WO2015045806A1 - Photoelectric conversion element and imaging element - Google Patents

Photoelectric conversion element and imaging element Download PDF

Info

Publication number
WO2015045806A1
WO2015045806A1 PCT/JP2014/073531 JP2014073531W WO2015045806A1 WO 2015045806 A1 WO2015045806 A1 WO 2015045806A1 JP 2014073531 W JP2014073531 W JP 2014073531W WO 2015045806 A1 WO2015045806 A1 WO 2015045806A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
compound
sec
group
Prior art date
Application number
PCT/JP2014/073531
Other languages
French (fr)
Japanese (ja)
Inventor
大悟 澤木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167006394A priority Critical patent/KR101857892B1/en
Publication of WO2015045806A1 publication Critical patent/WO2015045806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to a photoelectric conversion element and an imaging element in which a photoelectric conversion layer that generates an electric charge in response to received light is configured using an organic compound, and converts a visible light image into an electric signal.
  • the present invention relates to a photoelectric conversion element and an imaging element that are fast and have excellent heat resistance.
  • pixels including photodiodes are arranged on a semiconductor substrate such as a silicon chip.
  • Solid-state imaging devices such as CCD sensors and MOS sensors that acquire signal charges corresponding to generated photoelectrons with a CCD-type or CMOS-type readout circuit are widely known.
  • Patent Document 1 development of photoelectric conversion elements using organic compounds is underway (Patent Document 1, etc.).
  • a first electrode is formed on a substrate, and an organic layer is formed on the first electrode.
  • a second electrode is formed on the organic layer.
  • An organic layer is provided between the first electrode and the second electrode.
  • the organic layer has a photoelectric conversion layer and an electron blocking layer, and the electron blocking layer is formed on the first electrode.
  • a sealing layer that seals the first electrode, the second electrode, and the organic layer is provided so as to cover the second electrode.
  • the photoelectric conversion layer preferably has a bulk heterojunction layer including a p-type organic semiconductor and an n-type organic semiconductor. By having a bulk heterojunction structure, the photoelectric conversion efficiency of the photoelectric conversion layer can be improved.
  • each step from the organic layer forming step to the sealing layer forming step is performed under vacuum, and the organic layers of the photoelectric conversion layer and the electron blocking layer are formed by a vacuum deposition method.
  • Patent Document 1 having a bulk heterostructure of a p-type organic semiconductor and an n-type organic semiconductor
  • a dye when used for the p-type organic semiconductor and a material having high planarity is used for the dye, That is, a high-speed response can be expected particularly when a molecule having no axis of free rotation and having all the axes of molecules in a single plane is used.
  • a material having high flatness is used for the coloring matter, there is a problem that the coloring matter aggregates to cause deterioration of various performances.
  • the purpose of the present invention is to eliminate the problems based on the above prior art, and even when using a p-type dye having high flatness, the aggregation of the dye is suppressed, the response speed is high, and the photoelectric conversion has excellent heat resistance.
  • An object is to provide an element and an imaging element.
  • a photoelectric conversion device in which a lower electrode, an organic layer including a photoelectric conversion layer, and an upper electrode including a transparent electrode layer are stacked in this order on a substrate, It has a bulk heterostructure of a p-type organic semiconductor of the compound represented by the general formula (1) and an n-type organic semiconductor of fullerene or a fullerene derivative, and the photoelectric conversion layer further converts a low-molecular organic compound into a p-type organic semiconductor.
  • the photoelectric conversion element characterized by containing 0.5 mass% or more and 5 mass% or less is provided.
  • Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group.
  • D 1 represents an atomic group.
  • n represents an integer of 0 or more.
  • the low molecular organic compound preferably has a molecular weight of 400 or more and 1300 or less.
  • the low molecular organic compound preferably has an ionization potential of 5.0 eV or more.
  • an imaging device comprising the photoelectric conversion element according to the first aspect of the present invention.
  • the imaging device includes a charge storage unit for storing the charge generated in the photoelectric conversion layer of the photoelectric conversion device, and a connection unit for transmitting the charge of the photoelectric conversion layer to the charge storage unit.
  • (A) is typical sectional drawing which shows the photoelectric conversion element of embodiment of this invention
  • (b) is a principal part enlarged view which expands and shows the sealing layer of the photoelectric conversion element of embodiment of this invention. It is. It is a typical sectional view showing an image sensor of an embodiment of the present invention.
  • (A)-(c) is typical sectional drawing which shows the manufacturing method of the image pick-up element of embodiment of this invention in order of a process.
  • (A)-(c) is typical sectional drawing which shows the manufacturing method of the image pick-up element of embodiment of this invention in order of a process, and shows the post process of FIG.3 (c).
  • FIG.1 (a) is typical sectional drawing which shows the photoelectric conversion element of embodiment of this invention, (b) is the principal part which expands and shows the sealing layer of the photoelectric conversion element of embodiment of this invention. It is an enlarged view.
  • the photoelectric conversion element 100 shown in FIG. 1A converts incident light L into an electrical signal.
  • the photoelectric conversion element 100 is formed by laminating a lower electrode 104 on a surface 102 a of a substrate 102.
  • An electron blocking layer 106 is laminated on the surface 104 a of the lower electrode 104, and a photoelectric conversion layer 108 is laminated on the electron blocking layer 106.
  • a sealing layer 114 covering the lower electrode 104, the organic layer 110, and the upper electrode 112 is formed. Note that the electron blocking layer 106 and the photoelectric conversion layer 108 are collectively referred to as an organic layer 110.
  • the incident light L is incident on the photoelectric conversion layer 108 of the organic layer 110 from the surface 112a side of the upper electrode 112, and the incident light L is converted into an electric signal by the photoelectric conversion layer 108.
  • the sealing layer 114 and the upper electrode 112 transmit the incident light L as will be described later.
  • the substrate 102 As the substrate 102, a silicon substrate, a glass substrate, or the like can be used.
  • the lower electrode 104 is an electrode for collecting holes out of charges generated in the organic layer 110 (photoelectric conversion layer 108).
  • the lower electrode 104 is made of a conductive material such as TiN (titanium nitride).
  • a TiN substrate on which a TiN electrode is formed is preferably used as the lower electrode 104.
  • the photoelectric conversion layer 108 receives the incident light L and generates charges according to the amount of the incident light L, and includes an organic photoelectric conversion material.
  • the photoelectric conversion layer 108 has a bulk heterostructure of a p-type organic semiconductor (p-type organic compound) of the compound represented by the general formula (1) and an n-type organic semiconductor of fullerene or a fullerene derivative.
  • the photoelectric conversion layer 108 further contains a low molecular organic compound in an amount of 0.5% by mass to 5% by mass with respect to the content of the p-type organic semiconductor. Details of the photoelectric conversion layer 108 will be described later.
  • the electron blocking layer 106 is a layer for preventing electrons from being injected from the lower electrode 104 into the organic layer 110.
  • the electron blocking layer 106 is preferably made of a material having a high electron injection barrier from the adjacent lower electrode 104 and a high hole transporting property.
  • the electron affinity of the electron blocking layer 106 is preferably 1 eV or less, more preferably 1.3 eV or more, and particularly preferably 1.5 eV or more than the work function of the adjacent electrode.
  • the electron blocking layer 106 is preferably 20 nm or more, more preferably, in order to sufficiently suppress the contact between the lower electrode 104 and the photoelectric conversion layer 108 and to avoid the influence of defects or dust existing on the surface of the lower electrode 104. Is 40 nm or more, particularly preferably 60 nm or more. If the electron blocking layer 106 is made too thick, the problem that the supply voltage required for applying an appropriate electric field strength to the photoelectric conversion layer 108 becomes high, or the carrier transport process in the electron blocking layer 106 is photoelectric conversion. There arises a problem that adversely affects the performance of the element.
  • the total thickness of the electron blocking layer 106 is preferably 300 nm or less, more preferably 200 nm or less, and still more preferably 100 nm or less.
  • the upper electrode 112 is an electrode that collects electrons out of charges generated in the organic layer 110.
  • the upper electrode 112 is composed of a transparent electrode layer that is sufficiently transparent to light having a wavelength with which the organic layer 110 has sensitivity in order to allow incident light L to enter the organic layer 110.
  • a transparent electrode layer for example, a conductive material such as ITO is used.
  • the light transmittance of the transparent electrode film is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, and more preferably 95% or more in the visible light wavelength.
  • the resistance value is rapidly increased.
  • the sheet resistance of the transparent electrode layer is preferably 100 ⁇ / ⁇ or more and 10000 ⁇ / ⁇ or less, and the degree of freedom in the range of film thickness that can be made thin is large.
  • the thinner the transparent electrode layer the less light is absorbed, and the light transmittance is generally increased.
  • the increase in light transmittance is very preferable because it increases the light absorption in the photoelectric conversion layer 108 and increases the photoelectric conversion ability.
  • the thickness of the transparent electrode layer that is, the upper electrode 112 is preferably 5 nm or more and 30 nm or less, more preferably It is 5 nm or more and 20 nm or less.
  • a method for manufacturing the upper electrode 112 various methods are used depending on the constituent materials, but it is preferable to use a sputtering method.
  • the sealing layer 114 is a layer for preventing a factor that degrades an organic material such as water and oxygen from entering the organic layer 110 containing the organic material.
  • the sealing layer 114 covers the lower electrode 104, the electron blocking layer 106, the organic layer 110, and the upper electrode 112, and seals between the surface 102 a of the substrate 102.
  • the sealing layer 114 is achieved by the first sealing layer 116 on the first sealing layer 116 and the first sealing layer 116 that prevent permeation of deterioration factors of photoelectric conversion materials such as water molecules, for example.
  • the upper electrode 112 is used as a light incident side electrode.
  • the incident light L is incident from above the upper electrode 112
  • the incident light L is transmitted through the upper electrode 112 and the organic layer. 110 is incident, and charges are generated here. Holes in the generated charges move to the lower electrode 104.
  • the light can be converted into a voltage signal and extracted.
  • the electron blocking layer 106 may be a plurality of layers. By using a plurality of layers, an interface is formed between the layers constituting the electron blocking layer 106, and discontinuities occur in the intermediate levels existing in the layers. As a result, it becomes difficult for the charge to move through the intermediate level, and the electron blocking effect can be enhanced. However, if the layers constituting the electron blocking layer 106 are made of the same material, the intermediate levels existing in the layers may be exactly the same. Therefore, in order to further enhance the electron blocking effect, the materials constituting the layers are different. It is preferable to make it.
  • the lower electrode 104 for example, a TiN substrate in which a TiN electrode is formed on the substrate 102 is prepared.
  • TiN substrate for example, TiN as an electrode material is formed on the substrate 102 under a vacuum set in advance by a sputtering method, and a TiN electrode is formed as the lower electrode 104.
  • the lower electrode 104 may be formed on the substrate 102 by, for example, depositing TiN under a preset vacuum by a sputtering method.
  • an electron blocking material for example, a carbazole derivative, more preferably a bifluorene derivative, is formed on the surface 104a of the lower electrode 104 under a vacuum set in advance by using, for example, a vapor deposition method to form an organic layer.
  • An electron blocking layer 106 constituting 110 is formed.
  • a photoelectric conversion material for example, a p-type organic semiconductor of a compound represented by the general formula (1), a fullerene or a fullerene derivative, and a low molecular organic compound are deposited on the electron blocking layer 106 by a vapor deposition method.
  • the photoelectric conversion layer 108 which comprises the organic layer 110 is formed by vapor-depositing and forming into a film under the vacuum set beforehand. Note that the low-molecular organic compound is deposited by adjusting so as to contain 0.5% by mass to 5% by mass with respect to the p-type organic semiconductor.
  • a transparent electrode material for example, ITO is formed on the photoelectric conversion layer 108 under a preset vacuum using a sputtering method to form the upper electrode 112.
  • a sealing material for example, an Al 2 O 3 film (alumina film) is formed on the upper electrode 112 and the substrate 102 under a preset vacuum using, for example, an atomic layer deposition (ALD) method.
  • ALD atomic layer deposition
  • the sealing layer 114 is formed by forming a SiON film on the first sealing layer 116 as the sealing auxiliary layer 118 by sputtering, for example.
  • the sealing layer 114 has a two-layer structure, but the present invention is not limited to this, and it is preferable that the number of layers is as small as possible in consideration of manufacturing costs. For this reason, it can also be comprised with the thin film which consists of a single material.
  • the sealing layer is composed of, for example, an Al 2 O 3 (alumina) film.
  • the photoelectric conversion element 100 of this embodiment when using the photoelectric conversion element 100, an external electric field can be applied.
  • the lower electrode 104 and the upper electrode 112 are used as a pair of electrodes, and an external electric field applied between the pair of electrodes in order to obtain excellent characteristics in photoelectric conversion efficiency, dark current, and optical response speed is 1 V / cm. It is preferably 1 ⁇ 10 7 V / cm or less, more preferably 1 ⁇ 10 4 V / cm or more and 1 ⁇ 10 7 V / cm or less. Particularly preferably, it is 5 ⁇ 10 4 V / cm or more and 1 ⁇ 10 6 V / cm or less.
  • the photoelectric conversion layer 108 has a bulk heterostructure of a p-type organic semiconductor of the compound represented by the general formula (1) and a fullerene or a fullerene derivative that is an n-type organic semiconductor,
  • the low molecular organic compound is contained in an amount of 0.5% by mass to 5% by mass with respect to the p-type organic semiconductor.
  • high planarity means a state in which no free rotation axis exists and all the molecular axes exist in a single plane.
  • FIG. 2 is a schematic cross-sectional view showing the image sensor of the embodiment of the present invention.
  • the image sensor 10 according to the embodiment of the present invention can be used in an imaging apparatus such as a digital camera or a digital video camera. Furthermore, it is used by being mounted on an imaging module such as an electronic endoscope and a cellular phone.
  • a substrate 2 includes a substrate 12, an insulating layer 14, a pixel electrode 16 (lower electrode), an electron blocking layer 20, a photoelectric conversion layer 22, a counter electrode 26 (upper electrode), and a sealing.
  • a layer (protective film) 28, a color filter 32, a partition wall 34, a light shielding layer 36, and a protective layer 38 are included.
  • the electron blocking layer 20 and the photoelectric conversion layer 22 are collectively referred to as an organic layer 24.
  • a reading circuit 40 and a counter electrode voltage supply unit 42 are formed on the substrate 12.
  • the pixel electrode 16 corresponds to the lower electrode 104 of the photoelectric conversion element 100 described above
  • the counter electrode 26 corresponds to the upper electrode 112 of the photoelectric conversion element 100 described above
  • the organic layer 24 corresponds to the organic of the photoelectric conversion element 100 described above.
  • the sealing layer 28 corresponds to the layer 120 and the sealing layer 114 of the photoelectric conversion element 100 described above.
  • the sealing layer 28 has a two-layer structure like the sealing layer 114, and includes a first sealing layer 29 and a sealing auxiliary layer 30.
  • the substrate 12 for example, a glass substrate or a semiconductor substrate such as Si is used.
  • An insulating layer 14 made of a known insulating material is formed on the substrate 12.
  • a plurality of pixel electrodes 16 are formed on the surface of the insulating layer 14.
  • the pixel electrodes 16 are arranged in a one-dimensional or two-dimensional manner, for example.
  • a first connection portion 44 that connects the pixel electrode 16 and the readout circuit 40 is formed in the insulating layer 14.
  • a second connection portion 46 that connects the counter electrode 26 and the counter electrode voltage supply unit 42 is formed. The second connection portion 46 is formed at a position not connected to the pixel electrode 16 and the organic layer 24.
  • the 1st connection part 44 and the 2nd connection part 46 are formed with the electroconductive material.
  • a wiring layer 48 made of a conductive material for connecting the readout circuit 40 and the counter electrode voltage supply unit 42 to, for example, the outside of the image sensor 10 is formed inside the insulating layer 14.
  • the circuit board 11 is formed by forming the pixel electrodes 16 connected to the first connection portions 44 on the surface 14 a of the insulating layer 14 on the substrate 12.
  • the circuit board 11 is also referred to as a CMOS substrate.
  • the electron blocking layer 20 is formed on the pixel electrode 16 so as to cover the plurality of pixel electrodes 16 and avoid the second connection portion 46, and the photoelectric conversion layer 22 is formed on the electron blocking layer 20.
  • the electron blocking layer 20 corresponds to the electron blocking layer 106 of the photoelectric conversion element 100 as described above, and is a layer for suppressing injection of electrons from the pixel electrode 16 to the photoelectric conversion layer 22.
  • the photoelectric conversion layer 22 corresponds to the photoelectric conversion layer 108 of the photoelectric conversion element 100 described above, detailed description thereof is omitted.
  • the photoelectric conversion layer 22 has a bulk heterostructure of a p-type organic semiconductor and an n-type organic semiconductor of fullerene or a fullerene derivative, and further contains 0.5% by mass or more of a low-molecular organic compound with respect to the p-type organic semiconductor. 5% by mass or less is contained.
  • the film thickness may not be constant other than that. The photoelectric conversion layer 22 will be described in detail later.
  • the counter electrode 26 is an electrode facing the pixel electrode 16 and is provided so as to cover the organic layer 24, and the organic layer 24 is disposed between the pixel electrode 16 and the counter electrode 26.
  • the counter electrode 26 is composed of a transparent conductive layer that is sufficiently transparent to the incident light L (visible light) in order to make light incident on the photoelectric conversion layer 22. As described above, the counter electrode 26 has the same configuration as that of the upper electrode 112, and a detailed description thereof will be omitted.
  • the counter electrode 26 is electrically connected to the second connection portion 46 disposed outside the photoelectric conversion layer 22, and is connected to the counter electrode voltage supply portion 42 via the second connection portion 46. Yes.
  • Examples of the material of the counter electrode 26 include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and mixtures thereof. Specific examples include tin oxide (SnO 2 ), zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), conductive metal oxides such as titanium oxide, TiN Metal nitrides such as gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al), etc., and these metals and conductive metal oxides A mixture or laminate of the above, an organic conductive compound such as polyaniline, polythiophene, and polypyrrole, a laminate of these with ITO, and the like.
  • Particularly preferable materials for the transparent conductive film are ITO, IZO, tin oxide (SnO 2 ), antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), zinc oxide, antimony-doped zinc oxide (AZO), gallium. Any material of doped zinc oxide (GZO).
  • a particularly preferable material among the materials of the counter electrode 26 (upper electrode 112) is ITO.
  • the counter electrode voltage supply unit 42 applies a preset voltage to the counter electrode 26 via the second connection unit 46.
  • the power supply voltage is boosted by a booster circuit such as a charge pump to supply the preset voltage.
  • the pixel electrode 16 is an electrode for collecting charges for collecting charges generated in the photoelectric conversion layer 22 between the pixel electrode 16 and the counter electrode 26 facing the pixel electrode 16.
  • the pixel electrode 16 is connected to the readout circuit 40 via the first connection portion 44.
  • the readout circuit 40 is provided on the substrate 12 corresponding to each of the plurality of pixel electrodes 16, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 16.
  • Examples of the material of the pixel electrode 16 include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and mixtures thereof.
  • Specific examples include conductive metal oxides such as tin oxide (SnO 2 ), zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), and titanium oxide, and nitride Metal nitrides such as titanium (TiN), gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al), and other metals, and conductivity with these metals Examples thereof include mixtures or laminates with metal oxides, organic conductive compounds such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO.
  • the material of the lower electrode 104 is particularly preferably any of titanium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride.
  • a particularly preferable material is TiN.
  • a step corresponding to the film thickness of the pixel electrode 16 is steep at the end of the pixel electrode 16, there are significant irregularities on the surface of the pixel electrode 16, or minute dust (particles) adhere to the pixel electrode 16. As a result, a layer on the pixel electrode 16 becomes thinner than a desired film thickness or a crack occurs.
  • the counter electrode 26 upper electrode 112
  • a pixel defect such as an increase in dark current or a short circuit occurs due to contact or electric field concentration between the pixel electrode 16 and the counter electrode 26 in the defective portion.
  • the above-described defects may reduce the adhesion between the pixel electrode 16 and the layer above it or the heat resistance of the image sensor 10.
  • the surface roughness Ra (arithmetic average roughness) of the pixel electrode 16 is preferably 0.6 nm or less.
  • the readout circuit 40 is constituted by, for example, a CCD, a MOS circuit, or a TFT circuit, and is shielded from light by a light shielding layer (not shown) provided in the insulating layer 14.
  • the readout circuit 40 preferably employs a CCD or CMOS circuit for general image sensor applications, and preferably employs a CMOS circuit from the viewpoint of noise and high speed.
  • a high-concentration n region surrounded by a p region is formed on the substrate 12, and the first connection portion 44 is connected to the n region.
  • a read circuit 40 is provided in the p region.
  • the n region functions as a charge storage unit that stores the charge of the photoelectric conversion layer 22. The electric charge accumulated in the n region is converted into a signal corresponding to the amount of electric charge by the readout circuit 40 and output to the outside of the image sensor 10 through the wiring layer 48, for example.
  • the sealing layer (protective film) 28 is for protecting the photoelectric conversion layer 22 containing an organic substance from deterioration factors such as water molecules.
  • the sealing layer 28 is formed so as to cover the counter electrode 26.
  • the sealing layer 28 has a two-layer structure of a first sealing layer 29 and a sealing auxiliary layer 30. The following conditions are required for the sealing layer 28 (sealing layer 114). First, it is possible to protect the photoelectric conversion layer by preventing intrusion of factors that degrade the organic photoelectric conversion material contained in the solution, plasma, and the like in each manufacturing process of the device.
  • the sealing layer 28 is formed, the already formed photoelectric conversion layer is not deteriorated. Fourth, since incident light reaches the photoelectric conversion layer 22 through the sealing layer 28, the sealing layer 28 must be transparent to light having a wavelength detected by the photoelectric conversion layer 22.
  • the sealing layer 28 can be formed of a thin film made of a single material. However, by providing a multi-layered structure and providing each layer with a different function, stress relaxation of the entire sealing layer 28 and generation of dust during the manufacturing process. Such effects as the suppression of defects such as cracks and pinholes due to the above, and the optimization of material development can be expected.
  • the sealing layer 28 is formed by laminating a sealing auxiliary layer having a function that is difficult to achieve on a layer that serves the original purpose of preventing permeation of deterioration factors such as water molecules. Layer structure.
  • the sealing layer may have a configuration of three or more layers, it is preferable that the number of layers is as small as possible in consideration of manufacturing costs.
  • the sealing layer 28 (sealing layer 114) can be formed as follows, for example.
  • the performance of organic photoelectric conversion materials is significantly deteriorated due to the presence of deterioration factors such as water molecules. Therefore, it is necessary to cover and seal the entire photoelectric conversion layer with a dense metal oxide film, metal nitride film, metal oxynitride film, or the like that does not allow water molecules to permeate.
  • a dense metal oxide film, metal nitride film, metal oxynitride film, or the like that does not allow water molecules to permeate.
  • aluminum oxide, silicon oxide, silicon nitride, silicon nitride oxide, or a stacked structure thereof, a stacked structure of these and an organic polymer, or the like is used as a sealing layer by various vacuum film forming techniques.
  • the conventional sealing layer is a film compared to a flat part because it is difficult to grow a thin film at a step due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, etc. (because the step becomes a shadow). The thickness is significantly reduced. For this reason, the step portion becomes a path through which the deterioration factor penetrates. In order to completely cover this step with the sealing layer 28, it is necessary to form the film so as to have a film thickness of 1 ⁇ m or more in the flat portion, and to increase the thickness of the entire sealing layer 28.
  • the imaging device 10 having a pixel size of less than 2 ⁇ m, particularly about 1 ⁇ m if the distance between the color filter 32 and the photoelectric conversion layer 22, that is, the film thickness of the sealing layer 28 is large, incident light is diffracted in the sealing layer 28. Or it diverges and color mixing occurs. For this reason, the imaging device 10 having a pixel size of about 1 ⁇ m requires a sealing layer material and a manufacturing method thereof that do not deteriorate the device performance even when the film thickness of the entire sealing layer 28 is reduced.
  • the atomic layer deposition (ALD) method is a kind of CVD method, and adsorption / reaction of organometallic compound molecules, metal halide molecules, and metal hydride molecules, which are thin film materials, onto the substrate surface and unreacted groups contained therein Is a technique for forming a thin film by alternately repeating decomposition.
  • ALD atomic layer deposition
  • the step portion which was difficult with the conventional thin film formation method, is completely covered (the thickness of the thin film grown on the step portion is the same as the thickness of the thin film grown on the flat portion), that is, the step coverage is very high. Excellent. Therefore, a step due to a structure on the substrate surface, a minute defect on the substrate surface, particles adhering to the substrate surface, and the like can be completely covered, and such a step portion does not become an intrusion path for a deterioration factor of the photoelectric conversion material.
  • the sealing layer 28 is formed by an atomic layer deposition (ALD) method, the required sealing layer thickness can be reduced more effectively than in the prior art.
  • ALD atomic layer deposition
  • a material corresponding to the above-described preferable sealing layer can be appropriately selected. However, it is limited to a material capable of growing a thin film at a relatively low temperature so that the organic photoelectric conversion material does not deteriorate. According to the atomic layer deposition method using alkylaluminum or aluminum halide as a material, a dense aluminum oxide thin film can be formed at less than 200 ° C. at which the organic photoelectric conversion material does not deteriorate. In particular, when trimethylaluminum is used, an aluminum oxide thin film can be formed even at about 100 ° C., which is preferable.
  • Silicon oxide or titanium oxide is also preferable because a dense thin film can be formed as the sealing layer 28 at a temperature lower than 200 ° C. as in the case of aluminum oxide by appropriately selecting a material.
  • the sealing layer 28 (sealing layer 114) preferably has a thickness of 10 nm or more in order to sufficiently prevent the entry of factors that degrade the photoelectric conversion material such as water molecules. In an imaging device described later, when the sealing layer is thick, incident light is diffracted or diverged in the sealing layer, resulting in color mixing. For this reason, the film thickness of the sealing layer is preferably 200 nm or less.
  • the first sealing layer 29 is a thin film, and from the viewpoint of step coverage and denseness, it is possible to achieve a high-quality thin film formation at a low temperature.
  • the thin film may be deteriorated by chemicals used in the photolithography process.
  • an aluminum oxide thin film formed by atomic layer deposition is amorphous, the surface is eroded by an alkaline solution such as a developer and a stripping solution.
  • an alkaline solution such as a developer and a stripping solution.
  • the auxiliary sealing layer 30 that is a functional layer for protecting the sealing layer 28 is necessary.
  • the sealing layer 28 has the same two-layer structure as that shown in FIG.
  • the sealing layer 28 is formed by sputtering on the first sealing layer 29 (first sealing layer 116), such as aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ). ), Silicon nitride (SiN), and silicon nitride oxide (SiON), it is preferable to include a sealing auxiliary layer 30 (sealing auxiliary layer 118) including any one of them. Moreover, it is preferable that the sealing layer 28 (sealing layer 114) has a film thickness of 0.05 ⁇ m or more and 0.2 ⁇ m or less. Furthermore, the sealing layer 28 (sealing layer 114) preferably contains any of aluminum oxide, silicon oxide, and titanium oxide.
  • the color filter 32 is formed at a position facing each pixel electrode 16 on the surface 28 a of the sealing layer 28.
  • the partition wall 34 is provided between the color filters 32 on the surface 28 a of the sealing layer 28, and is for improving the light transmission efficiency of the color filter 32.
  • the light shielding layer 36 is formed in a region other than the region (effective pixel region) where the color filter 32 and the partition wall 34 are provided on the surface 28a of the sealing layer 28, and light is applied to the photoelectric conversion layer 22 formed outside the effective pixel region. Is prevented from entering.
  • the color filter 32, the partition wall 34, and the light shielding layer 36 are formed to have substantially the same thickness, and are formed through, for example, a photolithography process, a resin baking process, and the like.
  • the protective layer 38 is for protecting the color filter 32 from subsequent processes and is formed so as to cover the color filter 32, the partition wall 34 and the light shielding layer 36.
  • the protective layer 38 is also referred to as an overcoat layer.
  • one pixel electrode 16 having the organic layer 24, the counter electrode 26, and the color filter 32 provided thereon is a unit pixel Px.
  • the protective layer 38 can be made of a polymer material such as acrylic resin, polysiloxane resin, polystyrene resin or fluorine resin, or an inorganic material such as silicon oxide or silicon nitride as appropriate. If a photosensitive resin such as polystyrene is used, the protective layer 38 can be patterned by a photolithography method, so that it can be used as a photoresist when opening the peripheral light shielding layer, sealing layer, insulating layer, etc. on the bonding pad.
  • the protective layer 38 itself is preferably processed as a microlens, which is preferable.
  • the protective layer 38 can be used as an antireflection layer, and it is also preferable to form various low refractive index materials used as the partition walls of the color filter 32.
  • the protective layer 38 can be configured to have two or more layers combining the above-described materials.
  • the pixel electrode 16 has a configuration formed on the surface 14a of the insulating layer 14.
  • the present invention is not limited to this, and the pixel electrode 16 may be embedded in the surface 14a portion of the insulating layer 14. Good.
  • the structure which provides the 2nd connection part 46 and the counter electrode voltage supply part 42 was made, it may be plural.
  • a voltage drop at the counter electrode 26 can be suppressed by supplying a voltage from both ends of the counter electrode 26 to the counter electrode 26.
  • the number of sets of the second connection unit 46 and the counter electrode voltage supply unit 42 may be appropriately increased or decreased in consideration of the chip area of the element.
  • FIGS. 4A to 4C are diagrams of the embodiment of the present invention. It is typical sectional drawing which shows the manufacturing method of an image pick-up element in order of a process, and shows the post process of FIG.3 (c).
  • the first circuit is formed on the substrate 12 on which the readout circuit 40 and the counter electrode voltage supply unit 42 are formed.
  • the insulating layer 14 provided with the connecting portion 44, the second connecting portion 46, and the wiring layer 48 is formed, and the pixel electrode 16 connected to each first connecting portion 44 is further formed on the surface 14 a of the insulating layer 14.
