JP5814719B2 - Substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and correction carrier - Google Patents

Substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and correction carrier Download PDF

Info

Publication number
JP5814719B2
JP5814719B2 JP2011212687A JP2011212687A JP5814719B2 JP 5814719 B2 JP5814719 B2 JP 5814719B2 JP 2011212687 A JP2011212687 A JP 2011212687A JP 2011212687 A JP2011212687 A JP 2011212687A JP 5814719 B2 JP5814719 B2 JP 5814719B2
Authority
JP
Japan
Prior art keywords
correction
surface plate
grinding
outer peripheral
fixed abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011212687A
Other languages
Japanese (ja)
Other versions
JP2013071212A (en
Inventor
寿治 菊地
寿治 菊地
貴裕 宮崎
貴裕 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2011212687A priority Critical patent/JP5814719B2/en
Publication of JP2013071212A publication Critical patent/JP2013071212A/en
Application granted granted Critical
Publication of JP5814719B2 publication Critical patent/JP5814719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、基板の製造方法、マスクブランクの製造方法、転写用マスクの製造方法および修正キャリア等に関する。   The present invention relates to a substrate manufacturing method, a mask blank manufacturing method, a transfer mask manufacturing method, a correction carrier, and the like.

近年の超LSIデバイスの高密度、高精度化によりマスクブランク用基板に要求される形状精度(平坦性)が厳しくなっており、超高平坦性マスクブランク用基板が要求されている。
従来、マスクブランク用ガラス基板の研削工程では、表面に格子状の溝が設けられた2つの鋳鉄定盤間に、キャリアに保持されたガラス基板を所定圧力で挟み込み、遊離砥粒を含む研削液(スラリー)をガラス基板と定盤との間に供給しながら、定盤上でガラス基板を遊星運動させることで、基板両主表面の研削(ラッピング)が行われている。しかし、研削時、定盤面自体も削れること等に起因し、処理バッチ数が増えていくと定盤面の平坦度が悪化していく。このため、所定のバッチ数を処理する毎に、修正用のキャリアである修正キャリア(修正部材は鋳鉄製)を用いて、研削工程と同様に、定盤上で修正キャリア(修正部材)を遊星運動させることで、定盤面の平坦度修正を行っている。
一方、磁気ディスク用ガラス基板の研削工程においては、近年、ダイヤモンド粒子を含む固定砥粒を定盤の研削面に配備した両面研削装置が用いられている。このダイヤモンド粒子を含む固定砥粒を研削面に配備した定盤を用いる場合においても、処理バッチ数の増加による定盤の固定砥粒(研削面)の平坦度の悪化は避けらず、所定バッチ数毎に、修正キャリアを用い、修正部材として金属及びガラスを順次用いて、定盤面の平坦度修正が行われている(特許文献1)。
The shape accuracy (flatness) required for a mask blank substrate has become severe due to the recent increase in density and accuracy of VLSI devices, and an ultrahigh flatness mask blank substrate is required.
Conventionally, in a grinding process of a mask blank glass substrate, a glass substrate held by a carrier is sandwiched at a predetermined pressure between two cast iron surface plates each having a grid-like groove on the surface, and a grinding liquid containing free abrasive grains While supplying (slurry) between the glass substrate and the surface plate, the glass substrate is caused to perform a planetary motion on the surface plate, whereby grinding (lapping) of both main surfaces of the substrate is performed. However, the flatness of the surface plate surface deteriorates as the number of processing batches increases due to the fact that the surface of the surface plate itself can be cut during grinding. For this reason, every time a predetermined number of batches are processed, the correction carrier (correction member is made of cast iron), which is a correction carrier, is used as a planet on the surface plate in the same manner as in the grinding process. The flatness of the surface plate is corrected by moving it.
On the other hand, in the grinding process of the glass substrate for magnetic disks, in recent years, a double-side grinding apparatus in which fixed abrasive grains containing diamond particles are arranged on the grinding surface of a surface plate has been used. Even when using a surface plate in which fixed abrasive grains containing diamond particles are arranged on the grinding surface, the flatness of the fixed abrasive particles (grind surface) of the surface plate due to an increase in the number of processing batches is unavoidable. For each number, the flatness of the surface plate surface is corrected by using a correction carrier and sequentially using metal and glass as correction members (Patent Document 1).

特開2008−254166号公報JP 2008-254166 A

近年、マスクブランク用基板の研削工程においても、ダイヤモンド粒子を含む固定砥粒を定盤の研削面に配備した両面研削装置の使用が検討されている。
本発明は、マスクブランク用基板等のガラス基板の研削工程等において、ダイヤモンド粒子を含む固定砥粒などの固定砥粒を定盤の研削面に配備した研削装置等を使用する場合に適した、基板の製造方法等の提供を目的とする。
In recent years, the use of a double-sided grinding apparatus in which fixed abrasive grains containing diamond particles are arranged on the grinding surface of a surface plate has also been studied in the grinding process of the mask blank substrate.
The present invention is suitable for use in a grinding process or the like in which a fixed abrasive such as a fixed abrasive containing diamond particles is provided on a grinding surface of a surface plate in a grinding process of a glass substrate such as a mask blank substrate. An object is to provide a method for manufacturing a substrate.

本発明者らは、鋭意検討を重ねた結果、以下のことが判った。
特許文献1に開示されているように、修正キャリアは、回転摩擦力等の問題を考慮し、修正部材を修正キャリア本体部の外周側にのみ配置した構成(例えばリング状の修正キャリア本体部に修正部材を複数配置した構成)とするのが一般的である。
しかし、定盤の固定砥粒(研削面)に対する前記修正部材のオーバーハング量を大きく取り過ぎると、修正部材がキャリアの外周側にのみ配置されていることや、修正キャリアを遊星運動させることで固定砥粒(研削面)を修正することに起因する問題が生じることが判明した。具体的には、図8に示すように、定盤10の固定砥粒(研削面)11に対する前記修正部材53のオーバーハング量を大きく取り過ぎると、修正部材53が一度定盤の固定砥粒(研削面)11の外周端部11aよりも外に飛び出した後、再度、外周端部11a側から定盤10の固定砥粒(研削面)11に向かって入っていくような軌道を描くようになる。この外周端部11a側から定盤10の固定砥粒(研削面)11に向かって修正部材53が入っていくことが生じることで、外周端部11a側の固定砥粒(研削面)11を必要以上に削ってしまい、定盤10の固定砥粒(研削面)11の平坦度修正の精度向上の妨げになる場合がある(例えば定盤の半径が約800mmで定盤面の平坦度は35μm程度までしか修正できない)ことを本発明者は見い出した。修正部材53が一度定盤10の固定砥粒(研削面)11の内周端部11bよりも外(内周側)に飛び出した後、再度、内周端部11b側から定盤10の固定砥粒(研削面)11に向かって入っていくような軌道を描く場合も同様である。
さらに、図5に示すように、定盤10上の任意の半径方向において、修正キャリア51の修正部材53の外周端部53aが定盤10の固定砥粒(研削面)11の外周端部11aよりも外周側になるとともに、修正キャリア51の修正部材53の内周端部53bが定盤10の固定砥粒(研削面)11の外周端部11aよりも内周側になるように、定盤10の外周側に修正部材53をオーバーハングさせ、かつ、修正キャリア51の修正部材53の外周端部53aが定盤10の固定砥粒(研削面)11の内周端部11bよりも内周側になるとともに、修正キャリア51の修正部材53の内周端部53bが定盤10の固定砥粒(研削面)11の内周端部11bよりも外周側になるように、定盤10の内周側に修正部材53をオーバーハングさせるようにして定盤10の固定砥粒(研削面)11の平坦度修正を行うことによって、定盤10の固定砥粒(研削面)11の平坦度修正の精度を、大きく改善できる(例えば定盤の半径が約800mmで定盤面の平坦度を20μm程度以下にできる)ことを本発明者は見い出し、出願を行っている(特願2011−67476)。
As a result of intensive studies, the present inventors have found the following.
As disclosed in Patent Document 1, in consideration of problems such as rotational friction force, the correction carrier has a configuration in which the correction member is arranged only on the outer peripheral side of the correction carrier main body (for example, in the ring-shaped correction carrier main body). In general, a plurality of correction members are arranged.
However, if the overhang amount of the correction member relative to the fixed abrasive (grind surface) of the surface plate is excessively large, the correction member is disposed only on the outer peripheral side of the carrier, or the correction carrier is moved in a planetary motion. It has been found that problems arise due to the modification of the fixed abrasive grains (grinding surface). Specifically, as shown in FIG. 8, when the overhang amount of the correction member 53 with respect to the fixed abrasive grains (grinding surface) 11 of the surface plate 10 is excessively large, the correction member 53 is once fixed on the surface plate. (Grinding surface) After jumping out from the outer peripheral end portion 11a of the surface 11, draw a trajectory that enters the fixed abrasive (grinding surface) 11 of the surface plate 10 from the outer peripheral end portion 11a side again. become. When the correction member 53 enters from the outer peripheral end portion 11a side toward the fixed abrasive grains (grinding surface) 11 of the surface plate 10, the fixed abrasive grains (grinding surface) 11 on the outer peripheral end portion 11a side is changed. The surface of the surface plate 10 may be cut more than necessary, which may hinder the improvement of the flatness correction of the fixed abrasive grains (grinding surface) 11 of the surface plate 10 (for example, the surface plate has a radius of about 800 mm and the surface plate surface has a flatness of 35 μm. The inventor has found that it can only be corrected to a certain extent). After the correction member 53 has once jumped out (inner peripheral side) from the inner peripheral end 11b of the fixed abrasive grains (grinding surface) 11 of the surface plate 10, the fixing of the surface plate 10 is again performed from the inner peripheral end 11b side. The same applies to a case where a trajectory entering the abrasive grains (grinding surface) 11 is drawn.
Further, as shown in FIG. 5, in an arbitrary radial direction on the surface plate 10, the outer peripheral end portion 53 a of the correction member 53 of the correction carrier 51 is the outer peripheral end portion 11 a of the fixed abrasive (grinding surface) 11 of the surface plate 10. And the inner peripheral end 53b of the correction member 53 of the correction carrier 51 is positioned closer to the inner peripheral side than the outer peripheral end 11a of the fixed abrasive grains (grinding surface) 11 of the surface plate 10. The correction member 53 is overhanged on the outer peripheral side of the platen 10, and the outer peripheral end 53 a of the correction member 53 of the correction carrier 51 is inward of the inner peripheral end 11 b of the fixed abrasive (grinding surface) 11 of the surface plate 10. The surface plate 10 is arranged so that the inner peripheral end portion 53b of the correction member 53 of the correction carrier 51 is on the outer peripheral side of the inner peripheral end portion 11b of the fixed abrasive grains (grinding surface) 11 of the surface plate 10 along the peripheral side. Overhang the correction member 53 on the inner circumference side Thus, by correcting the flatness of the fixed abrasive grains (grinding surface) 11 of the surface plate 10, the accuracy of the flatness correction of the fixed abrasive grains (grinding surface) 11 of the surface plate 10 can be greatly improved (for example, the surface plate). The present inventor has found that the radius of the plate is approximately 800 mm and the flatness of the surface plate surface can be reduced to about 20 μm or less, and has filed an application (Japanese Patent Application No. 2011-67476).

一方、上記のような修正キャリアを用い、定盤の固定砥粒(研削面)に対する前記修正部材のオーバーハング量を最適化する上記技術を適用して、定盤上の固定砥粒の平坦度修正を行っても、定盤(下定盤)の半径方向で見て、外周縁側と内周縁側から中央側に向かって凸形状(極小さい)に修正されてしまう場合があることが判明した。定盤上の固定砥粒がこのような凸形状に修正されてしまうと、定盤研削面の平坦度を更に向上させることができないため、この研削装置を用いて、研削されたガラス基板の平坦度も更に向上させることができず、課題となることがわかった。
この定盤上の固定砥粒が凸形状(極小さい)に修正されてしまう上記問題は、定盤の固定砥粒(研削面)に対して前記修正部材のオーバーハング量を大きく取り過ぎた場合、定盤面の平坦度の絶対値が大きすぎるため、顕在化していなかった。
On the other hand, the flatness of the fixed abrasive on the surface plate is applied by using the above-described technique for optimizing the overhang amount of the correction member with respect to the fixed abrasive (grind surface) of the surface plate using the above-described correction carrier. It has been found that even if the correction is performed, the shape may be corrected to a convex shape (very small) from the outer peripheral edge side and the inner peripheral edge side toward the central side as viewed in the radial direction of the surface plate (lower surface plate). If the fixed abrasive on the surface plate is modified to such a convex shape, the flatness of the surface grinding surface of the surface plate cannot be further improved. It was found that it could not be further improved, which would be a problem.
The problem that the fixed abrasive on the surface plate is corrected to a convex shape (very small) is that the overhang amount of the correction member is excessively large relative to the fixed abrasive (grind surface) of the surface plate Since the absolute value of the flatness of the surface plate surface was too large, it was not manifested.

