅方向Wの一方側の軸線Zbを中心として揺動する。軸線Zbは、テーブル11Tに含まれており、かつ車体10Bの前後方向と平行である。油圧シリンダ11Cbが伸びると、ベッセル11は、軸線Zbとは反対側が高くなり、車体10Bの凹部10BUから突出する。その結果、ベッセル11が傾斜し、軸線Zb側の蓋11CVが開いて、軸線Zb側から鉱石MRが排出される。油圧シリンダ11Cbが縮むと、ベッセル11は車体10Bの凹部10BUに収まる。蓋11CVは、図示しないリンク機構により、ベッセル11が昇降する動作に連動する。
本実施形態では、ベッセル11は車体10Bの幅方向Wの一方側に存在する軸線Zbのみを中心として揺動するが、これに限定されない。例えば、ベッセル11は、車体10Bの一方側の軸線Zbに加え、他方側に存在し、かつ車体10Bの前後方向と平行なもう1つの軸線を中心として揺動してもよい。このようにすれば、運搬機械10は、車体10Bの幅方向Wの両側から鉱石MRを排出することができる。
図12は、運搬機械10が備える制御装置70を示すブロック図の一例である。運搬機械10が備える制御装置70は、運搬機械10の走行及びベッセル11の幅方向における移動及び昇降を制御する。制御装置70は、処理装置71と記憶装置72とを備える。処理装置71には、撮像装置16A、16B、非接触センサ17A、17B、周辺監視カメラ17CA、17CB、質量センサ18、読取装置19、測域センサ20、ジャイロセンサ21、速度センサ22、加速度センサ23、駆動制御装置24、通信装置25及び記憶装置72等が接続されている。
撮像装置16A、16B及び周辺監視カメラ17CA、17CBは、CCD又はCMOSのような撮像素子を含み、物体の光学像を取得して、その物体の外形を検出可能である。本実施形態において、撮像装置16A、16B及び周辺監視カメラ17CA、17CBの少なくとも一方は、ステレオカメラを含み、物体の3次元の外形データを取得可能である。撮像装置16A、16B及び周辺監視カメラ17CA、17CBは、撮像した結果を処理装置71に出力する。処理装置71は、撮像装置16A、16Bの検出結果を取得し、これに基づいて、ベッセル11における鉱石MRの状態に関する情報を取得する。本実施形態において、ベッセル11に積載された鉱石MRの外形は、レーザスキャナー及び3次元距離センサの少なくとも1つを用いて検出されてもよい。
非接触センサ17A、17Bは、処理装置71と接続され、検出結果を処理装置71に出力する。非接触センサ17A、17Bは、取得した結果を処理装置71に出力する。質量センサ18は、ベッセル11及びベッセル11に積載された鉱石MRの質量を検出する。ベッセル11の質量は予め分かっているので、質量センサ18の検出結果からベッセル11の質量を減算すれば、ベッセル11に積載された鉱石MRの質量が得られる。質量センサ18は、処理装置71と接続されており、検出結果を処理装置71に出力する。処理装置71は、質量センサ18の検出結果に基づいて、ベッセル11に積み込まれた鉱石MRの質量及びベッセル11に鉱石MRが積載されているか否かに関する情報を求める。質量センサ18は、例えば、ベッセル11とテーブル11Tとの間に設けられるひずみゲージ式ロードセルでもよいし、油圧シリンダ11Cbの油圧を検出する圧力センサであってもよい。
読取装置19は、ドリフトDRに設けられたマークの識別情報(固有情報)を検出する。マークは、ドリフトDRに沿って複数配置されている。マークは、バーコード及び2次元コードのような識別子(コード)でもよいし、ICタグ又はRFIDのような識別子(タグ)でもよい。読取装置19は、処理装置71と接続され、検出結果を処理装置71に出力する。
測域センサ20は、運搬機械10の車体10Bの外側、例えば、前方及び後方に取り付けられて、運搬機械10の周囲における空間の物理的な形状データを取得して出力する。ジャイロセンサ21は、運搬機械10の方位(方位変化量)を検出し、検出結果を処理装置71に出力する。速度センサ22は、運搬機械10の走行速度を検出し、検出結果を処理装置71に出力する。加速度センサ23は、運搬機械10の加速度を検出し、検出結果を処理装置71に出力する。駆動制御装置24は、例えば、マイクロコンピュータである。駆動制御装置24は、処理装置71からの指令に基づき、走行用の電動機13A、13B、制動システム13BS、操舵システム13SS及び油圧ポンプ13Pを駆動する電動機13Cの動作を制御する。油圧ポンプ13Pは、油圧シリンダ11Ca、11Cbに作動油を供給する装置である。本実施形態において、運搬機械10は、走行用の電動機13A、13Bによって走行するが、これに限定されない。例えば、運搬機械10は、油圧ポンプ13Pから吐出される作動油によって駆動する油圧モータによって走行してもよい。制動システム13BS及び操舵システム13SSも、電動であってもよいし、油圧を利用して動作するものであってもよい。
本実施形態において、ドリフトDRにおいてマークが配置されている位置(絶対位置)に関する情報は、事前に測定された既知な情報である。マークの絶対位置に関する情報は、記憶装置72に記憶されている。処理装置71は、運搬機械10に設けられている読取装置19で検出したマークの検出結果(マークの識別情報)と、記憶装置72の記憶情報とに基づいて、ドリフトDRにおける運搬機械10の絶対位置を求めることができる。
測域センサ20は、空間の物理的な形状データを出力可能な走査型の光波距離計を含む。測域センサ20は、例えば、レーザスキャナー及び3次元距離センサの少なくとも1つを含み、2次元又は3次元の空間データを取得し、出力することができる。測域センサ20は、積込機械30及びドリフトDRの壁面の少なくとも一方を検出する。本実施形態において、測域センサ20は、積込機械30の形状データ、ドリフトDRの壁面の形状データ及びベッセル11の積荷の形状データの少なくとも1つを取得可能である。また、測域センサ20は、積込機械30との相対位置(相対的な距離及び方位)及びドリフトDRの壁面との相対位置の少なくとも一方を検出可能である。測域センサ20は、検出した情報を処理装置71に出力する。
本実施形態において、ドリフトDRの壁面に関する情報が予め求められており、記憶装置72に記憶されている。すなわち、ドリフトDRの壁面に関する情報は、事前に測定された既知の情報である。ドリフトDRの壁面に関する情報は、壁面の複数の部分におけるそれぞれの形状に関する情報及びそれら壁面の部分それぞれの絶対位置に関する情報を含む。記憶装置72には、壁面の複数の部分の形状と、その形状を有する壁面の部分におけるそれぞれの絶対位置との関係が記憶されている。処理装置71は、運搬機械10に設けられている測域センサ20が検出したドリフトDRの壁面の検出結果(壁面の形状データ)と、記憶装置72の記憶情報とに基づいて、ドリフトDRにおける運搬機械10の絶対位置及び方位を求めることができる。
処理装置71は、読取装置19及び測域センサ20の少なくとも一方を用いて導出された運搬機械10の現在位置(絶対位置)に基づいて、坑内MIの決められた経路(目標経路)にしたがって運搬機械10が走行するように、ドリフトDRを走行する運搬機械10を制御する。
処理装置71は、例えば、CPUを含むマイクロコンピュータである。処理装置71は、非接触センサ17A、17B、読取装置19及び測域センサ20等の検出結果に基づいて、駆動制御装置24を介して走行用の電動機13A、13B、制動システム13BS及び車輪12A、12Bの操舵システム13SSを制御する。そして、処理装置71は、所定の走行速度及び加速度で、前述した目標経路にしたがって運搬機械10を走行させる。
記憶装置72は、RAM、ROM、フラッシュメモリ及びハードディスクドライブの少なくとも1つを含み、処理装置71と接続される。記憶装置72は、処理装置71が運搬機械10を自律走行させるために必要なコンピュータプログラム及び各種の情報を記憶している。通信装置25は、処理装置71と接続され、積込機械30に搭載された通信装置及び管理装置3の少なくとも一方との間でデータ通信する。
本実施形態において、運搬機械10は、無人車両であり、自律走行が可能である。通信装置25は、管理装置3及び積込機械30の少なくとも一方から送信された情報(指令信号を含む)を受信可能である。また、通信装置25は、撮像装置16A、16B、周辺監視カメラ17CA、17CB、速度センサ22及び加速度センサ23等が検出した情報を管理装置3及び積込機械30の少なくとも一方に送信可能である。運搬機械10は、周辺監視カメラ17CA、17CB及び非接触センサ17A、17Bの少なくとも一方が取得した運搬機械10の周辺の情報を管理装置3に送信し、この周辺の情報を基に、オペレーターが運搬機械10を遠隔操作することもできる。このように、運搬機械10は、自律走行のみならず、オペレーターの操作によっても走行し、ベッセル11をスライド及び昇降させることができる。
例えば、速度センサ22及び加速度センサ23等が検出した情報を取得した管理装置3は、この情報を運搬機械10の稼働情報として、例えば、記憶装置3Mに蓄積する。また、周辺監視カメラ17CA、17CBが撮像した情報を管理装置3が取得した場合、オペレーターは、周辺監視カメラ17CA、17CBが撮像した運搬機械10の周辺の画像を視認しながら、運搬機械10を操作することもできる。さらに、質量センサ18が検出したベッセル11の鉱石MRの質量に関する情報を取得した積込機械30は、この情報に基づいて、ベッセル11への鉱石MRの積載量を制御することもできる。次に、積込機械30について説明する。
<積込機械30>
図13は、本実施形態に係る積込機械30の側面図である。図14は、本実施形態に係る積込機械30の上面図である。図15は、本実施形態に係る積込機械30の正面図である。図16は、本実施形態に係る積込機械30が備える回転ローラー33を示す斜視図である。図17は、本実施形態に係る積込機械30が備える貫入部材35を示す斜視図である。図18-1及び図18-2は、変形例に係る貫入部材35a、35bを示す斜視図である。
図13は、本実施形態に係る積込機械30の側面図である。図14は、本実施形態に係る積込機械30の上面図である。図15は、本実施形態に係る積込機械30の正面図である。図16は、本実施形態に係る積込機械30が備える回転ローラー33を示す斜視図である。図17は、本実施形態に係る積込機械30が備える貫入部材35を示す斜視図である。図18-1及び図18-2は、変形例に係る貫入部材35a、35bを示す斜視図である。
図13は、積込機械30が地山RMの鉱石MRを掘削し、掘削した鉱石MRを搬送する状態を示している。積込機械30は、クロスカットCR内で鉱石MRの地山RMを掘削し、掘削した鉱石MRを図7及び図8等に示す運搬機械10のベッセル11に積載する。積込機械30の車体30BDには、フィーダー31と、支持機構32と、走行装置34と、貫入部材35と、回転体36と、岩石ガード37とが取り付けられる。貫入部材35が設けられている側が積込機械30の前方であり、貫入部材35が設けられている側とは反対側が積込機械30の後方である。なお、積込機械30は、回転体36及び岩石ガード37を備えていなくてもよい。
フィーダー31は、地山RMから鉱石MRを積み込んで、ドローポイントDPの地山RMから離れる方向に搬送した後、排出する。すなわち、フィーダー31は、積込機械30の前方で積み込まれた鉱石MRを後方に向かって搬送し、後方から排出する。フィーダー31は、例えば、無端の搬送体として搬送ベルトを用い、これを一対のローラーに掛け回して回転させることにより、積込側31Fから排出側31Eに鉱石MRを搬送する。積込側31Fは、地山RM側であり、排出側31Eは積込側31Fとは反対側である。図14に示すように、フィーダー31は、幅方向Wの両側に、一対のガイド31G、31Gが設けられている。一対のガイド31G、31Gは、フィーダー31から搬送途中の鉱石MRが脱落することを抑制する。幅方向Wは、フィーダー31が鉱石MRを搬送する方向Fと直交する方向であり、フィーダー31が備える一対のローラーの回転中心軸と平行な方向である。フィーダー31の幅方向Wは、車体30BDの幅方向でもある。フィーダー31は、排出側31Eに、鉱石MRを運搬機械10のベッセル11内に導くためのガイド39を備えている。フィーダー31は、車体30BDの前方、すなわちフィーダー31の積込側31Fの軸線を中心として揺動する。フィーダー31は、地面Gに対する角度αを変更することができる。角度αは、フィーダー31が備える一対のローラーの回転中心軸を結ぶ直線LCと、地面Gとのなす角度である。
