WO2015046363A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2015046363A1
WO2015046363A1 PCT/JP2014/075493 JP2014075493W WO2015046363A1 WO 2015046363 A1 WO2015046363 A1 WO 2015046363A1 JP 2014075493 W JP2014075493 W JP 2014075493W WO 2015046363 A1 WO2015046363 A1 WO 2015046363A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
housing
powder
side gap
peripheral surface
Prior art date
Application number
PCT/JP2014/075493
Other languages
French (fr)
Japanese (ja)
Inventor
直人 小澤
後藤 常利
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201480053080.5A priority Critical patent/CN105814439B/en
Publication of WO2015046363A1 publication Critical patent/WO2015046363A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4078Means for sealing the sensor element in a housing

Definitions

  • the present invention relates to a gas sensor that detects the concentration of a specific gas component in a gas to be measured, and particularly contributes to an improvement in airtightness between a gas sensor element and a housing.
  • a gas sensor for detecting the concentration of a specific gas component such as oxygen contained in combustion exhaust gas is disposed in a combustion exhaust flow path of an internal combustion engine such as an automobile engine. Then, air-fuel ratio control, temperature control of the exhaust treatment catalyst, and the like are performed based on the detected concentration of the specific gas component.
  • an oxygen concentration detection element in which a measurement electrode layer in contact with a measurement gas and a reference electrode layer in contact with the atmosphere introduced as a reference gas are provided on the surface of an oxygen ion conductive solid electrolyte such as zirconia Oxygen sensors that measure the oxygen concentration in the measurement gas by detecting the potential difference generated between the two electrodes due to the difference between the oxygen concentration in the measurement gas and the oxygen concentration in the reference gas are widely used. Yes.
  • an air-fuel ratio sensor that detects the air-fuel ratio of the air-fuel mixture introduced into the internal combustion engine from the concentration of a specific gas component in the combustion exhaust, or the ammonia concentration in the gas to be measured using a hydrogen ion conductive solid electrolyte body Ammonia sensors are also widely used. Further, in such a gas sensor, it is necessary to ensure airtightness between the gas sensor element and the housing holding the gas sensor element in order to prevent a decrease in detection accuracy due to leakage of the gas to be measured.
  • Patent Document 1 discloses a detection structure including a detection element for detecting a component to be detected in a gas to be measured, which has a rod-like or cylindrical shape in which a detection portion is formed at a tip portion, and the detection structure.
  • a metal shell mainly disposed on the outside of the body, and a talc main body, and a seal filler layer that fills and seals the gap between the inner surface of the metal shell and the outer surface of the detection structure
  • a gas sensor is disclosed in which the seal filler layer contains water glass in the range of 2 to 7% by weight.
  • Patent Document 1 when water glass is added to the seal filling layer to improve the airtightness, water glass is added to the powder filler or the molded body of the filling powder is heated. The man-hour for adjusting the moisture increases, which may increase the manufacturing cost. In addition, since the sealing property of water glass changes depending on the moisture content, in the gas sensor used in a high temperature environment, the moisture content of the filling portion varies depending on the use situation, and it is impossible to expect stable airtightness. There is also a fear.
  • the present invention is less likely to occur from the powder filling portion even if the seal packing for preventing the filling powder leakage is abolished, and the airtightness of the powder filling portion is reduced while reducing the manufacturing cost.
  • An object of the present invention is to provide a highly reliable gas sensor that is unlikely to deteriorate.
  • the present invention is a gas sensor for detecting a specific component in a gas to be measured, the gas sensor element, a cylindrical housing for housing and fixing the gas sensor element, an outer peripheral surface of the gas sensor element, and an inner peripheral surface of the housing
  • the gas sensor formed by providing a sealing means including a powder filling part mainly composed of talc and a cylindrical insulator that presses the powder filling part
  • the powder filling part is configured Sieving particle size of filled powder particles, element side gap GP1 between the inner peripheral surface of the cylindrical insulator and the outer peripheral surface of the gas sensor element, the outer peripheral surface of the cylindrical insulator and the inner peripheral surface of the housing
  • the element side gap and the housing side gap are not more than twice the sieving particle size of the filling powder.
  • the principal part sectional drawing which shows the outline
  • the flowchart which shows the order of a process later about the sealing method of the gas sensor which concerns on this invention.
  • the schematic diagram which shows a change when a pressure acts on large particle size filling powder.
  • the principal part enlarged view which shows the state which has arrange
  • the principal part enlarged view which shows the state which compressed the powder compact and formed the powder filling part following FIG. 4A.
  • FIG. 3 is an enlarged view of a main part showing a problem when a packed powder of 2 to 30 ⁇ m is used as Comparative Example 1.
  • the main part enlarged view which shows the case where a seal
  • FIG. 5A The characteristic view which shows the effect of this invention.
  • Sectional drawing which shows the whole gas sensor outline
  • the present invention is a gas sensor that detects a specific component in a gas to be measured, and includes a gas sensor element 1, a cylindrical housing 2 that houses and fixes the gas sensor element 1, an outer peripheral surface 10 of the gas sensor element 1, and a housing 2.
  • the present invention relates to a gas sensor in which a gap between the inner peripheral surface 20 is sealed by a sealing means 3 including a powder filling portion 30 mainly composed of talc and a cylindrical insulator 31 that presses the powder filling portion 30. is there.
  • the gas sensor of the present invention is not particularly limited in application, and can be applied to any of early activation gas sensor GS1, simple gas sensor GS2, and stacked gas sensor GS3, which will be described later.
  • the structure and structure of the powder filling part 30 which is the principal part of this invention are demonstrated.
  • the configuration shown in FIG. 1 is common to all the embodiments described later.
  • the gas sensor element 1 a so-called cup-type gas sensor in which a pair of electrodes are formed on the inner side and the outer side of a solid electrolyte body formed in a bottomed cylindrical shape. Will be described as an example.
  • the gas sensor element 1 will be described below with the upper side in FIG. 1 defined as the proximal side and the lower side as the distal side.
  • a part of the outer periphery of the gas sensor element 1 is formed with an enlarged diameter portion 11 protruding so as to increase in diameter toward the outside.
  • a cylindrical powder filling portion 30 is formed on the proximal end side of the enlarged diameter portion 11 so as to cover the outer peripheral surface 10 of the gas sensor element 1.
  • the distal end side of the enlarged diameter portion 11 is in contact with a locking portion 21 whose diameter is reduced so that a part of the inner peripheral surface of the housing 2 is reduced in diameter via a metal spacer ring 32.
  • the powder filling unit 30 is pressed by a cylindrical insulator 31 formed in a cylindrical shape.
  • a known ceramic material such as alumina is used for the cylindrical insulator 31.
  • talc powder having a sieving particle size D SV of 210 ⁇ m or more and 710 ⁇ m or less is used as the filling powder particles 300.
  • An element-side gap GP ⁇ b> 1 is formed between the inner peripheral surface 310 of the cylindrical insulator 31 and the outer peripheral surface 10 of the gas sensor element 1. Further, a housing side gap GP ⁇ b> 2 is formed between the outer peripheral surface 311 of the cylindrical insulator 31 and the inner peripheral surface 20 of the housing 2.
  • the element side gap GP1 and the housing side gap GP2 are: In either case, the sieving particle size D SV of the packed powder particle 300 is less than twice.
  • the element side gap GP1 and the housing side gap GP2 are set to 0.1 mm or more.
  • both the element side gap GP1 and the housing side gap GP2 are formed to be 0.1 mm or more, and the assembly of the gas sensor element 1 and the powder filling unit 30 into the housing 2 is facilitated.
  • the powder filling unit 30 is formed by a manufacturing method described later, and is a powder compact 30MLD formed by pressing the filled powder particles 300 uniaxially into a cylindrical shape. Further, the filled powder particles 300 are pressed through the cylindrical insulator 31 in the space defined between the gas sensor element 1 and the housing 2 to increase the airtightness, thereby forming the powder filling portion 30.
  • the housing 2 is provided with a wrap caulking portion 22 that elastically presses the cylindrical insulator 31 in the axial direction so that the axial force of the housing 2 can be efficiently transmitted to the cylindrical insulator 31.
  • a shrunk portion 23 formed by heat caulking is provided on the front end side of the enveloping caulking portion 22.
  • the shrump part 23 is buckled in the axial direction by heat caulking, and applies an axial force in a direction in which the cylindrical insulator 31 is pressed against the powder filling part 30 via the wrapping caulking part 22.
  • the axial force that presses the powder filling portion 30 forms a repulsive force that acts in all directions in the powder filling portion 30, and the outer peripheral surface 10 of the gas sensor element 1, the proximal end surface of the enlarged diameter portion 11, and the housing 2.
  • the inner peripheral surface 20, the bottom surface of the cylindrical insulator 31, and the powder filling portion 30 are in close contact with each other.
  • the flaky filled powder particles 300 having a large particle size are oriented in layers, and airtightness is maintained.
  • a metal spacer ring 32 may be interposed between the cylindrical insulator 31 and the wrapping and crimping portion 22. Further, the distal end side of the enlarged diameter portion 11 provided in the gas sensor element 1 is engaged with an engagement portion 21 having a reduced diameter on a part of the inner periphery of the housing 2 via a metal spacer ring 32.
  • a known metal material such as carbon steel, stainless steel, iron, nickel, or an alloy thereof is selected and used according to the use environment.
  • the manufacturing method of the powder filling part 30 which is the principal part of the gas sensor of this invention is demonstrated.
  • talc powder used as a filling powder material is pretreated.
  • the particle size of talc powder is adjusted to a predetermined particle size range (210 ⁇ m or more and 710 ⁇ m or less) by sieving, and combustible impurities are removed by heat treatment.
  • talc powder having a fine particle size of 100 ⁇ m or less as a starting material
  • an organic binder such as methyl cellulose or an inorganic binder such as primary aluminum phosphate
  • talc powder is added to a predetermined particle size range ( It may be granulated to 210 ⁇ m or more and 710 ⁇ m or less.
  • a predetermined amount of talc powder is filled in a mold, and a predetermined molding load (for example, 235 N / mm 2 or less) is applied to form a cylindrical powder compact 30MLD.
  • a predetermined molding load for example, 235 N / mm 2 or less
  • the molding density can be increased, but there is a risk of cracking when taking out from the mold due to the orientation and cleavage of the talc particles.
  • it since it is compressed again after being mounted in the housing 2, it is not necessary to increase the molding load in particular, and it is only necessary to maintain a certain shape so that a predetermined amount of talc can be accurately assembled in the housing 2.
  • the spacer ring 32, the gas sensor element 1, and the powder compact 30MLD are sequentially mounted in the housing 2, and the powder is obtained using the cylindrical insulator 31 or the pressing jig.
  • the compact 30MLD is compressed to form the powder filling part 30.
  • large talc particles having a sieving particle size D SV of 210 ⁇ m or more are used as the packed powder particles 300, rearrangement of the flaky particles occurs due to slipping and cleaving of the lump particles, resulting in an increase in orientation.
  • the porosity of the powder filling portion 30 can be reduced and stabilized.
  • the cylindrical insulator 31 and the spacer ring 32 are assembled.
  • the spacer ring 32 is not essential, and the spacer ring 32 may be omitted, and in the next step, the wrap and crimp part 22 may be brought into direct contact with the upper surface of the cylindrical insulator 31.
  • the pressure in the axial direction is applied by the caulking dies M1 and M2 to perform the cold caulking, and the wrapping caulking portion 22 of the housing 2 is tilted toward the cylindrical insulator 31 so that the axial force Is shaped so that it can be efficiently transmitted to the cylindrical insulator 31.
  • the shrump portion 23 is buckled and formed by applying an alternating current to the housing 2 while applying a load to the enveloping caulking portion 22. By forming the shrump portion 23, it is possible to prevent the axial force from being lost even if it is exposed to a cooling cycle.
  • the shrump part 23 is locally heated, but also the entire housing 2 is heated to provide a temperature difference between the housing 2 and the powder filling part 30, thereby increasing the axial force and airtightness. It is also possible to further suppress the decrease in sex.
  • talc used as a powder filler in this invention.
  • Talc is a natural mineral composed of magnesium hydroxide and silicate having a composition of (Mg 3 Si 4 O 10 (OH) 2 ), and includes magnesite, dolomite and the like as impurities.
  • This talc has a monoclinic / triclinic crystal structure as shown in FIG. 3A, and exhibits complete cleavage only in a certain direction. As shown in FIG.
  • the talc particle 300 which is a large particle size packed powder quantum used in the present invention, is a lump-like particle formed by agglomerating flaky particles in a plurality of layers, and a load in a certain direction is applied. When loaded, the particles slip and cleave, and the flaky particles are oriented in a certain direction.
  • the powder compact 30MLD is formed in a state in which some pores remain as described above, and the directions of the filled powder particles (talc particles) 300 are not aligned.
  • the talc particles 300 are rearranged while sliding, increasing the orientation and reducing the gaps between the particles.
  • the talc particles 300 in contact with the inner peripheral surface 20 of the housing 2 tend to be oriented in the axial direction due to friction with the inner peripheral surface, and in the central portion of the powder filling portion 30, parallel to a plane perpendicular to the axis. The tendency to orient in the direction becomes stronger.
  • the talc particles 300 at a position exposed to the housing side gap GP2
  • the axial pressing force from the cylindrical insulator 31 does not act directly, but is indirectly pressed through the talc particles 300 in contact with the bottom surface of the cylindrical insulator 31.
  • the talc particles 300 in contact with the cylindrical insulator 31 are covered with the adjacent talc particles 300, or a plurality of talc particles 300 are arranged in the housing-side gap GP2, as indicated by a portion A surrounded by a dotted line in FIG. 4B.
  • the talc particles 300 play a role as a lid at the position exposed to the housing side gap GP2 to prevent the particles from falling into the housing side gap GP2. It is assumed that there is.
  • talc particles having a large particle size with a sieving particle size D SV of 210 to 710 ⁇ m are used as the filling powder particles 300, and the housing-side gap GP2 has a sieving particle size D SV of Since it is set to be twice or less, a part of the talc particles 300 that are directly pressed against the bottom surface of the cylindrical insulator 31 is in contact with the talc particles 300 exposed in the housing-side gap GP2, Axial force will be transmitted. In the element-side gap GP1, the filled powder particles 300 do not fall out of the powder filling portion 30 and the airtightness can be stably maintained based on the same principle.