本発明は、以下の構成を有する。
(構成1)
固定砥粒が研削面に配備された上定盤と下定盤を備える研削装置を用いてガラス基板の2つの主表面を両面研削する研削工程を有する基板の製造方法であって、
修正部材を備える修正キャリアを前記定盤上で自転させながら公転させ、修正キャリアの修正部材と定盤の研削面とを互いに押圧させて摺動させて前記定盤の面修正を行う修正工程を有し、
前記修正キャリアは、上定盤および下定盤にそれぞれ対向する2つの対向面を有する本体部と、前記2つの対向面にそれぞれ配置された修正部材とからなり、
前記修正部材は、対向面の外周側に沿って配置され、かつ修正キャリアの自転軸と外周側の特定点とを結ぶ直線上の対向面にも配置されていることを特徴とする基板の製造方法。
(構成2)
前記修正部材は、前記特定点と前記自転軸とを結ぶ直線を、前記特定点とは前記自転軸を挟んだ反対側の外周側の点まで延伸した直線上にも配置されていることを特徴とする構成1に記載の基板の製造方法。
(構成3)
前記定盤は、ダイヤモンド粒子を含む固定砥粒が研削面に配備されていることを特徴とする構成1または2に記載の基板の製造方法。
(構成4)
前記修正部材は、ダイヤモンド粒子を含む固定砥粒を配備して構成されていることを特徴とする構成1から3のいずれかに記載の基板の製造方法。
(構成5)
前記修正工程は、遊離砥粒を含む研削液を供給しながら、修正部材と、前記定盤の研削面とを、互いに押圧させて摺動させて行うことを特徴とする構成1から4のいずれかに記載の基板の製造方法。
(構成6)
前記修正工程は、固定砥粒を定盤の研削面に配備する固定砥粒配備工程に続いて行うことを特徴とする構成1から5のいずれかに記載の基板の製造方法。
(構成7)
前記修正キャリアは、本体部の外周に外ギヤが設けられており、前記外ギヤが、前記研削装置のサンギヤおよびインターナルギヤの間で両ギヤとそれぞれ噛み合うことで、前記定盤上で前記修正キャリアを自転しながら公転することを特徴とする構成1から6のいずれかに記載の基板の製造方法。
(構成8)
構成1から7のいずれかに記載の基板の製造方法で製造された基板の主表面上に、転写パターン形成用の薄膜を形成することを特徴とするマスクブランクの製造方法。
(構成9)
構成8に記載のマスクブランクの製造方法で製造されたマスクブランクにおける前記薄膜をパターニングして、転写パターンを形成することを特徴とする転写用マスクの製造方法。
(構成10)
固定砥粒が研削面に配備された上定盤と下定盤を備える研削装置に対し、前記定盤の面修正を行うときに用いられる修正キャリアであって、
外周に前記研削装置のサンギヤおよびインターナルギヤの間で両ギヤとそれぞれ噛み合う外ギヤが設けられ、上定盤および下定盤にそれぞれ対向する2つの対向面を有する本体部と、
前記2つの対向面にそれぞれ配置された修正部材とからなり、
前記修正部材は、対向面の外周側に沿って配置され、かつ修正キャリアの自転軸と外周側の特定点とを結ぶ直線上の対向面にも配置されている
ことを特徴とする修正キャリア。
(構成11)
前記修正部材は、前記特定点と前記自転軸とを結ぶ直線を、前記特定点とは前記自転軸を挟んだ反対側の外周側の点まで延伸した直線上にも配置されていることを特徴とする構成10に記載の修正キャリア。
(構成12)
前記修正部材は、ダイヤモンド粒子を含む固定砥粒を配備して構成されていることを特徴とする構成10または11に記載の修正キャリア。
The present invention has the following configuration.
(Configuration 1)
A method for manufacturing a substrate, comprising a grinding step in which two main surfaces of a glass substrate are ground on both sides using a grinding apparatus having an upper surface plate and a lower surface plate in which fixed abrasive grains are arranged on a grinding surface,
A correction step of revolving a correction carrier having a correction member while rotating on the surface plate, and correcting the surface of the surface plate by pressing the correction member of the correction carrier and the ground surface of the surface plate against each other and sliding. Have
The correction carrier is composed of a main body portion having two opposing surfaces respectively facing the upper surface plate and the lower surface plate, and correction members respectively disposed on the two opposite surfaces,
The correction member is disposed along the outer peripheral side of the opposing surface, and is also disposed on the opposing surface on a straight line connecting the rotation axis of the correction carrier and a specific point on the outer peripheral side. Method.
(Configuration 2)
The correction member is also disposed on a straight line connecting the specific point and the rotation axis, the straight line extending from the specific point to a point on the outer peripheral side opposite to the rotation axis. The manufacturing method of the board | substrate of the structure 1.
(Configuration 3)
The substrate manufacturing method according to Configuration 1 or 2, wherein the surface plate has fixed abrasive grains including diamond particles arranged on a grinding surface.
(Configuration 4)
4. The method for manufacturing a substrate according to any one of configurations 1 to 3, wherein the correction member is configured by providing fixed abrasive grains including diamond particles.
(Configuration 5)
Any one of the constitutions 1 to 4, wherein the correction step is performed by pressing and sliding the correction member and the grinding surface of the surface plate while supplying a grinding liquid containing loose abrasive grains. A method for manufacturing the substrate according to claim 1.
(Configuration 6)
6. The method of manufacturing a substrate according to any one of configurations 1 to 5, wherein the correcting step is performed subsequent to a fixed abrasive grain arranging step of arranging fixed abrasive grains on a ground surface of a surface plate.
(Configuration 7)
The correction carrier is provided with an outer gear on the outer periphery of the main body, and the correction gear on the surface plate is formed by engaging the outer gear with both gears between the sun gear and the internal gear of the grinding device. 7. The method for manufacturing a substrate according to any one of configurations 1 to 6, wherein the substrate revolves while rotating.
(Configuration 8)
A method for producing a mask blank, comprising: forming a thin film for forming a transfer pattern on a main surface of a substrate produced by the method for producing a substrate according to any one of Structures 1 to 7.
(Configuration 9)
A method for producing a transfer mask, comprising: patterning the thin film in a mask blank produced by the method for producing a mask blank according to Configuration 8 to form a transfer pattern.
(Configuration 10)
For a grinding apparatus having an upper surface plate and a lower surface plate in which fixed abrasive grains are arranged on a grinding surface, a correction carrier used when correcting the surface of the surface plate,
An outer gear provided on the outer periphery to mesh with both gears between the sun gear and the internal gear of the grinding device, and a main body having two opposing surfaces respectively facing the upper surface plate and the lower surface plate;
A correction member disposed on each of the two opposing surfaces,
The correction carrier is arranged along the outer peripheral side of the opposing surface, and is also arranged on the opposing surface on a straight line connecting the rotation axis of the correction carrier and a specific point on the outer peripheral side.
(Configuration 11)
The correction member is also disposed on a straight line connecting the specific point and the rotation axis, the straight line extending from the specific point to a point on the outer peripheral side opposite to the rotation axis. The correction carrier according to Configuration 10.
(Configuration 12)
The correction carrier according to Configuration 10 or 11, wherein the correction member is configured by disposing fixed abrasive grains including diamond particles.

本発明によれば、修正キャリア上の修正部材の配置を、修正キャリアの外周側に沿って配置することに加え、修正キャリアの半径又は直径方向にも配置することにより、以下の効果が得られる。
(1)定盤の半径方向における中央側の修正レートが、定盤の半径方向における外周縁側や内周縁側よりも速くなるため、中央側の修正量が相対的に多くなり、中央側が凸形状に修正されてしまう現象を抑制できる。
(2)修正キャリアの全面に修正部材を配置してしまうと、修正部材と定盤上の固定砥粒との間の摩擦力が過大になり、装置への負荷が大きくなってしまうが、それを抑制できる。
(3)修正キャリアの外周にのみ修正部材を配置し、定盤上の固定砥粒(定盤面)の平坦度修正を進めていくと、上定盤と下定盤の各研削面間の距離が同じとなる現象が生じる。上定盤と下定盤の各研削面間の距離が同じであると、定盤上の修正レートが面内で同じになってしまい、凸形状の傾向を修正できなくなる現象が生じる。しかし、この場合でも、本発明の修正キャリアを適用することにより、定盤の半径方向における中央側の修正レートが相対的に速くなるため、形状修正ができるようになる。
本発明によれば、前記定盤が、ダイヤモンド粒子を含む固定砥粒などの固定砥粒が研削面に配備されている場合においても、上記効果を得ることができる。
According to the present invention, in addition to arranging the correction member on the correction carrier along the outer peripheral side of the correction carrier, the following effects can be obtained by arranging the correction member also in the radius or diameter direction of the correction carrier. .
(1) Since the correction rate on the center side in the radial direction of the surface plate is faster than the outer peripheral edge side and the inner peripheral edge side in the radial direction of the surface plate, the correction amount on the central side is relatively large, and the central side is convex. It is possible to suppress the phenomenon that is corrected.
(2) If the correction member is arranged on the entire surface of the correction carrier, the frictional force between the correction member and the fixed abrasive on the surface plate becomes excessive, and the load on the apparatus increases. Can be suppressed.
(3) When the correction member is arranged only on the outer periphery of the correction carrier and the flatness correction of the fixed abrasive grains (surface plate surface) on the surface plate is advanced, the distance between each grinding surface of the upper surface plate and the lower surface plate is increased. The same phenomenon occurs. If the distance between the ground surfaces of the upper surface plate and the lower surface plate is the same, the correction rate on the surface plate becomes the same in the surface, and a phenomenon that the tendency of the convex shape cannot be corrected occurs. However, even in this case, by applying the correction carrier of the present invention, the correction rate on the center side in the radial direction of the surface plate becomes relatively fast, so that the shape can be corrected.
According to the present invention, even when the surface plate is provided with fixed abrasive grains such as fixed abrasive grains containing diamond particles on the grinding surface, the above effect can be obtained.

一般的な遊星歯車方式の研削・研磨装置の構成を説明するための模式的平面図である。It is a typical top view for demonstrating the structure of the grinding / polishing apparatus of a general planetary gear system. 一般的な遊星歯車方式の研削・研磨装置の構成を説明するための模式的断面図である。It is a typical sectional view for explaining composition of a general planetary gear system grinding and polisher. 本発明の実施形態に用いる修正キャリアおよび修正部材の例を示す模式的平面図である。It is a schematic plan view which shows the example of the correction carrier and correction member which are used for embodiment of this invention. 本発明の実施形態に用いる修正キャリアおよび修正部材の例を示す模式的な部分断面図である。It is a typical fragmentary sectional view which shows the example of the correction carrier and correction member which are used for embodiment of this invention. 比較例で用いる修正キャリアおよび修正部材の例を示す模式的平面図である。It is a schematic plan view which shows the example of the correction carrier and correction member which are used by a comparative example. 比較例で用いる修正キャリアおよび修正部材の例を示す模式的な部分断面図である。It is a typical fragmentary sectional view which shows the example of the correction carrier and correction member which are used by a comparative example. 実施例および比較例における研削面の測定位置を示す模式的平面図である。It is a typical top view which shows the measurement position of the grinding surface in an Example and a comparative example. 参考例で用いる修正キャリアおよび修正部材の例を示す模式的平面図である。It is a schematic plan view which shows the example of the correction carrier and correction member which are used by a reference example. ダイヤモンドシートを貼り付けた直後の上定盤の断面プロフィールを示すグラフである。It is a graph which shows the cross-sectional profile of the upper surface plate immediately after bonding a diamond sheet. ダイヤモンドシートを貼り付けた直後の下定盤の断面プロファイルを示すグラフである。It is a graph which shows the cross-sectional profile of the lower surface plate immediately after bonding a diamond sheet. 実施例の修正キャリアで修正後の上定盤の断面プロファイルを示すグラフである。It is a graph which shows the cross-sectional profile of the upper surface plate after correction | amendment with the correction | amendment carrier of an Example. 実施例の修正キャリアで修正後の下定盤の断面プロファイルを示すグラフである。It is a graph which shows the cross-sectional profile of the lower surface plate after correction | amendment with the correction | amendment carrier of an Example. 比較例の修正キャリアで修正後の上定盤の断面プロファイルを示すグラフである。It is a graph which shows the cross-sectional profile of the upper surface plate after correction with the correction carrier of a comparative example. 比較例の修正キャリアで修正後の下定盤の断面プロファイルを示すグラフである。It is a graph which shows the cross-sectional profile of the lower surface plate after correction | amendment with the correction | amendment carrier of a comparative example.

以下、本発明を詳細に説明する。
本発明の基板の製造方法は、固定砥粒が研削面に配備された上定盤と下定盤を備える研削装置を用いてガラス基板の2つの主表面を両面研削する研削工程を有する基板の製造方法であって、
修正部材を備える修正キャリアを前記定盤上で自転させながら公転させ、修正キャリアの修正部材と定盤の研削面とを互いに押圧させて摺動させて前記定盤の面修正を行う修正工程を有し、
前記修正キャリアは、上定盤および下定盤にそれぞれ対向する2つの対向面を有する本体部と、前記2つの対向面にそれぞれ配置された修正部材とからなり、
前記修正部材は、対向面の外周側に沿って配置され、かつ修正キャリアの自転軸と外周側の特定点とを結ぶ直線上の対向面にも配置されていることを特徴とする(構成1)。
上記構成によれば、修正キャリア上の修正部材の配置を、修正キャリアの外周側に沿って配置することに加え、修正キャリアの半径又は直径方向にも配置することにより、以下の効果が得られる。
(1)定盤の半径方向における中央側の修正レートが、定盤の半径方向における外周縁側や内周縁側よりも速くなるため、中央側の修正量が相対的に多くなり、中央側が凸形状に修正されてしまう現象を抑制できる。
(2)修正キャリアの全面に修正部材を配置してしまうと、修正部材と定盤上の固定砥粒との間の摩擦力が過大になり、装置への負荷が大きくなってしまうが、それを抑制できる。
(3)修正キャリアの外周にのみ修正部材を配置し、定盤上の固定砥粒(定盤面)の平坦度修正を進めていくと、上定盤と下定盤の各研削面間の距離が同じとなる現象が生じる。上定盤と下定盤の各研削面間の距離が同じであると、定盤上の修正レートが面内で同じになってしまい、凸形状の傾向を修正できなくなる現象が生じる。しかし、この場合でも、本発明の修正キャリアを適用することにより、定盤の半径方向における中央側の修正レートが相対的に速くなるため、形状修正ができるようになる。
本発明においては、前記定盤が、ダイヤモンド粒子を含む固定砥粒などの固定砥粒が研削面に配備されている場合においても、上記効果を得ることができる。
また、本発明によれば、定盤の固定砥粒(研削面)の平坦度修正の精度を、求められる数値(具体的には定盤の半径方向における上下の定盤の固定砥粒(研削面)の内周端部から外周端部までの長さが約540mmであるときの高低差が20μm程度)よりも向上できる。例えば、定盤の半径方向における上下の定盤の固定砥粒(研削面)の内周端部から外周端部までの長さが約540mmであるときの平坦度修正の精度を、固定砥粒(研削面)の内周端部から外周端部までの高低差が15μm程度まで向上できる。
本発明は、定盤の半径が約1100mmより大きい研削装置を用いる場合に適する。
Hereinafter, the present invention will be described in detail.
The substrate manufacturing method of the present invention is a substrate manufacturing method including a grinding step in which two main surfaces of a glass substrate are ground on both sides using a grinding apparatus having an upper surface plate and a lower surface plate in which fixed abrasive grains are arranged on a grinding surface. A method,
A correction step of revolving a correction carrier having a correction member while rotating on the surface plate, and correcting the surface of the surface plate by pressing the correction member of the correction carrier and the ground surface of the surface plate against each other and sliding. Have
The correction carrier is composed of a main body portion having two opposing surfaces respectively facing the upper surface plate and the lower surface plate, and correction members respectively disposed on the two opposite surfaces,
The correction member is arranged along the outer peripheral side of the opposing surface, and is also arranged on the opposing surface on a straight line connecting the rotation axis of the correction carrier and a specific point on the outer peripheral side (Configuration 1). ).
According to the above configuration, in addition to arranging the correction member on the correction carrier along the outer peripheral side of the correction carrier, the following effects can be obtained by arranging the correction member also in the radius or diameter direction of the correction carrier. .
(1) Since the correction rate on the center side in the radial direction of the surface plate is faster than the outer peripheral edge side and the inner peripheral edge side in the radial direction of the surface plate, the correction amount on the central side is relatively large, and the central side is convex. It is possible to suppress the phenomenon that is corrected.
(2) If the correction member is arranged on the entire surface of the correction carrier, the frictional force between the correction member and the fixed abrasive on the surface plate becomes excessive, and the load on the apparatus increases. Can be suppressed.
(3) When the correction member is arranged only on the outer periphery of the correction carrier and the flatness correction of the fixed abrasive grains (surface plate surface) on the surface plate is advanced, the distance between each grinding surface of the upper surface plate and the lower surface plate is increased. The same phenomenon occurs. If the distance between the ground surfaces of the upper surface plate and the lower surface plate is the same, the correction rate on the surface plate becomes the same in the surface, and a phenomenon that the tendency of the convex shape cannot be corrected occurs. However, even in this case, by applying the correction carrier of the present invention, the correction rate on the center side in the radial direction of the surface plate becomes relatively fast, so that the shape can be corrected.
In the present invention, the effect can be obtained even when the surface plate is provided with fixed abrasive grains such as fixed abrasive grains containing diamond particles on the grinding surface.
Further, according to the present invention, the accuracy of the flatness correction of the fixed abrasive grains (grinding surface) of the surface plate can be calculated by a numerical value (specifically, fixed abrasive grains (grinding of the upper and lower surface plates in the radial direction of the surface plate). The height difference when the length from the inner peripheral end portion to the outer peripheral end portion of the surface) is about 540 mm can be improved more than about 20 μm. For example, the accuracy of flatness correction when the length from the inner peripheral end portion to the outer peripheral end portion of the fixed abrasive grains (grinding surfaces) of the upper and lower surface plates in the radial direction of the surface plate is about 540 mm, The height difference from the inner peripheral end to the outer peripheral end of the (grinding surface) can be improved to about 15 μm.
The present invention is suitable when a grinding apparatus having a surface plate radius of greater than about 1100 mm is used.

本発明において、修正キャリアの自転軸と外周側の特定点とを結ぶ直線上とは、例えば、修正キャリアの自転軸(中心)を通り、修正キャリアの外周側に向かって伸びる直線上の任意点を結ぶ直線上である。例えば、修正キャリアの自転軸(中心)を通り、修正キャリアの半径上の任意点を結ぶ直線上である。
本発明においては、修正キャリアの外周側に沿って修正部材を配置することに加えて、外周側よりも自転軸(中心)側における前記直線を含む領域又は前記半径もしくは前記半径の一部を含む領域に修正部材を配置することができる。
In the present invention, the straight line connecting the rotation axis of the correction carrier and the specific point on the outer peripheral side is, for example, an arbitrary point on the straight line passing through the rotation axis (center) of the correction carrier and extending toward the outer peripheral side of the correction carrier. On a straight line connecting For example, it is on a straight line passing through the rotation axis (center) of the correction carrier and connecting an arbitrary point on the radius of the correction carrier.
In the present invention, in addition to arranging the correction member along the outer peripheral side of the correction carrier, the region including the straight line or the radius or a part of the radius on the rotation axis (center) side rather than the outer peripheral side is included. A correction member can be placed in the region.

