WO2015046009A1 - Resin composition for optical materials, optical film and liquid crystal display device - Google Patents

Resin composition for optical materials, optical film and liquid crystal display device Download PDF

Info

Publication number
WO2015046009A1
WO2015046009A1 PCT/JP2014/074668 JP2014074668W WO2015046009A1 WO 2015046009 A1 WO2015046009 A1 WO 2015046009A1 JP 2014074668 W JP2014074668 W JP 2014074668W WO 2015046009 A1 WO2015046009 A1 WO 2015046009A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
resin composition
group
carbon atoms
acid
Prior art date
Application number
PCT/JP2014/074668
Other languages
French (fr)
Japanese (ja)
Inventor
裕輔 田尻
洋志 吉村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201480053333.9A priority Critical patent/CN105579874B/en
Priority to JP2015539149A priority patent/JP5950174B2/en
Priority to KR1020167006501A priority patent/KR102181206B1/en
Publication of WO2015046009A1 publication Critical patent/WO2015046009A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • the present invention relates to a resin composition that is small in change of birefringence due to an external force and can be suitably used for manufacturing an optical member, an optical film obtained using the resin composition, and a liquid crystal display device using the same.
  • the problems to be solved by the present invention are a resin composition that can be suitably used for the production of an optical member with a small change in birefringence due to an external force, an optical film obtained using the resin composition, and the same. It is to provide a liquid crystal display device.
  • the present inventors have found that a composition containing an acrylic resin and a compound having a biphenyl skeleton and having a structure in which the terminal of the compound is sealed with a hydrocarbon group or an aryl group Can be used to obtain an optical member having a small change in birefringence due to external force, the resin composition is particularly suitable for producing an optical film, and the optical film is a member for producing a liquid crystal display device.
  • the present inventors have found that it can be suitably used as the present invention, and have completed the present invention.
  • the present invention relates to a polymer (A) obtained by using (meth) acrylic acid or (meth) acrylic acid alkyl ester, and the following general formula (1):
  • a 1 and A 2 are each independently an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • R 1 to R 4 are each independently an alkyl group having 1 to 8 carbon atoms
  • X 1 and X 2 are each independently a divalent linking group.
  • the present invention also provides an optical film comprising the resin composition for optical materials.
  • the present invention it is possible to provide a resin composition that uses an acrylic resin that is an inexpensive material and has a small change in birefringence due to an external force and can be suitably used for manufacturing an optical member.
  • a resin composition that uses an acrylic resin that is an inexpensive material and has a small change in birefringence due to an external force and can be suitably used for manufacturing an optical member.
  • an optical film having a small change in birefringence due to an external force can be easily obtained.
  • this optical film it is possible to obtain a liquid crystal display device in which the appearance of the screen is hardly changed by an external force.
  • the polymer (A) used in the present invention is obtained using (meth) acrylic acid or (meth) acrylic acid alkyl ester. Specifically, (meth) acrylic acid or (meth) acrylic acid alkyl ester is essential. As required, it can be obtained by polymerization in combination with other polymerizable monomers.
  • Examples of the (meth) acrylic acid or the (meth) acrylic acid alkyl ester include, for example, acrylic acid; methacrylic acid: methacrylic acid alkyl ester such as cyclohexyl methacrylate, t-butylcyclohexyl methacrylate, methyl methacrylate; methyl acrylate, Examples thereof include alkyl acrylates such as ethyl acrylate, butyl acrylate, isopropyl acrylate and 2-ethylhexyl acrylate.
  • a film in which a homopolymer of methyl methacrylate or a copolymer of methyl methacrylate and other monomers is excellent in optical properties can be obtained, and economically. Is also preferable because of its superiority.
  • Examples of the other monomer include (meth) acrylic acid or (meth) acrylic acid esters other than methyl methacrylate; aromatic vinyl compounds such as styrene, vinyltoluene and ⁇ -methylstyrene; acrylonitrile, methacrylic acid
  • examples thereof include vinyl cyanides such as nitrile; maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide; unsaturated carboxylic acid anhydrides such as maleic anhydride; unsaturated acids such as maleic acid and the like.
  • Monomers such as aromatic vinyl compounds, vinyl cyanides, maleimides, unsaturated carboxylic acid anhydrides and unsaturated acids exemplified as the other monomers may be used even when methyl methacrylate is not used. It can be used as long as the effects of the present invention are not impaired.
  • aromatic vinyl compounds are excellent in heat resistance and economy as the other monomer.
  • the amount of the aromatic vinyl compound used is preferably 1 to 50 parts by mass and more preferably 2 to 30 parts by mass with respect to 100 parts by mass of methyl methacrylate.
  • an effect of obtaining an optical film having excellent heat resistance can be expected by using unsaturated carboxylic acid anhydrides.
  • unsaturated carboxylic acid anhydrides maleic anhydride is preferred.
  • the amount of the unsaturated carboxylic acid anhydride to be used is preferably 1 to 100 parts by mass and more preferably 5 to 90 parts by mass with respect to 100 parts by mass of methyl methacrylate.
  • the polymer (A) used in the present invention has a weight average molecular weight of 50,000 to 200,000, which can provide a molded product such as a strong optical film, has sufficient fluidity, and has good moldability. It is preferable because an excellent resin composition can be obtained, and more preferably 70,000 to 150,000.
  • the number average molecular weight of the polymer (A) used in the present invention is preferably 15,000 to 100,000, and more preferably 20,000 to 50,000.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values converted to polystyrene based on GPC measurement.
  • the measurement conditions for GPC are as follows.
  • polymer (A) used in the present invention for example, various polymerization methods such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization and anionic polymerization can be used.
  • various polymerization methods such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization and anionic polymerization can be used.
  • bulk polymerization and solution polymerization are preferable because a polymer with a small amount of minute foreign matters can be obtained.
  • solution polymerization a solution prepared by dissolving a mixture of raw materials in an aromatic hydrocarbon solvent such as toluene or ethylbenzene can be used.
  • the polymerization can be started by irradiation with free radicals generated by heating or ionizing radiation as is usually done.
  • any initiator generally used in radical polymerization can be used.
  • azo compounds such as azobisisobutylnitrile; benzoyl peroxide, lauroyl peroxide, t-butyl
  • An organic peroxide such as peroxy-2-ethylhexanoate is used.
  • solution polymerization is generally used, so that the 10-hour half-life temperature is 80 ° C. or higher and the peroxide is soluble in the organic solvent used.
  • azobis initiators are preferred.
  • 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, cyclohexane peroxide, 2,5-dimethyl-2,5-di ( Benzoylperoxy) hexane, 1,1-azobis (1-cyclohexanecarbonitrile), 2- (carbamoylazo) isobutyronitrile and the like can be mentioned.
  • These initiators are used in the range of 0.005 to 5% by mass.
  • a molecular weight modifier may be used as necessary.
  • the molecular weight regulator any one used in general radical polymerization is used, and for example, mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-ethylhexyl thioglycolate are particularly preferable. These molecular weight regulators are added in a concentration range such that the degree of polymerization is controlled within the above range.
  • the compound (B) used in the present invention is represented by the following general formula (1)
  • a 1 and A 2 are each independently an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • R 1 to R 4 are each independently an alkyl group having 1 to 8 carbon atoms
  • X 1 and X 2 are each independently a divalent linking group.
  • X 1 and X 2 in the compound (B) used in the present invention may be the same or different.
  • Examples of X 1 and X 2 include an ester group, an ether group, a thioether group, an amino group, and an imino group. Among these, an ester group or an ether group is preferable because of compatibility with an acrylic resin.
  • a 1 and A 2 include alkyl groups having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl.
  • Examples of the aryl group having 6 to 18 carbon atoms include phenyl group, benzyl group, tolyl group, 2,4,6-trimethylphenyl group, tert-butylphenyl, 2,4-ditertiarybutylphenyl group, 2, Examples thereof include 6-ditertiary butylphenyl group and naphthyl group. Especially, since it becomes a resin composition excellent in stability, such as storage stability, a phenyl group and a tolyl group are preferable.
  • L 1 and L 2 are each independently an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • R 1 to R 4 are each independently an alkyl group having 1 to 8 carbon atoms) 3 alkyl groups.
  • the compound represented by the general formula (1-1) includes, for example, an epoxy compound having a biphenyl skeleton, a monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms, or an aromatic having 7 to 18 carbon atoms. It can be obtained by reacting with a monocarboxylic acid.
  • the compound represented by the general formula (1-2) includes, for example, an epoxy compound having a biphenyl skeleton, a monoalcohol having an alkyl group having 1 to 8 carbon atoms, or an alkoxide derivative thereof, and 6 to 6 carbon atoms. It can be obtained by reacting with 18 aromatic monoalcohols.
  • Examples of the epoxy compound having a biphenyl skeleton include a diglycidyl ether type epoxy compound obtained by a reaction between biphenols and epichlorohydrin.
  • a diglycidyl ether type epoxy compound obtained by a reaction between biphenols and epichlorohydrin.
  • this epoxy compound 3,3 ′, 5,5′-tetramethyl-4,4′-diglycidyloxybiphenyl (commercially available product “jER YX-4000” manufactured by Japan Epoxy Resin Co., Ltd.) Biphenol type epoxy compounds such as epoxy equivalent of 180 to 192)) can be used.
  • Examples of the monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms include acetic acid, propionic acid, butanoic acid, hexanoic acid, octanoic acid and the like.
  • Examples of the aromatic monocarboxylic acid having 7 to 18 carbon atoms include benzoic acid, dimethylbenzoic acid, trimethylbenzoic acid, tetramethylbenzoic acid, ethylbenzoic acid, propylbenzoic acid, cumic acid, o-toluic acid, m-toluic acid, p-toluic acid, anisic acid, ethoxybenzoic acid, propoxybenzoic acid, cyanobenzoic acid, fluorobenzoic acid, nitrobenzoic acid, 4-phenylbenzoic acid, 4- (3-methylphenyl) benzoic acid, 4- (4-methylphenyl) benzoic acid, 4- (3,5-dimethylphenyl) benzoic acid, 2-methyl-4
  • the monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms and the aromatic monocarboxylic acid having 7 to 18 carbon atoms can be used alone or in combination of two or more.
  • the number of carbon atoms of the “monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms” includes the number of carbon atoms of the carbonyl group.
  • the number of carbon atoms of the carbonyl group is also included in the number of carbon atoms of the “aromatic monocarboxylic acid having 7 to 18 carbon atoms”.
  • Examples of the monoalcohol having an alkyl group having 1 to 8 carbon atoms include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, and n-pentanol. , Isopentyl alcohol, t-pentyl alcohol, cyclopentanol, n-hexanol, isohexanol, cyclohesanol, heptanol, octanol and the like.
  • aromatic monoalcohol having 6 to 18 carbon atoms examples include phenol, benzyl alcohol, methylphenol, 2,4,6-trimethylphenol, tert-butylphenol, 2,4-ditertiary butylphenol, 2,6- Examples include ditertiary butylphenol, 1-naphthol, and 2-naphthol.
  • the compound represented by the general formula (1-1) includes, for example, an epoxy compound having a biphenyl skeleton, a monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms, or a carbon atom having 7 to 18 carbon atoms. It can be obtained by reacting with an aromatic monocarboxylic acid.
  • the charging ratio between the epoxy compound and the monocarboxylic acid or monoalcohol is the ratio of the number of moles of epoxy groups in the epoxy compound to the number of moles of monocarboxylic acids or moles of monoalcohol (number of moles of epoxy groups). ) / (Number of moles of monocarboxylic acid or number of moles of monoalcohol) is preferably in the range of 1 / 0.9 to 1.1.
  • a catalyst may be used as necessary.
  • the catalyst include phosphine compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, and triphenylphosphine; 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-ethyl-4-methyl Imidazole compounds such as imidazole and 4-phenyl-2-methylimidazole; triethylamine, tributylamine, trihexylamine, triamylamine, triethanolamine, dimethylaminoethanol, tritylenediamine, dimethylphenylamine, dimethylbenzylamine, 2 -(Dimethylaminomethyl) phenol, amine compounds such as 1,8-diazabic
  • R 1 to R 4 each have a methyl group compatible with the polymer (A). It is preferable because it becomes a compound excellent in.
  • the properties of the compound (B) used in the present invention vary depending on factors such as composition, but are usually liquid, solid, paste, etc. at room temperature.
  • the content of the compound (B) in the resin composition for optical materials of the present invention depends on the photoelastic coefficient of the polymer (A) used, but the absolute value of the photoelastic coefficient of the resin composition can be reduced.
  • the amount is preferably 1 to 10 parts by mass, more preferably 2 to 8 parts by mass with respect to 100 parts by mass of the polymer.
  • the optical film of the present invention contains the resin composition for optical materials of the present invention.
  • the optical film of the present invention has a characteristic that the photoelastic coefficient is extremely small. Specifically, the absolute value of the photoelastic coefficient is 2.0 ⁇ 10 ⁇ 12 / Pa or less, more preferably 1.0 ⁇ 10 ⁇ 12. / Pa or less. As described above, the optical film of the present invention has a small photoelastic coefficient. As a result, a change in birefringence due to an external force is small, and a liquid crystal display device in which the appearance of the screen is hardly changed by the external force can be provided.
  • the photoelastic coefficient was measured by the following method.
  • ⁇ Measuring method of photoelastic coefficient ( CR )> An optical film obtained by stretching is used as an example of the optical film of the present invention, and this optical film is cut out in a stretching direction with a width of 15 mm to obtain a measurement sample.
  • This measurement sample is fixed to a photoelasticity measurement tension jig (manufactured by Oji Scientific Instruments Co., Ltd.), and the weight at which the measurement sample is pulled every 100 g ⁇ f from 127.3 g ⁇ f to 727.3 g ⁇ f is changed.
  • the in-plane phase difference change at 588 nm when each weight is applied is measured by a phase difference measuring device KOBRA-WR (manufactured by Oji Scientific Instruments). Measurement is performed in an atmosphere of 23 ° C. and 55% relative humidity.
  • the composition for optical materials of the present invention can be used for production of various optical molded articles.
  • the composition for optical materials of this invention can be used for manufacturing a film-form molded object (optical film).
  • optical film for example, an optical film that is stretched at least in a uniaxial direction and has an absolute value of a photoelastic coefficient of 2 ( ⁇ 10 ⁇ 12 / Pa) or less requires a phase difference such as a phase difference film. Therefore, it can be suitably used for applications that require a small change in birefringence due to the above.
  • the retardation film is preferably an optical film having an absolute value of photoelastic coefficient of 1 ( ⁇ 10 ⁇ 12 / Pa) or less, and an absolute value of photoelastic coefficient of 0.5 ( ⁇ 10 ⁇ 12 / Pa) or less.
  • An optical film is more preferable.
  • the stretching ratio in the TD direction and the MD direction of such an optical film is appropriately selected depending on the purpose, and by adjusting the amount of the compound (B), birefringence from an optically isotropic optical film having a small birefringence. Large retardation film can be obtained.
  • a polymer other than the polymer (A) can be mixed as long as the object of the present invention is not impaired.
  • polymers other than the polymer (A) include polyolefins such as polyethylene and polypropylene; styrene resins such as polystyrene and styrene acrylonitrile copolymers; polyamides, polyphenylene sulfide resins, polyether ether ketone resins, polyester resins, And thermoplastic resins such as polysulfone, polyphenylene oxide, polyimide, polyetherimide, and polyacetal; and thermosetting resins such as phenol resin, melamine resin, silicone resin, and epoxy resin. These may mix 1 type and may mix 2 or more types.
  • any additive can be blended according to various purposes within a range that does not significantly impair the effects of the present invention.
  • the type of additive is not particularly limited as long as it is generally used for blending resins and rubber-like polymers.
  • additives include pigments such as inorganic fillers and iron oxides; lubricants such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, and ethylene bisstearamide; mold release agents; paraffinic processes Softeners and plasticizers such as oil, naphthenic process oil, aromatic process oil, paraffin, organic polysiloxane, mineral oil; hindered phenol antioxidant, phosphorus heat stabilizer, lactone heat stabilizer, vitamin Antioxidants such as E-based heat stabilizers; Light stabilizers such as hindered amine light stabilizers and benzoate light stabilizers; UV absorption such as benzophenone UV absorbers, triazine UV absorbers, and benzotriazole UV absorbers Agent; flame retardant
  • the resin composition for an optical material of the present invention may contain the polymer (A) and the compound (B), and the production method is not particularly limited.
  • the polymer (A) and the compound (B) and, if necessary, the above additives are melt kneaded in a single screw extruder, twin screw extruder, Banbury mixer, Brabender, various kneaders, etc. It can be obtained by a melt kneading method using a machine.
  • the optical film of the present invention contains the resin composition for optical materials of the present invention.
  • techniques such as extrusion molding and cast molding are used.
  • an unstretched optical film can be extruded using an extruder equipped with a T die, a circular die, or the like.
  • the resin composition for optical materials of the present invention obtained by melting and kneading the polymer (A) and the compound (B) in advance can be used. It is also possible to melt and knead the polymer (A) and the compound (B) at the time of molding and to perform extrusion molding as it is.
  • the polymer (A) and the compound (B) component are dissolved in the solvent to obtain a so-called dope solution.
  • the optical film of the present invention in an unstretched state can also be obtained by a solution casting method (solvent casting method) in which casting is performed.
  • the optical film obtained by the solution casting method substantially exhibits optical isotropy.
  • the film showing optical isotropy can be used for an optical material such as a liquid crystal display, and is particularly useful as a protective film for a polarizing plate.
  • the film obtained by the said method cannot form an unevenness
  • the solution casting method generally includes a first step of dissolving the polymer (A) and the compound (B) in an organic solvent and casting the obtained resin solution on a metal support, The second step of distilling off the organic solvent contained in the stretched resin solution and drying to form a film, followed by peeling the film formed on the metal support from the metal support and drying by heating. It consists of 3 steps.
  • Examples of the metal support used in the first step include endless belt-shaped or drum-shaped metal supports, for example, stainless steel with a mirror-finished surface can be used. .
  • the drying method in the second step is not particularly limited.
  • it is included in the cast resin solution by applying air in a temperature range of 30 to 50 ° C. to the upper surface and / or the lower surface of the metal support.
  • Examples thereof include a method of evaporating 50 to 80% by mass of an organic solvent to form a film on the metal support.
  • the third step is a step in which the film formed in the second step is peeled off from the metal support and is heated and dried under a temperature condition higher than that in the second step.
  • a heat drying method for example, a method in which the temperature is raised stepwise under a temperature condition of 100 to 160 ° C. is preferable because good dimensional stability can be obtained.
  • the organic solvent remaining in the film after the second step can be almost completely removed by heating and drying under the temperature condition.
  • the organic solvent that can be used when the polymer (A) and the compound (B) are mixed and dissolved in an organic solvent is not particularly limited as long as they can be dissolved, and examples thereof include chloroform and methylene dichloride. And a solvent such as methylene chloride.
  • the concentration of the polymer (A) in the resin solution is preferably 10 to 50% by mass, more preferably 15 to 35% by mass.
  • the film thickness of the optical film of the present invention is preferably in the range of 20 to 120 ⁇ m, more preferably in the range of 25 to 100 ⁇ m, and particularly preferably in the range of 25 to 80 ⁇ m.
  • the unstretched optical film obtained by the above-described method is stretched by uniaxially stretching in the mechanical flow direction and transversely uniaxially stretching in the direction orthogonal to the mechanical flow direction, as necessary.
  • the obtained optical film can be obtained.
  • the stretched film biaxially stretched can be obtained by stretching by a sequential biaxial stretching method of roll stretching and tenter stretching, a simultaneous biaxial stretching method by tenter stretching, a biaxial stretching method by tubular stretching, or the like.
  • the draw ratio is preferably 0.1% or more and 1000% or less in at least one direction, more preferably 0.2% or more and 600% or less, and more preferably 0.3% or more and 300% or less. Especially preferred. By designing in this range, a stretched optical film preferable in terms of birefringence, heat resistance and strength can be obtained.
  • the optical film according to the present invention includes, as an optical material, a polarizing plate protective film used for a display such as a liquid crystal display device, a plasma display, an organic EL display, a field emission display, a rear projection television, a quarter wavelength plate, and a half. It can be suitably used for a retardation film such as a wave plate, a viewing angle control film, a liquid crystal optical compensation film, a display front plate and the like.
  • the resin composition for optical materials of the present invention is also used in the fields of optical communication systems, optical switching systems, and optical measurement systems, such as waveguides, lenses, optical fibers, optical fiber substrates, coating materials, and LED lenses. It can also be used for lens covers and the like.
  • Synthesis example 2 (same as above) To a 1 liter four-necked flask equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen inlet tube was added 299 g of tetramethylbiphenol type epoxy resin (epoxy equivalent 187), 195 g of phenol and 1 g of triphenylphosphine as a catalyst, By reacting at 115 ° C. for 20 hours, the compound (B2) represented by the general formula (1-2) was obtained. The acid value of the compound (B2) was 0.7, and the hydroxyl value was 178.
  • Synthesis example 3 (same as above) To a 1 liter four-necked flask equipped with a thermometer, stirrer, reflux condenser and nitrogen inlet tube was added 299 g of tetramethylbiphenol type epoxy resin (epoxy equivalent 187), 217 g of paratoluic acid and 1 g of triphenylphosphine as a catalyst. And a reaction at 115 ° C. for 24 hours to obtain a compound (B3) represented by the general formula (1-1). The acid value of the compound (B3) was 0.2, and the hydroxyl value was 171.
  • Synthesis Example 4 [Synthesis of polyester resin for comparison (b ′)] A four-necked flask having an internal volume of 1 liter equipped with a thermometer, a stirrer and a reflux condenser was charged with 341 g of ethylene glycol and 659 g of adipic acid. Furthermore, tetraisopropyl titanate was added at 30 ppm with respect to the total amount of ethylene glycol and adipic acid, the temperature was raised to 220 ° C. with stirring under a nitrogen stream, and the reaction was allowed to proceed for 24 hours. A comparative polyester resin (b′1) having a value of 0.19 and a hydroxyl value of 112 was obtained.
  • Synthesis example 5 (same as above) The number average molecular weight was 11, as in Synthesis Example 3 except that 770 g of succinic acid, 595 g of 1,2-propylene glycol, and 60 ppm of tetraisopropyl titanate were used with respect to the total amount of succinic acid and 1,2-propylene glycol.
  • a comparative polyester resin (b′2) having an acid value of 0.7 and a hydroxyl value of 8 was obtained.
  • the dope solution was cast on a glass plate to a thickness of 0.5 mm, dried at room temperature for 16 hours, then dried at 50 ° C. for 30 minutes, and further at 100 ° C. for 60 minutes to obtain a film thickness of 100 ⁇ m. An unstretched film was obtained.
  • the obtained unstretched film was uniaxially stretched at a temperature of glass transition temperature (Tg) + 5 ° C. of the resin composition for optical materials (1) obtained by a differential scanning calorimeter (DSC) (stretching ratio: 2 times, stretching speed: 100) % / Min) to prepare a stretched film (1).
  • Tg glass transition temperature
  • DSC differential scanning calorimeter
  • ⁇ Measurement conditions for glass transition temperature Tg> A differential scanning calorimeter DSC822e (manufactured by METTTLER TOLEDO) was used. Specifically, 5 mg of the resin composition was put in a lightweight aluminum pan, heated in a nitrogen atmosphere from 25 ° C. to 150 ° C. at a rate of 10 ° C. per minute (1 run), rapidly cooled to 0 ° C., once again, 0 The temperature was raised from 10 ° C. to 150 ° C. at a rate of 10 ° C. per minute (2nd run). The glass transition temperature Tg was determined by the midpoint method from the DSC curve obtained from 2nd run.
  • the obtained stretched film (1) was evaluated for optical properties, specifically, in-plane birefringence ( ⁇ n), out-of-plane birefringence ( ⁇ P) photoelastic coefficient (C R ), and haze according to the following methods.
  • the evaluation results are shown in Table 1.
  • In-plane birefringence ( ⁇ n) (n x ) ⁇ (n y )
  • Out-of-plane birefringence ( ⁇ P) [(n x ) + (n y)] / 2- (n z) [(N x ): refractive index in the stretching direction, (n y ): refractive index in the direction orthogonal to the stretching direction, (n z ): refractive index in the film thickness direction]
  • the measurement was performed in an atmosphere at 23 ° C. and 55% relative humidity.
  • ⁇ Evaluation method of photoelastic coefficient ( CR )> A stretched film obtained by cutting the stretched film with a width of 15 mm in parallel with the stretching direction is fixed to a tensile jig for photoelasticity measurement (manufactured by Oji Scientific Instruments Co., Ltd.) and 100 g ⁇ f from 127.3 g ⁇ f to 727.3 g ⁇ f.
  • the change in in-plane retardation (Re) at 588 nm when the weight was changed every time was measured with a phase difference measuring device KOBRA-WR (manufactured by Oji Scientific Instruments). The measurement was performed in an atmosphere of 23 ° C. and 55% relative humidity.
  • Re (n x ⁇ n y ) ⁇ d [(N x ): refractive index in the stretching direction, (n y ): refractive index in the direction orthogonal to the stretching direction, d: film thickness ( ⁇ m)]
  • stress ( ⁇ ) is plotted on the horizontal axis and in-plane phase difference (Re) is plotted on the vertical axis, and the photoelastic coefficient (C R ) is obtained from the slope of the straight line in the linear region by least square approximation. It shows that a photoelastic coefficient is near 0, so that the absolute value of inclination is small, and it shows that it is an optical film with a small change of birefringence by external force.
  • Examples 2 to 8 and Comparative Examples 1 to 6 Optical films (2) to (8) and comparative stretching were performed in the same manner as in Example 1 except that a resin composition for optical material (dope solution) was obtained under the blending and stretching conditions shown in Tables 1 to 2. Films (1 ′) to (5 ′) were obtained. The same evaluation as in Example 1 was performed, and the results are shown in Tables 1 and 2.
  • Inability to measure The optical properties could not be measured because the haze of the film was large.
  • the optical film obtained by using the optical resin composition of the present invention is a film having a small optical elastic modulus and a small change in birefringence due to an external force.
  • the optical film of the comparative example has a large absolute value of the optical elastic coefficient and a large change in birefringence due to external force.