  • the powder compact 30MLD is formed in advance, accommodated in the housing 2, and then compressed again, so that the filled powder particles 300 (talc particles) constituting the powder filler 30 are not completely oriented. Since the orientation direction varies moderately, the difference in thermal expansion coefficient between the axial direction and the orthogonal direction of the gas sensor GS1 does not become extremely large.
  • fine talc powder having a sieving particle size D SV of 2 to 30 ⁇ m is used as the talc particles 300z that are filled powder particles.
  • the problem when used is described.
  • a talc powder having an average particle size of about 10 ⁇ m and a sieving particle size D SV in the range of 2 to 30 ⁇ m is used as the packed powder particles 300z as in the gas sensor GSz shown in FIG. 5A. Accordingly, the specific surface area increases, the internal pressure of the powder filling portion 30z is dispersed, and the force for pressing each particle becomes relatively small.
  • each talc particle 300z is The pressing force is reduced.
  • the axial force transmitted to the powder filling portion 30z through the cylindrical insulator 31 is weakened due to the thermal expansion of the housing 2, if the external vibration is applied, the filling powder particles 300z are likely to fall apart.
  • the filled powder particles 300z may be separated from the powder filling portion 30z and leak out from the housing side gap GP2 between the inner diameter of the sealing member housing portion 20 and the outer diameter of the cylindrical insulator 31.
  • the internal pressure of the powder filling portion 30z decreases, causing further pulverization of the filled powder particles 300z, and the airtightness of the powder filling portion 30z decreases. Therefore, as in the gas sensor GSy shown in FIG. 5B, in order to suppress the detachment of the filled powder particles 300z, a metal or vermiculite is formed between the cylindrical insulator 31 and the upper surface of the powder filling portion 30z. Further, it is necessary to provide a seal packing 34 made of mica, mica molded product, etc., resulting in an increase in manufacturing man-hours and an increase in material costs.
  • the test results will be described were performed on the relationship sieve particle size DS V and the pressing load of the filled powder particles 300 (kN) Porosity (%) and.
  • talc particles having different particle sizes were used and the load for pressing the cylindrical insulator 31 was changed and the porosity was measured, 10 kN (to 235 N / mm 2 at any particle size).
  • the porosity is stabilized, and in the case of 30 kN (corresponding to 705 N / mm 2 ) or more, there is a possibility that the gas sensor element 1 is cracked, and when the sieving particle size D SV is 210 to 710 ⁇ m, the porosity is most It turned out that it can be lowered.
  • the porosity can be lowered even when the sieve particle size D SV is 210 to 1000 ⁇ m, but since there is almost no change from the state of the molded body, after assembling the powder molded body 30MLD in the housing 2, Even when pressed through the insulating insulator 31, the filled powder particles 300 do not bite into the element side gap GP ⁇ b> 1 and the housing side gap GP ⁇ b> 2, and there is a possibility that the filled powder particles 300 may be separated from the powder filling portion 30.
  • the orientation of the filled powder particles 300 is too strong, the difference in thermal expansion coefficient between the axial direction and the radial direction of the gas sensor increases, and the axial force from the housing 2 may be weakened.
  • the sieving particle size D SV is desirably in the range of 210 to 710 ⁇ m, which causes moderate variation in orientation.
  • the inventors changed the talc particle diameter DSV and the talc presser part gap (element side gap GP1, housing side gap GP2), created a plurality of gas sensors, and performed an endurance test corresponding to 240,000 km running. Then, the high temperature airtightness after the durability test was investigated, and the result is shown in Table 1. As an endurance condition, the housing 2 was heated to 400 ° C. and then immersed in water to apply a thermal stress, and this was repeated 400 times. Moreover, the evaluation of the high temperature airtightness is that when air is injected from the front end side of the housing 2 under a high temperature environment of 550 ° C.
  • the airtightness is good. Judgment was made and a round mark was given. When it exceeded 10 cc / min, it was judged that the airtightness was poor, and an x mark was given.
  • the talc pressing portion gap (element side gap GP1, housing side gap GP2) is narrower than 0.1 mm, it is difficult to assemble the cylindrical insulator 31 to the housing 2. Further, the talc presser gap is 0.1 mm or more, so that assembly is easy.
  • talc pressing portion gap (element side gap GP1, the housing-side gap GP2) when more than 2 times the talc sieving particle diameter D SV is hot airtightness deterioration was observed, talc sieve particle diameter D SV It was found that good high temperature hermeticity can be maintained when it is 2 times or less.
  • the gas sensor GS1 in the first embodiment of the present invention will be described.
  • the gas sensor GS1 is a so-called cup-type gas sensor, and is an early activation type gas sensor that incorporates a heater 18 to achieve early activation.
  • an oxygen sensor that is a typical example of a cup-type sensor will be described as an example.
  • the detection target is not limited, and an oxygen sensor, an A / F sensor, a NOx sensor, ammonia
  • the present invention can be applied to any of sensors, hydrogen sensors, and the like.
  • the gas sensor GS ⁇ b> 1 is provided in the measured gas flow path 6, and the detection unit 12 provided at the tip is exposed to the measured gas G.
  • the gas sensor element 1 uses a known solid electrolyte material such as zirconia having oxygen ion conductivity, and has a reference electrode 121 on the inner surface of a solid electrolyte body 120 formed in a bottomed cylindrical shape, and a measurement electrode 122 on the outer surface. Each of them is provided to constitute a detection unit 12, and a diameter-expanded portion 11 that is expanded to have a large diameter is provided on the base end side of the detection unit 12. Air is introduced as a reference gas inside the solid electrolyte body 120 and is in contact with the reference electrode 121. A plus signal line 14S + is connected to the reference electrode 121 via a plus terminal fitting 131S +.
  • a known solid electrolyte material such as zirconia having oxygen ion conductivity
  • a measurement electrode 122 that is exposed to the gas G to be measured is formed outside the detection unit 12, and the measurement electrode 122 is connected to the negative terminal fitting 131S- at the base end portion 100 of the solid electrolyte body 120.
  • the minus terminal fitting 131S- is connected to the minus signal line 14S-.
  • the plus terminal fitting 131S + has a crimping portion 130S + connected to one center line 140S of the pair of signal lines 14S and a reference electrode formed on the inner peripheral surface of the solid electrolyte body 120 that exerts a pressing force toward the outer peripheral side.
  • the connecting portion 134 is elastically connected to the contact portion 121, and the heater gripping portion 133 that exerts a pressing force toward the center and grips the heater 18.
  • the minus terminal fitting 131S- is a crimping part 130S- connected to the other center line 140S of the pair of signal lines 14S, and a measurement standard formed on the outer peripheral surface of the solid electrolyte body 120 that exerts a pressing force toward the center.
  • the connection part 135 is elastically connected to the electrode 123.
  • a heater 18 Housed inside the gas sensor element 1 is a heater 18 having a built-in heating element that generates heat when energized.
  • the heater 18 includes a known heating element such as tungsten or molybdenum silicide in an insulator such as alumina.
  • a pair of energizing electrodes 181 for energizing a built-in heating element (not shown) is provided on the proximal end side of the heater 18.
  • the pair of energizing electrodes 181 is connected to the pair of energizing wires 14H via a pair of energizing terminal fittings 13H.
  • the energizing terminal fitting 13H is electrically connected to the energizing electrode 181 by elastically contacting the energizing electrode 181 by exerting a pressing force toward the center on the crimping portion 130H connected to the center line 140H of the energizing wire 14H on the proximal end side. And a connecting portion 131H for achieving the above.
  • the housing 2 is formed in a cylindrical shape using a known metal material such as stainless steel, iron, nickel, alloys thereof, carbon steel, or the like according to the installation environment, and accommodates and fixes the gas sensor element 1 on the inner side. .
  • a powder filling portion 30 and a cylindrical insulator 31 which are the main parts of the present invention are disposed.
  • a part of the inner peripheral surface of the housing 2 is reduced in diameter so that the diameter decreases toward the tip, and a locking part 21 that locks the diameter-enlarged part 11 of the gas sensor element 1 is formed.
  • a wrap crimping portion 22 and a shrunk portion 23 are formed to generate an axial force that presses the cylindrical insulator 31 in the distal axial direction.
  • a cylindrical casing 4 is fixed to the boss portion 24 of the housing 2 so as to cover the proximal end side of the housing and to draw out and fix the signal line and the conductive line.
  • a screw portion 25 is formed on the outer periphery on the front end side of the housing 2 and is screwed to the gas flow path 6 to be measured.
  • a hexagonal portion 26 for tightening the screw portion 25 is formed on the outer periphery of the base end side of the housing 2.
  • a caulking portion 27 for fixing the cover bodies 50 and 51 is formed at the tip of the housing 2.
  • the sealing unit 3 includes a powder filling unit 30, a cylindrical insulator 31, a spacer ring 32, and a seal ring 33. Sealing means 3 is provided between the gas sensor GS1, the cylindrical housing 2 that accommodates and fixes the gas sensor GS1, the outer peripheral surface 10 of the gas sensor GS1, and the inner peripheral surface 20 of the housing 2.
  • An element-side gap GP ⁇ b> 1 is formed between the inner peripheral surface 310 of the cylindrical insulator 31 and the outer peripheral surface 10 of the gas sensor element 1.
  • a housing-side gap GP ⁇ b> 2 is formed between the outer peripheral surface 311 of the cylindrical insulator 31 and the inner peripheral surface 20 of the housing 2.
  • the detection unit 12 provided on the distal end side of the gas sensor element 1 is covered with cover bodies 50 and 51.
  • the cover bodies 50 and 51 are caulked and fixed by a caulking portion 27 provided at the front end of the housing 2.
  • the cover bodies 50 and 51 are appropriately provided with through holes for introducing the gas to be measured G into the cover bodies 50 and 51 and leading it out.
  • the casing 4 is made of a metal such as stainless steel, and has a cylindrical portion 40 formed in a stepped cylindrical shape, a vent hole 41 for introducing air, and a caulking portion 42 that seals the base end side of the casing 4. And holding means 43 of the insulator 15.
  • the casing 4 covers the base end side of the housing 2 and holds a pair of signal lines 14S + and 14S-, a pair of signal terminal fittings 131S + and 131S-, a pair of energization wires 14H, and a pair of energization terminal fittings 13H. .
  • the pair of signal terminal fittings 131S +, 131S- and the pair of energization wires 14H are accommodated in an insulator 15 made of an insulating material such as alumina so as to be electrically insulated from each other.
  • the insulator 15 is elastically held by the holding means 43.
  • the casing 4 is provided with a known water repellent filter 16 that prevents air from entering while air is introduced from the vent hole 41.
  • a sealing member 17 made of a heat-resistant elastic member such as silicone rubber or fluoro rubber, and pulling out the pair of signal lines 14S +/ ⁇ and the conductive line 14H while ensuring airtightness. It has been.
  • gas sensor GS2 in the 2nd Embodiment of this invention is demonstrated.
  • symbol is attached
  • the description about a common part is abbreviate
  • the gas sensor GS2 is a simple gas sensor that has a simple configuration by eliminating the heater from the gas sensor GS1, and is used in an internal combustion engine such as a motorcycle. Also in the present embodiment, as shown in FIG.
  • the powder filling portion 30 and the cylindrical insulator 31 are provided between the gas sensor element 1 and the housing 2, and the gaps GP1 and GP2 in the pressing portion are set to be predetermined. By ensuring that the airtightness is within the range, airtightness is ensured.
  • the heater 14 that generates heat by energization is provided in order to activate the gas sensor element 1 at an early stage.
  • the activation of the gas sensor element 1A is performed by the gas G to be measured itself. No heat is provided for activation, using the heat it has.
  • the reference electrode 121 of the detection unit 12 is connected to the plus signal line 14S + via the plus terminal fitting 131S +, and the measurement electrode 122 is connected to the minus signal line 14S ⁇ via the minus terminal fitting 131S ⁇ .
  • the measurement electrode 122 provided in the detection unit 12 by eliminating the negative signal line 14S ⁇ is grounded to the gas flow path 6 to be measured through the spacer ring 32 and the housing 2.
  • the positive terminal fitting 13A includes a crimping portion 130A connected to the center line 140 of the signal line 14, a connection portion 131A elastically connected to the reference electrode 121 formed on the inner peripheral surface of the solid electrolyte body, and a solid electrolyte body
  • the contact portion 132A is configured to elastically contact the inclined portion of the inner peripheral surface and suppress axial vibration.
  • the powder filling portion 30 and the cylindrical insulator 31 are provided between the gas sensor element 1A and the housing 2, and the gaps GP1 and GP2 in the pressing portion are set to be predetermined. By ensuring that the airtightness is within the range, airtightness is ensured.
  • a gas sensor GS3 according to a third embodiment of the present invention will be described.
  • a so-called cup-type gas sensor has been shown.
  • the present invention can also be applied to a so-called laminated gas sensor, and this embodiment is an example.
  • the powder filling portion 30 and the cylindrical insulation are provided between the enlarged diameter portions 11 and 11A obtained by enlarging a part of the solid electrolyte body constituting the gas sensor elements 1 and 1A and the inner peripheral surface 20 of the housing 2.
  • the sealing means 3 including the body 31, the spacer ring 32, and the seal ring 33 is interposed between the latching portion 21 of the housing 2, the wrapping caulking portion 22, and the shrump portion 23, and an axial force is applied.
  • the gas sensor GS3 in the present embodiment as shown in FIG.
  • the housing 2 is wrapped with a sealing means 3 including a powder filling portion 30, a cylindrical insulator 31, a spacer ring 32, and a seal ring 33 interposed between the outer surface 10B and the outer surface 10B.
  • the detection unit 12B in the present embodiment is constituted by a so-called laminated gas sensor element, and is formed in a flat bar shape by laminating a plurality of ceramic sheets.
  • the detection unit 12B is inserted into a cylindrical insulator made of alumina or the like and is held by a sealing unit 35 made of glass or the like.
  • the powder filling portion 30 and the cylindrical insulator 31 are provided between the gas sensor element 1B and the housing 2, and the gaps GP1 and GP2 in the pressing portion are set to be predetermined. By ensuring that the airtightness is within the range, airtightness is ensured.
  • the specific configuration of the gas sensor element 1B is not particularly limited, and the detection unit 12B is formed with a detection cell, a heat generation unit, and the like according to a required detection function.
  • the detection target of the gas sensor in the present embodiment is not limited to the gas component, but may be PM, moisture, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A gas sensor (GS1) is configured so that a gas sensor element (1) and a housing (2) are sealed by a sealing means (3) comprising, between an outer periphery (10) of the gas sensor element (1) and an inner periphery (20) of the housing (2), a talc based powder filling part (30) and a cylindrical insulator (31) for pressing the powder filling part (30). In a relationship between a sieving particle size (DSV) of filling powder particles (300) that constitute the powder filling part (30), an element-side gap (GP1) between the inner periphery (310) of the cylindrical insulator (31) and the outer periphery (10) of the gas sensor element (1), and a housing-side gap (GP2) between the outer periphery (311) of the cylindrical insulator (31) and the inner periphery (20) of the housing (2), the element-side gap (GP1) and the housing-side gap (GP2) are set to sizes not more than twice the sieving particle size (DSV) of the filling powder particles (300).

