WO2015046543A1 - Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk - Google Patents

Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk Download PDF

Info

Publication number
WO2015046543A1
WO2015046543A1 PCT/JP2014/075966 JP2014075966W WO2015046543A1 WO 2015046543 A1 WO2015046543 A1 WO 2015046543A1 JP 2014075966 W JP2014075966 W JP 2014075966W WO 2015046543 A1 WO2015046543 A1 WO 2015046543A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive grains
glass substrate
grinding
magnetic disk
dispersed
Prior art date
Application number
PCT/JP2014/075966
Other languages
French (fr)
Japanese (ja)
Other versions
WO2015046543A8 (en
Inventor
博則 吉川
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2015539444A priority Critical patent/JP6313314B2/en
Priority to CN201480053014.8A priority patent/CN105579198B/en
Priority to SG11201602379QA priority patent/SG11201602379QA/en
Publication of WO2015046543A1 publication Critical patent/WO2015046543A1/en
Publication of WO2015046543A8 publication Critical patent/WO2015046543A8/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • B24B37/245Pads with fixed abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers

Definitions

  • the present invention relates to a grinding tool applied to manufacture of a magnetic disk glass substrate mounted on a magnetic disk device such as a hard disk drive (HDD), a method of manufacturing a glass substrate for magnetic disk using the grinding tool, and a magnetic disk It relates to a manufacturing method.
  • a magnetic disk device such as a hard disk drive (HDD)
  • HDD hard disk drive
  • a magnetic disk as one of information recording media mounted on a magnetic disk device such as a hard disk drive (HDD).
  • a magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate.
  • the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing.
  • the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible.
  • HDDs high recording capacity and lower prices. In order to achieve this, it is necessary to further improve the quality and cost of glass substrates for magnetic disks. It is coming.
  • high smoothness on the surface of the magnetic disk is indispensable for reducing the flying height (flying height) necessary for increasing the recording density.
  • a substrate surface with a high smoothness is required in the end. Therefore, it is necessary to polish the glass substrate surface with high accuracy.
  • further polishing is performed to reduce the surface roughness and microwaviness, thereby reducing the main surface. Has achieved extremely high smoothness.
  • a diamond pad is a combination of diamond particles or agglomerates (concentrated abrasive grains) in which several diamond particles are hardened with a fixing material such as glass, using a binding material such as a resin (for example, an acrylic resin). It is fixed.
  • a resin layer containing diamond may be formed on the sheet, and then a groove may be formed in the resin layer to form a protrusion.
  • the diamond pad referred to here is not necessarily a general name, but is referred to as a “diamond pad” for convenience of explanation in this specification.
  • abrasive grains with a distorted shape are present between the surface plate and the glass and are non-uniform, so if the load on the abrasive grains is not constant and the load is concentrated, the surface of the surface plate Because of the low elasticity of cast iron, deep cracks enter the glass, the work-affected layer is deep, and the processing surface roughness of the glass also increases, so a large amount of removal was required in the subsequent mirror polishing process. It was difficult to reduce processing costs.
  • Patent Document 2 discloses a tool for grinding using fixed abrasive particles in which a polishing complex (aggregate) in which diamond abrasive particles are bonded with a binder is dispersed in an organic resin at a constant ratio.
  • the surface roughness of the processed surface can be reduced, the load on the subsequent mirror polishing process is reduced, and the processing cost of the glass substrate is reduced.
  • the present invention has been made to solve such a conventional problem, and its purpose is to achieve both processing speed and processing quality (particularly flatness of the substrate) in grinding processing using fixed abrasive grains.
  • the present invention has the following configuration.
  • (Configuration 1) A method of manufacturing a glass substrate for a magnetic disk including a grinding process for grinding a main surface of a glass substrate, wherein the grinding process includes grinding abrasive grains, a binder for bonding the abrasive grains, and a binder.
  • a glass substrate main surface using a grinding tool which is hard and includes dispersed particles softer than the abrasive grains, and is bonded in a state where the abrasive grains and the dispersed particles are dispersed in the binder.
  • (Configuration 2) The method for manufacturing a glass substrate for a magnetic disk according to Configuration 1, wherein the binding material is a resin material.
  • (Configuration 3) 3. The method for manufacturing a glass substrate for a magnetic disk according to Configuration 1 or 2, wherein the grinding abrasive grains are concentrated abrasive grains in which a plurality of abrasive grains are bonded with a fixing material.
  • (Configuration 4) 4. The method for manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 3, wherein the grinding abrasive grains include diamond abrasive grains. (Configuration 5) 5. The method for manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 4, wherein the dispersed particles are made of alumina or zirconia.
  • (Configuration 8) A method of manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 7, wherein a ratio of the dispersed grains to the abrasive grains in the binder is in a range of 0.1 to 5 times.
  • (Configuration 9) A magnetic disk manufacturing method comprising forming at least a magnetic recording layer on a magnetic disk glass substrate manufactured by the method for manufacturing a magnetic disk glass substrate according to any one of Structures 1 to 8.
  • a grinding tool for grinding a glass substrate surface for an electronic device comprising: grinding abrasive grains; a binder for binding the abrasive grains; and a dispersed grain that is harder than the binder and softer than the abrasive grains.
  • a grinding tool wherein the grinding abrasive grains and the dispersed grains are bonded in a state of being dispersed in the binder.
  • the above-described configuration can solve the conventional problems, and in the grinding process using the fixed abrasive grains, the processing speed and the processing quality (particularly the flatness of the substrate) are balanced, and the processing quality is stable at a stable processing speed.
  • a grinding tool applied to a grinding treatment of a glass substrate that can be stably obtained for a long period of time.
  • a highly reliable magnetic disk can be obtained using the glass substrate obtained thereby.
  • a glass substrate for a magnetic disk is usually manufactured through shape processing, main surface grinding, end surface polishing, main surface polishing, chemical strengthening, and the like.
  • a glass substrate is obtained by cutting into a predetermined size from a sheet-like glass produced by a float method or a downdraw method.
  • a sheet-like plate glass produced by pressing from molten glass may be used.
  • the present invention is suitable when a glass substrate having a mirror-like main surface is used at the start of grinding.
  • the glass substrate is subjected to a grinding process for improving dimensional accuracy and shape accuracy.
  • a main surface of the glass substrate is generally ground using a double-side grinding apparatus and using hard abrasive grains such as diamond.
  • a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained.
  • the present invention relates to the improvement of this grinding process.
  • the grinding process in the present invention is a grinding process using, for example, grinding abrasive grains (fixed abrasive grains) containing diamond particles, and in a double-side grinding apparatus, for example, between upper and lower surface plates on which diamond pads are attached as grinding tools.
  • a lubricating liquid coolant
  • the grinding tool (fixed abrasive grindstone) used for the grinding process is, for example, a diamond pad, and its configuration is schematically shown in FIG.
  • a diamond pad 1 shown in FIG. 1 uses a binding material such as a resin (for example, an acrylic resin), which is a collection of abrasive grains 3 in which several diamond particles 5 (see FIG. 2) are hardened with a fixing material such as glass.
  • the pellet 4 fixed in this manner is affixed to the sheet 2.
  • the configuration shown in FIG. 1 is merely an example, and the present invention is not limited to this.
  • a diamond pad that has a resin layer containing diamond particles formed on a sheet and then has grooves formed in the resin layer to form protrusions may be used.
  • abrasive grain when it is referred to as fixed abrasive grains or simply abrasive grains, unless otherwise specified, it means a grinding abrasive grain such as the above diamond grain, and the average grain of the abrasive grains. When it says a diameter, it shall mean the average particle diameter of the said abrasive grain.
  • the present inventor is difficult to achieve both the processing speed and the processing quality (particularly the flatness of the substrate) with the above-described conventional technology, and the stable processing speed and the good processing quality are stable for a long period of time. I found out that I could not get it. Therefore, as a result of searching for a solution that can increase the processing speed and perform stable grinding, the present inventor used a combination of abrasive grains and dispersed grains softer than the abrasive grains. The present inventors have found that the above-described problems can be solved by applying a grinding tool in which these abrasive grains and dispersed grains are dispersed in a binder.
  • the force applied to each of the abrasive grains from the surface plate is dispersed by the presence of the dispersed particles.
  • the force applied from the surface plate can be dispersed, and the wear of the tool can be suppressed.
  • the distance between the dispersed abrasive grains tends to be non-uniform, but in the present invention, as described above, the dispersed grains are dispersed in addition to the abrasive grains, As a result, the abrasive grains are dispersed at a uniform distance, and uneven wear hardly occurs.
  • the grinding tool applied to the grinding process in the present invention is a grinding tool for grinding the glass substrate surface, and is harder than the grinding abrasive grains, the binder for bonding the abrasive grains, and the binder.
  • dispersed abrasive particles softer than the abrasive grains are provided, and the abrasive grains and the dispersed grains are bonded in a state of being dispersed in the binder.
  • the present invention is characterized in that in the grinding process for grinding a glass substrate, the glass substrate main surface is ground using the grinding tool.
  • the abrasive grains may be abrasive grains themselves, but are preferably concentrated abrasive grains in which a plurality of abrasive grains are bonded with a fixing material. Since the single abrasive grains have a small surface area, the gripping resin strength is low and they easily fall off.
  • the abrasive grains are preferably diamond grains. In this case, it is preferable that the average particle diameter of the diamond abrasive grains is in the range of about 1.5 to 10 ⁇ m. When the average particle diameter of the diamond abrasive grains is less than the above range, the cut into the mirror-like glass substrate becomes shallow and the biting into the glass substrate is difficult to proceed.
  • the average particle diameter of the diamond abrasive grains exceeds the above range, the roughness of the finish becomes rough, so that there is a possibility that the machining allowance load in the subsequent process becomes large. Further, in the case of diamond abrasive grains, it is preferable that the accumulated abrasive grains have a cumulative average particle diameter of about 30 to 50 ⁇ m. Moreover, as a fixing material which fixes abrasive grains, a glass material is suitable, for example.
  • the average particle diameter is a point where the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder group in the particle size distribution measured by the laser diffraction method as 100%. (Referred to as “cumulative average particle diameter (50% diameter)”).
  • the cumulative average particle diameter (50% diameter) is a value that can be measured using a particle diameter / particle size distribution measuring device.
  • binder for bonding the abrasive grains examples include metals, glass, resin materials, etc., but resin materials are particularly preferable from the viewpoint of having an appropriate cushioning property and not causing excessive damage to the glass. It is.
  • resin material examples include acrylate, epoxy, polycarbonate, and polyester.
  • the dispersed particles dispersed together with the abrasive grains in the binder are grains that are harder than the binder and softer than the abrasive grains.
  • the force applied to each of the abrasive grains from the surface plate can be dispersed by the presence of the dispersed particles.
  • the hardness of the dispersed grains depends on the material of the binder and the abrasive grains, the hardness is generally Mohs and the abrasive grains are about 6.5 to 9.5, so long as the hardness is softer than that.
  • the glass used for the grains has a lower Mohs hardness than the abrasive grains.
  • the material of the dispersed particles is not particularly limited as long as it satisfies the above-mentioned requirements with respect to hardness, but is preferably made of glass, alumina, or zirconia in terms of Mohs hardness. Moreover, the mixture of the grain from which a material differs may be sufficient. Since these materials are moderately softer than diamond, they wear out before the diamond abrasive grains. Therefore, diamond processing is not hindered.
  • the range of the average particle diameter of the alumina or zirconia particles is preferably the same as the average particle diameter of the diamond abrasive grains.
  • the dispersed particles may be the particles themselves, but may also be aggregates in which a plurality of dispersed particles are bonded with a glass fixing material such as vitrified bonding.
  • the plurality of dispersed grains may be the same or different from each other.
  • the glass in this case is softer than the glass substrate to be ground.
  • the size of the dispersed particles is preferably the same as that of the aggregate in the case of the particles themselves. By doing so, it becomes easy to disperse both uniformly. Further, it is preferable that the ratio of the size of the abrasive grains (the size in the case of concentrated abrasive grains) and the size of the dispersed grains is substantially equal, and in particular, both are the same size.
  • the ratio of the size of the abrasive grains to the dispersed grains is the ratio of the average grain diameter of the dispersed grains to the average grain diameter of the abrasive grains ((average grain diameter of dispersed grains) / (average grain diameter of abrasive grains)). In the range of 0.8 to 1.2. By doing so, it becomes easy to disperse both uniformly.
  • both binder is the same material. By doing so, it becomes easy to disperse both uniformly.
  • the dispersed grains may be grains composed only of glass that is preferably softer than the glass to be ground.