フィーダー31に鉱石MRを積み込むのは、回転ローラー33である。回転ローラー33は、フィーダー31の積込側31F、すなわちフィーダー31の前方で回転しながら鉱石MRをフィーダー31に送り込む。このため、鉱石MRの掘削時において、回転ローラー33は、ブーム32aとアーム32bとを備える支持機構32によってフィーダー31の積込側31Fに設置される。回転ローラー33は、所定の軸線Zrの周りを回転する回転部材33D及び回転部材33Dの外周部に設けられて鉱石MRと接触して掘削する接触部材33Sとを有する。
本実施形態において、接触部材33Sは、図16に示すように、回転部材33Dからその径方向外側に突出し、かつ回転部材33Dの周方向に沿って所定の間隔で設けられた複数の板状部材である。接触部材33Sの板面と平行な平面は、軸線Zrとは直交しない。本実施形態において、接触部材33Sの板面と平行な平面は、軸線Zrと平行になっている。接触部材33Sは、先端部、すなわち回転部材33D側とは反対側の端部に、板状の部材33BBが設けられている。板状の部材33BBは、掘削時における回転ローラー33の回転方向(図16の矢印で示す方向)に向かって、接触部材33Sの先端から延びている。このような構造により、掘削時において、回転ローラー33の板状の部材33BBは、掘削対象である地山RMに食い込む。その結果、地山RMから鉱石MRを効率よく掘削することができる。
接触部材33Sは、板状の部材33BBを有していなくてもよい。本実施形態において、接触部材33Sの数は4個であるが、これに限定されるものではなく、2個、3個又は5個以上であってもよい。接触部材33Sの数は、積込機械30が掘削する鉱石MRの大きさ及び種類の少なくとも1つによって、適宜変更することができる。
回転ローラー33が回転することにより、接触部材33Sは、上方Uに位置する場合にフィーダー31から遠ざかり、下方Dに位置する場合にフィーダー31に近づく。この動きによって、複数の接触部材33Sは、地山RMから鉱石MRを掘削してフィーダー31に送り込む。複数の接触部材33Sは、回転部材33Dとともに回転しているので、連続して鉱石MRを掘削して、フィーダー31に送り込むことができる。
回転ローラー33を回転可能に支持する支持機構32は、車体30BDに取り付けられるブーム32aと、ブーム32aに連結されるアーム32bとを有する。ブーム32aは、例えば、ピンとしてのシャフト38Aを介して積込機械30の車体30BDに取り付けられて、シャフト38Aを中心として車体30BDに対して揺動する。アーム32bは、例えば、ピンとしてのシャフト38Bを介してブーム32aの車体30BDとは反対側の端部と連結されて、ブーム32aに対してシャフト38Bを中心として揺動する。アーム32bは、ブーム32aと連結されている端部とは反対側の端部で、回転ローラー33を回転可能に支持する。ブーム32a及びアーム32bは、例えば、アクチュエータとしての油圧シリンダによって駆動されて揺動してもよいし、電動機又は油圧モータによって駆動されて揺動してもよい。
ブーム32aは、車体30BDに対して第1の軸線Zaの周りを揺動し、アーム32bは、第1の軸線Zaと平行な軸線Za’の周りを揺動する。第1の軸線Zaは、ブーム32aと車体30BDとを連結するシャフト38Aの中心軸であり、第1の軸線Zaと平行な軸線Za’は、ブーム32aとアーム32bとを連結するシャフト38Bの中心軸である。本実施形態において、アーム32bは、さらに、第1の軸線Zaと直交する第2の軸線と平行な軸線の周りを揺動してもよい。このようにすると、回転ローラー33が移動できる範囲が大きくなるので、掘削作業の自由度が向上する。
ブーム32aは、車体30BDの幅方向Wの両側、本実施形態においてはフィーダー31の幅方向Wの両側に設けられた一対の棒状部材(第1棒状部材)である。アーム32bは、それぞれのブーム32aに連結された一対の棒状部材(第2棒状部材)である。図14に示すように、一対のアーム32bは、両者の間に回転ローラー33を支持している。本実施形態において、一対のブーム32aは、梁32Jによって連結されている。このような構造により、支持機構32の剛性が向上するので、鉱石MRの掘削時には、支持機構32が回転ローラー33を確実に地山RMに押し付けることができるので、鉱石MRの掘削効率の低下が抑制される。また、一対のアーム32bを棒状又は板状の部材で連結してもよい。このようにすれば、支持機構32の剛性がさらに向上するのでより好ましい。
支持機構32は、ブーム32aが車体30BDに対して揺動し、アーム32bがブーム32aに対して揺動することにより、回転ローラー33が移動する。支持機構32は、回転ローラー33を移動させることにより、回転ローラー33とフィーダー31及び車体30BDとの相対的な位置関係を変更することができる。また、支持機構32は、回転ローラー33を移動させることによって、地山RMの異なる位置を掘削したり、回転ローラー33を地山RMからフィーダー31に向かって移動させることにより地山RMから鉱石MRをフィーダー31側に掻き込んだりすることができる。また、例えば、積込機械30の走行中、前方に物体が存在して走行の妨げとなっている場合において、支持機構32は、回転ローラー33を用いて物体をフィーダー31に向かって掻き込んでからフィーダー31に送り込むことにより、積込機械30の進行方向前方の物体を取り除くこともできる。
本実施形態において、回転ローラー33は、図14に示すように、アーム32bの先端部に取り付けられた電動機33Mによって回転する。回転ローラー33を駆動させる装置は電動機33Mに限定されるものではなく、例えば、油圧モータであってもよい。また、電動機33Mが取り付けられる箇所はアーム32bの先端部に限定されるものではない。
車体30BDには、これを走行させる走行装置34が取り付けられている。走行装置34は、車体30BDの幅方向両側に設けられた一対の履帯34Cと、車体30BDの幅方向両側に設けられた一対の駆動輪34Dと、車体30BDの幅方向両側に設けられた一対の従動輪34Sとを含む。駆動輪34Dと従動輪34Sとに履帯34Cが掛け回されている。それぞれの駆動輪34Dは、別個に独立して駆動される。本実施形態において、積込機械30は、それぞれの駆動輪34Dに走行用の電動機を備えている。このような構造により、一対の履帯34C、34Cは、別個独立に駆動される。
フィーダー31の積込側31Fには、貫入部材35が設けられる。貫入部材35は、フィーダー31の積込側31Fに取り付けられてもよいし、フィーダー31の積込側31Fに取り付けられてもよい。貫入部材35は、図17に示すように、錐体の形状をした部材であり、本実施形態では四角錐の形状である。貫入部材35は、長方形(正方形を含む)の底面35Bと、底面35Bにつながる4個の側面35Sを有している。4個の側面35Sのうちの1つが、地面Gと対向する。本例では、符号35Uで示す側面35Sが地面Gと対向する。側面35Sは、いずれも三角形である。底面35Bが、図13に示す車体30BDの前方に取り付けられる。すなわち、貫入部材35は、錐体の頂部35Pが車体30BDの前方になるように、車体30BDに取り付けられる。このようにすることで、積込機械30が地山RMに貫入するときには、貫入部材35が頂部35Pから地山RMに貫入する。
貫入部材35の形状は、四角錐の形状に限定されるものではなく、例えば、図18-1に示す、変形例に係る貫入部材35aのように、三角錐の形状であってもよい。この貫入部材35aは、三角形の底面35Baと、底面35Baにつながる3個の側面35Saを有している。側面35Saは、いずれも三角形である。3個の側面35Saのうちの1つが、地面Gと対向する。本例では、符号35Uaで示す側面35Saが地面Gと対向する。底面35Baが、図13に示す車体30BDの前方に取り付けられることにより、錐体の頂部35Paが車体30BDの前方になる。
図18-2に示す貫入部材35bは、地山RMに貫入する第1の板状部材35Tと、第1の板状部材35Tの板面と交差(本実施形態では直交するが、これに限定されない)して第1の板状部材35Tに取り付けられ、かつフィーダー31の積込側31Fに設けられる第2の板状部材35Fと、を含む。この貫入部材35bは、形状が錐体ではなく、2枚の板状部材を組み合わせた断面がL字形状の部材なので、製造が比較的容易である。貫入部材35、35a、35bは、例えば、複数の鋼板を溶接したり、鋳鋼を用いて鋳造されたりすることによって製造される。貫入部材35、35a、35bの材料及び製法は、このようなものに限定されない。
貫入部材35は、積込機械30の掘削時において、錐体の頂部から地山RMに貫入して、地山RMを突き崩す。貫入部材35が地山RMに貫入する場合、走行装置34は、フィーダー31及び貫入部材35が取り付けられた車体30BDを前方に走行させ、かつフィーダー31を動作させながら貫入部材35を地山RMに貫入させる。このとき、フィーダー31は、上方の搬送ベルトが積込側31Fから排出側31Eに向かって移動する。すなわち、貫入部材35の貫入時において、フィーダー31の上方の搬送ベルトは、鉱石MRの搬送方向と同一の方向に動作する。積込機械30は、貫入時において、このようにフィーダー31を動作させることで、フィーダー31の駆動力を貫入に利用できるので、地山RMにより深く貫入することができる。
貫入部材35、35a及び35bは、往復運動してもよい。この場合、貫入部材35、35a及び35bが往復運動する方向は、積込機械30の車体30BDの上下方向、幅方向、前後方向及び前後方向軸と平行な軸線周りにおける回転方向の少なくとも1方向であればよい。車体30BDの前後方向軸と平行な軸線周りにおける回転方向は、車体30BDの前後方向における軸線と平行な軸線の周りに貫入部材35、35a及び35bが回転する場合の方向である。貫入部材35、35a及び35bが地山RMに貫入した状態で往復運動すると、貫入部材35、35a及び35bは、地山RMを揺動させて地山RMから積込機械30に向かう鉱石MRの流れを作り出すことができる。その結果、積込機械30は、地山RMから鉱石MRを効率よく掘削することができる。貫入部材35、35a及び35bを往復運動させるための装置は、例えば、油圧シリンダ又はエアシリンダが用いられる。
貫入部材35を積込機械30の車体30BDの上下方向に往復運動させる一例を説明する。図17に示される貫入部材35は、側面35Uに油圧シリンダが車体30BDの上下方向に沿って取り付けられる。貫入部材35が地山RMに貫入すると、クロスカットCR内の地面Gと貫入部材35の側面35Uとが対向するので、側面35Uに取り付けられた油圧シリンダは、地面Gと側面35Uとの間に介在する。この状態で油圧シリンダを伸縮させると、貫入部材35は、積込機械30の車体30BDの上下方向に往復運動する。貫入部材35を上下方向に往復運動させる方法はこの例に限定されない。貫入部材35a及び35bも同様である。
貫入部材35、35a及び35bが往復運動するタイミングは、例えば、回転ローラー33の掘削時であってもよいし、回転ローラー33からフィーダー31に送られる鉱石MRの量が予め定められた閾値を下回ったときであってもよいし、回転ローラー33による掘削開始後かつ予め定められた周期毎であってもよい。貫入部材35、35a及び35bが往復運動するときに、回転ローラー33及びフィーダー31は停止していてもよいし、動いていてもよいし、一方が動いて他方が停止していてもよい。貫入部材35、35a及び35bが往復運動するときに回転ローラー33及びフィーダー31を停止させると、積込機械30のエネルギー消費が低減できる。貫入部材35、35a及び35bが往復運動するときに回転ローラー33及びフィーダー31の少なくとも一方が動いていると、これらの動きを利用して鉱石MRの流れを形成することができる。