  • a formed circuit board 11 CMOS substrate
  • the first connection unit 44 and the readout circuit 40 are connected, and the second connection unit 46 and the counter electrode voltage supply unit 42 are connected.
  • the pixel electrode 16 is made of, for example, TiN.
  • the film is transferred to a film forming chamber (not shown) for the electron blocking layer 20 through a preset transfer path, and as shown in FIG.
  • An electron blocking material 20 is formed on the surface 14 a of the insulating layer 14 so as to cover the pixel electrode 16 under a vacuum set in advance using, for example, a vapor deposition method, thereby forming the electron blocking layer 20.
  • the electron blocking material for example, a carbazole derivative, more preferably a bifluorene derivative is used.
  • the film is transferred to a film formation chamber (not shown) of the photoelectric conversion layer 22 through a preset transfer path, and as shown in FIG.
  • the film is formed under a vacuum set in advance using a vapor deposition method so that the content is from 5% to 5% by mass. Thereby, the photoelectric conversion layer 22 is formed and the organic layer 24 is formed.
  • the electron blocking layer 20 and the photoelectric conversion layer 22 can be formed in the same film formation chamber or in separate film formation chambers.
  • the photoelectric conversion layer 22 is covered and the second connection portion is formed.
  • the counter electrode 26 is formed under a vacuum set in advance by a sputtering method, for example, with a pattern formed on 46.
  • a sputtering method for example, with a pattern formed on 46.
  • ITO is used as the counter electrode material.
  • the film is transferred to a film forming chamber (not shown) of the sealing layer 28 through a predetermined transfer path, and as shown in FIG.
  • the entire surface 26a of the counter electrode 26 is covered, For example, an Al 2 O 3 film (alumina film) is formed on the surface 14 a of the insulating layer 14 under a preset vacuum using an atomic layer deposition (ALD) method, and the first sealing layer 29 is formed. Form. Thereafter, as shown in FIG. 4C, a SiON film is formed on the surface 29a of the first sealing layer 29 as the sealing auxiliary layer 30 by, for example, sputtering. Thereby, the sealing layer 28 is formed.
  • ALD atomic layer deposition
  • the color filter 32, the partition wall 34, and the light shielding layer 36 are formed on the surface 28a of the sealing layer 28 by using, for example, a photolithography method.
  • the color filter 32, the partition wall 34, and the light shielding layer 36 can be formed using the well-known thing used for an organic solid-state image sensor.
  • the formation process of the color filter 32, the partition wall 34, and the light shielding layer 36 may be under vacuum or under non-vacuum.
  • the protective layer 38 is formed using, for example, a coating method so as to cover the color filter 32, the partition wall 34, and the light shielding layer 36. Thereby, the image sensor 10 shown in FIG. 2 can be formed.
  • As the protective layer 38 a known layer used for an organic solid-state imaging device is used.
  • the pixel electrode 16 and the counter electrode 26 are a pair of electrodes, and an external electric field applied between the pair of electrodes in order to obtain excellent characteristics in photoelectric conversion efficiency, dark current, and optical response speed is 1 V / cm. It is preferably 1 ⁇ 10 7 V / cm or less, more preferably 1 ⁇ 10 4 V / cm or more and 1 ⁇ 10 7 V / cm or less. Particularly preferably, it is 5 ⁇ 10 4 V / cm or more and 1 ⁇ 10 6 V / cm or less.
  • the photoelectric conversion layer 22 has a bulk heterostructure of fullerene or a fullerene derivative as a p-type organic semiconductor and an n-type organic semiconductor, and further, a low-molecular organic compound that does not absorb visible light in the bulk heterolayer is 0.
  • a bulk heterostructure of fullerene or a fullerene derivative as a p-type organic semiconductor and an n-type organic semiconductor
  • a low-molecular organic compound that does not absorb visible light in the bulk heterolayer is 0.
  • the organic layer 24 of the imaging element 10 and the organic layer 110 of the photoelectric conversion element 100 will be described.
  • the electron blocking layer 20 and the photoelectric conversion layer 22 of the imaging element 10 and the electron blocking layer 106 and the photoelectric conversion layer 108 of the photoelectric conversion element 100 correspond to each other.
  • the photoelectric conversion layer 22 of the image sensor 10 (the photoelectric conversion layer 108 of the photoelectric conversion element 100) includes a p-type organic semiconductor, an n-type organic semiconductor, and a low-molecular organic compound.
  • Exciton dissociation efficiency can be increased by forming a donor-acceptor interface by bulk heterojunction of a p-type organic semiconductor and an n-type organic semiconductor. For this reason, the photoelectric conversion layer of the structure which joined the p-type organic semiconductor and the n-type organic semiconductor expresses high photoelectric conversion efficiency.
  • a photoelectric conversion layer in which a p-type organic semiconductor and an n-type organic semiconductor are mixed is preferable because the junction interface is increased and the photoelectric conversion efficiency is improved.
  • the photoelectric conversion layer 22 has a bulk heterojunction structure including a p-type organic semiconductor and an n-type organic semiconductor, and further contains a low molecular weight organic compound in an amount of 0.5% by mass or more to the p-type organic semiconductor. Contain less than mass%.
  • a highly planar material is used for the dye that is a p-type organic semiconductor, that is, a molecule in which all the axes of molecules are present in a single plane, particularly without a free rotation axis. Is preferably used.
  • the dye used for the p-type organic semiconductor is a main material responsible for photoelectric conversion among the p-type organic semiconductor, for example, absorbing visible light of 400 nm to 700 nm.
  • the thickness of the photoelectric conversion layer 22 is preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 800 nm or less, and particularly preferably 100 nm or more and 500 nm or less.
  • the p-type organic semiconductor (compound) constituting the photoelectric conversion layer 22 is a donor-type organic semiconductor (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. . More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.
  • the metal complex etc. which it has as can be used.
  • the present invention is not limited to this, and any organic compound having an ionization potential smaller than that of the organic compound used as the n-type (acceptor property) compound may be used as the donor organic semiconductor.
  • any organic dye may be used.
  • Preferred examples include cyanine dyes, styryl dyes, hemicyanine dyes, merocyanine dyes (including zero methine merocyanine (simple merocyanine)), trinuclear merocyanine dyes, Tetranuclear merocyanine dye, rhodacyanine dye, complex cyanine dye, complex merocyanine dye, allopolar dye, oxonol dye, hemioxonol dye, squalium dye, croconium dye, azamethine dye, coumarin dye, arylidene dye, anthraquinone dye, triphenylmethane dye, Azo dye, azomethine dye, spiro compound, metallocene dye, fluorenone dye, fulgide dye, perylene dye, perinone dye, phenazine dye, phenothiazine dye, quino
  • fullerene or a fullerene derivative having excellent electron transport properties.
  • the fullerene, fullerene C 60, fullerene C 70, fullerene C 76, fullerene C 78, fullerene C 80, fullerene C 82, fullerene C 84, fullerene C 90, fullerene C 96, fullerene C 240, fullerene C 540, mixed Fullerene and fullerene nanotube are represented, and a fullerene derivative represents a compound having a substituent added thereto.
  • the substituent for the fullerene derivative is preferably an alkyl group, an aryl group, or a heterocyclic group.
  • the alkyl group is more preferably an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring.
  • substituents may further have a substituent, and the substituents may be bonded as much as possible to form a ring.
  • substituents may be bonded as much as possible to form a ring.
  • you may have a some substituent and they may be the same or different.
  • a plurality of substituents may be combined as much as possible to form a ring.
  • the photoelectric conversion layer 22 contains fullerene or a fullerene derivative, electrons generated by photoelectric conversion via the fullerene molecule or fullerene derivative molecule are transmitted to the pixel electrode 16 (lower electrode 104) or the counter electrode 26 (upper electrode 112). It can be transported quickly.
  • the fullerene molecules or fullerene derivative molecules are connected to form an electron path, the electron transport property is improved, and high-speed response of the photoelectric conversion element can be realized.
  • the fullerene or fullerene derivative is preferably contained in the photoelectric conversion layer by 40% (volume ratio) or more. However, if there are too many fullerenes or fullerene derivatives, the p-type organic semiconductor will decrease, the junction interface will become smaller, and the exciton dissociation efficiency will decrease.
  • the fullerene or fullerene derivative contained in the photoelectric conversion layer preferably has a composition of 85% (volume ratio) or less.
  • the p-type organic semiconductor used for the photoelectric conversion layer 22 is preferably a compound represented by the following general formula (1).
  • Z 1 is a ring containing at least two carbon atoms, and a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group.
  • D 1 represents an atomic group.
  • n represents an integer of 0 or more.
  • Z 1 is a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring.
  • a condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring those usually used as an acidic nucleus in a merocyanine dye are preferable, and specific examples thereof include the following: Is mentioned.
  • (A) 1,3-dicarbonyl nucleus for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6- Zeon etc.
  • (B) pyrazolinone nucleus for example 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl-2 -Pyrazolin-5-one and the like.
  • (C) isoxazolinone nucleus for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one and the like.
  • (D) Oxindole nucleus For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
  • Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diphenyl, 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl, Examples include 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
  • (F) 2-thio-2,4-thiazolidinedione nucleus for example, rhodanine and its derivatives.
  • the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl) rhodanine. And the like.
  • (J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
  • (M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidinedione etc.
  • (N) Imidazolin-5-one nucleus for example, 2-propylmercapto-2-imidazolin-5-one and the like.
  • (O) 3,5-pyrazolidinedione nucleus for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione and the like.
  • Benzothiophen-3-one nucleus for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
  • Indanone nucleus for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
  • the ring formed by Z 1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, 2-thiobarbitur tool) Acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2, In 4-imidazolidinedione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus More preferably 1,3-dicarbonyl nucle
  • L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group.
  • the substituted methine groups may be bonded to each other to form a ring (eg, a 6-membered ring such as a benzene ring).
  • the substituent of the substituted methine group includes the substituent W, it is preferable that all of L 1 , L 2 and L 3 are unsubstituted methine groups.
  • L 1 to L 3 may combine with each other to form a ring, and preferred examples of the ring formed include a cyclohexene ring, a cyclopentene ring, a benzene ring, and a thiophene ring.
  • N represents an integer of 0 or more, preferably 0 or more and 3 or less, more preferably 0.
  • N 0 is preferable in that it has appropriate absorption in the visible region and suppresses thermal decomposition during vapor deposition.
  • D 1 represents an atomic group.
  • D 1 is preferably a group containing —NR a (R b ), more preferably —NR a (R b ) represents an arylene group substituted.
  • R a and R b each independently represent a hydrogen atom or a substituent.
  • the arylene group represented by D 1 is preferably an arylene group having 6 to 30 carbon atoms, and more preferably an arylene group having 6 to 18 carbon atoms.
  • the arylene group may have a substituent W described later, and is preferably an arylene group having 6 to 18 carbon atoms which may have an alkyl group having 1 to 4 carbon atoms. Examples thereof include a phenylene group, a naphthylene group, an anthracenylene group, a pyrenylene group, a phenanthrenylene group, a methylphenylene group, and a dimethylphenylene group, and a phenylene group or a naphthylene group is preferable.
  • R a or R b examples include the substituent W described later, and preferably an aliphatic hydrocarbon group (preferably an alkyl group or alkenyl group which may be substituted) or an aryl group (preferably a substituent). A phenyl group which may be substituted), or a heterocyclic group.
  • the aryl groups represented by R a and R b are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms.
  • the aryl group may have a substituent, and is preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. .
  • Examples thereof include a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a methylphenyl group, a dimethylphenyl group, and a biphenyl group, and a phenyl group or a naphthyl group is preferable.
  • the heterocyclic groups represented by R a and R b are each independently preferably a heterocyclic group having 3 to 30 carbon atoms, more preferably a heterocyclic group having 3 to 18 carbon atoms.
  • the heterocyclic group may have a substituent, and preferably a C 3-18 heterocyclic group which may have an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms. It is.
  • the heterocyclic group represented by R a and R b is preferably a condensed ring structure, and furan ring, thiophene ring, selenophene ring, silole ring, pyridine ring, pyrazine ring, pyrimidine ring, oxazole ring, thiazole ring, triazole.
  • a condensed ring structure of a ring combination selected from a ring, an oxadiazole ring, and a thiadiazole ring (which may be the same) is preferable.
  • a bithienothiophene ring is preferred.
  • the arylene group and aryl group represented by D 1 , R a and R b are preferably a benzene ring or a condensed ring structure, more preferably a condensed ring structure containing a benzene ring, a naphthalene ring, an anthracene ring, pyrene A benzene ring, a naphthalene ring or an anthracene ring, more preferably a benzene ring or a naphthalene ring.
  • a halogen atom an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, an aryl group, and a heterocyclic group (May be referred to as a heterocyclic group), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyl group, aryl Oxycarbonyl group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alky
  • R a and R b represent a substituent (preferably an alkyl group or an alkenyl group), the substituent is an aromatic ring (preferably benzene ring) skeleton of an aryl group substituted by —NR a (R b ). It may combine with a hydrogen atom or a substituent to form a ring (preferably a 6-membered ring).
  • R a and R b may be bonded to each other to form a ring (preferably a 5-membered or 6-membered ring, more preferably a 6-membered ring), and R a and R b are each L A ring (preferably a 5-membered or 6-membered ring, more preferably a 6-membered ring) may be formed by combining with a substituent in (represents any one of L 1 , L 2 , and L 3 ).
  • the compound represented by the general formula (1) is a compound described in JP 2000-297068 A, and a compound not described in the above publication can also be produced according to the synthesis method described in the above publication. .
  • the compound represented by the general formula (1) is preferably a compound represented by the general formula (2).
  • Z 2 , L 21 , L 22 , L 23 , and n are synonymous with Z 1 , L 1 , L 2 , L 3 , and n in General Formula (1), and preferred examples thereof Is the same.
  • D 21 represents a substituted or unsubstituted arylene group.
  • D 22 and D 23 each independently represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
  • the arylene group represented by D 21 has the same meaning as the arylene ring group represented by D 1 , and preferred examples thereof are also the same.
  • the aryl group represented by D 22 and D 23 is independently the same as the heterocyclic group represented by R a and R b , and preferred examples thereof are also the same.
  • Z 3 represents any one of A-1 to A-12 shown below.
  • L 31 represents methylene and n represents 0.
  • D 31 represents any one of B-1 to B-9, and D 32 and D 33 represent any one of C-1 to C-16.
  • Z 3 is preferably A-2, D 32 and D 33 are preferably selected from C-1, C-2, C-15 and C-16, and D 31 is B-1 or B- 9 is preferred.
  • Particularly preferred p-type organic semiconductors include dyes or materials having no five or more condensed ring structures (materials having 0 to 4, preferably 1 to 3 condensed ring structures).
  • a pigment-based p-type material generally used in organic thin-film solar cells the dark current tends to increase at the pn interface, and the light response is slow due to trapping at the crystalline grain boundary. Since it tends to be, it is difficult to use for an image sensor. For this reason, a dye-based p-type material that is difficult to crystallize, or a material that does not have five or more condensed ring structures can be preferably used for the imaging element.
  • the compound represented by the general formula (1) has a melting point of preferably 200 ° C. or higher, more preferably 220 ° C. or higher, and further preferably 240 ° C. or higher from the viewpoint of vapor deposition stability. If the melting point is low, it melts before vapor deposition, and in addition to being unable to form a stable film, the decomposition product of the compound increases, so the photoelectric conversion performance deteriorates.
  • the peak wavelength of the absorption spectrum of the compound represented by the general formula (1) is preferably 400 nm or more and 700 nm or less, more preferably 480 nm or more and 700 nm or less, more preferably 510 nm or more and 680 nm, from the viewpoint of broadly absorbing light in the visible region. More preferably, it is as follows.
  • the molar extinction coefficient of peak wavelength The higher the molar extinction coefficient is, the better the compound represented by the general formula (1) is from the viewpoint of efficiently using light.
  • Absorption spectrum chloroform solution
  • the molar absorption coefficient preferably 20000 -1 cm -1 or more, more preferably 30000 m -1 cm -1 or more, 40000M -1 cm -1 or more Is more preferable.
  • Low-molecular-weight organic compounds suppress aggregation of highly planar dyes (particularly, molecules that do not have a free rotation axis and all the axes of a molecule are present) used in p-type organic semiconductors. It is necessary for film formation without agglomeration.
  • the low molecular weight organic compound functions as an aggregating agent for a highly planar pigment within the photoelectric conversion layer.
  • the low molecular weight organic compound is a molecular compound having a molecular weight of 400 or more and 1300 or less and other than the n-type organic semiconductor contained in the photoelectric conversion layer.
  • the low molecular organic compound is preferably one that does not absorb in the absorption wavelength region of the photoelectric conversion layer. Thereby, the light irradiated to a photoelectric converting layer can be utilized effectively.
  • the dye having high flatness when a dye having high flatness is used for the p-type organic semiconductor, the dye having high flatness has a good packing property and an electron trap is suppressed, and the responsiveness can be increased.
  • pigments with high flatness when pigments with high flatness are used, pigment aggregation tends to occur. When the aggregation of the dye occurs, a grain boundary is formed, and an electron trap is generated at the grain boundary to increase the dark current.
  • the photoelectric conversion layer needs to contain a low molecular organic compound that functions as an aggregating agent for a highly flat pigment.
  • the content of the low-molecular organic compound is less than 0.5% by mass with respect to the p-type organic semiconductor contained in the photoelectric conversion layer, aggregation of highly planar dyes constituting the p-type organic semiconductor is suppressed. Can not do it. Thereby, dark current increases and the heat resistance of an image pick-up element and a photoelectric conversion element will deteriorate.
  • the heat resistance is the degree of increase in dark current after being heated to a preset temperature. Those that do not increase in dark current after heating are said to have high heat resistance.
  • content of the low-molecular organic compound exceeds 5% by mass with respect to the p-type organic semiconductor contained in the photoelectric conversion layer, the interface between the p-type organic semiconductor and the n-type organic semiconductor decreases, and the imaging device and The sensitivity of the photoelectric conversion element decreases. From these things, content of a low molecular organic compound shall be 0.5 mass% or more and 5 mass% or less with respect to a p-type organic semiconductor.
  • the low molecular organic compound preferably has an ionization potential of 5.0 eV or more.
  • a material having an ionization potential of 5.0 eV or more as the low molecular organic compound, thermal excitation from the electron blocking layer can be suppressed. Thereby, the increase in dark current can be suppressed.
  • Specific examples of the low molecular organic compound include the following compounds 2 to 7.
  • the following compound 2 has a molecular weight of 898 and an ionization potential of 5.45 eV.
  • the following compound 3 has a molecular weight of 1042 and an ionization potential of 5.06 eV.
  • the following compound 4 has a molecular weight of 517 and an ionization potential of 5.5 eV.
  • the following compound 5 has a molecular weight of 636 and an ionization potential of 5.2 eV.
  • the following compound 6 has a molecular weight of 798 and an ionization potential of 5.49 eV.
  • the following compound 7 has a molecular weight of 941 and an ionization potential of 5.65 eV.
  • An electron donating organic material can be used for the electron blocking layer 20 (electron blocking layer 106).
  • Porphyrin compounds triazole derivatives, Sadizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, carbazole derivatives, bifluorenes A derivative or the like can be used, and as the polymer material, a polymer such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, or a derivative thereof can be used. Even if it is not a compound, it can be used as long as it has sufficient hole transportability.
  • JP-A-2008-72090 the following compounds described in JP-A-2008-72090 are preferably used.
  • the following Ea represents the electron affinity of the material, and Ip represents the ionization potential of the material.
  • EB in EB-1, 2,... Stands for “electronic blocking”.
  • An inorganic material can also be used as the electron blocking layer 20 (electron blocking layer 106).
  • an inorganic material has a dielectric constant larger than that of an organic material, when the inorganic material is used for the electron blocking layer 20 (electron blocking layer 106), the photoelectric conversion layer 22 (photoelectric conversion layer 108) has a large voltage. As a result, the photoelectric conversion efficiency can be increased.
  • Materials that can be used as the electron blocking layer 20 (electron blocking layer 106) include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, and oxide. Examples include molybdenum, indium copper oxide, indium silver oxide, and iridium oxide.
  • the electron blocking layer 20 is composed of a single layer or a plurality of layers.
  • the electron blocking layer 20 may be composed of a single organic material film, or may be composed of a mixed film of a plurality of different organic materials.
  • a layer adjacent to the photoelectric conversion layer 22 (photoelectric conversion layer 108) among the plurality of layers is included in the photoelectric conversion layer 22 (photoelectric conversion layer 108).
  • a layer made of the same material as the organic semiconductor is preferable.
  • the layer 20 can be a layer made of an inorganic material, or in the case of a plurality of layers, one or more layers are made of an inorganic material. It can be a layer.
  • the present invention is basically configured as described above.
  • the photoelectric conversion element and the imaging element of the present invention have been described in detail above.
  • the present invention is not limited to the above-described embodiment, and various improvements or modifications may be made without departing from the gist of the present invention. Of course.
  • the image pickup devices of Examples 1 to 24 and Comparative Examples 1 to 13 were manufactured, and for the image pickup devices of Examples 1 to 24 and Comparative Examples 1 to 13, sensitivity, response speed, and The dark current increase rate after heat treatment at 220 ° C. was measured.
  • the measurement results are shown in Table 1 below.
  • the configuration of the imaging device is the configuration shown in FIG. 2, and is formed on a CMOS substrate: pixel electrode (lower electrode) / electron blocking layer / photoelectric conversion layer / counter electrode (upper electrode) / protective film (first electrode). 1 sealing layer) / stress relaxation layer (sealing auxiliary layer).
  • a sealing layer is comprised by a protective film and a stress relaxation layer.
  • the sensitivity was measured by measuring the value of external quantum efficiency at the maximum sensitivity wavelength when applied to the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13 with an electric field of 2 ⁇ 10 5 V / cm. This is obtained by dividing the value of the quantum efficiency by the value of the external quantum efficiency as a reference. That is, the sensitivity is the external quantum efficiency value of Examples 1 to 24 and Comparative Examples 1 to 13 / reference external quantum efficiency value. The value of Comparative Example 1 was used as the reference external quantum efficiency value.
  • the sensitivity values of Examples 1 to 24 and Comparative Examples 1 to 13 are calculated from current values obtained when an external electric field of 2 ⁇ 10 5 V / cm is applied to the counter electrode of each photoelectric conversion element. It represents the external quantum efficiency of the photoelectric conversion as a relative value. The results are shown in Table 1 below.
  • the LED is instantaneously turned on using a pulse generator in a state where an electric field of 2 ⁇ 10 5 V / cm is applied to the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13.
  • the light was turned off and light was irradiated from the upper electrode side.
  • the optical signal intensity after 4 ⁇ sec and the optical signal intensity after 3 msec after light irradiation were measured using an oscilloscope.
  • the response speed (%) was the value of the optical signal intensity after 4 ⁇ s when the optical signal intensity after 3 msec was 100 for the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13.
  • Table 1 The results are shown in Table 1 below.
  • the dark current values of the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13 were measured at room temperature as follows. Thereafter, the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13 were heat-treated while being held at a temperature of 220 ° C. for 30 minutes. Then, the dark current values of the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13 were measured again at room temperature. The change in dark current before and after the heat treatment was determined, and the change was expressed as a ratio of dark current values, which was defined as the dark current increase rate after heat treatment at 220 ° C. The results are shown in Table 1 below. The dark current increase rate after heat treatment at 220 ° C.
  • Example 1 In Example 1, first, the CMOS substrate on which the pixel electrode was formed was moved to the organic vapor deposition chamber, the CMOS substrate was attached to the substrate holder, and the chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa or less. Thereafter, while rotating the substrate holder, the following compound 2 was deposited as an electron blocking layer on the pixel electrode by a resistance heating vapor deposition method at a deposition rate of 1.0 to 1.2 mm / Sec and a thickness of 1000 mm.
  • Compound 1 p-type organic semiconductor
  • fullerene C 60 n-type organic semiconductor
  • Compound 2 low-molecular organic compound
  • a photoelectric conversion layer was formed by vapor deposition at a thickness of 4000 ⁇ at 0 ⁇ / Sec, 0.006 to 0.007 ⁇ / Sec.
  • ITO was sputtered on the photoelectric conversion layer as a counter electrode so as to have a thickness of 100 mm by RF magnetron sputtering.
  • the film was transferred to the ALD chamber, and an Al 2 O 3 film was formed as a first sealing layer (protective film) so as to have a thickness of 2000 mm by an atomic layer deposition (ALD) method. Thereafter, the film was transferred to a sputtering chamber, and a SiON film was formed as a sealing auxiliary layer (stress relaxation layer) by planar sputtering so as to have a thickness of 1000 mm.
  • ALD atomic layer deposition
  • Example 2 Compound 1, fullerene C 60 and compound 2 (low molecular weight organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.012 to 0.014 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 3 Compound 1, fullerene C 60 and compound 2 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.036 to 0.042 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 4 Compound 1, fullerene C 60 and compound 2 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.06 to 0.07 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 5 Compound 1, fullerene C 60, and compound 3 (low molecular organic compound) have vapor deposition rates of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.006 to 0.007 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 6 Compound 1, fullerene C 60 and compound 3 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.012 to 0.014 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 7 Compound 1, fullerene C 60 and compound 3 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.036 to 0.042 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 8 Compound 1, fullerene C 60, and compound 3 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.06 to 0.07 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 9 Compound 1, fullerene C 60, and compound 4 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.006 to 0.007 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 10 Compound 1, fullerene C 60, and compound 4 (low molecular organic compound) have deposition rates of 1.2 to 1.4 liters / Sec, 3.8 to 4.0 liters / Sec, and 0.012 to 0.014 liters / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 11 Compound 1, fullerene C 60 and compound 4 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.036 to 0.042 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 12 Compound 1, fullerene C 60, and compound 4 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.06 to 0.07 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 13 Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.006 to 0.007 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 14 Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.012 to 0.014 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 15 Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.036 to 0.042 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 16 Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.06 to 0.07 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 17 Compound 1, fullerene C 60 and compound 6 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.006 to 0.007 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 18 Compound 1, fullerene C 60, and compound 6 (low molecular organic compound) have vapor deposition rates of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.012 to 0.014 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 19 Compound 1, fullerene C 60 and compound 6 (low molecular organic compound) have vapor deposition rates of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.036 to 0.042 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 20 Compound 1, fullerene C 60 and compound 6 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.06 to 0.07 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 21 Compound 1, fullerene C 60, and compound 7 (low molecular organic compound) have vapor deposition rates of 1.2 to 1.4 liters / Sec, 3.8 to 4.0 liters / Sec, and 0.006 to 0.007 liters / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 22 Compound 1, fullerene C 60 and compound 7 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.012 to 0.014 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 23 Compound 1, fullerene C 60, and compound 7 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.036 to 0.042 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Example 24 Compound 1, fullerene C 60 and compound 7 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.06 to 0.07 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Comparative Example 3 Compound 1, fullerene C 60 and compound 2 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.07 to 0.08 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Compound 1, fullerene C 60, and compound 3 are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.004 to 0.005 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Comparative Example 5 Compound 1, fullerene C 60, and compound 3 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.07 to 0.08 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Comparative Example 6 Compound 1, fullerene C 60 and compound 4 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.036 to 0.042 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Compound 1, fullerene C 60, and compound 4 are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.07 to 0.08 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Compound 1, fullerene C 60 and compound 5 are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.004 to 0.005 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Comparative Example 9 Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.07 to 0.08 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Comparative Example 10 Compound 1, fullerene C 60 and compound 6 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.004 to 0.005 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Compound 1, fullerene C 60 and compound 6 are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.07 to 0.08 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Compound 1, fullerene C 60, and compound 7 have vapor deposition rates of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec, and 0.004 to 0.005 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Comparative Example 13 Compound 1, fullerene C 60 and compound 7 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 ⁇ / Sec, 3.8 to 4.0 ⁇ / Sec and 0.07 to 0.08 ⁇ / Sec, respectively.
  • An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
  • Examples 1 to 24 were all excellent in terms of sensitivity, response speed, and dark current increase rate. Examples 1 to 24 are excellent in sensitivity and response speed, and heat resistance.
  • Comparative Example 1 containing no low molecular organic compound had a large dark current increase rate and poor heat resistance.
  • Comparative Examples 2, 4, 6, 8, 10, and 12 in which the content of the low-molecular organic compound was less than that of the present invention were inferior in heat resistance as compared with Examples 1 to 24.
  • Comparative Examples 2, 4, 6, 8, 10, and 12 having a low content of low molecular organic compounds are more heat resistant than Comparative Example 1. Thus, heat resistance is improved by containing a low molecular organic compound.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)