本発明において、前記修正部材は、前記特定点と前記自転軸とを結ぶ直線を、前記特定点とは前記自転軸を挟んだ反対側の外周側の点まで延伸した直線上にも配置されている構成とすることができる(構成2)。
本発明においては、例えば、修正キャリアの少なくとも1つの直径方向に修正部材を配置することができる。
本発明においては、修正キャリアにおける複数の直径方向に修正部材を配置することができる。例えば、十字方向(互いに90度をなす2つの方向)に修正部材を配置することができる。
本発明においては、前記直線を含む領域又は前記直径もしくは前記直径の一部を含む領域に修正部材を配置することができる。
In the present invention, the correction member is also arranged on a straight line that connects the specific point and the rotation axis to a point on the outer peripheral side opposite to the specific point with the rotation axis interposed therebetween. (Configuration 2).
In the present invention, for example, the correction member can be arranged in at least one diametric direction of the correction carrier.
In the present invention, correction members can be arranged in a plurality of diametrical directions in the correction carrier. For example, the correction member can be arranged in the cross direction (two directions that form 90 degrees with each other).
In the present invention, a correction member can be arranged in a region including the straight line or a region including the diameter or a part of the diameter.

本発明においては、修正部材の摩擦抵抗が大きくなりすぎ修正部材(修正キャリア)が定盤に対し相対的に動作不可となるのを避ける観点、スラリーなどの流動性を良好に確保する観点から、修正部材は、修正キャリアの本体部における外周部分(外周部)に断続的に配置することが好ましい。
本発明において、前記修正部材は、複数の修正部材を、修正キャリアの中心から等しい距離で、互いに等間隔で、修正キャリアの本体部における外周部分(外周部)に配置することができる。この場合、複数の修正部材は、同一形状とすることができる。複数の修正部材は、異なる形状とすることもできる。
本発明において、前記修正部材の形状としては、円形、扇形、矩形、正方形、角がトリミングされた略正方形、角がトリミングされた扇形、角がトリミングされた矩形、角がトリミングされた正方形の形状、その他任意形状が挙げられる。複数の修正部材における各修正部材に関しても同様である。
本発明において、前記修正部材は、修正キャリアの本体部における直径方向の領域(直径部)の全面に形成することができる。
本発明において、前記修正部材は、修正キャリアの本体部における直径方向の領域(直径部)に、部分的に形成することもできる。
In the present invention, from the viewpoint of avoiding that the frictional resistance of the correction member becomes too large and the correction member (correction carrier) becomes relatively inoperable with respect to the surface plate, from the viewpoint of ensuring good fluidity such as slurry, It is preferable that the correction member is intermittently disposed on the outer peripheral portion (outer peripheral portion) of the main body of the correction carrier.
In the present invention, the correction member can be arranged on the outer peripheral portion (outer peripheral portion) of the main body portion of the correction carrier at equal distances from the center of the correction carrier and at equal intervals. In this case, the plurality of correction members can have the same shape. The plurality of correction members may have different shapes.
In the present invention, the shape of the correction member may be a circle, a sector, a rectangle, a square, a substantially square whose corners are trimmed, a sector whose corners are trimmed, a rectangle whose corners are trimmed, or a square whose corners are trimmed. Other arbitrary shapes can be mentioned. The same applies to each correction member in the plurality of correction members.
In the present invention, the correction member can be formed on the entire surface (diameter portion) in the diameter direction of the main body portion of the correction carrier.
In the present invention, the correction member may be partially formed in a diametrical region (diameter portion) in the main body of the correction carrier.

本発明において、前記修正部材は、修正キャリアの本体部において、下定盤側及び上定盤側の双方に、配備する。
両面研削装置における上下定盤の固定砥粒(研削面)を同時に平坦化でき、しかも一方ずつ修正する場合よりも上下定盤の固定砥粒(研削面)の修正精度が向上する。
本発明においては、前記修正工程は、上下2つの定盤の研削面の間に前記修正キャリアを挟み込み、前記修正キャリアの前記修正部材が上下2つの定盤の両研削面に押圧させた状態で摺動させることで前記上下2つの定盤の面修正を行う。
本発明において、前記修正部材は、修正キャリアの本体部において、下定盤側、又は、上定盤側、のいずれか一方に配備することもできる。この場合は、下定盤側、又は、上定盤側、のいずれか一方のみの面修正を行う。
In the present invention, the correction member is arranged on both the lower surface plate side and the upper surface plate side in the main body portion of the correction carrier.
The fixed abrasive grains (grinding surfaces) of the upper and lower surface plates in the double-sided grinding apparatus can be flattened simultaneously, and the correction accuracy of the fixed abrasive grains (grinding surfaces) of the upper and lower surface plates can be improved as compared with the case of correcting one by one.
In the present invention, in the correction step, the correction carrier is sandwiched between the grinding surfaces of the upper and lower surface plates, and the correction member of the correction carrier is pressed against both grinding surfaces of the upper and lower surface plates. The surface of the two upper and lower surface plates is corrected by sliding.
In the present invention, the correction member can be arranged on either the lower surface plate side or the upper surface plate side in the main body of the correction carrier. In this case, the surface of only one of the lower surface plate side and the upper surface plate side is corrected.

本発明において、定盤の固定砥粒(研削面)の外周端部および内周端部は、定盤の中心から、それぞれ等しい距離(半径)の円周上に配置にすることが好ましい。
本発明において、固定砥粒は、多数の砥粒を適当な結合剤(ボンド)で固定したものである。
本発明において、定盤上の固定砥粒を構成する砥粒(粒子)としては、ダイヤモンド、CBN(立方晶窒化ホウ素)、炭化ケイ素、アルミナなどの砥粒(粒子)が挙げられる。
本発明において、定盤上の固定砥粒は、ダイヤモンド粒子を含む固定砥粒が配備された定盤と、同等の作用(例えば研削作用)を示すものであればいかなるものでもよい。
In the present invention, the outer peripheral end and the inner peripheral end of the fixed abrasive grains (grinding surface) of the surface plate are preferably arranged on the circumference of an equal distance (radius) from the center of the surface plate.
In the present invention, the fixed abrasive grains are obtained by fixing a large number of abrasive grains with an appropriate binder.
In the present invention, the abrasive grains (particles) constituting the fixed abrasive grains on the surface plate include abrasive grains (particles) such as diamond, CBN (cubic boron nitride), silicon carbide, and alumina.
In the present invention, the fixed abrasive on the surface plate may be any one as long as it exhibits an action (for example, a grinding action) equivalent to that of the surface plate provided with the fixed abrasive containing diamond particles.

本発明において、前記定盤は、ダイヤモンド粒子を含む固定砥粒が研削面に配備されていることが好ましい(構成3)。
本発明において、ダイヤモンド粒子を含む固定砥粒としては、ダイヤモンドペレット、ダイヤモンドシート、などが挙げられる。
ダイヤモンドペレットは、ダイヤモンド砥粒(粒子)を、樹脂(レジンボンド)、金属(メタルボンド)、粘土質結合材(ビトリファイドボンド)で固結したものであり、薄い円板状などの固結体である。このペレットの複数個を定盤上に接着剤で貼り付けて使用する。
ダイヤモンドシートは、ダイヤモンド粒子をガラスで固めてできた砥粒を、さらに樹脂(レジンボンド)で固めてシート状にしたものである。
本発明において、定盤上の固定砥粒を構成するダイヤモンド砥粒(粒子)の粒度は、#1000〜#4000程度が好ましく、#3000程度(例えば#2900〜#3100)が更に好ましい。
In the present invention, the surface plate is preferably provided with fixed abrasive grains containing diamond particles on the grinding surface (Configuration 3).
In the present invention, examples of the fixed abrasive grains containing diamond particles include diamond pellets and diamond sheets.
Diamond pellets are diamond abrasive grains (particles) consolidated with resin (resin bond), metal (metal bond), and clay-like binder (vitrified bond). is there. A plurality of these pellets are used on a surface plate with an adhesive.
The diamond sheet is obtained by further solidifying abrasive grains made of glass with glass with resin (resin bond) to form a sheet.
In the present invention, the diamond abrasive grains (particles) constituting the fixed abrasive on the surface plate are preferably about # 1000 to # 4000, more preferably about # 3000 (for example, # 2900 to # 3100).

本発明において、前記修正部材は、ダイヤモンド粒子を含む固定砥粒を配備して構成されていることが好ましい(構成4)。
他の固定砥粒を用いる場合に比べ、修正後の定盤の固定砥粒(研削面)の平坦度に関し、求められる数値(例えば定盤の半径方向における上下の定盤の固定砥粒(研削面)の内周端部から外周端部までの長さが約540mmであるときの研削面の平坦度を20μm程度)を達成可能となる。また、加工時間も相対的に短くなる。
前記修正部材において、ダイヤモンド粒子を含む固定砥粒としては、ダイヤモンドペレット、ダイヤモンドシート、などが挙げられる。
ダイヤモンドペレットは、ダイヤモンド砥粒(粒子)を、樹脂(レジンボンド)、金属(メタルボンド)、粘土質結合材(ビトリファイドボンド)で固結したものであり、薄い円板状などの固結体である。このペレットの複数個を定盤上に接着剤で貼り付けて使用する。
ダイヤモンドシートは、ダイヤモンド粒子をガラスで固めてできた砥粒を、さらに樹脂(レジンボンド)で固めてシート状にしたものである。
前記修正部材において、前記固定砥粒を構成するダイヤモンド砥粒(粒子)の粒度は、#1000〜#4000程度が好ましく、#3000程度(例えば#2900〜#3100)が更に好ましい。
本発明において、前記修正部材は、合成石英や、金属材料等で構成されたものとすることができる。この場合は、修正部材がダイヤモンド粒子を含む固定砥粒で構成される場合に比べ、研削レートが低下し、修正時間は長くなる。
本発明において、前記修正部材は、ダイヤモンド粒子を含む固定砥粒等が配備された定盤の研削面を修正できるものであればいかなるものでもよい。
In the present invention, it is preferable that the correction member is configured by disposing fixed abrasive grains including diamond particles (Configuration 4).
Compared to the case of using other fixed abrasive grains, the calculated numerical value (for example, fixed abrasive grains (grinding of upper and lower surface plates in the radial direction of the surface plate) (grinding) The flatness of the grinding surface when the length from the inner peripheral end to the outer peripheral end of the surface is about 540 mm can be achieved. Also, the processing time is relatively shortened.
In the correction member, examples of the fixed abrasive grains containing diamond particles include diamond pellets and diamond sheets.
Diamond pellets are diamond abrasive grains (particles) consolidated with resin (resin bond), metal (metal bond), and clay-like binder (vitrified bond). is there. A plurality of these pellets are used on a surface plate with an adhesive.
The diamond sheet is obtained by further solidifying abrasive grains made of glass with glass with resin (resin bond) to form a sheet.
In the correction member, the diamond abrasive grains (particles) constituting the fixed abrasive grains preferably have a particle size of about # 1000 to # 4000, and more preferably about # 3000 (for example, # 2900 to # 3100).
In the present invention, the correction member may be made of synthetic quartz, a metal material, or the like. In this case, as compared with the case where the correction member is composed of fixed abrasive grains containing diamond particles, the grinding rate is lowered and the correction time is lengthened.
In the present invention, the correction member may be any member as long as it can correct the grinding surface of the surface plate provided with fixed abrasive grains including diamond particles.

本発明において、前記修正工程は、遊離砥粒を含む研削液を供給しながら、前記修正部材と、前記定盤の研削面とを、互いに押圧させて摺動させて行うことが好ましい(構成5)。
例えば、ダイヤモンド粒子を含む固定砥粒が研削面に配備された定盤と、ダイヤモンド粒子を含む固定砥粒を配備して構成された修正部材の修正面とを、互いに押圧させて摺動させた場合、双方がダイヤモンド粒子であると表層のダイヤモンド粒子がすぐに目つぶれした状態になり、レジンボンド(定盤の研削面)を研削することができない。遊離砥粒を含む研削液を供給すると、双方のレジンボンドを同時に研削することができる。
遊離砥粒としては、アルミナ、ジルコニア、シリカ、炭化ケイ素などの砥粒が挙げられる。遊離砥粒としては、アルミナ、ジルコニア、シリカの混合砥粒が好ましい。
本発明において、遊離砥粒(粒子)の粒度は、#1000〜#4000程度が好ましく、#3000程度(例えば#2900〜#3100)が更に好ましい。
In the present invention, the correction step is preferably performed by pressing the sliding member and the grinding surface of the surface plate against each other while supplying a grinding fluid containing loose abrasive grains (Configuration 5). ).
For example, a surface plate in which fixed abrasive grains containing diamond particles are arranged on a grinding surface and a correction surface of a correction member configured by arranging fixed abrasive grains containing diamond particles are pressed against each other and slid. In this case, if both are diamond particles, the diamond particles on the surface layer are immediately clogged, and the resin bond (the ground surface of the surface plate) cannot be ground. When a grinding fluid containing loose abrasive grains is supplied, both resin bonds can be ground simultaneously.
Examples of the free abrasive grains include alumina, zirconia, silica, silicon carbide and the like. As the free abrasive grains, mixed abrasive grains of alumina, zirconia, and silica are preferable.
In the present invention, the particle size of the loose abrasive grains (particles) is preferably about # 1000 to # 4000, more preferably about # 3000 (for example, # 2900 to # 3100).

本発明において、前記修正工程は、固定砥粒を定盤の研削面に配備する固定砥粒配備工程に続いて行うことができる(構成6)。
本発明は、定盤の研削面の初期条件出しに優れる。このため、例えば、ダイヤモンドシートの貼り替えのたびに、高い精度で再現性良く定盤の研削面の平坦度の初期条件出しができる。
詳しくは、本発明によれば、固定砥粒が研削面に配備された定盤の面修正を修正キャリアによって行う場合であって、固定砥粒が研削面に配備された定盤を準備し、この定盤の固定砥粒(研削面)に初期の平滑性を付与する(初期の修正を行う)場合においても、修正後の定盤の固定砥粒(研削面)の平坦度に関し、求められる数値(例えば定盤の半径方向における上下の定盤の固定砥粒(研削面)の内周端部から外周端部までの長さが約
540mmであるときの研削面の平坦度を20μm程度)を達成可能となる(初期平滑性を準備可能となる)。これにより、この定盤を用いて研削されるガラス基板等は、初期の修正を行う毎に、所定値以上の平坦度のものに仕上げることが可能となる。
In this invention, the said correction process can be performed following the fixed abrasive grain arrangement | positioning process which arrange | positions fixed abrasive grains on the grinding surface of a surface plate (structure 6).
The present invention is excellent in determining the initial conditions of the ground surface of the surface plate. For this reason, for example, each time the diamond sheet is replaced, the initial condition of the flatness of the ground surface of the surface plate can be determined with high accuracy and good reproducibility.
Specifically, according to the present invention, when the surface of the surface plate in which the fixed abrasive is arranged on the grinding surface is corrected by a correction carrier, a surface plate in which the fixed abrasive is arranged on the grinding surface is prepared, Even when initial smoothness is imparted to the fixed abrasive grains (grinding surface) of the surface plate (initial correction is performed), the flatness of the fixed abrasive grains (grinding surface) of the surface plate after correction is obtained. Numerical value (for example, the flatness of the grinding surface when the length from the inner peripheral edge to the outer peripheral edge of the fixed abrasive grains (grinding surfaces) of the upper and lower surface plates in the radial direction of the surface plate is about 540 mm) Can be achieved (initial smoothness can be prepared). As a result, the glass substrate or the like ground using this surface plate can be finished with a flatness of a predetermined value or more each time initial correction is performed.

