WO2015076131A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2015076131A1
WO2015076131A1 PCT/JP2014/079668 JP2014079668W WO2015076131A1 WO 2015076131 A1 WO2015076131 A1 WO 2015076131A1 JP 2014079668 W JP2014079668 W JP 2014079668W WO 2015076131 A1 WO2015076131 A1 WO 2015076131A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
end side
solid electrolyte
electrolyte body
gas
Prior art date
Application number
PCT/JP2014/079668
Other languages
French (fr)
Japanese (ja)
Inventor
翔太郎 森
欣二 宝平
直人 小澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201480063518.8A priority Critical patent/CN105745532B/en
Publication of WO2015076131A1 publication Critical patent/WO2015076131A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4078Means for sealing the sensor element in a housing

Definitions

  • the present invention relates to a gas sensor that detects the concentration of a specific gas component in a gas to be measured.
  • a gas sensor for detecting the concentration of a specific gas component such as oxygen contained in combustion exhaust gas has been provided in a combustion exhaust passage of an internal combustion engine such as an automobile engine, and the air-fuel ratio is determined by the detected concentration of the specific gas component. Control and temperature control of exhaust treatment catalyst are performed.
  • a solid electrolyte body in which a solid electrolyte material having oxygen ion conductivity such as zirconia is formed in a bottomed cylindrical shape, a measurement electrode layer in contact with a gas to be measured on its outer peripheral surface side, and an inner peripheral surface thereof It has a so-called cup-shaped detection element consisting of a reference electrode layer in contact with the atmosphere introduced as a reference gas on the side, and is generated between both electrodes due to the difference between the oxygen concentration in the measured gas and the oxygen concentration in the reference gas
  • An oxygen sensor that measures the oxygen concentration in the gas under measurement by detecting the potential difference, an air-fuel ratio sensor that detects the air-fuel ratio of the air-fuel mixture introduced into the internal combustion engine from the concentration of a specific gas component in the combustion exhaust, hydrogen
  • An ammonia sensor or the like that detects an ammonia concentration in a gas to be measured using an ion conductive solid electrolyte is widely used.
  • Patent Document 1 discloses a conventional gas sensor, and forms a current path by extending from a cylindrical detection element, a metal shell for holding the detection element, a terminal metal fitting electrically connected to the detection element, and the terminal metal fitting.
  • a filter having a filter interposed between the inner cylinder and a separator sandwiched between the detection element and the grommet.
  • the present invention suppresses the thermal degradation of the grommet while reducing the size, and further impairs the conduction reliability between the terminal fitting and the detection element against external vibration.
  • An object of the present invention is to provide a gas sensor having an excellent structure without any problem.
  • the gas sensor (8, 8a to 8i) of the present invention includes a terminal fitting (1, 1a to 1h), a signal line (2), and gas sensor elements (3, 3c, 3d, 3e), a grommet (4), a casing (5), and a housing (7).
  • the gas sensor elements (3, 3c, 3d, 3e) are formed at least on a bottomed cylindrical solid electrolyte body (300) having conductivity with respect to specific ions, and an outer peripheral surface (301) of the solid electrolyte body.
  • the measurement electrode layer (310) in contact with the gas to be measured (91) and the reference electrode layer (320) formed on the inner peripheral surface (321, 321c, 321e) of the solid electrolyte body and in contact with the atmosphere introduced as the reference gas ) Is included.
  • the signal line (2) is intended to connect the gas sensor element to the outside.
  • the terminal fittings (1, 1a to 1h) are intended to connect the gas sensor element and the signal line.
  • the housing (7) accommodates the gas sensor element, and disposes and fixes the detection unit in the gas to be measured.
  • the cylindrical casing (5) covers the base end side of the gas sensor element together with the terminal fitting, and includes a vent hole (52) for introducing air into the inside.
  • the grommet (4) holds the signal line connected to the terminal fitting while hermetically sealing the base end side of the casing.
  • the gas sensor (8, 8a to 8i) is provided with a water repellent filter (61) made of a porous fiber structure that is provided to face the vent hole and allows gas permeation but prevents liquid permeation. It has been done.
  • the terminal fitting is formed in a cylindrical shape, and is exposed at a predetermined length from the base end side of the gas sensor element.
  • the heat insulating layer forming cylindrical parts (15, 15b to 15e, 15g) and the flat part (34, 34e) perpendicular to the longitudinal axis of the solid electrolyte body on the tip side of the heat insulating layer forming cylindrical parts
  • a base end side contact portion (16, 16c, 16e) that contacts the bottom surface (40) of the grommet on the side, and a conductive portion (12, 12b to 12e) that elastically contacts the reference electrode layer to achieve conduction.
  • the gas sensor (8, 8a to 8i) is provided with a heat insulating space ( SPTI ) communicating with the vent hole while separating the grommet and the gas sensor element. .
  • a heat insulation space is formed between the gas sensor element and the grommet by the tubular portion for heat insulation layer formation, and an air layer having high heat insulation is formed in the heat insulation space.
  • the atmosphere is easily exchanged with the external atmosphere via the vents.
  • the gas sensor has a simple structure that activates the solid electrolyte body and detects the specific gas component by the high temperature of the gas to be measured (for example, exhaust gas)
  • the heat insulating space is formed.
  • the heat conduction to the bottom surface of the grommet is cut off and the grommet is not exposed to high temperatures. Therefore, unlike the conventional gas sensor structure, an insulator having high thermal conductivity such as alumina serves as a heat medium, and the bottom surface of the grommet is directly heated to cause no thermal degradation.
  • the heat insulating space functions also as an electrical insulating layer between the casing and the terminal fitting, so that it is not necessary to use an insulator for holding the terminal fitting.
  • the tubular portion for forming the heat insulation layer of the terminal fitting is elastically sandwiched between the gas sensor element and the grommet, electrical continuity between the terminal fitting and the detection element is also provided against external vibration. Therefore, it is possible to provide a highly reliable gas sensor with excellent electrical continuity.
  • FIG. 1 A perspective view showing an outline of the terminal fitting 1 that is a main part of the gas sensor 8 of FIG. 1,
  • B a half sectional view of the terminal fitting 1 shown in FIG. 2A,
  • C CC in FIG. 2 (B).
  • DD, and EE and a cross-sectional view of the cross-section along the line CC, DD, and EE in FIG. It is sectional drawing shown. It is principal part sectional drawing for demonstrating the effect of the gas sensor 8 shown in FIG.
  • the principal part expanded sectional view which shows the relationship between the sensor element 3c and (D) principal part sectional drawing for demonstrating the effect of the gas sensor 8c which concerns on the 3rd Embodiment of this invention.
  • the principal part expanded sectional view which shows the relationship between the sensor element 3d and (D) principal part sectional drawing for demonstrating the effect of the gas sensor 8d which concerns on the 4th Embodiment of this invention.
  • the gas sensors 8, 8b to 8i use the combustion exhaust gas or the like of an internal combustion engine such as an automobile engine or a motorcycle engine as the measured gas 91, and at the position close to the exhaust pipe of the internal combustion engine, the measured gas flow path wall 90 It is a so-called heaterless type gas sensor that detects a specific component in the measurement gas by activating the solid electrolyte body using the high temperature of the measurement gas 91.
  • an oxygen sensor using a solid electrolyte material having oxygen ion conductivity such as zirconia will be described as an example.
  • the gas sensor 8 in the first embodiment includes at least the terminal fitting 1, the signal line 2, the gas sensor element 3, the grommet 4, the casing 5, and the housing 7.
  • the gas sensor element 3 is a so-called cup-type element, and a solid electrolyte body 300 formed of a solid electrolyte material having conductivity with respect to specific ions in a bottomed cylindrical shape having one end closed and the other end opened; Formed on the outer peripheral surface 301, the measurement electrode layer 310 that flows through the measured gas flow path and contacts the measured gas 91 that has entered from the opening 77 of the cover body 76, and the inner peripheral surface 321 of the solid electrolyte body 300.
  • the detection unit 30 includes a reference electrode layer 320 in contact with the atmosphere introduced into the reference gas chamber 32 as a reference gas.
  • the measurement electrode layer 310 and the reference electrode layer 320 are each formed of a known porous electrode made of platinum or a platinum alloy.
  • a reference gas chamber 32 into which air is introduced as a reference gas is defined inside the solid electrolyte body 300.
  • a large diameter part 31 is formed with the diameter enlarged so as to increase in diameter toward the outer peripheral side.
  • a signal extraction portion 33 that is formed in a cylindrical shape and is connected to the outside is formed.
  • the reference electrode layer 320 is connected to the signal line 2 connected to the outside by the terminal fitting 1.
  • the measurement electrode layer 310 is electrically connected to the measured gas flow channel wall 90 via the housing 7 and is in a grounded state.
  • the gas sensor 8 includes a terminal fitting 1, a signal line 2, a gas sensor element 3, a grommet 4, a casing 5, and a housing 7.
  • the terminal fitting 1 which is the main part of the present invention, is made of stainless steel having excellent heat resistance, electrical conductivity, and elasticity.
  • the signal line 2 is intended for electrical connection between the gas sensor element 3 and an external device.
  • the terminal fitting 1 is intended to connect the gas sensor element 3 and the signal line 2.
  • the terminal fitting 1 in the present embodiment includes a crimping portion 10 that crimps and fixes the core wire 20 of the signal line 2, a conduction portion 12 that establishes conduction with the reference electrode layer 320, and a bottom surface 40 of the grommet 4 and the gas sensor element 3. It is constituted by a connecting portion 11, 13 for connecting the heat insulating layer forming the tubular portion 15 for forming the heat-insulating space portion SP TI to.
  • the heat insulating layer forming cylindrical portion 15 is formed in a partially cut-out cylindrical shape having a larger diameter than the inner diameter of the inner peripheral surface 321 of the solid electrolyte body 300 and extending in the axial direction with a C-shaped cross section.
  • the heat insulating layer forming cylindrical portion 15 is formed so as to be exposed at a predetermined length from the base end side of the gas sensor element 3 when the terminal fitting 1 is attached to the solid electrolyte body 300.
  • the element side abutting portion 14 is formed so as to abut on the flat portion 34 perpendicular to the longitudinal axis of the solid electrolyte body 300 on the distal end side of the heat insulating layer forming cylindrical portion 15.
  • the end surface on the base end side of the solid electrolyte body 300 is a flat portion 34.
  • the proximal end contact portion 16 is formed so as to contact the bottom surface 40 of the grommet 4 on the proximal end side of the heat insulating layer forming cylindrical portion 15. That is, the base end side contact portion 16 corresponds to a collar portion at the base end side end portion of the terminal fitting 1. Moreover, the base end side contact part 16 in this embodiment is formed in the shape of a collar protruding in radial direction. By using the hook shape, it is possible to disperse the pressure that presses the bottom surface 40 of the grommet 4, and to prevent the local pressure from acting on the grommet 4 and causing cracks.
  • the conducting portion 12 has a slightly larger diameter than the inner diameter of the inner peripheral surface 321 of the solid electrolyte body 300, and is formed in a partially-notched cylindrical shape having a C-shaped cross section and extending in the axial direction. Since the conducting portion 12 is urged in the outer diameter direction, when the conducting portion 12 is attached to the solid electrolyte body 300 while reducing the diameter, the conducting portion 12 is elastically brought into contact with the reference electrode layer 320 to achieve conduction. It can be done.
  • the tapered portion 17 is provided so that a part of the conducting portion 12 is tapered at the tip.
  • the tip of the tapered portion 17 functions as an insertion guide, and the diameter of the tapered portion 17 is reduced within the inner peripheral surface 321 of the solid electrolyte body 300. It can be inserted smoothly.
  • the crimping portion 10 is for crimping and fixing the core wire 20 of the signal line 2.
  • the crimping portion 10 is provided on the distal end side of the conducting portion 12, and the size of the terminal fitting 1 exposed from the gas sensor element 3 can be reduced, and the gas sensor 8 can be downsized.
  • the heat insulating layer forming cylindrical portion 15 is exposed from the base end side of the solid electrolyte body 300, and the grommet 4 and the gas sensor element 3 are separated from each other. forming an insulating space portion SP TI which communicates with the vent hole 52.
  • the connecting portions 11 and 13 with an inclination, as shown in FIG. 2C, the crimping portion 10, the conducting portion 12, and the heat insulating layer forming cylindrical portion 15 are arranged so as to be concentric.
  • the position of the heat insulating layer forming cylindrical portion 15 may be eccentrically arranged so as to coincide with the outer peripheral edge of the conducting portion 12.
  • FIGS. 1 to 3 show an example in which the outer diameter of the conductive portion 12 is formed smaller than the outer diameter of the tubular portion 15 for forming the heat insulating layer, but the outer diameter of the conductive portion 12 is used for forming the heat insulating layer. It is formed so as to have the same diameter as the outer diameter of the cylindrical portion 15 and press-fitted into the solid electrolyte body 300 while reducing the diameter so as to be in close contact with the reference electrode layer 320 formed on the inner peripheral surface of the solid electrolyte body 300. Also good.
  • the detection unit 30 includes a solid electrolyte body 300, a reference electrode layer 320 formed on the inside thereof and in contact with the atmosphere introduced as a reference gas, and formed on the outside thereof.
  • the measurement electrode layer 310 is in contact with the measurement gas 91 entering from the opening 77, and is protected by the cover body 76. In the measurement gas flow path through which the measurement gas 91 (for example, exhaust gas) flows. It is arranged.
  • the grommet 4 is made of a heat-resistant elastic member such as fluorine rubber, silicone rubber, urethane rubber, etc., is formed in a cylindrical shape, and the signal line 2 is inserted and held inside. The grommet 4 is inserted into the proximal end side opening of the casing 5 together with the proximal end portion of the water repellent filter 61, and is sealed and fixed by the caulking portion 54.
  • a heat-resistant elastic member such as fluorine rubber, silicone rubber, urethane rubber, etc.
  • the casing 5 is formed of a stepped cylindrical metal material such as iron, nickel, and stainless steel.
  • the large diameter portion 50 formed on the front end side of the casing 5 is fitted to the boss portion 74 of the housing 7 and is sealed and fixed by a welding portion 56 such as laser welding.
  • a plurality of vent holes 52 are formed in the side surface of the middle diameter portion 51 of the casing 5 to introduce air into the casing 5.
  • the vent hole 52 is provided with a water repellent filter 61 that allows gas to pass therethrough and prevents liquid from entering.
  • the housing 7 is made of a known heat-resistant metal material such as stainless steel, iron, nickel, iron-nickel alloy or the like, is formed in a cylindrical shape, and accommodates the gas sensor element 3 inside.
  • a screw part 75 is formed on the outer periphery of the front end side of the housing 7, and the screw part 75 is fixed to the gas flow channel wall 90 to be measured, and the detection unit 30 covered with a cover body 76 having a plurality of openings 77 is provided. Arranged and fixed in a measurement gas flow path through which the measurement gas 91 flows.
  • a boss portion 74 is formed on the base end side of the housing 7, and a large diameter portion 50 formed on the distal end side of the casing 5 is attached to the boss portion 74 to form a fixing portion obtained by fixing means such as laser welding,
  • the gas sensor element 3 is fixed in an airtight manner.
  • the powder filling member 62 is formed by annularly forming a heat-resistant ceramic powder such as talc powder.
  • the insulating sealing member 63 is formed by annularly forming a heat-resistant ceramic sintered body such as alumina.
  • the sealing member (seal member) 64 is made of a stainless steel or the like formed of a metal material having high heat resistance in an annular shape.
  • the large-diameter portion 31 in which the diameter of the gas sensor element 3 is enlarged is formed by an element locking portion 71 and a caulking portion 73 formed on the housing 7 via a powder filling member 62, an insulating sealing member 63, and a sealing member 64. Airtightness is secured by pinching and applying axial force. A part of the gas sensor element 3 is exposed from the base end side of the housing 7 to constitute a signal extraction part 33.
  • a cylindrical elastic member 60 is fitted on the outer peripheral surface 331 of the signal extraction portion 33, and is caulked and fixed together with the distal end portion of the water repellent filter 61 by the caulking portion 55 of the casing 5 with the outer peripheral surface 331 of the signal extraction portion as the back. ing.
  • the water repellent filter 61 is made of a porous fiber structure made of a fluororesin such as polytetrafluoroethylene and formed in a cylindrical shape.
  • the water repellent filter 61 is provided at a position facing the vent hole 52, and has a function of allowing gas to pass from the vent hole 52 to the inside of the sensor and blocking liquid from passing therethrough.