貫入部材35、35a及び35bが往復運動する場合、積込機械30の車体30BDの上下方向又は前後方向の少なくとも一方に往復運動することが好ましい。このようにすれば、地山RMに貫入した貫入部材35、35a及び35bは、地山RMから積込機械30に向かう鉱石MRの流れを作り出しやすくなる。貫入部材35、35a及び35bは、積込機械30の車体30BDの上下方向及び前後方向に往復運動することにより、貫入部材35、35a及び35bは、地山RMから積込機械30に向かう鉱石MRの流れをさらに作り出しやすくなる。貫入部材35、35a及び35bは、さらに積込機械30の車体30BDの幅方向に往復運動してもよいし、積込機械30の車体30BDの幅方向のみに往復運動してもよい。また、貫入部材35、35a及び35bは、車体30BDの前後方向の軸線と平行な軸線の周りに回転し、かつ回転方向が切り替えられる往復運動をしてもよい。
貫入部材35、35a及び35bが、積込機械30の車体30BDの上下方向及び前後方向に往復運動する場合、貫入部材35、35a及び35bは、上下方向の往復運動と前後向の往復運動とを異なるタイミングで別個に実行してもよいし、同時に実行してもよい。貫入部材35、35a及び35bが往復運動する場合、往復運動の周期及びストロークは、地山RM又は鉱石MRの種類等に応じて適宜設定される。貫入部材35、35a及び35bの往復運動の周期及びストロークは少なくとも一方が可変であってもよい。貫入部材35、35a及び35bの往復運動は、車体30BDとの取付部分を中心として回動する往復運動であってもよいし、貫入部材35、35a及び35b全体が上下方向、幅方向及び前後方向の少なくとも1方向と平行に移動する往復運動であってもよい。
積込機械30が備える貫入部材は、前述した貫入部材35、35a及び35bには限定されない。貫入部材は、例えば、積込機械30の前後方向の寸法が幅方向の寸法よりも大きい部材を複数備えていてもよい。この場合、貫入部材は櫛歯状であってもよい。貫入部材をこのような構造とすることで、貫入部材は地山RMに貫入しやすくなる。
車体30BDの幅方向両側、すなわち、フィーダー31の搬送方向と直交する方向における両側には、一対の回転体36が設けられる。一対の回転体36は、走行装置34の前方であってフィーダー31の積込側31Fに配置される。回転体36は、所定の軸線周りを回転するドラム36Dの周囲に複数の羽根36Bが所定の間隔で設けられた構造体である。回転体36は、例えば、電動機によって駆動される。回転体36は、フィーダー31を駆動する電動機によって駆動されてもよい。この場合、フィーダー31の駆動と回転体36の駆動とをクラッチ等で切り替えられるようにしてもよい。例えば、クラッチを係合させた場合にはフィーダー31と回転体36とが同時に回転し、クラッチを開放するとフィーダー31のみが回転するようにすることができる。
回転体36は、貫入部材35が地山RMに貫入するときには、積込機械30の車体30BDを地面Gに押し付ける方向に回転する。具体的には、回転体36は、地山RM側の羽根36Bが下方Dから上方Uに向かうように、また、走行装置34側の羽根36Bが上方Uから下方Dに向かうように回転する。このようにすることで、回転体36は、地山RM側の羽根36Bが地山RMに接触すると、車体30BDの前方を下方Dに向かって押し下げるので、走行装置34の履帯34Cが地面Gに対してより強く押し付けられる。その結果、履帯34Cと地面Gとの間の摩擦力が増加するので、走行装置34は、貫入部材35を地山RMに貫入させやすくなる。積込機械30の地山RMへの貫入が終了し、回転ローラー33による掘削及びフィーダー31による積み込みが開始されるときには、回転体36の回転は停止する。
回転体36と走行装置34の履帯34Cとの間には、岩石ガード37が設けられる。本実施形態において、岩石ガード37は、車体30BDに取り付けられている。岩石ガード37は、例えば、掘削中に回転ローラー33から飛来する鉱石MRから走行装置34を保護したり、積込機械30の走行時において坑道内に存在する岩石等から走行装置34を保護したりする。岩石ガード37によって、走行装置34の耐久性低下が抑制される。
本実施形態において、車体30BDは、車体30BDの幅方向外側に向かって伸びて、ドローポイントDPにつながるクロスカットCRの壁面CRWに押し付けられる固定装置30Fを有する。本実施形態では、固定装置30Fを車体30BDの幅方向両側にそれぞれ1個ずつ、対向するように設けてあるが、固定装置30Fの数及び設置箇所はこれに限定されるものではない。例えば、固定装置30Fは、車体30BDの上方に設けられていてもよい。本実施形態において、固定装置30Fは、例えば、油圧シリンダ30FCと、油圧シリンダ30FCのピストンの先端に設けられた押付部材30FPとを有する。積込機械30の掘削時及び鉱石MRの搬送時において、固定装置30Fは、積込機械30をクロスカットCR内に固定する。具体的には、固定装置30Fは、油圧シリンダ30FCを伸ばして押付部材30FPを壁面CRWに押し付けることにより、これらを介してクロスカットCR内に積込機械30の車体30BDを固定する。このようにすることで、積込機械30が地山RMを掘削するときに発生する反力は、固定装置30Fを介してクロスカットCRが受けることができる。その結果、積込機械30は、姿勢が安定するので、安定して地山RMを掘削することができる。固定装置30Fと車体30Bとの間に油圧シリンダを設け、固定装置30FをクロスカットCRの壁面CRWに固定した後に、油圧シリンダの駆動力を利用して車体を貫入させてもよい。
車体30BDの幅方向両側又は上方に固定装置30Fを設ける場合、積込機械30の貫入時には、固定装置30Fによる固定は解除される。本実施形態では、油圧シリンダ30FCが縮んだ状態となり、押付部材30FPが壁面CRWを押さないようになる。積込機械30の掘削時において、固定装置30Fが動作して、積込機械30をクロスカットCR内に固定する。掘削中、積込機械30が地山RMに対してさらに貫入したり、地山RMから遠ざかったりする場合には、固定装置30Fによる固定が解除された後に、走行装置34が積込機械30を移動させる。
図13に示すように、固定装置30Fを車体30BDの後方、すなわち、フィーダー31の排出側31Eに設け、クロスカットCR内の地面Gから突出させた反力受けTGと車体30BDとの間に固定装置30Fを介在させて、前述した反力を受けてもよい。掘削時においては、積込機械30の前後方向の反力が大きいが、このような構造にすることにより、より効果的に掘削時の反力を受けることができる。また、積込機械30は、固定装置30Fを伸ばすことにより、掘削時における積込機械30の位置の調整をすることもできる。なお、積込機械30は、固定装置30Fを備えていなくてもよい。
本実施形態において、積込機械30は、フィーダー31に鉱石MRが積み込まれる部分(積込側31F)と、フィーダー31から鉱石MRが排出される部分(排出側31E)との間に、鉱石MRの排出と排出の停止とを切り替える切替機構80が設けられる。切替機構80は、支持体81と、蓋82と、蓋82を開閉するアクチュエータとしての油圧シリンダ83とを含む。支持体81は、図15に示すように、一端部が車体30BDの幅方向両側、具体的にはフィーダー31の幅方向両側に取り付けられる2本の脚部81Rと、2本の脚部81Rの他端部でこれらを連結する連結部81Cとを含む、門型の部材である。2本の脚部81Rと連結部81Cとで囲まれる部分を、鉱石MRが通過する。
蓋82は、板状の部材であり、2本の脚部81Rと連結部81Cとで囲まれる部分に設けられる。蓋82は、支持体81の連結部81C側に存在する所定の軸線Zg周りを回動する。蓋82と支持体81の連結部81Cとの間には、油圧シリンダ83が設けられる。油圧シリンダ83が伸縮することにより、蓋82は、2本の脚部81Rと連結部81Cとで囲まれる部分を開閉する。蓋82が開くことによって、2本の脚部81Rと連結部81Cとで囲まれる部分を鉱石MRが通過する。蓋82が閉じることによって、鉱石MRは、2本の脚部81Rと連結部81Cとで囲まれる部分を通過しない。このようにすることで、積込機械30は、フィーダー31からの鉱石MRの排出量を調整することができる。
本実施形態において、積込機械30は、情報収集装置40を備える。情報収集装置40は、車体30BDの積込側31F、すなわち前方に取り付けられる。より具体的には、情報収集装置40が情報を収集する部分が、車体30BDの積込側31F、すなわち前方を向いて取り付けられる。情報収集装置40は、3次元の空間データを取得し、出力する装置である。情報収集装置40は、地山RMの鉱石MRの状態に関する情報としての鉱石情報を取得する。鉱石情報は、地山RMの3次元の空間データである。本実施形態において、鉱石情報は、地山RMの鉱石MRの状態に関する情報の他、車体30BDの積込側31F、すなわち前方の情報も含んでもよい。すなわち、本実施形態において、鉱石情報は、車体30BDの積込側31F、すなわち前方の状態を示す情報である。
情報収集装置40は、例えばカメラ、ステレオカメラ、レーザスキャナー又は3次元距離センサ等である。情報収集装置40が情報を収集する部分は、カメラ又はステレオカメラの場合はレンズ、レーザスキャナー及び3次元距離センサの場合は受光部である。本実施形態において、情報収集装置40としては、ステレオカメラが用いられる。本実施形態において、積込機械30は、3個の情報収集装置40を支持機構32の梁32Jに取り付けている。すなわち、複数の情報収集装置40は、車体30Bの幅方向において複数箇所に設置される。このようにすることで、積込機械30は、1つの情報収集装置40の撮像対象がアーム32bに隠れる場合でも、他の情報収集装置40によって撮像対象の鉱石情報を得ることができる。
本実施形態において、積込機械30が備える制御装置は、情報収集装置40が収集した鉱石情報を用いて積込機械30の動作を制御する。例えば、前述した制御装置は、情報収集装置40が取得した鉱石情報に基づいて、フィーダー31、回転ローラー33、支持機構32及び走行装置34の少なくとも1つを制御する。このようにすることで、積込機械30は、地山RM及び鉱石MRの状態に応じて柔軟に動作することができるので、例えば、鉱山Mの生産効率が向上する。
本実施形態において、積込機械30は、車体30BDの排出側31E、すなわち後方に情報収集装置41を備える。より具体的には情報収集装置41が情報を収集する部分が、車体30BDの排出側31E、すなわち後方を向いて取り付けられる。情報収集装置41は、前述した情報収集装置40と同様に、3次元の空間データを取得し、出力する装置である。情報収集装置41は、図4及び図5に示す運搬機械10のベッセル11に積載された鉱石MRの状態に関する情報としての積荷情報を取得する。積荷情報は、、鉱石MRの3次元の空間データである。
情報収集装置41は、前述した情報収集装置40と同様に、例えばカメラ、ステレオカメラ、レーザスキャナー又は3次元距離センサ等である。情報収集装置41が情報を収集する部分は、カメラ又はステレオカメラの場合はレンズ、レーザスキャナー及び3次元距離センサの場合は受光部である。本実施形態において、情報収集装置41としては、ステレオカメラが用いられる。本実施形態において、積込機械30は、2個の情報収集装置41をフィーダー31の幅方向両側に取り付けている。すなわち、複数の情報収集装置41は、車体30Bの幅方向において複数箇所に設置される。このようにすることで、積込機械30は、1つの情報収集装置41の撮像対象が坑道の影等に隠れる場合でも、他の情報収集装置41によって撮像対象の鉱石情報を得ることができる。
本実施形態において、積込機械30が備える制御装置は、情報収集装置41が収集した積荷情報を用いて積込機械30及び運搬機械10の少なくとも一方を制御する。例えば、前述した制御装置は、情報収集装置41が取得した積荷情報に基づいて、回転ローラー33、フィーダー31又は切替機構80等の動作を制御したり、運搬機械10が備えるベッセル11の位置又はベッセル11の運動を制御したりする。このようにすることで、積込機械30は、運搬機械10のベッセル11に積載された鉱石MRの状態に応じて、鉱石MRの搬送量を変更したり、ベッセル11の位置を調整したりすることができるので、例えば、鉱山Mの生産効率が向上する。