Abstract

A photoelectric conversion element wherein a lower electrode, an organic layer containing a photoelectric conversion layer and an upper electrode containing a transparent electrode layer are sequentially laminated on a substrate in this order. The photoelectric conversion layer has a bulk hetero structure that is composed of a p-type organic semiconductor, which is a compound represented by general formula (1), and an n-type organic semiconductor, which is a fullerene or a fullerene derivative. The photoelectric conversion layer additionally contains a low-molecular-weight organic compound in an amount of from 0.5% by mass to 5% by mass (inclusive) relative to the p-type organic semiconductor.

Description

光電変換素子および撮像素子Photoelectric conversion device and imaging device
 本発明は、受光した光に応じて電荷を生成する光電変換層が有機化合物を用いて構成されており、可視光像を電気信号に変換する光電変換素子および撮像素子に関し、特に、応答速度が速く、耐熱性も優れた光電変換素子および撮像素子に関する。 The present invention relates to a photoelectric conversion element and an imaging element in which a photoelectric conversion layer that generates an electric charge in response to received light is configured using an organic compound, and converts a visible light image into an electric signal. The present invention relates to a photoelectric conversion element and an imaging element that are fast and have excellent heat resistance.
 テジタルスチルカメラ、デジタルビデオカメラ、携帯電話用カメラ、内視鏡用カメラ等に利用されているイメージセンサとして、シリコンチップ等の半導体基板にフォトダイオードを含む画素を配列し、各画素のフォトダイオードで発生した光電子に対応する信号電荷をCCD型またはCMOS型読出し回路で取得する、CCDセンサおよびMOSセンサ等の固体撮像素子が広く知られている。現在、有機化合物を用いた光電変換素子の開発が進められている(特許文献1等)。 As an image sensor used in digital still cameras, digital video cameras, mobile phone cameras, endoscope cameras, etc., pixels including photodiodes are arranged on a semiconductor substrate such as a silicon chip. Solid-state imaging devices such as CCD sensors and MOS sensors that acquire signal charges corresponding to generated photoelectrons with a CCD-type or CMOS-type readout circuit are widely known. Currently, development of photoelectric conversion elements using organic compounds is underway (Patent Document 1, etc.).
 特許文献1の光電変換素子では、基板上に第1の電極が形成されており、第1の電極上に有機層が形成されている。有機層上に第2の電極が形成されている。有機層が第1の電極と第2の電極との間に設けられている。有機層は、光電変換層と電子ブロッキング層とを有し、電子ブロッキング層が第1の電極上に形成されている。第2の電極を覆うようにして、第1の電極、第2の電極および有機層を封止する封止層が設けられている。
 光電変換層は、p型有機半導体およびn型有機半導体を含むバルクヘテロ接合構造の層を有することが好ましいとされている。バルクへテロ接合構造を有することにより、光電変換層の光電変換効率を向上させることができる。特許文献1では、有機層形成工程から封止層形成工程の各工程は、真空下で行なわれ、光電変換層と電子ブロッキング層の有機層は、真空蒸着法により形成される。
In the photoelectric conversion element of Patent Document 1, a first electrode is formed on a substrate, and an organic layer is formed on the first electrode. A second electrode is formed on the organic layer. An organic layer is provided between the first electrode and the second electrode. The organic layer has a photoelectric conversion layer and an electron blocking layer, and the electron blocking layer is formed on the first electrode. A sealing layer that seals the first electrode, the second electrode, and the organic layer is provided so as to cover the second electrode.
The photoelectric conversion layer preferably has a bulk heterojunction layer including a p-type organic semiconductor and an n-type organic semiconductor. By having a bulk heterojunction structure, the photoelectric conversion efficiency of the photoelectric conversion layer can be improved. In Patent Document 1, each step from the organic layer forming step to the sealing layer forming step is performed under vacuum, and the organic layers of the photoelectric conversion layer and the electron blocking layer are formed by a vacuum deposition method.
特開2013-055248号公報JP 2013-055248 A
 p型有機半導体とn型有機半導体のバルクへテロ構造を有する上述の特許文献1の光電変換素子において、p型有機半導体に色素を用い、この色素に、平面性の高い材料を使用した場合、すなわち、特には自由回転軸が存在せず一平面状に分子の軸が全て存在している分子を使用した場合、高速応答が期待できる。しかしながら、色素に平面性の高い材料を使用すると、色素同士が凝集し、諸性能の劣化を引き起こしてしまうという問題点がある。 In the photoelectric conversion element of Patent Document 1 having a bulk heterostructure of a p-type organic semiconductor and an n-type organic semiconductor, when a dye is used for the p-type organic semiconductor and a material having high planarity is used for the dye, That is, a high-speed response can be expected particularly when a molecule having no axis of free rotation and having all the axes of molecules in a single plane is used. However, when a material having high flatness is used for the coloring matter, there is a problem that the coloring matter aggregates to cause deterioration of various performances.
 本発明の目的は、前記従来技術に基づく問題点を解消し、平面性の高いp型色素を使用しても、その色素の凝集を抑制し、応答速度が速く、耐熱性も優れた光電変換素子および撮像素子を提供することにある。 The purpose of the present invention is to eliminate the problems based on the above prior art, and even when using a p-type dye having high flatness, the aggregation of the dye is suppressed, the response speed is high, and the photoelectric conversion has excellent heat resistance. An object is to provide an element and an imaging element.
 上記目的を達成するために、基板上に下部電極と、光電変換層を含む有機層と、透明電極層を含む上部電極とがこの順に積層された光電変換素子であって、光電変換層は、一般式(1)で表される化合物のp型有機半導体と、フラーレンまたはフラーレン誘導体のn型有機半導体のバルクへテロ構造を有し、光電変換層は、更に低分子有機化合物をp型有機半導体に対して、0.5質量%以上5質量%以下含有することを特徴とする光電変換素子を提供するものである。
 一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。
Figure JPOXMLDOC01-appb-C000002
In order to achieve the above object, a photoelectric conversion device in which a lower electrode, an organic layer including a photoelectric conversion layer, and an upper electrode including a transparent electrode layer are stacked in this order on a substrate, It has a bulk heterostructure of a p-type organic semiconductor of the compound represented by the general formula (1) and an n-type organic semiconductor of fullerene or a fullerene derivative, and the photoelectric conversion layer further converts a low-molecular organic compound into a p-type organic semiconductor. The photoelectric conversion element characterized by containing 0.5 mass% or more and 5 mass% or less is provided.
In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group. D 1 represents an atomic group. n represents an integer of 0 or more.
Figure JPOXMLDOC01-appb-C000002
 低分子有機化合物は、分子量が400以上1300以下であることが好ましい。
 また、低分子有機化合物は、イオン化ポテンシャルが5.0eV以上であることが好ましい。
The low molecular organic compound preferably has a molecular weight of 400 or more and 1300 or less.
The low molecular organic compound preferably has an ionization potential of 5.0 eV or more.
 本発明の第2の態様は、本発明の第1の態様の光電変換素子を有することを特徴とする撮像素子を提供するものである。
 例えば、撮像素子は、光電変換素子の光電変換層で発生した電荷を蓄積するための電荷蓄積部と、光電変換層の電荷を電荷蓄積部へ伝達するための接続部とを有する。
According to a second aspect of the present invention, there is provided an imaging device comprising the photoelectric conversion element according to the first aspect of the present invention.
For example, the imaging device includes a charge storage unit for storing the charge generated in the photoelectric conversion layer of the photoelectric conversion device, and a connection unit for transmitting the charge of the photoelectric conversion layer to the charge storage unit.
 本発明によれば、応答速度が速く、耐熱性も優れた光電変換素子および撮像素子を得ることができる。 According to the present invention, it is possible to obtain a photoelectric conversion element and an imaging element having a high response speed and excellent heat resistance.
(a)は、本発明の実施形態の光電変換素子を示す模式的断面図であり、(b)は、本発明の実施形態の光電変換素子の封止層を拡大して示す要部拡大図である。(A) is typical sectional drawing which shows the photoelectric conversion element of embodiment of this invention, (b) is a principal part enlarged view which expands and shows the sealing layer of the photoelectric conversion element of embodiment of this invention. It is. 本発明の実施形態の撮像素子を示す模式的断面図である。It is a typical sectional view showing an image sensor of an embodiment of the present invention. (a)~(c)は、本発明の実施形態の撮像素子の製造方法を工程順に示す模式的断面図である。(A)-(c) is typical sectional drawing which shows the manufacturing method of the image pick-up element of embodiment of this invention in order of a process. (a)~(c)は、本発明の実施形態の撮像素子の製造方法を工程順に示す模式的断面図であり、図3(c)の後工程を示す。(A)-(c) is typical sectional drawing which shows the manufacturing method of the image pick-up element of embodiment of this invention in order of a process, and shows the post process of FIG.3 (c).
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の光電変換素子および撮像素子を詳細に説明する。
 図1(a)は、本発明の実施形態の光電変換素子を示す模式的断面図であり、(b)は、本発明の実施形態の光電変換素子の封止層を拡大して示す要部拡大図である。
Hereinafter, a photoelectric conversion element and an imaging element of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
Fig.1 (a) is typical sectional drawing which shows the photoelectric conversion element of embodiment of this invention, (b) is the principal part which expands and shows the sealing layer of the photoelectric conversion element of embodiment of this invention. It is an enlarged view.
 図1(a)に示す光電変換素子100は、入射光Lを電気信号に変えるものである。光電変換素子100は、基板102の表面102aに下部電極104が積層して形成されている。この下部電極104の表面104a上に電子ブロッキング層106が積層されて形成されており、この電子ブロッキング層106上に光電変換層108が積層されて形成されている。下部電極104、有機層110および上部電極112を覆う封止層114が形成されている。なお、電子ブロッキング層106および光電変換層108をまとめて有機層110という。 The photoelectric conversion element 100 shown in FIG. 1A converts incident light L into an electrical signal. The photoelectric conversion element 100 is formed by laminating a lower electrode 104 on a surface 102 a of a substrate 102. An electron blocking layer 106 is laminated on the surface 104 a of the lower electrode 104, and a photoelectric conversion layer 108 is laminated on the electron blocking layer 106. A sealing layer 114 covering the lower electrode 104, the organic layer 110, and the upper electrode 112 is formed. Note that the electron blocking layer 106 and the photoelectric conversion layer 108 are collectively referred to as an organic layer 110.
 光電変換素子100では、上部電極112の表面112a側から入射光Lが有機層110の光電変換層108に入射されて、この入射光Lが光電変換層108にて電気信号に変換される。このため、後述するように封止層114および上部電極112は、入射光Lを透過させるものである。 In the photoelectric conversion element 100, the incident light L is incident on the photoelectric conversion layer 108 of the organic layer 110 from the surface 112a side of the upper electrode 112, and the incident light L is converted into an electric signal by the photoelectric conversion layer 108. For this reason, the sealing layer 114 and the upper electrode 112 transmit the incident light L as will be described later.
 基板102としては、シリコン基板、ガラス基板等を用いることができる。
 下部電極104は、有機層110(光電変換層108)で発生した電荷のうちの正孔を捕集するための電極である。下部電極104は、TiN(窒化チタン)等の導電性材料で構成されている。
 なお、基板102としては、下部電極104として、例えば、TiN電極が形成されたTiN基板を用いることが好ましい。
As the substrate 102, a silicon substrate, a glass substrate, or the like can be used.
The lower electrode 104 is an electrode for collecting holes out of charges generated in the organic layer 110 (photoelectric conversion layer 108). The lower electrode 104 is made of a conductive material such as TiN (titanium nitride).
As the substrate 102, for example, a TiN substrate on which a TiN electrode is formed is preferably used as the lower electrode 104.
 光電変換層108は、入射光Lを受光し、その入射光Lの光量に応じた電荷を発生するものであり、有機の光電変換材料を含んで構成されている。例えば、光電変換層108は、上記一般式(1)で表わされる化合物のp型有機半導体(p型有機化合物)と、フラーレンまたはフラーレン誘導体のn型有機半導体のバルクへテロ構造を有する。光電変換層108は、更に低分子有機化合物をp型有機半導体の含有量に対して0.5質量%以上5質量%以下含有する。光電変換層108の詳細については後述する。 The photoelectric conversion layer 108 receives the incident light L and generates charges according to the amount of the incident light L, and includes an organic photoelectric conversion material. For example, the photoelectric conversion layer 108 has a bulk heterostructure of a p-type organic semiconductor (p-type organic compound) of the compound represented by the general formula (1) and an n-type organic semiconductor of fullerene or a fullerene derivative. The photoelectric conversion layer 108 further contains a low molecular organic compound in an amount of 0.5% by mass to 5% by mass with respect to the content of the p-type organic semiconductor. Details of the photoelectric conversion layer 108 will be described later.
 電子ブロッキング層106は、下部電極104から有機層110に電子が注入されることを防ぐための層である。電子ブロッキング層106は、隣接する下部電極104からの電子注入障壁が高くかつ正孔輸送性が高い材料で構成することが好ましい。電子注入障壁としては、隣接する電極の仕事関数よりも、電子ブロッキング層106の電子親和力が1eV以上小さいことが好ましい、より好ましくは1.3eV以上、特に好ましいのは1.5eV以上である。 The electron blocking layer 106 is a layer for preventing electrons from being injected from the lower electrode 104 into the organic layer 110. The electron blocking layer 106 is preferably made of a material having a high electron injection barrier from the adjacent lower electrode 104 and a high hole transporting property. As an electron injection barrier, the electron affinity of the electron blocking layer 106 is preferably 1 eV or less, more preferably 1.3 eV or more, and particularly preferably 1.5 eV or more than the work function of the adjacent electrode.
 電子ブロッキング層106は、下部電極104と光電変換層108の接触を十分に抑制し、また下部電極104表面に存在する欠陥またはゴミの影響を避けるために、20nm以上であることが好ましい、より好ましくは40nm以上、特に好ましいのは60nm以上である。
 電子ブロッキング層106を厚くしすぎると、光電変換層108に適切な電界強度を印加するために必要な、供給電圧が高くなってしまう問題、または電子ブロッキング層106中のキャリア輸送過程が、光電変換素子の性能に悪影響を与えてしまう問題が生じる。電子ブロッキング層106の総膜厚は、300nm以下であることが好ましい、より好ましくは200nm以下、更に好ましくは100nm以下である。
The electron blocking layer 106 is preferably 20 nm or more, more preferably, in order to sufficiently suppress the contact between the lower electrode 104 and the photoelectric conversion layer 108 and to avoid the influence of defects or dust existing on the surface of the lower electrode 104. Is 40 nm or more, particularly preferably 60 nm or more.
If the electron blocking layer 106 is made too thick, the problem that the supply voltage required for applying an appropriate electric field strength to the photoelectric conversion layer 108 becomes high, or the carrier transport process in the electron blocking layer 106 is photoelectric conversion. There arises a problem that adversely affects the performance of the element. The total thickness of the electron blocking layer 106 is preferably 300 nm or less, more preferably 200 nm or less, and still more preferably 100 nm or less.
 上部電極112は、有機層110で発生した電荷のうちの電子を捕集する電極である。上部電極112には、有機層110に入射光Lを入射させるために、有機層110が感度を持つ波長の光に対して十分に透明な透明電極層で構成される。透明電極層には、例えば、ITO等の導電性材料が用いられる。
 上部電極112および下部電極104間にバイアス電圧を印加することで、有機層110で発生した電荷のうち、正孔を下部電極104に、電子を上部電極112に移動させることができる。
The upper electrode 112 is an electrode that collects electrons out of charges generated in the organic layer 110. The upper electrode 112 is composed of a transparent electrode layer that is sufficiently transparent to light having a wavelength with which the organic layer 110 has sensitivity in order to allow incident light L to enter the organic layer 110. For the transparent electrode layer, for example, a conductive material such as ITO is used.
By applying a bias voltage between the upper electrode 112 and the lower electrode 104, among the charges generated in the organic layer 110, holes can be moved to the lower electrode 104 and electrons can be moved to the upper electrode 112.
 透明電極膜の光透過率は、可視光波長において、60%以上が好ましく、より好ましくは80%以上で、より好ましくは90%以上、より好ましくは95%以上である。
 通常、導電性薄膜をある範囲より薄くすると、急激な抵抗値の増加をもたらす。しかし、透明電極層のシート抵抗は、好ましくは100Ω/□以上10000Ω/□以下であり、薄膜化できる膜厚の範囲の自由度は大きい。また、透明電極層は厚みが薄いほど吸収する光の量は少なくなり、一般に光透過率が増す。光透過率の増加は、光電変換層108での光吸収を増大させ、光電変換能を増大させるため、非常に好ましい。薄膜化に伴う薄膜の抵抗値の増大、および光の透過率の増加を考慮すると、透明電極層、すなわち、上部電極112の膜厚は、5nm以上30nm以下であることが好ましくは、より好ましくは5nm以上20nm以下である。
 上部電極112の作製方法としては、構成する材料によって種々の方法が用いられるが、スパッタリング法を用いることが好ましい。
The light transmittance of the transparent electrode film is preferably 60% or more, more preferably 80% or more, more preferably 90% or more, and more preferably 95% or more in the visible light wavelength.
Usually, when the conductive thin film is made thinner than a certain range, the resistance value is rapidly increased. However, the sheet resistance of the transparent electrode layer is preferably 100Ω / □ or more and 10000Ω / □ or less, and the degree of freedom in the range of film thickness that can be made thin is large. Further, the thinner the transparent electrode layer, the less light is absorbed, and the light transmittance is generally increased. The increase in light transmittance is very preferable because it increases the light absorption in the photoelectric conversion layer 108 and increases the photoelectric conversion ability. In consideration of the increase in the resistance value of the thin film accompanying the thinning and the increase in light transmittance, the thickness of the transparent electrode layer, that is, the upper electrode 112 is preferably 5 nm or more and 30 nm or less, more preferably It is 5 nm or more and 20 nm or less.
As a method for manufacturing the upper electrode 112, various methods are used depending on the constituent materials, but it is preferable to use a sputtering method.
 封止層114は、水、酸素等の有機材料を劣化させる因子が有機材料を含む有機層110に侵入するのを防ぐための層である。封止層114は、下部電極104、電子ブロッキング層106、有機層110および上部電極112を覆っており、基板102の表面102aとの間を封止している。
 封止層114は、例えば、水分子等の光電変換材料の劣化因子の浸透を阻止する第1封止層116と、第1封止層116上に、第1封止層116では達成することが難しい機能、例えば、耐薬品性または応力緩和機能等を有する封止補助層118を積層した2層構造である。
The sealing layer 114 is a layer for preventing a factor that degrades an organic material such as water and oxygen from entering the organic layer 110 containing the organic material. The sealing layer 114 covers the lower electrode 104, the electron blocking layer 106, the organic layer 110, and the upper electrode 112, and seals between the surface 102 a of the substrate 102.
The sealing layer 114 is achieved by the first sealing layer 116 on the first sealing layer 116 and the first sealing layer 116 that prevent permeation of deterioration factors of photoelectric conversion materials such as water molecules, for example. Is a two-layer structure in which a sealing auxiliary layer 118 having a difficult function such as a chemical resistance or a stress relaxation function is laminated.
 このように構成された光電変換素子100では、上部電極112を光入射側の電極としており、上部電極112上方から入射光Lが入射すると、この入射光Lが上部電極112を透過して有機層110に入射し、ここで電荷が発生する。発生した電荷のうちの正孔は下部電極104に移動する。この下部電極104に移動した正孔を、その量に応じた電圧信号に変換して読み出すことで、光を電圧信号に変換して取り出すことができる。 In the photoelectric conversion element 100 configured as described above, the upper electrode 112 is used as a light incident side electrode. When the incident light L is incident from above the upper electrode 112, the incident light L is transmitted through the upper electrode 112 and the organic layer. 110 is incident, and charges are generated here. Holes in the generated charges move to the lower electrode 104. By converting the holes that have moved to the lower electrode 104 into a voltage signal corresponding to the amount of the holes and reading out the light, the light can be converted into a voltage signal and extracted.
 なお、電子ブロッキング層106は、複数層であってもよい。複数層とすることで、電子ブロッキング層106を構成する各層の間に界面ができ、各層に存在する中間準位に不連続性が生じる。この結果、中間準位等を介した電荷の移動がしにくくなるため、電子ブロッキング効果を高めることができる。但し、電子ブロッキング層106を構成する各層が同一材料であると、各層に存在する中間準位が全く同じとなる場合も有り得るため、電子ブロッキング効果を更に高めるために、各層を構成する材料を異なるものにすることが好ましい。 The electron blocking layer 106 may be a plurality of layers. By using a plurality of layers, an interface is formed between the layers constituting the electron blocking layer 106, and discontinuities occur in the intermediate levels existing in the layers. As a result, it becomes difficult for the charge to move through the intermediate level, and the electron blocking effect can be enhanced. However, if the layers constituting the electron blocking layer 106 are made of the same material, the intermediate levels existing in the layers may be exactly the same. Therefore, in order to further enhance the electron blocking effect, the materials constituting the layers are different. It is preferable to make it.
 次に、光電変換素子100の製造方法について説明する。
 まず、下部電極104として、例えば、TiN電極が基板102上に形成されたTiN基板を用意する。
 TiN基板は、例えば、電極材料としてTiNが、スパッタ法により予め設定された真空下で基板102上に成膜されて、下部電極104として、TiN電極が形成されたものである。
 なお、TiN基板を用いることなく、例えば、基板102の上に、例えば、TiNをスパッタ法により予め設定された真空下で成膜して下部電極104を形成してもよい。
Next, a method for manufacturing the photoelectric conversion element 100 will be described.
First, as the lower electrode 104, for example, a TiN substrate in which a TiN electrode is formed on the substrate 102 is prepared.
In the TiN substrate, for example, TiN as an electrode material is formed on the substrate 102 under a vacuum set in advance by a sputtering method, and a TiN electrode is formed as the lower electrode 104.
Instead of using the TiN substrate, for example, the lower electrode 104 may be formed on the substrate 102 by, for example, depositing TiN under a preset vacuum by a sputtering method.
 次に、下部電極104の表面104a上に、電子ブロッキング材料、例えば、カルバゾール誘導体を、更に好ましくはビフルオレン誘導体を、例えば、蒸着法を用いて予め設定された真空下で成膜して、有機層110を構成する電子ブロッキング層106を形成する。 Next, an electron blocking material, for example, a carbazole derivative, more preferably a bifluorene derivative, is formed on the surface 104a of the lower electrode 104 under a vacuum set in advance by using, for example, a vapor deposition method to form an organic layer. An electron blocking layer 106 constituting 110 is formed.
 次に、電子ブロッキング層106上に、光電変換材料として、例えば、上記一般式(1)で表される化合物のp型有機半導体とフラーレンまたはフラーレン誘導体と、低分子有機化合物とを、蒸着法を用いて予め設定された真空下で蒸着して成膜し、有機層110を構成する光電変換層108を形成する。
 なお、低分子有機化合物は、p型有機半導体に対して0.5質量%以上5質量%以下含有するように調整されて蒸着される。
 次に、光電変換層108上に、透明電極材料、例えば、ITOをスパッタ法を用いて予め設定された真空下で成膜して上部電極112を形成する。
Next, as a photoelectric conversion material, for example, a p-type organic semiconductor of a compound represented by the general formula (1), a fullerene or a fullerene derivative, and a low molecular organic compound are deposited on the electron blocking layer 106 by a vapor deposition method. The photoelectric conversion layer 108 which comprises the organic layer 110 is formed by vapor-depositing and forming into a film under the vacuum set beforehand.
Note that the low-molecular organic compound is deposited by adjusting so as to contain 0.5% by mass to 5% by mass with respect to the p-type organic semiconductor.
Next, a transparent electrode material, for example, ITO is formed on the photoelectric conversion layer 108 under a preset vacuum using a sputtering method to form the upper electrode 112.
 次に、上部電極112および基板102上に、封止材料、例えば、Al膜(アルミナ膜)を、例えば、原子層堆積(ALD)法を用いて予め設定された真空下で成膜して、第1封止層116を形成する。その後、第1封止層116上に、封止補助層118として、例えば、スパッタ法により、SiON膜を形成して封止層114を形成する。
 本実施形態では、封止層114を2層構造としたが、これに限定されるものではなく、製造コストを勘案するとなるべく層数は少ない方が好ましい。このため、単一材からなる薄膜で構成することもできる。この場合、封止層は、例えば、Al(アルミナ)膜で構成される。
Next, a sealing material, for example, an Al 2 O 3 film (alumina film) is formed on the upper electrode 112 and the substrate 102 under a preset vacuum using, for example, an atomic layer deposition (ALD) method. Thus, the first sealing layer 116 is formed. Thereafter, the sealing layer 114 is formed by forming a SiON film on the first sealing layer 116 as the sealing auxiliary layer 118 by sputtering, for example.
In the present embodiment, the sealing layer 114 has a two-layer structure, but the present invention is not limited to this, and it is preferable that the number of layers is as small as possible in consideration of manufacturing costs. For this reason, it can also be comprised with the thin film which consists of a single material. In this case, the sealing layer is composed of, for example, an Al 2 O 3 (alumina) film.
 本実施形態の光電変換素子100では、光電変換素子100を使用する場合、外部電場を印加することができる。この場合、下部電極104と上部電極112を一対の電極とし、光電変換効率、暗電流および光応答速度において、優れた特性を得るために一対の電極間に印加する外部電場としては、1V/cm以上1×10V/cm以下が好ましい、より好ましくは、1×10V/cm以上1×10V/cm以下である。特に好ましくは、5×10V/cm以上1×10V/cm以下である。
 本実施形態の光電変換素子100では、光電変換層108が、一般式(1)で表される化合物のp型有機半導体とn型有機半導体であるフラーレンまたはフラーレン誘導体とのバルクヘテロ構造であり、更に、低分子有機化合物をp型有機半導体に対して0.5質量%以上5質量%以下含有する。これにより、p型有機半導体に、平面性の高いp型色素を使用しても、そのp型色素の凝集を抑制することができ、光電変換素子100について、高応答速度と高耐熱性を実現することができる。
 ここで、平面性が高いとは、自由回転軸が特に存在せず、一平面状に分子の軸が全て存在している状態のことをいう。
In the photoelectric conversion element 100 of this embodiment, when using the photoelectric conversion element 100, an external electric field can be applied. In this case, the lower electrode 104 and the upper electrode 112 are used as a pair of electrodes, and an external electric field applied between the pair of electrodes in order to obtain excellent characteristics in photoelectric conversion efficiency, dark current, and optical response speed is 1 V / cm. It is preferably 1 × 10 7 V / cm or less, more preferably 1 × 10 4 V / cm or more and 1 × 10 7 V / cm or less. Particularly preferably, it is 5 × 10 4 V / cm or more and 1 × 10 6 V / cm or less.
In the photoelectric conversion element 100 of the present embodiment, the photoelectric conversion layer 108 has a bulk heterostructure of a p-type organic semiconductor of the compound represented by the general formula (1) and a fullerene or a fullerene derivative that is an n-type organic semiconductor, The low molecular organic compound is contained in an amount of 0.5% by mass to 5% by mass with respect to the p-type organic semiconductor. As a result, even when a p-type dye having high planarity is used for the p-type organic semiconductor, the aggregation of the p-type dye can be suppressed, and the photoelectric conversion element 100 has high response speed and high heat resistance. can do.
Here, high planarity means a state in which no free rotation axis exists and all the molecular axes exist in a single plane.
 次に、光電変換素子100を用いた撮像素子について説明する。
 図2は、本発明の実施形態の撮像素子を示す模式的断面図である。
 本発明の実施形態の撮像素子10は、デジタルカメラ、デジタルビデオカメラ等の撮像装置に用いることができる。更には電子内視鏡および携帯電話機等の撮像モジュール等に搭載して用いられる。
Next, an image sensor using the photoelectric conversion element 100 will be described.
FIG. 2 is a schematic cross-sectional view showing the image sensor of the embodiment of the present invention.