  • the front end side of the water repellent filter 61 and the cylindrical elastic member 60 are interposed, and the outer surface 331 of the signal extraction part 33 is backed. A portion of the front end side of the medium diameter portion 51 is compressed toward the center in the radial direction, and a caulking portion 55 is provided and fixed.
  • the cylindrical elastic member 60 is disposed on the inner side of the gas sensor than the water repellent filter 61.
  • the front end side of the water repellent filter 61 is compressed and densified by the caulking portion 55, thereby blocking liquid intrusion from the end portion on the front end side of the water repellent filter 61. Further, a part of the base end side of the middle diameter portion 51 of the casing 5 is compressed toward the center in the radial direction, and a caulking portion 54 is further provided, and the base end side of the water repellent filter 61 is connected to the grommet 4 and the signal. It is fixed together with the wire 2 by caulking.
  • the base end side of the water-repellent filter 61 is compressed and densified by the caulking portion 54 of the casing 5 to block moisture from entering from the base end side.
  • the grommet 4 and the cylindrical elastic member 60 are made of heat-resistant elastic members such as fluoro rubber and silicone rubber, and generate a reaction force that elastically presses the caulking portions 54 and 55 from the inside, thereby producing a water repellent filter 61. So that no gap is generated between them.
  • the shape of the cover body 76 and the position, size, number, etc. of the opening 77 are not particularly limited, and can be appropriately changed according to the application.
  • the present invention is not limited to a single one as shown in FIGS. 1 to 3, and a plurality of cover bodies arranged concentrically may be used.
  • the element side abutment that is the front end side end surface of the cylindrical portion of the terminal fitting is in contact with the flat portion 34 that is the upper surface of the open end of the solid electrolyte body 300 of the gas sensor element 3.
  • the base 14 comes into contact with the base end side contact portion 16 (the flange on the base end side end of the terminal fitting 1) comes into contact with the bottom surface 40 of the grommet 4, and the base end of the gas sensor element 3 and the grommet 4
  • An air heat insulating space SPTI is formed between the air repellent filter 61 and the air vent 52 serving as an air introduction hole. This air heat insulation space part SPTI functions as a heat insulation layer.
  • the conventional gas sensor is provided with an insulator such as alumina having a high thermal conductivity, but the gas sensor 8 of the present invention is not provided with an insulator such as alumina having a high thermal conductivity, so that the temperature is high.
  • the heat of the gas to be measured is not transmitted to the bottom surface 40 of the grommet 4 through the insulator, the thermal deterioration is suppressed, and the conduction reliability between the conduction portion 12 of the terminal fitting 1 and the reference electrode layer 320 is improved.
  • An excellent gas sensor 8 can be realized.
  • the detection unit 30 provided on the tip side is exposed to the high temperature gas 91 to be measured, the solid electrolyte body 300 is activated by the high temperature of the gas to be measured 91, exhibits oxygen ion conductivity, The electromotive force generated by the difference between the oxygen concentration in the measurement gas and the oxygen concentration in the atmosphere introduced into the reference gas chamber 32 is transmitted to a detection circuit provided outside via the signal line 2 and this detection is performed. By detecting the electromotive force with the circuit, the oxygen concentration in the gas to be measured can be detected.
  • FIGS. 4 (A), (B) and (C) A gas sensor 8b according to a second embodiment of the present invention will be described with reference to FIGS. 4 (A), (B) and (C).
  • the same reference numerals are given to the same components as those of the gas sensor 8 in the first embodiment, and different parts are indicated by alphabetic symbols (for example, 1b). Etc.), the description of the same part will be omitted, and the characteristic part in each embodiment will be mainly described.
  • the heat insulating layer forming cylindrical portion 15b extends in the axial direction with a C-shaped cross section. It is formed in the shape of a notch.
  • the outer diameter of the heat insulating layer forming cylindrical portion 15 b is formed so as to be larger than the inner peripheral diameter of the solid electrolyte body 300.
  • the conducting portion 12b is also formed in a cut-out cylindrical shape having a C-shaped cross section and extending in the axial direction. Furthermore, the outer diameter of the conducting portion 12b is formed to be slightly larger than the inner peripheral diameter of the solid electrolyte body 300, and is press-fitted inside the solid electrolyte body 300 in a reduced diameter state.
  • the conduction portion 12b elastically presses the reference electrode layer 320 outward to ensure conduction.
  • the element-side contact portion 14 is in contact with the end surface on the base end side of the solid electrolyte body 300 as the flat surface portion 34, and is not formed in a bowl shape on the bottom surface 40 of the grommet 4.
  • the end side contact portion 16b is in contact.
  • the insulating space portion SP TI thermal degradation of the grommet 4 is suppressed.
  • the structure is simplified and the manufacturing cost is further reduced by adopting a configuration in which the collar portion and the inclined surface are eliminated.
  • a gas sensor 8c according to a third embodiment of the present invention will be described with reference to FIGS. 5A, 5B, 5C, and 5D.
  • the signal extraction portion 33c provided on the base end side of the solid electrolyte body 300 has a small diameter at the tip end side as the flat surface portion and the base end.
  • a stepped portion 34c whose diameter is changed stepwise is provided so that the side becomes larger in diameter.
  • the heat insulating layer forming cylindrical portion 15c is elongated. Is formed. A part of the distal end side of the heat insulating layer forming cylindrical portion 15 c is press-fitted inside the solid electrolyte body 300.
  • the conducting portion 12c press-fitted inside the solid electrolyte body 300 elastically presses the inner peripheral surface 321c in the radial direction from the inside to achieve conduction with the reference electrode layer 320.
  • the element-side contact portion 14c at the distal end of the conducting portion 12c is in contact with a stepped portion 34c provided inside the solid electrolyte body 300, and the base end of the solid electrolyte body 300
  • the base end side contact portion 16 corresponding to the base end side end portion of the heat insulating layer forming cylindrical portion 15c exposed to the side contacts the bottom surface of the grommet 4 and is elastically pressed.
  • the insulating space portion SP TI thermal degradation of the grommet 4 is suppressed.
  • the conducting portion 12c elastically presses the reference electrode layer 320 formed on the inner peripheral surface 321c of the solid electrolyte body 300 in the outer diameter direction to achieve conduction.
  • the element side contact portion 14c presses the reference electrode layer 320 formed on the surface of the stepped portion 34c in the axial direction, conduction between the terminal fitting 1c and the reference electrode layer 320 is ensured, and extremely high conduction is achieved.
  • the proximal end contact portion 16c is notched in a petal shape while expanding in a hook shape, but has a configuration in which no hook portion is provided, that is, a terminal in the gas sensor 8b according to the second embodiment.
  • a structure in which the metal fitting 1b is removed can also be adopted in the gas sensor of each embodiment.
  • the insulating space portion SP TI thermal degradation of the grommet 4 is suppressed.
  • the base end side is provided at the open end of the signal extraction portion 33d provided on the base end side of the solid electrolyte body 300.
  • the diameter is gradually changed so as to gradually increase in diameter, and an inclined surface 34d is provided as an inclined portion including a vertical component.
  • an element-side inclined contact portion 14d is provided between the heat insulating layer forming cylindrical portion 15d and the conducting portion 12d.
  • the solid electrolyte body 300 is extended to the outer peripheral surface 331e.
  • a part of the heat insulating layer forming cylindrical portion 15e of the terminal fitting 1e is fitted to the outer peripheral surface 331e of the solid electrolyte body 300 as a conducting portion 12e.
  • the conducting portion 12e is formed in a C-shaped cross-section with a diameter slightly smaller than the outer diameter of the outer peripheral surface 331e of the solid electrolyte body 300, and the conducting portion 12e is fitted to the outer peripheral surface 331e. Sometimes it is biased to generate a pressing force in the direction from the outside toward the center.
  • the conduction part 12e elastically presses the reference electrode layer 320 from the outer peripheral side direction to achieve conduction.
  • the outer diameter of the conducting part 12e is increased, so that the surface area of the conducting part 12e is increased, the cooling effect is improved, and the transfer to the grommet 4 is improved. It is also possible to reduce the amount of heat.
  • the step portion provided on the outer periphery of the signal extraction portion 33 is used as a flat portion 34e, and the element side contact portion 14e is brought into contact, and as shown in FIG. 7 (D).
  • the base end side contact portion 16e of the heat insulating layer forming cylindrical portion 15e contacts the bottom surface 40 of the grommet 4, and elastic pressing force acts from the grommet 4 also in the axial direction, thereby improving the conduction reliability. I am trying.
  • a cylindrical elastic member 60 is fitted so as to cover the outer periphery of the conducting portion 12 e and is compressed from the outer peripheral direction by the caulking portion 55 together with the water repellent filter 61.
  • the conducting portion 12e is biased so as to elastically press the reference electrode layer 320 extending on the outer peripheral surface 331e of the signal extraction portion 33e toward the center, but the cylindrical elastic member 60 is superimposed on the conductive portion 12e. Since the conduction part 12e is elastically pressed toward the center, the one-phase conduction reliability can be further improved.
  • a gas sensor 8f according to a sixth embodiment will be described with reference to FIGS.
  • the second conductive portion 18 connected via the connecting portion 19 is provided on the distal end side of the conductive portion 12 of the terminal fitting 1f, which is the main part of the gas sensor 8f according to the present embodiment, so that the inner diameter of the solid electrolyte body 300 is reduced.
  • the diameter changing portion 322 is brought into contact with the reference electrode layer 320.
  • the second conduction portion 18 complementarily conducts. Reliability has been improved. As shown in FIG.
  • the second conducting portion 18 is formed in a tongue-like shape that is bifurcated at the tip end side, and is in contact with the inclined diameter changing portion 322 so as to be axial and radial. Will be pressed.
  • the conduction portion 12 that elastically presses the reference electrode layer 320 in the radial direction and the reference electrode layer 320 are neatly arranged in both the axial direction and the radial direction. Since any one of the second conducting parts 18 to be pressed always maintains conduction with the reference electrode layer 320, extremely high conduction reliability can be exhibited.
  • the front end side of the water repellent filter 61 and the cylindrical elastic member 60 are interposed between the casing 5 f and the signal extraction portion 33 of the gas sensor element 3, and the outer peripheral surface of the signal extraction portion 33.
  • the caulking portion 55 is provided by compressing the middle diameter portion 51 of the casing 5f toward the center in the radial direction with the back of 331.
  • the water-repellent filter 61 is disposed on the inner side than the cylindrical elastic member 60 when caulking and fixing. By disposing the tip of the water repellent filter 61 inside the cylindrical elastic member 60, the water repellent filter 61 is compressed via the cylindrical elastic member 60 when the caulking portion 55 is formed. Excessive deformation is suppressed, and no gap is formed between the water repellent filter 61 and the cylindrical elastic member 60, so that water droplets can be reliably prevented from entering.
  • FIGS. 9A, 9B and 9C an outline of a terminal fitting 1g which is a main part of a gas sensor 8g according to a seventh embodiment of the present invention and its effects will be described.
  • the configuration in which the crimping portion 10 is provided at the distal ends of the terminal fittings 1 and 1a to 1f is shown.
  • the terminal fitting 1g of the gas sensor 8g according to the seventh embodiment is crimped.
  • the portion 10g is provided closer to the base end side than the tubular portion 15g for heat insulation layer formation. Furthermore, as shown in FIG.
  • a crimping portion space 41 for accommodating the crimping portion 10g is provided on the distal end side (opposite the base end side) of the grommet 4 and accommodated inside the grommet 4g. You may do it.
  • the crimping portion 10g is located on the proximal end side with respect to the vent hole 52 and is disposed in a relatively low temperature environment. Damage can also be reduced.
  • an insulating body (not shown) that is formed in an annular shape by providing a space capable of accommodating the crimping portion 10g is prepared, and the heat insulating layer forming cylindrical portion 15g and the bottom surface of the grommet are prepared. You may make it interpose between 40g.
  • the insulator having high thermal conductivity comes into contact with the grommet bottom surface 40g, but is supported on the tip side of the insulator by the tubular portion 15g for forming the heat insulating layer through the vent hole 52 while being supported by the air hole 52. Since communicated thermal insulation space SP TI is present, almost without heat in the measurement gas for heating the gas sensor element 3 reaches the grommet 4, it is possible to suppress thermal deterioration of the grommet 4.
  • FIGS. 10A, 10B and 10C an outline of a terminal fitting 1h which is a main part of a gas sensor 8h according to an eighth embodiment of the present invention, and its The effect will be described.
  • a crimping portion 10h for crimping and fixing the core wire 20 of the signal line 2 is disposed at the center of the terminal fitting 1h, and a proximal end abutment that abuts on the proximal end side via the connecting portion 13h.
  • a tubular portion 15 for forming a heat insulating layer having a portion 16 is provided, and a conducting portion 12h is provided on the tip side via a connecting portion 11h.
  • the flat portion 34 that is the upper surface of the open end of the solid electrolyte body 300 of the gas sensor element 3 is placed on the distal end side of the cylindrical portion of the terminal fitting.
  • the element side contact portion 14 which is an end surface contacts, the base end side contact portion 16 contacts the bottom surface 40 of the grommet 4, and the water repellent filter 61 is interposed between the base end of the gas sensor element 3 and the grommet 4.
  • the air insulating space portion SP TI is formed continuous to the vent hole 52 for introducing air Te, thermal degradation of the grommet 4 is suppressed, and a conductive portion 12h of the terminal 1h, the inner peripheral surface of the solid electrolyte body 300
  • a highly reliable gas sensor 8h having excellent electrical continuity with the reference electrode layer 320 formed in 321 can be realized.
  • the crimping portion 10h is housed inside the gas sensor element 3, so that the size of the gas sensor 8h can be reduced. Furthermore, since the crimping portion 10h is provided on the proximal end side with respect to the conducting portion 12h, the distance from the heat source is longer than when the crimping portion 10 is provided at the distal end. Can reduce thermal damage.
  • the distal end side of the water repellent filter 61 and the cylindrical elastic member 60 are interposed between the casing 5 and the signal extraction portion 33 of the gas sensor element 3, and the signal extraction portion 33 is interposed.
  • the caulking portion 55 is provided by compressing the middle diameter portion 51 of the casing 5 toward the center in the radial direction with the outer peripheral surface 331 of the casing 5 as the back.
  • the distal end portion of the water repellent filter 61 is disposed on the inner side of the cylindrical elastic member 60, whereby the caulking portion 55 is formed via the cylindrical elastic member 60. Since the water repellent filter 61 is compressed, excessive deformation is suppressed, and no gap is formed between the water repellent filter 61 and the cylindrical elastic member 60, so that the intrusion of water droplets can be reliably prevented. effective.
  • the casing flange portion 56i protruding in the outer peripheral direction is provided at the tip of the casing 5i, and the powder filling member 62i, the insulating sealing member 63i, and the sealing member Along with the (seal member) 64, it is sandwiched between the powder filling portion locking portion 72 and the caulking portion 73i of the housing 7i, and is fixed by caulking by applying an axial force in the axial direction.
  • This point is different from the structure of the gas sensor according to another embodiment. As shown in FIG.
  • a casing collar portion 56 i that spreads in a hat shape in the radial direction is provided at the tip of the middle diameter portion 51 of the casing 5 i of the gas sensor 8 i according to the ninth embodiment.
  • the casing flange 56i is caulked and fixed together with the sealing member 64 by a caulking portion 73i of the housing 7i.
  • FIG. 11 shows an example in which the terminal fitting 1 having the same configuration as that of the terminal fitting 1 used in the gas sensor 8 according to the first embodiment is used, but it is used in the gas sensor according to the other embodiments described above. Any of the terminal fittings 1a to 1h can be used. Also in the gas sensor 8i according to the present embodiment, the water repellent filter is provided between the base end of the gas sensor element 3 and the grommet 4 by the heat insulating layer forming cylindrical portion 15 as in the gas sensor according to the other embodiments described above.
  • the air insulating space portion SP TI continuous 61 to vent 52 for introducing air via is formed, thermal deterioration of the grommet 4 is suppressed, between the conductive section 12 and the reference electrode layer 320 of the terminal fitting 1
  • the gas sensor 8i having excellent conduction reliability can be realized.