Description

ガスセンサGas sensor
 本発明は、被測定ガス中の特定ガス成分の濃度を検出するガスセンサに関し、特に、ガスセンサ素子とハウジングとの間の気密性の向上に資するものである。 The present invention relates to a gas sensor that detects the concentration of a specific gas component in a gas to be measured, and particularly contributes to an improvement in airtightness between a gas sensor element and a housing.
 従来、自動車エンジン等の内燃機関の燃焼排気流路に、燃焼排気中に含まれる酸素等の特定ガス成分の濃度を検知するガスセンサを配設している。そして、検知された特定ガス成分の濃度によって空燃比制御や排気処理触媒の温度制御等を行っている。 Conventionally, a gas sensor for detecting the concentration of a specific gas component such as oxygen contained in combustion exhaust gas is disposed in a combustion exhaust flow path of an internal combustion engine such as an automobile engine. Then, air-fuel ratio control, temperature control of the exhaust treatment catalyst, and the like are performed based on the detected concentration of the specific gas component.
 このようなガスセンサとして、ジルコニア等の酸素イオン伝導性固体電解質の基体表面に、被測定ガスに接する測定電極層と、基準ガスとして導入された大気に接する基準電極層とを施した酸素濃度検出素子を具備し、被測定ガス中の酸素濃度と基準ガス中の酸素濃度との差によって両電極間に発生する電位差を検出して被測定ガス中の酸素濃度を測定する酸素センサが広く用いられている。また、燃焼排気中の特定ガス成分の濃度から内燃機関に導入される混合気の空燃比を検出する空燃比センサや、水素イオン導電性固体電解質体を用いて被測定ガス中のアンモニア濃度を検出するアンモニアセンサ等も広く用いられている。
 また、このようなガスセンサでは、被測定ガスの漏れによる検出精度の低下を防止するため、ガスセンサ素子とこのガスセンサ素子を保持するハウジングとの間の気密性の確保が必要とされている。
As such a gas sensor, an oxygen concentration detection element in which a measurement electrode layer in contact with a measurement gas and a reference electrode layer in contact with the atmosphere introduced as a reference gas are provided on the surface of an oxygen ion conductive solid electrolyte such as zirconia Oxygen sensors that measure the oxygen concentration in the measurement gas by detecting the potential difference generated between the two electrodes due to the difference between the oxygen concentration in the measurement gas and the oxygen concentration in the reference gas are widely used. Yes. In addition, an air-fuel ratio sensor that detects the air-fuel ratio of the air-fuel mixture introduced into the internal combustion engine from the concentration of a specific gas component in the combustion exhaust, or the ammonia concentration in the gas to be measured using a hydrogen ion conductive solid electrolyte body Ammonia sensors are also widely used.
Further, in such a gas sensor, it is necessary to ensure airtightness between the gas sensor element and the housing holding the gas sensor element in order to prevent a decrease in detection accuracy due to leakage of the gas to be measured.
 特許文献1には、先端部に検出部が形成された棒状ないし筒状形態をなし、測定対象となるガス中の被検出成分を検出する検出素子を備えた検出構造体と、その前記検出構造体の外側に配置される主体金具と、タルクを主体に構成され、前記主体金具の内面と前記検出構造体の外面との隙間に充填されてこれをシールするシール充填材層とを備え、前記シール充填材層が水ガラスを2~7重量%の範囲で含有することを特徴とするガスセンサが開示されている。 Patent Document 1 discloses a detection structure including a detection element for detecting a component to be detected in a gas to be measured, which has a rod-like or cylindrical shape in which a detection portion is formed at a tip portion, and the detection structure. A metal shell mainly disposed on the outside of the body, and a talc main body, and a seal filler layer that fills and seals the gap between the inner surface of the metal shell and the outer surface of the detection structure, A gas sensor is disclosed in which the seal filler layer contains water glass in the range of 2 to 7% by weight.
特開2000-314715号公報JP 2000-314715 A
 しかし、特許文献1のように、シール充填層内に水ガラスを添加して気密性の向上を図ろうとした場合、粉末充填剤に水ガラスを添加したり、充填粉末の成形体を加熱して水分調整したりするための工数が増え、製造コストの増加を招くおそれがある。
 また、含水率によって水ガラスのシール性が変化してしまうため、高温環境下で使用されるガスセンサにおいては、使用状況によって充填部の含水率が変化し、安定した気密性の確保が期待できなくなるおそれもある。
However, as in Patent Document 1, when water glass is added to the seal filling layer to improve the airtightness, water glass is added to the powder filler or the molded body of the filling powder is heated. The man-hour for adjusting the moisture increases, which may increase the manufacturing cost.
In addition, since the sealing property of water glass changes depending on the moisture content, in the gas sensor used in a high temperature environment, the moisture content of the filling portion varies depending on the use situation, and it is impossible to expect stable airtightness. There is also a fear.
 一方、自動車や自動二輪車の空燃比制御等に用いられる内燃機関の燃焼排気の特定ガス成分を検出するガスセンサにおいては、外部から受ける振動が大きい上に、冷熱サイクルに晒される過酷な環境で使用される。
 このため、粉末充填部に篩分粒径DSVが2~30μmの細かいタルク粒子を用いた場合には、粉末充填部からの脱粒により、気密性の低下を招くおそれがある。そして、これを防止するため、筒状絶縁体と粉末充填部との間に、金属製、あるいは、バ-ミキュライト、雲母、雲母成型品等からなるシールパッキンを設けることが必要となり、製造工数の増加及び材料コストの増加を招いていた。
On the other hand, gas sensors that detect specific gas components in the combustion exhaust gas of internal combustion engines used for air-fuel ratio control of automobiles and motorcycles are used in harsh environments that are subject to large external vibrations and exposed to a cold cycle. The
For this reason, when fine talc particles having a sieving particle size D SV of 2 to 30 μm are used in the powder filling portion, there is a possibility that the airtightness may be lowered due to the granulation from the powder filling portion. In order to prevent this, it is necessary to provide a seal packing made of metal or vermiculite, mica, mica molded product, etc. between the cylindrical insulator and the powder filling portion. This has led to an increase in material costs.
 そこで、本発明は、かかる実情に鑑み、充填粉末漏れ防止のためのシールパッキンを廃しても、粉末充填部からの脱粒が起こり難く、製造コストの削減を図りつつ、粉末充填部の気密性の低下が起こり難い、信頼性の高いガスセンサを提供することを目的とする。 Therefore, in view of such circumstances, the present invention is less likely to occur from the powder filling portion even if the seal packing for preventing the filling powder leakage is abolished, and the airtightness of the powder filling portion is reduced while reducing the manufacturing cost. An object of the present invention is to provide a highly reliable gas sensor that is unlikely to deteriorate.
 本発明は、被測定ガス中の特定成分を検出するガスセンサであって、ガスセンサ素子と、該ガスセンサ素子を収容固定する筒状のハウジングと、前記ガスセンサ素子の外周面と、前記ハウジングの内周面との間に、タルクを主成分とする粉末充填部と、該粉末充填部を押圧する筒状絶縁体とを含む封止手段を設けて封止してなるガスセンサにおいて、前記粉末充填部を構成する充填粉末粒子の篩分粒径と、前記筒状絶縁体の内周面と前記ガスセンサ素子の外周面との素子側間隙GP1と、前記筒状絶縁体の外周面と前記ハウジングの内周面とのハウジング側間隙との関係において、前記素子側間隙、及び、前記ハウジング側間隙が、前記充填粉末の篩分粒径の2倍以下であることを特徴とする。 The present invention is a gas sensor for detecting a specific component in a gas to be measured, the gas sensor element, a cylindrical housing for housing and fixing the gas sensor element, an outer peripheral surface of the gas sensor element, and an inner peripheral surface of the housing In the gas sensor formed by providing a sealing means including a powder filling part mainly composed of talc and a cylindrical insulator that presses the powder filling part, the powder filling part is configured Sieving particle size of filled powder particles, element side gap GP1 between the inner peripheral surface of the cylindrical insulator and the outer peripheral surface of the gas sensor element, the outer peripheral surface of the cylindrical insulator and the inner peripheral surface of the housing In relation to the housing side gap, the element side gap and the housing side gap are not more than twice the sieving particle size of the filling powder.
 前記篩分粒径と前記素子側間隙、及び、前記ハウジング側間隙との関係を最適化することで、前記粉末充填部と前記筒状絶縁体との間にシールパッキンを設けなくても、冷熱サイクル及び外部からの振動に晒されても、前記粉末充填部から、前記充填粉末粒子が脱粒することがなく、前記粉末充填部の内圧を一定の状態に維持し、気密性の低下を招くことがない。
 また、充填粉末粒子の脱粒防止のためにシールパッキンを設ける必要がないので、部品点数の削減と、組み付け工数の削減を図ることができる。
By optimizing the relationship between the sieving particle size, the element-side gap, and the housing-side gap, it is possible to cool and cool without providing a seal packing between the powder filling portion and the cylindrical insulator. Even when exposed to cycles and external vibrations, the powder particles do not fall out of the powder filling part, the internal pressure of the powder filling part is maintained at a constant state, and airtightness is reduced. There is no.
In addition, since it is not necessary to provide seal packing to prevent the pulverization of the filled powder particles, it is possible to reduce the number of parts and the number of assembling steps.
本発明に係るガスセンサの封止構造の概要を示す要部断面図。The principal part sectional drawing which shows the outline | summary of the sealing structure of the gas sensor which concerns on this invention. 本発明に係るガスセンサの封止方法について工程順を追って示すフローチャート。The flowchart which shows the order of a process later about the sealing method of the gas sensor which concerns on this invention. 本発明に用いられるタルクの特徴的な性質であって、結晶構造を示す模式図。The characteristic diagram of talc used for this invention, Comprising: The schematic diagram which shows a crystal structure. 大粒径充填粉末に圧力が作用したときの変化を示す模式図。The schematic diagram which shows a change when a pressure acts on large particle size filling powder. 本発明の効果を説明すべく、粉末成形体を配置した状態を示す要部拡大図。The principal part enlarged view which shows the state which has arrange | positioned the powder compact in order to demonstrate the effect of this invention. 図4Aに続き、粉末成形体を圧縮して粉末充填部を形成した状態を示す要部拡大図。The principal part enlarged view which shows the state which compressed the powder compact and formed the powder filling part following FIG. 4A. 比較例1として、2~30μmの充填粉末を使用した場合の問題点を示す要部拡大図。FIG. 3 is an enlarged view of a main part showing a problem when a packed powder of 2 to 30 μm is used as Comparative Example 1. 比較例2として、図5Aにシールを付加した場合を示す要部拡大図。The main part enlarged view which shows the case where a seal | sticker is added to FIG. 5A as the comparative example 2. FIG. 本発明の効果を示す特性図。The characteristic view which shows the effect of this invention. 本発明の第1の実施形態におけるガスセンサの全体概要を示す断面図。Sectional drawing which shows the whole gas sensor outline | summary in the 1st Embodiment of this invention. 本発明の第2の実施形態におけるガスセンサの全体概要を示す断面図。Sectional drawing which shows the whole gas sensor outline in the 2nd Embodiment of this invention. 本発明の第3の実施形態におけるガスセンサの要部を示す断面図。Sectional drawing which shows the principal part of the gas sensor in the 3rd Embodiment of this invention.
 本発明は、被測定ガス中の特定成分を検出するガスセンサであって、ガスセンサ素子1と、ガスセンサ素子1を収容固定する筒状のハウジング2と、ガスセンサ素子1の外周面10と、ハウジング2の内周面20との間を、タルクを主成分とする粉末充填部30と、粉末充填部30を押圧する筒状絶縁体31とを含む封止手段3によって封止してなるガスセンサに関するものである。
 本発明のガスセンサは、特に用途を限定するものではなく、後述する、早期活性型ガスセンサGS1、簡易型ガスセンサGS2、積層型ガスセンサGS3のいずれにも適用できるものである。
The present invention is a gas sensor that detects a specific component in a gas to be measured, and includes a gas sensor element 1, a cylindrical housing 2 that houses and fixes the gas sensor element 1, an outer peripheral surface 10 of the gas sensor element 1, and a housing 2. The present invention relates to a gas sensor in which a gap between the inner peripheral surface 20 is sealed by a sealing means 3 including a powder filling portion 30 mainly composed of talc and a cylindrical insulator 31 that presses the powder filling portion 30. is there.
The gas sensor of the present invention is not particularly limited in application, and can be applied to any of early activation gas sensor GS1, simple gas sensor GS2, and stacked gas sensor GS3, which will be described later.
 図1を参照して、本発明の要部である粉末充填部30の構成及び構造について説明する。なお、図1に示した構成は、後述するいずれの実施形態においても共通するものである。また、以下の説明においては、本発明の理解を容易にするため、ガスセンサ素子1として、有底筒状に形成した固体電解質体の内側と外側とに一対の電極を形成したいわゆるコップ型のガスセンサを例として説明する。 With reference to FIG. 1, the structure and structure of the powder filling part 30 which is the principal part of this invention are demonstrated. The configuration shown in FIG. 1 is common to all the embodiments described later. In the following description, in order to facilitate understanding of the present invention, as the gas sensor element 1, a so-called cup-type gas sensor in which a pair of electrodes are formed on the inner side and the outer side of a solid electrolyte body formed in a bottomed cylindrical shape. Will be described as an example.
 ガスセンサ素子1は、図1における上方側を基端側、下方側を先端側と定義して、以下説明を行う。
 ガスセンサ素子1の外周の一部には、外側に向かって径大となるように張り出した拡径部11が形成されている。
 拡径部11の基端側には、ガスセンサ素子1の外周面10を覆うよう筒状の粉末充填部30が形成されている。
 拡径部11の先端側は、金属製のスペーサリング32を介してハウジング2の内周面の一部を径小となるように縮径した係止部21に当接している。
The gas sensor element 1 will be described below with the upper side in FIG. 1 defined as the proximal side and the lower side as the distal side.
A part of the outer periphery of the gas sensor element 1 is formed with an enlarged diameter portion 11 protruding so as to increase in diameter toward the outside.
A cylindrical powder filling portion 30 is formed on the proximal end side of the enlarged diameter portion 11 so as to cover the outer peripheral surface 10 of the gas sensor element 1.
The distal end side of the enlarged diameter portion 11 is in contact with a locking portion 21 whose diameter is reduced so that a part of the inner peripheral surface of the housing 2 is reduced in diameter via a metal spacer ring 32.
 粉末充填部30は、筒状に形成した筒状絶縁体31によって押圧されている。
 筒状絶縁体31には、アルミナ等の公知のセラミックス材料が用いられている。
 粉末充填部30には、充填粉末粒子300として、篩分粒径DSVが210μm以上、710μm以下のタルク粉末が用いられている。
 筒状絶縁体31の内周面310とガスセンサ素子1の外周面10との間には素子側間隙GP1が形成される。また、筒状絶縁体31の外周面311とハウジング2の内周面20との間にはハウジング側間隙GP2が形成される。
 そして、粉末充填部30を構成する充填粉末粒子300の篩分粒径DSVと、素子側間隙GP1と、ハウジング側間隙GP2との関係において、素子側間隙GP1、及び、ハウジング側間隙GP2は、いずれも、充填粉末粒子300の篩分粒径DSVの2倍以下に形成されている。
 また、素子側間隙GP1、ハウジング側間隙GP2は0.1mm以上に設定されている。
The powder filling unit 30 is pressed by a cylindrical insulator 31 formed in a cylindrical shape.
A known ceramic material such as alumina is used for the cylindrical insulator 31.
In the powder filling unit 30, talc powder having a sieving particle size D SV of 210 μm or more and 710 μm or less is used as the filling powder particles 300.
An element-side gap GP <b> 1 is formed between the inner peripheral surface 310 of the cylindrical insulator 31 and the outer peripheral surface 10 of the gas sensor element 1. Further, a housing side gap GP <b> 2 is formed between the outer peripheral surface 311 of the cylindrical insulator 31 and the inner peripheral surface 20 of the housing 2.