The image sensor 10 according to the embodiment of the present invention can be used in an imaging apparatus such as a digital camera or a digital video camera. Furthermore, it is used by being mounted on an imaging module such as an electronic endoscope and a cellular phone.
 図2に示す撮像素子10は、基板12と、絶縁層14と、画素電極16(下部電極)と、電子ブロッキング層20と、光電変換層22と、対向電極26(上部電極)と、封止層(保護膜)28と、カラーフィルタ32と、隔壁34と、遮光層36と、保護層38とを有する。電子ブロッキング層20と光電変換層22とをまとめて有機層24という。
 基板12には読出し回路40と、対向電極電圧供給部42とが形成されている。
 なお、画素電極16は上述の光電変換素子100の下部電極104に対応し、対向電極26は上述の光電変換素子100の上部電極112に対応し、有機層24は上述の光電変換素子100の有機層120に対応し、封止層28は上述の光電変換素子100の封止層114に対応する。封止層28は、封止層114と同様に2層構造であり、第1封止層29と封止補助層30を有する。
2 includes a substrate 12, an insulating layer 14, a pixel electrode 16 (lower electrode), an electron blocking layer 20, a photoelectric conversion layer 22, a counter electrode 26 (upper electrode), and a sealing. A layer (protective film) 28, a color filter 32, a partition wall 34, a light shielding layer 36, and a protective layer 38 are included. The electron blocking layer 20 and the photoelectric conversion layer 22 are collectively referred to as an organic layer 24.
A reading circuit 40 and a counter electrode voltage supply unit 42 are formed on the substrate 12.
The pixel electrode 16 corresponds to the lower electrode 104 of the photoelectric conversion element 100 described above, the counter electrode 26 corresponds to the upper electrode 112 of the photoelectric conversion element 100 described above, and the organic layer 24 corresponds to the organic of the photoelectric conversion element 100 described above. The sealing layer 28 corresponds to the layer 120 and the sealing layer 114 of the photoelectric conversion element 100 described above. The sealing layer 28 has a two-layer structure like the sealing layer 114, and includes a first sealing layer 29 and a sealing auxiliary layer 30.
 基板12は、例えば、ガラス基板またはSi等の半導体基板が用いられる。基板12上には公知の絶縁材料からなる絶縁層14が形成されている。絶縁層14には、表面に複数の画素電極16が形成されている。画素電極16は、例えば、1次元または2次元状に配列される。
 また、絶縁層14には、画素電極16と読出し回路40とを接続する第1の接続部44が形成されている。更には、対向電極26と対向電極電圧供給部42とを接続する第2の接続部46が形成されている。第2の接続部46は、画素電極16および有機層24に接続されない位置に形成されている。第1の接続部44および第2の接続部46は、導電性材料で形成されている。
 また、絶縁層14の内部には、読出し回路40および対向電極電圧供給部42を、例えば、撮像素子10の外部と接続するための導電性材料からなる配線層48が形成されている。
 上述のように、基板12上の絶縁層14の表面14aに、各第1の接続部44に接続された画素電極16が形成されたものを回路基板11という。なお、この回路基板11はCMOS基板ともいう。
As the substrate 12, for example, a glass substrate or a semiconductor substrate such as Si is used. An insulating layer 14 made of a known insulating material is formed on the substrate 12. A plurality of pixel electrodes 16 are formed on the surface of the insulating layer 14. The pixel electrodes 16 are arranged in a one-dimensional or two-dimensional manner, for example.
In addition, a first connection portion 44 that connects the pixel electrode 16 and the readout circuit 40 is formed in the insulating layer 14. Furthermore, a second connection portion 46 that connects the counter electrode 26 and the counter electrode voltage supply unit 42 is formed. The second connection portion 46 is formed at a position not connected to the pixel electrode 16 and the organic layer 24. The 1st connection part 44 and the 2nd connection part 46 are formed with the electroconductive material.
In addition, a wiring layer 48 made of a conductive material for connecting the readout circuit 40 and the counter electrode voltage supply unit 42 to, for example, the outside of the image sensor 10 is formed inside the insulating layer 14.
As described above, the circuit board 11 is formed by forming the pixel electrodes 16 connected to the first connection portions 44 on the surface 14 a of the insulating layer 14 on the substrate 12. The circuit board 11 is also referred to as a CMOS substrate.
 複数の画素電極16を覆うとともに、第2の接続部46を避けるようにして電子ブロッキング層20が画素電極16上に形成されており、電子ブロッキング層20上に光電変換層22が形成されている。
 電子ブロッキング層20は、上述のように光電変換素子100の電子ブロッキング層106に対応するものであり、画素電極16から光電変換層22に電子が注入されるのを抑制するための層である。
The electron blocking layer 20 is formed on the pixel electrode 16 so as to cover the plurality of pixel electrodes 16 and avoid the second connection portion 46, and the photoelectric conversion layer 22 is formed on the electron blocking layer 20. .
The electron blocking layer 20 corresponds to the electron blocking layer 106 of the photoelectric conversion element 100 as described above, and is a layer for suppressing injection of electrons from the pixel electrode 16 to the photoelectric conversion layer 22.
 光電変換層22は、それぞれ上述の光電変換素子100の光電変換層108と対応するものであるため、その詳細な説明は省略する。光電変換層22は、p型有機半導体と、フラーレンまたはフラーレン誘導体のn型有機半導体のバルクへテロ構造を有し、更に、低分子有機化合物をp型有機半導体に対して0.5質量%以上5質量%以下含有する。
 なお、電子ブロッキング層20および光電変換層22は、いずれも画素電極16上で一定の膜厚であれば、それ以外で膜厚が一定でなくておもよい。光電変換層22については、後に詳細に説明する。
Since the photoelectric conversion layer 22 corresponds to the photoelectric conversion layer 108 of the photoelectric conversion element 100 described above, detailed description thereof is omitted. The photoelectric conversion layer 22 has a bulk heterostructure of a p-type organic semiconductor and an n-type organic semiconductor of fullerene or a fullerene derivative, and further contains 0.5% by mass or more of a low-molecular organic compound with respect to the p-type organic semiconductor. 5% by mass or less is contained.
In addition, as long as both the electron blocking layer 20 and the photoelectric conversion layer 22 have a constant film thickness on the pixel electrode 16, the film thickness may not be constant other than that. The photoelectric conversion layer 22 will be described in detail later.
 対向電極26は、画素電極16と対向する電極であり、有機層24を覆うようにして設けられており、画素電極16と対向電極26との間に有機層24が配置される。
 対向電極26は、光電変換層22に光を入射させるため、入射光L(可視光)に対して十分透明な透明導電層で構成されている。上述のように対向電極26は上部電極112と同様の構成であり、その詳細な説明は省略する。
 対向電極26は、光電変換層22よりも外側に配置された第2の接続部46と電気的に接続されており、第2の接続部46を介して対向電極電圧供給部42に接続されている。
The counter electrode 26 is an electrode facing the pixel electrode 16 and is provided so as to cover the organic layer 24, and the organic layer 24 is disposed between the pixel electrode 16 and the counter electrode 26.
The counter electrode 26 is composed of a transparent conductive layer that is sufficiently transparent to the incident light L (visible light) in order to make light incident on the photoelectric conversion layer 22. As described above, the counter electrode 26 has the same configuration as that of the upper electrode 112, and a detailed description thereof will be omitted.
The counter electrode 26 is electrically connected to the second connection portion 46 disposed outside the photoelectric conversion layer 22, and is connected to the counter electrode voltage supply portion 42 via the second connection portion 46. Yes.
 対向電極26(上部電極112)の材料としては、例えば、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、これらの混合物等が挙げられる。具体例としては、酸化錫(SnO)、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)、酸化チタン等の導電性金属酸化物、TiN等の金属窒化物、金(Au)、白金(Pt)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)等の金属、更にこれらの金属と導電性金属酸化物との混合物または積層物、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性化合物、これらとITOとの積層物、等が挙げられる。透明導電膜の材料として特に好ましいのは、ITO、IZO、酸化錫(SnO)、アンチモンドープ酸化錫(ATO)、弗素ドープ酸化錫(FTO)、酸化亜鉛、アンチモンドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)のいずれかの材料である。この対向電極26(上部電極112)の材料中でも特に好ましい材料は、ITOである。 Examples of the material of the counter electrode 26 (upper electrode 112) include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and mixtures thereof. Specific examples include tin oxide (SnO 2 ), zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), conductive metal oxides such as titanium oxide, TiN Metal nitrides such as gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al), etc., and these metals and conductive metal oxides A mixture or laminate of the above, an organic conductive compound such as polyaniline, polythiophene, and polypyrrole, a laminate of these with ITO, and the like. Particularly preferable materials for the transparent conductive film are ITO, IZO, tin oxide (SnO 2 ), antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), zinc oxide, antimony-doped zinc oxide (AZO), gallium. Any material of doped zinc oxide (GZO). A particularly preferable material among the materials of the counter electrode 26 (upper electrode 112) is ITO.
 対向電極電圧供給部42は、第2の接続部46を介して対向電極26に予め設定された電圧を印加するものである。対向電極26に印加すべき電圧が撮像素子10の電源電圧よりも高い場合は、チャージポンプ等の昇圧回路によって電源電圧を昇圧して上記予め設定された電圧を供給するものである。 The counter electrode voltage supply unit 42 applies a preset voltage to the counter electrode 26 via the second connection unit 46. When the voltage to be applied to the counter electrode 26 is higher than the power supply voltage of the image sensor 10, the power supply voltage is boosted by a booster circuit such as a charge pump to supply the preset voltage.
 画素電極16は、画素電極16とそれに対向する対向電極26との間にある光電変換層22で発生した電荷を捕集するための電荷捕集用の電極である。画素電極16は、第1の接続部44を介して読出し回路40に接続されている。この読出し回路40は、複数の画素電極16の各々に対応して基板12に設けられており、対応する画素電極16で捕集された電荷に応じた信号を読出すものである。 The pixel electrode 16 is an electrode for collecting charges for collecting charges generated in the photoelectric conversion layer 22 between the pixel electrode 16 and the counter electrode 26 facing the pixel electrode 16. The pixel electrode 16 is connected to the readout circuit 40 via the first connection portion 44. The readout circuit 40 is provided on the substrate 12 corresponding to each of the plurality of pixel electrodes 16, and reads out a signal corresponding to the charge collected by the corresponding pixel electrode 16.
 画素電極16(下部電極104)の材料としては、例えば、金属、金属酸化物、金属窒化物、金属硼化物および有機導電性化合物、ならびにこれらの混合物等が挙げられる。具体例としては、酸化錫(SnO)、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)および酸化チタン等の導電性金属酸化物、窒化チタン(TiN)等の金属窒化物、金(Au)、白金(Pt)、銀(Ag)、クロム(Cr)、ニッケル(Ni)およびアルミニウム(Al)等の金属、更にこれらの金属と導電性金属酸化物との混合物または積層物、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性化合物、ならびにこれらとITOとの積層物等が挙げられる。下部電極104の材料として特に好ましいのは、窒化チタン、窒化モリブデン、窒化タンタルおよび窒化タングステンのいずれかの材料である。この画素電極16(下部電極104)の材料中でも特に好ましい材料は、TiNである。 Examples of the material of the pixel electrode 16 (lower electrode 104) include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and mixtures thereof. Specific examples include conductive metal oxides such as tin oxide (SnO 2 ), zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), and titanium oxide, and nitride Metal nitrides such as titanium (TiN), gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al), and other metals, and conductivity with these metals Examples thereof include mixtures or laminates with metal oxides, organic conductive compounds such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO. The material of the lower electrode 104 is particularly preferably any of titanium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride. Among the materials of the pixel electrode 16 (lower electrode 104), a particularly preferable material is TiN.
 画素電極16の端部において画素電極16の膜厚に相当する段差が急峻だったり、画素電極16の表面に顕著な凹凸が存在したり、画素電極16上に微小な塵埃(パーティクル)が付着したりすると、画素電極16上の層が所望の膜厚より薄くなったり亀裂が生じたりする。そのような状態で層上に対向電極26(上部電極112)を形成すると、欠陥部分における画素電極16と対向電極26の接触または電界集中により、暗電流の増大または短絡等の画素不良が発生する。更に、上述の欠陥は、画素電極16とその上の層の密着性または撮像素子10の耐熱性を低下させるおそれがある。 A step corresponding to the film thickness of the pixel electrode 16 is steep at the end of the pixel electrode 16, there are significant irregularities on the surface of the pixel electrode 16, or minute dust (particles) adhere to the pixel electrode 16. As a result, a layer on the pixel electrode 16 becomes thinner than a desired film thickness or a crack occurs. When the counter electrode 26 (upper electrode 112) is formed on the layer in such a state, a pixel defect such as an increase in dark current or a short circuit occurs due to contact or electric field concentration between the pixel electrode 16 and the counter electrode 26 in the defective portion. . Furthermore, the above-described defects may reduce the adhesion between the pixel electrode 16 and the layer above it or the heat resistance of the image sensor 10.
 上述の欠陥を防止して素子の信頼性を向上させるためには、画素電極16の表面粗さRa(算術平均粗さ)が0.6nm以下であることが好ましい。画素電極16の表面粗さRaが小さいほど、表面の凹凸が小さいことを意味し、表面平坦性が良好である。また、画素電極16上のパーティクルを除去するため、電子ブロッキング層20を形成する前に、半導体製造工程で利用されている一般的な洗浄技術を用いて、画素電極16等を洗浄することが特に好ましい。 In order to prevent the above-mentioned defects and improve the reliability of the element, the surface roughness Ra (arithmetic average roughness) of the pixel electrode 16 is preferably 0.6 nm or less. The smaller the surface roughness Ra of the pixel electrode 16, the smaller the surface unevenness, and the better the surface flatness. In order to remove particles on the pixel electrode 16, it is particularly preferable to clean the pixel electrode 16 and the like using a general cleaning technique used in a semiconductor manufacturing process before forming the electron blocking layer 20. preferable.
 読出し回路40は、例えば、CCD、MOS回路、またはTFT回路等で構成されており、絶縁層14内に設けられた遮光層(図示せず)によって遮光されている。なお、読出し回路40は、一般的なイメージセンサ用途ではCCDまたはCMOS回路を採用することが好ましく、ノイズおよび高速性の観点からはCMOS回路を採用することが好ましい。
 なお、図示しないが、例えば、基板12にp領域によって囲まれた高濃度のn領域が形成されており、このn領域に第1の接続部44が接続されている。p領域に読出し回路40が設けられている。n領域は光電変換層22の電荷を蓄積する電荷蓄積部として機能するものである。n領域に蓄積された電荷は読出し回路40によって、その電荷量に応じた信号に変換されて、例えば、配線層48を介して撮像素子10外部に出力される。
The readout circuit 40 is constituted by, for example, a CCD, a MOS circuit, or a TFT circuit, and is shielded from light by a light shielding layer (not shown) provided in the insulating layer 14. The readout circuit 40 preferably employs a CCD or CMOS circuit for general image sensor applications, and preferably employs a CMOS circuit from the viewpoint of noise and high speed.
Although not shown, for example, a high-concentration n region surrounded by a p region is formed on the substrate 12, and the first connection portion 44 is connected to the n region. A read circuit 40 is provided in the p region. The n region functions as a charge storage unit that stores the charge of the photoelectric conversion layer 22. The electric charge accumulated in the n region is converted into a signal corresponding to the amount of electric charge by the readout circuit 40 and output to the outside of the image sensor 10 through the wiring layer 48, for example.
 封止層(保護膜)28は、有機物を含む光電変換層22を水分子等の劣化因子から保護するためのものである。封止層28は、対向電極26を覆うようして形成されている。封止層28は、第1封止層29と封止補助層30の2層構造である。
 封止層28(封止層114)としては、次の条件が求められる。
 第一に、素子の各製造工程において溶液、プラズマ等に含まれる有機の光電変換材料を劣化させる因子の浸入を阻止して光電変換層を保護することが挙げられる。
 第二に、素子の製造後に、水分子等の有機の光電変換材料を劣化させる因子の浸入を阻止して、長期間の保存/使用にわたって、光電変換層22の劣化を防止する。
 第三に、封止層28を形成する際は既に形成された光電変換層を劣化させない。
 第四に、入射光は封止層28を通じて光電変換層22に到達するので、光電変換層22で検知する波長の光に対して封止層28は透明でなくてはならない。
The sealing layer (protective film) 28 is for protecting the photoelectric conversion layer 22 containing an organic substance from deterioration factors such as water molecules. The sealing layer 28 is formed so as to cover the counter electrode 26. The sealing layer 28 has a two-layer structure of a first sealing layer 29 and a sealing auxiliary layer 30.
The following conditions are required for the sealing layer 28 (sealing layer 114).
First, it is possible to protect the photoelectric conversion layer by preventing intrusion of factors that degrade the organic photoelectric conversion material contained in the solution, plasma, and the like in each manufacturing process of the device.
Secondly, after the device is manufactured, the penetration of factors that degrade the organic photoelectric conversion material such as water molecules is prevented, and the deterioration of the photoelectric conversion layer 22 is prevented over a long period of storage / use.
Third, when the sealing layer 28 is formed, the already formed photoelectric conversion layer is not deteriorated.
Fourth, since incident light reaches the photoelectric conversion layer 22 through the sealing layer 28, the sealing layer 28 must be transparent to light having a wavelength detected by the photoelectric conversion layer 22.
 封止層28は、単一材料からなる薄膜で構成することもできるが、多層構成にして各層に別々の機能を付与することで、封止層28全体の応力緩和、製造工程中の発塵等によるクラック、ピンホール等の欠陥発生の抑制、材料開発の最適化が容易になること等の効果が期待できる。例えば、封止層28は、水分子等の劣化因子の浸透を阻止する本来の目的を果たす層の上に、その層で達成することが難しい機能を持たせた封止補助層を積層した2層構造である。封止層は、3層以上の構成も可能だが、製造コストを勘案するとなるべく層数は少ない方が好ましい。 The sealing layer 28 can be formed of a thin film made of a single material. However, by providing a multi-layered structure and providing each layer with a different function, stress relaxation of the entire sealing layer 28 and generation of dust during the manufacturing process. Such effects as the suppression of defects such as cracks and pinholes due to the above, and the optimization of material development can be expected. For example, the sealing layer 28 is formed by laminating a sealing auxiliary layer having a function that is difficult to achieve on a layer that serves the original purpose of preventing permeation of deterioration factors such as water molecules. Layer structure. Although the sealing layer may have a configuration of three or more layers, it is preferable that the number of layers is as small as possible in consideration of manufacturing costs.
 また、封止層28(封止層114)は、例えば、以下のようにして形成することができる。
 有機光電変換材料は水分子等の劣化因子の存在で顕著にその性能が劣化してしまう。そのために、水分子を浸透させない緻密な金属酸化膜・金属窒化膜・金属窒化酸化膜等で光電変換層全体を被覆して封止することが必要である。従来から、酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素またはそれらの積層構成、それらと有機高分子の積層構成等を封止層として、各種真空成膜技術で形成されている。従来の封止層は、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクル等による段差において、薄膜の成長が困難なので(段差が影になるので)平坦部と比べて膜厚が顕著に薄くなる。このために段差部分が劣化因子の浸透する経路になってしまう。この段差を封止層28で完全に被覆するには、平坦部において1μm以上の膜厚になるように成膜して、封止層28全体を厚くする必要がある。
Moreover, the sealing layer 28 (sealing layer 114) can be formed as follows, for example.
The performance of organic photoelectric conversion materials is significantly deteriorated due to the presence of deterioration factors such as water molecules. Therefore, it is necessary to cover and seal the entire photoelectric conversion layer with a dense metal oxide film, metal nitride film, metal oxynitride film, or the like that does not allow water molecules to permeate. Conventionally, aluminum oxide, silicon oxide, silicon nitride, silicon nitride oxide, or a stacked structure thereof, a stacked structure of these and an organic polymer, or the like is used as a sealing layer by various vacuum film forming techniques. The conventional sealing layer is a film compared to a flat part because it is difficult to grow a thin film at a step due to structures on the substrate surface, minute defects on the substrate surface, particles adhering to the substrate surface, etc. (because the step becomes a shadow). The thickness is significantly reduced. For this reason, the step portion becomes a path through which the deterioration factor penetrates. In order to completely cover this step with the sealing layer 28, it is necessary to form the film so as to have a film thickness of 1 μm or more in the flat portion, and to increase the thickness of the entire sealing layer 28.
 画素寸法が2μm未満、特に1μm程度の撮像素子10において、カラーフィルタ32と光電変換層22との距離、すなわち、封止層28の膜厚が大きいと、封止層28内で入射光が回折または発散してしまい、混色が発生する。このために、画素寸法が1μm程度の撮像素子10は、封止層28全体の膜厚を減少させても素子性能が劣化しないような封止層材料、およびその製造方法が必要になる。 In the image sensor 10 having a pixel size of less than 2 μm, particularly about 1 μm, if the distance between the color filter 32 and the photoelectric conversion layer 22, that is, the film thickness of the sealing layer 28 is large, incident light is diffracted in the sealing layer 28. Or it diverges and color mixing occurs. For this reason, the imaging device 10 having a pixel size of about 1 μm requires a sealing layer material and a manufacturing method thereof that do not deteriorate the device performance even when the film thickness of the entire sealing layer 28 is reduced.
 原子層堆積(ALD)法は、CVD法の一種で、薄膜材料となる有機金属化合物分子、金属ハロゲン化物分子、金属水素化物分子の基板表面への吸着/反応と、それらに含まれる未反応基の分解を、交互に繰返して薄膜を形成する技術である。基板表面へ薄膜材料が到達する際は上述の低分子の状態なので、低分子が入り込めるごくわずかな空間さえあれば薄膜が成長可能である。そのために、従来の薄膜形成法では困難であった段差部分を完全に被覆し(段差部分に成長した薄膜の厚さが平坦部分に成長した薄膜の厚さと同じ)、すなわち段差被覆性が非常に優れる。そのため、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクル等による段差を完全に被覆できるので、そのような段差部分が光電変換材料の劣化因子の浸入経路にならない。封止層28の形成を原子層堆積(ALD)法で行なった場合は従来技術よりも効果的に必要な封止層膜厚を薄くすることが可能になる。 The atomic layer deposition (ALD) method is a kind of CVD method, and adsorption / reaction of organometallic compound molecules, metal halide molecules, and metal hydride molecules, which are thin film materials, onto the substrate surface and unreacted groups contained therein Is a technique for forming a thin film by alternately repeating decomposition. When the thin film material reaches the surface of the substrate, it is in the above-described low molecular state, so that the thin film can be grown in a very small space where the low molecule can enter. For this reason, the step portion, which was difficult with the conventional thin film formation method, is completely covered (the thickness of the thin film grown on the step portion is the same as the thickness of the thin film grown on the flat portion), that is, the step coverage is very high. Excellent. Therefore, a step due to a structure on the substrate surface, a minute defect on the substrate surface, particles adhering to the substrate surface, and the like can be completely covered, and such a step portion does not become an intrusion path for a deterioration factor of the photoelectric conversion material. When the sealing layer 28 is formed by an atomic layer deposition (ALD) method, the required sealing layer thickness can be reduced more effectively than in the prior art.
 原子層堆積法で封止層28を形成する場合は、上述の好ましい封止層に対応した材料を適宜選択できる。しかしながら、有機光電変換材料が劣化しないような、比較的に低温で薄膜成長が可能な材料に制限される。アルキルアルミニウムまたはハロゲン化アルミニウムを材料とした原子層堆積法によると、有機光電変換材料が劣化しない200℃未満で緻密な酸化アルミニウム薄膜を形成することができる。特にトリメチルアルミニウムを使用した場合は100℃程度でも酸化アルミニウム薄膜を形成することができるため好ましい。酸化珪素または酸化チタンも材料を適切に選択することで酸化アルミニウムと同様に200℃未満で、封止層28として、緻密な薄膜を形成することができるため好ましい。
 封止層28(封止層114)は、水分子等の光電変換材料を劣化させる因子の侵入を十分阻止するために、10nm以上の膜厚であることが好ましい。後述する撮像素子では、封止層の膜厚が厚いと、封止層内で入射光が回折または発散してしまい混色が発生する。このため、封止層の膜厚としては200nm以下であることが好ましい。
When the sealing layer 28 is formed by the atomic layer deposition method, a material corresponding to the above-described preferable sealing layer can be appropriately selected. However, it is limited to a material capable of growing a thin film at a relatively low temperature so that the organic photoelectric conversion material does not deteriorate. According to the atomic layer deposition method using alkylaluminum or aluminum halide as a material, a dense aluminum oxide thin film can be formed at less than 200 ° C. at which the organic photoelectric conversion material does not deteriorate. In particular, when trimethylaluminum is used, an aluminum oxide thin film can be formed even at about 100 ° C., which is preferable. Silicon oxide or titanium oxide is also preferable because a dense thin film can be formed as the sealing layer 28 at a temperature lower than 200 ° C. as in the case of aluminum oxide by appropriately selecting a material.
The sealing layer 28 (sealing layer 114) preferably has a thickness of 10 nm or more in order to sufficiently prevent the entry of factors that degrade the photoelectric conversion material such as water molecules. In an imaging device described later, when the sealing layer is thick, incident light is diffracted or diverged in the sealing layer, resulting in color mixing. For this reason, the film thickness of the sealing layer is preferably 200 nm or less.
 第1封止層29を原子層堆積法により形成した場合、第1封止層29は薄膜であり、段差被覆性および緻密性という観点からは比類なく良質な薄膜形成を低温で達成できる。しかし、薄膜がフォトリソグラフィ工程で使用する薬品で劣化してしまうことがある。例えば、原子層堆積法で成膜した酸化アルミニウム薄膜は非晶質なので、現像液および剥離液のようなアルカリ溶液で表面が侵食されてしまう。このような場合には、原子層堆積法で形成した酸化アルミニウム薄膜上に、耐薬品性に優れる薄膜が必要である。すなわち、封止層28を保護する機能層となる封止補助層30が必要である。この場合、上述のように図1(b)に示すものと同様の2層構造の封止層28となる。 When the first sealing layer 29 is formed by an atomic layer deposition method, the first sealing layer 29 is a thin film, and from the viewpoint of step coverage and denseness, it is possible to achieve a high-quality thin film formation at a low temperature. However, the thin film may be deteriorated by chemicals used in the photolithography process. For example, since an aluminum oxide thin film formed by atomic layer deposition is amorphous, the surface is eroded by an alkaline solution such as a developer and a stripping solution. In such a case, a thin film having excellent chemical resistance is required on the aluminum oxide thin film formed by the atomic layer deposition method. That is, the auxiliary sealing layer 30 that is a functional layer for protecting the sealing layer 28 is necessary. In this case, as described above, the sealing layer 28 has the same two-layer structure as that shown in FIG.
 封止層28(封止層114)は、第1封止層29(第1封止層116)上に、スパッタ法で形成された、酸化アルミニウム(Al)、酸化珪素(SiO)、窒化珪素(SiN)、窒化酸化珪素(SiON)のいずれか1つを含む封止補助層30(封止補助層118)を有する構成とすることが好ましい。また、封止層28(封止層114)は、膜厚が0.05μm以上、0.2μm以下であることが好ましい。更には、封止層28(封止層114)は、酸化アルミニウム、酸化珪素、および酸化チタンのいずれかを含むことが好ましい。 The sealing layer 28 (sealing layer 114) is formed by sputtering on the first sealing layer 29 (first sealing layer 116), such as aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ). ), Silicon nitride (SiN), and silicon nitride oxide (SiON), it is preferable to include a sealing auxiliary layer 30 (sealing auxiliary layer 118) including any one of them. Moreover, it is preferable that the sealing layer 28 (sealing layer 114) has a film thickness of 0.05 μm or more and 0.2 μm or less. Furthermore, the sealing layer 28 (sealing layer 114) preferably contains any of aluminum oxide, silicon oxide, and titanium oxide.