Abstract

The present invention provides a resin composition for optical materials, which contains (A) a polymer obtained using a (meth)acrylic acid or a (meth)acrylic acid alkyl ester and (B) a compound represented by general formula (1), for the purpose of providing: a resin composition that is small in birefringence change by an external force and is suitable for use in the production of an optical member; an optical film which is obtained using this resin composition; and a liquid crystal display device which uses this optical film. (In the formula, each of A1 and A2 independently represents an alkyl group having 1-8 carbon atoms or an aryl group having 6-18 carbon atoms; each of R1-R4 independently represents an alkyl group having 1-3 carbon atoms; and each of X1 and X2 independently represents a divalent linking group.)

Description

光学材料用樹脂組成物、光学フィルム及び液晶表示装置Resin composition for optical material, optical film, and liquid crystal display device
 本発明は、外力による複屈折の変化が小さく、光学部材の製造に好適に用いることができる樹脂組成物と、該樹脂組成物を用いて得られる光学フィルム及びこれを用いた液晶表示装置に関する。 The present invention relates to a resin composition that is small in change of birefringence due to an external force and can be suitably used for manufacturing an optical member, an optical film obtained using the resin composition, and a liquid crystal display device using the same.
 最近、例えば、ディスプレイ市場の拡大に伴い、より画像を鮮明にみたいという要求が高まっており、単なる透明材料ではなく、より高度な光学特性が付与された光学材料が求められている。 Recently, for example, with the expansion of the display market, there has been a growing demand for clearer images, and there is a demand for optical materials with higher optical properties than simple transparent materials.
 一般に高分子は分子主鎖方向とそれに垂直方向とで屈折率が異なるために複屈折を生じる。用途によっては、この複屈折を厳密にコントロールすることが求められており、液晶の偏光板に用いられる保護フィルムの場合は、全光線透過率が同じであっても複屈折がより小さい高分子材料成形体が必要とされ、トリアセチルセルロースが代表的な材料として用いられる。 Generally, a polymer generates birefringence because its refractive index is different between the molecular main chain direction and the direction perpendicular thereto. Depending on the application, it is required to strictly control this birefringence. In the case of a protective film used for a polarizing plate of a liquid crystal, a polymer material having a smaller birefringence even if the total light transmittance is the same. A molded body is required, and triacetyl cellulose is used as a typical material.
 このような中、近年は、液晶ディスプレイが大型化し、それに必要な高分子光学材料成形品が大型化するにつれて、外力の偏りによって生じる複屈折の分布を小さくするために、外力による複屈折の変化が小さい材料が求められている。 Under these circumstances, in recent years, as the liquid crystal display becomes larger and the polymer optical material molding required for it becomes larger, the birefringence change due to the external force is reduced in order to reduce the birefringence distribution caused by the bias of the external force. There is a need for materials with a small size.
 外力による複屈折の変化が小さい成形品が得られる材料は、即ち、光弾性係数が小さい成形品が得られる高分子光学材料であり、このような材料の中でも、安価な材料としてアクリル系樹脂が注目されている。具体的には、アクリル系樹脂と、可塑剤として脂肪族ポリエステル系樹脂とを含む樹脂組成物が知られている(例えば、特許文献1参照。)。しかしながら、該特許文献1に開示された光学材料を用いても、光弾性係数が十分に小さい光学フィルムを得ることは困難であった。 A material from which a molded product with a small change in birefringence due to external force can be obtained, that is, a polymer optical material from which a molded product with a small photoelastic coefficient can be obtained. Among these materials, an acrylic resin is used as an inexpensive material. Attention has been paid. Specifically, a resin composition containing an acrylic resin and an aliphatic polyester resin as a plasticizer is known (see, for example, Patent Document 1). However, even if the optical material disclosed in Patent Document 1 is used, it is difficult to obtain an optical film having a sufficiently small photoelastic coefficient.
国際公開第2006/077776号パンフレットInternational Publication No. 2006/077776 Pamphlet
 本発明が解決しようとする課題は、外力による複屈折の変化が小さく、光学部材の製造に好適に用いることができる樹脂組成物と、該樹脂組成物を用いて得られる光学フィルム及びこれを用いた液晶表示装置を提供することにある。 The problems to be solved by the present invention are a resin composition that can be suitably used for the production of an optical member with a small change in birefringence due to an external force, an optical film obtained using the resin composition, and the same. It is to provide a liquid crystal display device.
 本発明者らは鋭意検討を行った結果、アクリル系樹脂と、ビフェニル骨格を有する化合物であり、該化合物の末端が炭化水素基やアリール基で封止された構造を有する化合物を含有する組成物を用いることにより、外力による複屈折の変化が小さい光学部材が得られること、該樹脂組成物は特に光学フィルムを製造する際に好適なこと、該光学フィルムは液晶表示装置を製造する際の部材として好適に使用できる事等を見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that a composition containing an acrylic resin and a compound having a biphenyl skeleton and having a structure in which the terminal of the compound is sealed with a hydrocarbon group or an aryl group Can be used to obtain an optical member having a small change in birefringence due to external force, the resin composition is particularly suitable for producing an optical film, and the optical film is a member for producing a liquid crystal display device. As a result, the present inventors have found that it can be suitably used as the present invention, and have completed the present invention.
 即ち、本発明は、(メタ)アクリル酸または(メタ)アクリル酸アルキルエステルを用いて得られる重合体(A)と、下記一般式(1) That is, the present invention relates to a polymer (A) obtained by using (meth) acrylic acid or (meth) acrylic acid alkyl ester, and the following general formula (1):
Figure JPOXMLDOC01-appb-C000003
(式中、A、Aはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。X、Xはそれぞれ独立に2価の連結基である。)
で表される化合物(B)とを含有することを特徴とする光学材料用樹脂組成物を提供するものである。
Figure JPOXMLDOC01-appb-C000003
(Wherein A 1 and A 2 are each independently an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms. R 1 to R 4 are each independently an alkyl group having 1 to 8 carbon atoms) And X 1 and X 2 are each independently a divalent linking group.)
The resin composition for optical materials characterized by containing the compound (B) represented by these is provided.
 また、本発明は、前記光学材料用樹脂組成物を含有することを特徴とする光学フィルムを提供するものである。 The present invention also provides an optical film comprising the resin composition for optical materials.
 更に、本発明は、前記光学フィルムを有することを特徴とする液晶表示装置を提供するものである。 Furthermore, the present invention provides a liquid crystal display device comprising the optical film.
 本発明によれば、安価な材料であるアクリル系樹脂を用いて、外力による複屈折の変化が小さく、光学部材の製造に好適に用いることができる樹脂組成物を提供することができる。この樹脂組成物を用いることにより、外力による複屈折の変化が小さい光学フィルムを容易に得ることができる。そして、この光学フィルムを用いることで、外力により画面の見え具合が変わりにくい液晶表示装置を得ることができる。 According to the present invention, it is possible to provide a resin composition that uses an acrylic resin that is an inexpensive material and has a small change in birefringence due to an external force and can be suitably used for manufacturing an optical member. By using this resin composition, an optical film having a small change in birefringence due to an external force can be easily obtained. By using this optical film, it is possible to obtain a liquid crystal display device in which the appearance of the screen is hardly changed by an external force.
 本発明で用いる重合体(A)は、(メタ)アクリル酸または(メタ)アクリル酸アルキルエステルを用いて得られ、具体的には、(メタ)アクリル酸または(メタ)アクリル酸アルキルエステルを必須として必要に応じて他の重合性単量体を併用して重合さえて得られる。前記(メタ)アクリル酸または(メタ)アクリル酸アルキルエステルとしては、例えば、アクリル酸;メタクリル酸:メタクリル酸シクロヘキシル、メタクリル酸t-ブチルシクロヘキシル、メタクリル酸メチル等のメタクリル酸アルキルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸イソプロピル、アクリル酸2-エチルヘキシル等のアクリル酸アルキルエステル等が挙げられる。 The polymer (A) used in the present invention is obtained using (meth) acrylic acid or (meth) acrylic acid alkyl ester. Specifically, (meth) acrylic acid or (meth) acrylic acid alkyl ester is essential. As required, it can be obtained by polymerization in combination with other polymerizable monomers. Examples of the (meth) acrylic acid or the (meth) acrylic acid alkyl ester include, for example, acrylic acid; methacrylic acid: methacrylic acid alkyl ester such as cyclohexyl methacrylate, t-butylcyclohexyl methacrylate, methyl methacrylate; methyl acrylate, Examples thereof include alkyl acrylates such as ethyl acrylate, butyl acrylate, isopropyl acrylate and 2-ethylhexyl acrylate.
 本発明で用いる重合体(A)の中でも、メタクリル酸メチルの単独重合体または、メタクリル酸メチルと他の単量体との共重合体が光学特性に優れるフィルムが得られ、しかも、経済性にも優れていることから好ましい。 Among the polymers (A) used in the present invention, a film in which a homopolymer of methyl methacrylate or a copolymer of methyl methacrylate and other monomers is excellent in optical properties can be obtained, and economically. Is also preferable because of its superiority.
 前記他の単量体としては、例えば、(メタ)アクリル酸類またはメタクリル酸メチル以外の(メタ)アクリル酸エステル類;スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル化合物類;アクリロニトリル、メタクリルニトリル等のシアン化ビニル類;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド類;無水マレイン酸等の不飽和カルボン酸無水物類;マレイン酸等の不飽和酸類等が挙げられる。 Examples of the other monomer include (meth) acrylic acid or (meth) acrylic acid esters other than methyl methacrylate; aromatic vinyl compounds such as styrene, vinyltoluene and α-methylstyrene; acrylonitrile, methacrylic acid Examples thereof include vinyl cyanides such as nitrile; maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide; unsaturated carboxylic acid anhydrides such as maleic anhydride; unsaturated acids such as maleic acid and the like.
 前記他の単量体としてとして例示した芳香族ビニル化合物類,シアン化ビニル類,マレイミド類,不飽和カルボン酸無水物類,不飽和酸類等の単量体は、メタクリル酸メチルを使用しない場合でも本発明の効果を損なわない範囲で使用することができる。 Monomers such as aromatic vinyl compounds, vinyl cyanides, maleimides, unsaturated carboxylic acid anhydrides and unsaturated acids exemplified as the other monomers may be used even when methyl methacrylate is not used. It can be used as long as the effects of the present invention are not impaired.
 前記メタクリル酸メチルと他の単量体とを共重合させて重合体(A)として用いる重合体を得る場合、他の単量体としては、芳香族ビニル化合物類が耐熱性と経済性に優れる光学フィルムが得られることから好ましく、中でも、スチレン、α-メチルスチレンがより好ましい。ここで、芳香族ビニル化合物類の使用量は、メタクリル酸メチル100質量部に対し、1~50質量部が好ましく、2~30質量部がより好ましい。 In the case of obtaining a polymer to be used as the polymer (A) by copolymerizing the methyl methacrylate with another monomer, aromatic vinyl compounds are excellent in heat resistance and economy as the other monomer. From the viewpoint of obtaining an optical film, styrene and α-methylstyrene are more preferable. Here, the amount of the aromatic vinyl compound used is preferably 1 to 50 parts by mass and more preferably 2 to 30 parts by mass with respect to 100 parts by mass of methyl methacrylate.
 また、前記他の単量体としては、不飽和カルボン酸無水物類を用いることで耐熱性に優れる光学フィルムが得られる効果が期待できる。不飽和カルボン酸無水物類の中でも無水マレイン酸が好ましい。ここで、不飽和カルボン酸無水物類の使用量は、メタクリル酸メチル100質量部に対し、1~100質量部が好ましく、5~90質量部がより好ましい。 In addition, as the other monomer, an effect of obtaining an optical film having excellent heat resistance can be expected by using unsaturated carboxylic acid anhydrides. Of the unsaturated carboxylic acid anhydrides, maleic anhydride is preferred. Here, the amount of the unsaturated carboxylic acid anhydride to be used is preferably 1 to 100 parts by mass and more preferably 5 to 90 parts by mass with respect to 100 parts by mass of methyl methacrylate.
 本発明で用いる重合体(A)は、(メタ)アクリル酸や、(メタ)アクリル酸アルキルエステルを単独で使用しても良いし、2種以上を併用しても良い。また、前記他の単量体についても単独で使用しても良いし、2種以上を併用しても良い。 For the polymer (A) used in the present invention, (meth) acrylic acid or (meth) acrylic acid alkyl ester may be used alone, or two or more kinds may be used in combination. The other monomers may be used alone or in combination of two or more.