本発明において、前記修正工程は、固定砥粒が研削面に配備された定盤を用いてガラス基板の主表面を研削する研削工程の後に行うことができる。
本発明は、定盤の研削面の平坦度の回復にも優れる。所定のバッチ数を処理する毎に、高い精度で再現性良く定盤の研削面の平坦度を回復できる。
詳しくは、本発明によれば、マスクブランク用基板等のガラス基板の研削工程を実施後に、固定砥粒が研削面に配備された定盤の面修正を修正キャリアによって行う場合においても、修正後の定盤の固定砥粒(研削面)の平坦度を、求められる数値以上に確実に回復させることができる。
In this invention, the said correction process can be performed after the grinding process which grinds the main surface of a glass substrate using the surface plate by which the fixed abrasive grain was arrange | positioned by the grinding surface.
The present invention is also excellent in recovering the flatness of the ground surface of the surface plate. Every time a predetermined number of batches are processed, the flatness of the ground surface of the surface plate can be recovered with high accuracy and good reproducibility.
Specifically, according to the present invention, after performing a grinding process of a glass substrate such as a mask blank substrate, even when the surface of the surface plate in which the fixed abrasive grains are arranged on the grinding surface is corrected by the correction carrier, The flatness of the fixed abrasive grains (grind surface) of the surface plate can be reliably recovered to a value greater than the required value.

本発明において、前記修正キャリアは、本体部の外周に外ギヤが設けられており、前記外ギヤが、前記研削装置のサンギヤおよびインターナルギヤの間で両ギヤとそれぞれ噛み合うことで、前記定盤上で前記修正キャリアを自転しながら公転させるものであることが好ましい(構成7)。
本発明の前記修正キャリアは、前記研削装置において、被研削基板であるガラス基板を保持するキャリアと置換可能な構成とすることで、定盤の面修正の際に前記研削装置の構成を利用できる。
In the present invention, the correction carrier is provided with an outer gear on the outer periphery of the main body portion, and the outer gear meshes with both gears between the sun gear and the internal gear of the grinding device, whereby the surface plate It is preferable that the correction carrier is revolved while rotating (Configuration 7).
The correction carrier of the present invention can be replaced with a carrier that holds a glass substrate as a substrate to be ground in the grinding apparatus, so that the configuration of the grinding apparatus can be used when correcting the surface of the surface plate. .

本発明において修正キャリアは、固定砥粒が研削面に配備された上定盤と下定盤を備える研削装置に対し、前記定盤の面修正を行うときに用いられる修正キャリアであって、
外周に前記研削装置のサンギヤおよびインターナルギヤの間で両ギヤとそれぞれ噛み合う外ギヤが設けられ、上定盤および下定盤にそれぞれ対向する2つの対向面を有する本体部と、
前記2つの対向面にそれぞれ配置された修正部材とからなり、
前記修正部材は、対向面の外周側に沿って配置され、かつ修正キャリアの自転軸と外周側の特定点とを結ぶ直線上の対向面にも配置されている構成とすることができる(構成10)。
このような構成の修正キャリアによれば、前記研削装置において、被研削基板であるガラス基板を保持するキャリアと置換可能な構成となるので、定盤の面修正の際に前記研削装置の構成を利用できる。
また、このような構成の修正キャリアによれば、定盤の固定砥粒(研削面)の平坦度修正の精度を、求められる数値(具体的には固定砥粒(研削面)の内周端部から外周端部までの高低差が20μm程度)よりも向上できる。例えば、定盤の固定砥粒(研削面)の平坦度修正の精度を、固定砥粒(研削面)の内周端部から外周端部までの高低差が15μm程度まで向上できる。
さらに、このような構成の修正キャリアによれば、両面研削装置における上下定盤の固定砥粒(研削面)を同時に平坦化できる。
本発明において、前記修正部材は、前記特定点と前記自転軸とを結ぶ直線を、前記特定点とは前記自転軸を挟んだ反対側の外周側の点まで延伸した直線上にも配置されている構成とすることができる(構成11)。上記構成2で説明したのと同様である。
本発明において、前記修正部材は、ダイヤモンド粒子を含む固定砥粒を配備して構成されているものとすることができる(構成12)。上記構成4で説明したのと同様である。
In the present invention, the correction carrier is a correction carrier used when the surface of the surface plate is corrected with respect to a grinding apparatus including an upper surface plate and a lower surface plate in which fixed abrasive grains are arranged on the grinding surface,
An outer gear provided on the outer periphery to mesh with both gears between the sun gear and the internal gear of the grinding device, and a main body having two opposing surfaces respectively facing the upper surface plate and the lower surface plate;
A correction member disposed on each of the two opposing surfaces,
The correction member may be arranged along the outer peripheral side of the opposing surface and also arranged on the opposing surface on a straight line connecting the rotation axis of the correction carrier and a specific point on the outer peripheral side (configuration) 10).
According to the modified carrier having such a configuration, the grinding apparatus can be replaced with a carrier that holds a glass substrate that is a substrate to be ground. Available.
Further, according to the correction carrier having such a configuration, the accuracy of the flatness correction of the fixed abrasive grains (grinding surface) of the surface plate can be calculated by a numerical value (specifically, the inner peripheral edge of the fixed abrasive grains (grinding surface)). The height difference from the portion to the outer peripheral end can be improved more than about 20 μm. For example, the accuracy in correcting the flatness of the fixed abrasive grains (grinding surface) of the surface plate can be improved to about 15 μm in height difference from the inner peripheral end portion to the outer peripheral end portion of the fixed abrasive grains (grinding surface).
Furthermore, according to the modified carrier having such a configuration, the fixed abrasive grains (grinding surfaces) of the upper and lower surface plates in the double-side grinding apparatus can be simultaneously flattened.
In the present invention, the correction member is also arranged on a straight line that connects the specific point and the rotation axis to a point on the outer peripheral side opposite to the specific point with the rotation axis interposed therebetween. (Configuration 11). This is the same as described in configuration 2 above.
In the present invention, the correction member may be configured by disposing fixed abrasive grains including diamond particles (Configuration 12). This is the same as that described in configuration 4 above.

本発明において、修正キャリアの本体部(フレーム)は、研削面の修正工程中における修正キャリアの変形を微小にするためにも、剛性の高い材質で形成されていることが望ましい。例えば、金属製(SUS製)などが好ましい。
本発明において、修正キャリアの本体部は、リング状(円環状)の部分(外周部)と、リング状の部分(外周部)の直径方向にリング状の部分(外周部)と連接して形成された部分(直径部)と、を有する構成であることが好ましい。修正キャリアの本体部が、このような形状であると、修正キャリアの本体部が円板状(切り欠きなし)の場合と比べ、切りくず等が排除されやすく、修正キャリアの取り扱いが容易である。
In the present invention, it is desirable that the main body (frame) of the correction carrier is formed of a highly rigid material in order to minimize the deformation of the correction carrier during the grinding surface correction process. For example, metal (SUS) is preferable.
In the present invention, the main body of the correction carrier is formed by connecting a ring-shaped (annular) portion (outer peripheral portion) and a ring-shaped portion (outer peripheral portion) in the diameter direction of the ring-shaped portion (outer peripheral portion). It is preferable that the structure has a portion (diameter portion). When the main body of the correction carrier has such a shape, chips and the like are easily removed and the correction carrier is easy to handle, compared to the case where the main body of the correction carrier has a disk shape (no cutout). .

本発明において、前記修正工程は、修正キャリアの本体部の外周部分(外周部)における前記修正部材の外周端部が前記固定砥粒の外周端部よりも外周側になるとともに、前記修正部材の内周端部が前記固定砥粒の外周端部よりも内周側になるように、前記定盤の外周側に前記修正部材をオーバーハングさせ、かつ、
前記修正部材の外周端部が前記固定砥粒の内周端部よりも内周側になるとともに、前記修正部材の内周端部が前記固定砥粒の内周端部よりも外周側になるように、前記定盤の内周側に前記修正部材をオーバーハングさせることが好ましい。
上記構成によれば、定盤の固定砥粒(研削面)の外周端部および内周端部に対し、修正キャリアの本体部の外周部分(外周部)における修正部材(複数ある修正部材の1つ、又は修正部材の一部)が完全にはみ出すことがない。このため、定盤の固定砥粒(研削面)の平坦度修正の精度に関し、求められる数値(具体的には、固定砥粒(研削面)の内周端部から外周端部までの高低差が20μm程度)を達成可能となる。
オーバーハングは、修正キャリアの本体部の外周部分(外周部)における修正部材(複数ある修正部材の1つ、又は修正部材の一部)が、定盤の固定砥粒(研削面)の外周端部付近を通過するとき、または、修正キャリアの本体部の外周部分(外周部)における修正部材(複数ある修正部材の1つ、又は修正部材の一部)が、定盤の固定砥粒(研削面)の内周端部付近を通過するとき、などに生じる。
本発明において、オーバーハングは、定盤上の任意の半径方向(1以上のある半径方向)において、定盤の固定砥粒(研削面)の外周端部に対し、修正キャリアの本体部の外周部分(外周部)における修正部材(複数ある修正部材の1つ、又は修正部材の一部)が定盤の半径方向で定盤の中心から遠ざかるほうに(定盤の外周側に)ずれる(はみ出す)こと(但し完全にはみ出さないこと)、及び、定盤の固定砥粒(研削面)の内周端部に対し、修正キャリアの本体部の外周部分(外周部)における修正部材(複数ある修正部材の1つ、又は修正部材の一部)が定盤の半径方向で定盤の中心に近づくほうに(定盤の内周側に)ずれる(はみ出す)こと(但し完全にはみ出さないこと)、である。
定盤に対し、修正キャリアの本体部の外周部分(外周部)における修正部材が相対運動するに従って、修正部材が最大にオーバーハングする定盤上の半径方向の位置も変化する。定盤に対し修正部材が相対運動で取り得るすべての位置関係において、定盤の固定砥粒(研削面)の外周端部および内周端部に対し、修正キャリアの本体部の外周部分(外周部)における修正部材(複数ある修正部材の1つ、又は修正部材の一部)が完全にはみ出さないことが必要である。
In the present invention, the correction step is such that the outer peripheral end of the correction member in the outer peripheral portion (outer peripheral portion) of the main body portion of the correction carrier is on the outer peripheral side of the outer peripheral end of the fixed abrasive, Overhanging the correction member on the outer peripheral side of the surface plate so that the inner peripheral end is on the inner peripheral side than the outer peripheral end of the fixed abrasive, and
The outer peripheral end of the correction member is on the inner peripheral side of the inner peripheral end of the fixed abrasive, and the inner peripheral end of the correction member is on the outer peripheral side of the inner peripheral end of the fixed abrasive. As described above, it is preferable to overhang the correction member on the inner peripheral side of the surface plate.
According to the said structure, with respect to the outer peripheral edge part and inner peripheral edge part of the fixed abrasive (grinding surface) of a surface plate, the correction member (1 of several correction members in the outer peripheral part (outer peripheral part) of the main-body part of a correction carrier. Or part of the correction member) does not protrude completely. For this reason, regarding the accuracy of the flatness correction of the fixed abrasive grains (grinding surface) of the surface plate, the required numerical value (specifically, the height difference from the inner peripheral edge to the outer peripheral edge of the fixed abrasive grains (grinding surface)) Is about 20 μm).
In the overhang, the correction member (one of the plurality of correction members or a part of the correction member) in the outer peripheral portion (outer peripheral portion) of the main body of the correction carrier is the outer peripheral edge of the fixed abrasive (grind surface) of the surface plate. Or a correction member (one of a plurality of correction members or a part of the correction member) on the outer peripheral portion (outer peripheral portion) of the main body of the correction carrier is fixed abrasive (ground) This occurs when passing near the inner peripheral edge of the surface.
In the present invention, the overhang is an outer periphery of the main body portion of the correction carrier with respect to an outer peripheral end portion of the fixed abrasive (grind surface) of the surface plate in an arbitrary radial direction (one or more radial directions) on the surface plate. The correction member (one of the plurality of correction members or a part of the correction member) in the portion (outer peripheral portion) is shifted (protruded toward the outer peripheral side of the surface plate) toward the distance from the center of the surface plate in the radial direction of the surface plate. (But do not protrude completely) and the correction member (there is a plurality of correction members in the outer peripheral portion (outer peripheral portion) of the main body portion of the correction carrier with respect to the inner peripheral end portion of the fixed abrasive (grinding surface) of the surface plate One of the correction members, or a part of the correction member, shifts (protrudes) toward the center of the surface plate in the radial direction of the surface plate (to the inner peripheral side of the surface plate) (but does not protrude completely) ).
As the correction member in the outer peripheral portion (outer peripheral portion) of the main body of the correction carrier moves relative to the surface plate, the radial position on the surface plate where the correction member overhangs to the maximum also changes. In all the positional relationships that the correction member can take relative to the surface plate, the outer peripheral portion (outer periphery) of the main body of the correction carrier with respect to the outer peripheral end and inner peripheral end of the fixed abrasive (grind surface) of the surface plate It is necessary that the correction member (one of the plurality of correction members or a part of the correction member) does not protrude completely.

本発明は、石英ガラス、無アルカリガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、ソーダライムガラス等の基板の研削に適用できる。また、本発明は、例えばアモルファスガラスであれば、SiO−TiO系ガラス、結晶化ガラスであれば、β石英固溶体を析出した結晶化ガラス等の基板の研削に適用できる。
本発明における基板の製造方法は、マスクブランク用ガラス基板、液晶や有機ELを用いる表示装置用ガラス基板、磁気ディスク用ガラス基板などに適用可能である。
本発明において、前記基板がマスクブランク用ガラス基板に用いられる場合は、合成石英ガラスまたはSiO−TiO系ガラス等の低熱膨張ガラスであることが好ましい。本発明は、合成石英ガラスやSiO−TiO系ガラス等の低熱膨張ガラスからなる基板の研削に特に適しているからである。
The present invention can be applied to grinding of substrates such as quartz glass, alkali-free glass, borosilicate glass, aluminosilicate glass, and soda lime glass. In addition, the present invention can be applied to grinding of a substrate such as crystallized glass on which β-quartz solid solution is precipitated, for example, if it is amorphous glass, SiO 2 —TiO 2 glass, or crystallized glass.
The substrate manufacturing method in the present invention can be applied to a mask blank glass substrate, a glass substrate for a display device using liquid crystal or organic EL, a glass substrate for a magnetic disk, and the like.
In the present invention, the case where the substrate is used a glass substrate for a mask blank is preferably a low thermal expansion glass such as synthetic quartz glass or SiO 2 -TiO 2 type glass. This is because the present invention is particularly suitable for grinding a substrate made of low thermal expansion glass such as synthetic quartz glass or SiO 2 —TiO 2 glass.

本発明のマスクブランクの製造方法は、上記本発明の基板の製造方法で製造されたマスクブランク用基板の主表面上に、転写パターン形成用の薄膜を形成することを特徴とする(構成8)。
上記構成により、所定値以下の高い平坦度の基板を有するマスクブランクを製造することが可能となる。
The mask blank manufacturing method of the present invention is characterized in that a thin film for forming a transfer pattern is formed on the main surface of the mask blank substrate manufactured by the substrate manufacturing method of the present invention (Configuration 8). .
With the above configuration, it is possible to manufacture a mask blank having a substrate with a high flatness of a predetermined value or less.

本発明の転写用マスクの製造方法は、上記本発明のマスクブランクの製造方法で製造されたマスクブランクにおける前記薄膜をパターニングして、転写パターンを形成することを特徴とする(構成9)。
上記構成により、所定値以下の高い平坦度の基板を有する転写用マスクを製造することが可能となる。
The transfer mask manufacturing method of the present invention is characterized by patterning the thin film in the mask blank manufactured by the mask blank manufacturing method of the present invention to form a transfer pattern (Configuration 9).
With the above configuration, it is possible to manufacture a transfer mask having a substrate with high flatness of a predetermined value or less.