Abstract

A gas sensor provided with a terminal fitting (1) having a cylindrical portion for thermal insulation layer formation (15) that is exposed from the proximal end side of a gas sensor element (3), an element side abutting portion (14) that abuts a flat surface part (34) that is perpendicular to the longitudinal axis of a solid electrolyte body (300), a proximal end side abutting portion (16) that abuts the bottom surface (40) of a grommet, a conduction part (12) for facilitating conduction with a reference electrode layer (320), and a crimping part (10) for crimping and fixing a core wire (20) of a signal line, wherein a thermal insulation space part (SPTI) is provided that separates the grommet (4) and the gas sensor element (3) and communicates with a ventilation hole (52).

Description

ガスセンサGas sensor
 本発明は、被測定ガス中の特定ガス成分の濃度を検出するガスセンサに関するものである。 The present invention relates to a gas sensor that detects the concentration of a specific gas component in a gas to be measured.
 従来、自動車エンジン等の内燃機関の燃焼排気流路に、燃焼排気中に含まれる酸素等の特定ガス成分の濃度を検知するガスセンサを配設して、検知された特定ガス成分の濃度によって空燃比制御や排気処理触媒の温度制御等を行っている。 Conventionally, a gas sensor for detecting the concentration of a specific gas component such as oxygen contained in combustion exhaust gas has been provided in a combustion exhaust passage of an internal combustion engine such as an automobile engine, and the air-fuel ratio is determined by the detected concentration of the specific gas component. Control and temperature control of exhaust treatment catalyst are performed.
 このようなガスセンサとして、ジルコニア等の酸素イオン伝導性を有する固体電解質材料を有底筒状に形成した固体電解質体と、その外周面側において被測定ガスに接する測定電極層と、その内周面側において基準ガスとして導入された大気に接する基準電極層とからなるいわゆるコップ型の検出素子を具備し、被測定ガス中の酸素濃度と基準ガス中の酸素濃度との差によって両電極間に発生する電位差を検出して被測定ガス中の酸素濃度を測定する酸素センサや、燃焼排気中の特定ガス成分の濃度から内燃機関に導入される混合気の空燃比を検出する空燃比センサや、水素イオン導電性固体電解質体を用いて被測定ガス中のアンモニア濃度を検出するアンモニアセンサ等が広く用いられている。 As such a gas sensor, a solid electrolyte body in which a solid electrolyte material having oxygen ion conductivity such as zirconia is formed in a bottomed cylindrical shape, a measurement electrode layer in contact with a gas to be measured on its outer peripheral surface side, and an inner peripheral surface thereof It has a so-called cup-shaped detection element consisting of a reference electrode layer in contact with the atmosphere introduced as a reference gas on the side, and is generated between both electrodes due to the difference between the oxygen concentration in the measured gas and the oxygen concentration in the reference gas An oxygen sensor that measures the oxygen concentration in the gas under measurement by detecting the potential difference, an air-fuel ratio sensor that detects the air-fuel ratio of the air-fuel mixture introduced into the internal combustion engine from the concentration of a specific gas component in the combustion exhaust, hydrogen An ammonia sensor or the like that detects an ammonia concentration in a gas to be measured using an ion conductive solid electrolyte is widely used.
 近年、このようなガスセンサを、自動二輪車用のエンジンにも採用するようになっている。自動二輪車エンジンにおいては、ガスセンサを搭載するスペースが限られており、被測定ガスとなる燃焼排気の温度の高い位置に配設して、固体電解質体の活性化するためのヒータを用いることなく、排熱を利用する構造とすることで、製造コストの削減と、小型化との両立を図っている。このため、自動二輪車用のガスセンサは、乗用車用のガスセンサ以上に激しい冷熱ストレスに晒される上に、外部からの激しい振動や、被水等の過酷な環境で使用されるので、より小型化に、かつ耐振動性や耐久性を向上するという高い要求がある。 In recent years, such a gas sensor has been adopted for an engine for a motorcycle. In a motorcycle engine, a space for mounting a gas sensor is limited, and it is disposed at a position where the temperature of combustion exhaust gas to be measured is high, without using a heater for activating the solid electrolyte body, By adopting a structure that uses exhaust heat, both manufacturing cost reduction and downsizing are achieved. For this reason, the gas sensor for motorcycles is exposed to severe thermal stress more than the gas sensor for passenger cars, and is used in harsh environments such as intense vibration from outside and water, etc. In addition, there is a high demand for improving vibration resistance and durability.
 特許文献1は従来のガスセンサを開示しており、筒状の検出素子と、検出素子を保持する主体金具と、検出素子と電気的に接続する端子金具と、端子金具からのびで電流経路を形成するリード線と、リード線が挿通されるセパレータと、セパレータの周囲を取り囲む内筒と、内筒の筒孔内に配置されてリード線が挿通されるグロメットと、内径の径方向外側に配置されるフィルタと、内筒との間にフィルタを介在させる外筒とを備え、セパレータが検出素子とグロメットとにより挟持された構造を有している。 Patent Document 1 discloses a conventional gas sensor, and forms a current path by extending from a cylindrical detection element, a metal shell for holding the detection element, a terminal metal fitting electrically connected to the detection element, and the terminal metal fitting. A lead wire to be inserted, a separator through which the lead wire is inserted, an inner cylinder that surrounds the periphery of the separator, a grommet that is disposed in a cylindrical hole of the inner cylinder and through which the lead wire is inserted, and is disposed radially outside the inner diameter. And a filter having a filter interposed between the inner cylinder and a separator sandwiched between the detection element and the grommet.
特開2013-104832号公報JP 2013-104832 A
 ところが、特許文献1にあるような従来のガスセンサでは、セパレータとして、アルミナ等の比較的熱伝導率の高いセラミック絶縁体が用いられている。このため、数百℃以上の被測定ガスに晒されるガスセンサの先端に設けた検出部から、セパレータを熱伝導体として、グロメットが加熱されることになる。特に、特許文献1のガスセンサのように、セパレータを、検出素子とグロメットとで挟持する構造においては、グロメットの底面が広い範囲でセパレータと接触しているので、セパレータから受ける熱量が多くなり、グロメットの熱劣化を招くおそれがある。 However, in the conventional gas sensor as disclosed in Patent Document 1, a ceramic insulator having a relatively high thermal conductivity such as alumina is used as a separator. For this reason, the grommet is heated by using the separator as a heat conductor from the detection part provided at the tip of the gas sensor exposed to the gas to be measured at several hundred degrees C or higher. In particular, in the structure in which the separator is sandwiched between the detection element and the grommet as in the gas sensor of Patent Document 1, since the bottom surface of the grommet is in contact with the separator in a wide range, the amount of heat received from the separator increases, and the grommet There is a risk of thermal degradation.
 熱劣化により、グロメットの弾性が失われると、端子金具の保持力が低下し、端子金具と検出素子との間に間隙が生まれる。このような状態で、外部からの振動が加わると、端子金具と検出素子との導通が瞬断され易くなり、端子金具の導通信頼性の低下を招くことになる。また、従来のガスセンサでは、セパレータを長くして、熱源からの距離を遠ざけることで、グロメットの熱劣化を抑制することが可能であるが、これはガスセンサの小型化を阻害する要因となっていた。 If the elasticity of the grommet is lost due to thermal deterioration, the holding strength of the terminal fitting is reduced, and a gap is created between the terminal fitting and the detection element. In this state, when external vibration is applied, the continuity between the terminal fitting and the detection element is easily interrupted, leading to a decrease in the conduction reliability of the terminal fitting. Moreover, in the conventional gas sensor, it is possible to suppress the thermal degradation of the grommet by lengthening the separator and increasing the distance from the heat source, but this has been a factor that hinders downsizing of the gas sensor. .
 そこで、本発明は、かかる実情に鑑み、小型化を図りつつ、グロメットの熱劣化を抑制し、しかも、外部からの振動に対しても、端子金具と検出素子との導通信頼性が損なわれることのない優れた構造を持つガスセンサを提供することを目的とする。 Therefore, in view of such circumstances, the present invention suppresses the thermal degradation of the grommet while reducing the size, and further impairs the conduction reliability between the terminal fitting and the detection element against external vibration. An object of the present invention is to provide a gas sensor having an excellent structure without any problem.
 本発明のガスセンサ(8、8a~8i)は、端子金具(1、1a~1h)と、信号線(2)と、被測定ガス中の特定成分を検出するガスセンサ素子(3、3c、3d、3e)と、グロメット(4)とケーシング(5)と、ハウジング(7)と、を少なくとも備える。前記ガスセンサ素子(3、3c、3d、3e)は、少なくとも、特定イオンに対して伝導性を有する有底筒状の固体電解質体(300)と、該固体電解質体の外周表面(301)に形成され、被測定ガス(91)に接する測定電極層(310)と、前記固体電解質体の内周表面(321,321c,321e)に形成され、基準ガスとして導入した大気に接する基準電極層(320)とからなる検出部(30)を具備する。前記信号線(2)は、該ガスセンサ素子と外部との接続を図るものである。前記端子金具(1、1a~1h)は、前記ガスセンサ素子と前記信号線との接続を図るものである。前記ハウジング(7)は、前記ガスセンサ素子を収容し、前記検出部を被測定ガス中に配設・固定するものである。前記筒状のケーシング(5)は、前記ガスセンサ素子の基端側を前記端子金具と共に覆い、かつ内側に大気を導入するための通気孔(52)を備えるものである。前記グロメット(4)は、該ケーシングの基端側を気密に封止しつつ、前記端子金具に接続された前記信号線を保持するものである。さらに、前記ガスセンサ(8、8a~8i)では、前記通気孔に対向して設けられ、気体の透過は許容し液体の透過は阻止する多孔質繊維構造体からなる撥水フィルタ(61)が設けられておいる。このように、被測定ガス中の特定成分を検出する前記ガスセンサ(8、8a~8i)は、前記端子金具が、筒状に形成され、前記ガスセンサ素子の基端側から所定の長さで露出する断熱層形成用筒状部(15、15b~15e、15g)と、該断熱層形成用筒状部の先端側において前記固体電解質体の長手軸に垂直な平面部(34、34e)に当接する素子側当接部(14、14c、14e)、若しくは、垂直成分を含む傾斜面(34d)に当接する素子側傾斜当接部(14d)と、前記断熱層形成用筒状部の基端側において前記グロメットの底面(40)に当接する基端側当接部(16、16c,16e)と、前記基準電極層と弾性的に当接して、導通を図る導通部(12、12b~12e、12h)と、前記信号線の芯線(20)を圧着固定する圧着部(10、10g、10h)と、を具備する。さらに、前記ガスセンサ(8、8a~8i)では、前記グロメットと前記ガスセンサ素子との間を離隔しつつ、前記通気孔に連通する断熱空間部(SPTI)が設けられていることを特徴とする。 The gas sensor (8, 8a to 8i) of the present invention includes a terminal fitting (1, 1a to 1h), a signal line (2), and gas sensor elements (3, 3c, 3d, 3e), a grommet (4), a casing (5), and a housing (7). The gas sensor elements (3, 3c, 3d, 3e) are formed at least on a bottomed cylindrical solid electrolyte body (300) having conductivity with respect to specific ions, and an outer peripheral surface (301) of the solid electrolyte body. The measurement electrode layer (310) in contact with the gas to be measured (91) and the reference electrode layer (320) formed on the inner peripheral surface (321, 321c, 321e) of the solid electrolyte body and in contact with the atmosphere introduced as the reference gas ) Is included. The signal line (2) is intended to connect the gas sensor element to the outside. The terminal fittings (1, 1a to 1h) are intended to connect the gas sensor element and the signal line. The housing (7) accommodates the gas sensor element, and disposes and fixes the detection unit in the gas to be measured. The cylindrical casing (5) covers the base end side of the gas sensor element together with the terminal fitting, and includes a vent hole (52) for introducing air into the inside. The grommet (4) holds the signal line connected to the terminal fitting while hermetically sealing the base end side of the casing. Further, the gas sensor (8, 8a to 8i) is provided with a water repellent filter (61) made of a porous fiber structure that is provided to face the vent hole and allows gas permeation but prevents liquid permeation. It has been done. Thus, in the gas sensor (8, 8a to 8i) for detecting a specific component in the gas to be measured, the terminal fitting is formed in a cylindrical shape, and is exposed at a predetermined length from the base end side of the gas sensor element. The heat insulating layer forming cylindrical parts (15, 15b to 15e, 15g) and the flat part (34, 34e) perpendicular to the longitudinal axis of the solid electrolyte body on the tip side of the heat insulating layer forming cylindrical parts The element side contact portion (14, 14c, 14e) that contacts, or the element side inclined contact portion (14d) that contacts the inclined surface (34d) including the vertical component, and the base end of the tubular portion for forming the heat insulation layer A base end side contact portion (16, 16c, 16e) that contacts the bottom surface (40) of the grommet on the side, and a conductive portion (12, 12b to 12e) that elastically contacts the reference electrode layer to achieve conduction. 12h) and crimping the core wire (20) of the signal wire Comprising crimping portion with a constant and (10,10g, 10h), the. Further, the gas sensor (8, 8a to 8i) is provided with a heat insulating space ( SPTI ) communicating with the vent hole while separating the grommet and the gas sensor element. .
 本発明に係るガスセンサの構造では、前記断熱層形成用筒状部によって、前記ガスセンサ素子と、前記グロメットとの間に断熱空間部が形成され、その断熱空間部内には断熱性の高い大気層が存在し、さらに、その大気が前記通気孔を介して、外部の大気と容易に交換される。さらにまた、被測定ガス(例えば排気ガス)の高い温度によって、固体電解質体を活性化して特定ガス成分の検出を図る簡易な構造を持つガスセンサであっても、前記断熱空間部を形成したことによって、前記グロメットの底面への熱伝導が遮断され、グロメットが高温に晒されることもない。従って、従来のガスセンサの構造のように、アルミナ等の熱伝導性の高い絶縁体が熱媒体となって、グロメットの底面が直接的に加熱され、熱劣化を起こすというような問題が発生しない。 In the structure of the gas sensor according to the present invention, a heat insulation space is formed between the gas sensor element and the grommet by the tubular portion for heat insulation layer formation, and an air layer having high heat insulation is formed in the heat insulation space. In addition, the atmosphere is easily exchanged with the external atmosphere via the vents. Furthermore, even if the gas sensor has a simple structure that activates the solid electrolyte body and detects the specific gas component by the high temperature of the gas to be measured (for example, exhaust gas), the heat insulating space is formed. The heat conduction to the bottom surface of the grommet is cut off and the grommet is not exposed to high temperatures. Therefore, unlike the conventional gas sensor structure, an insulator having high thermal conductivity such as alumina serves as a heat medium, and the bottom surface of the grommet is directly heated to cause no thermal degradation.
 加えて、本発明に係るガスセンサの構造では、前記断熱空間部は、前記ケーシングと前記端子金具との間の電気絶縁層としても機能するので、端子金具を保持するための絶縁体を用いなくともよく、すなわち廃止することができ、これによりガスセンサ全体の体格を小さくすることもできる。前記端子金具の前記断熱層形成用筒状部が前記ガスセンサ素子と前記グロメットとによって弾性的に挟持されているので、外部からの振動に対しても、端子金具と検出素子との電気的導通性の信頼性が損なわれることもなく、電気的導通性に優れ信頼性の高いガスセンサを提供することができる。 In addition, in the structure of the gas sensor according to the present invention, the heat insulating space functions also as an electrical insulating layer between the casing and the terminal fitting, so that it is not necessary to use an insulator for holding the terminal fitting. Well, that is, it can be abolished, which can reduce the overall size of the gas sensor. Since the tubular portion for forming the heat insulation layer of the terminal fitting is elastically sandwiched between the gas sensor element and the grommet, electrical continuity between the terminal fitting and the detection element is also provided against external vibration. Therefore, it is possible to provide a highly reliable gas sensor with excellent electrical continuity.