  • the size of the dispersed particles and the ratio of the size to the abrasive grains are the same as in the case of the dispersed particles such as alumina.
  • the grinding tool of the present invention is bonded in the state where the abrasive grains and the dispersed grains are dispersed in the binder, and specifically, for example, diamond abrasive grains and non-diamond such as alumina.
  • diamond abrasive grains and non-diamond such as alumina.
  • an embodiment in which diamond grinding abrasive grains and dispersed grains made of glass are used in combination is particularly suitable. According to this embodiment, the dispersion effect that prevents the generation of the swell component is the highest.
  • the ratio of the abrasive grains to the dispersed grains in the binder is not particularly limited, but the following dispersion ratio is preferable from the viewpoint of sufficiently achieving the effects of the present invention.
  • the range of the dispersed grains is 0.1 to 3 times that of the abrasive grains 1.
  • the range of 0.1 to 5 times the dispersed grains with respect to the abrasive grains 1 is preferable.
  • the total amount of the dispersion grains is 0.1 to 5 times that of the grinding grains 1.
  • the density of the fixed abrasive grains dispersed in a binder such as a resin (counted as one in the case of aggregated abrasive grains or aggregates) on the grinding surface is 10 to 40 (pieces / mm 2 ). It is preferable that it is the range of these.
  • the content of the fixed abrasive grains in the grinding tool is preferably 5 to 80% by volume.
  • the abrasive grains of a material softer than the diamond abrasive grains and the aggregates thereof are dispersed together with the diamond aggregate abrasive grains, whereby the distance between the abrasive grains of the diamond aggregate abrasive grains can be uniformly extended.
  • excessive pressure concentration on the diamond collecting abrasive grains can be prevented. Thereby, processing can be stabilized even at a high processing speed, and good flatness can be maintained.
  • the load during processing is preferably 15 to 200 g / cm 2 in terms of surface pressure.
  • a higher load load may be applied to the glass surface than during normal grinding. Is preferred.
  • the higher the load the deeper the cutting depth of the abrasive grains, the rougher the glass surface can be made (roughened).
  • the grinding should be performed under conditions where the cutting depth of the abrasive grains is reduced by reducing the load. Is desirable.
  • FIG. 2 is a schematic diagram for explaining a state at the time of grinding, and shows a state in which the diamond abrasive grains 3 are biting into the glass substrate 10 and are ground (expected view).
  • the surface roughness of the glass substrate after completion of the grinding treatment is preferably finished in the range of 0.02 to 3.0 ⁇ m in Ra.
  • the processing load of a subsequent process can be reduced by keeping the roughness of the finish low.
  • the glass constituting the glass substrate is preferably an amorphous aluminosilicate glass.
  • a glass substrate can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good.
  • an aluminosilicate glass for example, a glass containing SiO2 as a main component and containing 20 wt% or less of Al2O3 is preferable. Further, it is more preferable to use glass containing SiO2 as a main component and containing Al2O3 or less by 15% by weight or less.
  • SiO2 is 62% by weight to 75% by weight
  • Al2O3 is 5% by weight to 15% by weight
  • Li2 ⁇ O is 4% by weight to 10% by weight
  • Na2O is 4% by weight to 12% by weight
  • ZrO2 is contained in an amount of 5.5% to 15% by weight as a main component
  • the weight ratio of Na2O / ZrO2 is 0.5 to 2.0
  • the weight ratio of Al2O3 / ZrO2 is 0.4 to 2.5.
  • Amorphous aluminosilicate glass that does not contain the following phosphorous oxide can be used.
  • the heat-resistant glass used for the next generation heat-assisted magnetic recording magnetic disk is, for example, 50 to 75% of SiO2, 0 to 5% of Al2O3, and 0 to 2% of BaO in terms of mol%. , Li2O 0-3%, ZnO 0-5%, Na2O and K2O 3-15% in total, MgO, CaO, SrO and BaO 14-35% in total, ZrO2, TiO2, La2O3, Y2O3, Yb2O3 , Ta2O5, Nb2O5 and HfO2 in total 2 to 9%, the molar ratio [(MgO + CaO) / (MgO + CaO + SrO + BaO)] is in the range of 0.85 to 1, and the molar ratio [Al2O3 / (MgO + CaO)] is 0.
  • Glass having a range of ⁇ 0.30 can be preferably used. Further, SiO2 is 56 to 75 mol%, Al2O3 is 1 to 9 mol%, a total of 6 to 15 mol% of alkali metal oxides selected from the group consisting of Li2O, Na2O and K2O, and a group consisting of MgO, CaO and SrO 10 to 30 mol% in total of alkaline earth metal oxides selected from the group consisting of oxides selected from the group consisting of ZrO2, TiO2, Y2O3, La2O3, Gd2O3, Nb2O5 and Ta2O5 in total exceeding 0% and not more than 10 mol% Including glass.
  • the content of Al2O3 in the glass composition is preferably 15% by weight or less. Furthermore, it is more preferable that the content of Al2O3 is 5 mol% or less.
  • mirror polishing is performed to obtain a highly accurate plane.
  • the amount of removal in the subsequent mirror polishing process can be reduced, the processing load can be reduced, and the processing cost can be reduced.
  • a polishing pad of a polisher such as polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica.
  • a slurry polishing liquid
  • a metal oxide abrasive such as cerium oxide or colloidal silica.
  • a glass substrate having high smoothness is obtained, for example, by polishing with a cerium oxide-based abrasive (first polishing process) and then with final polishing (mirror polishing) (second polishing process) using colloidal silica abrasive grains. It is possible.
  • the surface of the glass substrate after mirror polishing is preferably a mirror surface having an arithmetic average surface roughness Ra of 0.2 nm or less, more preferably 0.1 nm or less.
  • the arithmetic average roughness Ra is a roughness calculated in accordance with Japanese Industrial Standard (JIS) B0601.
  • the surface roughness (the arithmetic average roughness Ra) is preferably practically the surface roughness obtained when measured with an atomic force microscope (AFM).
  • chemical strengthening treatment can be performed.
  • a method of the chemical strengthening treatment for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range not exceeding the glass transition temperature is preferable.
  • the chemical strengthening treatment is a process in which a molten chemical strengthening salt is brought into contact with a glass substrate, whereby an alkali metal element having a relatively large atomic radius in the chemical strengthening salt and a relatively small atomic radius in the glass substrate.
  • This is a treatment in which an alkali metal element is ion-exchanged, an alkali metal element having a large ion radius is permeated into the surface layer of the glass substrate, and compressive stress is generated on the surface of the glass substrate.
  • the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example.
  • the chemical strengthening salt alkali metal nitrates such as potassium nitrate and sodium nitrate can be preferably used.
  • the present invention also provides a method for manufacturing a magnetic disk using the above glass substrate for a magnetic disk.
  • the magnetic disk is produced by forming at least a magnetic recording layer (magnetic layer) on the magnetic disk glass substrate according to the present invention.
  • a magnetic recording layer magnetic layer
  • a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used.
  • a method of forming the magnetic layer it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method.
  • a protective layer and a lubricating layer may be formed on the magnetic recording layer.
  • the protective layer an amorphous carbon-based protective layer is suitable.
  • a lubricating layer a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used.
  • Example 1 (1) Substrate preparation, (2) Shape processing, (3) End surface polishing, (4) Main surface grinding, (5) Main surface polishing (first polishing), (6) Chemical strengthening, (7) Main A glass substrate for a magnetic disk of this example was manufactured through surface polishing (second polishing).
  • Substrate preparation A large glass plate made of aluminosilicate glass having a thickness of 1 mm produced by the float method was prepared, and cut into a 70 mm ⁇ 70 mm square piece using a diamond cutter. Subsequently, it processed into the disk shape of outer diameter 65mm and internal diameter 20mm using the diamond cutter.
  • This aluminosilicate glass contains SiO2: 62-75 wt%, ZrO2: 5.5-15 wt%, Al2O3: 5-15 wt%, Li2O: 4-10 wt%, Na2O: 4-12 wt% Glass that can be chemically strengthened was used.
  • the surface of the obtained substrate was a mirror surface with a surface roughness Ra of 5 nm or less.
  • This main surface grinding was performed by using a double-sided grinding machine and setting a glass substrate held by a carrier between the upper and lower surface plates to which diamond pads were attached.
  • a diamond pad a plurality of diamond abrasive grains consolidated with glass, an aggregate in which a plurality of alumina particles are fixed with glass, and a plurality of the aggregate abrasive grains and aggregates are combined.
  • the average particle size of the diamond abrasive grains is 4.0 ⁇ m
  • the average particle size of the diamond collecting abrasive grains is 40 ⁇ m
  • the average particle size of the alumina particles is 4.0 ⁇ m
  • the average particle size of the alumina aggregate is 40 ⁇ m.
  • a diamond pad dispersed in a resin was used so that the maximum particle size was 45 ⁇ m and the ratio of diamond aggregated abrasive grains to alumina aggregate was 1: 0.5.
  • the glass in which the abrasive grains were hardened had a lower hardness than the glass to be processed.
  • the density of the fixed abrasive grains on the total ground surface was 20 (pieces / mm 2 ). Moreover, it carried out using the lubricating liquid. Moreover, the rotation speed of the surface plate and the load on the glass substrate were adjusted as appropriate.
  • the first polishing was performed using a hard polisher (hard foamed urethane) as the polisher.
  • the polishing liquid was pure water in which cerium oxide was dispersed as an abrasive, and the load and polishing time were appropriately set.
  • the glass substrate after the first polishing step was sequentially immersed in cleaning baths of neutral detergent, pure water, IPA (isopropyl alcohol), and IPA (steam drying), ultrasonically cleaned, and dried.
  • Chemical strengthening was performed on the glass substrate after the cleaning.
  • a chemical strengthening solution in which potassium nitrate and sodium nitrate were mixed was prepared, the chemical strengthening solution was heated to 380 ° C., and the cleaned and dried glass substrate was immersed for about 4 hours to perform chemical strengthening treatment.
  • Example 2 In the main surface grinding process of the first embodiment, a collecting abrasive grain obtained by hardening a plurality of diamond abrasive grains with glass, a plurality of dispersed grains made of glass, and a resin that binds the plurality of the concentrated abrasive grains and the dispersed grains.
  • the average particle size of the diamond abrasive grains is about 4.0 ⁇ m
  • the average particle size of the diamond concentrating abrasive grains is 40 ⁇ m
  • the average particle size of the glass dispersed particles is 4.0 ⁇ m
  • the maximum particle size of the glass aggregate is 45 ⁇ m
  • the magnetic disk was ground in the same manner as in Example 1 except that a diamond pad dispersed in the resin was used so that the ratio of diamond aggregated abrasive grains to glass aggregate was 1: 0.5.
  • a glass substrate was prepared.
  • Example 3 In the main surface grinding process of Example 1, aggregated abrasive grains obtained by solidifying a plurality of diamond abrasive grains with glass, aggregates in which a plurality of alumina particles are fixed with glass, a plurality of dispersed grain aggregates made of glass, A plurality of aggregated abrasive grains, a resin that binds the alumina particle aggregates and the glass dispersed grain aggregates, and the average particle diameter of the diamond abrasive grains is about 4.0 ⁇ m, and the average particle diameter of the alumina particles is about 1 to 4.0 ⁇ m, the average particle size of the glass particles is about 1 to 4.0 ⁇ m, the maximum particle size of the alumina aggregate and the glass aggregate is 45 ⁇ m, and the ratio of these diamond agglomerated abrasive grains to the alumina aggregate and the glass aggregate is 1: Grinding was performed in the same manner as in Example 1 except that a diamond pad dispersed in the resin so as to be 0.5: 0.5 was used,
  • Example 1 In the main surface grinding process of Example 1, a conventional diamond pad is used in which concentrated abrasive grains obtained by hardening a plurality of diamond abrasive grains with glass (the average grain diameter of the diamond abrasive grains is about 4.0 ⁇ m) are dispersed in the resin. Except for this, grinding was performed in the same manner as in Example 1 to produce a magnetic disk glass substrate. (Comparative Example 2) Grinding was carried out in the same manner as in Comparative Example 1 except that a diamond pad with a fixed grinding grain density of 30 (pieces / mm 2 ) was used for the total fixed abrasive grains (in this example, only diamond abrasive grains). A glass substrate for a magnetic disk was produced.
  • the main surface grinding was performed continuously for 100 batches, 100 batches in total.
  • the flatness of the glass substrate after grinding is measured using a flat nesting tester, and a predetermined standard (3 ⁇ m or less) is determined as a non-defective product.
  • the rate (flatness defect rate) was calculated, and the results are shown in Table 1.
  • Table 1 also shows the processing speed during grinding (processing speed ratio with respect to Comparative Example 1).
  • Example 2 in which diamond concentration abrasive grains and glass dispersion grains were used in combination, the flatness failure rate was zero%. Further, it can be seen from the comparison between Comparative Examples 1 and 2 that when the grinding surface density of the fixed abrasive grains is decreased in the conventional diamond pad, the flatness defect rate is deteriorated although the processing speed is improved. This shows that stable processing cannot be achieved simply by lowering the fixed abrasive density.
  • Example 2 Manufacture of magnetic disk
  • An adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer, and a lubricating layer are sequentially formed on the glass substrate.
  • a protective layer a hydrogenated carbon layer was formed.
  • the lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
  • the obtained magnetic disk was installed in an HDD equipped with a DFH head, and a load / unload durability test was conducted for one month while operating the DFH function in a high temperature and high humidity environment of 80 ° C. and 80% RH. There were no particular obstacles and good results were obtained.

Abstract

The present invention provides a method whereby not only the machining speed can be improved during a grinding process utilizing a stationary grinding wheel, but stable grinding can also be enabled. In the present invention, during a grinding process for grinding a main surface of a glass substrate, the main surface of the glass substrate is ground by using a grinding tool that has grinding abrasive grains, a binding material for binding the grinding abrasive grains together, and dispersed grains that are harder than the binding material yet softer than the grinding abrasive grains, wherein the grinding abrasive grains and the dispersed grains are bound together in a dispersed state in the binding material.