次に添付図面を参照して本発明による基板の製造方法の実施形態を詳細に説明する。なお、以下では、特にマスクブランク用ガラス基板の研削の場合について説明するが、液晶や有機ELを用いる表示装置用ガラス基板、磁気ディスク用ガラス基板の研削の場合においても、応用可能である。図中、本発明に直接関係のない要素は図示を省略する。また、同様の要素は同一の参照符号によって表示する。   Next, an embodiment of a substrate manufacturing method according to the present invention will be described in detail with reference to the accompanying drawings. In the following, the case of grinding a glass substrate for a mask blank will be described in particular, but the present invention can also be applied to the case of grinding a glass substrate for a display device using a liquid crystal or an organic EL and a glass substrate for a magnetic disk. In the figure, elements not directly related to the present invention are not shown. Similar elements are denoted by the same reference numerals.

図1は、一般的な遊星歯車方式の研削・研磨装置の構成を説明するための模式的平面図であり、キャリアの遊星運動を説明するための図である。被研削・研磨基板(ガラス基板)100は、下定盤10の上にて、外周に外ギヤを有するキャリア50に保持され、このキャリア50の外ギヤを、サンギヤ(太陽歯車)30とインターナルギヤ(内歯歯車)40の間で両ギヤ30、40とそれぞれ噛合させる。例えば、サンギヤ30、インターナルギヤ40をそれぞれ矢印方向に回転させることにより、各キャリア50はそれぞれの矢印方向に遊星歯車として自転しながら公転する。   FIG. 1 is a schematic plan view for explaining a configuration of a general planetary gear type grinding / polishing apparatus, and is a view for explaining a planetary motion of a carrier. A ground / polished substrate (glass substrate) 100 is held on a lower surface plate 10 by a carrier 50 having an outer gear on its outer periphery. (Internal gear) 40 is engaged with both gears 30 and 40 respectively. For example, by rotating the sun gear 30 and the internal gear 40 in the directions of the arrows, the carriers 50 revolve while rotating as planetary gears in the directions of the arrows.

図2は、一般的な遊星歯車方式の研削・研磨装置の構成を説明するための模式的断面図であり、下定盤10に対して上定盤20が上下方向に移動可能であって、上下から被研削・研磨基板(ガラス基板)100を挟み、被研削・研磨基板(ガラス基板)100の両主表面の研削・研磨を行う様子を示している。図2に示すように、上定盤20と下定盤10には、それぞれ、研削の際には固定砥粒11、21が研削面に配備され(あるいは上下定盤の表面を格子状の溝が切られた形状とし、そのまま研削面として用いる)、研磨の際には研磨パッド(ポリシャ)11、21が研磨面に配備される。例えば、上下定盤10、20が回転することにより、ガラス基板100の主表面が研削・研磨される。
なお、上下定盤10、20を非駆動とし、サンギヤ30とインターナルギヤ40を駆動させる2ウエイ方式、インターナルギヤ40を固定し上下定盤10、20とサンギヤ30を駆動させる3ウエイ方式(インターナル固定型)、上定盤20を固定し下定盤10、サンギヤ30、インターナルギヤ40を駆動させる3ウエイ方式(上定盤固定型)、上下定盤10、20、サンギヤ30、インターナルギヤ40の4軸すべてを駆動させる4ウエイ方式、が適用可能である。
遊星歯車方式の研削・研磨装置は、両面研削・研磨装置、片面研削・研磨装置に適用可能である。
FIG. 2 is a schematic cross-sectional view for explaining the configuration of a general planetary gear type grinding / polishing apparatus. The upper surface plate 20 is movable in the vertical direction with respect to the lower surface plate 10. 2 illustrates a state in which both the main surfaces of the grinding / polishing substrate (glass substrate) 100 are ground and polished with the grinding / polishing substrate (glass substrate) 100 interposed therebetween. As shown in FIG. 2, the upper surface plate 20 and the lower surface plate 10 are each provided with fixed abrasive grains 11 and 21 on the grinding surface during grinding (or latticed grooves on the upper and lower surface plates). In this case, polishing pads (polishers) 11 and 21 are provided on the polishing surface. For example, the main surface of the glass substrate 100 is ground and polished by rotating the upper and lower surface plates 10 and 20.
The two-way method in which the upper and lower surface plates 10 and 20 are not driven and the sun gear 30 and the internal gear 40 are driven, and the three-way method in which the internal gear 40 is fixed and the upper and lower surface plates 10 and 20 and the sun gear 30 are driven ( Internal fixed type), three-way system (upper surface plate fixed type) for fixing the upper surface plate 20 and driving the lower surface plate 10, sun gear 30, and internal gear 40, upper and lower surface plates 10, 20, sun gear 30, internal A four-way system that drives all four axes of the gear 40 is applicable.
The planetary gear type grinding / polishing apparatus can be applied to a double-sided grinding / polishing apparatus and a single-sided grinding / polishing apparatus.

本発明の実施形態の目的は、固定砥粒11、21が研削面に配備された上下の定盤10、20の面修正を行うことである(図3、図4参照)。
定盤の面修正を行うには、修正部材を用いて定盤の固定砥粒(研削面)の平坦性を修正する。
The object of the embodiment of the present invention is to perform surface correction of the upper and lower surface plates 10 and 20 in which the fixed abrasive grains 11 and 21 are provided on the grinding surface (see FIGS. 3 and 4).
In order to correct the surface of the surface plate, the flatness of the fixed abrasive grains (grind surface) of the surface plate is corrected using a correction member.

図3は本発明の実施形態に用いる修正キャリアおよび修正部材の例を示す図である。図4は定盤の部分断面図を示し、図3のA−A断面図である。
図3、図4に示す修正キャリア51は、図1に示すキャリア50と置換可能な構成を有する。すなわち、前記修正キャリア51は、本体部を構成する外周部52の外周に外ギヤが設けられており、前記外ギヤが、前記研削装置のサンギヤ30およびインターナルギヤ40の間で両ギヤとそれぞれ噛み合うことで、前記定盤上10、20で前記修正キャリア51を自転しながら公転させることができる。
FIG. 3 is a diagram showing an example of a correction carrier and a correction member used in the embodiment of the present invention. 4 is a partial cross-sectional view of the surface plate, and is a cross-sectional view taken along the line AA of FIG.
The correction carrier 51 shown in FIGS. 3 and 4 has a configuration that can replace the carrier 50 shown in FIG. That is, the correction carrier 51 is provided with an outer gear on the outer periphery of the outer peripheral portion 52 constituting the main body portion, and the outer gear is connected to both the gears between the sun gear 30 and the internal gear 40 of the grinding device. By meshing, the correction carrier 51 can be revolved while rotating on the surface plates 10 and 20.

本発明では、例えば、図1に示すように被研削・研磨基板(ガラス基板)100の研削・研磨時には遊星歯車として各キャリア50を用い、定盤の面修正の時には、各キャリア50に換えて、図3、図4に示す修正キャリア51を遊星歯車として設置することが可能である。
修正キャリアを用いて定盤の面修正を行う場合において、図1に示すキャリア50を全て取り除き、図3に示す修正キャリア51をキャリア50と置換する形で配置する。修正キャリア51は、定盤上に最低一つ配置すればよいが、修正時間を短縮したい場合などは、修正キャリア51を複数配置してもよい。
In the present invention, for example, as shown in FIG. 1, each carrier 50 is used as a planetary gear when grinding / polishing the ground / polishing substrate (glass substrate) 100, and each carrier 50 is replaced when the surface of the surface plate is corrected. The correction carrier 51 shown in FIGS. 3 and 4 can be installed as a planetary gear.
When the surface of the surface plate is corrected using the correction carrier, all the carriers 50 shown in FIG. 1 are removed, and the correction carrier 51 shown in FIG. At least one correction carrier 51 may be arranged on the surface plate, but a plurality of correction carriers 51 may be arranged when it is desired to shorten the correction time.

図3、図4に示すように、定盤10、20の半径方向において、定盤の外周端部10a、20aよりも適当量(具体的には5〜100mm)内周側に固定砥粒(研削面)11、21の外周端部11a、21aが位置し、かつ、定盤10、20の内周端部10b、20bよりも適当量(具体的には5〜100mm)外周側に固定砥粒(研削面)11、21の内周端部11b、21bが位置するような配置にする。このような配置とすることで、基板の研磨中や研削中に基板をオーバーハングさせないことを前提として設計された研磨装置や研削装置を用いる場合でも、本願発明の基板の製造方法を適用できる。
この場合、定盤10、20上の固定砥粒(研削面)11、21の外周端部11a、21aおよび内周端部11b、21bは、定盤の中心Oから、それぞれほぼ等しい距離(半径)の円周上に配置にする。
定盤10、20上の固定砥粒(研削面)11、21としては、ダイヤモンドシート(ダイヤモンド粒子の粒度#3000)を使用する。
As shown in FIGS. 3 and 4, in the radial direction of the surface plates 10 and 20, fixed abrasive grains (specifically 5 to 100 mm) on the inner peripheral side of the outer peripheral end portions 10 a and 20 a of the surface plate (specifically 5 to 100 mm) Grinding surface) The outer peripheral end portions 11a, 21a of the 11, 21 are located, and are fixed to the outer peripheral side by an appropriate amount (specifically, 5-100 mm) from the inner peripheral end portions 10b, 20b of the surface plates 10, 20 It arrange | positions so that the inner peripheral edge parts 11b and 21b of the grain (grind surface) 11 and 21 may be located. By adopting such an arrangement, the substrate manufacturing method of the present invention can be applied even when a polishing apparatus or a grinding apparatus designed on the assumption that the substrate is not overhanged during polishing or grinding of the substrate is used.
In this case, the outer peripheral end portions 11a and 21a and the inner peripheral end portions 11b and 21b of the fixed abrasive grains (grinding surfaces) 11 and 21 on the surface plates 10 and 20 are respectively substantially equal distances (radius) from the center O of the surface plate. ) Is placed on the circumference.
As the fixed abrasive grains (grinding surfaces) 11 and 21 on the surface plates 10 and 20, a diamond sheet (diamond particle size # 3000) is used.

図3に示すように、同一サイズの複数の円形の修正部材53が、修正キャリア51におけるリング(円環)状の部分(外周部と称す)52の円周に沿って貼り付けられている。複数の修正部材53は、修正キャリア51の中心O’からほぼ等しい距離で、互いにほぼ等間隔で、修正キャリア51のリング状の外周部52に配置されている。
修正キャリア51における中央部には、リング状の外周部52の直径方向にリング状の外周部52と連接して形成された部分(直径部と称す)54を有している。修正部材55は、修正キャリア51における直径部54の中心付近を除いた部分に形成されている。修正部材55は、修正キャリア51における直径部54に、全面的に形成することもできる。
修正キャリア51の本体部は、外周部52と直径部54で構成される。本発明では、修正キャリアの本体部(金属製のフレーム)を構成する外周部52および直径部54の上下の面(本体部に対向する2つの面)にそれぞれ修正部材53および55を貼り付けたものである。
図3に示すように、修正部材53は、修正キャリア51のリング状の外周部52の円周に沿って配置されていて、リング状の外周部52の全体は修正部材53によって被覆されていない。これは、リング状の外周部52の全体が修正部材53で被覆されると、定盤と接触した場合に摩擦力が大きくなりすぎ、定盤に対して修正キャリアを回転させることが難しくなったり、固定砥粒に対して過大なせん断力が掛かって固定砥粒がシートから脱落したり、シート自体が定盤から剥離したりする恐れがある。
また、この修正自体の目的即ち相対運動による定盤の研削面の平滑性の向上という目的の達成の面から、修正部材53、55のサイズ、間隔、配置(貼り付け位置)等を、調整する必要がある。
As shown in FIG. 3, a plurality of circular correction members 53 of the same size are attached along the circumference of a ring (annular) -shaped portion (referred to as an outer peripheral portion) 52 of the correction carrier 51. The plurality of correction members 53 are arranged on the ring-shaped outer peripheral portion 52 of the correction carrier 51 at substantially equal distances from the center O ′ of the correction carrier 51 at substantially equal intervals.
A central portion of the correction carrier 51 has a portion (referred to as a diameter portion) 54 formed to be connected to the ring-shaped outer peripheral portion 52 in the diameter direction of the ring-shaped outer peripheral portion 52. The correction member 55 is formed in a portion excluding the vicinity of the center of the diameter portion 54 in the correction carrier 51. The correction member 55 can also be formed entirely on the diameter portion 54 of the correction carrier 51.
The main body of the correction carrier 51 includes an outer peripheral part 52 and a diameter part 54. In the present invention, correction members 53 and 55 are attached to the upper and lower surfaces (two surfaces opposite to the main body portion) of the outer peripheral portion 52 and the diameter portion 54 constituting the main body portion (metal frame) of the correction carrier, respectively. Is.
As shown in FIG. 3, the correction member 53 is disposed along the circumference of the ring-shaped outer peripheral portion 52 of the correction carrier 51, and the entire ring-shaped outer peripheral portion 52 is not covered with the correction member 53. . This is because if the entire ring-shaped outer peripheral portion 52 is covered with the correction member 53, the frictional force becomes too large when it comes into contact with the surface plate, making it difficult to rotate the correction carrier relative to the surface plate. There is a risk that an excessive shearing force is applied to the fixed abrasive and the fixed abrasive falls off the sheet or the sheet itself peels off from the surface plate.
Further, the size, spacing, arrangement (attachment position), etc., of the correction members 53 and 55 are adjusted in order to achieve the purpose of the correction itself, that is, to achieve the purpose of improving the smoothness of the ground surface of the surface plate by relative movement. There is a need.

修正部材53の面積の合計をBとした場合、修正部材55の面積の合計は、0.4〜0.8Bが好ましく、0.5〜0.7Bがさらに好ましい。
図3に示す半径rの円の面積をCとした場合、修正部材55の面積の合計は、0.1〜0.6Cが好ましく、0.3〜0.5Cがさらに好ましい。
When the total area of the correction members 53 is B, the total area of the correction members 55 is preferably 0.4 to 0.8B, and more preferably 0.5 to 0.7B.
When the area of the circle having the radius r shown in FIG. 3 is C, the total area of the correction members 55 is preferably 0.1 to 0.6C, and more preferably 0.3 to 0.5C.

図3、図4に示すように、修正キャリア51のリング状の外周部52における修正部材53の配置は、定盤の中心Oおよび修正キャリア51の中心O’を通る定盤の半径方向において、
修正部材53の外周端部53aが固定砥粒(研削面)11、21の外周端部11a、21aよりも外周側になるとともに、修正部材53の内周端部53bが固定砥粒(研削面)11、21の外周端部11a、21aよりも内周側になり、かつ、
修正部材53の外周端部53aが固定砥粒(研削面)11、21の内周端部11b、21bよりも内周側になるとともに、修正部材53の内周端部53b(修正キャリア51の中心O’に近い側の端)が固定砥粒(研削面)11、21の内周端部11b、21bよりも外周側になるような配置にする。
As shown in FIGS. 3 and 4, the arrangement of the correction member 53 in the ring-shaped outer peripheral portion 52 of the correction carrier 51 is in the radial direction of the surface plate passing through the center O of the surface plate and the center O ′ of the correction carrier 51.
The outer peripheral end 53a of the correction member 53 is on the outer peripheral side of the outer peripheral ends 11a and 21a of the fixed abrasive grains (grinding surfaces) 11 and 21, and the inner peripheral end portion 53b of the correction member 53 is the fixed abrasive grains (grinding surface). ) 11 and 21 are located on the inner peripheral side of the outer peripheral end portions 11a and 21a, and
The outer peripheral end 53a of the correction member 53 is on the inner peripheral side with respect to the inner peripheral ends 11b and 21b of the fixed abrasive grains (grinding surfaces) 11 and 21, and the inner peripheral end 53b of the correction member 53 (of the correction carrier 51). The arrangement is such that the end near the center O ′ is closer to the outer peripheral side than the inner peripheral end portions 11b and 21b of the fixed abrasive grains (grinding surfaces) 11 and 21.