本発明の第1の実施形態におけるガスセンサ8の全体概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole outline | summary of the gas sensor 8 in the 1st Embodiment of this invention. (A)図1のガスセンサ8の要部である端子金具1の概要を示す斜視図、(B)図2Aに示す端子金具1の半断面図、(C)図2(B)のC-C、D-D、E-Eに沿った断面を重ねて表した断面図、および(D)図2(B)のC-C、D-D、E-Eに沿った断面の変形例1aを示す断面図である。(A) A perspective view showing an outline of the terminal fitting 1 that is a main part of the gas sensor 8 of FIG. 1, (B) a half sectional view of the terminal fitting 1 shown in FIG. 2A, (C) CC in FIG. 2 (B). , DD, and EE, and a cross-sectional view of the cross-section along the line CC, DD, and EE in FIG. It is sectional drawing shown. 図1に示すガスセンサ8の効果を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the effect of the gas sensor 8 shown in FIG. (A)本発明の第2の実施形態に係るガスセンサ8bの端子金具1bの概要を示す斜視図、(B)図4(A)に示す端子金具1bの半断面図、および(C)本発明の第2の実施形態に係るガスセンサ8bの効果を説明するための要部断面図である。(A) The perspective view which shows the outline | summary of the terminal metal fitting 1b of the gas sensor 8b which concerns on the 2nd Embodiment of this invention, (B) The half sectional view of the terminal metal fitting 1b shown to FIG. 4 (A), (C) This invention. It is principal part sectional drawing for demonstrating the effect of the gas sensor 8b which concerns on 2nd Embodiment. (A)本発明の第3の実施形態に係るガスセンサ8cにおける端子金具1cの概要を示す斜視図、(B)図5(A)に示す端子金具1cの半断面図、(C)端子金具1cとセンサ素子3cとの関係を示す要部拡大断面図、および(D)本発明の第3の実施形態に係るガスセンサ8cの効果を説明するための要部断面図である。(A) The perspective view which shows the outline | summary of the terminal metal fitting 1c in the gas sensor 8c which concerns on the 3rd Embodiment of this invention, (B) The half sectional view of the terminal metal fitting 1c shown to FIG. 5 (A), (C) The terminal metal fitting 1c. The principal part expanded sectional view which shows the relationship between the sensor element 3c and (D) principal part sectional drawing for demonstrating the effect of the gas sensor 8c which concerns on the 3rd Embodiment of this invention. (A)本発明の第4の実施形態に係るガスセンサ8dの端子金具1dの概要を示す斜視図、(B)図6(A)に示す端子金具1dの半断面図、(C)端子金具1dとセンサ素子3dとの関係を示す要部拡大断面図、および(D)本発明の第4の実施形態に係るガスセンサ8dの効果を説明するための要部断面図である。(A) The perspective view which shows the outline | summary of the terminal metal fitting 1d of the gas sensor 8d which concerns on the 4th Embodiment of this invention, (B) The half sectional view of the terminal metal fitting 1d shown to FIG. 6 (A), (C) The terminal metal fitting 1d. The principal part expanded sectional view which shows the relationship between the sensor element 3d and (D) principal part sectional drawing for demonstrating the effect of the gas sensor 8d which concerns on the 4th Embodiment of this invention. (A)本発明の第5の実施形態に係るガスセンサ8eの端子金具1eの概要を示す斜視図、(B)図7(A)に示す端子金具1eの半断面図、(C)端子金具1eとセンサ素子3eとの関係を示す要部拡大断面図、および(D)本発明に係る第5の実施形態のガスセンサ8eの効果を説明するための要部断面図である。(A) The perspective view which shows the outline | summary of the terminal metal fitting 1e of the gas sensor 8e which concerns on the 5th Embodiment of this invention, (B) The half sectional view of the terminal metal fitting 1e shown to FIG. 7 (A), (C) The terminal metal fitting 1e. The principal part expanded sectional view which shows the relationship between the sensor element 3e, and (D) principal part sectional drawing for demonstrating the effect of the gas sensor 8e of 5th Embodiment which concerns on this invention. (A)本発明の第6の実施形態に係るガスセンサ8fの端子金具1fの概要を示す斜視図、(B)図8(A)に示す端子金具1fの半断面図、および(C)本発明の第6の実施形態に係るガスセンサ8fの効果を説明するための要部断面図である。(A) The perspective view which shows the outline | summary of the terminal metal fitting 1f of the gas sensor 8f which concerns on the 6th Embodiment of this invention, (B) The half sectional view of the terminal metal fitting 1f shown to FIG. 8 (A), (C) This invention. It is principal part sectional drawing for demonstrating the effect of the gas sensor 8f which concerns on 6th Embodiment of this. (A)本発明の第7の実施形態に係るガスセンサ8gの端子金具1gの概要を示す斜視図、(B)図9(A)に示す端子金具1gの半断面図、および(C)本発明に係る第7の実施形態のガスセンサ8gの効果を説明するための要部断面図である。(A) The perspective view which shows the outline | summary of the terminal metal fitting 1g of the gas sensor 8g which concerns on the 7th Embodiment of this invention, (B) The half sectional view of the terminal metal fitting 1g shown to FIG. 9 (A), (C) This invention. It is principal part sectional drawing for demonstrating the effect of the gas sensor 8g of 7th Embodiment which concerns on this. (A)本発明の第8の実施形態に係るガスセンサ8hの端子金具1hの概要を示す斜視図、(B)図10(A)に示す端子金具1hの半断面図、および(C)本発明の第8の実施形態に係るガスセンサ8hの効果を説明するための要部断面図である。(A) The perspective view which shows the outline | summary of the terminal metal fitting 1h of the gas sensor 8h which concerns on the 8th Embodiment of this invention, (B) The half sectional view of the terminal metal fitting 1h shown to FIG. 10 (A), (C) This invention. It is principal part sectional drawing for demonstrating the effect of the gas sensor 8h which concerns on 8th Embodiment of this. 本発明の第9の実施形態に係るガスセンサ8iの概要を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline | summary of the gas sensor 8i which concerns on the 9th Embodiment of this invention.
(第1の実施形態)図1、図2(A),(B),(C),(D)および図3を参照しながら、本発明の第1の実施形態に係るガスセンサ8の構成、動作、効果などについて説明する。なお、以下の説明において、ガスセンサ8の被測定ガスに露出する側を先端側とし、信号線2を外部に引き出す側を基端側と称する。本発明に係るガスセンサ8,8b~8iは、自動車エンジン、自動二輪車エンジン等の内燃機関の燃焼排気等を被測定ガス91とし、内燃機関の排気筒に近い位置において、被測定ガス流路壁90に固定され、被測定ガス91の高い温度を利用して固体電解質体を活性化して、被測定ガス中の特定成分を検出する、いわゆるヒータレスタイプのガスセンサである。なお、本発明の理解を容易にするため、以下の説明においては、ジルコニア等の酸素イオン伝導性を有する固体電解質材料を用いた酸素センサを例に説明するが、本発明において、検出対象を限定するものではなく、検出対象に応じて、ガスセンサ素子3を構成する固体電解質材料としてプロトン伝導体等を用いたり、酸素濃度だけでなく、空燃比、NOx、アンモニア等の検出に利用したりすることも可能である。 (First Embodiment) With reference to FIGS. 1, 2A, 2B, (C), (D) and FIG. 3, the configuration of a gas sensor 8 according to the first embodiment of the present invention, Operations and effects will be described. In the following description, the side exposed to the gas to be measured of the gas sensor 8 is referred to as the distal end side, and the side from which the signal line 2 is drawn out is referred to as the proximal end side. The gas sensors 8, 8b to 8i according to the present invention use the combustion exhaust gas or the like of an internal combustion engine such as an automobile engine or a motorcycle engine as the measured gas 91, and at the position close to the exhaust pipe of the internal combustion engine, the measured gas flow path wall 90 It is a so-called heaterless type gas sensor that detects a specific component in the measurement gas by activating the solid electrolyte body using the high temperature of the measurement gas 91. In order to facilitate understanding of the present invention, in the following description, an oxygen sensor using a solid electrolyte material having oxygen ion conductivity such as zirconia will be described as an example. Instead of using a proton conductor or the like as the solid electrolyte material constituting the gas sensor element 3 depending on the detection target, or for detecting not only the oxygen concentration but also the air-fuel ratio, NOx, ammonia, etc. Is also possible.
 第1の実施形態におけるガスセンサ8は、少なくとも、端子金具1と、信号線2と、ガスセンサ素子3と、グロメット4と、ケーシング5と、ハウジング7とを含んで構成されている。ガスセンサ素子3は、いわゆるコップ型の素子となっており、特定イオンに対して伝導性を有する固体電解質材料を一端が閉塞し他端が開口する有底筒状に形成した固体電解質体300と、その外周表面301に形成され、被測定ガス流路を流れて、カバー体76の開口部77から侵入した被測定ガス91に接する測定電極層310と、固体電解質体300の内周表面321に形成され、基準ガスとして基準ガス室32内に導入した大気に接する基準電極層320とからなる検出部30を具備する。 The gas sensor 8 in the first embodiment includes at least the terminal fitting 1, the signal line 2, the gas sensor element 3, the grommet 4, the casing 5, and the housing 7. The gas sensor element 3 is a so-called cup-type element, and a solid electrolyte body 300 formed of a solid electrolyte material having conductivity with respect to specific ions in a bottomed cylindrical shape having one end closed and the other end opened; Formed on the outer peripheral surface 301, the measurement electrode layer 310 that flows through the measured gas flow path and contacts the measured gas 91 that has entered from the opening 77 of the cover body 76, and the inner peripheral surface 321 of the solid electrolyte body 300. The detection unit 30 includes a reference electrode layer 320 in contact with the atmosphere introduced into the reference gas chamber 32 as a reference gas.
 測定電極層310、基準電極層320は、それぞれ、白金、又は、白金合金からなる公知の多孔質電極によって形成されている。固体電解質体300の内側には基準ガスとして大気が導入される基準ガス室32が区画されている。検出部30の基端側で固体電解質体300の中腹には、外周側に向かって径大となるように経を拡大した大径部31が形成されている。さらに大径部31の基端側には、筒状に形成され、外部との接続を図るための信号取出部33が形成されている。 The measurement electrode layer 310 and the reference electrode layer 320 are each formed of a known porous electrode made of platinum or a platinum alloy. A reference gas chamber 32 into which air is introduced as a reference gas is defined inside the solid electrolyte body 300. In the middle of the solid electrolyte body 300 on the base end side of the detection unit 30, a large diameter part 31 is formed with the diameter enlarged so as to increase in diameter toward the outer peripheral side. Further, on the base end side of the large-diameter portion 31, a signal extraction portion 33 that is formed in a cylindrical shape and is connected to the outside is formed.
 基準電極層320は、端子金具1によって外部に接続する信号線2と接続されている。測定電極層310は、ハウジング7を介して、被測定ガス流路壁90に電気的に接続され、接地状態となっている。ガスセンサ8は、端子金具1と、信号線2と、ガスセンサ素子3と、グロメット4と、ケーシング5と、ハウジング7とによって構成されている。 The reference electrode layer 320 is connected to the signal line 2 connected to the outside by the terminal fitting 1. The measurement electrode layer 310 is electrically connected to the measured gas flow channel wall 90 via the housing 7 and is in a grounded state. The gas sensor 8 includes a terminal fitting 1, a signal line 2, a gas sensor element 3, a grommet 4, a casing 5, and a housing 7.
 本発明の要部である端子金具1は、耐熱性、電気伝導性、弾性に優れたステンレス等が用いられている。信号線2は、ガスセンサ素子3と外部機器との電気的接続を図るものである。端子金具1は、ガスセンサ素子3と信号線2との接続を図っている。 The terminal fitting 1, which is the main part of the present invention, is made of stainless steel having excellent heat resistance, electrical conductivity, and elasticity. The signal line 2 is intended for electrical connection between the gas sensor element 3 and an external device. The terminal fitting 1 is intended to connect the gas sensor element 3 and the signal line 2.
 本実施形態における端子金具1は、信号線2の芯線20を圧着固定する圧着部10と、基準電極層320との導通を図る導通部12と、グロメット4の底面40とガスセンサ素子3との間に断熱空間部SPTIを形成するための断熱層形成用筒状部15とこれらを連結する連結部11、13とによって構成されている。断熱層形成用筒状部15は、固体電解質体300の内周表面321の内径よりも径大で、断面C字形で軸方向に伸びる一部切り欠き筒状に形成されている。断熱層形成用筒状部15は、端子金具1を固体電解質体300に装着したときにガスセンサ素子3の基端側から所定の長さで露出するように形成されている。 The terminal fitting 1 in the present embodiment includes a crimping portion 10 that crimps and fixes the core wire 20 of the signal line 2, a conduction portion 12 that establishes conduction with the reference electrode layer 320, and a bottom surface 40 of the grommet 4 and the gas sensor element 3. It is constituted by a connecting portion 11, 13 for connecting the heat insulating layer forming the tubular portion 15 for forming the heat-insulating space portion SP TI to. The heat insulating layer forming cylindrical portion 15 is formed in a partially cut-out cylindrical shape having a larger diameter than the inner diameter of the inner peripheral surface 321 of the solid electrolyte body 300 and extending in the axial direction with a C-shaped cross section. The heat insulating layer forming cylindrical portion 15 is formed so as to be exposed at a predetermined length from the base end side of the gas sensor element 3 when the terminal fitting 1 is attached to the solid electrolyte body 300.
 素子側当接部14は、断熱層形成用筒状部15の先端側において固体電解質体300の長手軸に垂直な平面部34に当接するように形成されている。本実施形態においては、固体電解質体300の基端側端面を平面部34としている。 The element side abutting portion 14 is formed so as to abut on the flat portion 34 perpendicular to the longitudinal axis of the solid electrolyte body 300 on the distal end side of the heat insulating layer forming cylindrical portion 15. In the present embodiment, the end surface on the base end side of the solid electrolyte body 300 is a flat portion 34.
 基端側当接部16は、断熱層形成用筒状部15の基端側においてグロメット4の底面40に当接するように形成されている。即ち、基端側当接部16は、端子金具1の基端側の端部にある鍔部に相当する。また本実施形態における基端側当接部16は、径方向に張り出す鍔状に形成されている。鍔状とすることで、グロメット4の底面40を押圧する圧力を分散させ、グロメット4に局所的な圧力が作用して亀裂を生じるのを防ぐことができる。 The proximal end contact portion 16 is formed so as to contact the bottom surface 40 of the grommet 4 on the proximal end side of the heat insulating layer forming cylindrical portion 15. That is, the base end side contact portion 16 corresponds to a collar portion at the base end side end portion of the terminal fitting 1. Moreover, the base end side contact part 16 in this embodiment is formed in the shape of a collar protruding in radial direction. By using the hook shape, it is possible to disperse the pressure that presses the bottom surface 40 of the grommet 4, and to prevent the local pressure from acting on the grommet 4 and causing cracks.