 カラーフィルタ32は、封止層28の表面28a上において、各画素電極16と対向する位置に形成されている。隔壁34は、封止層28の表面28a上のカラーフィルタ32同士の間に設けられており、カラーフィルタ32の光透過効率を向上させるためのものである。遮光層36は、封止層28の表面28a上のカラーフィルタ32および隔壁34を設けた領域(有効画素領域)以外に形成されており、有効画素領域以外に形成された光電変換層22に光が入射することを防止するものである。カラーフィルタ32、隔壁34および遮光層36は、略同じ厚さに形成されており、例えば、フォトリソグラフィー工程、更には樹脂の焼成工程等を経て形成されるものである。 The color filter 32 is formed at a position facing each pixel electrode 16 on the surface 28 a of the sealing layer 28. The partition wall 34 is provided between the color filters 32 on the surface 28 a of the sealing layer 28, and is for improving the light transmission efficiency of the color filter 32. The light shielding layer 36 is formed in a region other than the region (effective pixel region) where the color filter 32 and the partition wall 34 are provided on the surface 28a of the sealing layer 28, and light is applied to the photoelectric conversion layer 22 formed outside the effective pixel region. Is prevented from entering. The color filter 32, the partition wall 34, and the light shielding layer 36 are formed to have substantially the same thickness, and are formed through, for example, a photolithography process, a resin baking process, and the like.
 保護層38は、カラーフィルタ32を後工程等から保護するためのものであり、カラーフィルタ32、隔壁34および遮光層36を覆うようにして形成されている。保護層38はオーバーコート層ともいう。
 撮像素子10においては、有機層24、対向電極26およびカラーフィルタ32が上方に設けられた画素電極16、1つが単位画素Pxになる。
The protective layer 38 is for protecting the color filter 32 from subsequent processes and is formed so as to cover the color filter 32, the partition wall 34 and the light shielding layer 36. The protective layer 38 is also referred to as an overcoat layer.
In the image sensor 10, one pixel electrode 16 having the organic layer 24, the counter electrode 26, and the color filter 32 provided thereon is a unit pixel Px.
 保護層38は、アクリル系樹脂、ポリシロキサン系樹脂、ポリスチレン系樹脂もしくは弗素樹脂等のような高分子材料または酸化珪素もしくは窒化珪素のような無機材料を適宜使用できる。ポリスチレン系等の感光性樹脂を使用すると、フォトリソグラフィー法によって保護層38をパターニングできるので、ボンディング用パッド上の周辺遮光層、封止層、絶縁層等を開口する際のフォトレジストとして使用すること、保護層38自体をマイクロレンズとして加工することが容易になり好ましい。一方、保護層38を反射防止層として使用することも可能であり、カラーフィルタ32の隔壁として使用した各種低屈折率材料を成膜することも好ましい。また、後工程に対する保護層としての機能、反射防止層としての機能を追求するために、保護層38を、上述の材料を組合せた2層以上の構成にすることも可能である。 The protective layer 38 can be made of a polymer material such as acrylic resin, polysiloxane resin, polystyrene resin or fluorine resin, or an inorganic material such as silicon oxide or silicon nitride as appropriate. If a photosensitive resin such as polystyrene is used, the protective layer 38 can be patterned by a photolithography method, so that it can be used as a photoresist when opening the peripheral light shielding layer, sealing layer, insulating layer, etc. on the bonding pad. The protective layer 38 itself is preferably processed as a microlens, which is preferable. On the other hand, the protective layer 38 can be used as an antireflection layer, and it is also preferable to form various low refractive index materials used as the partition walls of the color filter 32. In addition, in order to pursue a function as a protective layer and a function as an antireflection layer with respect to a subsequent process, the protective layer 38 can be configured to have two or more layers combining the above-described materials.
 なお、本実施形態においては、画素電極16は、絶縁層14の表面14aに形成された構成であるが、これに限定されるものではなく、絶縁層14の表面14a部に埋設された構成でもよい。また、第2の接続部46および対向電極電圧供給部42を1つ設ける構成としたが、複数であってもよい。例えば、対向電極26の両端部から対向電極26へ電圧を供給することにより、対向電極26での電圧降下を抑制することができる。第2の接続部46および対向電極電圧供給部42のセットの数は、素子のチップ面積を勘案して、適宜増減すればよい。 In the present embodiment, the pixel electrode 16 has a configuration formed on the surface 14a of the insulating layer 14. However, the present invention is not limited to this, and the pixel electrode 16 may be embedded in the surface 14a portion of the insulating layer 14. Good. Moreover, although the structure which provides the 2nd connection part 46 and the counter electrode voltage supply part 42 was made, it may be plural. For example, a voltage drop at the counter electrode 26 can be suppressed by supplying a voltage from both ends of the counter electrode 26 to the counter electrode 26. The number of sets of the second connection unit 46 and the counter electrode voltage supply unit 42 may be appropriately increased or decreased in consideration of the chip area of the element.
 次に、本発明の実施形態の撮像素子10の製造方法について説明する。
 図3(a)~(c)は、本発明の実施形態の撮像素子の製造方法を工程順に示す模式的断面図であり、図4(a)~(c)は、本発明の実施形態の撮像素子の製造方法を工程順に示す模式的断面図であり、図3(c)の後工程を示す。
Next, a manufacturing method of the image sensor 10 according to the embodiment of the present invention will be described.
3A to 3C are schematic cross-sectional views showing the manufacturing method of the image sensor according to the embodiment of the present invention in the order of steps, and FIGS. 4A to 4C are diagrams of the embodiment of the present invention. It is typical sectional drawing which shows the manufacturing method of an image pick-up element in order of a process, and shows the post process of FIG.3 (c).
 本発明の実施形態の撮像素子10の製造方法においては、まず、図3(a)に示すように、読出し回路40と対向電極電圧供給部42とが形成された基板12上に、第1の接続部44と第2の接続部46と、配線層48が設けられた絶縁層14が形成され、更に絶縁層14の表面14aに、各第1の接続部44に接続された画素電極16が形成された回路基板11(CMOS基板)を用意する。この場合、上述の如く、第1の接続部44と読出し回路40とが接続されており、第2の接続部46と対向電極電圧供給部42とが接続されている。画素電極16は、例えば、TiNで形成される。 In the method for manufacturing the image sensor 10 according to the embodiment of the present invention, first, as shown in FIG. 3A, the first circuit is formed on the substrate 12 on which the readout circuit 40 and the counter electrode voltage supply unit 42 are formed. The insulating layer 14 provided with the connecting portion 44, the second connecting portion 46, and the wiring layer 48 is formed, and the pixel electrode 16 connected to each first connecting portion 44 is further formed on the surface 14 a of the insulating layer 14. A formed circuit board 11 (CMOS substrate) is prepared. In this case, as described above, the first connection unit 44 and the readout circuit 40 are connected, and the second connection unit 46 and the counter electrode voltage supply unit 42 are connected. The pixel electrode 16 is made of, for example, TiN.
 次に、電子ブロッキング層20の成膜室(図示せず)に予め設定された搬送経路で搬送し、図3(b)に示すように、第2の接続部46上を除き、かつ全ての画素電極16を覆うようにして、絶縁層14の表面14aに電子ブロッキング材料を、例えば、蒸着法を用いて予め設定された真空下で成膜し、電子ブロッキング層20を形成する。電子ブロッキング材料には、例えば、カルバゾール誘導体、更に好ましくはビフルオレン誘導体が用いられる。 Next, the film is transferred to a film forming chamber (not shown) for the electron blocking layer 20 through a preset transfer path, and as shown in FIG. An electron blocking material 20 is formed on the surface 14 a of the insulating layer 14 so as to cover the pixel electrode 16 under a vacuum set in advance using, for example, a vapor deposition method, thereby forming the electron blocking layer 20. As the electron blocking material, for example, a carbazole derivative, more preferably a bifluorene derivative is used.
 次に、光電変換層22の成膜室(図示せず)に予め設定された搬送経路で搬送し、図3(c)に示すように、電子ブロッキング層20の表面20aに、例えば、上述の一般式(1)で表される化合物のp型有機半導体とフラーレンまたはフラーレン誘導体(n型有機半導体)と低分子有機化合物とを、低分子有機化合物をp型有機半導体に対して0.5質量%以上5質量%以下となるように、蒸着法を用いて予め設定された真空下で形成する。これにより、光電変換層22が形成されて有機層24が形成される。
 電子ブロッキング層20と光電変換層22とは、同じ成膜室、または別々の成膜室内で形成することができる。
Next, the film is transferred to a film formation chamber (not shown) of the photoelectric conversion layer 22 through a preset transfer path, and as shown in FIG. A p-type organic semiconductor, a fullerene or a fullerene derivative (n-type organic semiconductor) and a low-molecular organic compound of the compound represented by the general formula (1), and 0.5 mass of the low-molecular organic compound with respect to the p-type organic semiconductor. The film is formed under a vacuum set in advance using a vapor deposition method so that the content is from 5% to 5% by mass. Thereby, the photoelectric conversion layer 22 is formed and the organic layer 24 is formed.
The electron blocking layer 20 and the photoelectric conversion layer 22 can be formed in the same film formation chamber or in separate film formation chambers.
 次に、対向電極26の成膜室(図示せず)に予め設定された搬送経路で搬送した後、図4(a)に示すように、光電変換層22を覆い、かつ第2の接続部46上に形成されるパターンで対向電極26を、例えば、スパッタ法により予め設定された真空下で形成する。対向電極材料には、例えば、ITOが用いられる。
 次に、封止層28の成膜室(図示せず)に予め設定された搬送経路で搬送し、図4(b)に示すように、対向電極26の表面26a全体を覆うようにして、絶縁層14の表面14aに、例えば、Al膜(アルミナ膜)を、原子層堆積(ALD)法を用いて予め設定された真空下で成膜して、第1封止層29を形成する。その後、図4(c)に示すように、第1封止層29の表面29aに、封止補助層30として、例えば、スパッタ法により、SiON膜を形成する。これにより封止層28が形成される。
Next, after transporting to a film forming chamber (not shown) of the counter electrode 26 through a preset transport path, as shown in FIG. 4A, the photoelectric conversion layer 22 is covered and the second connection portion is formed. The counter electrode 26 is formed under a vacuum set in advance by a sputtering method, for example, with a pattern formed on 46. For example, ITO is used as the counter electrode material.
Next, the film is transferred to a film forming chamber (not shown) of the sealing layer 28 through a predetermined transfer path, and as shown in FIG. 4B, the entire surface 26a of the counter electrode 26 is covered, For example, an Al 2 O 3 film (alumina film) is formed on the surface 14 a of the insulating layer 14 under a preset vacuum using an atomic layer deposition (ALD) method, and the first sealing layer 29 is formed. Form. Thereafter, as shown in FIG. 4C, a SiON film is formed on the surface 29a of the first sealing layer 29 as the sealing auxiliary layer 30 by, for example, sputtering. Thereby, the sealing layer 28 is formed.
 次に、封止層28の表面28aに、カラーフィルタ32、隔壁34および遮光層36を、例えば、フォトリソグラフィー法を用いて形成する。カラーフィルタ32、隔壁34および遮光層36は有機固体撮像素子に用いられる公知のものを用いて形成することができる。カラーフィルタ32、隔壁34および遮光層36の形成工程は、真空下であっても非真空下であってもよい。
 次に、カラーフィルタ32、隔壁34および遮光層36を覆うようにして、保護層38を、例えば、塗布法を用いて形成する。これにより、図2に示す撮像素子10を形成することができる。保護層38には、有機固体撮像素子に用いられる公知のものが用いられる。
Next, the color filter 32, the partition wall 34, and the light shielding layer 36 are formed on the surface 28a of the sealing layer 28 by using, for example, a photolithography method. The color filter 32, the partition wall 34, and the light shielding layer 36 can be formed using the well-known thing used for an organic solid-state image sensor. The formation process of the color filter 32, the partition wall 34, and the light shielding layer 36 may be under vacuum or under non-vacuum.
Next, the protective layer 38 is formed using, for example, a coating method so as to cover the color filter 32, the partition wall 34, and the light shielding layer 36. Thereby, the image sensor 10 shown in FIG. 2 can be formed. As the protective layer 38, a known layer used for an organic solid-state imaging device is used.
 撮像素子10でも、撮像素子10を使用する場合、外部電場を印加することができる。この場合、画素電極16と対向電極26を一対の電極とし、光電変換効率、暗電流および光応答速度において、優れた特性を得るために一対の電極間に印加する外部電場としては、1V/cm以上1×10V/cm以下が好ましい、より好ましくは、1×10V/cm以上1×10V/cm以下である。特に好ましくは、5×10V/cm以上1×10V/cm以下である。
 撮像素子10においても、光電変換層22が、p型有機半導体とn型有機半導体としてフラーレンまたはフラーレン誘導体とのバルクヘテロ構造であり、更に、バルクヘテロ層へ可視域の吸収がない低分子有機化合物を0.5質量%以上5質量%以下含有することにより、p型有機半導体に平面性の高いp型色素を使用しても、その色素の凝集を抑制することができ、撮像素子10について、高応答速度と高耐熱性を実現することができる。
Even when the image sensor 10 is used, an external electric field can be applied. In this case, the pixel electrode 16 and the counter electrode 26 are a pair of electrodes, and an external electric field applied between the pair of electrodes in order to obtain excellent characteristics in photoelectric conversion efficiency, dark current, and optical response speed is 1 V / cm. It is preferably 1 × 10 7 V / cm or less, more preferably 1 × 10 4 V / cm or more and 1 × 10 7 V / cm or less. Particularly preferably, it is 5 × 10 4 V / cm or more and 1 × 10 6 V / cm or less.
Also in the imaging element 10, the photoelectric conversion layer 22 has a bulk heterostructure of fullerene or a fullerene derivative as a p-type organic semiconductor and an n-type organic semiconductor, and further, a low-molecular organic compound that does not absorb visible light in the bulk heterolayer is 0. By containing 5 mass% or more and 5 mass% or less, even when a p-type dye having high planarity is used for the p-type organic semiconductor, aggregation of the dye can be suppressed. Speed and high heat resistance can be realized.
 以下、上述の撮像素子10の有機層24と、光電変換素子100の有機層110について説明する。なお、上述のように撮像素子10の電子ブロッキング層20と光電変換層22、および光電変換素子100の電子ブロッキング層106と光電変換層108は対応している。 Hereinafter, the organic layer 24 of the imaging element 10 and the organic layer 110 of the photoelectric conversion element 100 will be described. As described above, the electron blocking layer 20 and the photoelectric conversion layer 22 of the imaging element 10 and the electron blocking layer 106 and the photoelectric conversion layer 108 of the photoelectric conversion element 100 correspond to each other.
 撮像素子10の光電変換層22(光電変換素子100の光電変換層108)は、p型有機半導体とn型有機半導体と、低分子有機化合物とを含むものである。p型有機半導体とn型有機半導体をバルクヘテロ接合させてドナ-アクセプタ界面を形成することにより励起子解離効率を増加させることができる。このために、p型有機半導体とn型有機半導体を接合させた構成の光電変換層は高い光電変換効率を発現する。特に、p型有機半導体とn型有機半導体を混合した光電変換層は、接合界面が増大して光電変換効率が向上するので好ましい。 The photoelectric conversion layer 22 of the image sensor 10 (the photoelectric conversion layer 108 of the photoelectric conversion element 100) includes a p-type organic semiconductor, an n-type organic semiconductor, and a low-molecular organic compound. Exciton dissociation efficiency can be increased by forming a donor-acceptor interface by bulk heterojunction of a p-type organic semiconductor and an n-type organic semiconductor. For this reason, the photoelectric conversion layer of the structure which joined the p-type organic semiconductor and the n-type organic semiconductor expresses high photoelectric conversion efficiency. In particular, a photoelectric conversion layer in which a p-type organic semiconductor and an n-type organic semiconductor are mixed is preferable because the junction interface is increased and the photoelectric conversion efficiency is improved.
 本実施形態において、光電変換層22は、p型有機半導体およびn型有機半導体を含むバルクヘテロ接合構造体を有し、更に低分子有機化合物をp型有機半導体に対して0.5質量%以上5質量%以下含有する。
 光電変換層22において、p型有機半導体である色素に、平面性の高い材料を使用すること、すなわち、特には自由回転軸が存在せず一平面状に分子の軸が全て存在している分子を使用することが好ましい。ここで、p型有機半導体に用いられる色素とは、p型有機半導体のうち、例えば、400nm~700nmの可視光を吸収し、光電変換を担う主要な材料のことである。
 光電変換層22において、バルクへテロ接合構造を有することにより、光電変換層22のキャリア拡散長が短いという欠点を補い、光電変換層22の光電変換効率を向上させることができる。なお、バルクへテロ接合構造については、特開2005-303266号公報において詳細に説明されている。
In the present embodiment, the photoelectric conversion layer 22 has a bulk heterojunction structure including a p-type organic semiconductor and an n-type organic semiconductor, and further contains a low molecular weight organic compound in an amount of 0.5% by mass or more to the p-type organic semiconductor. Contain less than mass%.
In the photoelectric conversion layer 22, a highly planar material is used for the dye that is a p-type organic semiconductor, that is, a molecule in which all the axes of molecules are present in a single plane, particularly without a free rotation axis. Is preferably used. Here, the dye used for the p-type organic semiconductor is a main material responsible for photoelectric conversion among the p-type organic semiconductor, for example, absorbing visible light of 400 nm to 700 nm.
By having a bulk heterojunction structure in the photoelectric conversion layer 22, it is possible to compensate for the disadvantage that the carrier diffusion length of the photoelectric conversion layer 22 is short, and to improve the photoelectric conversion efficiency of the photoelectric conversion layer 22. The bulk heterojunction structure is described in detail in Japanese Patent Application Laid-Open No. 2005-303266.
 光電変換層22の厚さは、10nm以上1000nm以下が好ましく、更に好ましくは50nm以上800nm以下であり、特に好ましくは100nm以上500nm以下である。光電変換層22の厚さを10nm以上とすることにより、好適な暗電流抑制効果が得られ、光電変換層22の厚さを1000nm以下とすることにより、好適な光電変換効率が得られる。 The thickness of the photoelectric conversion layer 22 is preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 800 nm or less, and particularly preferably 100 nm or more and 500 nm or less. By setting the thickness of the photoelectric conversion layer 22 to 10 nm or more, a suitable dark current suppressing effect can be obtained, and by setting the thickness of the photoelectric conversion layer 22 to 1000 nm or less, preferable photoelectric conversion efficiency can be obtained.
 光電変換層22を構成するp型有機半導体(化合物)は、ドナー性有機半導体(化合物)であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。更に詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を用いることができる。なお、これに限らず、n型(アクセプター性)化合物として用いた有機化合物よりもイオン化ポテンシャルの小さい有機化合物であればドナー性有機半導体として用いてよい。 The p-type organic semiconductor (compound) constituting the photoelectric conversion layer 22 is a donor-type organic semiconductor (compound), which is mainly represented by a hole-transporting organic compound and refers to an organic compound having a property of easily donating electrons. . More specifically, an organic compound having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound. For example, triarylamine compound, benzidine compound, pyrazoline compound, styrylamine compound, hydrazone compound, triphenylmethane compound, carbazole compound, polysilane compound, thiophene compound, phthalocyanine compound, cyanine compound, merocyanine compound, oxonol compound, polyamine compound, indole Compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives), nitrogen-containing heterocyclic compounds The metal complex etc. which it has as can be used. However, the present invention is not limited to this, and any organic compound having an ionization potential smaller than that of the organic compound used as the n-type (acceptor property) compound may be used as the donor organic semiconductor.
 p型有機半導体としては、いかなる有機色素を用いてもよいが、好ましいものとしては、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、スピロ化合物、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、ペリノン色素、フェナジン色素、フェノチアジン色素、キノン色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キナクリドン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ジケトピロロピロール色素、ジオキサン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、金属錯体色素、縮合芳香族炭素環系色素(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)が挙げられる。 As the p-type organic semiconductor, any organic dye may be used. Preferred examples include cyanine dyes, styryl dyes, hemicyanine dyes, merocyanine dyes (including zero methine merocyanine (simple merocyanine)), trinuclear merocyanine dyes, Tetranuclear merocyanine dye, rhodacyanine dye, complex cyanine dye, complex merocyanine dye, allopolar dye, oxonol dye, hemioxonol dye, squalium dye, croconium dye, azamethine dye, coumarin dye, arylidene dye, anthraquinone dye, triphenylmethane dye, Azo dye, azomethine dye, spiro compound, metallocene dye, fluorenone dye, fulgide dye, perylene dye, perinone dye, phenazine dye, phenothiazine dye, quino Dye, diphenylmethane dye, polyene dye, acridine dye, acridinone dye, diphenylamine dye, quinacridone dye, quinophthalone dye, phenoxazine dye, phthaloperylene dye, diketopyrrolopyrrole dye, dioxane dye, porphyrin dye, chlorophyll dye, phthalocyanine dye, metal complex And dyes and condensed aromatic carbocyclic dyes (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives).
 n型有機半導体として、電子輸送性に優れた、フラーレンまたはフラーレン誘導体を用いることが特に好ましい。フラーレンとは、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブを表し、フラーレン誘導体とはこれらに換基が付加された化合物のことを表す。 As the n-type organic semiconductor, it is particularly preferable to use fullerene or a fullerene derivative having excellent electron transport properties. The fullerene, fullerene C 60, fullerene C 70, fullerene C 76, fullerene C 78, fullerene C 80, fullerene C 82, fullerene C 84, fullerene C 90, fullerene C 96, fullerene C 240, fullerene C 540, mixed Fullerene and fullerene nanotube are represented, and a fullerene derivative represents a compound having a substituent added thereto.
 フラーレン誘導体の置換基として好ましくは、アルキル基、アリール基、または複素環基である。アルキル基として更に好ましくは、炭素数1~12までのアルキル基であり、アリール基、および複素環基として好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、ベンズイミダゾール環、イミダゾピリジン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、またはフェナジン環であり、更に好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピリジン環、イミダゾール環、オキサゾール環、またはチアゾール環であり、特に好ましくはベンゼン環、ナフタレン環、またはピリジン環である。これらは更に置換基を有していてもよく、その置換基は可能な限り結合して環を形成してもよい。なお、複数の置換基を有しても良く、それらは同一であっても異なっていても良い。また、複数の置換基は可能な限り結合して環を形成してもよい。 The substituent for the fullerene derivative is preferably an alkyl group, an aryl group, or a heterocyclic group. The alkyl group is more preferably an alkyl group having 1 to 12 carbon atoms, and the aryl group and the heterocyclic group are preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, triphenylene ring, naphthacene ring. , Biphenyl ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, indolizine ring, indole ring, benzofuran ring, benzothiophene ring, isobenzofuran Ring, benzimidazole ring, imidazopyridine ring, quinolidine ring, quinoline ring, phthalazine ring, naphthyridine ring, quinoxaline ring, quinoxazoline ring, isoquinoline ring, carbazole ring, phenanthridine ring, acridine ring, phenanthroli Ring, thianthrene ring, chromene ring, xanthene ring, phenoxathiin ring, phenothiazine ring, or phenazine ring, more preferably a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyridine ring, imidazole ring, oxazole ring, Or a thiazole ring, particularly preferably a benzene ring, a naphthalene ring, or a pyridine ring. These may further have a substituent, and the substituents may be bonded as much as possible to form a ring. In addition, you may have a some substituent and they may be the same or different. A plurality of substituents may be combined as much as possible to form a ring.
 光電変換層22がフラーレンまたはフラーレン誘導体を含むことで、フラーレン分子またはフラーレン誘導体分子を経由して、光電変換により発生した電子を画素電極16(下部電極104)または対向電極26(上部電極112)まで早く輸送できる。フラーレン分子またはフラーレン誘導体分子が連なった状態になって電子の経路が形成されていると、電子輸送性が向上して光電変換素子の高速応答性が実現可能となる。このためにはフラーレンまたはフラーレン誘導体が光電変換層に40%(体積比)以上含まれていることが好ましい。もっとも、フラーレンまたはフラーレン誘導体が多すぎるとp型有機半導体が少なくなって接合界面が小さくなり励起子解離効率が低下してしまう。 Since the photoelectric conversion layer 22 contains fullerene or a fullerene derivative, electrons generated by photoelectric conversion via the fullerene molecule or fullerene derivative molecule are transmitted to the pixel electrode 16 (lower electrode 104) or the counter electrode 26 (upper electrode 112). It can be transported quickly. When fullerene molecules or fullerene derivative molecules are connected to form an electron path, the electron transport property is improved, and high-speed response of the photoelectric conversion element can be realized. For this purpose, the fullerene or fullerene derivative is preferably contained in the photoelectric conversion layer by 40% (volume ratio) or more. However, if there are too many fullerenes or fullerene derivatives, the p-type organic semiconductor will decrease, the junction interface will become smaller, and the exciton dissociation efficiency will decrease.
 光電変換層22において、フラーレンまたはフラーレン誘導体と共に混合されるp型有機半導体として、特許第4213832号公報等に記載されたトリアリールアミン化合物を用いると光電変換素子の高SN比が発現可能になり、特に好ましい。光電変換層内のフラーレンまたはフラーレン誘導体の比率が大きすぎるとトリアリールアミン化合物が少なくなって入射光の吸収量が低下する。これにより光電変換効率が減少するので、光電変換層に含まれるフラーレンまたはフラーレン誘導体は85%(体積比)以下の組成であることが好ましい。 In the photoelectric conversion layer 22, when a triarylamine compound described in Japanese Patent No. 4213832 is used as a p-type organic semiconductor mixed with fullerene or a fullerene derivative, a high SN ratio of the photoelectric conversion element can be expressed. Particularly preferred. If the ratio of fullerene or fullerene derivative in the photoelectric conversion layer is too large, the amount of triarylamine compounds decreases and the amount of incident light absorbed decreases. As a result, the photoelectric conversion efficiency is reduced. Therefore, the fullerene or fullerene derivative contained in the photoelectric conversion layer preferably has a composition of 85% (volume ratio) or less.
 光電変換層22に用いられるp型有機半導体は、下記一般式(1)で表される化合物であることが好ましい。 The p-type organic semiconductor used for the photoelectric conversion layer 22 is preferably a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上述の一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。 In the general formula (1), Z 1 is a ring containing at least two carbon atoms, and a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. To express. L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group. D 1 represents an atomic group. n represents an integer of 0 or more.
 Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環を表す。5員環、6員環、または、5員環および6員環の少なくともいずれかを含む縮合環としては、通常メロシアニン色素で酸性核として用いられるものが好ましく、その具体例としては例えば以下のものが挙げられる。 Z 1 is a ring containing at least two carbon atoms, and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. As a condensed ring containing at least one of a 5-membered ring, a 6-membered ring, and a 5-membered ring and a 6-membered ring, those usually used as an acidic nucleus in a merocyanine dye are preferable, and specific examples thereof include the following: Is mentioned.
(a)1,3-ジカルボニル核:例えば1,3-インダンジオン核、1,3-シクロヘキサンジオン、5,5-ジメチル-1,3-シクロヘキサンジオン、1,3-ジオキサン-4,6-ジオン等。
(b)ピラゾリノン核:例えば1-フェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ピラゾリン-5-オン、1-(2-ベンゾチアゾイル)-3-メチル-2-ピラゾリン-5-オン等。
(c)イソオキサゾリノン核:例えば3-フェニル-2-イソオキサゾリン-5-オン、3-メチル-2-イソオキサゾリン-5-オン等。
(d)オキシインドール核:例えば1-アルキル-2,3-ジヒドロ-2-オキシインドール等。
(e)2,4,6-トリケトヘキサヒドロピリミジン核:例えばバルビツル酸または2-チオバルビツル酸およびその誘導体等。誘導体としては例えば1-メチル、1-エチル等の1-アルキル体、1,3-ジメチル、1,3-ジエチル、1,3-ジブチル等の1,3-ジアルキル体、1,3-ジフェニル、1,3-ジ(p-クロロフェニル)、1,3-ジ(p-エトキシカルボニルフェニル)等の1,3-ジアリール体、1-エチル-3-フェニル等の1-アルキル-1-アリール体、1,3-ジ(2―ピリジル)等の1,3位ジヘテロ環置換体等が挙げられる。
(f)2-チオ-2,4-チアゾリジンジオン核:例えばローダニンおよびその誘導体等。誘導体としては例えば3-メチルローダニン、3-エチルローダニン、3-アリルローダニン等の3-アルキルローダニン、3-フェニルローダニン等の3-アリールローダニン、3-(2-ピリジル)ローダニン等の3位ヘテロ環置換ローダニン等が挙げられる。
(A) 1,3-dicarbonyl nucleus: for example, 1,3-indandione nucleus, 1,3-cyclohexanedione, 5,5-dimethyl-1,3-cyclohexanedione, 1,3-dioxane-4,6- Zeon etc.
(B) pyrazolinone nucleus: for example 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1- (2-benzothiazoyl) -3-methyl-2 -Pyrazolin-5-one and the like.