修正部材53、55としては、ダイヤモンドシート(ダイヤモンド粒子の粒度#3000)を使用する。
なお、修正部材53、55の修正面の平坦度(触針式表面真直度測定装置を用いて測定)は、20μm以下が好ましく、10μm以下がより好ましい。
As the correction members 53 and 55, a diamond sheet (diamond particle size # 3000) is used.
The flatness of the correction surfaces of the correction members 53 and 55 (measured using a stylus type surface straightness measuring device) is preferably 20 μm or less, and more preferably 10 μm or less.

修正部材53の面積をSとした場合、オーバーハング量の最大値は0.05〜0.5S(オーバーハング量は修正部材の全面積Sの半分以下)が好ましい。
同様に、修正部材における修正キャリアの半径方向の長さhとした場合、オーバーハング量の最大値は0.5h以下(オーバーハング量は修正部材における修正キャリアの半径方向の長さhの半分以下)が好ましい(図3参照)。
なお、上下定盤によって掛けられる圧力によって修正部材は圧縮される。上下定盤の固定砥粒(研削面)11、21の端部から修正部材がオーバーハングする(はみ出る、外に飛び出す)と、修正部材におけるオーバーハングした部分(はみ出した部分、外に飛び出した部分)は圧力解放されて厚さが厚くなる。この圧力解放されて厚さが厚くなった修正部材におけるオーバーハングした部分(はみ出した部分、外に飛び出した部分)が、上下定盤の固定砥粒(研削面)11、21に向かって入っていく際に、この部分の固定砥粒(研削面)を必要以上に削ってしまい、定盤の固定砥粒(研削面)の平坦度修正の精度向上の妨げになる。
このような、上下定盤によって修正部材にかかる圧力解放による影響等を軽減する等の観点からは、オーバーハング量の最大値は、0.1〜0.4Sが好ましく、0.2〜0.3Sがさらに好ましい。
When the area of the correction member 53 is S, the maximum overhang amount is preferably 0.05 to 0.5S (the overhang amount is less than or equal to half of the total area S of the correction member).
Similarly, when the length h of the correction carrier in the correction member in the radial direction is set to h, the maximum value of the overhang amount is 0.5 h or less (the overhang amount is less than half of the length h of the correction carrier in the radial direction of the correction member) ) Is preferred (see FIG. 3).
The correction member is compressed by the pressure applied by the upper and lower surface plates. When the correction member overhangs from the ends of the fixed abrasive grains (grinding surfaces) 11 and 21 of the upper and lower surface plates (overhangs and jumps out), the overhanging portion of the correction member (the protruding portion and the portion protruding outward) ) Will release the pressure and increase the thickness. The overhanging portion (the protruding portion and the protruding portion) of the correction member whose thickness is increased by releasing the pressure enters toward the fixed abrasive grains (grinding surfaces) 11 and 21 of the upper and lower surface plates. When going, the fixed abrasive grains (grinding surface) of this part are shaved more than necessary, which hinders improvement in the accuracy of flatness correction of the fixed abrasive grains (grinding surface) of the surface plate.
From the viewpoint of reducing the influence of pressure release applied to the correction member by the upper and lower surface plates, the maximum value of the overhang amount is preferably 0.1 to 0.4 S, and preferably 0.2 to 0.00. 3S is more preferable.

修正キャリア51の半径をRとしたとき、修正キャリアの外周部52における修正キャリアの半径方向の幅wは、0.1〜0.3R程度が好ましく、0.2R前後がさらに好ましい(図3参照)。
修正キャリアの外周部52における修正キャリアの半径方向の幅をwとしたとき、修正部材53における修正キャリアの半径方向の幅hは、0.1〜0.7w程度が好ましく、0.4w前後(例えば0.35〜0.45w)がさらに好ましい(図3参照)。
When the radius of the correction carrier 51 is R, the radial width w of the correction carrier in the outer peripheral portion 52 of the correction carrier is preferably about 0.1 to 0.3R, and more preferably around 0.2R (see FIG. 3). ).
When the radial width of the correction carrier in the outer peripheral portion 52 of the correction carrier is w, the radial width h of the correction carrier in the correction member 53 is preferably about 0.1 to 0.7 w, and is about 0.4 w ( For example, 0.35 to 0.45 w) is more preferable (see FIG. 3).

図4に示すように、上下の定盤10、20の固定砥粒を配備した研削面11、21の平滑性の修正時には、修正キャリア51を、被研削・研磨基板(ガラス基板)100の研削時と同様に上下の定盤10、20で挟み、互いに押圧させて摺動させる。これによって、固定砥粒を配備した研削面11、21が削られ、それらの高さが一様になる。すなわち、定盤の準備工程で初期の平坦性付与が必要な研削面や、研削工程において低下した研削面の平坦性が修正され、基板の研削時に、研削対象である被研削・研磨基板(ガラス基板)100に対して、平坦性を付与できる状態にまで、研削面の平坦性を付与、回復できる。
このとき、遊離砥粒(例えば、粒径4〜15μm)を含むスラリーを用いて修正することが好ましい。遊離砥粒としては、アルミナ、ジルコニア、シリカの混合砥粒が好ましい。
上記修正工程において、上下の定盤10、20の固定砥粒を配備した研削面11、21の取代は、5〜50μmとするとよい。
As shown in FIG. 4, when correcting the smoothness of the grinding surfaces 11, 21 provided with the fixed abrasive grains of the upper and lower surface plates 10, 20, the correction carrier 51 is ground on the grinding / polishing substrate (glass substrate) 100. In the same manner as in the case, it is sandwiched between the upper and lower surface plates 10 and 20 and is slid while being pressed against each other. As a result, the grinding surfaces 11 and 21 provided with fixed abrasive grains are shaved, and their heights become uniform. In other words, the ground surface that needs to be initially flattened in the preparation process of the surface plate and the flatness of the ground surface that has decreased in the grinding process have been corrected. The flatness of the ground surface can be imparted to and recovered from the substrate 100).
At this time, it is preferable to correct using a slurry containing free abrasive grains (for example, a particle size of 4 to 15 μm). As the free abrasive grains, mixed abrasive grains of alumina, zirconia, and silica are preferable.
In the correction step, the machining allowance of the grinding surfaces 11 and 21 provided with the fixed abrasive grains of the upper and lower surface plates 10 and 20 is preferably 5 to 50 μm.

修正キャリア51の本体部を構成する外周部52又は直径部54と修正部材53又は55とを加えた厚さは、それぞれ図2に示す被研削・研磨基板(ガラス基板)100よりも厚くすることが好ましい。
このような厚さを持たせる理由は、修正キャリア51の修正能力を高めるためである。上下の定盤10、20のような両面研磨機の場合、それらの間に挟まれる被加工対象の厚さが厚いほど、曲げ強度が強くなるため修正キャリアが変形しにくく、精度の高い修正加工がしやすい。修正キャリア51によって上下の定盤10、20を修正するときも同様であり、修正キャリア51の本体部を構成する外周部52又は直径部54と修正部材53又は55とを加えた厚さが厚いほど修正能力は向上する。
このような厚さで構成された修正キャリア51の修正部材53、55の修正面と、上下の定盤10、20の研削面11、21とを、遊離砥粒を供給しながら、互いに押圧させて摺動させることにより、上下の定盤10、20の研削面11、21の平坦性を高めることができる。
The thickness obtained by adding the outer peripheral portion 52 or the diameter portion 54 constituting the main body portion of the correction carrier 51 and the correction member 53 or 55 should be thicker than the ground / polishing substrate (glass substrate) 100 shown in FIG. Is preferred.
The reason for providing such a thickness is to increase the correction capability of the correction carrier 51. In the case of a double-side polishing machine such as the upper and lower surface plates 10 and 20, the higher the thickness of the object to be processed that is sandwiched between them, the higher the bending strength, so that the correction carrier is less likely to be deformed, and high-precision correction processing. Easy to do. The same applies when the upper and lower surface plates 10 and 20 are corrected by the correction carrier 51, and the thickness obtained by adding the outer peripheral portion 52 or the diameter portion 54 constituting the main body of the correction carrier 51 and the correction member 53 or 55 is large. The correction ability improves.
The correction surfaces of the correction members 53 and 55 of the correction carrier 51 having such a thickness and the grinding surfaces 11 and 21 of the upper and lower surface plates 10 and 20 are pressed against each other while supplying loose abrasive grains. Thus, the flatness of the grinding surfaces 11 and 21 of the upper and lower surface plates 10 and 20 can be improved.

本発明のマスクブランク用基板の製造方法において、研削の条件は、例えば、研磨液(アルミナ、ジルコニア、シリカの混合砥粒(平均粒径4〜15μm)+水)、加工荷重50〜200g/cm、研磨時間2〜60分、修正キャリア自転回転数0.5〜10rpm、修正キャリア公転回転数0.5〜10rpm、研磨定盤回転数2〜20rpm、等が好ましい。 In the mask blank substrate manufacturing method of the present invention, the grinding conditions are, for example, polishing liquid (alumina, zirconia, silica mixed abrasive grains (average particle size 4 to 15 μm) + water), processing load 50 to 200 g / cm. 2 , Polishing time 2 to 60 minutes, Corrected carrier rotation speed 0.5 to 10 rpm, Corrected carrier revolution speed 0.5 to 10 rpm, Polishing surface plate speed 2 to 20 rpm, etc. are preferable.

[実施例]
(実施例1、比較例1)
両面研削(ラッピング)装置の上下定盤に、固定砥粒(研削面)11、21として、それぞれ4枚のダイヤモンドシート(#3000)を貼り付けた(図7参照)。
ダイヤモンドシートを貼り付けた直後(修正前)の上下の定盤の研削面のプロファイルを測定した。その結果を図9および図10に示す。
図3、図4に示す修正キャリア(修正部材53はダイヤモンドシート(#3000)とした)で初期修正を実施した(実施例1)。修正後に上下定盤の研削面のプロファイルを測定した結果を図11および図12に示す。
図5、図6に示す修正キャリア(修正部材53はダイヤモンドシート(#3000)とした)で初期修正を実施した(比較例1)。修正後に上下定盤の研削面のプロファイルを測定した結果を図13および図14に示す。なお、図5、図6は、図3、図4において修正キャリア51における直径部54および修正部材55を有しないこと以外は図3、図4と同様であるので、図3、図4と同様の番号を付して説明を省略する。
図8に示す修正キャリア(修正部材53はダイヤモンドシート(#3000)とした)で初期修正を実施した(参考例1)。
なお、初期修正は、以下の条件で行った。
研削液:アルミナ、ジルコニア、シリカの混合砥粒(平均粒径10μm)+水
加工荷重:100g/cm
研削時間:10分
修正キャリア自転回転数:2rpm
修正キャリア公転回転数:5rpm
定盤回転数:12rpm
定盤の半径:約1800mm
両面研削は、4ウエイ方式で、上下定盤の回転方向は逆、サンギヤとインターナルギヤの回転方向は逆とした。
また、図7に示すように、定盤の中心にはサンギヤ30があるので、定盤の直径方向では測定機でプロファイルを測定できない。このため、図7に示す測定位置で、測定機でプロファイル(全面)を測定した。この測定データに基づいて、図7に示す左側の固定砥粒部分の測定データからプロファイル(左)が得られ、図7に示す右側の固定砥粒部分の測定データからプロファイル(右)が得られる。このプロファイル(左)またはプロファイル(右)から算出される固定砥粒の平坦度は、固定砥粒の半径方向の平坦度と同等あるいはそれよりも大きく算出される。このため、プロファイル(左)またはプロファイル(右)から算出される固定砥粒の平坦度は、固定砥粒の半径方向の平坦度に代替することができる。このようにして、図9、10、11、12、13、14に示す測定データを得た。
実施例1、比較例1および参考例1においては、定盤の半径方向において、定盤の外周端部10a、20aよりも100mm内周側に固定砥粒(研削面)11、21の外周端部11a、21aが位置し、かつ、定盤の内周端部10b、20bよりも100mm外周側に固定砥粒(研削面)11、21の内周端部11b、21bが位置するような配置にしてある。
[Example]
(Example 1, Comparative Example 1)
Four diamond sheets (# 3000) were attached as fixed abrasive grains (grinding surfaces) 11 and 21 to the upper and lower surface plates of a double-sided grinding (lapping) device (see FIG. 7).
The profile of the grinding surface of the upper and lower surface plates immediately after the diamond sheet was pasted (before correction) was measured. The results are shown in FIG. 9 and FIG.
Initial correction was performed with the correction carrier shown in FIGS. 3 and 4 (the correction member 53 was a diamond sheet (# 3000)) (Example 1). The result of measuring the profile of the ground surface of the upper and lower surface plate after correction is shown in FIGS.
Initial correction was performed with the correction carrier shown in FIGS. 5 and 6 (the correction member 53 was a diamond sheet (# 3000)) (Comparative Example 1). The results of measuring the profile of the ground surface of the upper and lower surface plate after correction are shown in FIGS. 5 and 6 are the same as FIGS. 3 and 4 except that the diameter portion 54 and the correction member 55 in the correction carrier 51 are not included in FIGS. No. will be omitted.
Initial correction was performed with the correction carrier shown in FIG. 8 (the correction member 53 was a diamond sheet (# 3000)) (Reference Example 1).
The initial correction was performed under the following conditions.
Grinding fluid: Alumina, zirconia, silica mixed abrasive (average particle size 10 μm) + water processing load: 100 g / cm 2
Grinding time: 10 minutes Corrected carrier rotation speed: 2 rpm
Corrected carrier revolution speed: 5 rpm
Plate rotation speed: 12rpm
Surface plate radius: about 1800mm
Double-side grinding is a four-way method, and the rotation directions of the upper and lower surface plates are reversed, and the rotation directions of the sun gear and the internal gear are reversed.
Further, as shown in FIG. 7, since the sun gear 30 is at the center of the surface plate, the profile cannot be measured with a measuring machine in the diameter direction of the surface plate. For this reason, the profile (entire surface) was measured with a measuring machine at the measurement position shown in FIG. Based on the measurement data, a profile (left) is obtained from the measurement data of the left fixed abrasive portion shown in FIG. 7, and a profile (right) is obtained from the measurement data of the right fixed abrasive portion shown in FIG. . The flatness of the fixed abrasive calculated from this profile (left) or profile (right) is calculated to be equal to or greater than the flatness of the fixed abrasive in the radial direction. For this reason, the flatness of the fixed abrasive calculated from the profile (left) or the profile (right) can be replaced with the flatness of the fixed abrasive in the radial direction. In this way, the measurement data shown in FIGS. 9, 10, 11, 12, 13, and 14 were obtained.
In Example 1, Comparative Example 1 and Reference Example 1, in the radial direction of the surface plate, the outer peripheral ends of the fixed abrasive grains (grinding surfaces) 11 and 21 on the inner peripheral side 100 mm from the outer peripheral end portions 10a and 20a of the surface plate Arrangement is such that the portions 11a and 21a are located, and the inner peripheral ends 11b and 21b of the fixed abrasive grains (grinding surfaces) 11 and 21 are located 100 mm outer peripheral side than the inner peripheral ends 10b and 20b of the surface plate. It is.