Description

磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法、並びに研削工具Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and grinding tool
 本発明は、ハードディスクドライブ(HDD)等の磁気ディスク装置に搭載される磁気ディスク用ガラス基板の製造に適用される研削工具、該研削工具を用いた磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法に関する。 The present invention relates to a grinding tool applied to manufacture of a magnetic disk glass substrate mounted on a magnetic disk device such as a hard disk drive (HDD), a method of manufacturing a glass substrate for magnetic disk using the grinding tool, and a magnetic disk It relates to a manufacturing method.
ハードディスクドライブ(HDD)等の磁気ディスク装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、基板上に磁性層等の薄膜を形成して構成されたものであり、その基板として従来はアルミ基板が用いられてきた。しかし、最近では、高記録密度化の追求に呼応して、アルミ基板と比べて磁気ヘッドと磁気ディスクとの間隔をより狭くすることが可能なガラス基板の占める比率が次第に高くなってきている。
また、ガラス基板表面は磁気ヘッドの浮上高さを極力下げることができるように、高精度に研磨して高記録密度化を実現している。近年、HDDの更なる大記録容量化、低価格化の要求は増すばかりであり、これを実現するためには、磁気ディスク用ガラス基板においても更なる高品質化、低コスト化が必要になってきている。
There is a magnetic disk as one of information recording media mounted on a magnetic disk device such as a hard disk drive (HDD). A magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate. However, recently, in response to the pursuit of higher recording density, the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing.
Further, the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible. In recent years, there has been an increasing demand for HDDs with higher recording capacity and lower prices. In order to achieve this, it is necessary to further improve the quality and cost of glass substrates for magnetic disks. It is coming.
上述したように高記録密度化にとって必要な低フライングハイト(浮上量)化のために磁気ディスク表面の高い平滑性は必要不可欠である。磁気ディスク表面の高い平滑性を得るためには、結局、高い平滑性の基板表面が求められるため、高精度にガラス基板表面を研磨する必要がある。このようなガラス基板を作製するために、研削加工にて板厚の調整と平坦度(平面度)を低減した後、さらに研磨処理を行って表面粗さや微小うねりを低減することによって、主表面における極めて高い平滑性を実現してきた。 As described above, high smoothness on the surface of the magnetic disk is indispensable for reducing the flying height (flying height) necessary for increasing the recording density. In order to obtain a high smoothness on the surface of the magnetic disk, a substrate surface with a high smoothness is required in the end. Therefore, it is necessary to polish the glass substrate surface with high accuracy. In order to produce such a glass substrate, after adjusting the plate thickness and reducing the flatness (flatness) by grinding, further polishing is performed to reduce the surface roughness and microwaviness, thereby reducing the main surface. Has achieved extremely high smoothness.
ところで、従来、遊離砥粒を用いていた研削工程(例えば特許文献1等)において、ダイヤモンドパッドを用いた固定砥粒による研削方法が提案されている(例えば特許文献2等)。ダイヤモンドパッドとは、ダイヤモンド粒子や、いくつかのダイヤモンド粒子がガラス等の固定材で固められた凝集体(集結砥粒)を、樹脂(例えばアクリル系樹脂等)などの結合材を用いてシートに固定したものである。これ以外にも、ダイヤモンドを含む樹脂の層をシート上に形成した後に、樹脂層に溝を形成して突起状としたものでもよい。なお、ここで言うダイヤモンドパッドは必ずしも一般的な呼び名ではないが、本明細書では説明の便宜上「ダイヤモンドパッド」と呼ぶこととする。 By the way, in the grinding process (for example, patent document 1 etc.) which conventionally used the loose abrasive grain, the grinding method by the fixed abrasive using a diamond pad is proposed (for example, patent document 2 etc.). A diamond pad is a combination of diamond particles or agglomerates (concentrated abrasive grains) in which several diamond particles are hardened with a fixing material such as glass, using a binding material such as a resin (for example, an acrylic resin). It is fixed. In addition to this, a resin layer containing diamond may be formed on the sheet, and then a groove may be formed in the resin layer to form a protrusion. The diamond pad referred to here is not necessarily a general name, but is referred to as a “diamond pad” for convenience of explanation in this specification.
従来の遊離砥粒では形状が歪な砥粒が定盤とガラスとの間に介在し不均一に存在するために、砥粒への荷重が一定にならず荷重が集中した場合、定盤表面は鋳鉄による低弾性であるため、ガラスに深いクラックが入り、加工変質層が深く、またガラスの加工表面粗さも大きくなるので、後工程の鏡面研磨工程で多くの除去量が必要であったため、加工コストの削減が困難であった。これに対し、ダイヤモンドパッドを用いた固定砥粒による研削では、シート表面に砥粒が均一に存在しているため、荷重が集中することなく、加えて樹脂を用いて砥粒をシートに固定しているため、砥粒に荷重が加わっても砥粒を固定している樹脂の高弾性作用により、加工面のクラック(加工変質層)は浅く、加工表面粗さの低下が可能となり、後工程への負荷(取代など)が低減され、加工コストの削減が可能になる。
特許文献2には、ダイヤモンド砥粒をバインダーで結合した研磨複合体(凝集体)を有機樹脂内部に一定比率で分散させた固定砥粒による研削加工用の工具が開示されている。
In conventional loose abrasive grains, abrasive grains with a distorted shape are present between the surface plate and the glass and are non-uniform, so if the load on the abrasive grains is not constant and the load is concentrated, the surface of the surface plate Because of the low elasticity of cast iron, deep cracks enter the glass, the work-affected layer is deep, and the processing surface roughness of the glass also increases, so a large amount of removal was required in the subsequent mirror polishing process. It was difficult to reduce processing costs. In contrast, in grinding with a fixed abrasive using a diamond pad, the abrasive grains are uniformly present on the surface of the sheet, so that the load is not concentrated, and in addition, the abrasive is fixed to the sheet using resin. Therefore, even if a load is applied to the abrasive grains, the high elastic action of the resin fixing the abrasive grains makes the cracks (deformed layer) on the processed surface shallow, and the processed surface roughness can be reduced. The load on the machine (such as machining allowance) is reduced, and processing costs can be reduced.
Patent Document 2 discloses a tool for grinding using fixed abrasive particles in which a polishing complex (aggregate) in which diamond abrasive particles are bonded with a binder is dispersed in an organic resin at a constant ratio.
特開2001-6161号公報JP 2001-6161 A 特表2003-534137号公報Special Table 2003-534137
上述のように、ダイヤモンドパッドを用いた固定砥粒による研削方法によれば、加工面の表面粗さの低下が可能となり、後の鏡面研磨工程への負荷が低減され、ガラス基板の加工コストの削減が可能になるものの、本発明者の検討によれば次のような課題があることが判明した。 As described above, according to the grinding method using the fixed abrasive using the diamond pad, the surface roughness of the processed surface can be reduced, the load on the subsequent mirror polishing process is reduced, and the processing cost of the glass substrate is reduced. Although reduction is possible, according to the study of the present inventors, it has been found that there are the following problems.
 上記特許文献2に開示されているような固定砥粒による研削加工用工具を用いてガラス基板の研削加工を行った場合、加工物に合わせた凝集体密度を選択し、加工圧力を調整して、常にダイヤモンド砥粒の先端部分(刃先)にかかる圧力をコントロールする必要がある。特に加工を速く行いたい場合は、凝集体密度が低い研削工具を選択することが有利である。この場合、凝集体の間隔が大きいため、加工速度は速くなるが、工具の磨耗も早くなる。また、凝集体密度が低いと分散されている凝集体同士の距離が不均一になりやすく、偏磨耗が起こりやすい。このような従来の研削工具を使用してガラス基板の量産を行うと、初期段階では加工速度が速いが、研削砥粒の脱落、偏磨耗、目詰まり、等が繰り返されて、工具表面にうねり成分が形成されるようになり、比較的早い段階(加工開始から数バッチ経過)で加工速度の低下と加工後の品質低下が発生してくる。特に平坦度の品質低下が顕著になる。工具表面に発生したうねり成分を除去する修正作業によって低下した加工速度を回復させることも可能であるが、このような修正作業を頻繁に行う必要があるので、生産上の負荷が大きい。
 要するに、従来技術では、加工速度と加工品質(特に基板の平坦度)の両立が困難であり、安定した加工速度で良好な加工品質が長期間安定して得られない。
When grinding a glass substrate using a grinding tool with a fixed abrasive as disclosed in Patent Document 2 above, select an agglomerate density that matches the workpiece and adjust the processing pressure. It is always necessary to control the pressure applied to the tip portion (blade edge) of the diamond abrasive grains. It is advantageous to select a grinding tool having a low agglomerate density, particularly when processing is desired to be performed quickly. In this case, since the interval between the aggregates is large, the processing speed increases, but the wear of the tool also increases. Further, when the aggregate density is low, the distance between the dispersed aggregates tends to be non-uniform, and uneven wear tends to occur. When mass production of a glass substrate using such a conventional grinding tool is performed, the processing speed is fast in the initial stage, but grinding abrasive grains fall off, uneven wear, clogging, etc. are repeated, and the tool surface undulates. Components are formed, and at a relatively early stage (several batches have elapsed since the start of processing), the processing speed decreases and the quality after processing decreases. In particular, the quality deterioration of flatness becomes remarkable. Although it is possible to recover the machining speed reduced by the correction work for removing the waviness component generated on the tool surface, it is necessary to frequently perform such a correction work, so that the production load is large.
In short, in the prior art, it is difficult to achieve both the processing speed and the processing quality (particularly the flatness of the substrate), and good processing quality cannot be stably obtained for a long time at a stable processing speed.
本発明はこのような従来の課題を解決すべくなされたものであって、その目的は、固定砥粒を用いた研削処理において、加工速度と加工品質(特に基板の平坦度)の両立を図り、安定した加工速度で良好な加工品質が長期間安定して得られるガラス基板の研削処理に適用する研削工具を提供し、またこの研削工具を用いた研削処理を含み、高品質のガラス基板を製造できる磁気ディスク用ガラス基板の製造方法、およびそれによって得られるガラス基板を利用した磁気ディスクの製造方法を提供することである。 The present invention has been made to solve such a conventional problem, and its purpose is to achieve both processing speed and processing quality (particularly flatness of the substrate) in grinding processing using fixed abrasive grains. We provide a grinding tool that can be applied to the grinding process of glass substrates that can stably obtain good processing quality for a long period of time at a stable processing speed. It is an object to provide a method for producing a glass substrate for a magnetic disk that can be produced, and a method for producing a magnetic disk using the glass substrate obtained thereby.
本発明者は、加工速度を高めて、なお且つ安定した研削加工を行うことが可能な解決手段を模索した結果、本発明を完成するに至った。
すなわち、上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
 ガラス基板の主表面を研削する研削処理を含む磁気ディスク用ガラス基板の製造方法であって、前記研削処理では、研削砥粒と、該研削砥粒を結合する結合材と、該結合材よりも硬く、且つ前記研削砥粒よりも柔らかい分散粒とを備え、前記結合材中に前記研削砥粒と前記分散粒とが分散された状態で結合されている研削工具を用いて、ガラス基板主表面の研削を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
As a result of searching for a solution that can increase the processing speed and perform stable grinding, the present inventor has completed the present invention.
That is, in order to solve the above problems, the present invention has the following configuration.
(Configuration 1)
A method of manufacturing a glass substrate for a magnetic disk including a grinding process for grinding a main surface of a glass substrate, wherein the grinding process includes grinding abrasive grains, a binder for bonding the abrasive grains, and a binder. A glass substrate main surface using a grinding tool which is hard and includes dispersed particles softer than the abrasive grains, and is bonded in a state where the abrasive grains and the dispersed particles are dispersed in the binder. A method for producing a glass substrate for a magnetic disk, characterized in that:
(構成2)
 前記結合材は、樹脂材料であることを特徴とする構成1に記載の磁気ディスク用ガラス基板の製造方法。
(構成3)
 前記研削砥粒は、複数の研削砥粒が固定材で結合された集結砥粒であることを特徴とする構成1又は2に記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 2)
2. The method for manufacturing a glass substrate for a magnetic disk according to Configuration 1, wherein the binding material is a resin material.
(Configuration 3)
3. The method for manufacturing a glass substrate for a magnetic disk according to Configuration 1 or 2, wherein the grinding abrasive grains are concentrated abrasive grains in which a plurality of abrasive grains are bonded with a fixing material.
(構成4)
 前記研削砥粒は、ダイヤモンド砥粒を含むことを特徴とする構成1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成5)
 前記分散粒は、アルミナ又はジルコニアからなることを特徴とする構成1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 4)
4. The method for manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 3, wherein the grinding abrasive grains include diamond abrasive grains.
(Configuration 5)