(C) isoxazolinone nucleus: for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one and the like.
(D) Oxindole nucleus: For example, 1-alkyl-2,3-dihydro-2-oxindole and the like.
(E) 2,4,6-triketohexahydropyrimidine nucleus: for example, barbituric acid or 2-thiobarbituric acid and its derivatives. Examples of the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diphenyl, 1,3-diaryl compounds such as 1,3-di (p-chlorophenyl) and 1,3-di (p-ethoxycarbonylphenyl), 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl, Examples include 1,3-di (2-pyridyl) 1,3-diheterocyclic substituents and the like.
(F) 2-thio-2,4-thiazolidinedione nucleus: for example, rhodanine and its derivatives. Examples of the derivatives include 3-alkylrhodanine such as 3-methylrhodanine, 3-ethylrhodanine and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3- (2-pyridyl) rhodanine. And the like.
(g)2-チオ-2,4-オキサゾリジンジオン(2-チオ-2,4-(3H,5H)-オキサゾールジオン核:例えば3-エチル-2-チオ-2,4-オキサゾリジンジオン等。
(h)チアナフテノン核:例えば3(2H)-チアナフテノン-1,1-ジオキサイド等。
(i)2-チオ-2,5-チアゾリジンジオン核:例えば3-エチル-2-チオ-2,5-チアゾリジンジオン等。
(j)2,4-チアゾリジンジオン核:例えば2,4-チアゾリジンジオン、3-エチル-2,4-チアゾリジンジオン、3-フェニル-2,4-チアゾリジンジオン等。
(k)チアゾリン-4-オン核:例えば4-チアゾリノン、2-エチル-4-チアゾリノン等。
(l)2,4-イミダゾリジンジオン(ヒダントイン)核:例えば2,4-イミダゾリジンジオン、3-エチル-2,4-イミダゾリジンジオン等。
(m)2-チオ-2,4-イミダゾリジンジオン(2-チオヒダントイン)核:例えば2-チオ-2,4-イミダゾリジンジオン、3-エチル-2-チオ-2,4-イミダゾリジンジオン等。
(n)イミダゾリン-5-オン核:例えば2-プロピルメルカプト-2-イミダゾリン-5-オン等。
(o)3,5-ピラゾリジンジオン核:例えば1,2-ジフェニル-3,5-ピラゾリジンジオン、1,2-ジメチル-3,5-ピラゾリジンジオン等。
(p)ベンゾチオフェン-3-オン核:例えばベンゾチオフェン-3-オン、オキソベンゾチオフェン-3-オン、ジオキソベンゾチオフェン-3-オン等。
(q)インダノン核:例えば1-インダノン、3-フェニル-1-インダノン、3-メチル-1-インダノン、3,3-ジフェニル-1-インダノン、3,3-ジメチル-1-インダノン等。
(G) 2-thio-2,4-oxazolidinedione (2-thio-2,4- (3H, 5H) -oxazoledione nucleus: for example, 3-ethyl-2-thio-2,4-oxazolidinedione and the like.
(H) Tianaphthenone nucleus: For example, 3 (2H) -thianaphthenone-1,1-dioxide and the like.
(I) 2-thio-2,5-thiazolidinedione nucleus: for example, 3-ethyl-2-thio-2,5-thiazolidinedione and the like.
(J) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione and the like.
(K) Thiazolin-4-one nucleus: for example, 4-thiazolinone, 2-ethyl-4-thiazolinone, etc.
(L) 2,4-imidazolidinedione (hydantoin) nucleus: for example, 2,4-imidazolidinedione, 3-ethyl-2,4-imidazolidinedione, etc.
(M) 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus: for example, 2-thio-2,4-imidazolidinedione, 3-ethyl-2-thio-2,4-imidazolidinedione etc.
(N) Imidazolin-5-one nucleus: for example, 2-propylmercapto-2-imidazolin-5-one and the like.
(O) 3,5-pyrazolidinedione nucleus: for example, 1,2-diphenyl-3,5-pyrazolidinedione, 1,2-dimethyl-3,5-pyrazolidinedione and the like.
(P) Benzothiophen-3-one nucleus: for example, benzothiophen-3-one, oxobenzothiophen-3-one, dioxobenzothiophen-3-one and the like.
(Q) Indanone nucleus: for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, etc.
 Zで形成される環として好ましくは、1,3-ジカルボニル核、ピラゾリノン核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツル酸核、2-チオバルビツール酸核)、2-チオ-2,4-チアゾリジンジオン核、2-チオ-2,4-オキサゾリジンジオン核、2-チオ-2,5-チアゾリジンジオン核、2,4-チアゾリジンジオン核、2,4-イミダゾリジンジオン核、2-チオ-2,4-イミダゾリジンジオン核、2-イミダゾリン-5-オン核、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、インダノン核であり、より好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツル酸核、2-チオバルビツール酸核)、3,5-ピラゾリジンジオン核、ベンゾチオフェン-3-オン核、インダノン核であり、更に好ましくは1,3-ジカルボニル核、2,4,6-トリケトヘキサヒドロピリミジン核(チオケトン体も含み、例えばバルビツル酸核、2-チオバルビツール酸核)であり、特に好ましくは1,3-インダンジオン核、バルビツル酸核、2-チオバルビツール酸核およびそれらの誘導体である。 The ring formed by Z 1 is preferably a 1,3-dicarbonyl nucleus, a pyrazolinone nucleus, a 2,4,6-triketohexahydropyrimidine nucleus (including a thioketone body, for example, a barbituric acid nucleus, 2-thiobarbitur tool) Acid nucleus), 2-thio-2,4-thiazolidinedione nucleus, 2-thio-2,4-oxazolidinedione nucleus, 2-thio-2,5-thiazolidinedione nucleus, 2,4-thiazolidinedione nucleus, 2, In 4-imidazolidinedione nucleus, 2-thio-2,4-imidazolidinedione nucleus, 2-imidazolin-5-one nucleus, 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus More preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine nucleus (including thioketones, such as barbituric acid nucleus, Bituric acid nucleus), 3,5-pyrazolidinedione nucleus, benzothiophen-3-one nucleus, indanone nucleus, more preferably 1,3-dicarbonyl nucleus, 2,4,6-triketohexahydropyrimidine Nuclei (including thioketone bodies, such as barbituric acid nuclei, 2-thiobarbituric acid nuclei), particularly preferably 1,3-indandione nuclei, barbituric acid nuclei, 2-thiobarbituric acid nuclei and their derivatives. is there.
 L、L、およびLはそれぞれ独立に、無置換メチン基、または置換メチン基を表す。置換メチン基同士が結合して環(例、6員環、例えば、ベンゼン環)を形成してもよい。置換メチン基の置換基は置換基Wが挙げられるが、L、L、Lは全てが無置換メチン基である場合が好ましい。
 L~Lは互いに連結して環を形成しても良く、形成する環として好ましくはシクロヘキセン環、シクロペンテン環、ベンゼン環、チオフェン環等が挙げられる。
L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group. The substituted methine groups may be bonded to each other to form a ring (eg, a 6-membered ring such as a benzene ring). Although the substituent of the substituted methine group includes the substituent W, it is preferable that all of L 1 , L 2 and L 3 are unsubstituted methine groups.
L 1 to L 3 may combine with each other to form a ring, and preferred examples of the ring formed include a cyclohexene ring, a cyclopentene ring, a benzene ring, and a thiophene ring.
 nは0以上の整数を表し、好ましくは0以上3以下の整数を表し、より好ましくは0である。nを増大させた場合、吸収波長域が長波長にする事ができるか、熱による分解温度が低くなる。可視域に適切な吸収を有し、かつ蒸着成膜時の熱分解を抑制する点でn=0が好ましい。 N represents an integer of 0 or more, preferably 0 or more and 3 or less, more preferably 0. When n is increased, the absorption wavelength region can be made longer, or the thermal decomposition temperature is lowered. N = 0 is preferable in that it has appropriate absorption in the visible region and suppresses thermal decomposition during vapor deposition.
 Dは原子群を表す。Dは-NR(R)を含む基であることが好ましく-NR(R)が置換したアリーレン基を表す場合が更に好ましい。R、Rはそれぞれ独立に、水素原子、または置換基を表す。 D 1 represents an atomic group. D 1 is preferably a group containing —NR a (R b ), more preferably —NR a (R b ) represents an arylene group substituted. R a and R b each independently represent a hydrogen atom or a substituent.
 Dが表すアリーレン基としては、好ましくは炭素数6~30のアリーレン基であり、より好ましくは炭素数6~18のアリーレン基である。アリーレン基は、後述の置換基Wを有していてもよく、好ましくは炭素数1~4のアルキル基を有していてもよい炭素数6~18のアリーレン基である。例えば、フェニレン基、ナフチレン基、アントラセニレン基、ピレニレン基、フェナントレニレン基、メチルフェニレン基、ジメチルフェニレン基等が挙げられ、フェニレン基またはナフチレン基が好ましい。 The arylene group represented by D 1 is preferably an arylene group having 6 to 30 carbon atoms, and more preferably an arylene group having 6 to 18 carbon atoms. The arylene group may have a substituent W described later, and is preferably an arylene group having 6 to 18 carbon atoms which may have an alkyl group having 1 to 4 carbon atoms. Examples thereof include a phenylene group, a naphthylene group, an anthracenylene group, a pyrenylene group, a phenanthrenylene group, a methylphenylene group, and a dimethylphenylene group, and a phenylene group or a naphthylene group is preferable.
 R、Rで表される置換基としては後述の置換基Wが挙げられ、好ましくは、脂肪族炭化水素基(好ましくは置換されてよいアルキル基、アルケニル基)、アリール基(好ましくは置換されてよいフェニル基)、またはヘテロ環基である。 Examples of the substituent represented by R a or R b include the substituent W described later, and preferably an aliphatic hydrocarbon group (preferably an alkyl group or alkenyl group which may be substituted) or an aryl group (preferably a substituent). A phenyl group which may be substituted), or a heterocyclic group.
 R、Rが表すアリール基としては、それぞれ独立に、好ましくは炭素数6~30のアリール基であり、より好ましくは炭素数6~18のアリール基である。アリール基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基または炭素数6~18のアリール基を有していてもよい炭素数6~18のアリール基である。例えば、フェニル基、ナフチル基、アントラセニル基、ピレニル基、フェナントレニル基、メチルフェニル基、ジメチルフェニル基、ビフェニル基等が挙げられ、フェニル基またはナフチル基が好ましい。 The aryl groups represented by R a and R b are each independently preferably an aryl group having 6 to 30 carbon atoms, and more preferably an aryl group having 6 to 18 carbon atoms. The aryl group may have a substituent, and is preferably an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms which may have an aryl group having 6 to 18 carbon atoms. . Examples thereof include a phenyl group, a naphthyl group, an anthracenyl group, a pyrenyl group, a phenanthrenyl group, a methylphenyl group, a dimethylphenyl group, and a biphenyl group, and a phenyl group or a naphthyl group is preferable.
 R、Rが表すヘテロ環基としては、それぞれ独立に、好ましくは炭素数3~30のヘテロ環基であり、より好ましくは炭素数3~18のヘテロ環基である。ヘテロ環基は、置換基を有していてもよく、好ましくは炭素数1~4のアルキル基または炭素数6~18のアリール基を有していてもよい炭素数3~18のヘテロ環基である。また、R、Rが表すヘテロ環基は縮環構造であることが好ましく、フラン環、チオフェン環、セレノフェン環、シロール環、ピリジン環、ピラジン環、ピリミジン環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環からから選ばれる環の組み合わせ(同一でも良い)の縮環構造が好ましく、キノリン環、イソキノリン環、ベンゾチオフェン環、ジベンゾチオフェン環、チエノチオフェン環、ビチエノベンゼン環、ビチエノチオフェン環が好ましい。 The heterocyclic groups represented by R a and R b are each independently preferably a heterocyclic group having 3 to 30 carbon atoms, more preferably a heterocyclic group having 3 to 18 carbon atoms. The heterocyclic group may have a substituent, and preferably a C 3-18 heterocyclic group which may have an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 18 carbon atoms. It is. The heterocyclic group represented by R a and R b is preferably a condensed ring structure, and furan ring, thiophene ring, selenophene ring, silole ring, pyridine ring, pyrazine ring, pyrimidine ring, oxazole ring, thiazole ring, triazole. A condensed ring structure of a ring combination selected from a ring, an oxadiazole ring, and a thiadiazole ring (which may be the same) is preferable. A bithienothiophene ring is preferred.
 D、R、およびRが表すアリーレン基およびアリール基はベンゼン環または縮環構造であることが好ましく、ベンゼン環を含む縮環構造であることがより好ましく、ナフタレン環、アントラセン環、ピレン環、フェナントレン環を挙げることができ、ベンゼン環、ナフタレン環またはアントラセン環がより好ましくは、ベンゼン環またはナフタレン環が更に好ましい。 The arylene group and aryl group represented by D 1 , R a and R b are preferably a benzene ring or a condensed ring structure, more preferably a condensed ring structure containing a benzene ring, a naphthalene ring, an anthracene ring, pyrene A benzene ring, a naphthalene ring or an anthracene ring, more preferably a benzene ring or a naphthalene ring.
 置換基Wとしてはハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、複素環基(ヘテロ環基といっても良い)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルおよびアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルおよびアリールスルフィニル基、アルキルおよびアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールおよびヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、その他の公知の置換基が挙げられる。 As the substituent W, a halogen atom, an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, an aryl group, and a heterocyclic group (May be referred to as a heterocyclic group), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyl group, aryl Oxycarbonyl group, amino group (including anilino group), ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl and arylsulfonylamino group, mercap Group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl and arylsulfinyl group, alkyl and arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, aryl and heterocyclic ring Azo group, imide group, phosphino group, phosphinyl group, phosphinyloxy group, phosphinylamino group, phosphono group, silyl group, hydrazino group, ureido group, boronic acid group (-B (OH) 2 ), phosphato group (-OPO (OH) 2 ), sulfato group (-OSO 3 H), and other known substituents.
 R、Rが置換基(好ましくはアルキル基、アルケニル基)を表す場合、それらの置換基は、-NR(R)が置換したアリール基の芳香環(好ましくはベンゼン環)骨格の水素原子、または置換基と結合して環(好ましくは6員環)を形成してもよい。
 R、Rは互いに置換基同士が結合して環(好ましくは5員または6員環、より好ましくは6員環)を形成してもよく、また、R、RはそれぞれがL(L、L、Lのいずれかを表す)中の置換基と結合して環(好ましくは5員または6員環、より好ましくは6員環)を形成してもよい。
When R a and R b represent a substituent (preferably an alkyl group or an alkenyl group), the substituent is an aromatic ring (preferably benzene ring) skeleton of an aryl group substituted by —NR a (R b ). It may combine with a hydrogen atom or a substituent to form a ring (preferably a 6-membered ring).
R a and R b may be bonded to each other to form a ring (preferably a 5-membered or 6-membered ring, more preferably a 6-membered ring), and R a and R b are each L A ring (preferably a 5-membered or 6-membered ring, more preferably a 6-membered ring) may be formed by combining with a substituent in (represents any one of L 1 , L 2 , and L 3 ).
 一般式(1)で表される化合物は、特開2000-297068号公報に記載の化合物であり、前記公報に記載のない化合物も、前記公報に記載の合成方法に準じて製造することができる。一般式(1)で表される化合物は一般式(2)で表される化合物であることが好ましい。 The compound represented by the general formula (1) is a compound described in JP 2000-297068 A, and a compound not described in the above publication can also be produced according to the synthesis method described in the above publication. . The compound represented by the general formula (1) is preferably a compound represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(2)中、Z、L21、L22、L23、およびnは一般式(1)におけるZ、L、L、L、およびnと同義であり、その好ましい例も同様である。D21は置換または無置換のアリーレン基を表す。D22、およびD23はそれぞれ独立に、置換若しくは無置換のアリール基または置換若しくは無置換のヘテロ環基を表す。 In General Formula (2), Z 2 , L 21 , L 22 , L 23 , and n are synonymous with Z 1 , L 1 , L 2 , L 3 , and n in General Formula (1), and preferred examples thereof Is the same. D 21 represents a substituted or unsubstituted arylene group. D 22 and D 23 each independently represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
 D21が表すアリーレン基としては、Dが表すアリーレン環基と同義であり、その好ましい例も同様である。D22、およびD23が表すアリール基としては、それぞれ独立に、R、およびRが表すヘテロ環基と同義であり、その好ましい例も同様である。 The arylene group represented by D 21 has the same meaning as the arylene ring group represented by D 1 , and preferred examples thereof are also the same. The aryl group represented by D 22 and D 23 is independently the same as the heterocyclic group represented by R a and R b , and preferred examples thereof are also the same.
 以下に一般式(1)で表される化合物の好ましい具体例を、一般式(3)を用いて示すが、本発明はこれらに限定されるものではない。 Hereinafter, preferred specific examples of the compound represented by the general formula (1) are shown using the general formula (3), but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(3)中、Zは以下に示すA-1~A-12のいずれかを表す。L31がメチレンを表し、nが0を表す。D31がB-1~B-9のいずれかであり、D32、およびD33がC-1~C-16のいずれかを表す。Zとしては、A-2が好ましく、D32、およびD33はC-1、C-2、C-15、C-16から選択されることが好ましく、D31はB-1またはB-9であることが好ましい。 In the general formula (3), Z 3 represents any one of A-1 to A-12 shown below. L 31 represents methylene and n represents 0. D 31 represents any one of B-1 to B-9, and D 32 and D 33 represent any one of C-1 to C-16. Z 3 is preferably A-2, D 32 and D 33 are preferably selected from C-1, C-2, C-15 and C-16, and D 31 is B-1 or B- 9 is preferred.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 特に好ましいp型有機半導体としては、染料若しくは5個以上の縮環構造を持たない材料(縮環構造を0~4個、好ましは1~3個有する材料)が挙げられる。有機薄膜太陽電池で一般的に使用されている顔料系p型材料を用いると、pn界面での暗時電流が増大しやすい傾向になること、結晶性の粒界でのトラップにより光応答が遅くなりがちであることから、撮像素子用として用いることが難しい。このため、結晶化しにくい染料系のp型材料、若しくは5個以上の縮環構造を持たない材料が撮像素子用に好ましく用いることができる。 Particularly preferred p-type organic semiconductors include dyes or materials having no five or more condensed ring structures (materials having 0 to 4, preferably 1 to 3 condensed ring structures). When using a pigment-based p-type material generally used in organic thin-film solar cells, the dark current tends to increase at the pn interface, and the light response is slow due to trapping at the crystalline grain boundary. Since it tends to be, it is difficult to use for an image sensor. For this reason, a dye-based p-type material that is difficult to crystallize, or a material that does not have five or more condensed ring structures can be preferably used for the imaging element.
 一般式(1)で表される化合物の更に好ましい具体例は、一般式(3)における以下に示す置換基、連結基および部分構造の組み合わせであるが、本発明はこれらに限定されるものではない。 More preferred specific examples of the compound represented by the general formula (1) are combinations of the substituents, linking groups and partial structures shown below in the general formula (3), but the present invention is not limited to these. Absent.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 なお、上述のA-1~A-12、B-1~B-9、およびC-1~C-16は上述の化4に示したものと同義である。以下に、一般式(1)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。これ以外に、一般式(1)で表される化合物の具体例として下記化合物1が挙げられる。 Note that the above-described A-1 to A-12, B-1 to B-9, and C-1 to C-16 are synonymous with those shown in Chemical Formula 4 above. Although the specific example of a compound represented by General formula (1) below is shown, this invention is not limited to these. In addition, the following compound 1 is mentioned as a specific example of a compound represented by General formula (1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (融点)
 一般式(1)で表される化合物は、蒸着安定性の観点から、融点が200℃以上であることが好ましく、220℃以上がより好ましく、240℃以上が更に好ましい。融点が低いと蒸着前に融解してしまい、安定に成膜できないことに加え、化合物の分解物が多くなるため、光電変換性能が劣化する。
(Melting point)
The compound represented by the general formula (1) has a melting point of preferably 200 ° C. or higher, more preferably 220 ° C. or higher, and further preferably 240 ° C. or higher from the viewpoint of vapor deposition stability. If the melting point is low, it melts before vapor deposition, and in addition to being unable to form a stable film, the decomposition product of the compound increases, so the photoelectric conversion performance deteriorates.
 (吸収スペクトル)
 一般式(1)で表される化合物の吸収スペクトルのピーク波長は、可視領域の光を幅広く吸収するという観点から400nm以上700nm以下であることが好ましく、480nm以上700nm以下がより好ましく、510nm以上680nm以下であることが更に好ましい。
(Absorption spectrum)
The peak wavelength of the absorption spectrum of the compound represented by the general formula (1) is preferably 400 nm or more and 700 nm or less, more preferably 480 nm or more and 700 nm or less, more preferably 510 nm or more and 680 nm, from the viewpoint of broadly absorbing light in the visible region. More preferably, it is as follows.
 (ピーク波長のモル吸光係数)
 一般式(1)で表される化合物は、光を効率よく利用する観点から、モル吸光係数は高ければ高いほどよい。吸収スペクトル(クロロホルム溶液)が、波長400nmから700nmまでの可視領域において、モル吸光係数は20000M-1cm-1以上が好ましく、30000M-1cm-1以上がより好ましく、40000M-1cm-1以上が更に好ましい。
(Molar extinction coefficient of peak wavelength)
The higher the molar extinction coefficient is, the better the compound represented by the general formula (1) is from the viewpoint of efficiently using light. Absorption spectrum (chloroform solution), in the visible region of the wavelength 400nm to 700 nm, the molar absorption coefficient preferably 20000 -1 cm -1 or more, more preferably 30000 m -1 cm -1 or more, 40000M -1 cm -1 or more Is more preferable.
 低分子有機化合物は、p型有機半導体に用いられる、平面性の高い色素(特には自由回転軸が存在せず一平面状に分子の軸が全て存在している分子)の凝集を抑制するために必要なものであり、凝集させずに成膜するに必要なものである。低分子有機化合物は、光電変換層内で、平面性の高い色素の凝集剤として機能する。
 本発明において、低分子有機化合物とは、分子量が400以上1300以下のものであり、かつ光電変換層に含まれるn型有機半導体以外の分子化合物のことである。なお、分子量に関し、1300を超えると蒸着しにくくなり、分子量が1500を超えると蒸着できない。このため、分子量が1300を超えると光電変換層を形成することができない。また、低分子有機化合物は、光電変換層の吸収波長域に対して吸収がないものが好ましい。これにより、光電変換層に照射される光を有効に利用することができる。
Low-molecular-weight organic compounds suppress aggregation of highly planar dyes (particularly, molecules that do not have a free rotation axis and all the axes of a molecule are present) used in p-type organic semiconductors. It is necessary for film formation without agglomeration. The low molecular weight organic compound functions as an aggregating agent for a highly planar pigment within the photoelectric conversion layer.
In the present invention, the low molecular weight organic compound is a molecular compound having a molecular weight of 400 or more and 1300 or less and other than the n-type organic semiconductor contained in the photoelectric conversion layer. In addition, regarding molecular weight, when it exceeds 1300, it will become difficult to vapor-deposit, and when molecular weight exceeds 1500, it cannot vapor-deposit. For this reason, when the molecular weight exceeds 1300, a photoelectric conversion layer cannot be formed. Moreover, the low molecular organic compound is preferably one that does not absorb in the absorption wavelength region of the photoelectric conversion layer. Thereby, the light irradiated to a photoelectric converting layer can be utilized effectively.
 ここで、p型有機半導体に平面性の高い色素を用いた場合、平面性の高い色素はパッキング性がよく電子トラップが抑制され応答性を高速にできる。しかしながら、平面性の高い色素を用いた場合、色素の凝集が生じやすい。色素の凝集が生じると、粒界ができ、この粒界で電子トラップが生じて暗電流が増加する。また、平面性の高い色素を用いた場合、色素の凝集がなくとも、加熱されると、その熱により色素の凝集が生じてしまう。これにより、暗電流が増加する。そこで、光電変換層には、平面性の高い色素の凝集剤として機能する低分子有機化合物を含有する必要がある。 Here, when a dye having high flatness is used for the p-type organic semiconductor, the dye having high flatness has a good packing property and an electron trap is suppressed, and the responsiveness can be increased. However, when pigments with high flatness are used, pigment aggregation tends to occur. When the aggregation of the dye occurs, a grain boundary is formed, and an electron trap is generated at the grain boundary to increase the dark current. Further, when a dye having high flatness is used, even if there is no aggregation of the dye, the heat causes the aggregation of the dye due to the heat. Thereby, dark current increases. Therefore, the photoelectric conversion layer needs to contain a low molecular organic compound that functions as an aggregating agent for a highly flat pigment.
 低分子有機化合物は、その含有量が光電変換層に含まれるp型有機半導体に対して0.5質量%未満であると、p型有機半導体を構成する平面性の高い色素同士の凝集を抑制することができない。これにより、暗電流が増加し、撮像素子および光電変換素子の耐熱性が劣化してしまう。なお、耐熱性とは、予め設定された温度に加熱された後の暗電流の上昇の程度のことである。加熱後、暗電流の上昇がないものを耐熱性が高いという。 When the content of the low-molecular organic compound is less than 0.5% by mass with respect to the p-type organic semiconductor contained in the photoelectric conversion layer, aggregation of highly planar dyes constituting the p-type organic semiconductor is suppressed. Can not do it. Thereby, dark current increases and the heat resistance of an image pick-up element and a photoelectric conversion element will deteriorate. The heat resistance is the degree of increase in dark current after being heated to a preset temperature. Those that do not increase in dark current after heating are said to have high heat resistance.
 一方、低分子有機化合物の含有量が、光電変換層に含まれるp型有機半導体に対して5質量%を超えると、p型有機半導体とn型有機半導体との界面が減少し、撮像素子および光電変換素子の感度が低下する。これらのことから、低分子有機化合物の含有量は、p型有機半導体に対して0.5質量%以上5質量%以下とする。 On the other hand, when the content of the low-molecular organic compound exceeds 5% by mass with respect to the p-type organic semiconductor contained in the photoelectric conversion layer, the interface between the p-type organic semiconductor and the n-type organic semiconductor decreases, and the imaging device and The sensitivity of the photoelectric conversion element decreases. From these things, content of a low molecular organic compound shall be 0.5 mass% or more and 5 mass% or less with respect to a p-type organic semiconductor.
 低分子有機化合物は、イオン化ポテンシャルが5.0eV以上であることが好ましい。低分子有機化合物として、イオン化ポテンシャルが5.0eV以上の材料を用いることにより、電子ブロッキング層からの熱励起を抑制することができる。これにより、暗電流の増大を抑制することができる。
 低分子有機化合物として、具体的には、例えば、下記化合物2~7が挙げられる。下記化合物2は分子量が898、イオン化ポテンシャルが5.45eVである。下記化合物3は分子量が1042、イオン化ポテンシャルが5.06eVである。下記化合物4は分子量が517、イオン化ポテンシャルが5.5eVである。下記化合物5は分子量が636、イオン化ポテンシャルが5.2eVである。下記化合物6は分子量が798、イオン化ポテンシャルが5.49eVである。下記化合物7は分子量が941であり、イオン化ポテンシャルが5.65eVである。
The low molecular organic compound preferably has an ionization potential of 5.0 eV or more. By using a material having an ionization potential of 5.0 eV or more as the low molecular organic compound, thermal excitation from the electron blocking layer can be suppressed. Thereby, the increase in dark current can be suppressed.
Specific examples of the low molecular organic compound include the following compounds 2 to 7. The following compound 2 has a molecular weight of 898 and an ionization potential of 5.45 eV. The following compound 3 has a molecular weight of 1042 and an ionization potential of 5.06 eV. The following compound 4 has a molecular weight of 517 and an ionization potential of 5.5 eV. The following compound 5 has a molecular weight of 636 and an ionization potential of 5.2 eV. The following compound 6 has a molecular weight of 798 and an ionization potential of 5.49 eV. The following compound 7 has a molecular weight of 941 and an ionization potential of 5.65 eV.
 電子ブロッキング層20(電子ブロッキング層106)には、電子供与性有機材料を用いることができる。具体的には、低分子材料では、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)または4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体、カルバゾール誘導体、ビフルオレン誘導体等を用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体またはその誘導体を用いることができる。電子供与性化合物でなくとも、充分な正孔輸送性を有する化合物であれば用いることは可能である。 An electron donating organic material can be used for the electron blocking layer 20 (electron blocking layer 106). Specifically, for low molecular weight materials, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine (TPD) or 4,4′-bis [N Aromatic diamine compounds such as-(naphthyl) -N-phenyl-amino] biphenyl (α-NPD), oxazole, oxadiazole, triazole, imidazole, imidazolone, stilbene derivative, pyrazoline derivative, tetrahydroimidazole, polyarylalkane, butadiene 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA), porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, titanium phthalocyanine oxide, etc. Porphyrin compounds, triazole derivatives, Sadizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, carbazole derivatives, bifluorenes A derivative or the like can be used, and as the polymer material, a polymer such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, or a derivative thereof can be used. Even if it is not a compound, it can be used as long as it has sufficient hole transportability.