 本発明で用いる重合体(A)の重量平均分子量は、50,000~200,000が、強度のある光学フィルム等の成形品が得られ、且つ、流動性が十分で、成形加工性にも優れる樹脂組成物が得られることから好ましく、70,000~150,000がより好ましい。 The polymer (A) used in the present invention has a weight average molecular weight of 50,000 to 200,000, which can provide a molded product such as a strong optical film, has sufficient fluidity, and has good moldability. It is preferable because an excellent resin composition can be obtained, and more preferably 70,000 to 150,000.
 また、本発明で用いる重合体(A)の数平均分子量は、15,000~100,000が好ましく、20,000~50,000がより好ましい。 In addition, the number average molecular weight of the polymer (A) used in the present invention is preferably 15,000 to 100,000, and more preferably 20,000 to 50,000.
 ここで、本発明において、重量平均分子量(Mw)及び数平均分子量(Mn)はGPC測定に基づきポリスチレン換算した値である。なお、GPCの測定条件は以下の通りである。 Here, in the present invention, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values converted to polystyrene based on GPC measurement. The measurement conditions for GPC are as follows.
 [GPC測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:東ソー株式会社製ガードカラム「HHR-H」(6.0mmI.D.×4cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
 検出器:ELSD(オルテック製「ELSD2000」)
 データ処理:東ソー株式会社製「GPC-8020モデルIIデータ解析バージョン4.30」
 測定条件:カラム温度  40℃
      展開溶媒   テトラヒドロフラン(THF)
      流速     1.0ml/分
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(5μl)。
 標準試料:前記「GPC-8020モデルIIデータ解析バージョン4.30」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “HHR-H” (6.0 mm ID × 4 cm) manufactured by Tosoh Corporation + “TSK-GEL GMHHR-N” (7.8 mm ID × 30 cm) manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL GMHHR-N” (7.8 mm ID × 30 cm) + Tosoh Corporation “TSK-GEL GMHHR-N” (7.8 mm ID × 30 cm) + Tosoh Corporation “TSK- GEL GMHHR-N "(7.8 mm ID x 30 cm)
Detector: ELSD ("ELSD2000" manufactured by Oltec)
Data processing: “GPC-8020 Model II data analysis version 4.30” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran (THF)
Flow rate: 1.0 ml / min Sample: A 1.0% by mass tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (5 μl).
Standard sample: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II Data Analysis Version 4.30”.
 (単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-1000」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 東ソー株式会社製「F-40」
 東ソー株式会社製「F-80」
 東ソー株式会社製「F-128」
 東ソー株式会社製「F-288」
 東ソー株式会社製「F-550」
(Monodispersed polystyrene)
“A-500” manufactured by Tosoh Corporation
“A-1000” manufactured by Tosoh Corporation
“A-2500” manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
“F-2” manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
“F-288” manufactured by Tosoh Corporation
“F-550” manufactured by Tosoh Corporation
 本発明で用いる重合体(A)を製造する方法としては、例えば、キャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、アニオン重合等の種々の重合方法を用いることができる。製造方法の中でも、塊状重合や溶液重合が、微小な異物の混入が少ない重合体が得られることから好ましい。溶液重合を行う場合には、原料の混合物をトルエン、エチルベンゼン等の芳香族炭化水素の溶媒に溶解して調整した溶液を用いることができる。塊状重合により重合させる場合には、通常行われるように加熱により生じる遊離ラジカルや電離性放射線照射により重合を開始させることができる。 As a method for producing the polymer (A) used in the present invention, for example, various polymerization methods such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization and anionic polymerization can be used. Among the production methods, bulk polymerization and solution polymerization are preferable because a polymer with a small amount of minute foreign matters can be obtained. When solution polymerization is performed, a solution prepared by dissolving a mixture of raw materials in an aromatic hydrocarbon solvent such as toluene or ethylbenzene can be used. In the case of polymerization by bulk polymerization, the polymerization can be started by irradiation with free radicals generated by heating or ionizing radiation as is usually done.
 前記重合反応に用いられる開始剤としては、一般にラジカル重合において用いられる任意の開始剤を使用することができ、例えば、アゾビスイソブチルニトリル等のアゾ化合物;ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート等の有機過酸化物等が用いられる。重合する際に、90℃以上の高温下で重合を行わせる場合には、溶液重合が一般的であるので、10時間半減期温度が80℃以上でかつ用いる有機溶媒に可溶である過酸化物、アゾビス開始剤などが好ましく、具体的には1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、シクロヘキサンパーオキシド、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、1,1-アゾビス(1-シクロヘキサンカルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル等を挙げることができる。これらの開始剤は0.005~5質量%の範囲で用いられる。 As the initiator used in the polymerization reaction, any initiator generally used in radical polymerization can be used. For example, azo compounds such as azobisisobutylnitrile; benzoyl peroxide, lauroyl peroxide, t-butyl An organic peroxide such as peroxy-2-ethylhexanoate is used. When the polymerization is carried out at a high temperature of 90 ° C. or higher, solution polymerization is generally used, so that the 10-hour half-life temperature is 80 ° C. or higher and the peroxide is soluble in the organic solvent used. And azobis initiators are preferred. Specifically, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, cyclohexane peroxide, 2,5-dimethyl-2,5-di ( Benzoylperoxy) hexane, 1,1-azobis (1-cyclohexanecarbonitrile), 2- (carbamoylazo) isobutyronitrile and the like can be mentioned. These initiators are used in the range of 0.005 to 5% by mass.
 本発明で用いる重合体(A)を重合する際には、必要に応じて分子量調整剤を使用しても良い。前記分子量調節剤は、一般的なラジカル重合において用いる任意のものが使用され、例えば、ブチルメルカプタン、オクチルメルカプタン、ドデシルメルカプタン、チオグリコール酸2-エチルヘキシル等のメルカプタン化合物が特に好ましいものとして挙げられる。これらの分子量調節剤は、重合度が上記の範囲内に制御されるような濃度範囲で添加される。 When polymerizing the polymer (A) used in the present invention, a molecular weight modifier may be used as necessary. As the molecular weight regulator, any one used in general radical polymerization is used, and for example, mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, 2-ethylhexyl thioglycolate are particularly preferable. These molecular weight regulators are added in a concentration range such that the degree of polymerization is controlled within the above range.
 本発明で用いる化合物(B)は、下記一般式(1) The compound (B) used in the present invention is represented by the following general formula (1)
Figure JPOXMLDOC01-appb-C000004
(式中、A、Aはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。X、Xはそれぞれ独立に2価の連結基である。)
で表されるように、ビフェノール骨格を含む。ビフェニル骨格有する事によりアクリル系樹脂の光弾性係数の絶対値を小さくするという効果が期待できる。また、末端が前記AやAで封止されていることにより、保存安定性等の安定性に優れた樹脂組成物となる。
Figure JPOXMLDOC01-appb-C000004
(Wherein A 1 and A 2 are each independently an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms. R 1 to R 4 are each independently an alkyl group having 1 to 8 carbon atoms) And X 1 and X 2 are each independently a divalent linking group.)
As shown, it contains a biphenol skeleton. By having a biphenyl skeleton, the effect of reducing the absolute value of the photoelastic coefficient of the acrylic resin can be expected. Further, since the terminal is sealed with the A 1 and A 2, an excellent resin composition stability such as storage stability.
 前記本発明で用いる(ビフェノール骨格を含む)化合物(B)中のX、Xは同一のものでも良いし、異なっていても良い。前記X、Xとしては、例えば、エステル基、エーテル基、チオエーテル基、アミノ基、イミノ基等が挙げられる。中でもアクリル樹脂への相溶性の理由から、エステル基またはエーテル基が好ましい。 X 1 and X 2 in the compound (B) used in the present invention (including the biphenol skeleton) may be the same or different. Examples of X 1 and X 2 include an ester group, an ether group, a thioether group, an amino group, and an imino group. Among these, an ester group or an ether group is preferable because of compatibility with an acrylic resin.
 前記A、Aの具体的な例である炭素原子数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、t-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、2-ヘキシル基、ジメチルブチル基、エチルブチル基、シクロヘキシル基、ヘプチル基、オクチル基等が挙げられる。炭素原子数6~18のアリール基としては、例えば、フェニル基、ベンジル基、トリル基、2,4,6-トリメチルフェニル基、tert-ブチルフェニル、2,4-ジターシャリーブチルフェニル基、2,6-ジターシャリーブチルフェニル基、ナフチル基等が挙げられる。中でも、保存安定性等の安定性に優れた樹脂組成物となることから、フェニル基、トリル基が好ましい。 Specific examples of A 1 and A 2 include alkyl groups having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl. Group, t-butyl group, n-pentyl group, isopentyl group, t-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, 2-hexyl group, dimethylbutyl group, ethylbutyl group, cyclohexyl group, heptyl group, octyl Groups and the like. Examples of the aryl group having 6 to 18 carbon atoms include phenyl group, benzyl group, tolyl group, 2,4,6-trimethylphenyl group, tert-butylphenyl, 2,4-ditertiarybutylphenyl group, 2, Examples thereof include 6-ditertiary butylphenyl group and naphthyl group. Especially, since it becomes a resin composition excellent in stability, such as storage stability, a phenyl group and a tolyl group are preferable.
 前記本発明で用いる化合物(B)の具体例としては、例えば、下記一般式で表される化合物等を、本発明の効果を奏すると共に容易に得ることが出来ることから好ましく例示できる。 Specific examples of the compound (B) used in the present invention are preferably exemplified by, for example, compounds represented by the following general formula since the effects of the present invention can be obtained and obtained easily.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、L、Lはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。) (Wherein L 1 and L 2 are each independently an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms. R 1 to R 4 are each independently an alkyl group having 1 to 8 carbon atoms) 3 alkyl groups.)
 前記一般式(1-1)で表される化合物は、例えば、ビフェニル骨格を有するエポキシ化合物と、炭素原子数2~8のアルキル基を有するモノカルボン酸または、炭素原子数7~18の芳香族モノカルボン酸とを反応させることにより得ることができる。また、前記一般式(1-2)で表される化合物は、例えば、ビフェニル骨格を有するエポキシ化合物と、炭素原子数1~8のアルキル基を有するモノアルコールまたはそのアルコキシド誘導体、炭素原子数6~18の芳香族モノアルコールとを反応させることにより得ることができる。 The compound represented by the general formula (1-1) includes, for example, an epoxy compound having a biphenyl skeleton, a monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms, or an aromatic having 7 to 18 carbon atoms. It can be obtained by reacting with a monocarboxylic acid. The compound represented by the general formula (1-2) includes, for example, an epoxy compound having a biphenyl skeleton, a monoalcohol having an alkyl group having 1 to 8 carbon atoms, or an alkoxide derivative thereof, and 6 to 6 carbon atoms. It can be obtained by reacting with 18 aromatic monoalcohols.
 前記ビフェニル骨格を有するエポキシ化合物としては、例えば、ビフェノール類とエピクロルヒドリンとの反応によって得られるジグリシジルエーテル型のエポキシ化合物等が挙げられる。このエポキシ化合物の具体的な例として、3,3’,5,5’-テトラメチル-4,4’-ジグリシジルオキシビフェニル(市販品では、ジャパンエポキシレジン株式会社製「jER YX-4000」(エポキシ当量180~192))等のビフェノール型エポキシ化合物を使用できる。 Examples of the epoxy compound having a biphenyl skeleton include a diglycidyl ether type epoxy compound obtained by a reaction between biphenols and epichlorohydrin. As a specific example of this epoxy compound, 3,3 ′, 5,5′-tetramethyl-4,4′-diglycidyloxybiphenyl (commercially available product “jER YX-4000” manufactured by Japan Epoxy Resin Co., Ltd.) Biphenol type epoxy compounds such as epoxy equivalent of 180 to 192)) can be used.