図19は、本実施形態に係る積込機械30が走行するときの姿勢を示す図である。積込機械30が走行する場合、フィーダー31が地面Gに対する角度αは、積込機械30が鉱石MRを掘削及び搬送する場合(図13参照)と比較して小さくなる。すなわち、フィーダー31が備える一対のローラーの回転中心軸を結ぶ直線LCは、地面Gに対してより平行に近くなる。このようにすると、積込機械30の前方、すなわち進行方向側に配置されるフィーダー31の積込側31Fが地面Gと離れるので、積込機械30の走行時にフィーダー31と地面Gとが干渉する可能性が低減される。本実施形態においては、貫入部材35も、フィーダー31に連動して移動する。すなわち、積込機械30が走行する場合、フィーダー31の積込側31Fが地面Gから離れると、貫入部材35も地面から離れる。その結果、積込機械30の走行時に貫入部材35と地面Gとが干渉する可能性が低減される。
図19に示すように、積込機械30が走行する場合、支持機構32は折り畳まれる。そして、回転ローラー33は、積込機械30が鉱石MRを掘削及び搬送する場合(図13参照)と比較して、よりフィーダー31に近い位置に移動する。図19に示す例において、例えば、実線で示す回転ローラー33の位置が走行時の位置であり、例えば、2点鎖線で示す回転ローラー33の位置が積込機械30の掘削時の位置である。このように、本実施形態においては、積込機械30の走行装置34がフィーダー31等を含む車体30BDを走行させる際には、鉱石MRの掘削時よりフィーダー31の排出側31Eに回転ローラー33が配置される。すなわち、回転ローラー33は、積込機械30の移動時において、より車体30BD側に配置される。このため、積込機械30は、重心から車体30BDの前後方向に離れた位置に存在していた回転ローラー33が、より重心に近い位置に移動することになるので、前後の質量のバランスが向上する。その結果、積込機械30は、安定して走行することができる。回転ローラー33の走行時における位置及び掘削時における位置は、この例に限定されるものではない。
図20は、本実施形態に係る積込機械30が備える制御装置75を示すブロック図の一例である。積込機械30が備える制御装置75は、フィーダー31、支持機構32、回転ローラー33、走行装置34、回転体36及び切替機構80を制御する。制御装置75は、処理装置76と記憶装置77とを備える。処理装置76には、情報収集装置40に対応する前方撮像装置40C、情報収集装置41に対応する後方撮像装置41C、非接触センサ42、読取装置43、測域センサ44、ジャイロセンサ45、速度センサ46、加速度センサ47、駆動制御装置48、通信装置52及び記憶装置77等が接続されている。非接触センサ42、読取装置43、測域センサ44は、積込機械30の車体30BDの外部に取り付けられる。
前方撮像装置40C及び後方撮像装置41Cは、CCD又はCMOSのような撮像素子を含み、物体の光学像を取得して、その物体の外形を検出可能である。本実施形態において、前方撮像装置40C及び後方撮像装置41Cは、ステレオカメラを含み、物体の3次元の外形データを取得可能である。前方撮像装置40C及び後方撮像装置41Cは、撮像した結果を処理装置76に出力する。処理装置76は、前方撮像装置40Cの検出結果を取得し、これに基づいて前述した鉱石情報を得る。また、処理装置76は、後方撮像装置41Cの検出結果を取得し、これに基づいて前述した積荷情報を得る。本実施形態において、地山RMの鉱石MRの外形及びベッセル11に積載された鉱石MRの外形は、レーザスキャナー及び3次元距離センサの少なくとも1つを用いて検出されてもよい。
非接触センサ42は、積込機械30の周囲に存在する物体を検出する。非接触センサ42は、処理装置76と接続され、検出結果を処理装置76に出力する。読取装置43は、ドリフトDR又はクロスカットCRに設けられたマークの識別情報(固有情報)を検出する。マークは、ドリフトDR又はクロスカットCRに沿って複数配置されている。読取装置43は、処理装置76と接続され、検出結果を処理装置76に出力する。マークは、バーコード及び2次元コードのような識別子(コード)でもよいし、ICタグ又はRFIDのような識別子(タグ)でもよい。
本実施形態において、ドリフトDR又はクロスカットCRにおいてマークが配置されている位置(絶対位置)に関する情報は、事前に測定された既知な情報である。マークの絶対位置に関する情報は、記憶装置77に記憶されている。処理装置76は、積込機械30に設けられている読取装置43で検出したマークの検出結果(マークの識別情報)と、記憶装置77の記憶情報とに基づいて、ドリフトDR又はクロスカットCRにおける積込機械30の絶対位置を求めることができる。
測域センサ44は、空間の物理的な形状データを取得して出力する。ジャイロセンサ45は、積込機械30の方位(方位変化量)を検出し、検出結果を処理装置76に出力する。速度センサ46は、積込機械30の走行速度を検出し、検出結果を処理装置76に出力する。加速度センサ47は、積込機械30の加速度を検出し、検出結果を処理装置76に出力する。駆動制御装置48は、例えば、マイクロコンピュータである。駆動制御装置48は、処理装置76からの指令に基づき、図13に示す回転ローラー33を駆動する電動機33M、走行装置34が備える電動機48L、48R、支持機構32のブーム32aを揺動させる電動機49、アーム32bを揺動させる電動機50、フィーダー31を駆動する電動機51F、回転体36を回転させる電動機51R、油圧ポンプ85を駆動する電動機86の動作を制御する。油圧ポンプ85は、切替機構80が備える油圧シリンダ83、フィーダー31の姿勢を変更するアクチュエータとしての油圧シリンダ87及び固定装置30Fの油圧シリンダ30FCに作動油を供給する装置である。ブーム32a及びアーム32bは、油圧シリンダによって揺動させられてもよい。この場合、ブーム32aを揺動させるブームシリンダ及びアーム32bを揺動させるアームシリンダには、油圧ポンプ85から作動油が供給される。電動機48Lは、図13に示す一方の履帯34Cを駆動し、電動機48Rは、他方の履帯34Cを駆動する。
本実施形態において、積込機械30は、走行装置34が備える電動機48L、48Rによって走行するが、これに限定されない。例えば、積込機械30は、油圧ポンプ85から吐出される作動油によって駆動する油圧モータによって走行してもよい。また、支持機構32のブーム32a及びアーム32b、回転ローラー33及び回転体36並びにフィーダー31も、油圧ポンプ85から吐出される作動油によって駆動する油圧シリンダ又は油圧モータによって駆動されてもよい。
測域センサ44は、空間の物理的な形状データを出力可能な走査型の光波距離計を含む。測域センサ44は、例えば、レーザスキャナー及び3次元距離センサの少なくとも1つを含み、3次元の空間データを取得し、出力することができる。測域センサ44は、運搬機械10、ドリフトDR及びクロスカットCRの壁面の少なくとも1つを検出する。本実施形態において、測域センサ44は、運搬機械10の形状データ、ドリフトDR又はクロスカットCRの壁面の形状データ及び運搬機械10が備えるベッセル11の積荷の形状データの少なくとも1つを取得可能である。また、測域センサ44は、運搬機械10との相対位置(相対的な距離及び方位)及びドリフトDR又はクロスカットCRの壁面との相対位置の少なくとも一方を検出可能である。測域センサ44は、検出した情報を処理装置76に出力する。
本実施形態において、ドリフトDR及びクロスカットCRの壁面に関する情報が予め求められており、記憶装置77に記憶されている。すなわち、ドリフトDRの壁面に関する情報は、事前に測定された既知の情報である。ドリフトDRの壁面に関する情報は、壁面の複数の部分におけるそれぞれの形状に関する情報及びそれら壁面の部分それぞれの絶対位置に関する情報を含む。記憶装置77には、壁面の複数の部分の形状と、その形状を有する壁面の部分におけるそれぞれの絶対位置との関係が記憶されている。処理装置76は、積込機械30に設けられている測域センサ44が検出したドリフトDRの壁面の検出結果(壁面の形状データ)と、記憶装置77の記憶情報とに基づいて、ドリフトDRにおける積込機械30の絶対位置及び方位を求めることができる。
処理装置76は、読取装置43及び測域センサ44の少なくとも一方を用いて導出された積込機械30の現在位置(絶対位置)に基づいて、坑内MIの決められた経路(目標経路)にしたがって積込機械30が走行するように、ドリフトDR又はクロスカットCRを走行する積込機械30を制御する。このとき、処理装置76は、積込機械30が指定されたドローポイントDPに配置されるように、これを制御する。
処理装置76は、例えば、CPUを含むマイクロコンピュータである。処理装置76は、前方撮像装置40C、後方撮像装置41C、非接触センサ42、読取装置43等の検出結果に基づいて、駆動制御装置48を介して走行装置34が備える電動機48L、48Rを制御する。そして、処理装置76は、所定の走行速度及び加速度で、前述した目標経路にしたがって積込機械30を走行させる。
記憶装置77は、RAM、ROM、フラッシュメモリ及びハードディスクドライブの少なくとも1つを含み、処理装置76と接続される。記憶装置77は、処理装置76が積込機械30を自律走行させるために必要なコンピュータプログラム及び各種の情報を記憶している。通信装置52は、処理装置76と接続され、運搬機械10に搭載された通信装置及び管理装置3の少なくとも一方との間でデータ通信する。
本実施形態において、積込機械30は、無人車両であり、自律走行が可能である。通信装置52は、管理装置3及び運搬機械10の少なくとも一方から送信された情報(指令信号を含む)を、アンテナ53を介して受信可能である。また、通信装置52は、前方撮像装置40C、後方撮像装置41C、非接触センサ42、読取装置43、測域センサ44、ジャイロセンサ45、速度センサ46及び加速度センサ47等が検出した情報を管理装置3及び運搬機械10の少なくとも一方に、アンテナ53を介して送信可能である。積込機械30は、自律走行が可能な無人車両に限定されない。例えば、管理装置3が、前方撮像装置40Cが撮像した画像を取得して図6に示す表示装置8に表示し、オペレーターは、表示された画像を視認しながら積込機械30の掘削、積込及び走行を遠隔操作により制御してもよい。また、管理装置3が、後方撮像装置41Cが撮像した画像を取得して図6に示す表示装置8に表示し、オペレーターは、表示された画像を視認しながら積込機械30の掘削及び積込並びに運搬機械10のベッセル11の動作を遠隔操作により制御してもよい。
例えば、速度センサ46及び加速度センサ47等が検出した情報を取得した管理装置3は、この情報を積込機械30の稼働情報として、例えば、記憶装置3Mに蓄積する。また、前方撮像装置40C又は後方撮像装置41Cが撮像した情報を管理装置3が取得した場合、オペレーターは、前方撮像装置40C又は後方撮像装置41Cが撮像した積込機械30の周辺の画像を視認しながら、積込機械30を操作することもできる。さらに、後方撮像装置41Cが検出したベッセル11の鉱石MRの質量に関する情報を取得した運搬機械10は、この情報に基づいて、ベッセル11への鉱石MRの積載量又はベッセル11の位置を制御することもできる。本実施形態において、積込機械30は、電動であるが、内燃機関が動力源であってもよい。次に、積込機械30の制御例を説明する。
<積込機械30の制御例>
本実施形態において、図6に示す管理装置3が、積込機械30が配置されるドローポイントDPを決定し、積込機械30は、管理装置3の決定したドローポイントDPに移動して、鉱石MRを掘削する。図20に示す制御装置75は、アンテナ53及び通信装置52を介して管理装置3からの指令を受信し、指定されたドローポイントDPに移動する。また、制御装置75は、ドローポイントDPにおける生産量(採掘量)、現在位置及び積込機械30の状態に関する情報等を、積込機械30の稼働情報として、管理装置3に送信する。まず、積込機械30が、管理装置3によって決定されたドローポイントDPに進入し、鉱石MRを掘削して運搬機械10に鉱石MRを積み込み、その後、他のドローポイントDPに向かう一連の動作に関する制御を説明する。
本実施形態において、図6に示す管理装置3が、積込機械30が配置されるドローポイントDPを決定し、積込機械30は、管理装置3の決定したドローポイントDPに移動して、鉱石MRを掘削する。図20に示す制御装置75は、アンテナ53及び通信装置52を介して管理装置3からの指令を受信し、指定されたドローポイントDPに移動する。また、制御装置75は、ドローポイントDPにおける生産量(採掘量)、現在位置及び積込機械30の状態に関する情報等を、積込機械30の稼働情報として、管理装置3に送信する。まず、積込機械30が、管理装置3によって決定されたドローポイントDPに進入し、鉱石MRを掘削して運搬機械10に鉱石MRを積み込み、その後、他のドローポイントDPに向かう一連の動作に関する制御を説明する。