Then, in the relationship among the sieving particle size D SV of the filling powder particles 300 constituting the powder filling unit 30, the element side gap GP1, and the housing side gap GP2, the element side gap GP1 and the housing side gap GP2 are: In either case, the sieving particle size D SV of the packed powder particle 300 is less than twice.
The element side gap GP1 and the housing side gap GP2 are set to 0.1 mm or more.
 さらに、素子側間隙GP1、ハウジング側間隙GP2は、いずれも、0.1mm以上に形成されており、ハウジング2内への、ガスセンサ素子1及び粉末充填部30の組み付けが容易となっている。
 粉末充填部30は、後述の製造方法によって形成され、充填粉末粒子300を一軸加圧して、筒状に成形した粉末成形体30MLDとしてある。さらに、充填粉末粒子300は、ガスセンサ素子1とハウジング2との間に区画した空間内で筒状絶縁体31を介して押圧され、気密性を高くして粉末充填部30としてある。
Further, both the element side gap GP1 and the housing side gap GP2 are formed to be 0.1 mm or more, and the assembly of the gas sensor element 1 and the powder filling unit 30 into the housing 2 is facilitated.
The powder filling unit 30 is formed by a manufacturing method described later, and is a powder compact 30MLD formed by pressing the filled powder particles 300 uniaxially into a cylindrical shape. Further, the filled powder particles 300 are pressed through the cylindrical insulator 31 in the space defined between the gas sensor element 1 and the housing 2 to increase the airtightness, thereby forming the powder filling portion 30.
 ハウジング2には、筒状絶縁体31を軸方向に弾性的に押圧する包みかしめ部22が設けてあり、ハウジング2の軸力を効率よく筒状絶縁体31に伝達できるようになっている。包みかしめ部22の先端側には、熱かしめにより形成されたシュルンプ部23が設けてある。
 シュルンプ部23は、熱かしめにより軸方向に座屈しており、包みかしめ部22を介して、筒状絶縁体31を粉末充填部30に押圧する方向の軸力を付与している。
 粉末充填部30を押圧する軸力は、粉末充填部30内の全方向に向かって作用する反発力を形成し、ガスセンサ素子1の外周面10、拡径部11の基端側表面、ハウジング2の内周面20、筒状絶縁体31の底面と粉末充填部30とを密着状態としている。
The housing 2 is provided with a wrap caulking portion 22 that elastically presses the cylindrical insulator 31 in the axial direction so that the axial force of the housing 2 can be efficiently transmitted to the cylindrical insulator 31. A shrunk portion 23 formed by heat caulking is provided on the front end side of the enveloping caulking portion 22.
The shrump part 23 is buckled in the axial direction by heat caulking, and applies an axial force in a direction in which the cylindrical insulator 31 is pressed against the powder filling part 30 via the wrapping caulking part 22.
The axial force that presses the powder filling portion 30 forms a repulsive force that acts in all directions in the powder filling portion 30, and the outer peripheral surface 10 of the gas sensor element 1, the proximal end surface of the enlarged diameter portion 11, and the housing 2. The inner peripheral surface 20, the bottom surface of the cylindrical insulator 31, and the powder filling portion 30 are in close contact with each other.
 本発明の粉末充填部30内では、粒径が大きく薄片状の充填粉末粒子300が層状に配向し、気密性が維持されている。
 また、筒状絶縁体31と包みかしめ部22との間に金属製のスペーサリング32を介装するようにしても良い。
 さらにガスセンサ素子1に設けた拡径部11の先端側は、金属製のスペーサリング32を介して、ハウジング2の内周の一部を縮径した係止部21に係止されている。
 ハウジング2には、炭素鋼、ステンレス、鉄、ニッケル、これらの合金等の公知の金属材料が使用環境に合わせて選択されて用いられている。
In the powder filling portion 30 of the present invention, the flaky filled powder particles 300 having a large particle size are oriented in layers, and airtightness is maintained.
Further, a metal spacer ring 32 may be interposed between the cylindrical insulator 31 and the wrapping and crimping portion 22.
Further, the distal end side of the enlarged diameter portion 11 provided in the gas sensor element 1 is engaged with an engagement portion 21 having a reduced diameter on a part of the inner periphery of the housing 2 via a metal spacer ring 32.
For the housing 2, a known metal material such as carbon steel, stainless steel, iron, nickel, or an alloy thereof is selected and used according to the use environment.
 図2を参照して、本発明のガスセンサの要部である粉末充填部30の製造方法について説明する。
 粉末前処理工程P1では、充填粉末材として用いられるタルク粉末の前処理を行う。具体的には、タルク粉末の粒径を篩分により所定の粒径範囲(210μm以上、710μm以下)に調整し、熱処理によって可燃性の不純物を除去する。
 なお、例えば、100μm以下の細かい粒径のタルク粉末を出発原料として、メチルセルロ-ス等の有機バインダ、又は、第一リン酸アルミニウム等の無機バインダを添加し、タルク粉末を所定の粒径範囲(210μm以上、710μm以下)に造粒したものを用いても良い。
With reference to FIG. 2, the manufacturing method of the powder filling part 30 which is the principal part of the gas sensor of this invention is demonstrated.
In the powder pretreatment process P1, talc powder used as a filling powder material is pretreated. Specifically, the particle size of talc powder is adjusted to a predetermined particle size range (210 μm or more and 710 μm or less) by sieving, and combustible impurities are removed by heat treatment.
For example, using talc powder having a fine particle size of 100 μm or less as a starting material, an organic binder such as methyl cellulose or an inorganic binder such as primary aluminum phosphate is added, and talc powder is added to a predetermined particle size range ( It may be granulated to 210 μm or more and 710 μm or less.
 粉末成形工程P2では、所定量のタルク粉末を金型内に充填し、所定の成形荷重(例えば、235N/mm以下)を負荷して筒状の粉末成形体30MLDを形成する。
 このとき、成形圧力を高くすれば、成形密度を高くすることができるが、タルク粒子の配向と劈開により、金型から取り出す際に亀裂を生じるおそれがある。
 また、ハウジング2内に装着した後に再度圧縮するため、特に成形荷重を高くする必要はなく、所定量のタルクを正確にハウジング2内に組み付けできるように一定の形状を保持できれば良い。
 タルク成型荷重を、粉末成形体30MLDを組付けし、圧縮して粉末充填部30を形成するときの荷重より小さくすることで、最終的に粉末充填部30の充填密度を高くできる。
In the powder molding step P2, a predetermined amount of talc powder is filled in a mold, and a predetermined molding load (for example, 235 N / mm 2 or less) is applied to form a cylindrical powder compact 30MLD.
At this time, if the molding pressure is increased, the molding density can be increased, but there is a risk of cracking when taking out from the mold due to the orientation and cleavage of the talc particles.
Further, since it is compressed again after being mounted in the housing 2, it is not necessary to increase the molding load in particular, and it is only necessary to maintain a certain shape so that a predetermined amount of talc can be accurately assembled in the housing 2.
By making the talc molding load smaller than the load when the powder compact 30MLD is assembled and compressed to form the powder filling portion 30, the packing density of the powder filling portion 30 can be finally increased.
 次いで、粉末成形体組付・圧縮工程P3では、ハウジング2内に、スペーサリング32、ガスセンサ素子1、粉末成形体30MLDを順に装着し、筒状絶縁体31、又は、押圧治具を用いて粉末成形体30MLDを圧縮し、粉末充填部30を形成する。
 このとき、充填粉末粒子300として210μm以上の篩分粒径DSVを有する大きなタルク粒子を用いているため、塊状粒子の滑り、劈開によって、薄片状粒子の再配列が起こり、配向性の増加と空隙の減少により、粉末充填部30の気孔率の低下・安定化を図ることができる。
Next, in the powder compact assembly / compression process P3, the spacer ring 32, the gas sensor element 1, and the powder compact 30MLD are sequentially mounted in the housing 2, and the powder is obtained using the cylindrical insulator 31 or the pressing jig. The compact 30MLD is compressed to form the powder filling part 30.
At this time, since large talc particles having a sieving particle size D SV of 210 μm or more are used as the packed powder particles 300, rearrangement of the flaky particles occurs due to slipping and cleaving of the lump particles, resulting in an increase in orientation. By reducing the voids, the porosity of the powder filling portion 30 can be reduced and stabilized.
 さらに、この工程においては。所定の範囲の荷重(具体的には、例えば、235N/mm以上705N/mm以下)を負荷することで、十分な気孔率の低下を実現しつつ、ガスセンサ素子1の割れの防止を図ることができる。 Furthermore, in this process. (Specifically, for example, 235N / mm 2 or more 705N / mm 2 or less) load of a predetermined range by load, while achieving a reduction in sufficient porosity, achieve prevention of cracking of the gas sensor element 1 be able to.
 次いで、絶縁体・スペーサリング組付工程P4では、筒状絶縁体31、スペーサリング32の組付けを行う。
 なお、当然のことながら、粉末成形体30MLDの圧縮を、筒状絶縁体31を介して行った場合には、スペーサリング32の組付のみを行う。
 また、スペーサリング32は、必須のものではなく、スペーサリング32を省略し、次工程において、直接、包みかしめ部22を筒状絶縁体31の上面に当接させるようにすることもできる。
Next, in the insulator / spacer ring assembly step P4, the cylindrical insulator 31 and the spacer ring 32 are assembled.
As a matter of course, when the powder compact 30MLD is compressed through the cylindrical insulator 31, only the spacer ring 32 is assembled.
In addition, the spacer ring 32 is not essential, and the spacer ring 32 may be omitted, and in the next step, the wrap and crimp part 22 may be brought into direct contact with the upper surface of the cylindrical insulator 31.
 次いで、冷かしめ工程P5では、かしめ型M1、M2によって軸方向の圧力を負荷して冷間かしめを行い、ハウジング2の包みかしめ部22を筒状絶縁体31側に倒れ込ませて、軸力を効率よく筒状絶縁体31に伝達できる形状とする。
 次いで、熱かしめ工程P6では、包みかしめ部22に荷重を負荷しつつ、ハウジング2に交流電流を流す等によりシュルンプ部23を座屈・形成する。
 シュルンプ部23を形成することにより、冷熱サイクルに晒されても軸力が失われないようにすることができる。
 なお、熱かしめ工程P6において、シュルンプ部23を局所的に加熱するだけでなく、ハウジング2全体を加熱し、ハウジング2と粉末充填部30との温度差を設けることで、軸力を高め、気密性の低下をさらに抑制することもできる。
Next, in the cooling step P5, the pressure in the axial direction is applied by the caulking dies M1 and M2 to perform the cold caulking, and the wrapping caulking portion 22 of the housing 2 is tilted toward the cylindrical insulator 31 so that the axial force Is shaped so that it can be efficiently transmitted to the cylindrical insulator 31.
Next, in the heat caulking step P6, the shrump portion 23 is buckled and formed by applying an alternating current to the housing 2 while applying a load to the enveloping caulking portion 22.
By forming the shrump portion 23, it is possible to prevent the axial force from being lost even if it is exposed to a cooling cycle.
In the heat caulking step P6, not only the shrump part 23 is locally heated, but also the entire housing 2 is heated to provide a temperature difference between the housing 2 and the powder filling part 30, thereby increasing the axial force and airtightness. It is also possible to further suppress the decrease in sex.
 ここで、図3A、図3Bを参照して、本発明において、粉末充填材として用いられるタルクについて説明する。
 タルクは、(MgSi10(OH))の組成を有する水酸化マグネシウムとケイ酸塩とからなる天然鉱物であり、不純物としてマグネサイト、ドロマイト等を含む。このタルクは、図3Aに示すような単斜晶系・三斜晶系の結晶構造をしており、一定の方向にのみ完全劈開性を示す。
 本発明に用いられる大粒径の充填粉末量子であるタルク粒子300は、図3Bに示すように、薄片状の粒子が複数層状に重なって凝集した塊状粒子となっており、一定方向の荷重が負荷されると、粒子の滑りや劈開を生じ、薄片状の粒子が一定の方向に配向することになる。
Here, with reference to FIG. 3A and FIG. 3B, the talc used as a powder filler in this invention is demonstrated.
Talc is a natural mineral composed of magnesium hydroxide and silicate having a composition of (Mg 3 Si 4 O 10 (OH) 2 ), and includes magnesite, dolomite and the like as impurities. This talc has a monoclinic / triclinic crystal structure as shown in FIG. 3A, and exhibits complete cleavage only in a certain direction.
As shown in FIG. 3B, the talc particle 300, which is a large particle size packed powder quantum used in the present invention, is a lump-like particle formed by agglomerating flaky particles in a plurality of layers, and a load in a certain direction is applied. When loaded, the particles slip and cleave, and the flaky particles are oriented in a certain direction.
 図4A、図4Bを参照して本発明の効果について説明する。
 図4Aに示すように、粉末成形体30MLDは、上述の如くある程度の気孔が残留する状態で形成されており、充填粉末粒子(タルク粒子)300の方向もそろってはいない。
 これを図4Bに示すように、ハウジング2内において、筒状絶縁体31を介して押圧すると、タルク粒子300が滑りながら再配列され、配向性が増し、粒子間の空隙が少なくなる。
 このとき、ハウジング2の内周面20に接するタルク粒子300は、内周面との摩擦により軸方向に配向する傾向が強くなり、粉末充填部30の中心部分では、軸に垂直な平面に平行となる方向に配向する傾向が強くなる。
The effects of the present invention will be described with reference to FIGS. 4A and 4B.
As shown in FIG. 4A, the powder compact 30MLD is formed in a state in which some pores remain as described above, and the directions of the filled powder particles (talc particles) 300 are not aligned.
When this is pressed in the housing 2 via the cylindrical insulator 31 as shown in FIG. 4B, the talc particles 300 are rearranged while sliding, increasing the orientation and reducing the gaps between the particles.
At this time, the talc particles 300 in contact with the inner peripheral surface 20 of the housing 2 tend to be oriented in the axial direction due to friction with the inner peripheral surface, and in the central portion of the powder filling portion 30, parallel to a plane perpendicular to the axis. The tendency to orient in the direction becomes stronger.
 また、筒状絶縁体31の外周面とハウジング2の内周面20との間には、所定のハウジング側間隙GP2が存在するため、ハウジング側間隙GP2に露出する位置にあるタルク粒子300には、筒状絶縁体31からの軸方向の押圧力が直接作用することはなく、筒状絶縁体31の底面に接するタルク粒子300を介して間接的に押圧されることになる。
 その結果、図4B中点線で囲んだA部のように、筒状絶縁体31に接するタルク粒子300が隣り合うタルク粒子300に覆い被さり、あるいは、複数のタルク粒子300がハウジング側間隙GP2に並んだときに、ハウジング2の内周面20に食い込むため、ハウジング側間隙GP2に露出する位置では、あたかもタルク粒子300が蓋のような役割を果たし、ハウジング側間隙GP2内に脱粒するのを防いでいるものと推察される。
In addition, since a predetermined housing side gap GP2 exists between the outer peripheral surface of the cylindrical insulator 31 and the inner peripheral surface 20 of the housing 2, the talc particles 300 at a position exposed to the housing side gap GP2 The axial pressing force from the cylindrical insulator 31 does not act directly, but is indirectly pressed through the talc particles 300 in contact with the bottom surface of the cylindrical insulator 31.
As a result, the talc particles 300 in contact with the cylindrical insulator 31 are covered with the adjacent talc particles 300, or a plurality of talc particles 300 are arranged in the housing-side gap GP2, as indicated by a portion A surrounded by a dotted line in FIG. 4B. At this time, since it bites into the inner peripheral surface 20 of the housing 2, the talc particles 300 play a role as a lid at the position exposed to the housing side gap GP2 to prevent the particles from falling into the housing side gap GP2. It is assumed that there is.
 特に、本発明では、充填粉末粒子300として、篩分粒径DSVが210~710μmの大粒径のタルク粒子が用いられており、さらに、ハウジング側間隙GP2が、篩分粒径DSVの2倍以下に設定されているので、必ず、筒状絶縁体31の底面に接して直接的に押圧されるタルク粒子300の一部がハウジング側間隙GP2に露出するタルク粒子300に当接して、軸力を伝達することとなる。
 なお、素子側間隙GP1においても、同様の原理により、粉末充填部30から充填粉末粒子300が脱粒することがなく、安定して気密性を維持できる。
 また、予め、粉末成形体30MLDを形成し、ハウジング2内に収容した後、再度、圧縮することで、粉末充填部30を構成する充填粉末粒子300(タルク粒子)が完全に配向することはなく、適度に配向方向がばらつくため、ガスセンサGS1の軸方向と直交方向との熱膨張係数の差が極端に大きくなることもない。