5. The method for manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 4, wherein the dispersed particles are made of alumina or zirconia.
(構成6)
 前記分散粒は、研削するガラスよりも柔らかいガラスからなることを特徴とする構成1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成7)
 前記分散粒は、複数の分散粒が、研削するガラスよりも柔らかいガラスで結合された凝集体であることを特徴とする構成1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 6)
5. The method for manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 4, wherein the dispersed particles are made of glass softer than glass to be ground.
(Configuration 7)
5. The method of manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 4, wherein the dispersed particles are aggregates in which a plurality of dispersed particles are bonded with glass softer than glass to be ground.
(構成8)
 前記結合材中の前記研削砥粒に対する前記分散粒の比率が、0.1~5倍の範囲であることを特徴とする構成1乃至7のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成9)
 構成1乃至8のいずれかに記載の磁気ディスク用ガラス基板の製造方法により製造された磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
(Configuration 8)
8. A method of manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 7, wherein a ratio of the dispersed grains to the abrasive grains in the binder is in a range of 0.1 to 5 times. .
(Configuration 9)
A magnetic disk manufacturing method comprising forming at least a magnetic recording layer on a magnetic disk glass substrate manufactured by the method for manufacturing a magnetic disk glass substrate according to any one of Structures 1 to 8.
(構成10)
 電子デバイス用のガラス基板表面を研削する研削工具であって、研削砥粒と、該研削砥粒を結合する結合材と、該結合材よりも硬く、且つ前記研削砥粒よりも柔らかい分散粒とを備え、前記結合材中に前記研削砥粒と前記分散粒とが分散された状態で結合されていることを特徴とする研削工具。
(Configuration 10)
A grinding tool for grinding a glass substrate surface for an electronic device, comprising: grinding abrasive grains; a binder for binding the abrasive grains; and a dispersed grain that is harder than the binder and softer than the abrasive grains. A grinding tool, wherein the grinding abrasive grains and the dispersed grains are bonded in a state of being dispersed in the binder.
本発明によれば、上記構成によって従来の課題を解決でき、固定砥粒による研削処理において、加工速度と加工品質(特に基板の平坦度)の両立を図り、安定した加工速度で良好な加工品質が長期間安定して得られるガラス基板の研削処理に適用する研削工具を提供することができる。また、この研削工具を用いた研削処理を含み、高品質のガラス基板を低コストで製造することが可能である。さらに、それによって得られるガラス基板を利用し、信頼性の高い磁気ディスクを得ることができる。 According to the present invention, the above-described configuration can solve the conventional problems, and in the grinding process using the fixed abrasive grains, the processing speed and the processing quality (particularly the flatness of the substrate) are balanced, and the processing quality is stable at a stable processing speed. Thus, it is possible to provide a grinding tool applied to a grinding treatment of a glass substrate that can be stably obtained for a long period of time. In addition, it is possible to manufacture a high-quality glass substrate at a low cost including a grinding process using this grinding tool. Furthermore, a highly reliable magnetic disk can be obtained using the glass substrate obtained thereby.
従来のダイヤモンドパッドの構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional diamond pad. 研削加工時の状態を説明するための模式図である。It is a schematic diagram for demonstrating the state at the time of a grinding process.
 以下、本発明の実施の形態を詳述する。
磁気ディスク用ガラス基板は、通常、形状加工、主表面研削、端面研磨、主表面研磨、化学強化、等を経て製造される。
本発明の磁気ディスク用ガラス基板の製造方法においては、フロート法やダウンドロー法で製造されたシート状ガラスから所定の大きさに切り出してガラス基板を得る。また、これ以外に、溶融ガラスからプレスで作製したシート状板ガラスを用いてもよい。本発明は、研削加工開始時に主表面が鏡面状のガラス基板を使用する場合に好適である。
Hereinafter, embodiments of the present invention will be described in detail.
A glass substrate for a magnetic disk is usually manufactured through shape processing, main surface grinding, end surface polishing, main surface polishing, chemical strengthening, and the like.
In the method for producing a glass substrate for a magnetic disk according to the present invention, a glass substrate is obtained by cutting into a predetermined size from a sheet-like glass produced by a float method or a downdraw method. In addition to this, a sheet-like plate glass produced by pressing from molten glass may be used. The present invention is suitable when a glass substrate having a mirror-like main surface is used at the start of grinding.
次に、このガラス基板に寸法精度及び形状精度を向上させるための研削加工処理を行う。
この研削加工は、通常両面研削装置を用い、ダイヤモンド等の硬質砥粒を用いてガラス基板主表面の研削を行う。こうしてガラス基板主表面を研削加工することにより、所定の板厚、平坦度に加工するとともに、所定の表面粗さを得る。
Next, the glass substrate is subjected to a grinding process for improving dimensional accuracy and shape accuracy.
In this grinding process, a main surface of the glass substrate is generally ground using a double-side grinding apparatus and using hard abrasive grains such as diamond. By grinding the main surface of the glass substrate in this way, a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained.
本発明は、この研削加工処理の改善に関わるものである。本発明における研削処理は、例えばダイヤモンド粒子を含む研削砥粒(固定砥粒)を用いた研削加工であり、両面研削装置において、研削工具として例えばダイヤモンドパッドが貼り付けられた上下定盤の間にキャリアにより保持したガラス基板を密着させ、さらに前記ガラス基板を上下定盤によって所定圧で挟圧しながら、ガラス基板と上下定盤とを相対的に移動させることにより、ガラス基板の両主表面を同時に研削する。この際、加工作用面を冷却したり、加工を促進するために潤滑液(クーラント)が供給される。 The present invention relates to the improvement of this grinding process. The grinding process in the present invention is a grinding process using, for example, grinding abrasive grains (fixed abrasive grains) containing diamond particles, and in a double-side grinding apparatus, for example, between upper and lower surface plates on which diamond pads are attached as grinding tools. By closely moving the glass substrate and the upper and lower platen while the glass substrate held by the carrier is in close contact, and sandwiching the glass substrate at a predetermined pressure by the upper and lower platen, both main surfaces of the glass substrate are simultaneously Grind. At this time, a lubricating liquid (coolant) is supplied to cool the working surface or to promote the processing.
上記研削処理に使用する研削工具(固定砥粒砥石)は、例えばダイヤモンドパッドであり、図1にその構成の概略を示した。図1に示されるダイヤモンドパッド1は、いくつかのダイヤモンド粒子5(図2参照)がガラスなどの固定材で固められた集結砥粒3を樹脂(例えばアクリル系樹脂等)などの結合材を用いて固定したペレット4をシート2に貼り付けたものである。勿論、図1に示す構成はあくまでも一例であり、これに限定する趣旨ではない。例えば、ダイヤモンド粒子を含む樹脂の層をシート上に形成した後に、樹脂層に溝を形成して突起状としたダイヤモンドパッドを使用してもよい。 The grinding tool (fixed abrasive grindstone) used for the grinding process is, for example, a diamond pad, and its configuration is schematically shown in FIG. A diamond pad 1 shown in FIG. 1 uses a binding material such as a resin (for example, an acrylic resin), which is a collection of abrasive grains 3 in which several diamond particles 5 (see FIG. 2) are hardened with a fixing material such as glass. The pellet 4 fixed in this manner is affixed to the sheet 2. Of course, the configuration shown in FIG. 1 is merely an example, and the present invention is not limited to this. For example, a diamond pad that has a resin layer containing diamond particles formed on a sheet and then has grooves formed in the resin layer to form protrusions may be used.
なお、本実施の形態においては、固定砥粒あるいは単に砥粒と言った場合は、特に断りのない限り、上記ダイヤモンド粒子のような研削砥粒を意味するものとし、また、砥粒の平均粒径と言った場合は、上記研削砥粒の平均粒径を意味するものとする。 In the present embodiment, when it is referred to as fixed abrasive grains or simply abrasive grains, unless otherwise specified, it means a grinding abrasive grain such as the above diamond grain, and the average grain of the abrasive grains. When it says a diameter, it shall mean the average particle diameter of the said abrasive grain.
 前にも説明したとおり、本発明者は、前述の従来技術では、加工速度と加工品質(特に基板の平坦度)の両立が困難であり、安定した加工速度で良好な加工品質が長期間安定して得られないことを突き止めた。
そこで、本発明者は、加工速度を高めて、なお且つ安定した研削加工を行うことが可能な解決手段を模索した結果、研削砥粒と、該研削砥粒よりも柔らかい分散粒とを併用し、結合材中にこれらの研削砥粒と分散粒とが分散された状態で結合されている研削工具を適用することによって、上記課題を解決できることを見出したものである。
As described above, the present inventor is difficult to achieve both the processing speed and the processing quality (particularly the flatness of the substrate) with the above-described conventional technology, and the stable processing speed and the good processing quality are stable for a long period of time. I found out that I could not get it.
Therefore, as a result of searching for a solution that can increase the processing speed and perform stable grinding, the present inventor used a combination of abrasive grains and dispersed grains softer than the abrasive grains. The present inventors have found that the above-described problems can be solved by applying a grinding tool in which these abrasive grains and dispersed grains are dispersed in a binder.
本発明の研削工具においては、上下定盤でガラス基板を挟んだときに、定盤から研削砥粒のそれぞれにかかる力が、上記分散粒の存在によって分散される。つまり、研削砥粒密度を低下させ、研削砥粒の間隔を大きくして、加工速度は速めることができ、しかも研削砥粒間隔は大きくても、その間に分散粒が存在しているので、加工時に定盤から加わる力を分散させることが出来、工具の磨耗を抑制することが可能となる。また、研削砥粒密度が低いと分散されている砥粒同士の距離が不均一になりやすいが、本発明においては、上記のとおり、研削砥粒の他に分散粒が分散されているので、結果的に研削砥粒同士も均一な距離で分散されており、偏磨耗が起こり難い。 In the grinding tool of the present invention, when the glass substrate is sandwiched between the upper and lower surface plates, the force applied to each of the abrasive grains from the surface plate is dispersed by the presence of the dispersed particles. In other words, it is possible to increase the processing speed by reducing the grinding grain density, increasing the grinding grain spacing, and even if the grinding grain spacing is large, there are dispersed grains between them. Sometimes, the force applied from the surface plate can be dispersed, and the wear of the tool can be suppressed. Also, if the grinding abrasive density is low, the distance between the dispersed abrasive grains tends to be non-uniform, but in the present invention, as described above, the dispersed grains are dispersed in addition to the abrasive grains, As a result, the abrasive grains are dispersed at a uniform distance, and uneven wear hardly occurs.
従って、このような本発明の研削工具を使用してガラス基板の量産を行っても、従来技術のような加工を続けると工具表面にうねり成分が形成されるようになることを抑制でき、その結果、加工速度と加工品質(特に基板の平坦度)の両立を図ることが可能となり、安定した加工速度で良好な加工品質が長期間安定して得られる。 Therefore, even if mass production of a glass substrate is performed using such a grinding tool of the present invention, it is possible to suppress the formation of a swell component on the tool surface if processing is continued as in the prior art. As a result, it is possible to achieve both processing speed and processing quality (particularly the flatness of the substrate), and good processing quality can be stably obtained for a long period of time at a stable processing speed.
 すなわち、本発明における研削処理に適用される研削工具は、ガラス基板表面を研削する研削工具であって、研削砥粒と、該研削砥粒を結合する結合材と、該結合材よりも硬く、且つ前記研削砥粒よりも柔らかい分散粒とを備え、前記結合材中に前記研削砥粒と前記分散粒とが分散された状態で結合されていることを特徴とするものである。
 また、本発明は、ガラス基板を研削する研削処理において、上記研削工具を用いて、ガラス基板主表面の研削を行うことを特徴とするものである。
That is, the grinding tool applied to the grinding process in the present invention is a grinding tool for grinding the glass substrate surface, and is harder than the grinding abrasive grains, the binder for bonding the abrasive grains, and the binder. In addition, dispersed abrasive particles softer than the abrasive grains are provided, and the abrasive grains and the dispersed grains are bonded in a state of being dispersed in the binder.
Further, the present invention is characterized in that in the grinding process for grinding a glass substrate, the glass substrate main surface is ground using the grinding tool.
 上記研削砥粒は、砥粒そのものでもよいが、複数の研削砥粒が固定材で結合された集結砥粒であることが好ましい。単体砥粒は表面積が小さいため把持する樹脂強度が低く脱落しやすい。
本発明においては、上記研削砥粒がダイヤモンド砥粒であることが好ましい。この場合、ダイヤモンド砥粒の平均粒子径が1.5~10μm程度の範囲であることが好適である。
ダイヤモンド砥粒の平均粒子径が上記の範囲を下回ると鏡面状ガラス基板に対する切り込みが浅くなりガラス基板への食い込みが進行し難くなる。一方、ダイヤモンド砥粒の平均粒子径が上記の範囲を上回ると仕上りの粗さが粗くなるため後工程の取り代負荷が大きくなるおそれがある。
また、ダイヤモンド砥粒の集結砥粒である場合、この集結砥粒の粒径は、累積平均粒子径が30~50μm程度であることが好ましい。
また、砥粒同士を固定する固定材としては例えばガラス材が好適である。
The abrasive grains may be abrasive grains themselves, but are preferably concentrated abrasive grains in which a plurality of abrasive grains are bonded with a fixing material. Since the single abrasive grains have a small surface area, the gripping resin strength is low and they easily fall off.