 導通部12は、固体電解質体300の内周表面321の内径よりも僅かに大きい径で、断面C字形で軸方向に伸びる一部切り欠き筒状に形成されている。導通部12は、外径方向に付勢されているので、導通部12を縮径しながら固体電解質体300に装着したとき、基準電極層320と弾性的に当接して、導通を図ることでできるようになっている。 The conducting portion 12 has a slightly larger diameter than the inner diameter of the inner peripheral surface 321 of the solid electrolyte body 300, and is formed in a partially-notched cylindrical shape having a C-shaped cross section and extending in the axial direction. Since the conducting portion 12 is urged in the outer diameter direction, when the conducting portion 12 is attached to the solid electrolyte body 300 while reducing the diameter, the conducting portion 12 is elastically brought into contact with the reference electrode layer 320 to achieve conduction. It can be done.
 また、本実施形態においては、導通部12の一部が先端先細りとなるように、テーパ部17が設けてある。テーパ部17を形成することによって、端子金具1を固体電解質体300に装着する際に、テーパ部17の先端が挿入ガイドとして機能し、縮径しながら固体電解質体300の内周表面321内にスムーズに挿入することができる。圧着部10は、信号線2の芯線20を圧着固定するものである。本実施形態において圧着部10は、導通部12の先端側に設けられており、ガスセンサ素子3から露出する端子金具1の体格を小さくし、ガスセンサ8の小型化を図ることができる。 In the present embodiment, the tapered portion 17 is provided so that a part of the conducting portion 12 is tapered at the tip. By forming the tapered portion 17, when the terminal fitting 1 is attached to the solid electrolyte body 300, the tip of the tapered portion 17 functions as an insertion guide, and the diameter of the tapered portion 17 is reduced within the inner peripheral surface 321 of the solid electrolyte body 300. It can be inserted smoothly. The crimping portion 10 is for crimping and fixing the core wire 20 of the signal line 2. In the present embodiment, the crimping portion 10 is provided on the distal end side of the conducting portion 12, and the size of the terminal fitting 1 exposed from the gas sensor element 3 can be reduced, and the gas sensor 8 can be downsized.
 断熱層形成用筒状部15は、端子金具1を固体電解質体300に装着したときに、固体電解質体300の基端側から露出し、グロメット4とガスセンサ素子3との間を離隔しつつ、通気孔52に連通する断熱空間部SPTIを形成する。なお、連結部11、13に傾斜を設けることで、図2(C)に示すように、圧着部10と導通部12と断熱層形成用筒状部15とが同心となるように配設しても良いし、図2(D)に変形例1aとして示すように、断熱層形成用筒状部15の位置を導通部12の外周縁に一致するように偏心させて配設しても良い。さらに、図1~図3では、導通部12の外径を断熱層形成用筒状部15の外径よりも小さく形成した例を示してあるが、導通部12の外径を断熱層形成用筒状部15の外径と同径に形成し、縮径しながら固体電解質体300内に圧入することで、固体電解質体300の内周表面に形成した基準電極層320と密着させるようにしても良い。 When the terminal fitting 1 is attached to the solid electrolyte body 300, the heat insulating layer forming cylindrical portion 15 is exposed from the base end side of the solid electrolyte body 300, and the grommet 4 and the gas sensor element 3 are separated from each other. forming an insulating space portion SP TI which communicates with the vent hole 52. In addition, by providing the connecting portions 11 and 13 with an inclination, as shown in FIG. 2C, the crimping portion 10, the conducting portion 12, and the heat insulating layer forming cylindrical portion 15 are arranged so as to be concentric. Alternatively, as shown as modified example 1a in FIG. 2D, the position of the heat insulating layer forming cylindrical portion 15 may be eccentrically arranged so as to coincide with the outer peripheral edge of the conducting portion 12. . Further, FIGS. 1 to 3 show an example in which the outer diameter of the conductive portion 12 is formed smaller than the outer diameter of the tubular portion 15 for forming the heat insulating layer, but the outer diameter of the conductive portion 12 is used for forming the heat insulating layer. It is formed so as to have the same diameter as the outer diameter of the cylindrical portion 15 and press-fitted into the solid electrolyte body 300 while reducing the diameter so as to be in close contact with the reference electrode layer 320 formed on the inner peripheral surface of the solid electrolyte body 300. Also good.
 検出部30は、固体電解質体300と、その内側に形成され基準ガスとして導入された大気に接する基準電極層320と、その外側に形成され、被測定ガス流路を流れて、カバー体76の開口部77から侵入する被測定ガス91に接する測定電極層310とによって構成され、カバー体76によって保護された状態で、被測定ガス91(例えば、排気ガス)が流れる被測定ガス流路内に配設されている。 The detection unit 30 includes a solid electrolyte body 300, a reference electrode layer 320 formed on the inside thereof and in contact with the atmosphere introduced as a reference gas, and formed on the outside thereof. The measurement electrode layer 310 is in contact with the measurement gas 91 entering from the opening 77, and is protected by the cover body 76. In the measurement gas flow path through which the measurement gas 91 (for example, exhaust gas) flows. It is arranged.
 グロメット4は、フッ素ゴム、シリコーンゴム、ウレタンゴム等の耐熱性弾性部材からなり、筒状に形成され、内側に信号線2を挿通し、保持している。グロメット4は、撥水フィルタ61の基端部と共にケーシング5の基端側開口に挿入され、かしめ部54によって封止固定されている。 The grommet 4 is made of a heat-resistant elastic member such as fluorine rubber, silicone rubber, urethane rubber, etc., is formed in a cylindrical shape, and the signal line 2 is inserted and held inside. The grommet 4 is inserted into the proximal end side opening of the casing 5 together with the proximal end portion of the water repellent filter 61, and is sealed and fixed by the caulking portion 54.
 ケーシング5は、鉄、ニッケル、ステンレス等の口の金属材料を段付き筒状に形成してある。ケーシング5の先端側に形成された大径部50は、ハウジング7のボス部74に嵌着され、レーザ溶接等の溶接部56によって封止固定されている。ケーシング5の中径部51の側面には、複数の通気孔52が穿設され、ケーシング5の内側に大気を導入している。通気孔52には、気体は透過し、液体の侵入は阻止する撥水フィルタ61が設けられている。 The casing 5 is formed of a stepped cylindrical metal material such as iron, nickel, and stainless steel. The large diameter portion 50 formed on the front end side of the casing 5 is fitted to the boss portion 74 of the housing 7 and is sealed and fixed by a welding portion 56 such as laser welding. A plurality of vent holes 52 are formed in the side surface of the middle diameter portion 51 of the casing 5 to introduce air into the casing 5. The vent hole 52 is provided with a water repellent filter 61 that allows gas to pass therethrough and prevents liquid from entering.
 ハウジング7は、ステンレス、鉄、ニッケル、鉄ニッケル合金等の公知の耐熱性金属材料が用いられ、筒状に形成され、内側にガスセンサ素子3を収容する。ハウジング7の先端側外周にはネジ部75が形成され、ネジ部75は被測定ガス流路壁90に固定され、複数個の開口部77を有するカバー体76に覆われた検出部30を、被測定ガス91が流れる被測定ガス流路内に配設・固定する。ハウジング7の基端側にはボス部74が形成され、そこにケーシング5の先端側に形成された大径部50が装着され、レーザ溶接等の固定手段により得られる固定部を形成して、ガスセンサ素子3を気密に固定している。 The housing 7 is made of a known heat-resistant metal material such as stainless steel, iron, nickel, iron-nickel alloy or the like, is formed in a cylindrical shape, and accommodates the gas sensor element 3 inside. A screw part 75 is formed on the outer periphery of the front end side of the housing 7, and the screw part 75 is fixed to the gas flow channel wall 90 to be measured, and the detection unit 30 covered with a cover body 76 having a plurality of openings 77 is provided. Arranged and fixed in a measurement gas flow path through which the measurement gas 91 flows. A boss portion 74 is formed on the base end side of the housing 7, and a large diameter portion 50 formed on the distal end side of the casing 5 is attached to the boss portion 74 to form a fixing portion obtained by fixing means such as laser welding, The gas sensor element 3 is fixed in an airtight manner.
 粉末充填部材62には、タルク粉末等の耐熱性セラミック粉末を環状に形成したものが用いられている。絶縁性封止部材63には、アルミナ等の耐熱性セラミック焼結体を環状に形成したものが用いられている。封止部材(シール部材)64は、ステンレス等に耐熱性の高い金属材料を環状に形成したものが用いられている。 The powder filling member 62 is formed by annularly forming a heat-resistant ceramic powder such as talc powder. The insulating sealing member 63 is formed by annularly forming a heat-resistant ceramic sintered body such as alumina. The sealing member (seal member) 64 is made of a stainless steel or the like formed of a metal material having high heat resistance in an annular shape.
 ガスセンサ素子3の経を拡大した大径部31を、粉末充填部材62、絶縁性封止部材63、封止部材64を介して、ハウジング7に形成した素子係止部71とかしめ部73とで挟持し、軸力を負荷することで気密性を確保している。ハウジング7の基端側からガスセンサ素子3の一部が露出し、信号取出部33を構成している。 The large-diameter portion 31 in which the diameter of the gas sensor element 3 is enlarged is formed by an element locking portion 71 and a caulking portion 73 formed on the housing 7 via a powder filling member 62, an insulating sealing member 63, and a sealing member 64. Airtightness is secured by pinching and applying axial force. A part of the gas sensor element 3 is exposed from the base end side of the housing 7 to constitute a signal extraction part 33.
 信号取出部33の外周面331には、筒状弾性部材60が嵌着され、撥水フィルタ61の先端部と共に、信号取出部の外周面331を背としてケーシング5のかしめ部55によりかしめ固定されている。 A cylindrical elastic member 60 is fitted on the outer peripheral surface 331 of the signal extraction portion 33, and is caulked and fixed together with the distal end portion of the water repellent filter 61 by the caulking portion 55 of the casing 5 with the outer peripheral surface 331 of the signal extraction portion as the back. ing.
 撥水フィルタ61は、ポリテトラフルオロエチレン等のフッ素樹脂からなり筒状に形成された多孔質繊維構造体が用いられている。撥水フィルタ61は、通気孔52に対向する位置に設けられ、通気孔52からセンサ内部への気体の透過を許容し、液体の透過は阻止する機能を有する。 The water repellent filter 61 is made of a porous fiber structure made of a fluororesin such as polytetrafluoroethylene and formed in a cylindrical shape. The water repellent filter 61 is provided at a position facing the vent hole 52, and has a function of allowing gas to pass from the vent hole 52 to the inside of the sensor and blocking liquid from passing therethrough.
 ケーシング5とガスセンサ素子3の信号取出部33との間に、撥水フィルタ61の先端側と筒状弾性部材60とを介装し、信号取出部33の外周面331を背にしてケーシング5の中径部51先端側の一部を径方向中心側に向かって圧縮して、かしめ部55を設けて固定してある。本実施形態においては、筒状弾性部材60を撥水フィルタ61よりも、ガスセンサの内側に配設してある。 Between the casing 5 and the signal extraction part 33 of the gas sensor element 3, the front end side of the water repellent filter 61 and the cylindrical elastic member 60 are interposed, and the outer surface 331 of the signal extraction part 33 is backed. A portion of the front end side of the medium diameter portion 51 is compressed toward the center in the radial direction, and a caulking portion 55 is provided and fixed. In the present embodiment, the cylindrical elastic member 60 is disposed on the inner side of the gas sensor than the water repellent filter 61.
 かしめ部55によって撥水フィルタ61の先端側が圧縮され、緻密化することで、撥水フィルタ61の先端側端部からの液体の侵入を遮断している。また、ケーシング5の中径部51基端側の一部を径方向中心側に向かって圧縮して、かしめ部54をさらに設けており、撥水フィルタ61の基端側を、グロメット4、信号線2と共に、かしめ固定している。 The front end side of the water repellent filter 61 is compressed and densified by the caulking portion 55, thereby blocking liquid intrusion from the end portion on the front end side of the water repellent filter 61. Further, a part of the base end side of the middle diameter portion 51 of the casing 5 is compressed toward the center in the radial direction, and a caulking portion 54 is further provided, and the base end side of the water repellent filter 61 is connected to the grommet 4 and the signal. It is fixed together with the wire 2 by caulking.
 ケーシング5のかしめ部54によって撥水フィルタ61の基端側が圧縮され、緻密化することによって、基端側からの水分の侵入を遮断している。グロメット4及び筒状弾性部材60には、フッ素ゴム、シリコーンゴム等の耐熱性弾性部材が用いられ、かしめ部54、55を内側から弾性的に押圧する反力を発生させて、撥水フィルタ61との間に間隙を生じないようにしている。 The base end side of the water-repellent filter 61 is compressed and densified by the caulking portion 54 of the casing 5 to block moisture from entering from the base end side. The grommet 4 and the cylindrical elastic member 60 are made of heat-resistant elastic members such as fluoro rubber and silicone rubber, and generate a reaction force that elastically presses the caulking portions 54 and 55 from the inside, thereby producing a water repellent filter 61. So that no gap is generated between them.
 本発明において、カバー体76の形状や、開口部77の位置、大きさ、数等は特に限定されるものではなく、用途に応じて適宜変更することができる。図1~図3に示したような、単数のものに限らず、複数のカバー体を同心に配設したものを用いても良い。 In the present invention, the shape of the cover body 76 and the position, size, number, etc. of the opening 77 are not particularly limited, and can be appropriately changed according to the application. The present invention is not limited to a single one as shown in FIGS. 1 to 3, and a plurality of cover bodies arranged concentrically may be used.
 本発明のガスセンサ8では、例えば図3に示すように、ガスセンサ素子3の固体電解質体300の開口端の上面である平面部34に端子金具の筒状部の先端側端面である素子側当接部14が当接し、基端側当接部16(端子金具1の基端側の端部にある鍔部)がグロメット4の底面40に当接し、ガスセンサ素子3の基端とグロメット4との間に、撥水フィルタ61を介して大気の導入孔としての通気孔52に連なる空気断熱空間部SPTIが形成されている。この空気断熱空間部SPTIは、断熱層として機能する。従来のガスセンサには、熱伝導率の高いアルミナ等の絶縁体が設けられているが、本発明のガスセンサ8では、熱伝導率の高いアルミナ等の絶縁体が設けられていないので、温度の高い被測定ガスの熱が、絶縁体を介してグロメット4の底面40に伝達されることが無く、熱劣化が抑制され、端子金具1の導通部12と基準電極層320と間の導通信頼性に優れたガスセンサ8を実現することができる。 In the gas sensor 8 of the present invention, for example, as shown in FIG. 3, the element side abutment that is the front end side end surface of the cylindrical portion of the terminal fitting is in contact with the flat portion 34 that is the upper surface of the open end of the solid electrolyte body 300 of the gas sensor element 3. The base 14 comes into contact with the base end side contact portion 16 (the flange on the base end side end of the terminal fitting 1) comes into contact with the bottom surface 40 of the grommet 4, and the base end of the gas sensor element 3 and the grommet 4 An air heat insulating space SPTI is formed between the air repellent filter 61 and the air vent 52 serving as an air introduction hole. This air heat insulation space part SPTI functions as a heat insulation layer. The conventional gas sensor is provided with an insulator such as alumina having a high thermal conductivity, but the gas sensor 8 of the present invention is not provided with an insulator such as alumina having a high thermal conductivity, so that the temperature is high. The heat of the gas to be measured is not transmitted to the bottom surface 40 of the grommet 4 through the insulator, the thermal deterioration is suppressed, and the conduction reliability between the conduction portion 12 of the terminal fitting 1 and the reference electrode layer 320 is improved. An excellent gas sensor 8 can be realized.