In particular, in the present invention, talc particles having a large particle size with a sieving particle size D SV of 210 to 710 μm are used as the filling powder particles 300, and the housing-side gap GP2 has a sieving particle size D SV of Since it is set to be twice or less, a part of the talc particles 300 that are directly pressed against the bottom surface of the cylindrical insulator 31 is in contact with the talc particles 300 exposed in the housing-side gap GP2, Axial force will be transmitted.
In the element-side gap GP1, the filled powder particles 300 do not fall out of the powder filling portion 30 and the airtightness can be stably maintained based on the same principle.
Moreover, the powder compact 30MLD is formed in advance, accommodated in the housing 2, and then compressed again, so that the filled powder particles 300 (talc particles) constituting the powder filler 30 are not completely oriented. Since the orientation direction varies moderately, the difference in thermal expansion coefficient between the axial direction and the orthogonal direction of the gas sensor GS1 does not become extremely large.
 ここで、図5A、図5Bを参照して、本発明のガスセンサGS1と同様の構成において、充填粉末粒子であるタルク粒子300zとして、篩分粒径DSVが2~30μmの細かなタルク粉末を使用した場合の問題点について説明する。
 比較例1として、図5Aに示すガスセンサGSzのように、充填粉末粒子300zとして、平均粒径が10μm程度で、篩分粒径DSVが2から30μmの範囲のタルク粉末を用いた場合には、それだけ、比表面積は大きくなり、粉末充填部30zの内圧が分散され、各粒子を押さえる力は相対的に小さくなる。
Here, referring to FIG. 5A and FIG. 5B, in the same configuration as the gas sensor GS1 of the present invention, fine talc powder having a sieving particle size D SV of 2 to 30 μm is used as the talc particles 300z that are filled powder particles. The problem when used is described.
As Comparative Example 1, when a talc powder having an average particle size of about 10 μm and a sieving particle size D SV in the range of 2 to 30 μm is used as the packed powder particles 300z as in the gas sensor GSz shown in FIG. 5A. Accordingly, the specific surface area increases, the internal pressure of the powder filling portion 30z is dispersed, and the force for pressing each particle becomes relatively small.
 さらに、図5A中点線でおおったB部においては、筒状絶縁体31からの押圧力が全く伝達されないか、隣り合う複数のタルク粒子300zを介して伝達されても、それぞれのタルク粒子300zが受ける押圧力が小さくなる。
 ハウジング2の熱膨張により、筒状絶縁体31を介して粉末充填部30zに伝達される軸力が弱まったときに、外部からの振動が加わると、充填粉末粒子300zの脱粒が起こり易くなる。
 粉末充填部30zから充填粉末粒子300zが脱粒して、封止部材収容部20の内径と筒状絶縁体31の外径とのハウジング側間隙GP2から漏れ出るおそれがある。
Further, in the portion B covered by the dotted line in FIG. 5A, even if the pressing force from the cylindrical insulator 31 is not transmitted at all or is transmitted through a plurality of adjacent talc particles 300z, each talc particle 300z is The pressing force is reduced.
When the axial force transmitted to the powder filling portion 30z through the cylindrical insulator 31 is weakened due to the thermal expansion of the housing 2, if the external vibration is applied, the filling powder particles 300z are likely to fall apart.
The filled powder particles 300z may be separated from the powder filling portion 30z and leak out from the housing side gap GP2 between the inner diameter of the sealing member housing portion 20 and the outer diameter of the cylindrical insulator 31.
 一旦、充填粉末粒子300zの脱粒が起こると、粉末充填部30zの内圧が低下し、さらなる充填粉末粒子300zの脱粒を引き起こし、粉末充填部30zの気密性が低下することになる。
 このため、図5Bに示すガスセンサGSyのように、充填粉末粒子300zの脱粒を抑制するために、筒状絶縁体31と粉末充填部30zの上面との間に、金属製、あるいは、バ-ミキュライト、雲母、雲母成型品等からなるシールパッキン34を設けることが必要となり、製造工数の増加及び材料コストの増加を招いていた。
Once the pulverization of the filled powder particles 300z occurs, the internal pressure of the powder filling portion 30z decreases, causing further pulverization of the filled powder particles 300z, and the airtightness of the powder filling portion 30z decreases.
Therefore, as in the gas sensor GSy shown in FIG. 5B, in order to suppress the detachment of the filled powder particles 300z, a metal or vermiculite is formed between the cylindrical insulator 31 and the upper surface of the powder filling portion 30z. Further, it is necessary to provide a seal packing 34 made of mica, mica molded product, etc., resulting in an increase in manufacturing man-hours and an increase in material costs.
 図6を参照して、充填粉末粒子300の篩分粒径DSと押圧荷重(kN)と気孔率(%)との関係について行った試験結果について説明する。
 本図に示すように、粒度の異なるタルク粒子を用い、筒状絶縁体31を押圧する荷重を変化させて、気孔率を測定したところ、いずれの粒径においても、10kN(235N/mmに相当)以上で、気孔率が安定化し、30kN(705N/mmに相当)以上では、ガスセンサ素子1の割れを招くおそれがあり、篩分粒径DSVが210~710μmの時に気孔率を最も低くできることが判明した。
Referring to FIG. 6, the test results will be described were performed on the relationship sieve particle size DS V and the pressing load of the filled powder particles 300 (kN) Porosity (%) and.
As shown in this figure, when talc particles having different particle sizes were used and the load for pressing the cylindrical insulator 31 was changed and the porosity was measured, 10 kN (to 235 N / mm 2 at any particle size). In the above case, the porosity is stabilized, and in the case of 30 kN (corresponding to 705 N / mm 2 ) or more, there is a possibility that the gas sensor element 1 is cracked, and when the sieving particle size D SV is 210 to 710 μm, the porosity is most It turned out that it can be lowered.
 なお、篩分粒径DSVが210~1000μmの場合も気孔率を低くすることができるが、成形体の状態とほとんど変化がないため、ハウジング2内に粉末成形体30MLDを組み付けた後、筒状絶縁体31を介して押圧しても、素子側間隙GP1、ハウジング側間隙GP2に充填粉末粒子300が食い込まず、却って粉末充填部30から、充填粉末粒子300の脱粒を招くおそれがある。
 また、充填粉末粒子300の配向性が強すぎると、ガスセンサの軸方向と径方向との熱膨張係数の差が大きくなり、ハウジング2からの軸力が弱まるおそれがある。
 そこで、篩分粒径DSVは、適度に配向性のバラツキを生じる210~710μmの範囲とするのが望ましいことが判明した。
Note that the porosity can be lowered even when the sieve particle size D SV is 210 to 1000 μm, but since there is almost no change from the state of the molded body, after assembling the powder molded body 30MLD in the housing 2, Even when pressed through the insulating insulator 31, the filled powder particles 300 do not bite into the element side gap GP <b> 1 and the housing side gap GP <b> 2, and there is a possibility that the filled powder particles 300 may be separated from the powder filling portion 30.
In addition, if the orientation of the filled powder particles 300 is too strong, the difference in thermal expansion coefficient between the axial direction and the radial direction of the gas sensor increases, and the axial force from the housing 2 may be weakened.
Thus, it has been found that the sieving particle size D SV is desirably in the range of 210 to 710 μm, which causes moderate variation in orientation.
 ここで、表1を参照して、本発明の効果について説明する。
 本発明者等は、タルク粒径DSVとタルク押え部間隙(素子側間隙GP1、ハウジング側間隙GP2)とを変化させ、複数のガスセンサを作成し、24万km走行に相当する耐久試験を行い、耐久試験後の高温気密性について調査を行い、その結果を表1に示す。
 耐久条件として、ハウジング2を400℃に加熱した後水没させて冷熱ストレスを与え、これを400回繰り返した。
 また、高温気密性の評価は、550℃の高温環境下において、ハウジング2の先端側から空気を圧入し(空気圧0.4MPa)、その流量が10cc/min以下の場合には、気密性良好と判定し、丸印を付し、10cc/minを超える場合には、気密性不良と判定し、×印を付した。
 その結果、タルク押え部間隙(素子側間隙GP1,ハウジング側間隙GP2)が0.1mmより狭い場合には、筒状絶縁体31のハウジング2への組み付けが困難となる。また、タルク押え部間隙が0.1mm以上で、組み付けが容易となる。そして、タルク押え部間隙(素子側間隙GP1,ハウジング側間隙GP2)がタルク篩分粒径DSVの2倍を超える場合には、高温気密性の悪化が認められ、タルク篩分粒径DSVの2倍以下である場合には、良好な高温気密性を維持できることが判明した。
Figure JPOXMLDOC01-appb-T000001
Here, the effects of the present invention will be described with reference to Table 1.
The inventors changed the talc particle diameter DSV and the talc presser part gap (element side gap GP1, housing side gap GP2), created a plurality of gas sensors, and performed an endurance test corresponding to 240,000 km running. Then, the high temperature airtightness after the durability test was investigated, and the result is shown in Table 1.
As an endurance condition, the housing 2 was heated to 400 ° C. and then immersed in water to apply a thermal stress, and this was repeated 400 times.
Moreover, the evaluation of the high temperature airtightness is that when air is injected from the front end side of the housing 2 under a high temperature environment of 550 ° C. (air pressure 0.4 MPa) and the flow rate is 10 cc / min or less, the airtightness is good. Judgment was made and a round mark was given. When it exceeded 10 cc / min, it was judged that the airtightness was poor, and an x mark was given.
As a result, when the talc pressing portion gap (element side gap GP1, housing side gap GP2) is narrower than 0.1 mm, it is difficult to assemble the cylindrical insulator 31 to the housing 2. Further, the talc presser gap is 0.1 mm or more, so that assembly is easy. Then, talc pressing portion gap (element side gap GP1, the housing-side gap GP2) when more than 2 times the talc sieving particle diameter D SV is hot airtightness deterioration was observed, talc sieve particle diameter D SV It was found that good high temperature hermeticity can be maintained when it is 2 times or less.
Figure JPOXMLDOC01-appb-T000001
 図7Aを参照して、本発明の第1の実施形態におけるガスセンサGS1について説明する。
 ガスセンサGS1は、いわゆるコップ型のガスセンサで、ヒ-タ18を内蔵して早期の活性化を図った早期活性型のガスセンサである。
 なお、本実施形態においては、コップ型センサの典型例である酸素センサを例に説明するが、本発明において、検出対象を限定するものではなく、酸素センサ、A/Fセンサ、NOxセンサ、アンモニアセンサ、水素センサ等のいずれにも適用し得るものである。
 ガスセンサGS1は、被測定ガス流路6に設けられ、先端に設けた検出部12が被測定ガスGにさらされている。
With reference to FIG. 7A, the gas sensor GS1 in the first embodiment of the present invention will be described.
The gas sensor GS1 is a so-called cup-type gas sensor, and is an early activation type gas sensor that incorporates a heater 18 to achieve early activation.
In the present embodiment, an oxygen sensor that is a typical example of a cup-type sensor will be described as an example. However, in the present invention, the detection target is not limited, and an oxygen sensor, an A / F sensor, a NOx sensor, ammonia The present invention can be applied to any of sensors, hydrogen sensors, and the like.
The gas sensor GS <b> 1 is provided in the measured gas flow path 6, and the detection unit 12 provided at the tip is exposed to the measured gas G.
 ガスセンサ素子1は、酸素イオン電導性を有するジルコニア等の公知の固体電解質材料を用いて、有底筒状に形成した固体電解質体120の内側表面に基準電極121を、外側表面に測定電極122をそれぞれ設けて検出部12を構成し、検出部12の基端側に、径大となるように拡径した拡径部11を設けてある。
 固体電解質体120の内側には基準ガスとして大気が導入され、基準電極121に接している。
 基準電極121には、プラス端子金具131S+を介してプラス信号線14S+が接続されている。
The gas sensor element 1 uses a known solid electrolyte material such as zirconia having oxygen ion conductivity, and has a reference electrode 121 on the inner surface of a solid electrolyte body 120 formed in a bottomed cylindrical shape, and a measurement electrode 122 on the outer surface. Each of them is provided to constitute a detection unit 12, and a diameter-expanded portion 11 that is expanded to have a large diameter is provided on the base end side of the detection unit 12.
Air is introduced as a reference gas inside the solid electrolyte body 120 and is in contact with the reference electrode 121.
A plus signal line 14S + is connected to the reference electrode 121 via a plus terminal fitting 131S +.
 検出部12の外側には被測定ガスGに晒される測定電極122が形成されており、測定電極122は、固体電解質体120の基端部100において、マイナス端子金具131S-に接続され、さらに、マイナス端子金具131S-はマイナス信号線14S-に接続されている。
 プラス端子金具131S+は、一対の信号線14Sの一方の中心線140Sと接続する圧着部130S+と、外周側に向かって押圧力を発揮し、固体電解質体120の内周面に形成された基準電極121と弾性的に接続する接続部134と、中心側に向かって押圧力を発揮し、ヒ-タ18を把持するヒ-タ把持部133とによって構成されている。
 マイナス端子金具131S-は、一対の信号線14Sの他方の中心線140Sと接続する圧着部130S-と、中心に向かって押圧力を発揮し、固体電解質体120の外周面に形成された測定基準電極123と弾性的に接続する接続部135とによって構成されている。ガスセンサ素子1の内側には、先端に通電により発熱する発熱体が内蔵されたヒ-タ18が収容されている。
A measurement electrode 122 that is exposed to the gas G to be measured is formed outside the detection unit 12, and the measurement electrode 122 is connected to the negative terminal fitting 131S- at the base end portion 100 of the solid electrolyte body 120. The minus terminal fitting 131S- is connected to the minus signal line 14S-.
The plus terminal fitting 131S + has a crimping portion 130S + connected to one center line 140S of the pair of signal lines 14S and a reference electrode formed on the inner peripheral surface of the solid electrolyte body 120 that exerts a pressing force toward the outer peripheral side. The connecting portion 134 is elastically connected to the contact portion 121, and the heater gripping portion 133 that exerts a pressing force toward the center and grips the heater 18.
The minus terminal fitting 131S- is a crimping part 130S- connected to the other center line 140S of the pair of signal lines 14S, and a measurement standard formed on the outer peripheral surface of the solid electrolyte body 120 that exerts a pressing force toward the center. The connection part 135 is elastically connected to the electrode 123. Housed inside the gas sensor element 1 is a heater 18 having a built-in heating element that generates heat when energized.
 ヒ-タ18はアルミナ等の絶縁体にタングステンやモリブデンシリサイト等の公知の発熱体が内蔵されている。
 ヒ-タ18の基端側には、内蔵された図略の発熱体に通電するための一対の通電電極181が設けられている。
 一対の通電電極181は、一対の通電端子金具13Hを介して、一対の通電線14Hに接続されている。
The heater 18 includes a known heating element such as tungsten or molybdenum silicide in an insulator such as alumina.
A pair of energizing electrodes 181 for energizing a built-in heating element (not shown) is provided on the proximal end side of the heater 18.
The pair of energizing electrodes 181 is connected to the pair of energizing wires 14H via a pair of energizing terminal fittings 13H.
 通電端子金具13Hは、基端側で通電線14Hの中心線140Hに接続する圧着部130Hと、先端側で、中心に向かう押圧力を発揮して、通電電極181に弾性的に当接して導通を図る接続部131Hとによって構成されている。 The energizing terminal fitting 13H is electrically connected to the energizing electrode 181 by elastically contacting the energizing electrode 181 by exerting a pressing force toward the center on the crimping portion 130H connected to the center line 140H of the energizing wire 14H on the proximal end side. And a connecting portion 131H for achieving the above.
 ハウジング2は、ステンレス、鉄、ニッケル、これらの合金、炭素鋼等、設置環境に応じて公知の金属材料が用いられて筒状に形成されており、内側にガスセンサ素子1を収容固定している。
 ハウジング2の内周面20と、ガスセンサ素子1の外周面10との間に、本発明の要部である粉末充填部30と筒状絶縁体31とが配設されている。
 ハウジング2の中腹において内周面の一部が、先端に向かって径小となるように縮径され、ガスセンサ素子1の拡径部11を係止する係止部21が形成されている。
 ハウジング2の基端側には、包みかしめ部22、シュルンプ部23が形成され、筒状絶縁体31を先端側軸方向に向かって押圧する軸力を発生させている。
The housing 2 is formed in a cylindrical shape using a known metal material such as stainless steel, iron, nickel, alloys thereof, carbon steel, or the like according to the installation environment, and accommodates and fixes the gas sensor element 1 on the inner side. .