In the present invention, the abrasive grains are preferably diamond grains. In this case, it is preferable that the average particle diameter of the diamond abrasive grains is in the range of about 1.5 to 10 μm.
When the average particle diameter of the diamond abrasive grains is less than the above range, the cut into the mirror-like glass substrate becomes shallow and the biting into the glass substrate is difficult to proceed. On the other hand, when the average particle diameter of the diamond abrasive grains exceeds the above range, the roughness of the finish becomes rough, so that there is a possibility that the machining allowance load in the subsequent process becomes large.
Further, in the case of diamond abrasive grains, it is preferable that the accumulated abrasive grains have a cumulative average particle diameter of about 30 to 50 μm.
Moreover, as a fixing material which fixes abrasive grains, a glass material is suitable, for example.
なお、本発明において、上記平均粒子径とは、レーザー回折法により測定された粒度分布における粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒径(「累積平均粒子径(50%径)」と呼ぶ。)を言う。この累積平均粒子径(50%径)は、具体的には粒子径・粒度分布測定装置などを用いて測定可能な値である。 In the present invention, the average particle diameter is a point where the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder group in the particle size distribution measured by the laser diffraction method as 100%. (Referred to as “cumulative average particle diameter (50% diameter)”). The cumulative average particle diameter (50% diameter) is a value that can be measured using a particle diameter / particle size distribution measuring device.
研削砥粒を結合する結合材としては、例えば金属、ガラス、樹脂材料等が挙げられるが、適度なクッション性を有してガラスに過度なダメージを与えないことの観点から、特に樹脂材料が好適である。樹脂材料としては、アクリレート、エポキシ、ポリカーボネート、ポリエステル等が挙げられる。 Examples of the binder for bonding the abrasive grains include metals, glass, resin materials, etc., but resin materials are particularly preferable from the viewpoint of having an appropriate cushioning property and not causing excessive damage to the glass. It is. Examples of the resin material include acrylate, epoxy, polycarbonate, and polyester.
本発明において、結合材中に研削砥粒とともに分散される上記分散粒は、該結合材よりも硬く、且つ研削砥粒よりも柔らかい粒である。加工時に上下定盤でガラス基板を挟んだときに、定盤から研削砥粒のそれぞれにかかる力が、上記分散粒の存在によって分散させることができる。分散粒の硬さは、結合材および研削砥粒の材質にもよるが、概ねモース硬度で研削砥粒は6.5~9.5程度であるため、それよりも柔らかい硬度を有するものであればよい。また、粒に使用するガラスは砥粒に比べ低いモース硬度であることが好ましい。 In the present invention, the dispersed particles dispersed together with the abrasive grains in the binder are grains that are harder than the binder and softer than the abrasive grains. When a glass substrate is sandwiched between upper and lower surface plates during processing, the force applied to each of the abrasive grains from the surface plate can be dispersed by the presence of the dispersed particles. Although the hardness of the dispersed grains depends on the material of the binder and the abrasive grains, the hardness is generally Mohs and the abrasive grains are about 6.5 to 9.5, so long as the hardness is softer than that. Moreover, it is preferable that the glass used for the grains has a lower Mohs hardness than the abrasive grains.
上記分散粒は、硬さに関して上記要件を満たすものであれば、特に材質は制約されないが、モース硬度の点で、ガラス、アルミナ又はジルコニアからなることが好ましい。また、材質の異なる粒の混合物でもよい。これらの材料はダイヤモンドよりも適度に柔らかいため、ダイヤモンド砥粒よりも先に磨耗する。ゆえにダイヤモンドの加工を阻害することがない。アルミナ又はジルコニアの粒子の平均粒径の範囲は、ダイヤモンド砥粒の平均粒子径と同様とすることが好ましい。 The material of the dispersed particles is not particularly limited as long as it satisfies the above-mentioned requirements with respect to hardness, but is preferably made of glass, alumina, or zirconia in terms of Mohs hardness. Moreover, the mixture of the grain from which a material differs may be sufficient. Since these materials are moderately softer than diamond, they wear out before the diamond abrasive grains. Therefore, diamond processing is not hindered. The range of the average particle diameter of the alumina or zirconia particles is preferably the same as the average particle diameter of the diamond abrasive grains.
 上記分散粒は、粒そのものでもよいが、複数の分散粒が、例えばビトリファイド結合のようにガラスの固定材で結合された凝集体であってもよい。この場合の複数の分散粒は材質が同じでも異なるものでもよい。また、この場合のガラスは、研削するガラス基板よりも柔らかいガラスであることが好ましい。
 上記分散粒の大きさは、粒そのものの場合は、凝集体の場合と同等であることが好ましい。こうすることで、両者を均一に分散させやすくなる。
 また、上記研削砥粒の大きさ(集結砥粒の場合はその大きさ)と分散粒との大きさの比は、ほぼ同等であることが好適であり、特に両者が同じ大きさであることが望ましい。研削砥粒と分散粒との大きさの比は、研削砥粒の平均粒径に対する分散粒の平均粒径の比((分散粒の平均粒径)/(研削砥粒の平均粒径))で0.8~1.2の範囲内とすることが好ましい。こうすることで、両者を均一に分散させやすくなる。
また、研削砥粒の固定材と分散粒の固定剤とが用いられる場合、両者の結合材は同じ材料であることが好ましい。こうすることで、両者を均一に分散させやすくなる。
The dispersed particles may be the particles themselves, but may also be aggregates in which a plurality of dispersed particles are bonded with a glass fixing material such as vitrified bonding. In this case, the plurality of dispersed grains may be the same or different from each other. Moreover, it is preferable that the glass in this case is softer than the glass substrate to be ground.
The size of the dispersed particles is preferably the same as that of the aggregate in the case of the particles themselves. By doing so, it becomes easy to disperse both uniformly.
Further, it is preferable that the ratio of the size of the abrasive grains (the size in the case of concentrated abrasive grains) and the size of the dispersed grains is substantially equal, and in particular, both are the same size. Is desirable. The ratio of the size of the abrasive grains to the dispersed grains is the ratio of the average grain diameter of the dispersed grains to the average grain diameter of the abrasive grains ((average grain diameter of dispersed grains) / (average grain diameter of abrasive grains)). In the range of 0.8 to 1.2. By doing so, it becomes easy to disperse both uniformly.
Moreover, when the fixing material of a grinding grain and the fixing agent of a dispersion grain are used, it is preferable that both binder is the same material. By doing so, it becomes easy to disperse both uniformly.
 また、上記分散粒は、好ましくは研削するガラスよりも柔らかいガラスのみからなる粒であってもよい。
 このガラスのみからなる分散粒の場合、分散粒の大きさや、研削砥粒との大きさの比などに関しては、上記アルミナ等の分散粒の場合と同様である。
The dispersed grains may be grains composed only of glass that is preferably softer than the glass to be ground.
In the case of the dispersed particles made of only glass, the size of the dispersed particles and the ratio of the size to the abrasive grains are the same as in the case of the dispersed particles such as alumina.
 本発明の研削工具は、前記結合材中に前記研削砥粒と前記分散粒とが分散された状態で結合されているが、具体的には、たとえばダイヤモンド研削砥粒と、アルミナ等の非ダイヤモンド分散粒との併用や、ダイヤモンド研削砥粒と、ガラスからなる分散粒との併用、あるいはダイヤモンド研削砥粒と、アルミナ等の非ダイヤモンド分散粒と、ガラスからなる分散粒との併用等が実施態様として挙げられる。
 本発明においては、特にダイヤモンド研削砥粒と、ガラスからなる分散粒との併用の実施態様が好適である。この実施態様によれば、うねり成分発生を防止する分散効果が最も高くなる。
The grinding tool of the present invention is bonded in the state where the abrasive grains and the dispersed grains are dispersed in the binder, and specifically, for example, diamond abrasive grains and non-diamond such as alumina. Use in combination with dispersed grains, combined use of diamond abrasive grains and dispersed grains made of glass, or combined use of diamond abrasive grains, non-diamond dispersed grains such as alumina, and dispersed grains made of glass, etc. As mentioned.
In the present invention, an embodiment in which diamond grinding abrasive grains and dispersed grains made of glass are used in combination is particularly suitable. According to this embodiment, the dispersion effect that prevents the generation of the swell component is the highest.
 本発明において、結合材中の前記研削砥粒と前記分散粒の比率は特に制約されないが、本発明による作用効果が十分に発揮される観点からは以下の分散比率とすることが好ましい。
ダイヤモンド研削砥粒と、アルミナ等の非ダイヤモンド分散粒との併用の場合は、研削砥粒1に対し分散粒0.1~3倍の範囲であることが好適である。
また、ダイヤモンド研削砥粒と、ガラスからなる分散粒との併用の場合は、研削砥粒1に対し分散粒0.1~5倍の範囲であることが好適である。
また、ダイヤモンド研削砥粒と、アルミナ等の非ダイヤモンド分散粒と、ガラスからなる分散粒との併用の場合は、研削砥粒1に対し分散粒の全量が0.1~5倍の範囲であることが好適である。
また、樹脂等の結合材中に分散される固定砥粒の合計(集結砥粒や凝集体の場合はそれを1個と数える)の研削面における密度は、10~40(個/mm)の範囲であることが好ましい。また、研削工具中における固定砥粒の含有量は、5~80体積%であることが好ましい。固定砥粒の含有量が上記範囲を逸脱(超過及び不足のいずれも)すると、いずれも加工時間の増大を招いてコスト高となる場合がある。
本発明では、ダイヤモンド砥粒よりやわらかい材料の砥粒及びその凝集体を、ダイヤモンド集結砥粒と一緒に分散させることにより、ダイヤモンド集結砥粒の砥粒間距離を均一に伸ばすことができる。また、ダイヤモンド集結砥粒への過度の圧力集中を防止することができる。これにより、高い加工速度においても加工を安定化することができ、良好な平坦度を維持することができる。
In the present invention, the ratio of the abrasive grains to the dispersed grains in the binder is not particularly limited, but the following dispersion ratio is preferable from the viewpoint of sufficiently achieving the effects of the present invention.
When the diamond abrasive grains are used in combination with non-diamond dispersed grains such as alumina, the range of the dispersed grains is 0.1 to 3 times that of the abrasive grains 1.
Further, when the diamond abrasive grains are used in combination with the dispersed grains made of glass, the range of 0.1 to 5 times the dispersed grains with respect to the abrasive grains 1 is preferable.
In the case of using a combination of diamond grinding grains, non-diamond dispersion grains such as alumina, and dispersion grains made of glass, the total amount of the dispersion grains is 0.1 to 5 times that of the grinding grains 1. Is preferred.
Further, the density of the fixed abrasive grains dispersed in a binder such as a resin (counted as one in the case of aggregated abrasive grains or aggregates) on the grinding surface is 10 to 40 (pieces / mm 2 ). It is preferable that it is the range of these. Further, the content of the fixed abrasive grains in the grinding tool is preferably 5 to 80% by volume. If the content of the fixed abrasive deviates from the above range (both excess and deficiency), both may increase the processing time and increase the cost.
In the present invention, the abrasive grains of a material softer than the diamond abrasive grains and the aggregates thereof are dispersed together with the diamond aggregate abrasive grains, whereby the distance between the abrasive grains of the diamond aggregate abrasive grains can be uniformly extended. In addition, excessive pressure concentration on the diamond collecting abrasive grains can be prevented. Thereby, processing can be stabilized even at a high processing speed, and good flatness can be maintained.
本発明における研削処理においては、加工時の荷重は、面圧で15g~200g/cmとすることが好ましい。
なお、鏡面状のガラス基板表面を例えばダイヤモンドパッドで研削加工する場合、まず、ダイヤモンド砥粒をガラス基板表面に食い込ませるためガラス表面に対して通常の研削加工時よりも高い荷重負荷をかけることが好適である。高い負荷はそれだけ砥粒の切り込み深さが深くなるため、ガラス表面の粗さを粗くさせる(粗面化する)ことができる。
 このような加工初期段階でガラス表面が粗面化された後には、研削加工に対して高い負荷は必要なく、むしろ負荷を下げて砥粒の切り込み深さを浅くした条件で研削加工を行うことが望ましい。図2は、研削加工時の状態を説明するための模式図であり、ダイヤモンド砥粒3がガラス基板10に食い込んで研削している状態を示している(予想図)。
In the grinding treatment in the present invention, the load during processing is preferably 15 to 200 g / cm 2 in terms of surface pressure.
When grinding a mirror-like glass substrate surface with, for example, a diamond pad, first, in order to cause the diamond abrasive grains to bite into the glass substrate surface, a higher load load may be applied to the glass surface than during normal grinding. Is preferred. The higher the load, the deeper the cutting depth of the abrasive grains, the rougher the glass surface can be made (roughened).
After the glass surface has been roughened in such an initial stage of processing, there is no need for a high load on the grinding process. Rather, the grinding should be performed under conditions where the cutting depth of the abrasive grains is reduced by reducing the load. Is desirable. FIG. 2 is a schematic diagram for explaining a state at the time of grinding, and shows a state in which the diamond abrasive grains 3 are biting into the glass substrate 10 and are ground (expected view).