 ガスセンサ素子3は、先端側に設けた検出部30が高温の被測定ガス91に晒され、固体電解質体300が被測定ガス91の高い温度によって活性化され、酸素イオン伝導性を発揮し、被測定ガス中の酸素濃度と、基準ガス室32内に導入された大気中の酸素濃度との差によって生じた起電力を、信号線2を介して外部に設けた検出回路に送信し、この検出回路で起電力を検出することにより被測定ガス中の酸素濃度を検出することができる。 In the gas sensor element 3, the detection unit 30 provided on the tip side is exposed to the high temperature gas 91 to be measured, the solid electrolyte body 300 is activated by the high temperature of the gas to be measured 91, exhibits oxygen ion conductivity, The electromotive force generated by the difference between the oxygen concentration in the measurement gas and the oxygen concentration in the atmosphere introduced into the reference gas chamber 32 is transmitted to a detection circuit provided outside via the signal line 2 and this detection is performed. By detecting the electromotive force with the circuit, the oxygen concentration in the gas to be measured can be detected.
(第2の実施形態)図4(A)、(B)、(C)を参照して、本発明の第2の実施形態に係るガスセンサ8bについて説明する。なお、以下に記載する各実施形態の説明において、第1の実施形態におけるガスセンサ8と同一の構成については、同じ符号を付し、相違する部分については、枝番としてアルファベットの符号(例えば、1b等)を付したので、同一部分については、説明を省略し、それぞれの実施形態における特徴的な部分を中心に説明する。 (Second Embodiment) A gas sensor 8b according to a second embodiment of the present invention will be described with reference to FIGS. 4 (A), (B) and (C). In the description of each embodiment described below, the same reference numerals are given to the same components as those of the gas sensor 8 in the first embodiment, and different parts are indicated by alphabetic symbols (for example, 1b). Etc.), the description of the same part will be omitted, and the characteristic part in each embodiment will be mainly described.
 第2実施形態に係るガスセンサ8bの要部である端子金具1bでは、図4(A)および(B)に示すように、断熱層形成用筒状部15bを、断面C字形で軸方向に伸びる切り欠き筒状に形成されている。断熱層形成用筒状部15bの外径は、固体電解質体300の内周径よりも径大となるように形成されている。 In the terminal fitting 1b, which is the main part of the gas sensor 8b according to the second embodiment, as shown in FIGS. 4A and 4B, the heat insulating layer forming cylindrical portion 15b extends in the axial direction with a C-shaped cross section. It is formed in the shape of a notch. The outer diameter of the heat insulating layer forming cylindrical portion 15 b is formed so as to be larger than the inner peripheral diameter of the solid electrolyte body 300.
 また、図4(C)に示すように、導通部12bも断面C字形で軸方向に伸びる切り欠き筒状に形成されている。さらに、導通部12bの外径は、固体電解質体300の内周径よりも僅かに径大となるように形成され、縮径された状態で固体電解質体300の内側に圧入されている。 Further, as shown in FIG. 4C, the conducting portion 12b is also formed in a cut-out cylindrical shape having a C-shaped cross section and extending in the axial direction. Furthermore, the outer diameter of the conducting portion 12b is formed to be slightly larger than the inner peripheral diameter of the solid electrolyte body 300, and is press-fitted inside the solid electrolyte body 300 in a reduced diameter state.
 導通部12bは、基準電極層320を外側に向かって弾性的に押圧し導通を確保している。本実施形態に係るガスセンサ8bにおいても、固体電解質体300の基端側の端面を平面部34として、素子側当接部14が当接し、グロメット4の底面40に鍔状に形成されていない基端側当接部16bが当接している。また、本実施形態に係るガスセンサ8bにおいても、前記実施形態と同様、断熱空間部SPTIによって、グロメット4の熱劣化が抑制されている。さらにまた、本実施形態においては、鍔部及び傾斜面を廃した構成とすることにより、構造を簡略化し、さらなる製造コストの削減を図っている。 The conduction portion 12b elastically presses the reference electrode layer 320 outward to ensure conduction. Also in the gas sensor 8b according to the present embodiment, the element-side contact portion 14 is in contact with the end surface on the base end side of the solid electrolyte body 300 as the flat surface portion 34, and is not formed in a bowl shape on the bottom surface 40 of the grommet 4. The end side contact portion 16b is in contact. Also in the gas sensor 8b according to this embodiment, as in the embodiment, the insulating space portion SP TI, thermal degradation of the grommet 4 is suppressed. Furthermore, in this embodiment, the structure is simplified and the manufacturing cost is further reduced by adopting a configuration in which the collar portion and the inclined surface are eliminated.
(第3の実施形態)図5(A)、図5B、図5C、図5Dを参照して、本発明の第3の実施形態に係るガスセンサ8cについて説明する。本実施形態に係るガスセンサ8cの要部であるガスセンサ素子3cでは、固体電解質体300の基端側に設けた信号取出部33cにおいて、平面部として、内周表面321cを先端側が径小となり基端側が径大となるように、段階的に径を変化させた段差部34cが設けられている。 (Third Embodiment) A gas sensor 8c according to a third embodiment of the present invention will be described with reference to FIGS. 5A, 5B, 5C, and 5D. In the gas sensor element 3c which is a main part of the gas sensor 8c according to the present embodiment, the signal extraction portion 33c provided on the base end side of the solid electrolyte body 300 has a small diameter at the tip end side as the flat surface portion and the base end. A stepped portion 34c whose diameter is changed stepwise is provided so that the side becomes larger in diameter.
 さらに、本実施形態に係るガスセンサ8cの端子金具1cでは、断熱層形成用筒状部15cの一部を、導通部12cとして利用するために、断熱層形成用筒状部15cは、長尺に形成されている。断熱層形成用筒状部15cの先端側の一部が、固体電解質体300の内側に圧入されている。固体電解質体300の内側に圧入された導通部12cは、内周表面321cを内側から径方向に弾性的に押圧して基準電極層320との導通を図っている。 Furthermore, in the terminal fitting 1c of the gas sensor 8c according to the present embodiment, in order to use a part of the heat insulating layer forming cylindrical portion 15c as the conduction portion 12c, the heat insulating layer forming cylindrical portion 15c is elongated. Is formed. A part of the distal end side of the heat insulating layer forming cylindrical portion 15 c is press-fitted inside the solid electrolyte body 300. The conducting portion 12c press-fitted inside the solid electrolyte body 300 elastically presses the inner peripheral surface 321c in the radial direction from the inside to achieve conduction with the reference electrode layer 320.
 さらに、図5(D)に示すように、導通部12cの先端の素子側当接部14cは、固体電解質体300の内側に設けた段差部34cに当接して、固体電解質体300の基端側に露出した断熱層形成用筒状部15cの基端側の端部に相当する基端側当接部16がグロメット4の底面に当接し、弾性的に押圧している。本実施形態においても、断熱空間部SPTIによって、グロメット4の熱劣化が抑制されている。 Further, as shown in FIG. 5D, the element-side contact portion 14c at the distal end of the conducting portion 12c is in contact with a stepped portion 34c provided inside the solid electrolyte body 300, and the base end of the solid electrolyte body 300 The base end side contact portion 16 corresponding to the base end side end portion of the heat insulating layer forming cylindrical portion 15c exposed to the side contacts the bottom surface of the grommet 4 and is elastically pressed. In this embodiment, the insulating space portion SP TI, thermal degradation of the grommet 4 is suppressed.
 加えて、図5(C)に示すように、導通部12cが、固体電解質体300の内周表面321cに形成した基準電極層320を外径方向に弾性的に押圧して導通を図るのに加えて、段差部34cの表面に形成した基準電極層320を素子側当接部14cが軸方向に押圧しているので、端子金具1cと基準電極層320との導通が確保され、極めて高い導通信頼性を発揮できる。なお、本実施形態において、基端側当接部16cでは、鍔状に広げつつ花弁状に切り欠いてあるが、鍔部を設けない構成、即ち、第2の実施形態に係るガスセンサ8bにおける端子金具1bを取り除く構造を、各実施形態のガスセンサにおいても採用し可能である。基端側当接部16cを花弁状に切り欠くことで、鍔状に形成する際の亀裂の発生や変形を抑制することができる。 In addition, as shown in FIG. 5 (C), the conducting portion 12c elastically presses the reference electrode layer 320 formed on the inner peripheral surface 321c of the solid electrolyte body 300 in the outer diameter direction to achieve conduction. In addition, since the element side contact portion 14c presses the reference electrode layer 320 formed on the surface of the stepped portion 34c in the axial direction, conduction between the terminal fitting 1c and the reference electrode layer 320 is ensured, and extremely high conduction is achieved. Can demonstrate reliability. In the present embodiment, the proximal end contact portion 16c is notched in a petal shape while expanding in a hook shape, but has a configuration in which no hook portion is provided, that is, a terminal in the gas sensor 8b according to the second embodiment. A structure in which the metal fitting 1b is removed can also be adopted in the gas sensor of each embodiment. By notching the proximal end contact portion 16c into a petal shape, it is possible to suppress the occurrence of cracks and deformation when forming the ridge shape.
(第4の実施形態)図6(A)、(B)、(C)、(D)を参照しながら、本発明の第4の実施形態に係るガスセンサ8dについて説明する。他の実施形態のガスセンサの構成と同様に、本実施形態に係るガスセンサ8dの構造においても、断熱空間部SPTIによって、グロメット4の熱劣化が抑制されている。 (Fourth Embodiment) A gas sensor 8d according to a fourth embodiment of the present invention will be described with reference to FIGS. 6 (A), (B), (C) and (D). Like the structure of the gas sensor of another embodiment, in the structure of the gas sensor 8d according to the present embodiment, the insulating space portion SP TI, thermal degradation of the grommet 4 is suppressed.
 加えて、本実施形態におけるガスセンサ素子3dでは、図6(C)および(D)に示すように、固体電解質体300の基端側に設けた信号取出部33dの開口端において、基端側に向かって徐々に径大となるように径変し、垂直成分を含む傾斜部としての傾斜面34dが設けられている。本実施形態における端子金具1dでは、断熱層形成用筒状部15dと導通部12dとの間に、素子側傾斜当接部14dが設けられている。これにより、素子側傾斜当接部14dを、傾斜面34dに当接させたときに、径方向と軸方向との両方に弾性的な押圧力が作用し、外部からの振動に対して高い導通信頼性を発揮できる。 In addition, in the gas sensor element 3d in the present embodiment, as shown in FIGS. 6C and 6D, at the open end of the signal extraction portion 33d provided on the base end side of the solid electrolyte body 300, the base end side is provided. The diameter is gradually changed so as to gradually increase in diameter, and an inclined surface 34d is provided as an inclined portion including a vertical component. In the terminal fitting 1d in the present embodiment, an element-side inclined contact portion 14d is provided between the heat insulating layer forming cylindrical portion 15d and the conducting portion 12d. As a result, when the element-side inclined contact portion 14d is brought into contact with the inclined surface 34d, an elastic pressing force acts in both the radial direction and the axial direction, and is highly conductive against external vibrations. Can demonstrate reliability.
(第5の実施形態)図7(A)、(B)、(C)、(D)を参照して、本発明の第5の実施形態に係るガスセンサ8eについて説明する。本実施形態に係るガスセンサ8eの要部であるガスセンサ素子3eでは、固体電解質体300の内周表面321eに形成した基準電極層320を、固体電解質体300の基端側に形成した信号取出部33eにおいて、固体電解質体300の外周面331eまで延設してある。本実施形態においても、グロメット4とガスセンサ素子3eとの間に断熱空間部SPTIを形成することで、グロメット4の熱劣化が抑制されている。 (Fifth Embodiment) A gas sensor 8e according to a fifth embodiment of the present invention will be described with reference to FIGS. 7 (A), (B), (C) and (D). In the gas sensor element 3e which is a main part of the gas sensor 8e according to the present embodiment, a signal extraction portion 33e in which the reference electrode layer 320 formed on the inner peripheral surface 321e of the solid electrolyte body 300 is formed on the base end side of the solid electrolyte body 300. The solid electrolyte body 300 is extended to the outer peripheral surface 331e. In this embodiment, by forming the heat-insulating space portion SP TI between the grommet 4 and the gas sensor element 3e, thermal degradation of the grommet 4 is suppressed.
 さらに、図7(C)に示すように、端子金具1eの断熱層形成用筒状部15eの一部を、導通部12eとして、固体電解質体300の外周面331eに嵌着せしめてある。導通部12eは、固体電解質体300の外周面331eの外径よりも僅かに小さい径で一部が切り欠かれた断面C字形に形成されており、導通部12eを外周面331eに嵌着したときに外側から中心に向かう方向の押圧力を生じるよう付勢されている。 Furthermore, as shown in FIG. 7C, a part of the heat insulating layer forming cylindrical portion 15e of the terminal fitting 1e is fitted to the outer peripheral surface 331e of the solid electrolyte body 300 as a conducting portion 12e. The conducting portion 12e is formed in a C-shaped cross-section with a diameter slightly smaller than the outer diameter of the outer peripheral surface 331e of the solid electrolyte body 300, and the conducting portion 12e is fitted to the outer peripheral surface 331e. Sometimes it is biased to generate a pressing force in the direction from the outside toward the center.
 これによって、導通部12eが外周側方向から基準電極層320を弾性的に押圧して導通を図っている。導通部を固体電解質体300の内周表面に圧入する場合にくらべ、導通部12eの外径が大きくなることで、導通部12eの表面積が拡大され、冷却効果が向上し、グロメット4への伝熱量の低減を図ることも可能となる。 Thereby, the conduction part 12e elastically presses the reference electrode layer 320 from the outer peripheral side direction to achieve conduction. Compared to the case where the conducting part is press-fitted into the inner peripheral surface of the solid electrolyte body 300, the outer diameter of the conducting part 12e is increased, so that the surface area of the conducting part 12e is increased, the cooling effect is improved, and the transfer to the grommet 4 is improved. It is also possible to reduce the amount of heat.
 さらに、図7(C)に示すように、信号取出部33の外周に設けた段差部を平面部34eとして、素子側当接部14eを当接せしめてあり、また図7(D)に示すように、断熱層形成用筒状部15eの基端側当接部16eがグロメット4の底面40に当接し、軸方向にもグロメット4から弾性的な押圧力が作用し、導通信頼性の向上を図っている。さらに、導通部12eの外周を覆うように筒状弾性部材60が嵌着され、撥水フィルタ61と共に、かしめ部55によって外周方向から圧縮されている。導通部12eは、信号取出部33eの外周面331eに延設した基準電極層320を中心に向かって、弾性的に押圧するように付勢されているが、筒状弾性部材60が重畳的に導通部12eを中心に向かって弾性的に押圧するので、より一相導通信頼性を向上させることができる。 Further, as shown in FIG. 7 (C), the step portion provided on the outer periphery of the signal extraction portion 33 is used as a flat portion 34e, and the element side contact portion 14e is brought into contact, and as shown in FIG. 7 (D). In this way, the base end side contact portion 16e of the heat insulating layer forming cylindrical portion 15e contacts the bottom surface 40 of the grommet 4, and elastic pressing force acts from the grommet 4 also in the axial direction, thereby improving the conduction reliability. I am trying. Further, a cylindrical elastic member 60 is fitted so as to cover the outer periphery of the conducting portion 12 e and is compressed from the outer peripheral direction by the caulking portion 55 together with the water repellent filter 61. The conducting portion 12e is biased so as to elastically press the reference electrode layer 320 extending on the outer peripheral surface 331e of the signal extraction portion 33e toward the center, but the cylindrical elastic member 60 is superimposed on the conductive portion 12e. Since the conduction part 12e is elastically pressed toward the center, the one-phase conduction reliability can be further improved.