 前記炭素原子数2~8のアルキル基を有するモノカルボン酸としては、例えば、酢酸、プロピオン酸、ブタン酸、ヘキサン酸、オクタン酸等が挙げられる。前記炭素原子数7~18の芳香族モノカルボン酸としては、例えば、安息香酸、ジメチル安息香酸、トリメチル安息香酸、テトラメチル安息香酸、エチル安息香酸、プロピル安息香酸、クミン酸、o-トルイル酸、m-トルイル酸、p-トルイル酸、アニス酸、エトキシ安息香酸、プロポキシ安息香酸、シアノ安息香酸、フルオロ安息香酸、ニトロ安息香酸、4-フェニル安息香酸、4-(3-メチルフェニル)安息香酸、4-(4-メチルフェニル)安息香酸、4-(3,5-ジメチルフェニル)安息香酸、2-メチル-4-フェニル安息香酸、2,6-ジメチル-4-フェニル安息香酸、2,6-ジメチル-4-(3,5-ジメチルフェニル)安息香酸、ナフトエ酸、ニコチン酸、フロ酸、1-ナフタレンカルボン酸、2-ナフタレンカルボン酸等が挙げられる。炭素原子数2~8のアルキル基を有するモノカルボン酸や前記炭素原子数7~18の芳香族モノカルボン酸は、単独で用いることも2種以上併用することもできる。尚、本発明において、「炭素原子数2~8のアルキル基を有するモノカルボン酸」の炭素原子数は、カルボニル基の炭素原子数も数に含める。また、「炭素原子数7~18の芳香族モノカルボン酸」の炭素原子数についてもカルボニル基の炭素原子数を数に含める Examples of the monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms include acetic acid, propionic acid, butanoic acid, hexanoic acid, octanoic acid and the like. Examples of the aromatic monocarboxylic acid having 7 to 18 carbon atoms include benzoic acid, dimethylbenzoic acid, trimethylbenzoic acid, tetramethylbenzoic acid, ethylbenzoic acid, propylbenzoic acid, cumic acid, o-toluic acid, m-toluic acid, p-toluic acid, anisic acid, ethoxybenzoic acid, propoxybenzoic acid, cyanobenzoic acid, fluorobenzoic acid, nitrobenzoic acid, 4-phenylbenzoic acid, 4- (3-methylphenyl) benzoic acid, 4- (4-methylphenyl) benzoic acid, 4- (3,5-dimethylphenyl) benzoic acid, 2-methyl-4-phenylbenzoic acid, 2,6-dimethyl-4-phenylbenzoic acid, 2,6- Dimethyl-4- (3,5-dimethylphenyl) benzoic acid, naphthoic acid, nicotinic acid, furoic acid, 1-naphthalenecarboxylic acid, 2-naphthalene Bonn acid and the like. The monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms and the aromatic monocarboxylic acid having 7 to 18 carbon atoms can be used alone or in combination of two or more. In the present invention, the number of carbon atoms of the “monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms” includes the number of carbon atoms of the carbonyl group. The number of carbon atoms of the carbonyl group is also included in the number of carbon atoms of the “aromatic monocarboxylic acid having 7 to 18 carbon atoms”.
 前記炭素原子数1~8のアルキル基を有するモノアルコールとしては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、n-ペンタノール、イソペンチルアルコール、t-ペンチルアルコール、シクロペンタノール、n-ヘキサノール、イソヘキサノール、シクロヘサノール、ヘプタノール、オクタノール等が挙げられる。前記炭素原子数6~18の芳香族モノアルコールとしては、例えば、フェノール、ベンジルアルコール、メチルフェノール、2,4,6-トリメチルフェノール、tert-ブチルフェノール、2,4-ジターシャリーブチルフェノール、2,6-ジターシャリーブチルフェノール、1-ナフトール、2-ナフトール等が挙げられる。 Examples of the monoalcohol having an alkyl group having 1 to 8 carbon atoms include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, and n-pentanol. , Isopentyl alcohol, t-pentyl alcohol, cyclopentanol, n-hexanol, isohexanol, cyclohesanol, heptanol, octanol and the like. Examples of the aromatic monoalcohol having 6 to 18 carbon atoms include phenol, benzyl alcohol, methylphenol, 2,4,6-trimethylphenol, tert-butylphenol, 2,4-ditertiary butylphenol, 2,6- Examples include ditertiary butylphenol, 1-naphthol, and 2-naphthol.
 前記の通り、一般式(1-1)で表される化合物は、例えば、ビフェニル骨格を有するエポキシ化合物と、炭素原子数2~8のアルキル基を有するモノカルボン酸または炭素原子数7~18の芳香族モノカルボン酸とを反応させることにより得ることができる。 As described above, the compound represented by the general formula (1-1) includes, for example, an epoxy compound having a biphenyl skeleton, a monocarboxylic acid having an alkyl group having 2 to 8 carbon atoms, or a carbon atom having 7 to 18 carbon atoms. It can be obtained by reacting with an aromatic monocarboxylic acid.
 また、一般式(1-2)で表される化合物は、例えば、ビフェニル骨格を有するエポキシ化合物と、炭素原子数1~8のアルキル基を有するモノアルコールまたは炭素原子数6~18の芳香族モノアルコールとを反応させることにより得ることができる。前記エポキシ化合物と、前記モノカルボン酸や前記モノアルコールとを反応させる際の反応温度としては、80~130℃の範囲が好ましく、100℃~115℃の範囲がより好ましい。反応時間としては、10~25時間の範囲が好ましい。また、前記エポキシ化合物と、前記モノカルボン酸やモノアルコールとの仕込み比は、エポキシ化合物のエポキシ基のモル数と、前記モノカルボン酸のモル数やモノアルコールのモル数の比(エポキシ基モル数)/(モノカルボン酸のモル数またはモノアルコールのモル数)が、1/0.9~1.1の範囲であることが好ましい。 In addition, the compound represented by the general formula (1-2) includes, for example, an epoxy compound having a biphenyl skeleton, a monoalcohol having an alkyl group having 1 to 8 carbon atoms, or an aromatic monovalent having 6 to 18 carbon atoms. It can be obtained by reacting with alcohol. The reaction temperature for reacting the epoxy compound with the monocarboxylic acid or the monoalcohol is preferably in the range of 80 to 130 ° C, more preferably in the range of 100 to 115 ° C. The reaction time is preferably in the range of 10 to 25 hours. The charging ratio between the epoxy compound and the monocarboxylic acid or monoalcohol is the ratio of the number of moles of epoxy groups in the epoxy compound to the number of moles of monocarboxylic acids or moles of monoalcohol (number of moles of epoxy groups). ) / (Number of moles of monocarboxylic acid or number of moles of monoalcohol) is preferably in the range of 1 / 0.9 to 1.1.
 前記エポキシ化合物のエポキシ基と、前記モノカルボン酸のカルボキシル基又は前記モノアルコールの水酸基とを反応において、必要に応じて触媒を用いてもよい。この触媒としては、例えば、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン等のホスフィン化合物;2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-エチル-4-メチルイミダゾール、4-フェニル-2-メチルイミダゾール等のイミダゾール系化合物;トリエチルアミン、トリブチルアミン、トリヘキシルアミン、トリアミルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリアチレンジアミン、ジメチルフェニルアミン、ジメチルベンジルアミン、2-(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)ウンデセン-7等のアミン化合物;ジメチルアミノピリジン等のピリジン化合物などが挙げられる。これらの触媒は、前記エポキシ化合物及び前記芳香族モノカルボン酸の合計100質量部に対して0.05~1質量部使用することが好ましい。  In the reaction of the epoxy group of the epoxy compound with the carboxyl group of the monocarboxylic acid or the hydroxyl group of the monoalcohol, a catalyst may be used as necessary. Examples of the catalyst include phosphine compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, and triphenylphosphine; 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-ethyl-4-methyl Imidazole compounds such as imidazole and 4-phenyl-2-methylimidazole; triethylamine, tributylamine, trihexylamine, triamylamine, triethanolamine, dimethylaminoethanol, tritylenediamine, dimethylphenylamine, dimethylbenzylamine, 2 -(Dimethylaminomethyl) phenol, amine compounds such as 1,8-diazabicyclo (5,4,0) undecene-7; Such as emission compounds. These catalysts are preferably used in an amount of 0.05 to 1 part by mass with respect to 100 parts by mass in total of the epoxy compound and the aromatic monocarboxylic acid.
 前記一般式(1-1)で表される化合物や一般式(1-2)で表される化合物の中でも、L、Lがそれぞれフェニル基又はトリル基のものが、アクリル樹脂に対する相溶性が良好なことから好ましい。中でも、一般式(1-1)で表される化合物でLがフェニル基又はトリル基のものがより好ましい。 Among the compounds represented by the general formula (1-1) and the compounds represented by the general formula (1-2), those in which L 1 and L 2 are each a phenyl group or a tolyl group are compatible with an acrylic resin. Is preferable because it is good. Of these, compounds represented by general formula (1-1) in which L 1 is a phenyl group or a tolyl group are more preferable.
 更に、前記一般式(1-1)で表される化合物、一般式(1-2)で表される化合物において、R~Rは、それぞれメチル基が重合体(A)との相溶性に優れる化合物となることから好ましい。 Further, in the compound represented by the general formula (1-1) and the compound represented by the general formula (1-2), R 1 to R 4 each have a methyl group compatible with the polymer (A). It is preferable because it becomes a compound excellent in.
 本発明で用いる化合物(B)の性状は、組成などの要因により異なるが、通常、常温にて液体、固体、ペースト状などである。 The properties of the compound (B) used in the present invention vary depending on factors such as composition, but are usually liquid, solid, paste, etc. at room temperature.
 本発明の光学材料用樹脂組成物中の化合物(B)の含有量は、使用する重合体(A)の光弾性係数にもよるが、樹脂組成物の光弾性係数の絶対値を小さくできることから前記重合体100質量部に対して1~10質量部が好ましく、2~8質量部がより好ましい。 The content of the compound (B) in the resin composition for optical materials of the present invention depends on the photoelastic coefficient of the polymer (A) used, but the absolute value of the photoelastic coefficient of the resin composition can be reduced. The amount is preferably 1 to 10 parts by mass, more preferably 2 to 8 parts by mass with respect to 100 parts by mass of the polymer.
 本発明の光学フィルムは、前記本発明の光学材料用樹脂組成物を含有することを特徴とする。本発明の光学フィルムは、光弾性係数が極めて小さい特徴を有し、具体的には光弾性係数の絶対値が2.0×10-12/Pa以下、より好ましくは1.0×10-12/Pa以下である。このように、本発明の光学フィルムは光弾性係数が小さく、その結果外力による複屈折の変化が小さくなり、外力により画面の見え具合が変わりにくい液晶表示装置を提供することができる。 The optical film of the present invention contains the resin composition for optical materials of the present invention. The optical film of the present invention has a characteristic that the photoelastic coefficient is extremely small. Specifically, the absolute value of the photoelastic coefficient is 2.0 × 10 −12 / Pa or less, more preferably 1.0 × 10 −12. / Pa or less. As described above, the optical film of the present invention has a small photoelastic coefficient. As a result, a change in birefringence due to an external force is small, and a liquid crystal display device in which the appearance of the screen is hardly changed by the external force can be provided.
 本発明において、光弾性係数は、下記に示す方法にて測定した。
 <光弾性係数(C)の測定方法>
 本発明の光学フィルムの一例として延伸して得られる光学フィルムを用い、この光学フィルムを延伸方向に幅15mmで切り抜き、測定サンプルを得る。この測定サンプルを光弾性測定用引張治具(王子計測機器株式会社製)に固定し、127.3g・fから727.3g・fまで100g・f毎に測定サンプルを引っ張る際の加重を変化させ、各々の加重をかけた際の588nmにおける面内位相差変化を位相差測定装置KOBRA-WR(王子計測機器株式会社製)にて測定する。測定は23℃、相対湿度55%雰囲気下で行う
In the present invention, the photoelastic coefficient was measured by the following method.
<Measuring method of photoelastic coefficient ( CR )>
An optical film obtained by stretching is used as an example of the optical film of the present invention, and this optical film is cut out in a stretching direction with a width of 15 mm to obtain a measurement sample. This measurement sample is fixed to a photoelasticity measurement tension jig (manufactured by Oji Scientific Instruments Co., Ltd.), and the weight at which the measurement sample is pulled every 100 g · f from 127.3 g · f to 727.3 g · f is changed. The in-plane phase difference change at 588 nm when each weight is applied is measured by a phase difference measuring device KOBRA-WR (manufactured by Oji Scientific Instruments). Measurement is performed in an atmosphere of 23 ° C. and 55% relative humidity.
 本発明の光学材料用組成物を用いる事により、種々の光学用の成形体の製造に用いる事ができる。中でも、フィルム状の成形体(光学フィルム)を製造するのに本発明の光学材料用組成物を用いることができる。前記光学フィルムにおいて、例えば、少なくとも一軸方向に延伸されており、光弾性係数の絶対値が2(×10-12/Pa)以下である光学フィルムは、位相差フィルム等の位相差を必要とし応力による複屈折の変化が小さい特性を要求される用途に好適に用いることができる。前記位相差フィルムとしては、光弾性係数の絶対値が1(×10-12/Pa)以下である光学フィルムが好ましく、光弾性係数の絶対値が0.5(×10-12/Pa)以下である光学フィルムがより好ましい。このような光学フィルムのTD方向とMD方向の延伸倍率は、目的によって適宜選択し、前記化合物(B)の量を調整することにより、複屈折の小さい光学的に等方な光学フィルムから複屈折の大きな位相差フィルムまで得ることができる。 By using the composition for optical materials of the present invention, it can be used for production of various optical molded articles. Especially, the composition for optical materials of this invention can be used for manufacturing a film-form molded object (optical film). In the optical film, for example, an optical film that is stretched at least in a uniaxial direction and has an absolute value of a photoelastic coefficient of 2 (× 10 −12 / Pa) or less requires a phase difference such as a phase difference film. Therefore, it can be suitably used for applications that require a small change in birefringence due to the above. The retardation film is preferably an optical film having an absolute value of photoelastic coefficient of 1 (× 10 −12 / Pa) or less, and an absolute value of photoelastic coefficient of 0.5 (× 10 −12 / Pa) or less. An optical film is more preferable. The stretching ratio in the TD direction and the MD direction of such an optical film is appropriately selected depending on the purpose, and by adjusting the amount of the compound (B), birefringence from an optically isotropic optical film having a small birefringence. Large retardation film can be obtained.