本発明においては、研削処理終了後のガラス基板の表面粗さが、Raで0.02~3.0μmの範囲に仕上がることが好ましい。このように仕上がりの粗さを低く抑えることで、後の工程の加工負荷を減らすことができる。 In the present invention, the surface roughness of the glass substrate after completion of the grinding treatment is preferably finished in the range of 0.02 to 3.0 μm in Ra. Thus, the processing load of a subsequent process can be reduced by keeping the roughness of the finish low.
本発明においては、ガラス基板を構成するガラス(の硝種)は、アモルファスのアルミノシリケートガラスとすることが好ましい。このようなガラス基板は表面を鏡面研磨することにより平滑な鏡面に仕上げることができ、また加工後の強度が良好である。このようなアルミノシリケートガラスとしては、例えば、SiO2 を主成分としてAl2O3 を20重量%以下含むガラスが好ましい。さらに、SiO2を主成分としてAl2O3を15重量%以下含むガラスとするとより好ましい。具体的には、SiO2を62重量%以上75重量%以下、Al2O3を5重量%以上15重量%以下、Li2 Oを4重量%以上10重量%以下、Na2Oを4重量%以上12重量%以下、ZrO2 を5.5重量%以上15重量%以下、主成分として含有するとともに、Na2O/ZrO2の重量比が0.5以上2.0以下、Al2O3 /ZrO2 の重量比が0.4以上2.5以下であるリン酸化物を含まないアモルファスのアルミノシリケートガラスを用いることができる。 In the present invention, the glass constituting the glass substrate is preferably an amorphous aluminosilicate glass. Such a glass substrate can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. As such an aluminosilicate glass, for example, a glass containing SiO2 as a main component and containing 20 wt% or less of Al2O3 is preferable. Further, it is more preferable to use glass containing SiO2 as a main component and containing Al2O3 or less by 15% by weight or less. Specifically, SiO2 is 62% by weight to 75% by weight, Al2O3 is 5% by weight to 15% by weight, Li2 重量 O is 4% by weight to 10% by weight, Na2O is 4% by weight to 12% by weight, ZrO2 is contained in an amount of 5.5% to 15% by weight as a main component, the weight ratio of Na2O / ZrO2 is 0.5 to 2.0, and the weight ratio of Al2O3 / ZrO2 is 0.4 to 2.5. Amorphous aluminosilicate glass that does not contain the following phosphorous oxide can be used.
 また、次世代の熱アシスト磁気記録用の磁気ディスクに用いられる耐熱性ガラスとしては、例えば、モル%表示にて、SiO2を50~75%、Al2O3を0~5%、BaOを0~2%、Li2Oを0~3%、ZnOを0~5%、Na2OおよびK2Oを合計で3~15%、MgO、CaO、SrOおよびBaOを合計で14~35%、ZrO2、TiO2、La2O3、Y2O3、Yb2O3、Ta2O5、Nb2O5およびHfO2を合計で2~9%、含み、モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.85~1の範囲であり、且つモル比[Al2O3/(MgO+CaO)]が0~0.30の範囲であるガラスを好ましく用いることができる。
また、SiO2を56~75モル%、Al2O3を1~9モル%、Li2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物を合計で6~15モル%、MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物を合計で10~30モル%、ZrO2、TiO2、Y2O3、La2O3、Gd2O3、Nb2O5およびTa2O5からなる群から選ばれる酸化物を合計で0%超かつ10モル%以下、含むガラスであってもよい。
 本発明において、ガラス組成におけるAl2O3の含有量が15重量%以下であると好ましい。さらには、Al2O3の含有量が5モル%以下であるとなお好ましい。
The heat-resistant glass used for the next generation heat-assisted magnetic recording magnetic disk is, for example, 50 to 75% of SiO2, 0 to 5% of Al2O3, and 0 to 2% of BaO in terms of mol%. , Li2O 0-3%, ZnO 0-5%, Na2O and K2O 3-15% in total, MgO, CaO, SrO and BaO 14-35% in total, ZrO2, TiO2, La2O3, Y2O3, Yb2O3 , Ta2O5, Nb2O5 and HfO2 in total 2 to 9%, the molar ratio [(MgO + CaO) / (MgO + CaO + SrO + BaO)] is in the range of 0.85 to 1, and the molar ratio [Al2O3 / (MgO + CaO)] is 0. Glass having a range of ˜0.30 can be preferably used.
Further, SiO2 is 56 to 75 mol%, Al2O3 is 1 to 9 mol%, a total of 6 to 15 mol% of alkali metal oxides selected from the group consisting of Li2O, Na2O and K2O, and a group consisting of MgO, CaO and SrO 10 to 30 mol% in total of alkaline earth metal oxides selected from the group consisting of oxides selected from the group consisting of ZrO2, TiO2, Y2O3, La2O3, Gd2O3, Nb2O5 and Ta2O5 in total exceeding 0% and not more than 10 mol% Including glass.
In the present invention, the content of Al2O3 in the glass composition is preferably 15% by weight or less. Furthermore, it is more preferable that the content of Al2O3 is 5 mol% or less.
以上説明した研削処理の終了後は、高精度な平面を得るための鏡面研磨加工を行う。本発明においては、固定砥粒を用いた研削処理において安定した加工が行えるため、後の鏡面研磨加工での除去量が少なくて済み、加工負荷が低減され、加工コストの削減が可能になる。 After the above-described grinding process is finished, mirror polishing is performed to obtain a highly accurate plane. In the present invention, since stable processing can be performed in the grinding process using the fixed abrasive grains, the amount of removal in the subsequent mirror polishing process can be reduced, the processing load can be reduced, and the processing cost can be reduced.
ガラス基板の鏡面研磨方法としては、酸化セリウムやコロイダルシリカ等の金属酸化物の研磨材を含有するスラリー(研磨液)を供給しながら、ポリウレタン等のポリシャの研磨パッドを用いて行うのが好適である。高い平滑性を有するガラス基板は、たとえば酸化セリウム系研磨材を用いて研磨した後(第1研磨加工)、さらにコロイダルシリカ砥粒を用いた仕上げ研磨(鏡面研磨)(第2研磨加工)によって得ることが可能である。 As a mirror polishing method for a glass substrate, it is preferable to use a polishing pad of a polisher such as polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica. is there. A glass substrate having high smoothness is obtained, for example, by polishing with a cerium oxide-based abrasive (first polishing process) and then with final polishing (mirror polishing) (second polishing process) using colloidal silica abrasive grains. It is possible.
本発明においては、鏡面研磨加工後のガラス基板の表面は、算術平均表面粗さRaが0.2nm以下、さらに好ましくは0.1nm以下である鏡面とされることが好ましい。なお、本発明において算術平均粗さRaというときは、日本工業規格(JIS)B0601に準拠して算出される粗さのことである。
また、本発明において表面粗さ(上記算術平均粗さRa)は、原子間力顕微鏡(AFM)で測定したときに得られる表面形状の表面粗さとすることが実用上好ましい。
In the present invention, the surface of the glass substrate after mirror polishing is preferably a mirror surface having an arithmetic average surface roughness Ra of 0.2 nm or less, more preferably 0.1 nm or less. In the present invention, the arithmetic average roughness Ra is a roughness calculated in accordance with Japanese Industrial Standard (JIS) B0601.
In the present invention, the surface roughness (the arithmetic average roughness Ra) is preferably practically the surface roughness obtained when measured with an atomic force microscope (AFM).
本発明においては、化学強化処理を施すことができる。化学強化処理の方法としては、例えば、ガラス転移点の温度を超えない温度領域で、イオン交換を行う低温型イオン交換法などが好ましい。化学強化処理とは、溶融させた化学強化塩とガラス基板とを接触させることにより、化学強化塩中の相対的に大きな原子半径のアルカリ金属元素と、ガラス基板中の相対的に小さな原子半径のアルカリ金属元素とをイオン交換し、ガラス基板の表層に該イオン半径の大きなアルカリ金属元素を浸透させ、ガラス基板の表面に圧縮応力を生じさせる処理のことである。化学強化処理されたガラス基板は耐衝撃性に優れているので、例えばモバイル用途のHDDに搭載するのに特に好ましい。化学強化塩としては、硝酸カリウムや硝酸ナトリウムなどのアルカリ金属硝酸塩を好ましく用いることができる。 In the present invention, chemical strengthening treatment can be performed. As a method of the chemical strengthening treatment, for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range not exceeding the glass transition temperature is preferable. The chemical strengthening treatment is a process in which a molten chemical strengthening salt is brought into contact with a glass substrate, whereby an alkali metal element having a relatively large atomic radius in the chemical strengthening salt and a relatively small atomic radius in the glass substrate. This is a treatment in which an alkali metal element is ion-exchanged, an alkali metal element having a large ion radius is permeated into the surface layer of the glass substrate, and compressive stress is generated on the surface of the glass substrate. Since the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example. As the chemical strengthening salt, alkali metal nitrates such as potassium nitrate and sodium nitrate can be preferably used.
また、本発明は、以上の磁気ディスク用ガラス基板を用いた磁気ディスクの製造方法についても提供する。
本発明において磁気ディスクは、本発明による磁気ディスク用ガラス基板の上に少なくとも磁気記録層(磁性層)を形成して製造される。磁性層の材料としては、異方性磁界の大きな六方晶系であるCoCrPt系やCoPt系強磁性合金を用いることができる。磁性層の形成方法としてはスパッタリング法、例えばDCマグネトロンスパッタリング法によりガラス基板の上に磁性層を成膜する方法を用いることが好適である。
The present invention also provides a method for manufacturing a magnetic disk using the above glass substrate for a magnetic disk.
In the present invention, the magnetic disk is produced by forming at least a magnetic recording layer (magnetic layer) on the magnetic disk glass substrate according to the present invention. As a material for the magnetic layer, a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used. As a method of forming the magnetic layer, it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method.
また、上記磁気記録層の上に、保護層、潤滑層を形成してもよい。保護層としてはアモルファスの炭素系保護層が好適である。また、潤滑層としては、パーフルオロポリエーテル化合物の主鎖の末端に官能基を有する潤滑剤を用いることができる。
本発明によって得られる磁気ディスク用ガラス基板を利用することにより、信頼性の高い磁気ディスクを得ることができる。
Further, a protective layer and a lubricating layer may be formed on the magnetic recording layer. As the protective layer, an amorphous carbon-based protective layer is suitable. Further, as the lubricating layer, a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used.
By using the glass substrate for magnetic disk obtained by the present invention, a highly reliable magnetic disk can be obtained.
以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
以下の(1)基板準備、(2)形状加工、(3)端面研磨、(4)主表面研削加工、(5)主表面研磨(第1研磨)、(6)化学強化、(7)主表面研磨(第2研磨)、を経て本実施例の磁気ディスク用ガラス基板を製造した。
Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited to a following example.
Example 1
(1) Substrate preparation, (2) Shape processing, (3) End surface polishing, (4) Main surface grinding, (5) Main surface polishing (first polishing), (6) Chemical strengthening, (7) Main A glass substrate for a magnetic disk of this example was manufactured through surface polishing (second polishing).
(1)基板準備
フロート法により製造された厚さ1mmのアルミノシリケートガラスからなる大板ガラスを準備し、70mm×70mmの正方形の小片にダイヤモンドカッターを用いて裁断した。次いで、ダイヤモンドカッターを用いて、外径65mm、内径20mmの円盤形状に加工した。このアルミノシリケートガラスとしては、SiO2:62~75重量%、ZrO2:5.5~15重量%、Al2O3:5~15重量%、Li2O:4~10重量%、Na2O:4~12重量%を含有する化学強化可能なガラスを使用した。
得られた基板の表面は、表面粗さRaが5nm以下の鏡面であった。
(1) Substrate preparation A large glass plate made of aluminosilicate glass having a thickness of 1 mm produced by the float method was prepared, and cut into a 70 mm × 70 mm square piece using a diamond cutter. Subsequently, it processed into the disk shape of outer diameter 65mm and internal diameter 20mm using the diamond cutter. This aluminosilicate glass contains SiO2: 62-75 wt%, ZrO2: 5.5-15 wt%, Al2O3: 5-15 wt%, Li2O: 4-10 wt%, Na2O: 4-12 wt% Glass that can be chemically strengthened was used.
The surface of the obtained substrate was a mirror surface with a surface roughness Ra of 5 nm or less.
(2)形状加工
次に、ダイヤモンド砥石を用いてガラス基板の中央部分に孔を空けると共に、外周端面および内周端面に所定の面取り加工を施した。
(2) Shape processing Next, a diamond grindstone was used to make a hole in the central portion of the glass substrate, and a predetermined chamfering was applied to the outer peripheral end surface and the inner peripheral end surface.
(3)端面研磨
次いで、ブラシ研磨により、ガラス基板を回転させながらガラス基板の端面(内周、外周)を研磨した。
(3) End surface polishing Next, the end surface (inner periphery, outer periphery) of the glass substrate was polished by brush polishing while rotating the glass substrate.
(4)主表面研削加工
この主表面研削加工は両面研削装置を用い、ダイヤモンドパッドが貼り付けられた上下定盤の間にキャリアにより保持したガラス基板をセットして行なった。本実施例では、ダイヤモンドパッドとして、複数のダイヤモンド砥粒をガラスで固めた集結砥粒と、複数のアルミナ粒子をガラスで固定した凝集体と、複数の当該集結砥粒及び凝集体を結合している樹脂とを備え、ダイヤモンド砥粒の平均粒径が4.0μm、ダイヤモンドの集結砥粒の平均粒径が40μm、アルミナ粒子の平均粒径が4.0μm、アルミナ凝集体の平均粒径は40μm、最大粒径は45μm、ダイヤモンド集結砥粒とアルミナ凝集体との比率が1:0.5となるように樹脂中に分散させたダイヤモンドパッドを使用した。上記砥粒等を固めたガラスは、加工するガラスよりも硬度の小さいものを使用した。また、上記固定砥粒の合計の研削面における密度は、20(個/mm2)とした。また、潤滑液を使用しながら行った。また、定盤の回転数、ガラス基板への荷重は、適宜調整して行った。
(4) Main surface grinding This main surface grinding was performed by using a double-sided grinding machine and setting a glass substrate held by a carrier between the upper and lower surface plates to which diamond pads were attached. In this example, as a diamond pad, a plurality of diamond abrasive grains consolidated with glass, an aggregate in which a plurality of alumina particles are fixed with glass, and a plurality of the aggregate abrasive grains and aggregates are combined. The average particle size of the diamond abrasive grains is 4.0 μm, the average particle size of the diamond collecting abrasive grains is 40 μm, the average particle size of the alumina particles is 4.0 μm, and the average particle size of the alumina aggregate is 40 μm. A diamond pad dispersed in a resin was used so that the maximum particle size was 45 μm and the ratio of diamond aggregated abrasive grains to alumina aggregate was 1: 0.5. The glass in which the abrasive grains were hardened had a lower hardness than the glass to be processed. The density of the fixed abrasive grains on the total ground surface was 20 (pieces / mm 2 ). Moreover, it carried out using the lubricating liquid. Moreover, the rotation speed of the surface plate and the load on the glass substrate were adjusted as appropriate.