(ドローポイントDPへの進入及び他のドローポイントDPへの移動)
図21から図28は、積込機械30がドローポイントDPに進入し、鉱石を掘削した後、他のドローポイントDPに向かう一連の動作を説明するための図である。積込機械30が備える制御装置75は、図6に示す管理装置3から、鉱石MRの掘削及び積み込みを実行するドローポイントDPの情報を取得する。積込機械30は、図21に示すように、ドリフトDRを矢印FCで示す方向に走行し、目的のドローポイントDPまで移動する。このとき、制御装置75は、積込機械30の姿勢を図19に示す走行時の姿勢とする。積込機械30の走行時において、制御装置75は、フィーダー31、回転ローラー33及び回転体36を停止させている。
図21から図28は、積込機械30がドローポイントDPに進入し、鉱石を掘削した後、他のドローポイントDPに向かう一連の動作を説明するための図である。積込機械30が備える制御装置75は、図6に示す管理装置3から、鉱石MRの掘削及び積み込みを実行するドローポイントDPの情報を取得する。積込機械30は、図21に示すように、ドリフトDRを矢印FCで示す方向に走行し、目的のドローポイントDPまで移動する。このとき、制御装置75は、積込機械30の姿勢を図19に示す走行時の姿勢とする。積込機械30の走行時において、制御装置75は、フィーダー31、回転ローラー33及び回転体36を停止させている。
積込機械30は、目的のドローポイントDPの位置に到着したら、図22に示すように、目的のドローポイントDPが存在するクロスカットCRと現在走行中のドリフトDRとの交差点で方向転換する。このとき、制御装置75は、走行装置34、より具体的には、図20に示す電動機48L、48Rの回転速度を制御して、積込機械30を方向転換させる。このときも、フィーダー31、回転ローラー33及び回転体36は停止している。
次に、積込機械30は、交差点でドローポイントDPの地山RMに貫入する準備をする。制御装置75は、積込機械30の姿勢を走行時の姿勢から貫入時及び掘削時の姿勢に変更する。貫入時及び掘削時の姿勢は、フィーダー31の積込側31F及び貫入部材35を地面Gに近づけた姿勢である。また、制御装置75は、図23に示すように、電力ケーブル7の接続装置を起動させて、ドローポイントDPに設けられている給電用のコネクタ6に電力ケーブル7を接続させる。積込機械30は、走行時には自身に搭載されている蓄電器から供給される電力によって走行するが、貫入時及び掘削時には、外部から供給される電力によって駆動されるからである。
貫入の準備が完了したら、積込機械30は、図24に示すように、クロスカットCRに進入して、クロスカットCRの奥に存在する鉱石MRの地山RMに向かって走行し、貫入部材35及びフィーダー31の積込側31Fを貫入させる。このとき、制御装置75は、回転ローラー33は停止させ、フィーダー31及び回転体36を駆動しながら積込機械30を地山RMに向かって走行させる。フィーダー31は、上部の搬送ベルトが鉱石MRの搬送方向と同一の方向に駆動され、回転体36は、羽根36Bの地山RMと対向する側が上向きになるように回転する。フィーダー31の貫入時における搬送速度は、掘削時よりも低い。
フィーダー31が搬送方向に駆動することにより、貫入時にフィーダー31に鉱石MRが載った場合、この鉱石MRは排出側31Fに搬送されるので、フィーダー31の詰まりが抑制される。また、回転体36が前述した方向に回転することにより、走行装置34の履帯34Cと地面Gとの摩擦力が増加する。その結果、積込機械30は、貫入部材35及びフィーダー31の積込側31Fを、地山RMへ確実に貫入させることができる。また、回転体36は、地山RMの鉱石MRを掻き乱すことで、鉱石MRの崩れを助長して、貫入部材35及びフィーダー31の積込側31Fを地山RMに貫入させやすくすることもできる。
貫入部材35及びフィーダー31の積込側31Fが地山RMに貫入したら、制御装置75は、固定装置30FをクロスカットCRの壁面CRWに向かって伸ばして、積込機械30をクロスカットCR内に固定する。そして、図25に示すように、運搬機械10がドローポイントDPに到着したら、積込機械30は、回転ローラー33を回転させて地山RMから鉱石MRを掘削してフィーダー31に送り込む。フィーダー31は、送り込まれた鉱石MRを排出側31Eに搬送し、排出側31Eで待機している運搬機械10のベッセル11に鉱石MRを積載する。掘削時における回転ローラー33の回転方向は、接触部材33Sの地山RMと対向する側が下向きになるように回転する。制御装置75は、支持機構32を動作させて、回転ローラー33が地山RMを掘削する位置を変更しながら掘削を続ける。このとき、制御装置75は、鉱石MRの流れ方及び鉱石の寸法等といった鉱石MRの状態に応じて、積込機械30を地山RM側に向かって進行させたり、地山RMから離れる方向に移動させたりしてもよい。固定装置30Fと車体30Bの間に油圧シリンダを設け、固定装置30FをクロスカットCRの壁面CRWに固定した後に、油圧シリンダの駆動力を利用して車体30Bを地山RMに貫入させてもよい。
積込機械30は、現在のドローポイントDPでの掘削が終了し、他のドローポイントDPに移動する場合、図26に示すように、クロスカットCRとドリフトDRとの交差点に向かって矢印FBで示す方向に後退する。この場合、制御装置75は、回転ローラー33を停止させ、フィーダー31を搬送方向とは逆方向に駆動する。このようにすることで、フィーダー31が地山RMから抜けやすくなる。回転体36は停止していてもよいが、回転体36は、貫入時とは反対方向に回転してもよい。このようにすれば、フィーダー31及び貫入部材35がより地山RMから抜けやすくなる。
図27に示すように、積込機械30がクロスカットCRとドリフトDRとの交差点に到着したら、制御装置75は、電力ケーブル7の接続装置を起動させて、ドローポイントDPに設けられている給電用のコネクタ6から電力ケーブル7を取り外す。次に、制御装置75は、積込機械30の姿勢を貫入時及び掘削行時の姿勢から走行時の姿勢に変更する。走行時の姿勢は、フィーダー31の積込側31F及び貫入部材35が、貫入時及び掘削時よりも地面Gから遠ざかった姿勢である。
その後、制御装置75は、図28に示すように、走行装置34を制御することにより積込機械30を矢印FTで示す方向に旋回させて、積込機械30の前後軸をドリフトDRが延びる方向と平行にする。この状態になったら、制御装置75は、走行装置34を制御して、ドリフトDR内において積込機械30を矢印FCで示す方向に走行させ、次のドローポイントDPに移動させる。制御装置75は、管理装置3から取得した次のドローポイントDPの位置に関する情報に基づき、積込機械30を走行させる。このような一連の動作により、積込機械30は、ドローポイントDP間を移動して、鉱石MRを掘削することができる。次に、積込機械30の掘削時における制御について説明する。
(掘削時の制御)
図29は、積込機械30の掘削時の制御を説明するための図である。積込機械30の掘削時において、制御装置75は、情報収集装置40、本実施形態では前方撮像装置40Cが取得した鉱石情報に基づいて、フィーダー31、回転ローラー33、支持機構32及び走行装置34の少なくとも1つを制御する。積込機械30が掘削する場合、前方撮像装置40Cは、回転ローラー33が地山RMの鉱石MRを掘削している状況を撮像する。前方撮像装置40Cによって撮像された画像は、鉱石情報である。
図29は、積込機械30の掘削時の制御を説明するための図である。積込機械30の掘削時において、制御装置75は、情報収集装置40、本実施形態では前方撮像装置40Cが取得した鉱石情報に基づいて、フィーダー31、回転ローラー33、支持機構32及び走行装置34の少なくとも1つを制御する。積込機械30が掘削する場合、前方撮像装置40Cは、回転ローラー33が地山RMの鉱石MRを掘削している状況を撮像する。前方撮像装置40Cによって撮像された画像は、鉱石情報である。
積込機械30の掘削時において、制御装置75は、例えば、前方撮像装置40Cによって撮像された画像を画像処理し、鉱石MRを抽出する。そして、制御装置75は、抽出した鉱石MRから、地山RMの形状、鉱石MRの寸法、鉱石MRの移動速度及び鉱石MRの移動方向等を求める。そして、制御装置75は、例えば、地山RMの形状又は形状の変化から、鉱石MRが掘削されていない部分を抽出し、支持機構32を駆動してその部分に回転ローラー33を押し当てて掘削する。また、制御装置75は、抽出した鉱石MRの動きの変化から、ドローポイントDPの上方Uにアーチングと呼ばれる鉱石MRの詰まり(鉱石詰まり)が発生していると判断した場合、支持機構32を駆動してその部分に回転ローラー33を押し当てて鉱石詰まりを解消する。
(制御例1)
鉱石情報が、地山RMからフィーダー31の積込側31Fに向かって移動する鉱石MRの流れ(以下、適宜鉱石流れという)が相対的に少ないという情報である場合、フィーダー31に送り込まれる鉱石MRが少ないことを意味する。したがって、このような場合、制御装置75は、地山RMからより多くの鉱石MRを掘削するように制御する。このため、制御装置75は、回転ローラー33を地山RMに押し付けるように支持機構32を動作させること及び回転ローラー33の回転速度を増加させることの少なくとも一方を実行する。
鉱石情報が、地山RMからフィーダー31の積込側31Fに向かって移動する鉱石MRの流れ(以下、適宜鉱石流れという)が相対的に少ないという情報である場合、フィーダー31に送り込まれる鉱石MRが少ないことを意味する。したがって、このような場合、制御装置75は、地山RMからより多くの鉱石MRを掘削するように制御する。このため、制御装置75は、回転ローラー33を地山RMに押し付けるように支持機構32を動作させること及び回転ローラー33の回転速度を増加させることの少なくとも一方を実行する。
この場合、制御装置75は、前方撮像装置40Cに、時間を異ならせて複数のタイミングで地山RMを撮像させることによって複数の画像を取得する。そして、制御装置75は、取得した複数の画像から、地山RMから積込側31Fに向かう鉱石MRの動きを求めることにより、鉱石流れを求める。制御装置75は、得られた鉱石流れに関する情報を鉱石情報として管理装置3に送信する。管理装置3は、取得した鉱石情報を記憶装置3Mに記憶し、この鉱石情報を鉱山の管理に用いる。
(制御例2)
鉱石情報が、地山RMからフィーダー31に向かう鉱石流れが相対的に多いという情報である場合、フィーダー31に送り込まれる鉱石MRが多いことを意味する。この場合、フィーダー31の搬送能力を超えた鉱石MRがフィーダー31に送り込まれると、フィーダー31にはオーバーフローが発生する可能性がある。このため、制御装置75は、回転ローラー33を地山RMから遠ざけるように支持機構32を動作させること及び回転ローラー33の回転速度を低下させることの少なくとも一方を実行する。このようにすることで、フィーダー31に送り込まれる鉱石MRの量が少なくなるので、フィーダー31にオーバーフローが発生する可能性を低減できる。
鉱石情報が、地山RMからフィーダー31に向かう鉱石流れが相対的に多いという情報である場合、フィーダー31に送り込まれる鉱石MRが多いことを意味する。この場合、フィーダー31の搬送能力を超えた鉱石MRがフィーダー31に送り込まれると、フィーダー31にはオーバーフローが発生する可能性がある。このため、制御装置75は、回転ローラー33を地山RMから遠ざけるように支持機構32を動作させること及び回転ローラー33の回転速度を低下させることの少なくとも一方を実行する。このようにすることで、フィーダー31に送り込まれる鉱石MRの量が少なくなるので、フィーダー31にオーバーフローが発生する可能性を低減できる。
制御装置75は、鉱石流れの大小で回転ローラー33を地山RMに押し付けたり離したりする他に、回転ローラー33の負荷に応じて地山RMに近づけたり離したりしてもよい。制御装置75は、回転ローラー33の負荷が高まり回転速度が低下したりトルクが過大になったりした場合は、回転ローラーを保護するために地山RMから遠ざけてもよい。