 本発明の光学材料用樹脂組成物には、前記重合体(A)以外の重合体を、本発明の目的を損なわない範囲で混合することができる。前記重合体(A)以外の重合体としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリスチレン、スチレンアクリロニトリル共重合体等のスチレン系樹脂;ポリアミド、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、ポリアセタール等の熱可塑性樹脂;及びフェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂等が挙げられる。これらは1種類を混合しても良いし、2種以上を混合しても良い。 In the resin composition for an optical material of the present invention, a polymer other than the polymer (A) can be mixed as long as the object of the present invention is not impaired. Examples of polymers other than the polymer (A) include polyolefins such as polyethylene and polypropylene; styrene resins such as polystyrene and styrene acrylonitrile copolymers; polyamides, polyphenylene sulfide resins, polyether ether ketone resins, polyester resins, And thermoplastic resins such as polysulfone, polyphenylene oxide, polyimide, polyetherimide, and polyacetal; and thermosetting resins such as phenol resin, melamine resin, silicone resin, and epoxy resin. These may mix 1 type and may mix 2 or more types.
 さらに、本発明の効果を著しく損なわない範囲内で、各種目的に応じて任意の添加剤を配合することができる。添加剤の種類は,樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。添加剤としては、例えば、無機充填剤、酸化鉄等の顔料;ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレンビスステアロアミド等の滑剤;離型剤;パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン、ミネラルオイル等の軟化剤・可塑剤;ヒンダードフェノール系酸化防止剤、りん系熱安定剤、ラクトン系熱安定剤、ビタミンE系熱安定剤等の酸化防止剤;ヒンダードアミン系光安定剤、ベンゾエート系光安定剤等の光安定剤;ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;難燃剤;帯電防止剤;有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤;着色剤、その他添加剤或いはこれらの混合物等が挙げられる。 Furthermore, any additive can be blended according to various purposes within a range that does not significantly impair the effects of the present invention. The type of additive is not particularly limited as long as it is generally used for blending resins and rubber-like polymers. Examples of additives include pigments such as inorganic fillers and iron oxides; lubricants such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, and ethylene bisstearamide; mold release agents; paraffinic processes Softeners and plasticizers such as oil, naphthenic process oil, aromatic process oil, paraffin, organic polysiloxane, mineral oil; hindered phenol antioxidant, phosphorus heat stabilizer, lactone heat stabilizer, vitamin Antioxidants such as E-based heat stabilizers; Light stabilizers such as hindered amine light stabilizers and benzoate light stabilizers; UV absorption such as benzophenone UV absorbers, triazine UV absorbers, and benzotriazole UV absorbers Agent; flame retardant; antistatic agent; organic fiber, glass fiber, carbon fiber, metal Reinforcing agents such as Isuka; coloring agents, other additives, or mixtures thereof.
 本発明の光学材料用樹脂組成物は、前記重合体(A)と化合物(B)とを含有すればよく、その製造方法は特に制限がない。具体的には、例えば、前記重合体(A)と化合物(B)と、必要に応じて上記添加剤を単軸押出機、二軸押出機、バンバリーミキサー、ブラベンダー、各種ニーダー等の溶融混練機を用いて溶融混練する方法により得ることができる。 The resin composition for an optical material of the present invention may contain the polymer (A) and the compound (B), and the production method is not particularly limited. Specifically, for example, the polymer (A) and the compound (B) and, if necessary, the above additives are melt kneaded in a single screw extruder, twin screw extruder, Banbury mixer, Brabender, various kneaders, etc. It can be obtained by a melt kneading method using a machine.
 本発明の光学フィルムは、本発明の光学材料用樹脂組成物を含有することを特徴とする。本発明の光学フィルムを得るには、例えば、押し出し成形、キャスト成形等の手法が用いられる。具体的には、例えば、Tダイ、円形ダイ等が装着された押出機等を用いて、未延伸状態の光学フィルムを押し出し成形することができる。押し出し成形により本発明の光学フィルムを得る場合は、事前に前記重合体(A)、化合物(B)を溶融混錬して得られる本発明の光学材料用樹脂組成物を用いることもできれば、押し出し成形時に重合体(A)と化合物(B)とを溶融混錬し、そのまま押し出し成形することもできる。また、前記重合体(A)及び化合物(B)成分を溶解する溶媒を用いて、前記重合体(A)、化合物(B)を該溶媒中に溶解し、いわゆるドープ液を得たうえで、キャスト成形する溶液流延法(ソルベントキャスト法)により未延伸状態の本発明の光学フィルムを得ることもできる。 The optical film of the present invention contains the resin composition for optical materials of the present invention. In order to obtain the optical film of the present invention, for example, techniques such as extrusion molding and cast molding are used. Specifically, for example, an unstretched optical film can be extruded using an extruder equipped with a T die, a circular die, or the like. When the optical film of the present invention is obtained by extrusion molding, the resin composition for optical materials of the present invention obtained by melting and kneading the polymer (A) and the compound (B) in advance can be used. It is also possible to melt and knead the polymer (A) and the compound (B) at the time of molding and to perform extrusion molding as it is. In addition, using a solvent that dissolves the polymer (A) and the compound (B) component, the polymer (A) and the compound (B) are dissolved in the solvent to obtain a so-called dope solution. The optical film of the present invention in an unstretched state can also be obtained by a solution casting method (solvent casting method) in which casting is performed.
 以下に、溶液流延法について、詳述する。溶液流延法で得られる光学フィルムは、実質的に光学等方性を示す。前記光学等方性を示すフィルムは、例えば液晶ディスプレイなどの光学材料に使用することができ、中でも偏光板用保護フィルムに有用である。また、前記方法によって得られたフィルムは、その表面に凹凸が形成されにくく、表面平滑性に優れる。 Hereinafter, the solution casting method will be described in detail. The optical film obtained by the solution casting method substantially exhibits optical isotropy. The film showing optical isotropy can be used for an optical material such as a liquid crystal display, and is particularly useful as a protective film for a polarizing plate. Moreover, the film obtained by the said method cannot form an unevenness | corrugation on the surface, and is excellent in surface smoothness.
 前記溶液流延法は、一般に、前記重合体(A)と前記化合物(B)とを有機溶剤中に溶解させ、得られた樹脂溶液を金属支持体上に流延させる第1工程と、流延させた前記樹脂溶液中に含まれる有機溶剤を留去し乾燥させてフィルムを形成する第2工程、それに続く、金属支持体上に形成されたフィルムを金属支持体から剥離し加熱乾燥させる第3工程からなる。 The solution casting method generally includes a first step of dissolving the polymer (A) and the compound (B) in an organic solvent and casting the obtained resin solution on a metal support, The second step of distilling off the organic solvent contained in the stretched resin solution and drying to form a film, followed by peeling the film formed on the metal support from the metal support and drying by heating. It consists of 3 steps.
 前記第1工程で使用する金属支持体としては、無端ベルト状又はドラム状の金属製のものなどを例示でき、例えば、ステンレス製でその表面が鏡面仕上げの施されたものを使用することができる。 Examples of the metal support used in the first step include endless belt-shaped or drum-shaped metal supports, for example, stainless steel with a mirror-finished surface can be used. .
 前記金属支持体上に樹脂溶液を流延させる際には、得られるフィルムに異物が混入することを防止するために、フィルターで濾過した樹脂溶液を使用することが好ましい。    When casting the resin solution on the metal support, it is preferable to use a resin solution filtered with a filter in order to prevent foreign matters from entering the film obtained.
 前記第2工程の乾燥方法としては、特に限定しないが、例えば30~50℃の温度範囲の風を前記金属支持体の上面及び/又は下面に当てることで、流延した前記樹脂溶液中に含まれる有機溶剤の50~80質量%を蒸発させ、前記金属支持体上にフィルムを形成させる方法が挙げられる。    The drying method in the second step is not particularly limited. For example, it is included in the cast resin solution by applying air in a temperature range of 30 to 50 ° C. to the upper surface and / or the lower surface of the metal support. Examples thereof include a method of evaporating 50 to 80% by mass of an organic solvent to form a film on the metal support.
 次いで、前記第3工程は、前記第2工程で形成されたフィルムを金属支持体上から剥離し、前記第2工程よりも高い温度条件下で加熱乾燥させる工程である。前記加熱乾燥方法としては、例えば100~160℃の温度条件にて段階的に温度を上昇させる方法が、良好な寸法安定性を得ることができるため、好ましい。前記温度条件にて加熱乾燥することにより、前記第2工程後のフィルム中に残存する有機溶剤をほぼ完全に除去することができる。 Next, the third step is a step in which the film formed in the second step is peeled off from the metal support and is heated and dried under a temperature condition higher than that in the second step. As the heat drying method, for example, a method in which the temperature is raised stepwise under a temperature condition of 100 to 160 ° C. is preferable because good dimensional stability can be obtained. The organic solvent remaining in the film after the second step can be almost completely removed by heating and drying under the temperature condition.
 尚、前記第1工程~第3工程で、有機溶媒は回収し再使用することも可能である。    In the first to third steps, the organic solvent can be recovered and reused.
 前記重合体(A)と前記化合物(B)を有機溶剤に混合させ溶解する際に使用できる有機溶剤としては、それらを溶解可能なものであれば特に限定しないが、例えば、クロロホルム、二塩化メチレン、塩化メチレン等の溶媒を挙げることができる。 The organic solvent that can be used when the polymer (A) and the compound (B) are mixed and dissolved in an organic solvent is not particularly limited as long as they can be dissolved, and examples thereof include chloroform and methylene dichloride. And a solvent such as methylene chloride.
 前記樹脂溶液中の重合体(A)の濃度は、10~50質量%が好ましく、15~35質量%がより好ましい。 The concentration of the polymer (A) in the resin solution is preferably 10 to 50% by mass, more preferably 15 to 35% by mass.
 本発明の光学フィルムの膜厚は、20~120μmの範囲が好ましく、25~100μmの範囲がより好ましく、25~80μmの範囲が特に好ましい。 The film thickness of the optical film of the present invention is preferably in the range of 20 to 120 μm, more preferably in the range of 25 to 100 μm, and particularly preferably in the range of 25 to 80 μm.
 本発明においては、例えば、前記の方法で得られる未延伸状態の光学フィルムを必要に応じて、機械的流れ方向に縦一軸延伸、機械的流れ方向に直行する方向に横一軸延伸することで延伸された光学フィルムを得ることができる。また、ロール延伸とテンター延伸の逐次2軸延伸法、テンター延伸による同時2軸延伸法、チューブラー延伸による2軸延伸法等によって延伸することにより2軸延伸された延伸フィルムを得ることができる。延伸倍率は少なくともどちらか一方向に0.1%以上1000%以下であることが好ましく、0.2%以上600%以下であることがさらに好ましく、0.3%以上300%以下であることがとりわけ好ましい。この範囲に設計することにより、複屈折、耐熱性、強度の観点で好ましい延伸された光学フィルムが得られる。 In the present invention, for example, the unstretched optical film obtained by the above-described method is stretched by uniaxially stretching in the mechanical flow direction and transversely uniaxially stretching in the direction orthogonal to the mechanical flow direction, as necessary. The obtained optical film can be obtained. Moreover, the stretched film biaxially stretched can be obtained by stretching by a sequential biaxial stretching method of roll stretching and tenter stretching, a simultaneous biaxial stretching method by tenter stretching, a biaxial stretching method by tubular stretching, or the like. The draw ratio is preferably 0.1% or more and 1000% or less in at least one direction, more preferably 0.2% or more and 600% or less, and more preferably 0.3% or more and 300% or less. Especially preferred. By designing in this range, a stretched optical film preferable in terms of birefringence, heat resistance and strength can be obtained.
 本発明に係る光学フィルムは、光学材料として、液晶表示装置、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ、リアプロジェクションテレビ等のディスプレイに用いられる偏光板保護フィルム、1/4波長板、1/2波長板、視野角制御フィルム、液晶光学補償フィルム等の位相差フィルム、ディスプレイ前面板等に好適に用いることができる。また、本発明の光学材料用樹脂組成物は、その他にも、光通信システム、光交換システム、光計測システムの分野において、導波路、レンズ、光ファイバー、光ファイバーの基材、被覆材料、LEDのレンズ、レンズカバーなどにも用いることができる。 The optical film according to the present invention includes, as an optical material, a polarizing plate protective film used for a display such as a liquid crystal display device, a plasma display, an organic EL display, a field emission display, a rear projection television, a quarter wavelength plate, and a half. It can be suitably used for a retardation film such as a wave plate, a viewing angle control film, a liquid crystal optical compensation film, a display front plate and the like. In addition, the resin composition for optical materials of the present invention is also used in the fields of optical communication systems, optical switching systems, and optical measurement systems, such as waveguides, lenses, optical fibers, optical fiber substrates, coating materials, and LED lenses. It can also be used for lens covers and the like.