 具体的には、例えば、特開2008-72090号公報に記載された下記の化合物を用いるのが好ましい。なお、下記のEaはその材料の電子親和力、Ipはその材料のイオン化ポテンシャルを示す。EB―1,2,…の「EB」は「電子ブロッキング」の略である。 Specifically, for example, the following compounds described in JP-A-2008-72090 are preferably used. The following Ea represents the electron affinity of the material, and Ip represents the ionization potential of the material. “EB” in EB-1, 2,... Stands for “electronic blocking”.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 電子ブロッキング層20(電子ブロッキング層106)としては無機材料を用いることもできる。一般的に、無機材料は有機材料よりも誘電率が大きいため、無機材料を電子ブロッキング層20(電子ブロッキング層106)に用いた場合に、光電変換層22(光電変換層108)に電圧が多くかかるようになり、光電変換効率を高くすることができる。電子ブロッキング層20(電子ブロッキング層106)となりうる材料としては、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、および酸化イリジウム等がある。 An inorganic material can also be used as the electron blocking layer 20 (electron blocking layer 106). In general, since an inorganic material has a dielectric constant larger than that of an organic material, when the inorganic material is used for the electron blocking layer 20 (electron blocking layer 106), the photoelectric conversion layer 22 (photoelectric conversion layer 108) has a large voltage. As a result, the photoelectric conversion efficiency can be increased. Materials that can be used as the electron blocking layer 20 (electron blocking layer 106) include calcium oxide, chromium oxide, chromium oxide copper, manganese oxide, cobalt oxide, nickel oxide, copper oxide, gallium copper oxide, strontium copper oxide, niobium oxide, and oxide. Examples include molybdenum, indium copper oxide, indium silver oxide, and iridium oxide.
 電子ブロッキング層20(電子ブロッキング層106)は、単層または複数層で構成されている。電子ブロッキング層20(電子ブロッキング層106)は、有機材料単独膜で構成されてもよいし、複数の異なる有機材料の混合膜で構成されていてもよい。
 複数層からなる電子ブロッキング層20(電子ブロッキング層106)において、複数層のうち光電変換層22(光電変換層108)と隣接する層が光電変換層22(光電変換層108)に含まれるp型有機半導体と同じ材料からなる層であることが好ましい。電子ブロッキング層20(電子ブロッキング層106)にも同じp型有機半導体を用いることで、光電変換層22(光電変換層108)と隣接する層の界面に中間準位が形成されるのを抑制し、暗電流を更に抑制することができる。
 電子ブロッキング層20(電子ブロッキング層106)が単層の場合にはその層を無機材料からなる層とすることができ、または複数層の場合には1つまたは2以上の層を無機材料からなる層とすることができる。
The electron blocking layer 20 (electron blocking layer 106) is composed of a single layer or a plurality of layers. The electron blocking layer 20 (electron blocking layer 106) may be composed of a single organic material film, or may be composed of a mixed film of a plurality of different organic materials.
In the electron blocking layer 20 (electron blocking layer 106) composed of a plurality of layers, a layer adjacent to the photoelectric conversion layer 22 (photoelectric conversion layer 108) among the plurality of layers is included in the photoelectric conversion layer 22 (photoelectric conversion layer 108). A layer made of the same material as the organic semiconductor is preferable. By using the same p-type organic semiconductor for the electron blocking layer 20 (electron blocking layer 106), it is possible to suppress formation of an intermediate level at the interface between the photoelectric conversion layer 22 (photoelectric conversion layer 108) and the adjacent layer. The dark current can be further suppressed.
When the electron blocking layer 20 (electron blocking layer 106) is a single layer, the layer can be a layer made of an inorganic material, or in the case of a plurality of layers, one or more layers are made of an inorganic material. It can be a layer.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の光電変換素子および撮像素子について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. The photoelectric conversion element and the imaging element of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiment, and various improvements or modifications may be made without departing from the gist of the present invention. Of course.
 以下、本発明の撮像素子の光電変換層の効果を具体的に説明する。
 本実施例においては、実施例1~24および比較例1~13の撮像素子を作製し、実施例1~24および比較例1~13の撮像素子について、評価項目として、感度、応答速度、および220℃熱処理後の暗電流上昇率を測定した。その測定結果を下記表1に示す。なお、撮像素子の構成は、図2に示す構成であり、CMOS基板上に形成された、画素電極(下部電極)/電子ブロッキング層/光電変換層/対向電極(上部電極)/保護膜(第1封止層)/応力緩和層(封止補助層)の構成である。なお、保護膜と応力緩和層とで封止層が構成される。
Hereinafter, the effect of the photoelectric conversion layer of the image sensor of the present invention will be specifically described.
In this example, the image pickup devices of Examples 1 to 24 and Comparative Examples 1 to 13 were manufactured, and for the image pickup devices of Examples 1 to 24 and Comparative Examples 1 to 13, sensitivity, response speed, and The dark current increase rate after heat treatment at 220 ° C. was measured. The measurement results are shown in Table 1 below. The configuration of the imaging device is the configuration shown in FIG. 2, and is formed on a CMOS substrate: pixel electrode (lower electrode) / electron blocking layer / photoelectric conversion layer / counter electrode (upper electrode) / protective film (first electrode). 1 sealing layer) / stress relaxation layer (sealing auxiliary layer). In addition, a sealing layer is comprised by a protective film and a stress relaxation layer.
 感度は、各実施例1~24および比較例1~13の撮像素子に、2×10V/cmの電場で印加したときの最大感度波長での外部量子効率の値を測定し、この外部量子効率の値を、各基準となる外部量子効率の値で除して得られたものである。すなわち、感度は、実施例1~24および比較例1~13の外部量子効率の値/基準の外部量子効率の値である。基準の外部量子効率の値には、比較例1の値を用いた。
 なお、各実施例1~24および比較例1~13の感度の値は、各光電変換素子の対向電極に2×10V/cmの外部電界を与えた場合に得られる電流値から算出された光電変換の外部量子効率を相対値で表したものである。その結果を下記表1に示す。
The sensitivity was measured by measuring the value of external quantum efficiency at the maximum sensitivity wavelength when applied to the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13 with an electric field of 2 × 10 5 V / cm. This is obtained by dividing the value of the quantum efficiency by the value of the external quantum efficiency as a reference. That is, the sensitivity is the external quantum efficiency value of Examples 1 to 24 and Comparative Examples 1 to 13 / reference external quantum efficiency value. The value of Comparative Example 1 was used as the reference external quantum efficiency value.
The sensitivity values of Examples 1 to 24 and Comparative Examples 1 to 13 are calculated from current values obtained when an external electric field of 2 × 10 5 V / cm is applied to the counter electrode of each photoelectric conversion element. It represents the external quantum efficiency of the photoelectric conversion as a relative value. The results are shown in Table 1 below.
 応答速度については、各実施例1~24および比較例1~13の撮像素子に対して2×10V/cmの電場で印加した状態で、パルスジェネレーターを用いてLEDを瞬間的に点灯と消灯を行い、上部電極側から光照射した。実施例1~24および比較例1~13の撮像素子について、それぞれ光照射後、4μ秒後の光信号強度と3m秒後の光信号強度をオシロスコープを用いて測定した。
 応答速度(%)は、実施例1~24および比較例1~13の撮像素子について、3m秒後の光信号強度を100とした場合の4μ秒後の光信号強度の値とした。この結果を下記表1に示す。
Regarding the response speed, the LED is instantaneously turned on using a pulse generator in a state where an electric field of 2 × 10 5 V / cm is applied to the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13. The light was turned off and light was irradiated from the upper electrode side. For the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13, the optical signal intensity after 4 μsec and the optical signal intensity after 3 msec after light irradiation were measured using an oscilloscope.
The response speed (%) was the value of the optical signal intensity after 4 μs when the optical signal intensity after 3 msec was 100 for the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13. The results are shown in Table 1 below.
 220℃熱処理後の暗電流上昇率については、まず、以下のようにして、室温状態で各実施例1~24および比較例1~13の撮像素子の暗電流の値を測定した。その後、各実施例1~24および比較例1~13の撮像素子を温度220℃で30分間保持して熱処理した。そして、再度室温状態にて各実施例1~24および比較例1~13の撮像素子の暗電流の値を測定した。
 熱処理前後での暗電流の変化を求め、その変化を暗電流の値の比率で表し、これを220℃熱処理後の暗電流上昇率とした。その結果を下記表1に示す。220℃熱処理後の暗電流上昇率は、耐熱性を評価するための指標である。
 暗電流については、撮像素子を遮光した状態で、上部電極側に2×10V/cmの電場を印加し、この状態でソースメータ(Keithley社製6430)を用いて測定された撮像素子の電流の値を暗電流とした。
Regarding the dark current increase rate after heat treatment at 220 ° C., the dark current values of the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13 were measured at room temperature as follows. Thereafter, the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13 were heat-treated while being held at a temperature of 220 ° C. for 30 minutes. Then, the dark current values of the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13 were measured again at room temperature.
The change in dark current before and after the heat treatment was determined, and the change was expressed as a ratio of dark current values, which was defined as the dark current increase rate after heat treatment at 220 ° C. The results are shown in Table 1 below. The dark current increase rate after heat treatment at 220 ° C. is an index for evaluating heat resistance.
For the dark current, an electric field of 2 × 10 5 V / cm was applied to the upper electrode side with the image sensor shielded from light, and the image sensor measured using a source meter (Keithley 6430) in this state was used. The value of current was dark current.
 以下、各実施例1~24および比較例1~13の撮像素子について説明する。
 (実施例1)
 実施例1においては、まず、画素電極が形成されているCMOS基板を有機蒸着室に移動し、CMOS基板を基板ホルダーに取り付け、室内を1×10-4Pa以下に減圧した。その後、基板ホルダーを回転させながら、画素電極上に、抵抗加熱蒸着法により下記化合物2を電子ブロッキング層として蒸着速度1.0~1.2Å/Secで厚みが1000Åとなるように蒸着した。
 次に、化合物1(p型有機半導体)とフラーレンC60(n型有機半導体)と化合物2(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.006~0.007Å/Secで厚みが4000Åとなるように蒸着して光電変換層を形成した。
 次に、スパッタ室に搬送し、光電変換層上に対向電極としてITOをRFマグネトロンスパッタにより厚みが100Åとなるようにスパッタした。その後、ALD室へ搬送し、第1封止層(保護膜)としてAl膜を原子層堆積(ALD)法により厚みが2000Åとなるように成膜した。その後、スパッタ室に搬送し、封止補助層(応力緩和層)としてSiON膜をプレーナ型スパッタにより厚みが1000Åとなるように成膜した。
Hereinafter, the image sensors of Examples 1 to 24 and Comparative Examples 1 to 13 will be described.
Example 1
In Example 1, first, the CMOS substrate on which the pixel electrode was formed was moved to the organic vapor deposition chamber, the CMOS substrate was attached to the substrate holder, and the chamber was depressurized to 1 × 10 −4 Pa or less. Thereafter, while rotating the substrate holder, the following compound 2 was deposited as an electron blocking layer on the pixel electrode by a resistance heating vapor deposition method at a deposition rate of 1.0 to 1.2 mm / Sec and a thickness of 1000 mm.
Next, Compound 1 (p-type organic semiconductor), fullerene C 60 (n-type organic semiconductor) and Compound 2 (low-molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4. A photoelectric conversion layer was formed by vapor deposition at a thickness of 4000 で at 0 Å / Sec, 0.006 to 0.007 Å / Sec.
Next, it was transferred to a sputtering chamber, and ITO was sputtered on the photoelectric conversion layer as a counter electrode so as to have a thickness of 100 mm by RF magnetron sputtering. Thereafter, the film was transferred to the ALD chamber, and an Al 2 O 3 film was formed as a first sealing layer (protective film) so as to have a thickness of 2000 mm by an atomic layer deposition (ALD) method. Thereafter, the film was transferred to a sputtering chamber, and a SiON film was formed as a sealing auxiliary layer (stress relaxation layer) by planar sputtering so as to have a thickness of 1000 mm.
 (実施例2)
 化合物1とフラーレンC60と化合物2(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.012~0.014Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例3)
化合物1とフラーレンC60と化合物2(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.036~0.042Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例4)
化合物1とフラーレンC60と化合物2(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.06~0.07Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例5)
 化合物1とフラーレンC60と化合物3(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.006~0.007Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
(Example 2)
Compound 1, fullerene C 60 and compound 2 (low molecular weight organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.012 to 0.014 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
Example 3
Compound 1, fullerene C 60 and compound 2 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.036 to 0.042 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
Example 4
Compound 1, fullerene C 60 and compound 2 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec, and 0.06 to 0.07 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 5)
Compound 1, fullerene C 60, and compound 3 (low molecular organic compound) have vapor deposition rates of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec, and 0.006 to 0.007 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
 (実施例6)
 化合物1とフラーレンC60と化合物3(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.012~0.014Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例7)
 化合物1とフラーレンC60と化合物3(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.036~0.042Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例8)
 化合物1とフラーレンC60と化合物3(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.06~0.07Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例9)
 化合物1とフラーレンC60と化合物4(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.006~0.007Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
(Example 6)
Compound 1, fullerene C 60 and compound 3 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.012 to 0.014 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 7)
Compound 1, fullerene C 60 and compound 3 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.036 to 0.042 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 8)
Compound 1, fullerene C 60, and compound 3 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 Å / Sec, and 0.06 to 0.07 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
Example 9
Compound 1, fullerene C 60, and compound 4 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 Å / Sec, and 0.006 to 0.007 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
 (実施例10)
 化合物1とフラーレンC60と化合物4(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.012~0.014Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例11)
 化合物1とフラーレンC60と化合物4(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.036~0.042Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例12)
 化合物1とフラーレンC60と化合物4(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.06~0.07Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例13)
 化合物1とフラーレンC60と化合物5(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.006~0.007Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例14)
 化合物1とフラーレンC60と化合物5(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.012~0.014Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
(Example 10)
Compound 1, fullerene C 60, and compound 4 (low molecular organic compound) have deposition rates of 1.2 to 1.4 liters / Sec, 3.8 to 4.0 liters / Sec, and 0.012 to 0.014 liters / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 11)
Compound 1, fullerene C 60 and compound 4 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.036 to 0.042 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
Example 12
Compound 1, fullerene C 60, and compound 4 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 Å / Sec, and 0.06 to 0.07 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 13)
Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.006 to 0.007 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 14)
Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.012 to 0.014 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
 (実施例15)
 化合物1とフラーレンC60と化合物5(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.036~0.042Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例16)
 化合物1とフラーレンC60と化合物5(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.06~0.07Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例17)
 化合物1とフラーレンC60と化合物6(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.006~0.007Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例18)
 化合物1とフラーレンC60と化合物6(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.012~0.014Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例19)
 化合物1とフラーレンC60と化合物6(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.036~0.042Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
(Example 15)
Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.036 to 0.042 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 16)
Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.06 to 0.07 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 17)
Compound 1, fullerene C 60 and compound 6 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec, and 0.006 to 0.007 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 18)
Compound 1, fullerene C 60, and compound 6 (low molecular organic compound) have vapor deposition rates of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec, and 0.012 to 0.014 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 19)
Compound 1, fullerene C 60 and compound 6 (low molecular organic compound) have vapor deposition rates of 1.2 to 1.4 ~ / Sec, 3.8 to 4.0 Å / Sec and 0.036 to 0.042 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
 (実施例20)
 化合物1とフラーレンC60と化合物6(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.06~0.07Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例21)
 化合物1とフラーレンC60と化合物7(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.006~0.007Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例22)
 化合物1とフラーレンC60と化合物7(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.012~0.014Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例23)
 化合物1とフラーレンC60と化合物7(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.036~0.042Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (実施例24)
 化合物1とフラーレンC60と化合物7(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.06~0.07Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
(Example 20)
Compound 1, fullerene C 60 and compound 6 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.06 to 0.07 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 21)
Compound 1, fullerene C 60, and compound 7 (low molecular organic compound) have vapor deposition rates of 1.2 to 1.4 liters / Sec, 3.8 to 4.0 liters / Sec, and 0.006 to 0.007 liters / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 22)
Compound 1, fullerene C 60 and compound 7 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.012 to 0.014 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 23)
Compound 1, fullerene C 60, and compound 7 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 Å / Sec, and 0.036 to 0.042 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Example 24)
Compound 1, fullerene C 60 and compound 7 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.06 to 0.07 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
 (比較例1)
 化合物1(p型有機半導体)とフラーレンC60(n型有機半導体)のみを蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。比較例1では、低分子有機化合物を用いていない。
 (比較例2)
 化合物1とフラーレンC60と化合物2(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.004~0.005Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例3)
 化合物1とフラーレンC60と化合物2(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.07~0.08Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
(Comparative Example 1)
Only compound 1 (p-type organic semiconductor) and fullerene C 60 (n-type organic semiconductor) are vapor-deposited at a deposition rate of 1.2 to 1.4 Å / Sec and 3.8 to 4.0 Å / Sec for photoelectric conversion An imaging device was produced in the same manner as in Example 1 except that the layer was formed. In Comparative Example 1, no low molecular organic compound is used.
(Comparative Example 2)
Compound 1, fullerene C 60 and compound 2 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.004 to 0.005 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Comparative Example 3)
Compound 1, fullerene C 60 and compound 2 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.07 to 0.08 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
 (比較例4)
 化合物1とフラーレンC60と化合物3(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.004~0.005Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例5)
 化合物1とフラーレンC60と化合物3(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.07~0.08Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例6)
 化合物1とフラーレンC60と化合物4(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.036~0.042Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例7)
 化合物1とフラーレンC60と化合物4(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.07~0.08Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
(Comparative Example 4)
Compound 1, fullerene C 60, and compound 3 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 Å / Sec, and 0.004 to 0.005 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Comparative Example 5)
Compound 1, fullerene C 60, and compound 3 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 Å / Sec, and 0.07 to 0.08 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Comparative Example 6)
Compound 1, fullerene C 60 and compound 4 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.036 to 0.042 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Comparative Example 7)
Compound 1, fullerene C 60, and compound 4 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 S / Sec, 3.8 to 4.0 Å / Sec, and 0.07 to 0.08 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
 (比較例8)
 化合物1とフラーレンC60と化合物5(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.004~0.005Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例9)
 化合物1とフラーレンC60と化合物5(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.07~0.08Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例10)
 化合物1とフラーレンC60と化合物6(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.004~0.005Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例11)
 化合物1とフラーレンC60と化合物6(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.07~0.08Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
(Comparative Example 8)
Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.004 to 0.005 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Comparative Example 9)
Compound 1, fullerene C 60 and compound 5 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.07 to 0.08 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Comparative Example 10)
Compound 1, fullerene C 60 and compound 6 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.004 to 0.005 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Comparative Example 11)
Compound 1, fullerene C 60 and compound 6 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.07 to 0.08 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
 (比較例12)
 化合物1とフラーレンC60と化合物7(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.004~0.005Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
 (比較例13)
 化合物1とフラーレンC60と化合物7(低分子有機化合物)をそれぞれ蒸着速度1.2~1.4Å/Sec、3.8~4.0Å/Sec、0.07~0.08Å/Secとなるように蒸着して光電変換層を形成した以外は、実施例1と同様にして撮像素子を作製した。
(Comparative Example 12)
Compound 1, fullerene C 60, and compound 7 (low molecular organic compound) have vapor deposition rates of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec, and 0.004 to 0.005 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
(Comparative Example 13)
Compound 1, fullerene C 60 and compound 7 (low molecular organic compound) are deposited at a deposition rate of 1.2 to 1.4 Å / Sec, 3.8 to 4.0 Å / Sec and 0.07 to 0.08 Å / Sec, respectively. An imaging device was manufactured in the same manner as in Example 1 except that the photoelectric conversion layer was formed by vapor deposition.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 上記表1に示すように、実施例1~24は、いずれも感度、応答速度および暗電流上昇率に関し、優れた結果を得ることができた。実施例1~24は、感度および応答速度、ならびに耐熱性に優れている。
 一方、上記表2に示すように、低分子有機化合物を含まない比較例1は、暗電流上昇率が大きく耐熱性が劣っていた。また、低分子有機化合物の含有量が本発明の規定よりも少ない比較例2、4、6、8、10、12は、実施例1~24に比して耐熱性が劣っていた。しかしながら、低分子有機化合物の含有量が少ない比較例2、4、6、8、10、12は、比較例1よりも耐熱性がある。このように、低分子有機化合物を含有することで耐熱性を向上する。
 低分子有機化合物の含有量が本発明の規定よりも多い比較例3、5、7、9、11、13は、実施例1~24に比して感度および応答速度が劣っていた。しかも、低分子有機化合物の含有量が多い比較例3、5、7、9、11、13は、比較例1よりも感度および応答速度が劣っている。
 なお、分子量が1300を超える有機化合物を、低分子有機化合物に変えて蒸着しようとしたが、蒸着できず光電変換層が得られず、撮像素子を作製できないことを確認している。
As shown in Table 1 above, Examples 1 to 24 were all excellent in terms of sensitivity, response speed, and dark current increase rate. Examples 1 to 24 are excellent in sensitivity and response speed, and heat resistance.
On the other hand, as shown in Table 2 above, Comparative Example 1 containing no low molecular organic compound had a large dark current increase rate and poor heat resistance. Further, Comparative Examples 2, 4, 6, 8, 10, and 12 in which the content of the low-molecular organic compound was less than that of the present invention were inferior in heat resistance as compared with Examples 1 to 24. However, Comparative Examples 2, 4, 6, 8, 10, and 12 having a low content of low molecular organic compounds are more heat resistant than Comparative Example 1. Thus, heat resistance is improved by containing a low molecular organic compound.
In Comparative Examples 3, 5, 7, 9, 11, and 13 in which the content of the low-molecular organic compound was larger than that of the present invention, the sensitivity and response speed were inferior to those of Examples 1 to 24. Moreover, Comparative Examples 3, 5, 7, 9, 11, and 13 having a high content of low molecular organic compounds are inferior in sensitivity and response speed to Comparative Example 1.
Note that an organic compound having a molecular weight exceeding 1300 was changed to a low-molecular organic compound and vapor deposition was attempted, but it was confirmed that a photoelectric conversion layer could not be obtained due to vapor deposition, and an imaging device could not be manufactured.
 10 撮像素子
 12、102 基板
 14 絶縁層
 16 画素電極
 20、106 電子ブロッキング層
 22、108 光電変換層
 24、110 有機層
 26 対向電極
 28、114 封止層
 29 第1封止層
 30 封止補助層
 40 読出し回路
 42 対向電極電圧供給部
 44 第1の接続部
 46 第2の接続部
 100 光電変換素子
 104 下部電極
 112 上部電極
DESCRIPTION OF SYMBOLS 10 Image sensor 12, 102 Substrate 14 Insulating layer 16 Pixel electrode 20, 106 Electron blocking layer 22, 108 Photoelectric conversion layer 24, 110 Organic layer 26 Counter electrode 28, 114 Sealing layer 29 First sealing layer 30 Sealing auxiliary layer 40 Reading Circuit 42 Counter Electrode Voltage Supply Unit 44 First Connection Unit 46 Second Connection Unit 100 Photoelectric Conversion Element 104 Lower Electrode 112 Upper Electrode