(制御例3)
鉱石情報が、ドローポイントDPに、鉱石詰まりが発生しているという情報である場合、そのドローポイントDPからは鉱石MRを採掘することができない。この場合、制御装置75は、鉱石詰まりが発生している箇所に回転ローラー33を押し付けるように支持機構32を動作させる。このようにすることで、積込機械30は、鉱石詰まりを解消して、鉱石の採掘を継続することができる。積込機械30が、鉱石詰まりの発生している箇所に回転ローラー33を押し付けてその部分を掘削しても鉱石詰まりが解消できなかった場合、制御装置75はその旨の情報を管理装置3に送信する。この情報を取得した管理装置3は、この情報を送信した積込機械30を、鉱石詰まりが解消できなかったドローポイントDPとは異なるドローポイントDPに移動させる。
鉱石情報が、ドローポイントDPに、鉱石詰まりが発生しているという情報である場合、そのドローポイントDPからは鉱石MRを採掘することができない。この場合、制御装置75は、鉱石詰まりが発生している箇所に回転ローラー33を押し付けるように支持機構32を動作させる。このようにすることで、積込機械30は、鉱石詰まりを解消して、鉱石の採掘を継続することができる。積込機械30が、鉱石詰まりの発生している箇所に回転ローラー33を押し付けてその部分を掘削しても鉱石詰まりが解消できなかった場合、制御装置75はその旨の情報を管理装置3に送信する。この情報を取得した管理装置3は、この情報を送信した積込機械30を、鉱石詰まりが解消できなかったドローポイントDPとは異なるドローポイントDPに移動させる。
(制御例4)
鉱石情報が、地山RMからフィーダー31に向かう鉱石流れが相対的に少ないという情報である場合、鉱石流れが相対的に多い場合と同様にフィーダー31が駆動されていると、無駄に電力を消費することになる。このため、制御装置75は、フィーダー31の搬送速度を低下させる。このようにすることで、電力消費を抑制することができる。鉱石情報が、地山RMからフィーダー31に向かう鉱石流れが相対的に多いという情報である場合、鉱石流れが相対的に少ない場合と同様にフィーダー31が駆動されていると、フィーダー31にはオーバーフローが発生する可能性がある。このため、制御装置75は、フィーダー31の搬送速度を増加させる。このようにすることで、フィーダー31にオーバーフローが発生する可能性を低減することができる。
鉱石情報が、地山RMからフィーダー31に向かう鉱石流れが相対的に少ないという情報である場合、鉱石流れが相対的に多い場合と同様にフィーダー31が駆動されていると、無駄に電力を消費することになる。このため、制御装置75は、フィーダー31の搬送速度を低下させる。このようにすることで、電力消費を抑制することができる。鉱石情報が、地山RMからフィーダー31に向かう鉱石流れが相対的に多いという情報である場合、鉱石流れが相対的に少ない場合と同様にフィーダー31が駆動されていると、フィーダー31にはオーバーフローが発生する可能性がある。このため、制御装置75は、フィーダー31の搬送速度を増加させる。このようにすることで、フィーダー31にオーバーフローが発生する可能性を低減することができる。
(制御例5)
鉱石情報が、地山RMにフィーダー31が搬送可能な寸法を超える鉱石MRがあるという情報である場合、フィーダー31に鉱石MRの詰まりが発生する可能性がある。このようなドローポイントDPでは、積込機械30はこれ以上鉱石MRを掘削できない。このため、制御装置75は、積込機械30が地山RMから離れる方向に移動するように、走行装置34を制御する。このようにすることで、管理装置3は、積込機械30が移動することで空いたクロスカットCRに、例えば、鉱石MRを破砕する機械を向かわせて鉱石MRを破砕させたり、積込機械30を他のドローポイントDPに移動させたりすることができる。制御装置75は、地山RMにフィーダー31が搬送可能な寸法を超える鉱石MRがあるという情報を、管理装置3に送信する。
鉱石情報が、地山RMにフィーダー31が搬送可能な寸法を超える鉱石MRがあるという情報である場合、フィーダー31に鉱石MRの詰まりが発生する可能性がある。このようなドローポイントDPでは、積込機械30はこれ以上鉱石MRを掘削できない。このため、制御装置75は、積込機械30が地山RMから離れる方向に移動するように、走行装置34を制御する。このようにすることで、管理装置3は、積込機械30が移動することで空いたクロスカットCRに、例えば、鉱石MRを破砕する機械を向かわせて鉱石MRを破砕させたり、積込機械30を他のドローポイントDPに移動させたりすることができる。制御装置75は、地山RMにフィーダー31が搬送可能な寸法を超える鉱石MRがあるという情報を、管理装置3に送信する。
(制御例6)
鉱石情報が、地山RMの鉱石MRはフィーダー31が搬送可能な寸法であるという情報である場合、制御装置75は、搬送可能な鉱石MRに回転ローラー33を押し付けるように、支持機構32を制御する。このようにすることで、積込機械30は、回転ローラー33によって地山RMを掘削し、掘削された鉱石MRをフィーダー31に送り込んで、ドローポイントDPでの鉱石MRの採掘を継続する。制御装置75は、得られた鉱石MRの寸法に関する情報を鉱石情報として管理装置3に送信する。管理装置3は、取得した鉱石情報を記憶装置3Mに記憶し、この鉱石情報を鉱山Mの管理に用いる。
鉱石情報が、地山RMの鉱石MRはフィーダー31が搬送可能な寸法であるという情報である場合、制御装置75は、搬送可能な鉱石MRに回転ローラー33を押し付けるように、支持機構32を制御する。このようにすることで、積込機械30は、回転ローラー33によって地山RMを掘削し、掘削された鉱石MRをフィーダー31に送り込んで、ドローポイントDPでの鉱石MRの採掘を継続する。制御装置75は、得られた鉱石MRの寸法に関する情報を鉱石情報として管理装置3に送信する。管理装置3は、取得した鉱石情報を記憶装置3Mに記憶し、この鉱石情報を鉱山Mの管理に用いる。
また、鉱石情報が、地山RMの鉱石MRはフィーダー31が搬送可能な寸法であるという情報である場合、制御装置75は回転ローラー33を停止させ、搬送可能な鉱石MRを回転ローラー33でフィーダー31に移動させるように、支持機構32を制御してもよい。具体的には、制御装置75は、図29に示す支持機構32のブーム32a及びアーム32bの少なくとも一方を揺動させ、回転ローラー33で鉱石MRをフィーダー31側に掻き込んでフィーダー31に送り込む。制御装置75は、地山RMの状態に応じて、回転ローラー33の回転又は支持機構32の動作のいずれか一方を選択し、鉱石MRをフィーダー31に送り込んでもよい。次に、積込機械30が坑道R、特にドリフトDRを走行するときの制御例を説明する。
(ドリフトDRを走行する際の制御)
積込機械30がドリフトDRを走行しているときにおいて、前方撮像装置40Cが、積込機械30の進行方向側に岩石等の障害物が存在するという情報を取得した場合、制御装置75は、回転ローラー33を障害物に接触させてこれを移動させるように支持機構32を制御する。制御装置75は、障害物に関する情報を管理装置3に送信する。管理装置3は、取得した情報を記憶装置3Mに記憶し、この鉱石情報を鉱山の管理に用いる。障害物に接触させるにあたって、制御装置75は、図29に示す支持機構32のブーム32a及びアーム32bの少なくとも一方を揺動させ、回転ローラー33で障害物を積込機械30の進路から排除する。この場合、制御装置75は、回転ローラー33を回転させてもよいし、回転させなくてもよい。
積込機械30がドリフトDRを走行しているときにおいて、前方撮像装置40Cが、積込機械30の進行方向側に岩石等の障害物が存在するという情報を取得した場合、制御装置75は、回転ローラー33を障害物に接触させてこれを移動させるように支持機構32を制御する。制御装置75は、障害物に関する情報を管理装置3に送信する。管理装置3は、取得した情報を記憶装置3Mに記憶し、この鉱石情報を鉱山の管理に用いる。障害物に接触させるにあたって、制御装置75は、図29に示す支持機構32のブーム32a及びアーム32bの少なくとも一方を揺動させ、回転ローラー33で障害物を積込機械30の進路から排除する。この場合、制御装置75は、回転ローラー33を回転させてもよいし、回転させなくてもよい。
また、制御装置75は、障害物をフィーダー31側に掻き込んでフィーダー31に積載して搬送してもよい。障害物をフィーダー31に積載する場合、制御装置75は、フィーダー31の姿勢を掘削時の姿勢にする。フィーダー31に積載された障害物は、例えば、積込機械30が次に鉱石MRを掘削する際に、運搬機械10に積載される。このように、積込機械30は、支持機構32及び回転ローラー33を有する掻き込み装置30DMを用いて進路に存在する障害物を排除して、ドリフトDR内を通過するスペースを作ることができる。
制御装置75は、例えば、図13から図15に示す切替機構80の動作を制御してもよい。例えば、制御装置75は、地山RMの鉱石MRの寸法がフィーダー31によって搬送可能であるという鉱石情報を得た場合、切替機構80の蓋82を開いて支持体81の間から鉱石MRを通過させる。また、制御装置75は、地山RMの鉱石MRの寸法がフィーダー31によって搬送不可能であるという鉱石情報を得た場合、切替機構80の蓋82を閉じる。このようにすることで、積込機械30は、フィーダー31が鉱石MRを搬送できない場合には、鉱石MRがフィーダー31から排出されることを回避することができる。また、制御装置75は、フィーダー31の動作に連動させて切替機構80を制御してもよい。例えば、制御装置75は、フィーダー31が鉱石MRを搬送する方向に向かって動作している場合に切替機構80の蓋82を開き、フィーダー31が鉱石MRを搬送する方向とは反対方向に向かって動作している場合又は停止している場合に切替機構80の蓋82を閉じる。このようにすることで、積込機械30は、フィーダー31から鉱石MRを確実に排出でき、また、フィーダー31から鉱石MRを排出しない場合には、確実に鉱石MRが排出されないようにすることができる。また、切替機構80は、フィーダー31が鉱石MRを搬送するとき以外は、蓋82が閉じられていてもよい。
本実施形態においては、積込機械30の制御装置75が前方撮像装置40Cによって撮像された画像に基づいて、前述した制御を実行する。この場合、地山RM等の3次元の空間データが必要になるので、前方撮像装置40Cとしては、ステレオカメラ又は3次元スキャナのような3次元の空間データを取得できる装置が用いられる。本実施形態においては、前方撮像装置40Cによって撮像された画像を鉱石情報として管理装置3が取得し、オペレーターが表示装置8に表示された前述の画像を視認しながら、遠隔操作によって前述した制御を実行してもよい。この場合、地山RM等の3次元の空間データは不要なので、前方撮像装置40Cは、通常のカメラのような、3次元の空間データを取得できない装置であってもよい。次に、積込機械30及び掻き込み装置30DMの変形例を説明する。
(第1変形例)
図30は、第1変形例に係る積込機械30A及び掻き込み装置30DMAを示す側面図である。図31は、第1変形例に係る積込機械30A及び掻き込み装置30DMAを示す平面図である。この積込機械30Aが備える掻き込み装置30DMAのアーム32bAは、第1の軸線Zaと平行な軸線Za’と、第1の軸線Zaと直交する第2の軸線と平行な軸線Zbとの両方の周りを揺動することができる。
図30は、第1変形例に係る積込機械30A及び掻き込み装置30DMAを示す側面図である。図31は、第1変形例に係る積込機械30A及び掻き込み装置30DMAを示す平面図である。この積込機械30Aが備える掻き込み装置30DMAのアーム32bAは、第1の軸線Zaと平行な軸線Za’と、第1の軸線Zaと直交する第2の軸線と平行な軸線Zbとの両方の周りを揺動することができる。
掻き込み装置30DMAは、回転ローラー33Aと、支持機構32Aとを有する。支持機構32Aは、車体30BDに取り付けられて、第1の軸線Zaの周りを揺動するブーム32aAと、第1の軸線Zaと平行な軸線Za’の周りを揺動するアーム32bAと、ブーム32aAとアーム32bAとを連結する連結部材32cとを有する。本変形例において、アーム32bAは1本である。連結部材32cは、ブーム32aAに取り付けられる。アーム32bAは、第1アーム32dと第2アーム32eとを有しており、第1アーム32dが連結部材32cに取り付けられる。