 以下、本発明を実施例に基づき更に具体的に説明する。例中の部及び%は断りがない限り質量基準である。 Hereinafter, the present invention will be described more specifically based on examples. Unless otherwise indicated, parts and% in the examples are based on mass.
 合成例1〔化合物(B)の合成〕
 温度計、攪拌器、還流冷却器及び窒素導入管を備えた1リットルの四ツ口フラスコに、テトラメチルビフェノール型エポキシ樹脂(エポキシ当量187)299g、安息香酸195gおよび触媒としてトリフェニルホスフィン1gを加え、115℃で20時間反応させて、前記一般式(1-1)で表される化合物(B1)を得た。化合物(B1)の酸価は、0.7で、水酸基価は178であった。
Synthesis Example 1 [Synthesis of Compound (B)]
Add 299 g of tetramethylbiphenol type epoxy resin (epoxy equivalent 187), 195 g of benzoic acid and 1 g of triphenylphosphine as a catalyst to a 1 liter four-necked flask equipped with a thermometer, stirrer, reflux condenser and nitrogen inlet tube. The mixture was reacted at 115 ° C. for 20 hours to obtain the compound (B1) represented by the general formula (1-1). The acid value of the compound (B1) was 0.7, and the hydroxyl value was 178.
 合成例2(同上)
 温度計、攪拌器、還流冷却器及び窒素導入管を備えた1リットルの四ツ口フラスコに、テトラメチルビフェノール型エポキシ樹脂(エポキシ当量187)299g、フェノール195gおよび触媒としてトリフェニルホスフィン1gを加え、115℃で20時間反応させて、前記一般式(1-2)で表される化合物(B2)を得た。化合物(B2)の酸価は、0.7で、水酸基価は178であった。
Synthesis example 2 (same as above)
To a 1 liter four-necked flask equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen inlet tube was added 299 g of tetramethylbiphenol type epoxy resin (epoxy equivalent 187), 195 g of phenol and 1 g of triphenylphosphine as a catalyst, By reacting at 115 ° C. for 20 hours, the compound (B2) represented by the general formula (1-2) was obtained. The acid value of the compound (B2) was 0.7, and the hydroxyl value was 178.
 合成例3(同上)
 温度計、攪拌器、還流冷却器及び窒素導入管を備えた1リットルの四ツ口フラスコに、テトラメチルビフェノール型エポキシ樹脂(エポキシ当量187)299g、パラトルイル酸217gおよび触媒としてトリフェニルホスフィン1gを加え、115℃で24時間反応させて、前記一般式(1-1)で表される化合物(B3)を得た。化合物(B3)の酸価は、0.2で、水酸基価は171であった。
Synthesis example 3 (same as above)
To a 1 liter four-necked flask equipped with a thermometer, stirrer, reflux condenser and nitrogen inlet tube was added 299 g of tetramethylbiphenol type epoxy resin (epoxy equivalent 187), 217 g of paratoluic acid and 1 g of triphenylphosphine as a catalyst. And a reaction at 115 ° C. for 24 hours to obtain a compound (B3) represented by the general formula (1-1). The acid value of the compound (B3) was 0.2, and the hydroxyl value was 171.
 合成例4〔比較対照用ポリエステル樹脂(b´)の合成〕
 温度計、攪拌器及び還流冷却器を備えた内容積1リットルの四つ口フラスコに、エチレングリコール341g、アジピン酸659gを仕込んだ。更に、テトライソプロピルチタネートをエチレングリコール及びアジピン酸の合計量に対して30ppm加えて、窒素気流下で攪拌しながら220℃まで昇温し、24時間反応させ、数平均分子量が1,100で、酸価が0.19で、水酸基価が112の比較対照用ポリエステル樹脂(b´1)を得た。
Synthesis Example 4 [Synthesis of polyester resin for comparison (b ′)]
A four-necked flask having an internal volume of 1 liter equipped with a thermometer, a stirrer and a reflux condenser was charged with 341 g of ethylene glycol and 659 g of adipic acid. Furthermore, tetraisopropyl titanate was added at 30 ppm with respect to the total amount of ethylene glycol and adipic acid, the temperature was raised to 220 ° C. with stirring under a nitrogen stream, and the reaction was allowed to proceed for 24 hours. A comparative polyester resin (b′1) having a value of 0.19 and a hydroxyl value of 112 was obtained.
 合成例5(同上)
 コハク酸770g、1,2-プロピレングリコール595g及び、テトライソプロピルチタネートをコハク酸と1,2-プロピレングリコールの合計量に対して60ppm使用した以外は合成例3と同様にして数平均分子量が11,000で、酸価が0.7で、水酸基価が8の比較対照用ポリエステル樹脂(b´2)を得た。
Synthesis example 5 (same as above)
The number average molecular weight was 11, as in Synthesis Example 3 except that 770 g of succinic acid, 595 g of 1,2-propylene glycol, and 60 ppm of tetraisopropyl titanate were used with respect to the total amount of succinic acid and 1,2-propylene glycol. A comparative polyester resin (b′2) having an acid value of 0.7 and a hydroxyl value of 8 was obtained.
 実施例1(光学材料用樹脂組成物の調製)
 アクリル樹脂(A1)〔メチルメタアクリル酸/無水マレイン酸/スチレン=50/40/10(モル比)の共重合体、数平均分子量27,800〕100部、ポリエステル樹脂(B1)5部を、塩化メチレン270部及びメタノール30部からなる混合溶剤に加えて溶解し本発明の光学材料用樹脂組成物(ドープ液)を得た。
Example 1 (Preparation of resin composition for optical material)
Acrylic resin (A1) [methyl methacrylate / maleic anhydride / styrene = 50/40/10 (molar ratio) copolymer, number average molecular weight 27,800] 100 parts, polyester resin (B1) 5 parts, It melt | dissolved in addition to the mixed solvent which consists of 270 parts of methylene chloride and 30 parts of methanol, and obtained the resin composition for optical materials (dope liquid) of this invention.
 このドープ液をガラス板上に厚さ0.5mmとなるように流延し、室温で16時間乾燥させた後、50℃で30分間、さらに100℃で60分間乾燥させて、膜厚100μmの未延伸フィルムを得た。 The dope solution was cast on a glass plate to a thickness of 0.5 mm, dried at room temperature for 16 hours, then dried at 50 ° C. for 30 minutes, and further at 100 ° C. for 60 minutes to obtain a film thickness of 100 μm. An unstretched film was obtained.
 得られた未延伸フィルムを示差走査熱量計(DSC)により求めた光学材料用樹脂組成物(1)のガラス転移温度(Tg)+5℃の温度にて一軸延伸(延伸倍率2倍,延伸速度100%/分)を行い、延伸フィルム(1)を作成した。ここで、示唆走査熱量計(DSC)を用いたTgの測定は下記の条件に従った。 The obtained unstretched film was uniaxially stretched at a temperature of glass transition temperature (Tg) + 5 ° C. of the resin composition for optical materials (1) obtained by a differential scanning calorimeter (DSC) (stretching ratio: 2 times, stretching speed: 100) % / Min) to prepare a stretched film (1). Here, the measurement of Tg using a suggestion scanning calorimeter (DSC) followed the following conditions.
 <ガラス転移温度Tgの測定条件>
 示差走査熱量測定計DSC822e(METTLER TOLEDO社製)を用いた。具体的には、樹脂組成物5mgを軽量アルミパンに入れ、窒素雰囲気下、25℃から150℃まで毎分10℃で昇温した(1st run)後、0℃まで一旦急冷し、再度、0℃から150℃まで毎分10℃で昇温させた(2nd run)。ガラス転移温度Tgは2nd runから得られたDSC曲線より中点法によって決定した。
<Measurement conditions for glass transition temperature Tg>
A differential scanning calorimeter DSC822e (manufactured by METTTLER TOLEDO) was used. Specifically, 5 mg of the resin composition was put in a lightweight aluminum pan, heated in a nitrogen atmosphere from 25 ° C. to 150 ° C. at a rate of 10 ° C. per minute (1 run), rapidly cooled to 0 ° C., once again, 0 The temperature was raised from 10 ° C. to 150 ° C. at a rate of 10 ° C. per minute (2nd run). The glass transition temperature Tg was determined by the midpoint method from the DSC curve obtained from 2nd run.
 得られた延伸フィルム(1)の光学特性、具体的には面内複屈折(Δn)、面外複屈折(ΔP)光弾性係数(C)及びヘーズを下記に示す方法に従って評価した。評価結果を第1表に示す。 The obtained stretched film (1) was evaluated for optical properties, specifically, in-plane birefringence (Δn), out-of-plane birefringence (ΔP) photoelastic coefficient (C R ), and haze according to the following methods. The evaluation results are shown in Table 1.
 <面内複屈折(Δn)及び面外複屈折(ΔP)の評価方法>
 位相差測定装置KOBRA-WR(王子計測機器株式会社製)を用い、588nmにおける屈折率を求めた上で、下記式に従って面内複屈折(Δn)及び面外複屈折(ΔP)を求めた。
 面内複屈折(Δn)=(n)-(n
 面外複屈折(ΔP)=[(nx)+(n)]/2-(n
 〔(n):延伸方向の屈折率、(n):延伸方向と直交する方向の屈折率、(n):フィルム厚み方向の屈折率〕
 尚、測定は23℃、相対湿度55%雰囲気下で行った。
<Evaluation method of in-plane birefringence (Δn) and out-of-plane birefringence (ΔP)>
Using a phase difference measuring device KOBRA-WR (manufactured by Oji Scientific Instruments), the refractive index at 588 nm was determined, and in-plane birefringence (Δn) and out-of-plane birefringence (ΔP) were determined according to the following equations.
In-plane birefringence (Δn) = (n x ) − (n y )
Out-of-plane birefringence (ΔP) = [(n x ) + (n y)] / 2- (n z)
[(N x ): refractive index in the stretching direction, (n y ): refractive index in the direction orthogonal to the stretching direction, (n z ): refractive index in the film thickness direction]
The measurement was performed in an atmosphere at 23 ° C. and 55% relative humidity.
 <光弾性係数(C)の評価方法>
 延伸フィルムを延伸方向と平行に幅15mmで切抜いた延伸フィルムを光弾性測定用引張治具(王子計測機器株式会社製)に固定し、127.3g・fから727.3g・fまで100g・f毎に加重を変化させたときの588nmにおける面内位相差(Re)の変化を位相差測定装置KOBRA-WR(王子計測機器株式会社製)にて測定した。測定は23℃、相対湿度55%雰囲気下で行った。面内位相差(Re)は、下記式に従って求めた。
 Re=(n-n)×d
 〔(n):延伸方向の屈折率、(n):延伸方向と直交する方向の屈折率、d:フィルムの厚み(μm)〕
<Evaluation method of photoelastic coefficient ( CR )>
A stretched film obtained by cutting the stretched film with a width of 15 mm in parallel with the stretching direction is fixed to a tensile jig for photoelasticity measurement (manufactured by Oji Scientific Instruments Co., Ltd.) and 100 g · f from 127.3 g · f to 727.3 g · f. The change in in-plane retardation (Re) at 588 nm when the weight was changed every time was measured with a phase difference measuring device KOBRA-WR (manufactured by Oji Scientific Instruments). The measurement was performed in an atmosphere of 23 ° C. and 55% relative humidity. The in-plane retardation (Re) was obtained according to the following formula.
Re = (n x −n y ) × d
[(N x ): refractive index in the stretching direction, (n y ): refractive index in the direction orthogonal to the stretching direction, d: film thickness (μm)]
 測定値について、横軸に応力(σ)、縦軸に面内位相差(Re)をプロットし、最小二乗近似により線形領域の直線の傾きから光弾性係数(C)を求めた。傾きの絶対値が小さいほど光弾性係数が0に近いことを示し、外力による複屈折の変化が小さい光学フィルムであることを示す。 With respect to the measured values, stress (σ) is plotted on the horizontal axis and in-plane phase difference (Re) is plotted on the vertical axis, and the photoelastic coefficient (C R ) is obtained from the slope of the straight line in the linear region by least square approximation. It shows that a photoelastic coefficient is near 0, so that the absolute value of inclination is small, and it shows that it is an optical film with a small change of birefringence by external force.
 <ヘーズの評価>
 日本電色工業株式会社製NDH-5000を用いてJIS K 7136に準拠した。
<Evaluation of haze>
It was based on JIS K 7136 using NDH-5000 manufactured by Nippon Denshoku Industries Co., Ltd.
 実施例2~8及び比較例1~6
 第1表~第2表に示す配合及び延伸条件で光学材料用樹脂組成物(ドープ液)を得た以外は実施例1と同様にして光学フィルム(2)~(8)及び比較対照用延伸フィルム(1´)~(5´)を得た。実施例1と同様の評価を行い、その結果を第1表~第2表に示す。
Examples 2 to 8 and Comparative Examples 1 to 6
Optical films (2) to (8) and comparative stretching were performed in the same manner as in Example 1 except that a resin composition for optical material (dope solution) was obtained under the blending and stretching conditions shown in Tables 1 to 2. Films (1 ′) to (5 ′) were obtained. The same evaluation as in Example 1 was performed, and the results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 第1表の脚注
 測定不能:フィルムのヘーズが大きく光学特性測定ができなかった。
Footnotes in Table 1 Unmeasurable: The haze of the film was so large that optical properties could not be measured.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 第2表の脚注
 アクリルフィルム(A2):メタクリル酸メチル/α‐メチルスチレン=93/7(モル比)の共重合体、数平均分子量30,000)
 測定不能:フィルムのヘーズが大きく光学特性測定ができなかった。
Footnotes in Table 2 Acrylic film (A2): Copolymer of methyl methacrylate / α-methylstyrene = 93/7 (molar ratio), number average molecular weight 30,000)
Inability to measure: The optical properties could not be measured because the haze of the film was large.
 本発明の光学用樹脂組成物を用いて得られる光学フィルムは、光学弾性係数が小さく、外力による複屈折の変化が小さいフィルムである。一方、比較例の光学フィルムは光学弾性係数の絶対値が大きく外力による複屈折の変化が大きい。 The optical film obtained by using the optical resin composition of the present invention is a film having a small optical elastic modulus and a small change in birefringence due to an external force. On the other hand, the optical film of the comparative example has a large absolute value of the optical elastic coefficient and a large change in birefringence due to external force.