(5)主表面研磨(第1研磨)
次に、上述した研削加工で残留した傷や歪みを除去するための第1研磨を両面研磨装置を用いて行なった。両面研磨装置においては、研磨パッドが貼り付けられた上下研磨定盤の間にキャリアにより保持したガラス基板を密着させ、このキャリアを太陽歯車(サンギア)と内歯歯車(インターナルギア)とに噛合させ、上記ガラス基板を上下定盤によって挟圧する。その後、研磨パッドとガラス基板の研磨面との間に研磨液を供給して回転させることによって、ガラス基板が定盤上で自転しながら公転して両面を同時に研磨加工するものである。具体的には、ポリシャとして硬質ポリシャ(硬質発泡ウレタン)を用い、第1研磨を実施した。研磨液としては酸化セリウムを研磨剤として分散した純水とし、荷重、研磨時間は適宜設定した。上記第1研磨工程を終えたガラス基板を、中性洗剤、純水、IPA(イソプロピルアルコール)、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、超音波洗浄し、乾燥した。
(5) Main surface polishing (first polishing)
Next, the 1st grinding | polishing for removing the flaw and distortion which remain | survived by the grinding process mentioned above was performed using the double-side polish apparatus. In a double-side polishing machine, a glass substrate held by a carrier is closely attached between an upper and lower polishing surface plate to which a polishing pad is attached, and this carrier is engaged with a sun gear (sun gear) and an internal gear (internal gear). The glass substrate is sandwiched between upper and lower surface plates. Thereafter, a polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass substrate, whereby the glass substrate revolves while rotating on the surface plate to simultaneously polish both surfaces. Specifically, the first polishing was performed using a hard polisher (hard foamed urethane) as the polisher. The polishing liquid was pure water in which cerium oxide was dispersed as an abrasive, and the load and polishing time were appropriately set. The glass substrate after the first polishing step was sequentially immersed in cleaning baths of neutral detergent, pure water, IPA (isopropyl alcohol), and IPA (steam drying), ultrasonically cleaned, and dried.
(6)化学強化
次に、上記洗浄を終えたガラス基板に化学強化を施した。化学強化は硝酸カリウムと硝酸ナトリウムの混合した化学強化液を用意し、この化学強化溶液を380℃に加熱し、上記洗浄・乾燥済みのガラス基板を約4時間浸漬して化学強化処理を行なった。
(6) Chemical strengthening Next, chemical strengthening was performed on the glass substrate after the cleaning. For chemical strengthening, a chemical strengthening solution in which potassium nitrate and sodium nitrate were mixed was prepared, the chemical strengthening solution was heated to 380 ° C., and the cleaned and dried glass substrate was immersed for about 4 hours to perform chemical strengthening treatment.
(7)主表面研磨(第2研磨)
次いで上記の第1研磨で使用したものと同じ両面研磨装置を用い、ポリシャを軟質ポリシャ(スウェード)の研磨パッド(発泡ポリウレタン製)に替えて第2研磨を実施した。この第2研磨は、上述した第1研磨で得られた平坦な表面を維持しつつ、例えばガラス基板主表面の表面粗さをRaで0.2nm程度以下の平滑な鏡面に仕上げるための鏡面研磨加工である。研磨液としてはコロイダルシリカを分散した純水とし、荷重、研磨時間は適宜設定した。上記第2研磨工程を終えたガラス基板を、中性洗剤、純水、IPA、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、超音波洗浄し、乾燥した。
(7) Main surface polishing (second polishing)
Next, using the same double-side polishing apparatus as that used in the first polishing, the polishing was changed to a polishing pad (made of polyurethane foam) of a soft polisher (suede), and the second polishing was performed. This second polishing is, for example, mirror polishing for finishing the surface roughness of the glass substrate main surface to a smooth mirror surface with a Ra of about 0.2 nm or less while maintaining the flat surface obtained by the first polishing described above. It is processing. The polishing liquid was pure water in which colloidal silica was dispersed, and the load and polishing time were appropriately set. The glass substrate after the second polishing step was sequentially immersed in each cleaning bath of neutral detergent, pure water, IPA, and IPA (steam drying), ultrasonically cleaned, and dried.
上記工程を経て得られたガラス基板の主表面の表面粗さを原子間力顕微鏡(AFM)にて測定したところ、Rmax=1.53nm、Ra=0.13nmと超平滑な表面を持つガラス基板を得た。 When the surface roughness of the main surface of the glass substrate obtained through the above steps was measured with an atomic force microscope (AFM), a glass substrate having an ultra-smooth surface with Rmax = 1.53 nm and Ra = 0.13 nm. Got.
(実施例2)
実施例1の主表面研削加工において、複数のダイヤモンド砥粒をガラスで固めた集結砥粒と、ガラスで出来た複数の分散粒と、複数の当該集結砥粒及び分散粒を結合している樹脂とを備え、ダイヤモンド砥粒の平均粒径が約4.0μm、ダイヤモンド集結砥粒の平均粒径が40μm、ガラス分散粒の平均粒径が4.0μm、ガラス凝集体の最大粒径は45μm、ダイヤモンド集結砥粒とガラス凝集体との比率が1:0.5となるように樹脂中に分散させたダイヤモンドパッドを使用したこと以外は、実施例1と同様にして研削加工を行い、磁気ディスク用ガラス基板を作製した。
(Example 2)
In the main surface grinding process of the first embodiment, a collecting abrasive grain obtained by hardening a plurality of diamond abrasive grains with glass, a plurality of dispersed grains made of glass, and a resin that binds the plurality of the concentrated abrasive grains and the dispersed grains. The average particle size of the diamond abrasive grains is about 4.0 μm, the average particle size of the diamond concentrating abrasive grains is 40 μm, the average particle size of the glass dispersed particles is 4.0 μm, and the maximum particle size of the glass aggregate is 45 μm, The magnetic disk was ground in the same manner as in Example 1 except that a diamond pad dispersed in the resin was used so that the ratio of diamond aggregated abrasive grains to glass aggregate was 1: 0.5. A glass substrate was prepared.
(実施例3)
実施例1の主表面研削加工において、複数のダイヤモンド砥粒をガラスで固めた集結砥粒と、複数のアルミナ粒子をガラスで固定した凝集体と、ガラスで出来た複数の分散粒凝集体と、複数の当該集結砥粒、アルミナ粒子凝集体及びガラス分散粒凝集体を結合している樹脂とを備え、ダイヤモンド砥粒の平均粒径が約4.0μm、アルミナ粒子の平均粒径が約1~4.0μm、ガラス粒子の平均粒径が約1~4.0μm、アルミナ凝集体とガラス凝集体の最大粒径は45μm、これらダイヤモンド集結砥粒とアルミナ凝集体とガラス凝集体の比率が1:0.5:0.5となるように樹脂中に分散させたダイヤモンドパッドを使用したこと以外は、実施例1と同様にして研削加工を行い、磁気ディスク用ガラス基板を作製した。
Example 3
In the main surface grinding process of Example 1, aggregated abrasive grains obtained by solidifying a plurality of diamond abrasive grains with glass, aggregates in which a plurality of alumina particles are fixed with glass, a plurality of dispersed grain aggregates made of glass, A plurality of aggregated abrasive grains, a resin that binds the alumina particle aggregates and the glass dispersed grain aggregates, and the average particle diameter of the diamond abrasive grains is about 4.0 μm, and the average particle diameter of the alumina particles is about 1 to 4.0 μm, the average particle size of the glass particles is about 1 to 4.0 μm, the maximum particle size of the alumina aggregate and the glass aggregate is 45 μm, and the ratio of these diamond agglomerated abrasive grains to the alumina aggregate and the glass aggregate is 1: Grinding was performed in the same manner as in Example 1 except that a diamond pad dispersed in the resin so as to be 0.5: 0.5 was used, and a glass substrate for a magnetic disk was produced.
(比較例1)
実施例1の主表面研削加工において、複数のダイヤモンド砥粒をガラスで固めた集結砥粒(ダイヤモンド砥粒の平均粒径が約4.0μm)を樹脂中に分散させた従来のダイヤモンドパッドを使用したこと以外は、実施例1と同様にして研削加工を行い、磁気ディスク用ガラス基板を作製した。
(比較例2)
固定砥粒の合計(この例ではダイヤモンド集結砥粒のみ)の研削面における密度を30(個/mm2)としたダイヤモンドパッドを使用したこと以外は、比較例1と同様にして研削加工を行い、磁気ディスク用ガラス基板を作製した。
(Comparative Example 1)
In the main surface grinding process of Example 1, a conventional diamond pad is used in which concentrated abrasive grains obtained by hardening a plurality of diamond abrasive grains with glass (the average grain diameter of the diamond abrasive grains is about 4.0 μm) are dispersed in the resin. Except for this, grinding was performed in the same manner as in Example 1 to produce a magnetic disk glass substrate.
(Comparative Example 2)
Grinding was carried out in the same manner as in Comparative Example 1 except that a diamond pad with a fixed grinding grain density of 30 (pieces / mm 2 ) was used for the total fixed abrasive grains (in this example, only diamond abrasive grains). A glass substrate for a magnetic disk was produced.
上記各実施例および比較例において、上記主表面研削加工は、1バッチあたり100枚、合計100バッチの連続加工を行った。
上記実施例および比較例において、研削加工後のガラス基板について、フラットネステスターを用いて、平坦度の測定を行い、所定の基準(3μm以下)を良品とし、この基準を満たさないガラス基板の発生率(平坦度不良率)を算出し、結果を表1に示した。また、研削加工時の加工速度(比較例1に対する加工速度比)についても併せて表1に示した。
In each of the above Examples and Comparative Examples, the main surface grinding was performed continuously for 100 batches, 100 batches in total.
In the above examples and comparative examples, the flatness of the glass substrate after grinding is measured using a flat nesting tester, and a predetermined standard (3 μm or less) is determined as a non-defective product. The rate (flatness defect rate) was calculated, and the results are shown in Table 1. Table 1 also shows the processing speed during grinding (processing speed ratio with respect to Comparative Example 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から、以下のことがわかる。
1.従来のダイヤモンド集結砥粒だけを含む研削工具(ダイヤモンドパッド)を用いた比較例1では、100バッチの連続加工を行うと、加工速度と加工品質が低下し、安定した研削加工が行えない。
これに対して、アルミナ粒子凝集体もしくはガラス分散粒、或いはアルミナ粒子凝集体とガラス分散粒の両者をダイヤモンド集結砥粒とともに分散させた研削工具を用いた実施例1~3では、加工速度と加工品質(特に基板の平坦度)の両立を図り、安定した加工速度で良好な加工品質が長期間安定して得られる。特に、ダイヤモンド集結砥粒とガラス分散粒を併用した実施例2では、平坦度不良率がゼロ%であった。
また、比較例1、2の比較より、従来のダイヤモンドパッドにおいて固定砥粒の研削面密度を低下させると、加工速度は向上するものの平坦度不良率が悪化してしまうことがわかる。これは、単純に固定砥粒密度を下げるだけでは安定した加工ができないことを示している。
From the results in Table 1, the following can be understood.
1. In Comparative Example 1 using a conventional grinding tool (diamond pad) containing only diamond concentrating abrasive grains, when 100 batches are continuously processed, the processing speed and processing quality are lowered, and stable grinding cannot be performed.
On the other hand, in Examples 1 to 3 using the grinding tool in which the alumina particle aggregate or the glass dispersed particle, or both the alumina particle aggregate and the glass dispersed particle are dispersed together with the diamond concentrating abrasive grains, the processing speed and the processing are performed. Good quality (particularly the flatness of the substrate) can be achieved, and good processing quality can be stably obtained over a long period of time at a stable processing speed. In particular, in Example 2 in which diamond concentration abrasive grains and glass dispersion grains were used in combination, the flatness failure rate was zero%.
Further, it can be seen from the comparison between Comparative Examples 1 and 2 that when the grinding surface density of the fixed abrasive grains is decreased in the conventional diamond pad, the flatness defect rate is deteriorated although the processing speed is improved. This shows that stable processing cannot be achieved simply by lowering the fixed abrasive density.
(磁気ディスクの製造)
上記実施例1で得られた磁気ディスク用ガラス基板に以下の成膜工程を施して、垂直磁気記録用磁気ディスクを得た。
すなわち、上記ガラス基板上に、Ti系合金薄膜からなる付着層、CoTaZr合金薄膜からなる軟磁性層、Ru薄膜からなる下地層、CoCrPt合金からなる垂直磁気記録層、保護層、潤滑層を順次成膜した。保護層は、水素化カーボン層を成膜した。また、潤滑層は、アルコール変性パーフルオロポリエーテルの液体潤滑剤をディップ法により形成した。
得られた磁気ディスクについて、DFHヘッドを備えたHDDに組み込み、80℃かつ80%RHの高温高湿環境下においてDFH機能を作動させつつ1ヶ月間のロードアンロード耐久性試験を行ったところ、特に障害も無く、良好な結果が得られた。
(Manufacture of magnetic disk)
The following film formation process was performed on the magnetic disk glass substrate obtained in Example 1 to obtain a magnetic disk for perpendicular magnetic recording.
That is, an adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a protective layer, and a lubricating layer are sequentially formed on the glass substrate. Filmed. As the protective layer, a hydrogenated carbon layer was formed. The lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
The obtained magnetic disk was installed in an HDD equipped with a DFH head, and a load / unload durability test was conducted for one month while operating the DFH function in a high temperature and high humidity environment of 80 ° C. and 80% RH. There were no particular obstacles and good results were obtained.
1 ダイヤモンドパッド
2 シート
3 集結砥粒
4 ペレット
5 ダイヤモンド粒子
10 ガラス基板
 