本変形例において、ブーム32aAは、2本の第1棒状部材32LB、32LBと、2本の棒状部材32LB、32LBを連結する梁32JAとを有する。2本の第1棒状部材32LB、32LBは、車体10Bの両側に設けられる。梁32JAの下方には、複数の前方撮像装置40Cが積込機械30の幅方向Wに向かって取り付けられる。ブーム32aAが有するそれぞれの第1棒状部材32LB、32LBは、車体30BDに、第1の軸線Zaと平行なピンによりピン結合されている。このため、ブーム32aAは、第1の軸線Zaの周りを揺動する。本変形例において、ブーム32aAは、第1棒状部材32LBと車体30BDとの間に設けられたアクチュエータとしての油圧シリンダ32C1が伸縮することによって揺動する。本変形例において、ブーム32aAが有する第1棒状部材32LBは2本なので、油圧シリンダ32C1も2本である。ブーム32aAを揺動させる装置は、油圧シリンダ32C1に限定されず、例えば、電動機等であってもよい。
連結部材32cとブーム32aAの梁32JAとは、第1の軸線Zaと平行な軸線Za’と平行なピンによりピン結合されている。このため、連結部材32cは、ブーム32aAに対して、第1の軸線Zaと平行な軸線Za’の周りを揺動する。連結部材32cが揺動することにより、これにピン結合された第1アーム32d、第2アーム32e及び第2アーム32eの先端に取り付けられた回転ローラー33Aも揺動する。本変形例において、連結部材32cは、自身とブーム32aAとの間に設けられたアクチュエータとしての油圧シリンダ32C2が伸縮することによって揺動する。連結部材32cを揺動させる装置は、油圧シリンダ32C2に限定されず、例えば、電動機等であってもよい。本変形例において、かき寄せ装置30DMは、2個の回転ローラー33Aを有する。2個の回転ローラー33Aは、アーム32bAの第2アーム32eの先端に、これを挟んで設けられる。
第2アーム32eは、第1アーム32dに差し込まれており、第1アーム32d及び第2アーム32eの長手方向(これらが延びる方向)に対して移動することができる。第2アーム32eは、第1アーム32dの内部に格納されたアクチュエータ(例えば、油圧シリンダ)によって、第1アーム32dに対してその長手方向(図30の矢印Sで示す方向)に伸縮する。このような構造により、アーム32bAは、長さが変化するので、第2アーム32eの先端に取り付けられた回転ローラー33Aと車体10Bとの距離を変更することができる。このため、回転ローラー33Aが掘削できる範囲が大きくなるので、地山RMから鉱石MRをより効率よく掘削することができる。回転ローラー33Aは、アーム32bAが伸縮する方向と平行な軸線の周りを回転してもよい。このようにすれば、回転ローラー33Aが掘削できる範囲がさらに大きくなるので、地山RMから鉱石MRをさらに効率よく掘削することができる。本変形例において、アーム32bAの伸縮及びアーム32bAが伸縮する方向と平行な軸線の周りにおける回転ローラー33Aの回転は必須ではない。
連結部材32cとアーム32bAの第1アーム32dとは、第1の軸線Zaと直交する第2の軸線Zbと平行なピンによりピン結合されている。第1アーム32dの幅方向Wの両側には、それぞれアクチュエータとしての油圧シリンダ32C3が設けられている。油圧シリンダ32C3は、第1アーム32dと連結部材32cとの間に設けられている。一方の油圧シリンダ32C3が伸び、他方の油圧シリンダ32C3が縮むと、第1アーム32dは縮んだ方の油圧シリンダ32C3が取り付けられている側に接近する。このような構造により、第1アーム32dは、ブーム32aA、より具体的にはブーム32aAに連結されている連結部材32cに対して、第2の軸線Zbの周りを揺動する。油圧シリンダ32C3は、1本でもよい。
第1アーム32dが第2の軸線Zbの周りを揺動することにより、アーム32bA及びこれの先端に取り付けられた回転ローラー33Aも、第2の軸線Zbの周りを揺動する(図31の矢印YIで示す方向)。このため、回転ローラー33Aは、図13等に示すフィーダー31の幅方向Wに移動することができる。結果として積込機械30Aは、回転ローラー33Aが掘削できる範囲が大きくなるので、地山RMから鉱石MRをより効率よく掘削することができる。また、アーム32bAが連結部材32cに対して第2の軸線Zbの周りを揺動し、連結部材32cがブーム32aAに対して第1の軸線と平行な軸線Za’の周りを揺動することにより、回転ローラー33Aの可動範囲を大きくすることができる。
本変形例は、前述した実施形態と比較して、回転ローラー33Aが移動できる範囲が大きくなるので、積込装置30Aが地山RMを掘削する際の自由度が向上する。次に、第2変形例について説明する。第1変形例の構成は、以下の変形例においても適宜適用することができる。
(第2変形例)
図32は、第2変形例に係る積込機械30B及び掻き込み装置30DMBを示す平面図である。図33は、第2変形例に係る積込機械30B及び掻き込み装置30DMBを示す側面面図である。図34は、回転ローラー33Bの変形例を示す図である。第2変形例の掻き込み装置30DMBは、第1変形例の掻き込み装置DMAと同様であるが、2個の回転ローラー33Bを2本のアーム32bBによって支持し、それぞれの回転ローラー33Bを独立して移動させる点が異なる。
図32は、第2変形例に係る積込機械30B及び掻き込み装置30DMBを示す平面図である。図33は、第2変形例に係る積込機械30B及び掻き込み装置30DMBを示す側面面図である。図34は、回転ローラー33Bの変形例を示す図である。第2変形例の掻き込み装置30DMBは、第1変形例の掻き込み装置DMAと同様であるが、2個の回転ローラー33Bを2本のアーム32bBによって支持し、それぞれの回転ローラー33Bを独立して移動させる点が異なる。
掻き込み装置30DMBは、2個の回転ローラー(第1回転ローラー及び第2回転ローラー)33B、33Bと、支持機構32Bとを有する。支持機構32Bは、車体30BDに取り付けられて、第1の軸線Zaの周りを揺動するブーム32aBと、第1の軸線Zaと平行な軸線Za’の周りを揺動する2本のアーム32bBと、ブーム32aBとアーム32bBとを連結する2個の連結部材32c、32cとを有する。2個の連結部材32cは、ブーム32aBが有する2本の第1棒状部材32LB、32LBを連結する梁32JBに設けられている。それぞれのアーム32bB、32bBは、第1アーム32dと第2アーム32eとを有しており、それぞれの第1アーム32d、32dが連結部材32c、32cに取り付けられる。
ブーム32aBの構造は、梁32JBに2個の連結部材32c、32cが取り付けられる以外は第1変形例のブーム32aAと同様である。それぞれの第1アーム32dとそれぞれの連結部材32cとは、軸線Za’と平行なピンによりピン結合されている。このため、それぞれの第1アーム32dは、連結部材32cに対して、第1の軸線Zaと平行な軸線Za’の周りを揺動する。第1アーム32dが揺動することにより、アーム32bB及びこれの先端に取り付けられた回転ローラー33Bも揺動する。このため、それぞれの回転ローラー33B、33Bは、独立して第1の軸線Zaと平行な軸線Za’の周りを揺動することができる。それぞれの回転ローラー33B、33Bは、それぞれ別個の電動機33M、33Mによって駆動される。それぞれの回転ローラー33B、33Bは、2本のアーム32bBの間に対向して配置される。図34に示すように、1本の第2アーム32eを挟んで2個の回転ローラー(第1回転ローラー及び第2回転ローラー)33Bs、33Bsが取り付けられていてもよい。それぞれのアーム32bB、32bBの構造は、第1変形例のアーム32bAと同様である。
それぞれの連結部材32c、32cとブーム32aBの梁32JBとは、第1の軸線Zaと直交する第2の軸線Zbと平行なピンによりピン結合されている。それぞれの連結部材32cには、それぞれアクチュエータとしての油圧シリンダ32C3が設けられている。油圧シリンダ32C3は、連結部材32cと梁32JBとの間に設けられている。それぞれの油圧シリンダ32C3が伸縮することにより、それぞれの連結部材32cは、ブーム32aBに対して、第2の軸線Zbの周りを揺動する。
それぞれの連結部材32cが第2の軸線Zbの周りを揺動し、それぞれのアーム32bBが軸線Za’の周りを揺動することにより、それぞれのアーム32bBの先端に取り付けられた回転ローラー33B、33Bは、それぞれが独立して第2の軸線Zbの周りを揺動し(図32の矢印YIで示す方向)、かつ軸線Za’の周りを揺動する。このため、それぞれの回転ローラー33B、33Bは、独立して上下方向及び図14等に示すフィーダー31の幅方向Wに移動することができる。また、それぞれの回転ローラー33B、33Bは、それぞれのアーム32bBの長手方向(図32の矢印Sで示す方向)における伸縮にしたがって独立して移動する。結果として積込機械30Bは、回転ローラー33Bが掘削できる範囲が大きく、かつ動作の自由度が大きくなるので、地山RMから鉱石MRをより効率よく掘削することができる。
本変形例は、前述した実施形態と比較して、回転ローラー33B、33Bが移動できる範囲が大きくなり、かつ動作の自由度が大きくなるので、積込装置30Bが地山RMを掘削する際の自由度が向上する。次に、第3変形例について説明する。第1変形例及び第2変形例の構成は、以下の変形例においても適宜適用することができる。
(第3変形例)
図35は、第3変形例に係る積込機械30D及び掻き込み装置30DMDを示す平面図である。図36は、第3変形例に係る積込機械30D及び掻き込み装置30DMDを示す側面図である。積込機械30Dが備える掻き込み装置30DMDは、2個の回転ローラー(第1回転ローラー及び第2回転ローラー)33Bs、33Bsと、支持機構32Dとを有する。支持機構32Dは、棒状部材である2本のブーム32aDを有する。ブーム32aDの一端部が、それぞれスイングサークル32SC、32SCに取り付けられている。それぞれのスイングサークル32SC、32SCは、車体30BDに設けられており、第1の軸線Zaと直交する第2の軸線Zbを中心として、図35の矢印Ryで示す方向に回動する。
図35は、第3変形例に係る積込機械30D及び掻き込み装置30DMDを示す平面図である。図36は、第3変形例に係る積込機械30D及び掻き込み装置30DMDを示す側面図である。積込機械30Dが備える掻き込み装置30DMDは、2個の回転ローラー(第1回転ローラー及び第2回転ローラー)33Bs、33Bsと、支持機構32Dとを有する。支持機構32Dは、棒状部材である2本のブーム32aDを有する。ブーム32aDの一端部が、それぞれスイングサークル32SC、32SCに取り付けられている。それぞれのスイングサークル32SC、32SCは、車体30BDに設けられており、第1の軸線Zaと直交する第2の軸線Zbを中心として、図35の矢印Ryで示す方向に回動する。
それぞれのブーム32aDは、それぞれスイングサークル32SC、32SCに支持されて、第1の軸線Zaの周りを揺動する。2本のブーム32aDは、スイングサークル32SCに取り付けられている端部とは反対側の端部が、梁32JDと結合されている。このような構造により、それぞれのスイングサークル32SC、32SCが回動すると、それぞれのブーム32aDは、独立して第2の軸線Zbの周りを揺動する。
それぞれのアーム32bD、32bDの第1アーム32d、32dと、ブーム32aDが備えるそれぞれの第1棒状部材32LB、32LBとは、軸線Za’と平行なピンによりピン結合されている。軸線Za’は、第1の軸線Zaと平行である。それぞれのアーム32bD、32bDの第1アーム32d、32dとそれぞれのブーム32aDとの間には、それぞれアクチュエータとしての油圧シリンダ32C2が設けられている。それぞれの油圧シリンダ32C2、32C2が伸縮することにより、それぞれのアーム32bD、32bD及びこれに支持される回転ローラー33Bs、33Bsは、軸線Za’を中心として揺動する。また、それぞれのスイングサークル32SC、32SCが回動すると、梁32JDの移動とともに、それぞれの回転ローラー33Bs、33Bsも第2の軸線Zbを中心として揺動する。