Claims (5)

  1.  基板上に下部電極と、光電変換層を含む有機層と、透明電極層を含む上部電極とがこの順に積層された光電変換素子であって、
     前記光電変換層は、一般式(1)で表される化合物のp型有機半導体と、フラーレンまたはフラーレン誘導体のn型有機半導体のバルクへテロ構造を有し、
     前記光電変換層は、更に低分子有機化合物を前記p型有機半導体に対して、0.5質量%以上5質量%以下含有することを特徴とする光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

     一般式(1)中、Zは少なくとも2つの炭素原子を含む環であって、5員環、6員環、または5員環および6員環の少なくともいずれかを含む縮合環を表す。L、L、およびLはそれぞれ独立に無置換メチン基、または置換メチン基を表す。Dは原子群を表す。nは0以上の整数を表す。
    A photoelectric conversion element in which a lower electrode, an organic layer including a photoelectric conversion layer, and an upper electrode including a transparent electrode layer are stacked in this order on a substrate,
    The photoelectric conversion layer has a bulk heterostructure of a p-type organic semiconductor of the compound represented by the general formula (1) and an n-type organic semiconductor of fullerene or a fullerene derivative,
    The photoelectric conversion layer further contains a low-molecular organic compound in an amount of 0.5% by mass to 5% by mass with respect to the p-type organic semiconductor.
    Figure JPOXMLDOC01-appb-C000001

    In the general formula (1), Z 1 represents a ring containing at least two carbon atoms and represents a 5-membered ring, a 6-membered ring, or a condensed ring containing at least one of a 5-membered ring and a 6-membered ring. L 1 , L 2 , and L 3 each independently represent an unsubstituted methine group or a substituted methine group. D 1 represents an atomic group. n represents an integer of 0 or more.
  2.  前記低分子有機化合物は、分子量が400以上1300以下である請求項1に記載の光電変換素子。 The photoelectric conversion device according to claim 1, wherein the low molecular organic compound has a molecular weight of 400 or more and 1300 or less.
  3.  前記低分子有機化合物は、イオン化ポテンシャルが5.0eV以上である請求項1または2に記載の光電変換素子。 The photoelectric conversion element according to claim 1 or 2, wherein the low molecular organic compound has an ionization potential of 5.0 eV or more.
  4.  請求項1~3のいずれか1項に記載の光電変換素子を有することを特徴とする撮像素子。 An imaging device comprising the photoelectric conversion device according to any one of claims 1 to 3.
  5.  前記光電変換素子の光電変換層で発生した電荷を蓄積するための電荷蓄積部と、前記光電変換層の電荷を前記電荷蓄積部へ伝達するための接続部とを有する請求項4に記載の撮像素子。 5. The imaging according to claim 4, further comprising: a charge accumulation unit for accumulating charges generated in the photoelectric conversion layer of the photoelectric conversion element; and a connection unit for transmitting the charges of the photoelectric conversion layer to the charge accumulation unit. element.
PCT/JP2014/073531 2013-09-30 2014-09-05 Photoelectric conversion element and imaging element WO2015045806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020167006394A KR101857892B1 (en) 2013-09-30 2014-09-05 Photoelectric conversion element and imaging element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013204422 2013-09-30
JP2013-204422 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045806A1 true WO2015045806A1 (en) 2015-04-02

Family

ID=52742953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073531 WO2015045806A1 (en) 2013-09-30 2014-09-05 Photoelectric conversion element and imaging element

Country Status (4)

Country Link
JP (1) JP6059697B2 (en)
KR (1) KR101857892B1 (en)
TW (1) TWI636599B (en)
WO (1) WO2015045806A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147202A1 (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device
JP2018129505A (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Photoelectric conversion element, light area sensor using the same, imaging element, and imaging device
JP2019096632A (en) * 2017-11-17 2019-06-20 キヤノン株式会社 Photoelectric conversion element, optical area sensor using the same, image pickup device, and imaging apparatus
US10692913B2 (en) 2015-06-25 2020-06-23 Sony Corporation Photoelectric conversion element, image pickup element, laminated image pickup element, and image pickup device
US11128791B2 (en) 2017-02-07 2021-09-21 Canon Kabushiki Kaisha Photoelectric conversion element

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374015B2 (en) * 2015-05-29 2019-08-06 Sony Semiconductor Solutions Corporation Photoelectric conversion element and solid-state imaging device
KR102491494B1 (en) 2015-09-25 2023-01-20 삼성전자주식회사 Compound for organic photoelectric device and organic photoelectric device and image sensor including the same
KR102529631B1 (en) 2015-11-30 2023-05-04 삼성전자주식회사 Organic photoelectronic device and image sensor
KR102557864B1 (en) 2016-04-06 2023-07-19 삼성전자주식회사 Compound and organic photoelectric device, image sensor and electronic device including the same
US10236461B2 (en) 2016-05-20 2019-03-19 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor
KR102605375B1 (en) 2016-06-29 2023-11-22 삼성전자주식회사 Organic photoelectronic device and image sensor
KR102589215B1 (en) 2016-08-29 2023-10-12 삼성전자주식회사 Organic photoelectronic device and image sensor and electronic device
US11145822B2 (en) 2017-10-20 2021-10-12 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
JP6853767B2 (en) 2017-11-13 2021-03-31 株式会社東芝 Radiation detector
WO2023218933A1 (en) * 2022-05-12 2023-11-16 富士フイルム株式会社 Photoelectric conversion element, imaging element, photosensor, and compound
WO2024048488A1 (en) * 2022-08-31 2024-03-07 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252768A (en) * 2008-04-01 2009-10-29 Fuji Electric Holdings Co Ltd Organic solar cell and method of manufacturing the same
JP2011176259A (en) * 2009-06-03 2011-09-08 Fujifilm Corp Photoelectric conversion device and imaging device
JP2011254069A (en) * 2010-05-07 2011-12-15 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
JP2012028739A (en) * 2010-05-07 2012-02-09 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
JP2012077064A (en) * 2010-09-08 2012-04-19 Fujifilm Corp Photoelectric conversion material, film containing the photoelectric conversion material, photoelectric conversion element, method for producing the photoelectric conversion element, method of using photoelectric conversion element, photosensor and image sensor
JP2014003094A (en) * 2012-06-15 2014-01-09 Mitsubishi Chemicals Corp Photoelectric conversion element, solar cell, and solar cell module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264865B2 (en) * 2010-03-31 2013-08-14 富士フイルム株式会社 Photoelectric conversion element and imaging element
JP5323025B2 (en) 2010-10-26 2013-10-23 富士フイルム株式会社 Solid-state image sensor
JP5492939B2 (en) * 2012-05-21 2014-05-14 富士フイルム株式会社 Manufacturing method of solid-state imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252768A (en) * 2008-04-01 2009-10-29 Fuji Electric Holdings Co Ltd Organic solar cell and method of manufacturing the same
JP2011176259A (en) * 2009-06-03 2011-09-08 Fujifilm Corp Photoelectric conversion device and imaging device
JP2011254069A (en) * 2010-05-07 2011-12-15 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
JP2012028739A (en) * 2010-05-07 2012-02-09 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
JP2012077064A (en) * 2010-09-08 2012-04-19 Fujifilm Corp Photoelectric conversion material, film containing the photoelectric conversion material, photoelectric conversion element, method for producing the photoelectric conversion element, method of using photoelectric conversion element, photosensor and image sensor
JP2014003094A (en) * 2012-06-15 2014-01-09 Mitsubishi Chemicals Corp Photoelectric conversion element, solar cell, and solar cell module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10692913B2 (en) 2015-06-25 2020-06-23 Sony Corporation Photoelectric conversion element, image pickup element, laminated image pickup element, and image pickup device
WO2018147202A1 (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device
JP2018129505A (en) * 2017-02-07 2018-08-16 キヤノン株式会社 Photoelectric conversion element, light area sensor using the same, imaging element, and imaging device
US11128791B2 (en) 2017-02-07 2021-09-21 Canon Kabushiki Kaisha Photoelectric conversion element
JP7039285B2 (en) 2017-02-07 2022-03-22 キヤノン株式会社 Photoelectric conversion element, optical area sensor using it, image sensor, image sensor
JP2019096632A (en) * 2017-11-17 2019-06-20 キヤノン株式会社 Photoelectric conversion element, optical area sensor using the same, image pickup device, and imaging apparatus
JP7086573B2 (en) 2017-11-17 2022-06-20 キヤノン株式会社 Photoelectric conversion element, optical area sensor using it, image sensor, image sensor

Also Published As

Publication number Publication date
JP2015092546A (en) 2015-05-14
JP6059697B2 (en) 2017-01-11
TW201513421A (en) 2015-04-01
TWI636599B (en) 2018-09-21
KR101857892B1 (en) 2018-05-14
KR20160043018A (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP6059697B2 (en) Photoelectric conversion device and imaging device
JP5270642B2 (en) Photoelectric conversion element and imaging element
JP5323025B2 (en) Solid-state image sensor
JP6046649B2 (en) Photoelectric conversion device and imaging device using the same
JP6010514B2 (en) Photoelectric conversion device and imaging device
JP5264865B2 (en) Photoelectric conversion element and imaging element
JP5814293B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND IMAGING ELEMENT, PHOTOELECTRIC CONVERSION ELEMENT MANUFACTURING METHOD, AND IMAGING ELEMENT MANUFACTURING METHOD
JP5806176B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JP5662893B2 (en) Vapor deposition material for photoelectric conversion element, photoelectric conversion element, sensor, imaging element
JP5824436B2 (en) Photoelectric conversion device and imaging device using the same
WO2013031471A1 (en) Photoelectric conversion element manufacturing method and image capture element manufacturing method
JP5651507B2 (en) Manufacturing method of organic photoelectric conversion element, organic photoelectric conversion element, imaging element, imaging apparatus
JP6231435B2 (en) Solid-state image sensor
JP2013055248A (en) Manufacturing method of photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006394

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848213

Country of ref document: EP

Kind code of ref document: A1