(第6の実施形態)図8(A)、(B)、(C)を参照して、第6の実施形態に係るガスセンサ8fについて説明する。本実施形態に係るガスセンサ8fの要部である端子金具1fの導通部12の先端側に、連結部19を介して接続する第2の導通部18を設けて、固体電解質体300の内径を縮径した径変部322において基準電極層320に当接せしめてある。本実施形態においては、前記実施形態と同様に、グロメット4の熱劣化を抑制して、導通信頼性の確保と耐久性の向上を図る効果に加え、第2の導通部18によって補完的に導通信頼性が向上されている。図8(C)に示すように、第2の導通部18は、先端側で二股に分かれた舌片状に形成されており、傾斜した径変部322に当接することで軸方向と径方向とに押圧することになる。その結果、端子金具1fに外部からの振動が作用しても、基準電極層320を径方向に弾性的に押圧する導通部12と基準電極層320を軸方向にも径方向にも端正的に押圧する第2の導通部18とのいずれかが常に基準電極層320との導通を維持することになるので、極めて高い導通信頼性を発揮できる。 (Sixth Embodiment) A gas sensor 8f according to a sixth embodiment will be described with reference to FIGS. The second conductive portion 18 connected via the connecting portion 19 is provided on the distal end side of the conductive portion 12 of the terminal fitting 1f, which is the main part of the gas sensor 8f according to the present embodiment, so that the inner diameter of the solid electrolyte body 300 is reduced. The diameter changing portion 322 is brought into contact with the reference electrode layer 320. In the present embodiment, in the same manner as in the above-described embodiment, in addition to the effect of suppressing thermal deterioration of the grommet 4 to ensure conduction reliability and improve durability, the second conduction portion 18 complementarily conducts. Reliability has been improved. As shown in FIG. 8C, the second conducting portion 18 is formed in a tongue-like shape that is bifurcated at the tip end side, and is in contact with the inclined diameter changing portion 322 so as to be axial and radial. Will be pressed. As a result, even if external vibration acts on the terminal fitting 1f, the conduction portion 12 that elastically presses the reference electrode layer 320 in the radial direction and the reference electrode layer 320 are neatly arranged in both the axial direction and the radial direction. Since any one of the second conducting parts 18 to be pressed always maintains conduction with the reference electrode layer 320, extremely high conduction reliability can be exhibited.
 さらに、本実施形態においては、ケーシング5fとガスセンサ素子3の信号取出部33との間に、撥水フィルタ61の先端側と筒状弾性部材60とを介装し、信号取出部33の外周面331を背にしてケーシング5fの中径部51を径方向中心側に向かって圧縮して、かしめ部55を設けてある。本実施形態においては、かしめ固定するに際し、撥水フィルタ61を筒状弾性部材60よりも、内側に配設せしめてある。撥水フィルタ61の先端部を筒状弾性部材60よりも、内側に配設することにより、かしめ部55を形成する際に、筒状弾性部材60を介して撥水フィルタ61が圧縮されるので、過剰な変形が抑制され、撥水フィルタ61と筒状弾性部材60との間に間隙が形成されることがなく、確実に水滴の侵入を阻止できる。 Further, in the present embodiment, the front end side of the water repellent filter 61 and the cylindrical elastic member 60 are interposed between the casing 5 f and the signal extraction portion 33 of the gas sensor element 3, and the outer peripheral surface of the signal extraction portion 33. The caulking portion 55 is provided by compressing the middle diameter portion 51 of the casing 5f toward the center in the radial direction with the back of 331. In the present embodiment, the water-repellent filter 61 is disposed on the inner side than the cylindrical elastic member 60 when caulking and fixing. By disposing the tip of the water repellent filter 61 inside the cylindrical elastic member 60, the water repellent filter 61 is compressed via the cylindrical elastic member 60 when the caulking portion 55 is formed. Excessive deformation is suppressed, and no gap is formed between the water repellent filter 61 and the cylindrical elastic member 60, so that water droplets can be reliably prevented from entering.
(第7の実施形態)図9A、図9B、図9Cを参照して、本発明の第7の実施形態に係るガスセンサ8gの要部である端子金具1gの概要と、その効果について説明する。前記した第1~6の実施形態においては、圧着部10を端子金具1、1a~1fの先端に設けた構成を示したが、第7の実施形態に係るガスセンサ8gの端子金具1gでは、圧着部10gが断熱層形成用筒状部15gよりも基端側に設けられている点が相違する。さらに、図9(C)に示すように、グロメット4の先端側(基端側の反対側)に、圧着部10gを収容するための圧着部空間部41を設けてグロメット4gの内側に収容するようにしても良い。本実施形態に係るガスセンサ8gの構成によれば、圧着部10gが通気孔52よりも基端側に位置し、比較的低温の環境に配置されるので、信号線2の絶縁被覆への熱的ダメージを低減することもできる。 (Seventh Embodiment) With reference to FIGS. 9A, 9B and 9C, an outline of a terminal fitting 1g which is a main part of a gas sensor 8g according to a seventh embodiment of the present invention and its effects will be described. In the first to sixth embodiments described above, the configuration in which the crimping portion 10 is provided at the distal ends of the terminal fittings 1 and 1a to 1f is shown. However, the terminal fitting 1g of the gas sensor 8g according to the seventh embodiment is crimped. The difference is that the portion 10g is provided closer to the base end side than the tubular portion 15g for heat insulation layer formation. Furthermore, as shown in FIG. 9C, a crimping portion space 41 for accommodating the crimping portion 10g is provided on the distal end side (opposite the base end side) of the grommet 4 and accommodated inside the grommet 4g. You may do it. According to the configuration of the gas sensor 8g according to the present embodiment, the crimping portion 10g is located on the proximal end side with respect to the vent hole 52 and is disposed in a relatively low temperature environment. Damage can also be reduced.
 また、アルミナ等の絶縁材料を用いて、圧着部10gを収容可能な空間を内側に設けて環状に形成した絶縁体(図示せず)を用意し、断熱層形成用筒状部15gとグロメット底面40gとの間に介装するようにしても良い。この場合、熱伝導率の高い絶縁体が、グロメット底面40gに接することになるが、絶縁体よりも先端側に、断熱層形成用筒状部15gによって支持されつつ、通気孔52を介して大気に連通された断熱空間部SPTIが存在するため、ガスセンサ素子3を加熱する被測定ガスの熱がグロメット4に到達することがほとんどなく、グロメット4の熱劣化を抑制することが可能となる。 Also, using an insulating material such as alumina, an insulating body (not shown) that is formed in an annular shape by providing a space capable of accommodating the crimping portion 10g is prepared, and the heat insulating layer forming cylindrical portion 15g and the bottom surface of the grommet are prepared. You may make it interpose between 40g. In this case, the insulator having high thermal conductivity comes into contact with the grommet bottom surface 40g, but is supported on the tip side of the insulator by the tubular portion 15g for forming the heat insulating layer through the vent hole 52 while being supported by the air hole 52. since communicated thermal insulation space SP TI is present, almost without heat in the measurement gas for heating the gas sensor element 3 reaches the grommet 4, it is possible to suppress thermal deterioration of the grommet 4.
(第8の実施形態)図10(A)、(B)および(C)を参照して、本発明の第8の実施形態に係るガスセンサ8hの要部である端子金具1hの概要と、その効果について説明する。本実施形態においては、信号線2の芯線20を圧着固定する圧着部10hが端子金具1hの中心に配設されており、連結部13hを介して、基端側に当接する基端側当接部16を有する断熱層形成用筒状部15が設けられ、先端側に連結部11hを介して、導通部12hが設けられている。 (Eighth Embodiment) Referring to FIGS. 10A, 10B and 10C, an outline of a terminal fitting 1h which is a main part of a gas sensor 8h according to an eighth embodiment of the present invention, and its The effect will be described. In the present embodiment, a crimping portion 10h for crimping and fixing the core wire 20 of the signal line 2 is disposed at the center of the terminal fitting 1h, and a proximal end abutment that abuts on the proximal end side via the connecting portion 13h. A tubular portion 15 for forming a heat insulating layer having a portion 16 is provided, and a conducting portion 12h is provided on the tip side via a connecting portion 11h.
 本実施形態のガスセンサ8hの構成においても、図10(C)に示すように、ガスセンサ素子3の固体電解質体300の開口端の上面である平面部34に端子金具の筒状部の先端側の端面である素子側当接部14が当接し、基端側当接部16がグロメット4の底面40に当接し、ガスセンサ素子3の基端とグロメット4との間に、撥水フィルタ61を介して大気を導入するための通気孔52に連なる空気断熱空間部SPTIが形成されるので、グロメット4の熱劣化が抑制され、端子金具1hの導通部12hと、固体電解質体300の内周表面321に形成の基準電極層320との間の電気的導通性に優れ信頼性の高いガスセンサ8hを実現することができる。加えて、本実施形態においては、図10(C)に示すように、圧着部10hが、ガスセンサ素子3の内側に収容されるので、ガスセンサ8hの体格を小さくすることができる。さらに、圧着部10hが、導通部12hよりも基端側に設けられているため、圧着部10を先端に設けた場合にくらべ、熱源からの距離が遠くなるので、信号線2の絶縁被覆への熱的ダメージを軽減できる。 Also in the configuration of the gas sensor 8h of the present embodiment, as shown in FIG. 10C, the flat portion 34 that is the upper surface of the open end of the solid electrolyte body 300 of the gas sensor element 3 is placed on the distal end side of the cylindrical portion of the terminal fitting. The element side contact portion 14 which is an end surface contacts, the base end side contact portion 16 contacts the bottom surface 40 of the grommet 4, and the water repellent filter 61 is interposed between the base end of the gas sensor element 3 and the grommet 4. the air insulating space portion SP TI is formed continuous to the vent hole 52 for introducing air Te, thermal degradation of the grommet 4 is suppressed, and a conductive portion 12h of the terminal 1h, the inner peripheral surface of the solid electrolyte body 300 A highly reliable gas sensor 8h having excellent electrical continuity with the reference electrode layer 320 formed in 321 can be realized. In addition, in the present embodiment, as shown in FIG. 10C, the crimping portion 10h is housed inside the gas sensor element 3, so that the size of the gas sensor 8h can be reduced. Furthermore, since the crimping portion 10h is provided on the proximal end side with respect to the conducting portion 12h, the distance from the heat source is longer than when the crimping portion 10 is provided at the distal end. Can reduce thermal damage.
 本実施形態に係るガスセンサ8hの構成では、ケーシング5とガスセンサ素子3の信号取出部33との間に、撥水フィルタ61の先端側と筒状弾性部材60とを介装し、信号取出部33の外周面331を背にしてケーシング5の中径部51を径方向中心側に向かって圧縮して、かしめ部55を設けてある。本実施形態に係るガスセンサ8hにおいては、撥水フィルタ61の先端部を筒状弾性部材60よりも、内側に配設することにより、かしめ部55を形成する際に、筒状弾性部材60を介して撥水フィルタ61が圧縮されるので、過剰な変形が抑制され、撥水フィルタ61と筒状弾性部材60との間に間隙が形成されることがなく、確実に水滴の侵入を阻止できるという効果がある。 In the configuration of the gas sensor 8h according to the present embodiment, the distal end side of the water repellent filter 61 and the cylindrical elastic member 60 are interposed between the casing 5 and the signal extraction portion 33 of the gas sensor element 3, and the signal extraction portion 33 is interposed. The caulking portion 55 is provided by compressing the middle diameter portion 51 of the casing 5 toward the center in the radial direction with the outer peripheral surface 331 of the casing 5 as the back. In the gas sensor 8h according to the present embodiment, the distal end portion of the water repellent filter 61 is disposed on the inner side of the cylindrical elastic member 60, whereby the caulking portion 55 is formed via the cylindrical elastic member 60. Since the water repellent filter 61 is compressed, excessive deformation is suppressed, and no gap is formed between the water repellent filter 61 and the cylindrical elastic member 60, so that the intrusion of water droplets can be reliably prevented. effective.
(第9の実施形態)
 図11を参照して、本発明の第9の実施形態に係るガスセンサ8iの概要について説明する。上述したように第1の実施形態から第8の実施形態に係るガスセンサ8~8hにおいては、ケーシング5の先端をハウジング7のボス部74にレーザ溶接により固定した溶接部56を設けた例を示したが、第9の本実施形態に係るガスセンサ8iの構成では、ケーシング5iの先端に外周方向に張り出すケーシング鍔部56iを設けて、粉末充填部材62i、絶縁性封止部材63i、封止部材(シール部材)64と共に、ハウジング7iの粉末充填部係止部72とかしめ部73iとの間に挟持されて、軸方向の軸力を負荷してかしめ固定している。この点が他の実施形態に係るガスセンサの構造と相違する。図11に示すように、第9の実施形態に係るガスセンサ8iのケーシング5iの中径部51の先端には、径方向に向かってハット型に広がるケーシング鍔部56iが設けられている。このケーシング鍔部56iは、封止部材64と共に、ハウジング7iのかしめ部73iによってかしめ固定されている。
(Ninth embodiment)
With reference to FIG. 11, an outline of a gas sensor 8i according to a ninth embodiment of the present invention will be described. As described above, in the gas sensors 8 to 8h according to the first to eighth embodiments, an example in which the welded portion 56 in which the tip of the casing 5 is fixed to the boss portion 74 of the housing 7 by laser welding is shown. However, in the configuration of the gas sensor 8i according to the ninth embodiment, the casing flange portion 56i protruding in the outer peripheral direction is provided at the tip of the casing 5i, and the powder filling member 62i, the insulating sealing member 63i, and the sealing member Along with the (seal member) 64, it is sandwiched between the powder filling portion locking portion 72 and the caulking portion 73i of the housing 7i, and is fixed by caulking by applying an axial force in the axial direction. This point is different from the structure of the gas sensor according to another embodiment. As shown in FIG. 11, a casing collar portion 56 i that spreads in a hat shape in the radial direction is provided at the tip of the middle diameter portion 51 of the casing 5 i of the gas sensor 8 i according to the ninth embodiment. The casing flange 56i is caulked and fixed together with the sealing member 64 by a caulking portion 73i of the housing 7i.
 また、図11には、第1の実施形態に係るガスセンサ8で用いた端子金具1と同じ構成の端子金具1を用いた例を示しているが、上述した他の実施形態に係るガスセンサで用いた端子金具1a~1hのいずれも使用することができる。本実施形態に係るガスセンサ8iにおいても、上述した他の実施形態に係るガスセンサと同様に、断熱層形成用筒状部15によって、ガスセンサ素子3の基端とグロメット4との間に、撥水フィルタ61を介して大気を導入するための通気孔52に連なる空気断熱空間部SPTIが形成されるので、グロメット4の熱劣化が抑制され、端子金具1の導通部12と基準電極層320と間の導通信頼性に優れたガスセンサ8iを実現することができる。 FIG. 11 shows an example in which the terminal fitting 1 having the same configuration as that of the terminal fitting 1 used in the gas sensor 8 according to the first embodiment is used, but it is used in the gas sensor according to the other embodiments described above. Any of the terminal fittings 1a to 1h can be used. Also in the gas sensor 8i according to the present embodiment, the water repellent filter is provided between the base end of the gas sensor element 3 and the grommet 4 by the heat insulating layer forming cylindrical portion 15 as in the gas sensor according to the other embodiments described above. the air insulating space portion SP TI continuous 61 to vent 52 for introducing air via is formed, thermal deterioration of the grommet 4 is suppressed, between the conductive section 12 and the reference electrode layer 320 of the terminal fitting 1 The gas sensor 8i having excellent conduction reliability can be realized.
 1、1b~1h 端子金具
 10 圧着部
 12 導通部
 14 素子側当接部
 14d 素子側傾斜当接部
 15 断熱層形成用筒状部
 16 基端側当接部
 2 信号線
 20 信号線芯線
 3 ガスセンサ素子
 30 検出部
 300 固体電解質体
 301 固体電解質体外周表面
 310 測定電極層
 32 基準ガス室
 320 基準電極層
 321 固体電解質体の内周表面
 34 固体電解質体平面部
 34d 固体電解質体傾斜面
 4 グロメット
 40 グロメット底面
 5 ケーシング
 52 通気孔
 61 撥水フィルタ
 7 ハウジング
 8 ガスセンサ
 91 被測定ガス
 SPTI 断熱空間部
 