Claims (9)

  1.  (メタ)アクリル酸または(メタ)アクリル酸アルキルエステルを用いて得られる重合体(A)と、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、A、Aはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。X、Xはそれぞれ独立に2価の連結基である。)
    で表される化合物(B)とを含有することを特徴とする光学材料用樹脂組成物。
    Polymer (A) obtained by using (meth) acrylic acid or (meth) acrylic acid alkyl ester, and the following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein A 1 and A 2 are each independently an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms. R 1 to R 4 are each independently an alkyl group having 1 to 8 carbon atoms) And X 1 and X 2 are each independently a divalent linking group.)
    The resin composition for optical materials characterized by containing the compound (B) represented by these.
  2.  前記化合物(B)が、下記一般式(1-1)または一般式(1-2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、L、Lはそれぞれ独立に炭素原子数1~8のアルキル基または炭素原子数6~18のアリール基である。R~Rは、それぞれ独立に炭素原子数1~3のアルキル基である。)
    で表されるものである、請求項1記載の光学材料用樹脂組成物。
    The compound (B) is represented by the following general formula (1-1) or general formula (1-2):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein L 1 and L 2 are each independently an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 18 carbon atoms. R 1 to R 4 are each independently an alkyl group having 1 to 8 carbon atoms) 3 alkyl groups.)
    The resin composition for optical materials according to claim 1, represented by:
  3.  前記L、Lがそれぞれフェニル基またはトリル基である請求項2記載の光学材料用樹脂組成物。 The resin composition for an optical material according to claim 2 , wherein each of L 1 and L 2 is a phenyl group or a tolyl group.
  4.  前記R~Rがそれぞれメチル基である請求項3記載の光学材料用樹脂組成物。 The resin composition for an optical material according to claim 3, wherein each of R 1 to R 4 is a methyl group.
  5.  前記化合物(B)の含有量が、前記重合体(A)100質量部に対して1~10質量部である請求項1記載の光学材料用樹脂組成物。 The resin composition for an optical material according to claim 1, wherein the content of the compound (B) is 1 to 10 parts by mass with respect to 100 parts by mass of the polymer (A).
  6.  前記重合体(A)がメタクリル酸メチルを用いて得られるものである請求項1記載の光学材料用樹脂組成物。 The resin composition for an optical material according to claim 1, wherein the polymer (A) is obtained using methyl methacrylate.
  7.  請求項1~6のいずれか1項記載の光学材料用樹脂組成物を含有することを特徴とする光学フィルム。 An optical film comprising the resin composition for an optical material according to any one of claims 1 to 6.
  8.  偏光板保護用である請求項7記載の光学フィルム。 The optical film according to claim 7, which is used for protecting a polarizing plate.
  9.  請求項7または8の光学フィルムを有することを特徴とする液晶表示装置。 A liquid crystal display device comprising the optical film according to claim 7 or 8.
PCT/JP2014/074668 2013-09-27 2014-09-18 Resin composition for optical materials, optical film and liquid crystal display device WO2015046009A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480053333.9A CN105579874B (en) 2013-09-27 2014-09-18 Resin composition for optical material, optical thin film and liquid crystal display device
JP2015539149A JP5950174B2 (en) 2013-09-27 2014-09-18 Resin composition for optical material, optical film, and liquid crystal display device
KR1020167006501A KR102181206B1 (en) 2013-09-27 2014-09-18 Resin composition for optical materials, optical film and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-201479 2013-09-27
JP2013201479 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015046009A1 true WO2015046009A1 (en) 2015-04-02