図9および図10に示すように、定盤上にダイヤモンドシートを数枚に分けて貼った場合、ダイヤモンドシートの段差を修正する必要がある(研磨前の初期の修正)。
実施例1では、ダイヤモンド粒子を含む固定砥粒が配備された研削面の平坦度修正は、図9および図10に示す状態[上定盤の定盤面(研削面)は凹状(定盤面を水平方向から見て上に凸状)で平坦度は60μm程度、下定盤の定盤面(研削面)は凸状(定盤面を水平方向から見て上に凸状)で平坦度は55μm程度]から図11および図12に示す状態[上定盤の定盤面(研削面)は凹状(定盤面を水平方向から見て上に凸状)で平坦度は20μm程度、下定盤の定盤面(研削面)は凸状(定盤面を水平方向から見て上に凸状)で平坦度は15μm程度]に修正できた。また、平坦度修正の精度は、求められる数値(定盤の半径約800mmで上下の定盤面の平坦度がそれぞれ20μm程度)よりも向上できる(定盤の半径約800mmで下定盤面の平坦度を15μmに向上できた)。
比較例1では、ダイヤモンド粒子を含む固定砥粒が配備された研削面の平坦度修正は、図9および図10に示す状態から図13および図14に示す状態[上定盤の定盤面(研削面)は凹状(定盤面を水平方向から見て上に凸状)で平坦度は20μm程度、下定盤の定盤面(研削面)は凸状(定盤面を水平方向から見て上に凸状)で平坦度は20μm程度]に修正できた。また、平坦度修正の精度は、求められる数値(定盤の半径約800mmで上下の定盤面の平坦度がそれぞれ20μm程度)は達成できた。しかし、定盤(下定盤)の半径方向で見て、外周縁側と内周縁側から中央側に向かって凸形状(極小さい)に修正されてしまうことがわかる。
比較例1では、修正キャリアの外周にのみ修正部材を配置し、定盤上の固定砥粒(定盤面)の平坦度修正を進めていくと、図13および図14に示すように、上定盤と下定盤の各研削面間の距離が同じとなる(定盤面(研削面)のプロファイルが同じ形状の山になる)現象が生じる。上定盤と下定盤の各研削面間の距離が同じであると、定盤上の修正レートが面内で同じになってしまい、凸形状の傾向を修正できなくなる現象が生じる。
As shown in FIG. 9 and FIG. 10, when the diamond sheet is divided into several pieces on the surface plate, the step of the diamond sheet needs to be corrected (initial correction before polishing).
In Example 1, the flatness correction of the grinding surface provided with the fixed abrasive grains containing diamond particles is performed as shown in FIGS. 9 and 10 [the surface plate surface (grind surface) of the upper surface plate is concave (the surface plate surface is horizontal). From the direction, the surface is convex, and the flatness is about 60 μm. The surface of the lower surface plate (grind surface) is convex (the surface is convex upward when viewed from the horizontal direction), and the flatness is about 55 μm]. 11 and 12 [the surface plate surface (grinding surface) of the upper surface plate is concave (the surface is convex upward when viewed from the horizontal direction) and the flatness is about 20 μm, the surface plate surface of the lower surface plate (grind surface) ) Was convex (convex upward when the surface plate surface was seen from the horizontal direction) and the flatness was about 15 μm]. Further, the accuracy of flatness correction can be improved more than the required value (the flatness of the surface plate is about 800 mm and the flatness of the upper and lower surfaceplates is about 20 μm, respectively) (the flatness of the surface plate is about 800 mm and the flatness of the lower surface plate is improved. It was improved to 15 μm).
In Comparative Example 1, the flatness correction of the grinding surface on which the fixed abrasive grains containing diamond particles are arranged is changed from the state shown in FIG. 9 and FIG. 10 to the state shown in FIG. 13 and FIG. Surface) is concave (convex upward when the surface plate surface is seen from the horizontal direction) and flatness is about 20 μm, and the surface plate surface (grind surface) of the lower surface plate is convex (convex shape when the surface plate surface is viewed from the horizontal direction). ), The flatness could be corrected to about 20 μm. In addition, the accuracy of flatness correction can be obtained as required (the radius of the surface plate is about 800 mm and the flatness of the upper and lower surface plates is about 20 μm, respectively). However, as seen in the radial direction of the surface plate (lower surface plate), it is understood that the shape is corrected to a convex shape (very small) from the outer peripheral edge side and the inner peripheral edge side toward the central side.
In Comparative Example 1, when the correction member is arranged only on the outer periphery of the correction carrier and the flatness correction of the fixed abrasive grains (the surface plate surface) on the surface plate is advanced, as shown in FIG. 13 and FIG. A phenomenon occurs in which the distance between the ground surfaces of the surface plate and the lower surface plate is the same (the surface plate surface (grind surface) has the same shape of the crest). If the distance between the ground surfaces of the upper surface plate and the lower surface plate is the same, the correction rate on the surface plate becomes the same in the surface, and a phenomenon that the tendency of the convex shape cannot be corrected occurs.

参考例1では図8に示すように、定盤10の固定砥粒(研削面)11の外周端部11aに対し前記修正部材53が前記定盤10の外周側で最大にオーバーハングするときにおいて、前記修正部材53の内周側の端53bが、定盤10の固定砥粒(研削面)11の外周端部11aよりも外周側に位置している、即ち、定盤10の固定砥粒(研削面)11の外周端部11aに対し、前記修正部材53全体がはみ出している。同様に、定盤10の固定砥粒(研削面)11の内周端部11bに対し、前記修正部材53が前記定盤10の内周側で最大にオーバーハングするときにおいて、前記修正部材53の内周側の端53bが、定盤10の固定砥粒(研削面)11の内周端部11bよりも内周側に位置している、即ち、定盤10の固定砥粒(研削面)11の内周端部11bに対し、前記修正部材53全体がはみ出している。このため、比較例1では、ダイヤモンド粒子を含む固定砥粒が配備された研削面の平坦度修正は、求められる数値(例えば定盤の半径約800mmで定盤面の平坦度20μm程度)よりも劣る数値(例えば定盤の半径約800mmで定盤面の平坦度35μm程度)までにしか修正できない。
なお、参考例1においては、比較例1で示す定盤上の固定砥粒が凸形状(極小さい)に修正されてしまう問題は、定盤の固定砥粒(研削面)に対して前記修正部材のオーバーハング量を大きく取り過ぎた場合、顕在化しないことがわかる。
In Reference Example 1, as shown in FIG. 8, when the correction member 53 overhangs to the maximum on the outer peripheral side of the surface plate 10 with respect to the outer peripheral end portion 11 a of the fixed abrasive grains (grinding surface) 11 of the surface plate 10. The end 53 b on the inner peripheral side of the correction member 53 is located on the outer peripheral side of the outer peripheral end 11 a of the fixed abrasive (grinding surface) 11 of the surface plate 10, that is, the fixed abrasive of the surface plate 10. The entire correction member 53 protrudes from the outer peripheral end portion 11 a of the (grinding surface) 11. Similarly, when the correction member 53 overhangs at the maximum on the inner peripheral side of the surface plate 10 with respect to the inner peripheral end portion 11 b of the fixed abrasive (grinding surface) 11 of the surface plate 10, the correction member 53. The end 53b on the inner peripheral side of the surface plate 10 is located on the inner peripheral side of the inner peripheral end portion 11b of the fixed abrasive (grinding surface) 11 of the surface plate 10, that is, the fixed abrasive (grinding surface of the surface plate 10). ) The entire correction member 53 protrudes from the inner peripheral end portion 11 b of 11. For this reason, in Comparative Example 1, the flatness correction of the grinding surface provided with the fixed abrasive grains containing diamond particles is inferior to the required numerical value (for example, the surface plate has a radius of about 800 mm and the surface plate has a flatness of about 20 μm). It can only be corrected to a numerical value (for example, a surface plate radius of about 800 mm and a surface plate surface flatness of about 35 μm).
In Reference Example 1, the problem that the fixed abrasive on the surface plate shown in Comparative Example 1 is corrected to a convex shape (very small) is the above-mentioned correction to the fixed abrasive (grind surface) of the surface plate. It can be seen that when the overhang amount of the member is excessively large, it does not become obvious.

(マスクブランク用基板の研削)
合成石英ガラス基板(約6インチ×約6インチ)の端面を面取加工、および両面ラッピング装置によって少なくとも第1研削加工を施したガラス基板を、上述の実施例1および比較例1で定盤の研削面の平坦度修正を行った両面研削装置にセットし、以下の研削条件で研削工程を行った。尚、加工荷重、研削時間は適宜調整して行った。
研削液:研削用薬剤+水
研削工程後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
実施例1のダイヤモンドシートが貼りつけられた定盤を用いて研削されるガラス基板等は、表裏の両面で、絶対値で1.0μm以下の平坦度のものに仕上げることが可能となる。このため、本発明は、従来の鋳鉄定盤による研削工程の代替のみならず、後述する粗研磨工程(第1ポリシング)の省略や簡略化なども可能であり、非常に有用である(研磨工程の一部を包含することが可能)。このことから、上述した本発明において(本明細書において)「研削」を「研磨」に置き換えた構成は、本発明に含まれる。例えば、請求項、発明の詳細な説明、発明の実施の形態、実施例等において「研削」を「研磨」に置き換えた構成は、本発明に含まれる。
比較例1の定盤を用いて研削されるガラス基板等は、表裏の両面で、絶対値で1.3μm以下の平坦度のものを得ることは困難であった。
(Grinding of mask blank substrate)
A glass substrate obtained by chamfering an end surface of a synthetic quartz glass substrate (about 6 inches × about 6 inches) and performing at least a first grinding process by a double-sided lapping apparatus is used for the surface plate in Example 1 and Comparative Example 1 described above. It was set in a double-sided grinding machine that corrected the flatness of the grinding surface, and the grinding process was performed under the following grinding conditions. The processing load and grinding time were adjusted as appropriate.
Grinding liquid: grinding agent + water After the grinding process, the glass substrate was immersed in a cleaning tank (ultrasonic application) to remove the abrasive grains adhering to the glass substrate, and then washed.
The glass substrate or the like ground using the surface plate to which the diamond sheet of Example 1 is attached can be finished to have a flatness of 1.0 μm or less in absolute value on both the front and back surfaces. For this reason, the present invention is not only an alternative to the grinding process by the conventional cast iron surface plate, but also can omit or simplify the rough polishing process (first polishing) described later, which is very useful (polishing process). Part of Therefore, a configuration in which “grinding” is replaced with “polishing” in the present invention described above (in the present specification) is included in the present invention. For example, a configuration in which “grinding” is replaced with “polishing” in the claims, the detailed description of the invention, the embodiment of the invention, the examples, and the like is included in the present invention.
It was difficult to obtain a glass substrate or the like ground using the surface plate of Comparative Example 1 with a flatness of 1.3 μm or less in absolute value on both the front and back surfaces.

(実施例2)
数十バッチのガラス基板の主表面を研削する研削工程の後に、研削工程にて低下した定盤10、20の研削面の平坦度を修正するため、修正を実施例1と同様にして行った。
上記実施例1の初期修正の結果と同様の傾向が認められた。
(Example 2)
In order to correct the flatness of the ground surfaces of the surface plates 10 and 20 that were lowered in the grinding process after the grinding process of grinding the main surface of several tens of batches of glass substrates, the correction was performed in the same manner as in Example 1. .
The same tendency as the result of the initial correction in Example 1 was observed.

(実施例3)
(マスクブランク用基板の製造)
(1)精密研磨工程
実施例1および比較例1の各定盤を用いて研削したガラス基板を準備し、両面研磨装置にセットし、以下の研磨条件で精密研磨工程を行った。加工荷重、研磨時間は適宜調整して行った。よって、従来、精密研磨工程前に行われた粗研磨工程(平均粒径2〜3μmの酸化セリウム研磨液で行われる研磨工程)は省略したことになる。
研磨液:酸化セリウム(平均粒径1μm)+水
研磨パッド:軟質ポリシャ(スウェードタイプ)
精密研磨工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
(Example 3)
(Manufacture of mask blank substrate)
(1) Precision polishing process A glass substrate ground using each surface plate of Example 1 and Comparative Example 1 was prepared and set in a double-side polishing apparatus, and a precision polishing process was performed under the following polishing conditions. The processing load and polishing time were adjusted appropriately. Therefore, the rough polishing process (polishing process performed with a cerium oxide polishing liquid having an average particle diameter of 2 to 3 μm) performed before the precision polishing process has been omitted.
Polishing liquid: cerium oxide (average particle size 1 μm) + water polishing pad: soft polisher (suede type)
After completion of the precision polishing step, the glass substrate was immersed in a cleaning tank (ultrasonic application) in order to remove the abrasive grains adhering to the glass substrate and cleaned.

(2)超精密研磨工程
上述の両面研磨装置にセットし、以下の研磨条件で超精密研磨工程を行った。尚、加工荷重、研磨時間は適宜調整して行った。
研磨液:コロイダルシリカ(平均粒径100nm)+水
研磨パッド:超軟質ポリシャ(スウェードタイプ)
超精密研磨工程終了後、ガラス基板に付着した研磨砥粒を除去するため、ガラス基板を洗浄槽に浸漬(超音波印加)し、洗浄を行った。
(2) Ultra-precision polishing process The ultra-precise polishing process was carried out under the following polishing conditions after being set in the above-described double-side polishing apparatus. The processing load and polishing time were adjusted as appropriate.
Polishing liquid: colloidal silica (average particle size 100 nm) + water polishing pad: super soft polisher (suede type)
After the completion of the ultraprecision polishing process, the glass substrate was immersed in a cleaning tank (ultrasonic application) in order to remove the abrasive grains adhering to the glass substrate, and cleaning was performed.

(3)平坦度測定工程
超精密研磨工程が行われた後の実施例1、および比較例1の基板(各12枚)について、主表面の142mm角の領域における平坦度(TIR)を平坦度測定器(Corning Tropel社製 UltraFlat200M)で測定した。その結果、実施例1の基板については、主表面の形状は、いずれも平坦度が0μm以上かつ+0.2μm以内の範囲の凸形状となっていた。これに対し、比較例1の基板については、主表面の形状は、平坦度(TIR)が+0.2μmよりも大きい凸形状のものが大多数を占め(平均9枚)、歩留りが悪いという結果となった。
(3) Flatness measurement process About the board | substrate (each 12 sheets) of Example 1 after the ultraprecision grinding | polishing process was performed, and flatness (TIR) in the 142-mm square area | region of a main surface. It measured with the measuring device (UltraFlat200M by Corning Tropel). As a result, for the substrate of Example 1, the shape of the main surface was a convex shape with a flatness in the range of 0 μm or more and within +0.2 μm. On the other hand, as for the substrate of Comparative Example 1, as for the shape of the main surface, the convex shape having a flatness (TIR) larger than +0.2 μm occupies the majority (average 9 sheets), resulting in poor yield. It became.

本発明の基板の製造方法においては、例えば、第1研削工程(Lap1)、第2研削工程(Lap2)、粗研磨工程(第1ポリシング)、エッジ研磨工程、精密研磨工程(第2ポリシング)、超精密研磨工程1(第3ポリシング)、超精密研磨工程2(第4ポリシング)の工程において、例えば、第1研削工程(Lap1)および粗研磨工程(第1ポリシング)に替えて、本発明の修正キャリアを用いて定盤面(研削面)を初期修正した上下定盤を有する両面研削装置を使用して基板の加工を第2研削工程後に実施する工程を行うことが可能となる。この場合、最終的な基板の平坦度(TIR)等の品質は維持することが可能である。また、この場合、第1研削工程(Lap1)等における取り代を30%程度削減することが可能となる。   In the substrate manufacturing method of the present invention, for example, a first grinding step (Lap1), a second grinding step (Lap2), a rough polishing step (first polishing), an edge polishing step, a precision polishing step (second polishing), In the steps of the ultraprecision polishing step 1 (third polishing) and the ultraprecision polishing step 2 (fourth polishing), for example, instead of the first grinding step (Lap1) and the rough polishing step (first polishing), It becomes possible to perform a step of processing the substrate after the second grinding step by using a double-sided grinding apparatus having an upper and lower surface plate whose surface plate (grinding surface) is initially corrected using a correction carrier. In this case, quality such as final substrate flatness (TIR) can be maintained. In this case, the machining allowance in the first grinding step (Lap1) or the like can be reduced by about 30%.