Between the inner peripheral surface 20 of the housing 2 and the outer peripheral surface 10 of the gas sensor element 1, a powder filling portion 30 and a cylindrical insulator 31 which are the main parts of the present invention are disposed.
A part of the inner peripheral surface of the housing 2 is reduced in diameter so that the diameter decreases toward the tip, and a locking part 21 that locks the diameter-enlarged part 11 of the gas sensor element 1 is formed.
On the proximal end side of the housing 2, a wrap crimping portion 22 and a shrunk portion 23 are formed to generate an axial force that presses the cylindrical insulator 31 in the distal axial direction.
 ハウジング2のボス部24には、ハウジングの基端側を覆い、信号線及び通電線を引き出し固定する筒状のケ-シング4が固定されている。
 ハウジング2の先端側外周にはネジ部25が形成され、被測定ガス流路6に螺結されている。
 ハウジング2の基端側外周にはネジ部25を締め付けるための六角部26が形成されている。
 ハウジング2の先端には、カバ-体50、51を固定するためのかしめ部27が形成されている。
A cylindrical casing 4 is fixed to the boss portion 24 of the housing 2 so as to cover the proximal end side of the housing and to draw out and fix the signal line and the conductive line.
A screw portion 25 is formed on the outer periphery on the front end side of the housing 2 and is screwed to the gas flow path 6 to be measured.
A hexagonal portion 26 for tightening the screw portion 25 is formed on the outer periphery of the base end side of the housing 2.
A caulking portion 27 for fixing the cover bodies 50 and 51 is formed at the tip of the housing 2.
 本実施形態においては、封止手段3は、粉末充填部30、筒状絶縁体31、スペーサリング32、シールリング33によって構成されている。
 ガスセンサGS1と、ガスセンサGS1を収容固定する筒状のハウジング2と、ガスセンサGS1の外周面10と、ハウジング2の内周面20との間に、封止手段3が設けられている。
In the present embodiment, the sealing unit 3 includes a powder filling unit 30, a cylindrical insulator 31, a spacer ring 32, and a seal ring 33.
Sealing means 3 is provided between the gas sensor GS1, the cylindrical housing 2 that accommodates and fixes the gas sensor GS1, the outer peripheral surface 10 of the gas sensor GS1, and the inner peripheral surface 20 of the housing 2.
 筒状絶縁体31の内周面310とガスセンサ素子1の外周面10との間には素子側間隙GP1が形成されている。また、筒状絶縁体31の外周面311とハウジング2の内周面20との間にはハウジング側間隙GP2が形成されている。
 そして、粉末充填部30を構成する充填粉末粒子300の篩分粒径DSVと、素子側間隙GP1と、ハウジング側間隙GP2との関係において、素子側間隙GP1、及び、ハウジング側間隙GP2は、いずれも、充填粉末粒子300の篩分粒径DSVの2倍以下に形成されている。
An element-side gap GP <b> 1 is formed between the inner peripheral surface 310 of the cylindrical insulator 31 and the outer peripheral surface 10 of the gas sensor element 1. A housing-side gap GP <b> 2 is formed between the outer peripheral surface 311 of the cylindrical insulator 31 and the inner peripheral surface 20 of the housing 2.
Then, in the relationship among the sieving particle size D SV of the filling powder particles 300 constituting the powder filling unit 30, the element side gap GP1, and the housing side gap GP2, the element side gap GP1 and the housing side gap GP2 are: In either case, the sieving particle size D SV of the packed powder particle 300 is less than twice.
 ガスセンサ素子1の先端側に設けた検出部12は、カバ-体50、51によって覆われている。
 カバ-体50、51は、ハウジング2の先端に設けたかしめ部27によってかしめ固定されている。
 カバ-体50、51には、被測定ガスGをカバ-体50、51の内側に導入し、外側に導出するための貫通孔が適宜穿設されている。
 六角部26の基端側には、ケ-シング4を固定するためのボス部24が形成されている。
The detection unit 12 provided on the distal end side of the gas sensor element 1 is covered with cover bodies 50 and 51.
The cover bodies 50 and 51 are caulked and fixed by a caulking portion 27 provided at the front end of the housing 2.
The cover bodies 50 and 51 are appropriately provided with through holes for introducing the gas to be measured G into the cover bodies 50 and 51 and leading it out.
On the proximal end side of the hexagonal portion 26, a boss portion 24 for fixing the casing 4 is formed.
 ケ-シング4はステンレス等の金属からなり、段付き筒状に形成された筒状部40と、大気を導入する通気孔41と、ケ-シング4の基端側を封止するかしめ部42と、インシュレ-タ15の保持手段43によって構成されている。
 ケ-シング4は、ハウジング2の基端側を覆いつつ、一対の信号線14S+,14S-、一対の信号端子金具131S+、131S-、一対の通電線14H、一対の通電端子金具13Hを保持する。
 一対の信号端子金具131S+、131S-、一対の通電線14Hは、互いの電気的な絶縁を図るべく、アルミナ等の絶縁材料からなるインシュレ-タ15内に収容されている。
The casing 4 is made of a metal such as stainless steel, and has a cylindrical portion 40 formed in a stepped cylindrical shape, a vent hole 41 for introducing air, and a caulking portion 42 that seals the base end side of the casing 4. And holding means 43 of the insulator 15.
The casing 4 covers the base end side of the housing 2 and holds a pair of signal lines 14S + and 14S-, a pair of signal terminal fittings 131S + and 131S-, a pair of energization wires 14H, and a pair of energization terminal fittings 13H. .
The pair of signal terminal fittings 131S +, 131S- and the pair of energization wires 14H are accommodated in an insulator 15 made of an insulating material such as alumina so as to be electrically insulated from each other.
 インシュレ-タ15は、保持手段43によって弾性的に把持されている。
 ケ-シング4には、通気孔41から大気は導入しつつ、水分の侵入は阻止する公知の撥水フィルタ16が設けられている。
 ケ-シング4の基端側には、シリコ-ンゴム、フッ素ゴム等の耐熱弾性部材からなり、気密性を確保しつつ一対の信号線14S+/-、通電線14Hを引き出す封止部材17が設けられている。
 なお、本発明において、ケ-シング4の内側で、一対の信号線14S(+/-)、及び、一対の通電線14Hを、どのようにガスセンサ素子1と接続するか、ケ-シング4の内側にどのようにして基準ガスとしての大気を取り込むようにするか、インシュレ-タ15の形状等については、適宜変更し得るものであり、実施例に限定するものではない。
The insulator 15 is elastically held by the holding means 43.
The casing 4 is provided with a known water repellent filter 16 that prevents air from entering while air is introduced from the vent hole 41.
On the base end side of the casing 4, there is provided a sealing member 17 made of a heat-resistant elastic member such as silicone rubber or fluoro rubber, and pulling out the pair of signal lines 14S +/− and the conductive line 14H while ensuring airtightness. It has been.
In the present invention, how the pair of signal lines 14S (+/−) and the pair of conductive lines 14H are connected to the gas sensor element 1 inside the casing 4, The manner in which the atmosphere as the reference gas is taken inside, the shape of the insulator 15 and the like can be changed as appropriate, and are not limited to the embodiments.
 図7Bを参照して、本発明の第2の実施形態におけるガスセンサGS2について説明する。
 なお、前期実施形態と同様の構成については、同じ符号を付し、相違する部分については、対応する符号にアルファベットの枝番を付して区別したので、共通する部分についての説明を省略し、本実施形態における特徴的な部分を中心に説明する。
 ガスセンサGS2は、ガスセンサGS1からヒ-タを廃して、簡易な構成とした簡易型ガスセンサであり、自動二輪車等の内燃機関に用いられる。
 本実施形態においても、図1に示したのと同様に、ガスセンサ素子1とハウジング2との間に粉末充填部30と筒状絶縁体31とを設けて、押さえ部における間隙GP1、GP2を所定の範囲とすることで、気密性の確保が図られている。
With reference to FIG. 7B, gas sensor GS2 in the 2nd Embodiment of this invention is demonstrated.
In addition, about the same structure as previous embodiment, the same code | symbol is attached | subjected, About the different part, since the branch number of the alphabet was attached to the corresponding code | symbol, the description about a common part is abbreviate | omitted, Description will be made centering on characteristic portions in the present embodiment.
The gas sensor GS2 is a simple gas sensor that has a simple configuration by eliminating the heater from the gas sensor GS1, and is used in an internal combustion engine such as a motorcycle.
Also in the present embodiment, as shown in FIG. 1, the powder filling portion 30 and the cylindrical insulator 31 are provided between the gas sensor element 1 and the housing 2, and the gaps GP1 and GP2 in the pressing portion are set to be predetermined. By ensuring that the airtightness is within the range, airtightness is ensured.
 前記実施形態においては、ガスセンサ素子1を早期に活性化するため、通電により発熱するヒ-タ部14を具備するが、本実施形態においては、ガスセンサ素子1Aの活性化は被測定ガスG自身の有する熱を利用して行い、活性化のためのヒ-タを設けていない。
 さらに、前記実施形態においては、検出部12の基準電極121は、プラス端子金具131S+を介してプラス信号線14S+に接続され、測定電極122は、マイナス端子金具131S-を介してマイナス信号線14S-に接続されているが、本実施形態においては、マイナス信号線14S-を廃して検出部12に設けた測定電極122は、スペーサリング32、ハウジング2を介して被測定ガス流路6に接地され、基準電極121とプラス端子金具13Aを介して接続されたプラス信号線14のみが引き出される簡易な構成となっている。
 プラス端子金具13Aは、信号線14の中心線140と接続する圧着部130Aと、固体電解質体の内周面に形成された基準電極121と弾性的に接続する接続部131Aと、固体電解質体の内周面の傾斜部に弾性的に当接して軸方向の振動を抑制する当接部132Aとによって構成されている。
 本実施形態においても、図1に示したのと同様に、ガスセンサ素子1Aとハウジング2との間に粉末充填部30と筒状絶縁体31とを設けて、押さえ部における間隙GP1、GP2を所定の範囲とすることで、気密性の確保が図られている。
In the above-described embodiment, the heater 14 that generates heat by energization is provided in order to activate the gas sensor element 1 at an early stage. However, in this embodiment, the activation of the gas sensor element 1A is performed by the gas G to be measured itself. No heat is provided for activation, using the heat it has.
Further, in the embodiment, the reference electrode 121 of the detection unit 12 is connected to the plus signal line 14S + via the plus terminal fitting 131S +, and the measurement electrode 122 is connected to the minus signal line 14S− via the minus terminal fitting 131S−. However, in this embodiment, the measurement electrode 122 provided in the detection unit 12 by eliminating the negative signal line 14S− is grounded to the gas flow path 6 to be measured through the spacer ring 32 and the housing 2. Only the plus signal line 14 connected to the reference electrode 121 via the plus terminal fitting 13A is drawn out.
The positive terminal fitting 13A includes a crimping portion 130A connected to the center line 140 of the signal line 14, a connection portion 131A elastically connected to the reference electrode 121 formed on the inner peripheral surface of the solid electrolyte body, and a solid electrolyte body The contact portion 132A is configured to elastically contact the inclined portion of the inner peripheral surface and suppress axial vibration.
Also in the present embodiment, as shown in FIG. 1, the powder filling portion 30 and the cylindrical insulator 31 are provided between the gas sensor element 1A and the housing 2, and the gaps GP1 and GP2 in the pressing portion are set to be predetermined. By ensuring that the airtightness is within the range, airtightness is ensured.
 図7Cを参照して、本発明の第3の実施形態におけるガスセンサGS3について説明する。
 上記実施形態においては、いわゆるコップ型のガスセンサを示したが、本発明は、いわゆる積層型のガスセンサにも適用し得るものであり、本実施形態は、その一例である。
With reference to FIG. 7C, a gas sensor GS3 according to a third embodiment of the present invention will be described.
In the above embodiment, a so-called cup-type gas sensor has been shown. However, the present invention can also be applied to a so-called laminated gas sensor, and this embodiment is an example.
 前記実施形態においては、ガスセンサ素子1、1Aを構成する固体電解質体の一部を拡径した拡径部11、11Aとハウジング2の内周面20との間に粉末充填部30、筒状絶縁体31、スペーサリング32、シールリング33からなる封止手段3を介装してハウジング2の係止部21と、包みかしめ部22、シュルンプ部23とによって挟持して、軸力を作用させたが、本実施形態におけるガスセンサGS3では、図7Cに示すように、筒状のハウジング2、ハウジング2内に配置されたガスセンサ素子1B、及びハウジング2の内側面20とガスセンサ素子1Bを構成する絶縁体の外側面10Bとの間に、粉末充填部30、筒状絶縁体31、スペーサリング32、シールリング33からなる封止手段3を介装して、ハウジング2の包みかしめ部22,シュルンプ部23、係止部21によって、ガスセンサ素子1Bの絶縁体の一部を拡径した拡径部11Bを挟持して、軸力を作用させて気密性を保持している。 In the embodiment, the powder filling portion 30 and the cylindrical insulation are provided between the enlarged diameter portions 11 and 11A obtained by enlarging a part of the solid electrolyte body constituting the gas sensor elements 1 and 1A and the inner peripheral surface 20 of the housing 2. The sealing means 3 including the body 31, the spacer ring 32, and the seal ring 33 is interposed between the latching portion 21 of the housing 2, the wrapping caulking portion 22, and the shrump portion 23, and an axial force is applied. However, in the gas sensor GS3 in the present embodiment, as shown in FIG. 7C, the tubular housing 2, the gas sensor element 1B disposed in the housing 2, and the insulator constituting the gas sensor element 1B with the inner side surface 20 of the housing 2 The housing 2 is wrapped with a sealing means 3 including a powder filling portion 30, a cylindrical insulator 31, a spacer ring 32, and a seal ring 33 interposed between the outer surface 10B and the outer surface 10B. Clamping portion 22, Shurunpu portion 23, the locking portion 21, by holding the enlarged diameter portion 11B which is enlarged a portion of the insulator of the gas sensor element 1B, holding the airtightness by applying an axial force.
 本実施形態における検出部12Bは、いわゆる積層型のガスセンサ素子によって構成され、複数のセラミックシ-トを積層して平板棒状に形成されている。
 また、検出部12Bは、アルミナ等からなる筒状の絶縁体内に挿入され、ガラス等からなる封止部35によって保持されている。
The detection unit 12B in the present embodiment is constituted by a so-called laminated gas sensor element, and is formed in a flat bar shape by laminating a plurality of ceramic sheets.
The detection unit 12B is inserted into a cylindrical insulator made of alumina or the like and is held by a sealing unit 35 made of glass or the like.
 本実施形態においても、図1に示したのと同様に、ガスセンサ素子1Bとハウジング2との間に粉末充填部30と筒状絶縁体31とを設けて、押さえ部における間隙GP1、GP2を所定の範囲とすることで、気密性の確保が図られている。
 なお、具体的なガスセンサ素子1Bの構成は特に限定するものではなく、検出部12Bには、要求される検出機能に応じた検出セル、発熱部等が形成される。
 また、本実施形態におけるガスセンサの検出対象はガス成分に限らず、PM、水分等を対象とすることもできる。
Also in the present embodiment, as shown in FIG. 1, the powder filling portion 30 and the cylindrical insulator 31 are provided between the gas sensor element 1B and the housing 2, and the gaps GP1 and GP2 in the pressing portion are set to be predetermined. By ensuring that the airtightness is within the range, airtightness is ensured.
The specific configuration of the gas sensor element 1B is not particularly limited, and the detection unit 12B is formed with a detection cell, a heat generation unit, and the like according to a required detection function.
In addition, the detection target of the gas sensor in the present embodiment is not limited to the gas component, but may be PM, moisture, or the like.
1 ガスセンサ素子
2 ハウジング
3 封止手段
10 素子外周面
20 ハウジング内周面
30 粉末充填部
300 充填粉末粒子(タルク粒子)
31 筒状絶縁体
310 筒状絶縁体内周面
311 筒状絶縁体外周面
GS1、GS2、GS3 ガスセンサ
SV 篩分粒径
GP1 素子側間隙
GP2 ハウジング側間隙
DESCRIPTION OF SYMBOLS 1 Gas sensor element 2 Housing 3 Sealing means 10 Element outer peripheral surface 20 Housing inner peripheral surface 30 Powder filling part 300 Filling powder particle (talc particle)
31 Tubular insulator 310 Tubular insulator outer peripheral surface 311 Tubular insulator outer peripheral surface GS1, GS2, GS3 Gas sensor D SV sieving particle size GP1 Element side gap GP2 Housing side gap