Family

ID=52743148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074668 WO2015046009A1 (en) 2013-09-27 2014-09-18 Resin composition for optical materials, optical film and liquid crystal display device

Country Status (5)

Country Link
JP (1) JP5950174B2 (en)
KR (1) KR102181206B1 (en)
CN (1) CN105579874B (en)
TW (1) TWI627191B (en)
WO (1) WO2015046009A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003890A1 (en) * 2017-06-28 2019-01-03 Dic株式会社 Resin composition for optical material and optical film
JP2019006942A (en) * 2017-06-28 2019-01-17 Dic株式会社 Resin composition for optical material and optical film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077776A1 (en) * 2005-01-18 2006-07-27 Asahi Kasei Chemicals Corporation Resin composition for optical material
JP2011116912A (en) * 2009-12-07 2011-06-16 Dic Corp Cellulose ester resin composition, optical film using the same, and polarizing plate for liquid crystal display apparatus using the same
JP2011140637A (en) * 2009-12-07 2011-07-21 Dic Corp Cellulose ester resin composition, optical film using the same and polarizing plate for liquid crystal display device
JP2012068438A (en) * 2010-09-24 2012-04-05 Konica Minolta Opto Inc LONG-SHAPE λ/4 PLATE, CIRCULAR POLARIZER, POLARIZER, OLED DISPLAY DEVICE, AND THREE-DIMENSIONAL IMAGE DISPLAY DEVICE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952285B1 (en) * 2007-06-14 2010-04-13 주식회사 엘지화학 Optical films comprising methacrylic resins and method for preparing the same
WO2014184909A1 (en) * 2013-05-15 2014-11-20 コニカミノルタ株式会社 Phase difference film, polarization plate, and liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077776A1 (en) * 2005-01-18 2006-07-27 Asahi Kasei Chemicals Corporation Resin composition for optical material
JP2011116912A (en) * 2009-12-07 2011-06-16 Dic Corp Cellulose ester resin composition, optical film using the same, and polarizing plate for liquid crystal display apparatus using the same
JP2011140637A (en) * 2009-12-07 2011-07-21 Dic Corp Cellulose ester resin composition, optical film using the same and polarizing plate for liquid crystal display device
JP2012068438A (en) * 2010-09-24 2012-04-05 Konica Minolta Opto Inc LONG-SHAPE λ/4 PLATE, CIRCULAR POLARIZER, POLARIZER, OLED DISPLAY DEVICE, AND THREE-DIMENSIONAL IMAGE DISPLAY DEVICE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003890A1 (en) * 2017-06-28 2019-01-03 Dic株式会社 Resin composition for optical material and optical film
JP2019006942A (en) * 2017-06-28 2019-01-17 Dic株式会社 Resin composition for optical material and optical film
JPWO2019003890A1 (en) * 2017-06-28 2019-12-19 Dic株式会社 Resin composition for optical material and optical film
KR20200023274A (en) 2017-06-28 2020-03-04 디아이씨 가부시끼가이샤 Resin composition and optical film for optical materials

Also Published As

Publication number Publication date
JP5950174B2 (en) 2016-07-13
TW201516061A (en) 2015-05-01
JPWO2015046009A1 (en) 2017-03-09
KR20160065816A (en) 2016-06-09
TWI627191B (en) 2018-06-21
CN105579874B (en) 2017-09-05
CN105579874A (en) 2016-05-11
KR102181206B1 (en) 2020-11-23

Similar Documents

Publication Publication Date Title
JP7411379B2 (en) Methacrylic resin, methacrylic resin composition, film
TWI398480B (en) Resin compositions and optical films formed by using the same
KR101785485B1 (en) Fumarate diester resin for retardation film, and retardation film comprising same
JP7365104B2 (en) Methacrylic resin, methacrylic resin composition, film
JP5850290B2 (en) Resin composition for optical material, optical film, and liquid crystal display device
JP2011107281A (en) Optical-compensation film
JP5950174B2 (en) Resin composition for optical material, optical film, and liquid crystal display device
JP5831174B2 (en) Fumaric acid diester resin for retardation film and retardation film comprising the same
JP2008268929A (en) Resin composition for optical element
JP6642766B2 (en) Resin composition for optical material and optical film
JP2017165794A (en) Resin composition and optical compensation film prepared therewith
JP5919611B2 (en) Retardation plate with low photoelastic coefficient
KR20080020605A (en) Resin composition
JP2021173861A (en) Retardation film
JP6940013B2 (en) Resin compositions for optical materials, optical films and display devices
CN113423777B (en) Resin composition for optical material, optical film and display device
JP6015838B2 (en) Alkoxycinnamic acid ester polymer and retardation film using the same
JP2019006942A (en) Resin composition for optical material and optical film
JP2018028043A (en) Methacrylic resin and methacrylic resin composition
JP5983300B2 (en) Diisopropyl fumarate-cinnamic acid copolymer and retardation film using the same
JP2017105962A (en) Fumarate ester-alkoxy cinnamic acid copolymer and phase difference film
JP2009227944A (en) Heat-resistant optical film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480053333.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539149

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167006501

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847873

Country of ref document: EP

Kind code of ref document: A1