(マスクブランクおよびフォトマスクを作製しての評価)
上記の実施例1で得た各ガラス基板の一方の主表面上に、モリブデン、ケイ素および窒素を含有する遮光層(MoSiN膜)と、モリブデン、ケイ素および窒素を含有する反射防止層(MoSiN膜)が2層積層した構造の遮光膜(合計膜厚60nm)をそれぞれスパッタリング法によって形成し、バイナリ型のマスクブランクを製造した。
次に、製造した各マスクブランクの遮光膜上にスピンコート法でレジスト膜を塗布形成した。続いて、レジスト膜に所望の微細パターンを露光・現像することで形成した。さらに、レジスト膜をマスクとして、遮光膜に対してドライエッチングを行うことで、遮光膜に転写パターンを形成し、バイナリ型の転写用マスクを作製した。
(Evaluation after producing mask blank and photomask)
On one main surface of each glass substrate obtained in Example 1 above, a light-shielding layer (MoSiN film) containing molybdenum, silicon and nitrogen, and an antireflection layer (MoSiN film) containing molybdenum, silicon and nitrogen A light shielding film (total film thickness: 60 nm) having a structure in which two layers are stacked was formed by sputtering, respectively, to manufacture a binary mask blank.
Next, a resist film was applied and formed on the light shielding film of each manufactured mask blank by spin coating. Subsequently, a desired fine pattern was formed on the resist film by exposure and development. Furthermore, by using the resist film as a mask, the light shielding film was dry-etched to form a transfer pattern on the light shielding film, thereby producing a binary transfer mask.

実施例1の基板から作製された各転写用マスクを用い、露光装置のマスクステージにセットし、転写対象物(ウェハ上のレジスト膜等)にArFエキシマレーザー光を照射する露光転写を行った。その結果、転写対象物に所望のパターンが正常に転写されていることが確認された。   Using each transfer mask produced from the substrate of Example 1, it was set on the mask stage of the exposure apparatus, and exposure transfer was performed by irradiating ArF excimer laser light onto the transfer object (resist film or the like on the wafer). As a result, it was confirmed that the desired pattern was normally transferred to the transfer object.

(反射型マスクブランクおよび反射型マスクを作製しての評価)
上記の実施例1で得た各ガラス基板の一方の主表面上に、モリブデン(Mo層)とケイ素(Si層)を交互に積層した多層反射膜を形成した。具体的には、ガラス基板側からSi層を4.2nm、Mo層を2.8nmそれぞれ成膜し、これを40周期繰り返し、最後にSi層を4.0nm成膜して多層反射膜を形成した。次に、多層反射膜上に、ルテニウムを含有する材料からなる保護膜を2.5nm形成した。最後に、保護膜上に、タンタルを主成分とする吸収体膜を形成し、反射型マスクブランクを製造した。
(Evaluation after manufacturing reflective mask blank and reflective mask)
A multilayer reflective film in which molybdenum (Mo layer) and silicon (Si layer) were alternately laminated was formed on one main surface of each glass substrate obtained in Example 1 above. Specifically, a Si layer of 4.2 nm and a Mo layer of 2.8 nm are formed from the glass substrate side, respectively, and this is repeated for 40 cycles, and finally a Si layer of 4.0 nm is formed to form a multilayer reflective film. did. Next, a protective film made of a material containing ruthenium was formed to 2.5 nm on the multilayer reflective film. Finally, an absorber film mainly composed of tantalum was formed on the protective film to manufacture a reflective mask blank.

次に、製造した各反射マスクブランクの遮光膜上にスピンコート法でレジスト膜を塗布形成した。続いて、レジスト膜に所望の微細パターンを露光・現像することで形成した。さらに、レジスト膜をマスクとして、吸収体膜に対してドライエッチングを行うことで、吸収体膜に転写パターンを形成し、反射型マスクを作製した。   Next, a resist film was applied and formed on the light shielding film of each manufactured reflective mask blank by spin coating. Subsequently, a desired fine pattern was formed on the resist film by exposure and development. Furthermore, by performing dry etching on the absorber film using the resist film as a mask, a transfer pattern was formed on the absorber film, and a reflective mask was manufactured.

実施例1の基板から作製された各反射型マスクを用い、露光装置のマスクステージにセットし、転写対象物(ウェハ上のレジスト膜等)にEUV(Extreme Ultra Violet)光を照射する露光転写を行った。その結果、転写対象物に所望のパターンが正常に転写されていることが確認された。   Using each reflection type mask produced from the substrate of Example 1, it is set on the mask stage of the exposure apparatus, and exposure transfer is performed by irradiating the transfer object (resist film etc. on the wafer) with EUV (Extreme Ultra Violet) light. went. As a result, it was confirmed that the desired pattern was normally transferred to the transfer object.

10 下定盤
20 上定盤
30 サンギヤ(太陽歯車)
40 インターナルギヤ(内歯歯車)
50 キャリア
51 修正キャリア
52 外周部
53 修正部材
54 直径部
55 修正部材
100 被研削・研磨基板(ガラス基板)
10 Lower surface plate 20 Upper surface plate 30 Sun gear (sun gear)
40 Internal gear (internal gear)
50 Carrier 51 Correction carrier 52 Outer peripheral portion 53 Correction member 54 Diameter portion 55 Correction member 100 Grinding / polishing substrate (glass substrate)

Claims (12)

固定砥粒が研削面に配備された上定盤と下定盤を備える研削装置を用いてガラス基板の2つの主表面を両面研削する研削工程を有する基板の製造方法であって、
修正部材を備える修正キャリアを前記定盤上で自転させながら公転させ、修正キャリアの修正部材と定盤の研削面とを互いに押圧させつつ摺動させて前記定盤の面修正を行う修正工程を有し、
前記修正キャリアは、前記上定盤および下定盤にそれぞれ対向する2つの対向面を有する本体部と、前記2つの対向面にそれぞれ配置された修正部材とからなり、
前記本体部は、リング状の外周部と、前記外周部の直径方向に前記外周部と連接して形成された直径部とからなり、
前記修正部材は、前記外周部の対向面の円周に沿って配置され、かつ前記直径部の対向面の中心付近を除いた部分にも配置されていることを特徴とする基板の製造方法。
A method for manufacturing a substrate, comprising a grinding step in which two main surfaces of a glass substrate are ground on both sides using a grinding apparatus having an upper surface plate and a lower surface plate in which fixed abrasive grains are arranged on a grinding surface,
A correction step of revolving a correction carrier having a correction member while rotating on the surface plate, and correcting the surface of the surface plate by sliding the correction member of the correction carrier and the ground surface of the surface plate while pressing each other. Have
The modified carrier is composed of a main body portion having two opposed surfaces respectively facing the upper surface plate and lower surface plate, respectively arranged modifying member to said two opposite faces,
The main body portion is composed of a ring-shaped outer peripheral portion and a diameter portion formed to be connected to the outer peripheral portion in the diameter direction of the outer peripheral portion,
The method for manufacturing a substrate, wherein the correction member is disposed along a circumference of the opposing surface of the outer peripheral portion , and is also disposed in a portion excluding the vicinity of the center of the opposing surface of the diameter portion .
前記外周部の厚さと前記外周部の2つの対向面にそれぞれ配置された前記修正部材の各厚さを加えた厚さは、前記ガラス基板の厚さよりも厚く、前記直径部の厚さと前記直径部の2つの対向面にそれぞれ配置された前記修正部材の各厚さを加えた厚さは、前記ガラス基板の厚さよりも厚いことを特徴とする請求項1に記載の基板の製造方法。The thickness of the outer peripheral portion and the thickness of each of the correction members disposed on the two opposing surfaces of the outer peripheral portion are thicker than the thickness of the glass substrate, and the thickness of the diameter portion and the diameter The method of manufacturing a substrate according to claim 1, wherein a thickness of each of the correction members disposed on two opposing surfaces of the portion is greater than a thickness of the glass substrate. 前記定盤は、ダイヤモンド粒子を含む固定砥粒が研削面に配備されていることを特徴とする請求項1または2に記載の基板の製造方法。   The substrate manufacturing method according to claim 1, wherein the surface plate is provided with fixed abrasive grains including diamond particles on a grinding surface. 前記修正部材は、ダイヤモンド粒子を含む固定砥粒を配備して構成されていることを特徴とする請求項1から3のいずれかに記載の基板の製造方法。   The method for manufacturing a substrate according to claim 1, wherein the correction member is configured by disposing fixed abrasive grains including diamond particles. 前記修正工程は、遊離砥粒を含む研削液を供給しながら、修正部材と、前記定盤の研削面とを、互いに押圧させつつ摺動させて行うことを特徴とする請求項1から4のいずれかに記載の基板の製造方法。 5. The correction step is performed by sliding the correction member and the ground surface of the surface plate while pressing each other while supplying a grinding liquid containing loose abrasive grains. 6. The manufacturing method of the board | substrate in any one. 前記修正工程は、固定砥粒を定盤の研削面に配備する固定砥粒配備工程に続いて行うことを特徴とする請求項1から5のいずれかに記載の基板の製造方法。   6. The method for manufacturing a substrate according to claim 1, wherein the correcting step is performed subsequent to a fixed abrasive grain arranging step of arranging fixed abrasive grains on a ground surface of a surface plate. 前記修正キャリアは、前記外周部の外周に外ギヤが設けられており、前記外ギヤが、前記研削装置のサンギヤおよびインターナルギヤの間で両ギヤとそれぞれ噛み合うことで、前記定盤上で前記修正キャリアを自転しながら公転することを特徴とする請求項1から6のいずれかに記載の基板の製造方法。 The correction carrier is provided with an outer gear on the outer periphery of the outer peripheral portion, and the outer gear meshes with both gears between the sun gear and the internal gear of the grinding device, thereby The substrate manufacturing method according to claim 1, wherein the correction carrier revolves while rotating. 請求項1から7のいずれかに記載の基板の製造方法で製造された基板の主表面上に、転写パターン形成用の薄膜を形成することを特徴とするマスクブランクの製造方法。   A method for manufacturing a mask blank, comprising forming a thin film for forming a transfer pattern on a main surface of a substrate manufactured by the method for manufacturing a substrate according to claim 1. 請求項8に記載のマスクブランクの製造方法で製造されたマスクブランクにおける前記薄膜をパターニングして、転写パターンを形成することを特徴とする転写用マスクの製造方法。   A method for producing a transfer mask, wherein the thin film in the mask blank produced by the method for producing a mask blank according to claim 8 is patterned to form a transfer pattern. 固定砥粒が研削面に配備された上定盤と下定盤を備える研削装置に対し、前記定盤の面修正を行うときに用いられる修正キャリアであって、
前記上定盤および下定盤にそれぞれ対向する2つの対向面を有する本体部と、前記2つの対向面にそれぞれ配置された修正部材とからなり、
前記本体部は、外周に前記研削装置のサンギヤおよびインターナルギヤの間で両ギヤとそれぞれ噛み合う外ギヤが設けられたリング状の外周部と、前記外周部の直径方向に前記外周部と連接して形成された直径部とからなり、
前記修正部材は、前記外周部の対向面の円周に沿って配置され、かつ前記直径部の対向面の中心付近を除いた部分にも配置されていることを特徴とする修正キャリア。
For a grinding apparatus having an upper surface plate and a lower surface plate in which fixed abrasive grains are arranged on a grinding surface, a correction carrier used when correcting the surface of the surface plate,
Consists of a body having two opposing surfaces facing each on said surface plate and lower surface plate, respectively arranged modifying member to said two opposite faces,
The main body portion is connected to the outer peripheral portion in a diameter direction of the outer peripheral portion and a ring-shaped outer peripheral portion provided with outer gears that mesh with both gears between the sun gear and the internal gear of the grinding device on the outer periphery. With a diameter part formed by
The correction carrier is disposed along the circumference of the opposing surface of the outer peripheral portion , and is also disposed in a portion excluding the vicinity of the center of the opposing surface of the diameter portion .
前記外周部の厚さと前記外周部の2つの対向面にそれぞれ配置された前記修正部材の各厚さを加えた厚さは、前記ガラス基板の厚さよりも厚く、前記直径部の厚さと前記直径部の2つの対向面にそれぞれ配置された前記修正部材の各厚さを加えた厚さは、前記研削装置で研削するガラス基板の厚さよりも厚いことを特徴とする請求項10に記載の修正キャリア。The thickness of the outer peripheral portion and the thickness of each of the correction members disposed on the two opposing surfaces of the outer peripheral portion are thicker than the thickness of the glass substrate, and the thickness of the diameter portion and the diameter 11. The correction according to claim 10, wherein a thickness obtained by adding each thickness of the correction member disposed on each of two opposing surfaces of the section is thicker than a thickness of a glass substrate to be ground by the grinding apparatus. Career. 前記修正部材は、ダイヤモンド粒子を含む固定砥粒を配備して構成されていることを特徴とする請求項10または11に記載の修正キャリア。   The correction carrier according to claim 10 or 11, wherein the correction member is configured by disposing fixed abrasive grains including diamond particles.
JP2011212687A 2011-09-28 2011-09-28 Substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and correction carrier Active JP5814719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212687A JP5814719B2 (en) 2011-09-28 2011-09-28 Substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and correction carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212687A JP5814719B2 (en) 2011-09-28 2011-09-28 Substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and correction carrier

Publications (2)

Publication Number Publication Date
JP2013071212A JP2013071212A (en) 2013-04-22
JP5814719B2 true JP5814719B2 (en) 2015-11-17

Family

ID=48476131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212687A Active JP5814719B2 (en) 2011-09-28 2011-09-28 Substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and correction carrier

Country Status (1)

Country Link
JP (1) JP5814719B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10202006113YA (en) * 2013-09-28 2020-07-29 Hoya Corp Grinding tool, method for manufacturing glass substrate, method for manufacturing magnetic-disk glass substrate, and method for manufacturing magnetic disk
JP6193387B2 (en) * 2013-09-28 2017-09-06 Hoya株式会社 GLASS SUBSTRATE MANUFACTURING METHOD, MAGNETIC DISK GLASS SUBSTRATE MANUFACTURING METHOD, MAGNETIC DISK MANUFACTURING METHOD, AND GRITING TOOL
CN105580077B (en) * 2013-09-30 2019-12-27 Hoya株式会社 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP6020973B2 (en) * 2015-06-24 2016-11-02 株式会社Sumco Dress plate
CN112192445A (en) * 2020-10-10 2021-01-08 西安奕斯伟硅片技术有限公司 Tool, device and method for trimming paired grinding pads of double-sided grinding silicon wafer

Also Published As

Publication number Publication date
JP2013071212A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5814719B2 (en) Substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and correction carrier
US9400421B2 (en) Mask blank substrate, mask blank, reflective mask blank, transfer mask, reflective mask, and methods of manufacturing the same
JP2008142802A (en) Manufacturing method for substrate and substrate
JP2008254166A (en) Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and glass substrate for magnetic disk
JP5399109B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method
JP6206831B2 (en) Manufacturing method of mask blank substrate for EUV lithography, manufacturing method of substrate with multilayer reflective film for EUV lithography, manufacturing method of mask blank for EUV lithography, and manufacturing method of transfer mask for EUV lithography
JP2009214219A (en) Manufacturing method for glass substrate for magnetic disk
JP2009289370A (en) Glass substrate for magnetic disk
JP5598371B2 (en) Glass substrate polishing method
JP5170877B2 (en) Manufacturing method of glass substrate
JP5785837B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, reflective mask blank manufacturing method, and reflective mask manufacturing method
JP4614851B2 (en) Surface polishing equipment
JP5688820B2 (en) Polishing equipment
JP6628646B2 (en) Method of manufacturing substrate, method of manufacturing mask blank, and method of manufacturing transfer mask
JP2004058201A (en) Work polishing method and manufacturing method of substrate for electronic device
KR101334012B1 (en) Manufacturing method of substrate for mask blank, and manufacturing method of mask blank and mask
JP2009154232A (en) Method of manufacturing glass substrate for magnetic disk
JP5674201B2 (en) Substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and correction carrier
JP6823376B2 (en) Substrate manufacturing method, mask blank manufacturing method, and transfer mask manufacturing method
JP5399115B2 (en) Polishing apparatus, glass substrate polishing method and glass substrate manufacturing method
JP6063044B2 (en) Carrier, magnetic disk substrate manufacturing method, and magnetic disk manufacturing method
JP5607227B2 (en) Polishing equipment
JP2013043238A (en) Method for polishing glass substrate
JP2011140075A (en) Method of grinding glass substrate using double-sided grinding device and method of manufacturing glass substrate using the method of grinding
JP5379461B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, and mask manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150918

R150 Certificate of patent or registration of utility model

Ref document number: 5814719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250