Claims (6)

  1.  被測定ガス中の特定成分を検出するガスセンサであって、ガスセンサ素子(1)と、該ガスセンサ素子(1)を収容固定する筒状のハウジング(2)と、前記ガスセンサ素子(1)の外周面(10)と、前記ハウジング(2)の内周面(20)との間に、タルクを主成分とする粉末充填部(30)と、該粉末充填部(30)を押圧する筒状絶縁体(31)とを含む封止手段(3)を設けて封止してなるガスセンサ(GS1、GS2、GS3)において、
     前記粉末充填部(30)を構成する充填粉末粒子(300)の篩分粒径DSVと、
     前記筒状絶縁体(31)の内周面(310)と前記ガスセンサ素子(1)の外周面(10)との素子側間隙GP1と、
     前記筒状絶縁体(31)の外周面(311)と前記ハウジング(2)の内周面(20)とのハウジング側間隙GP2との関係において、
     前記素子側間隙GP1、及び、前記ハウジング側間隙GP2が、
     前記充填粉末粒子(300)の篩分粒径DSVの2倍以下であることを特徴とするガスセンサ(GS1、GS2、GS3)。
    A gas sensor for detecting a specific component in a gas to be measured, the gas sensor element (1), a cylindrical housing (2) for housing and fixing the gas sensor element (1), and an outer peripheral surface of the gas sensor element (1) (10) and the inner peripheral surface (20) of the housing (2), a powder filling part (30) mainly composed of talc, and a cylindrical insulator for pressing the powder filling part (30) (31) In the gas sensor (GS1, GS2, GS3) formed by providing the sealing means (3) including the sealing,
    Sieving particle size D SV of filled powder particles (300) constituting the powder filling portion (30);
    An element side gap GP1 between the inner peripheral surface (310) of the cylindrical insulator (31) and the outer peripheral surface (10) of the gas sensor element (1);
    In the relationship between the outer peripheral surface (311) of the cylindrical insulator (31) and the housing side gap GP2 between the inner peripheral surface (20) of the housing (2),
    The element side gap GP1 and the housing side gap GP2 are
    Gas sensors (GS1, GS2, GS3), wherein the sieving particle size D SV of the filled powder particles (300) is not more than twice.
  2.  前記篩分粒径DSVが、210μm以上、710μm以下である請求項1に記載のガスセンサ(GS1、GS2、GS3)。 The gas sensor (GS1, GS2, GS3) according to claim 1, wherein the sieving particle size D SV is 210 µm or more and 710 µm or less.
  3.  前記素子側間隙GP1、及び、前記ハウジング側間隙GP2が0.1mm以上である請求項1又は2に記載のガスセンサ(GS1、GS2、GS3)。 The gas sensor (GS1, GS2, GS3) according to claim 1 or 2, wherein the element side gap GP1 and the housing side gap GP2 are 0.1 mm or more.
  4.  前記充填粉末粒子(300)を一軸加圧して、筒状に成形した粉末成形体(30MLD)とし、さらに、前記ガスセンサ素子(1)と前記ハウジング(2)との間に区画した空間内で前記筒状絶縁体(31)を介して押圧して気密性を高くして前記粉末充填部(30)とした請求項1ないし3のいずれかに記載のガスセンサ。 The filled powder particles (300) are uniaxially pressed to form a powder molded body (30MLD) molded into a cylindrical shape, and further, in the space defined between the gas sensor element (1) and the housing (2), The gas sensor according to any one of claims 1 to 3, wherein the powder filling portion (30) is formed by pressing through a cylindrical insulator (31) to enhance airtightness.
  5.  前記ハウジング(2)が、前記筒状絶縁体(31)を軸方向に弾性的に押圧する包みかしめ部(22)を具備する請求項1ないし4のいずれかに記載のガスセンサ。 The gas sensor according to any one of claims 1 to 4, wherein the housing (2) includes a wrap crimping portion (22) that elastically presses the cylindrical insulator (31) in the axial direction.
  6.  前記ハウジング(2)が、前記筒状絶縁体(31)を軸方向に弾性的に押圧するシュルンプ部(23)を具備する請求項1ないし4のいずれかに記載のガスセンサ。 The gas sensor according to any one of claims 1 to 4, wherein the housing (2) includes a shrump portion (23) for elastically pressing the cylindrical insulator (31) in the axial direction.
PCT/JP2014/075493 2013-09-25 2014-09-25 Gas sensor WO2015046363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480053080.5A CN105814439B (en) 2013-09-25 2014-09-25 Gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198006A JP6201568B2 (en) 2013-09-25 2013-09-25 Gas sensor
JP2013-198006 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015046363A1 true WO2015046363A1 (en) 2015-04-02