本変形例において、それぞれのアーム32bDの先端に取り付けられた回転ローラー33Bs、33Bsは、それぞれ独立して軸線Za’及び第2の軸線Zbの周りを揺動する。また、それぞれの回転ローラー33Bs、33Bsは、それぞれのアーム32bBの長手方向(図32の矢印Sで示す方向)における伸縮にしたがって独立して移動する。このため、本変形例は、回転ローラー33Bs、33Bsが掘削できる範囲が大きく、かつ動作の自由度が大きくなるので、積込機械30Dが地山RMから鉱石MRをより効率よく掘削することができる。
以上、本実施形態及びその変形例において、鉱山の管理システム1は、積込機械30と運搬機械10との機能を分離している。このため、積込機械30は、掘削及び搬送に特化でき、運搬機械10は鉱石MRの運搬に特化できるので、それぞれの能力を最大限発揮させることができる。結果として、鉱山の管理システム1は、鉱山Mの生産性を向上させることができる。
鉱山の管理システム1は、積込機械30及び運搬機械10を移動可能としているので、掘削現場の状況変化に容易に対応することができる。例えば、ドローポイントDPに鉱石詰まりが発生したり、積込機械30のフィーダー31が搬送できない大塊の鉱石MRがドローポイントDPに現れたりした場合、積込機械30は別のドローポイントDPに移動して、鉱石MRの採掘を継続することができる。このため、鉱山の管理システム1は、鉱石MRが採掘できない時間を最小限に抑えることができるので、鉱山Mの生産性を向上させることができる。
積込機械30は、回転ローラー33及びフィーダー31を備えているので、連続して鉱石MRを掘削して、運搬機械10に積載することができる。このため、積込機械30は、掘削した鉱石MRを迅速に運搬機械10に積載することができるので、積載に要する時間を短縮して、鉱山Mの生産性を向上させることができる。
ドローポイントDPに設置した掘削機械を用いて鉱石MRを採掘する手法があるが、この手法は、ドローポイントDPに掘削機械を固定するため、掘削機械の移動が制限される。このため、ドローポイントDPにアーチングが発生したり、鉱石MRの大塊がドローポイントDPに現れたりした場合には、岩石の破砕機能を有した掘削機械がドローポイントDPに接近することが困難である。また、大塊を破砕するための発破により、掘削機械がダメージを受ける可能性もある。鉱山の管理システム1は、前述したように、積込機械30が自走できるので、積込機械30は、鉱石詰まり等が発生したドローポイントDPとは別のドローポイントDPに移動して、鉱石MRの採掘を継続することができる。結果として、鉱山の管理システム1は、鉱石MRが採掘できない時間を最小限に抑えることができるので、鉱山Mの生産性を向上させることができる。
本実施形態及びその変形例は、回転ローラー33A、33B等を、積込機械30A、30B等の上下方向及び幅方向の両方に移動させることができる。このため、本実施形態及びその変形例は、回転ローラー33A、33B等が掘削できる範囲が大きく、かつ動作の自由度が大きくなるので、積込機械30A、30B等が地山RMから鉱石MRをより効率よく掘削することができる。その結果、本実施形態及びその変形例は、鉱山Mの生産性を向上させることができる。
前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、本実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
1 鉱山の管理システム
3 管理装置
10 運搬機械
11 ベッセル
30、30A、30B、30D 積込機械
30BD 車体
30DM、30DMA、30DMB、30DMD 掻き込み装置
31 フィーダー
32 支持機構
32b、32bA、32bB、32bD アーム
32d 第1アーム
32e 第2アーム
32SC スイングサークル
32a、32aA、32aB、32aD ブーム
32、32A、32B、32D 支持機構
32J、32JA、32JB、32JD 梁
32c 連結部材
33、33A、33B、33Bs 回転ローラー
33D 回転部材
34 走行装置
35、35a、35b 貫入部材
36 回転体
40、41 情報収集装置
40C 前方撮像装置
41C 後方撮像装置
52 通信装置
53 アンテナ
70、75 制御装置
71、76 処理装置
72、77 記憶装置
80 切替機構
3 管理装置
10 運搬機械
11 ベッセル
30、30A、30B、30D 積込機械
30BD 車体
30DM、30DMA、30DMB、30DMD 掻き込み装置
31 フィーダー
32 支持機構
32b、32bA、32bB、32bD アーム
32d 第1アーム
32e 第2アーム
32SC スイングサークル
32a、32aA、32aB、32aD ブーム
32、32A、32B、32D 支持機構
32J、32JA、32JB、32JD 梁
32c 連結部材
33、33A、33B、33Bs 回転ローラー
33D 回転部材
34 走行装置
35、35a、35b 貫入部材
36 回転体
40、41 情報収集装置
40C 前方撮像装置
41C 後方撮像装置
52 通信装置
53 アンテナ
70、75 制御装置
71、76 処理装置
72、77 記憶装置
80 切替機構
Claims (8)
- 鉱体の内部に設置された採掘場所に形成された鉱石の地山から前記鉱石を積み込んで、前記地山から離れる方向に搬送して排出する搬送装置と、
前記搬送装置の積込側に設けられて、前記地山に貫入する貫入部材と、
前記搬送装置及び前記貫入部材が取り付けられた車体を走行させ、かつ前記搬送装置を動作させながら前記地山に前記貫入部材を貫入させる走行装置と、
を含む、積込機械。 - 前記貫入部材は、錐体の形状をした部材であり、前記部材の頂部が前記地山に貫入する、請求項1に記載の積込機械。
- 前記貫入部材は、前記地山に貫入する第1の板状部材と、
前記第1の板状部材の板面と交差して前記第1の板状部材に取り付けられ、かつ前記搬送装置の積込側に設けられる第2の板状部材と、
を含む、請求項1に記載の積込機械。 - 前記搬送装置の搬送方向と直交する方向における両側には、回転体が設けられ、
前記回転体は、前記貫入部材が前記地山に貫入するときに回転する、請求項1から請求項3のいずれか1項に記載の積込機械。 - 前記搬送装置に前記鉱石が積み込まれる部分と、前記搬送装置から前記鉱石が排出される部分との間には、前記鉱石の排出と排出の停止とを切り替える切替機構が設けられる、請求項1から請求項4のいずれか1項に記載の積込機械。
- 前記車体は、前記車体の外側に向かって伸びて、前記採掘場所につながる坑道の壁面に押し付けられる固定装置を有する、請求項1から請求項5のいずれか1項に記載の積込機械。
- 前記貫入部材は、前記車体の上下方向、幅方向、前後方向及び前後方向軸と平行な軸線周りにおける回転方向の少なくとも1方向に往復運動する、請求項1から請求項6のいずれか1項に記載の積込機械。
- 鉱体の内部に設置された採掘場所に形成された鉱石の地山から前記鉱石を積み込んで、前記地山から離れる方向に搬送して排出する搬送装置と、
前記搬送装置の積込側に設けられて、前記地山に貫入する貫入部材と、
前記搬送装置及び前記貫入部材が取り付けられた車体を走行させ、かつ前記搬送装置を動作させながら前記地山に前記貫入部材を貫入させる走行装置と、
前記搬送装置の搬送方向と直交する方向における両側に設けられる回転体と、を含み、
前記貫入部材が前記地山に貫入する場合には、前記搬送装置が前記鉱石の搬送方向と同一の方向に動作し、前記回転体は、前記貫入部材が前記地山に貫入するときには、前記車体を地面に押し付ける方向に回転する、積込機械。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013205959 | 2013-09-30 | ||
JP2013-205959 | 2013-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015046590A1 true WO2015046590A1 (ja) | 2015-04-02 |
Family
ID=52743711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/076158 WO2015046590A1 (ja) | 2013-09-30 | 2014-09-30 | 積込機械 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015046590A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5348902A (en) * | 1976-10-15 | 1978-05-02 | Us Government | Continuous minimg method and apparatus for same |
US20010006304A1 (en) * | 1999-12-17 | 2001-07-05 | Cutting Edge Technology Pty Ltd | Method of mining |
US20100148567A1 (en) * | 2008-12-12 | 2010-06-17 | Mcclure Gary Douglas | Temporary power equipment transport system for moving mining equipment and method of use |
-
2014
- 2014-09-30 WO PCT/JP2014/076158 patent/WO2015046590A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5348902A (en) * | 1976-10-15 | 1978-05-02 | Us Government | Continuous minimg method and apparatus for same |
US20010006304A1 (en) * | 1999-12-17 | 2001-07-05 | Cutting Edge Technology Pty Ltd | Method of mining |
US20100148567A1 (en) * | 2008-12-12 | 2010-06-17 | Mcclure Gary Douglas | Temporary power equipment transport system for moving mining equipment and method of use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6321935B2 (ja) | 鉱山の採掘システム | |
JP6416882B2 (ja) | 鉱山の管理システム | |
WO2015046598A1 (ja) | 運搬機械 | |
JP6193075B2 (ja) | 運搬機械 | |
WO2015046600A1 (ja) | 運搬機械及び管理システム | |
US10360646B2 (en) | Mine management system | |
US10354341B2 (en) | Mine management system | |
JP2015068142A (ja) | 積込機械 | |
WO2015046610A1 (ja) | 運搬機械 | |
WO2015046590A1 (ja) | 積込機械 | |
WO2015046597A1 (ja) | 積込機械 | |
WO2015046612A1 (ja) | 積込機械 | |
WO2015151734A1 (ja) | 鉱山の管理システム | |
WO2015046611A1 (ja) | 運搬機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847836 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14847836 Country of ref document: EP Kind code of ref document: A1 |