1 Diamond Pad 2 Sheet 3 Concentrated Abrasive Grain 4 Pellet 5 Diamond Particle 10 Glass Substrate

Claims (10)

  1.  ガラス基板の主表面を研削する研削処理を含む磁気ディスク用ガラス基板の製造方法であって、
     前記研削処理では、研削砥粒と、該研削砥粒を結合する結合材と、該結合材よりも硬く、且つ前記研削砥粒よりも柔らかい分散粒とを備え、前記結合材中に前記研削砥粒と前記分散粒とが分散された状態で結合されている研削工具を用いて、ガラス基板主表面の研削を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
    A method of manufacturing a glass substrate for a magnetic disk including a grinding process for grinding a main surface of a glass substrate,
    The grinding process includes grinding abrasive grains, a binder that bonds the abrasive grains, and dispersed grains that are harder than the binder and softer than the abrasive grains. A method for producing a glass substrate for a magnetic disk, comprising grinding a main surface of a glass substrate using a grinding tool in which grains and the dispersed grains are bonded in a dispersed state.
  2.  前記結合材は、樹脂材料であることを特徴とする請求項1に記載の磁気ディスク用ガラス基板の製造方法。 2. The method for manufacturing a glass substrate for a magnetic disk according to claim 1, wherein the binder is a resin material.
  3.  前記研削砥粒は、複数の研削砥粒が固定材で結合された集結砥粒であることを特徴とする請求項1又は2に記載の磁気ディスク用ガラス基板の製造方法。 3. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the abrasive grains are concentrated abrasive grains in which a plurality of abrasive grains are bonded with a fixing material.
  4.  前記研削砥粒は、ダイヤモンド砥粒を含むことを特徴とする請求項1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 4. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the grinding abrasive grains include diamond abrasive grains.
  5.  前記分散粒は、アルミナ又はジルコニアからなることを特徴とする請求項1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 5. The method for producing a glass substrate for a magnetic disk according to claim 1, wherein the dispersed particles are made of alumina or zirconia.
  6.  前記分散粒は、研削するガラスよりも柔らかいガラスからなることを特徴とする請求項1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 5. The method for manufacturing a glass substrate for a magnetic disk according to claim 1, wherein the dispersed particles are made of glass softer than glass to be ground.
  7.  前記分散粒は、複数の分散粒が、研削するガラスよりも柔らかいガラスで結合された凝集体であることを特徴とする請求項1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 5. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, wherein the dispersed particles are aggregates in which a plurality of dispersed particles are bonded with glass softer than glass to be ground. .
  8.  前記結合材中の前記研削砥粒に対する前記分散粒の比率が、0.1~5倍の範囲であることを特徴とする請求項1乃至7のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 The production of a glass substrate for a magnetic disk according to any one of claims 1 to 7, wherein a ratio of the dispersed grains to the abrasive grains in the binder is in a range of 0.1 to 5 times. Method.
  9.  請求項1乃至8のいずれかに記載の磁気ディスク用ガラス基板の製造方法により製造された磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。 A method for producing a magnetic disk, comprising forming at least a magnetic recording layer on the glass substrate for a magnetic disk produced by the method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 8.
  10.  電子デバイス用のガラス基板表面を研削する研削工具であって、
     研削砥粒と、該研削砥粒を結合する結合材と、該結合材よりも硬く、且つ前記研削砥粒よりも柔らかい分散粒とを備え、前記結合材中に前記研削砥粒と前記分散粒とが分散された状態で結合されていることを特徴とする研削工具。
     
     
    A grinding tool for grinding a glass substrate surface for an electronic device,
    Grinding abrasive grains, a binder for bonding the abrasive grains, and dispersed grains that are harder than the binder and softer than the abrasive grains, and the abrasive grains and the dispersed grains in the binder And a grinding tool characterized by being combined in a dispersed state.

PCT/JP2014/075966 2013-09-28 2014-09-29 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk WO2015046543A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015539444A JP6313314B2 (en) 2013-09-28 2014-09-29 Manufacturing method of glass substrate for magnetic disk, manufacturing method of glass substrate, manufacturing method of magnetic disk, and grinding tool
CN201480053014.8A CN105579198B (en) 2013-09-28 2014-09-29 The manufacture method of glass substrate for disc and the manufacture method of disk and grinding tool
SG11201602379QA SG11201602379QA (en) 2013-09-28 2014-09-29 Method for manufacturing magnetic-disk glass substrate, methodfor manufacturing magnetic disk, and grinding tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013202843 2013-09-28
JP2013-202843 2013-09-28

Publications (2)

Publication Number Publication Date
WO2015046543A1 true WO2015046543A1 (en) 2015-04-02
WO2015046543A8 WO2015046543A8 (en) 2016-04-21

Family

ID=52743664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075966 WO2015046543A1 (en) 2013-09-28 2014-09-29 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk

Country Status (5)

Country Link
JP (2) JP6313314B2 (en)
CN (2) CN108447507B (en)
MY (1) MY176672A (en)
SG (2) SG10202006113YA (en)
WO (1) WO2015046543A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181751A1 (en) * 2015-05-13 2016-11-17 バンドー化学株式会社 Polishing pad and method for manufacturing polishing pad
WO2017119342A1 (en) * 2016-01-06 2017-07-13 バンドー化学株式会社 Polishing material
JP2020099954A (en) * 2018-12-20 2020-07-02 本田技研工業株式会社 Vitrified grindstone and method for manufacture thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10202006113YA (en) * 2013-09-28 2020-07-29 Hoya Corp Grinding tool, method for manufacturing glass substrate, method for manufacturing magnetic-disk glass substrate, and method for manufacturing magnetic disk
US10783921B2 (en) 2017-09-29 2020-09-22 Hoya Corporation Glass spacer and hard disk drive apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542057A (en) * 1999-04-23 2002-12-10 スリーエム イノベイティブ プロパティズ カンパニー Abrasive articles suitable for polishing glass and glass-ceramic workpieces
JP2005202997A (en) * 2004-01-13 2005-07-28 Hoya Corp Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk
JP2009072832A (en) * 2007-09-18 2009-04-09 Bando Chem Ind Ltd Polishing sheet and method for production thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403592A1 (en) * 1988-06-30 1990-12-27 MITCHELL, Richard, J Abrasive product with reduced particle concentration
JPH0761615B2 (en) * 1992-09-28 1995-07-05 東芝タンガロイ株式会社 Coated high hardness powder and method for producing the same
JP4099291B2 (en) * 1999-06-23 2008-06-11 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk
JP2001138244A (en) * 1999-08-17 2001-05-22 Mitsubishi Materials Corp Resin bond type grinding wheel
EP1276593B1 (en) * 2000-04-28 2005-08-17 3M Innovative Properties Company Abrasive article and methods for grinding glass
TW200734120A (en) * 2005-12-06 2007-09-16 Disco Corp Polishing grindstone and method for producing same
JP2012064295A (en) * 2009-11-10 2012-03-29 Showa Denko Kk Method for manufacturing glass substrate for magnetic recording medium
CN102656632B (en) * 2009-12-29 2016-08-31 Hoya株式会社 The manufacture method of glass substrate for disc and glass substrate for disc
JP5585269B2 (en) * 2010-07-22 2014-09-10 旭硝子株式会社 Method for manufacturing glass substrate for magnetic recording medium
JP2012169024A (en) * 2011-02-16 2012-09-06 Showa Denko Kk Method for manufacturing glass substrate for magnetic recording medium
JP5906823B2 (en) * 2011-03-15 2016-04-20 旭硝子株式会社 Method for manufacturing glass substrate for magnetic recording medium
JP2013012280A (en) * 2011-06-30 2013-01-17 Konica Minolta Advanced Layers Inc Method for manufacturing glass substrate for hdd
JP5814719B2 (en) * 2011-09-28 2015-11-17 Hoya株式会社 Substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and correction carrier
CN103182659A (en) * 2011-12-30 2013-07-03 财团法人金属工业研究发展中心 Grinding tool and manufacturing method thereof
SG10202006113YA (en) * 2013-09-28 2020-07-29 Hoya Corp Grinding tool, method for manufacturing glass substrate, method for manufacturing magnetic-disk glass substrate, and method for manufacturing magnetic disk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542057A (en) * 1999-04-23 2002-12-10 スリーエム イノベイティブ プロパティズ カンパニー Abrasive articles suitable for polishing glass and glass-ceramic workpieces
JP2005202997A (en) * 2004-01-13 2005-07-28 Hoya Corp Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk
JP2009072832A (en) * 2007-09-18 2009-04-09 Bando Chem Ind Ltd Polishing sheet and method for production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181751A1 (en) * 2015-05-13 2016-11-17 バンドー化学株式会社 Polishing pad and method for manufacturing polishing pad
JP6046865B1 (en) * 2015-05-13 2016-12-21 バンドー化学株式会社 Polishing pad and polishing pad manufacturing method
WO2017119342A1 (en) * 2016-01-06 2017-07-13 バンドー化学株式会社 Polishing material
JPWO2017119342A1 (en) * 2016-01-06 2018-01-11 バンドー化学株式会社 Abrasive
JP2020099954A (en) * 2018-12-20 2020-07-02 本田技研工業株式会社 Vitrified grindstone and method for manufacture thereof
JP7023829B2 (en) 2018-12-20 2022-02-22 本田技研工業株式会社 Vitrified grindstone and its manufacturing method

Also Published As

Publication number Publication date
JPWO2015046543A1 (en) 2017-03-09
CN105579198B (en) 2018-04-27
JP6313314B2 (en) 2018-04-18
JP6490842B2 (en) 2019-03-27
MY176672A (en) 2020-08-19
JP2018092697A (en) 2018-06-14
CN108447507B (en) 2020-07-28
SG10202006113YA (en) 2020-07-29
CN105579198A (en) 2016-05-11
WO2015046543A8 (en) 2016-04-21
SG11201602379QA (en) 2016-05-30
CN108447507A (en) 2018-08-24

Similar Documents

Publication Publication Date Title
JP6490842B2 (en) Grinding tool, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
US9299382B2 (en) Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
CN105163906A (en) Manufacturing method for glass substrate, manufacturing method for magnetic disk, and polishing solution composition for glass substrate
JP7270682B2 (en) Fixed abrasive grindstone and glass substrate manufacturing method
JP5744159B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5235916B2 (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and magnetic disk
JP2010080015A (en) Glass material for manufacturing glass substrate for magnetic disk, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JP6193388B2 (en) Method of manufacturing glass substrate for magnetic disk, method of manufacturing glass substrate, method of manufacturing magnetic disk, and fixed abrasive wheel
JP6193387B2 (en) GLASS SUBSTRATE MANUFACTURING METHOD, MAGNETIC DISK GLASS SUBSTRATE MANUFACTURING METHOD, MAGNETIC DISK MANUFACTURING METHOD, AND GRITING TOOL
JP5704777B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2023189233A1 (en) Magnetic disk and substrate for magnetic disk
JP5492276B2 (en) Glass substrate for magnetic disk and magnetic disk
JP2005285276A (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk and magnetic disk
JP2015069685A (en) Production method of magnetic disk glass substrate and magnetic disk

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053014.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847578

Country of ref document: EP

Kind code of ref document: A1