Family

ID=52743493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075493 WO2015046363A1 (en) 2013-09-25 2014-09-25 Gas sensor

Country Status (3)

Country Link
JP (1) JP6201568B2 (en)
CN (1) CN105814439B (en)
WO (1) WO2015046363A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106250632A (en) * 2016-08-03 2016-12-21 西安交通大学 A kind of structural optimization method of three electrode ionization type carbon nanotube gas sensors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6966512B2 (en) * 2015-09-30 2021-11-17 日本碍子株式会社 Gas sensor
CN118202237A (en) * 2021-12-24 2024-06-14 日本特殊陶业株式会社 Gas sensor and method for manufacturing gas sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114210A (en) * 2001-07-31 2003-04-18 Denso Corp Gas sensor
JP2005326394A (en) * 2004-04-13 2005-11-24 Denso Corp Gas sensor
JP2005326395A (en) * 2004-04-13 2005-11-24 Denso Corp Gas sensor
JP2007218800A (en) * 2006-02-17 2007-08-30 Denso Corp Gas sensor and its manufacturing method
JP2010025617A (en) * 2008-07-16 2010-02-04 Denso Corp Manufacturing method of gas sensor
JP2013015509A (en) * 2011-06-09 2013-01-24 Denso Corp Gas sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019729A (en) * 2008-07-11 2010-01-28 Denso Corp Gas sensor and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114210A (en) * 2001-07-31 2003-04-18 Denso Corp Gas sensor
JP2005326394A (en) * 2004-04-13 2005-11-24 Denso Corp Gas sensor
JP2005326395A (en) * 2004-04-13 2005-11-24 Denso Corp Gas sensor
JP2007218800A (en) * 2006-02-17 2007-08-30 Denso Corp Gas sensor and its manufacturing method
JP2010025617A (en) * 2008-07-16 2010-02-04 Denso Corp Manufacturing method of gas sensor
JP2013015509A (en) * 2011-06-09 2013-01-24 Denso Corp Gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106250632A (en) * 2016-08-03 2016-12-21 西安交通大学 A kind of structural optimization method of three electrode ionization type carbon nanotube gas sensors
CN106250632B (en) * 2016-08-03 2019-05-24 西安交通大学 A kind of structural optimization method of three electrodes ionization type carbon nanotube gas sensor

Also Published As

Publication number Publication date
CN105814439A (en) 2016-07-27
CN105814439B (en) 2019-01-01
JP6201568B2 (en) 2017-09-27
JP2015064273A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
US8470163B2 (en) Exhaust gas sensor and method of manufacture
WO2015046363A1 (en) Gas sensor
KR20000016317A (en) Sealing element for sensors
JPH0886770A (en) Oxygen sensor
JP5973222B2 (en) Glow plug and manufacturing method thereof
US20150177073A1 (en) High temperature measuring sensor arrangement
KR20000022058A (en) Sensor element seal for a gas sensor
JP2015099109A (en) Gas sensor
JP2010243422A (en) Gas sensor and method of manufacturing the same
US7254984B2 (en) Sensor
JPH11108884A (en) Packing for sensor element of gas sensor and its production
US20140355653A1 (en) Exhaust gas temperature sensor
WO2015076131A1 (en) Gas sensor
US8389904B2 (en) Glow plug
JP2010019833A (en) Gas sensor, oxygen sensor, and air/fuel ratio control system
CN103250002B (en) Glow plug having a graphite seal and an electric insulating layer
JP2009168677A (en) Gas sensor
US20110235680A1 (en) Sensor of temperature
CN104777209B (en) Sensor
JPH063319A (en) Sealing mechanism for sensor
JP2014215262A (en) Gas sensor
JP4522847B2 (en) Gas sensor and manufacturing method thereof
JP4707096B2 (en) Gas sensor and manufacturing method thereof
JP6139137B2 (en) Glow plug and glow plug structure
KR20170077827A (en) Sensor for detecting at least one property of a measuring gas in a measuring gas chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201602720

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14848632

Country of ref document: EP

Kind code of ref document: A1