DESCRIPTION OF SYMBOLS 1, 1b-1h Terminal metal fitting 10 Crimp part 12 Conductive part 14 Element side contact part 14d Element side inclination contact part 15 Heat insulation layer forming cylindrical part 16 Base end side contact part 2 Signal line 20 Signal line core wire 3 Gas sensor Element 30 Detector 300 Solid electrolyte body 301 Solid electrolyte body outer peripheral surface 310 Measurement electrode layer 32 Reference gas chamber 320 Reference electrode layer 321 Inner peripheral surface of solid electrolyte body 34 Solid electrolyte body flat surface part 34d Solid electrolyte body inclined surface 4 Grommet 40 Grommet Bottom 5 Casing 52 Ventilation hole 61 Water repellent filter 7 Housing 8 Gas sensor 91 Gas to be measured SPTI heat insulation space

Claims (14)

  1.  少なくとも、特定イオンに対して伝導性を有する有底筒状の固体電解質体(300)と、該固体電解質体の外周表面(301)に形成され、被測定ガス(91)に接する測定電極層(310)と、前記固体電解質体の内周表面(321、321c、321e)に形成され、基準ガスとして導入した大気に接する基準電極層(320)とからなる検出部(30)を具備して、被測定ガス中の特定成分を検出するガスセンサ素子(3)と、
     該ガスセンサ素子と外部との接続を図る信号線(2)と、
     前記ガスセンサ素子と前記信号線との接続を図る端子金具(1、1b~1h)と、
     前記ガスセンサ素子を収容し、前記検出部を被測定ガス(91)中に配設・固定するハウジング(7)と、
     前記ガスセンサ素子の基端側を前記端子金具と共に覆いつつ、内側に大気を導入する通気孔(52)を備えた筒状のケーシング(5)と、
     該ケーシングの基端側を気密に封止しつつ、前記端子金具に接続された前記信号線を保持するグロメット(4)と、
     前記通気孔に対向して設けられ、気体の透過は許容し液体の透過は阻止する多孔質繊維構造体からなる撥水フィルタ(61)と、を具備し、被測定ガス中の特定成分を検出するガスセンサであって、
     前記端子金具は、筒状に形成され、前記ガスセンサ素子の基端側から所定の長さで露出する断熱層形成用筒状部(15、15b~15e)と、
     該断熱層形成用筒状部の先端側において前記固体電解質体の長手軸に垂直な平面部(34、34e)に当接する素子側当接部(14、14c、14e)、若しくは、垂直成分を含む傾斜面(34d)に当接する素子側傾斜当接部(14d)と、
     前記断熱層形成用筒状部の基端側において前記グロメットの底面(40)に当接する基端側当接部(16、16c、16e)と、
     前記基準電極層と弾性的に当接して、導通を図る導通部(12、12b~12e、12h)と、
     前記信号線の芯線(20)を圧着固定する圧着部(10、10g、10h)と、を具備して、
     前記グロメット(4)と前記ガスセンサ素子(3)との間を離隔しつつ、前記通気孔(52)に連通する断熱空間部(SPTI)を設けたことを特徴とするガスセンサ(8、8a~8i)。
    At least a bottomed cylindrical solid electrolyte body (300) having conductivity with respect to specific ions, and a measurement electrode layer formed on the outer peripheral surface (301) of the solid electrolyte body and in contact with the gas to be measured (91) ( 310) and a reference electrode layer (320) formed on the inner peripheral surface (321, 321c, 321e) of the solid electrolyte body and in contact with the atmosphere introduced as a reference gas, A gas sensor element (3) for detecting a specific component in the gas to be measured;
    A signal line (2) for connecting the gas sensor element to the outside;
    Terminal fittings (1, 1b to 1h) for connecting the gas sensor element and the signal line;
    A housing (7) for housing the gas sensor element and arranging and fixing the detection unit in the gas to be measured (91);
    A cylindrical casing (5) provided with a vent hole (52) for introducing the air inside while covering the base end side of the gas sensor element together with the terminal fitting,
    A grommet (4) for holding the signal line connected to the terminal fitting, while airtightly sealing the base end side of the casing;
    A water repellent filter (61) provided with a porous fiber structure that is provided opposite to the vent hole and allows gas permeation but prevents liquid permeation, and detects a specific component in the gas to be measured A gas sensor that
    The terminal fitting is formed in a cylindrical shape, and a heat insulating layer forming cylindrical portion (15, 15b to 15e) exposed at a predetermined length from the base end side of the gas sensor element;
    An element side contact portion (14, 14c, 14e) that contacts a flat portion (34, 34e) perpendicular to the longitudinal axis of the solid electrolyte body on the tip side of the heat insulating layer forming cylindrical portion, or a vertical component An element side inclined contact portion (14d) that contacts an inclined surface (34d) including;
    A base end side contact portion (16, 16c, 16e) that contacts the bottom surface (40) of the grommet on the base end side of the tubular portion for heat insulation layer formation;
    Conductive portions (12, 12b to 12e, 12h) that elastically contact with the reference electrode layer to achieve conduction;
    A crimping part (10, 10 g, 10 h) for crimping and fixing the core wire (20) of the signal line,
    A gas sensor (8, 8a˜) characterized in that a heat insulating space (SP TI ) communicating with the vent hole (52) is provided while separating the grommet (4) and the gas sensor element (3). 8i).
  2.  前記端子金具(1、1b~1h)において、前記断熱層形成用筒状部を、前記固体電解質体の内周径よりも径が大となる一部切り欠き筒状に形成すると共に、前記固体電解質体の基端側端面を前記平面部として、前記素子側当接部を当接させたことを特徴とする請求項1に記載のガスセンサ。 In the terminal fitting (1, 1b to 1h), the tubular portion for forming the heat insulating layer is formed in a partially cut-out tubular shape having a diameter larger than the inner peripheral diameter of the solid electrolyte body, 2. The gas sensor according to claim 1, wherein the element side contact portion is brought into contact with the base end side end surface of the electrolyte body as the flat portion.
  3.  前記ガスセンサ素子が、前記固体電解質体の基端側に設けた信号取出部において、前記平面部として、内周表面を先端側が径小となり基端側が径大となるように、段階的に径を変化した段差部(34c)を設け、
     前記端子金具(1c)の前記断熱層形成用筒状部の一部を、前記導通部として、前記固体電解質体の内側に圧入すると共に、前記導通部が、前記内周表面を内側から径方向に弾性的に押圧して前記基準電極層との導通を図りつつ、前記素子側当接部が、前記段差部に当接して軸方向に押圧させたことを特徴とする請求項1に記載のガスセンサ。
    In the signal extraction portion provided on the base end side of the solid electrolyte body, the gas sensor element has a stepwise diameter so that the inner peripheral surface has a smaller diameter on the distal end side and a larger diameter on the proximal end side as the planar portion. Providing a changed stepped portion (34c);
    A part of the tubular portion for forming the heat insulation layer of the terminal fitting (1c) is press-fitted into the solid electrolyte body as the conductive portion, and the conductive portion radially extends the inner peripheral surface from the inner side. 2. The device according to claim 1, wherein the element-side contact portion is in contact with the stepped portion and pressed in the axial direction while being elastically pressed to be electrically connected to the reference electrode layer. Gas sensor.
  4.  前記ガスセンサ素子が、前記固体電解質体の基端側に設けた信号取出部の開口端において、基端側に向かって徐々に径が大きくなるように径変させた傾斜面を具備すると共に、
     前記端子金具(1d)の前記断熱層形成用筒状部(15d)と前記導通部(12d)との間に、前記素子側傾斜当接部(14d)を設け、前記素子側傾斜当接部を、前記傾斜面(34d)に当接させたことを特徴とする請求項1に記載のガスセンサ。
    The gas sensor element includes an inclined surface whose diameter is gradually increased toward the base end side at the opening end of the signal extraction portion provided on the base end side of the solid electrolyte body, and
    The element side inclined contact portion (14d) is provided between the tubular portion (15d) for forming the heat insulation layer of the terminal fitting (1d) and the conducting portion (12d), and the element side inclined contact portion. The gas sensor according to claim 1, wherein the gas sensor is brought into contact with the inclined surface (34d).
  5.  前記ガスセンサ素子が、固体電解質体の内周表面に形成した基準電極層を、固体電解質体の基端側に形成した信号取出部(33e)において、固体電解質体の外周面まで延設すると共に、前記端子金具(1e)の前記断熱層形成用筒状部の一部を、前記導通部として、前記固体電解質体の外周面に嵌着させて、
     前記導通部が、前記外周面を外側から径方向に弾性的に押圧して前記基準電極層との導通を図りつつ、前記信号取出部(33e)の外周に設けた段差部を前記平面部(34e)として、前記素子側当接部を当接させたことを特徴とする請求項1に記載のガスセンサ。
    The gas sensor element extends a reference electrode layer formed on the inner peripheral surface of the solid electrolyte body to the outer peripheral surface of the solid electrolyte body at a signal extraction portion (33e) formed on the base end side of the solid electrolyte body, A part of the tubular portion for forming the heat insulation layer of the terminal fitting (1e) is fitted as the conducting portion to the outer peripheral surface of the solid electrolyte body,
    While the conducting portion elastically presses the outer peripheral surface in the radial direction from the outside to achieve conduction with the reference electrode layer, the step portion provided on the outer circumference of the signal extraction portion (33e) 34. The gas sensor according to claim 1, wherein the element side contact portion is contacted as 34e).
  6.  前記端子金具(1f)の前記導通部の先端側に、前記固体電解質体の内径を縮径した径変部において、前記基準電極層に当接する第2の導通部(18)を設けたことを特徴とする請求項1ないし4のいずれか1項に記載のガスセンサ。 A second conductive portion (18) in contact with the reference electrode layer is provided at the diameter changing portion obtained by reducing the inner diameter of the solid electrolyte body on the distal end side of the conductive portion of the terminal fitting (1f). The gas sensor according to any one of claims 1 to 4, characterized in that:
  7.  前記端子金具(1g)の前記断熱層形成用筒状部の前記基端側当接部(16)を径方向に張り出す鍔状に形成したことを特徴とする請求項1ないし6のいずれか1項に記載のガスセンサ。 7. The base end side contact portion (16) of the tubular portion for forming the heat insulating layer of the terminal fitting (1g) is formed in a hook shape projecting in the radial direction. The gas sensor according to item 1.
  8.  前記圧着部(10)を、前記端子金具の導通部(12、12b、12d、12e)よりも先端側に配設したことを特徴とする請求項1ないし7のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 7, wherein the crimping portion (10) is disposed on a distal end side of the conducting portion (12, 12b, 12d, 12e) of the terminal fitting. .
  9.  前記圧着部(10g)を前記断熱層形成用筒状部(15g)よりも基端側に配設したことを特徴とする請求項1ないし7のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 7, wherein the pressure-bonding portion (10g) is disposed on a proximal end side with respect to the heat-insulating layer forming cylindrical portion (15g).
  10.  前記圧着部(10h)を、前記断熱層形成用筒状部(15)と前記導通部(12h)との間に配設したことを特徴とする請求項1ないし7のいずれか1項に記載のガスセンサ。 The said crimping | compression-bonding part (10h) was arrange | positioned between the said cylindrical part (15) for said heat insulation layer formation, and the said conduction | electrical_connection part (12h), The any one of Claim 1 thru | or 7 characterized by the above-mentioned. Gas sensor.
  11.  前記ケーシングと前記ガスセンサ素子の信号引き出し部との間に、前記撥水フィルタの先端側と筒状弾性部材(60)とを介装し、前記信号引き出し部の外周面を背にして前記ケーシングの中径部を径方向中心側に向かって圧縮して、かしめ部を設けて固定するに際し、前記筒状弾性部材(60)を前記撥水フィルタ(61)よりも、内側に配設したことを特徴とする請求項1ないし10のいずれか1項に記載のガスセンサ。 A front end side of the water repellent filter and a cylindrical elastic member (60) are interposed between the casing and the signal lead-out portion of the gas sensor element, and the outer circumference of the signal lead-out portion is placed behind the casing. When the middle diameter portion is compressed toward the center in the radial direction and the caulking portion is provided and fixed, the cylindrical elastic member (60) is disposed on the inner side than the water repellent filter (61). The gas sensor according to any one of claims 1 to 10, wherein the gas sensor is characterized in that:
  12.  前記ケーシングと前記ガスセンサ素子の信号引き出し部との間に、前記撥水フィルタの先端側と筒状弾性部材(60)とを介装し、前記信号引き出し部の外周面を背にして前記ケーシングの中径部を径方向中心側に向かって圧縮して、かしめ部を設けて固定するに際し、前記撥水フィルタ(61)を前記筒状弾性部材(60)よりも、内側に配設したことを特徴とする請求項1ないし10のいずれか1項に記載のガスセンサ。 A front end side of the water repellent filter and a cylindrical elastic member (60) are interposed between the casing and the signal lead-out portion of the gas sensor element, and the outer circumference of the signal lead-out portion is placed behind the casing. When the middle diameter portion is compressed toward the center in the radial direction and the caulking portion is provided and fixed, the water repellent filter (61) is disposed on the inner side of the cylindrical elastic member (60). The gas sensor according to any one of claims 1 to 10, wherein the gas sensor is characterized in that:
  13.  前記ケーシングの先端側に形成した大径部(50)を前記ハウジングのボス部(74)に嵌着し、溶接部(56)を設けて気密に封止したことを特徴とする請求項1ないし12のいずれか1項に記載のガスセンサ。 The large-diameter portion (50) formed on the front end side of the casing is fitted into the boss portion (74) of the housing, and a welded portion (56) is provided to be hermetically sealed. 13. The gas sensor according to any one of 12 above.
  14.  前記ケーシングの中径部の先端に、径方向に向かってハット型に広がるケーシング鍔部(56i)を設けて、封止部材(64)と共に、前記ハウジングのかしめ部によってかしめ固定したことを特徴とする請求項1ないし12のいずれか1項に記載のガスセンサ。
     
    A casing collar portion (56i) that expands in a hat shape in the radial direction is provided at the tip of the middle diameter portion of the casing, and is fixed by caulking with the caulking portion of the housing together with the sealing member (64). The gas sensor according to any one of claims 1 to 12.
PCT/JP2014/079668 2013-11-20 2014-11-10 Gas sensor WO2015076131A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480063518.8A CN105745532B (en) 2013-11-20 2014-11-10 Gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013239479A JP6287098B2 (en) 2013-11-20 2013-11-20 Gas sensor
JP2013-239479 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076131A1 true WO2015076131A1 (en) 2015-05-28

Family

ID=53179398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079668 WO2015076131A1 (en) 2013-11-20 2014-11-10 Gas sensor

Country Status (3)

Country Link
JP (1) JP6287098B2 (en)
CN (1) CN105745532B (en)
WO (1) WO2015076131A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794022A (en) * 2018-08-03 2020-02-14 日本碍子株式会社 Sensor element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6702342B2 (en) * 2017-04-21 2020-06-03 株式会社デンソー Gas sensor
JP6971203B2 (en) * 2018-06-08 2021-11-24 日本特殊陶業株式会社 Sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51160591U (en) * 1975-06-13 1976-12-21
JPS5429087U (en) * 1977-07-29 1979-02-26
JP2007121118A (en) * 2005-10-28 2007-05-17 Ngk Spark Plug Co Ltd Gas sensor unit
JP2010223750A (en) * 2009-03-24 2010-10-07 Denso Corp Gas sensor and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6843105B1 (en) * 2003-06-30 2005-01-18 Robert Bosch Corporation Contact pin for exhaust gas sensor
CN101216453B (en) * 2007-12-28 2013-07-31 联合汽车电子有限公司 Oxygen sensor
CN101975803A (en) * 2010-09-16 2011-02-16 郑州炜盛电子科技有限公司 Planar gas sensor and manufacturing method thereof
JP5416757B2 (en) * 2011-02-22 2014-02-12 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP5342602B2 (en) * 2011-05-20 2013-11-13 本田技研工業株式会社 Gas sensor
CN102288644A (en) * 2011-07-08 2011-12-21 中国科学院上海微系统与信息技术研究所 Resistance gas sensor with four support cantilever beams and a four-layer structure and method
JP5592336B2 (en) * 2011-11-16 2014-09-17 日本特殊陶業株式会社 Gas sensor
CN102879435B (en) * 2012-09-28 2014-09-10 华瑞科学仪器(上海)有限公司 Small-size explosion-proof sensor for inflammable gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51160591U (en) * 1975-06-13 1976-12-21
JPS5429087U (en) * 1977-07-29 1979-02-26
JP2007121118A (en) * 2005-10-28 2007-05-17 Ngk Spark Plug Co Ltd Gas sensor unit
JP2010223750A (en) * 2009-03-24 2010-10-07 Denso Corp Gas sensor and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794022A (en) * 2018-08-03 2020-02-14 日本碍子株式会社 Sensor element
CN110794022B (en) * 2018-08-03 2023-08-04 日本碍子株式会社 Sensor element

Also Published As

Publication number Publication date
CN105745532B (en) 2018-06-29
JP6287098B2 (en) 2018-03-07
CN105745532A (en) 2016-07-06
JP2015099110A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP4955591B2 (en) Gas sensor
JP5592336B2 (en) Gas sensor
JP6146271B2 (en) Gas sensor
JP5310170B2 (en) Gas sensor and manufacturing method thereof
US20050224349A1 (en) Gas sensor
WO2015076131A1 (en) Gas sensor
JP5508462B2 (en) Gas sensor
US8042380B2 (en) Gas sensor
EP1793223B1 (en) Gas sensor
JP5753818B2 (en) Gas sensor
JP2007271516A (en) Gas sensor
JP5770663B2 (en) Gas sensor
JP4817419B2 (en) Gas sensor
JP2003194764A (en) Gas sensor
JP2007155517A (en) Gas sensor
JPH063319A (en) Sealing mechanism for sensor
JP4934072B2 (en) Gas sensor
JP4390841B2 (en) Oxygen sensor
JP2019190904A (en) Sensor
JP3607817B2 (en) Gas sensor
JP2013002879A (en) Gas sensor unit
JP2014098589A (en) Gas sensor
JP2001153833A (en) Oxygen sensor
JP5567603B2 (en) Gas sensor
CN117147656A (en) Gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201604008

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14863534

Country of ref document: EP

Kind code of ref document: A1