WO2024048488A1 - Solid-state imaging device - Google Patents
Solid-state imaging device Download PDFInfo
- Publication number
- WO2024048488A1 WO2024048488A1 PCT/JP2023/030869 JP2023030869W WO2024048488A1 WO 2024048488 A1 WO2024048488 A1 WO 2024048488A1 JP 2023030869 W JP2023030869 W JP 2023030869W WO 2024048488 A1 WO2024048488 A1 WO 2024048488A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical filter
- solid
- imaging device
- state imaging
- photoelectric conversion
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 385
- 230000003287 optical effect Effects 0.000 claims abstract description 282
- 238000006243 chemical reaction Methods 0.000 claims abstract description 257
- 238000012546 transfer Methods 0.000 claims abstract description 89
- 238000003860 storage Methods 0.000 claims abstract description 78
- 239000000463 material Substances 0.000 claims abstract description 46
- 239000000470 constituent Substances 0.000 claims abstract description 27
- 238000007789 sealing Methods 0.000 claims description 240
- 239000012212 insulator Substances 0.000 claims description 125
- 239000004065 semiconductor Substances 0.000 claims description 61
- 229910052739 hydrogen Inorganic materials 0.000 claims description 25
- 239000001257 hydrogen Substances 0.000 claims description 25
- 238000005530 etching Methods 0.000 claims description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 17
- 229920005989 resin Polymers 0.000 claims description 17
- 239000003566 sealing material Substances 0.000 claims description 9
- 238000010030 laminating Methods 0.000 claims description 8
- 239000000049 pigment Substances 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 4
- 239000000758 substrate Substances 0.000 abstract description 16
- 239000010410 layer Substances 0.000 description 144
- 238000012545 processing Methods 0.000 description 37
- 238000005516 engineering process Methods 0.000 description 36
- 230000000694 effects Effects 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 28
- 238000000034 method Methods 0.000 description 28
- 230000000875 corresponding effect Effects 0.000 description 27
- 238000001514 detection method Methods 0.000 description 23
- 239000010408 film Substances 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- 230000004048 modification Effects 0.000 description 19
- 238000004891 communication Methods 0.000 description 18
- 238000002674 endoscopic surgery Methods 0.000 description 13
- 229910004298 SiO 2 Inorganic materials 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 10
- 238000007667 floating Methods 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 10
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 9
- 239000002131 composite material Substances 0.000 description 9
- 229910000449 hafnium oxide Inorganic materials 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 230000003321 amplification Effects 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- -1 PCBM fullerene compounds Chemical class 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 6
- 229910003472 fullerene Inorganic materials 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- PMJMHCXAGMRGBZ-UHFFFAOYSA-N subphthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(=N3)N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C3=N1 PMJMHCXAGMRGBZ-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 101710170230 Antimicrobial peptide 1 Proteins 0.000 description 4
- 101100191136 Arabidopsis thaliana PCMP-A2 gene Proteins 0.000 description 4
- 101100048260 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UBX2 gene Proteins 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 150000002391 heterocyclic compounds Chemical class 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 101710170231 Antimicrobial peptide 2 Proteins 0.000 description 3
- 101100041125 Arabidopsis thaliana RST1 gene Proteins 0.000 description 3
- 208000005646 Pneumoperitoneum Diseases 0.000 description 3
- 101100443250 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) DIG1 gene Proteins 0.000 description 3
- 101100422768 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SUL2 gene Proteins 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000010336 energy treatment Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 2
- 101100443251 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) DIG2 gene Proteins 0.000 description 2
- 101100041128 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rst2 gene Proteins 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 125000000609 carbazolyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 description 2
- 229960004657 indocyanine green Drugs 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229920002098 polyfluorene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical class C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RWBMMASKJODNSV-UHFFFAOYSA-N [1]benzothiolo[2,3-g][1]benzothiole Chemical class C1=CC=C2C3=C(SC=C4)C4=CC=C3SC2=C1 RWBMMASKJODNSV-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001251 acridines Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 229940027998 antiseptic and disinfectant acridine derivative Drugs 0.000 description 1
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000005104 aryl silyl group Chemical group 0.000 description 1
- 125000005163 aryl sulfanyl group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000005392 carboxamide group Chemical group NC(=O)* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001846 chrysenes Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 150000001907 coumarones Chemical class 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 150000002219 fluoranthenes Chemical class 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 150000002537 isoquinolines Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 150000005041 phenanthrolines Chemical class 0.000 description 1
- 150000002988 phenazines Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000001007 phthalocyanine dye Substances 0.000 description 1
- 150000003039 picenes Chemical class 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 125000005353 silylalkyl group Chemical group 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 150000003518 tetracenes Chemical class 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 150000007979 thiazole derivatives Chemical class 0.000 description 1
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical class S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical class C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- OYQCBJZGELKKPM-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O-2].[Zn+2].[O-2].[In+3] OYQCBJZGELKKPM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
Definitions
- the present disclosure relates to a solid-state imaging device.
- Patent Document 1 discloses an image sensor.
- the image sensor includes a semiconductor photodiode formed on a substrate, a color filter on the semiconductor photodiode, and an organic photodiode on the color filter. Color filters transmit light in a specific wavelength range.
- a resin material is used for the color filter, and the resin material contains pigment.
- the organic photodiode includes a first electrode, a second electrode on the first electrode, and an organic photoelectric conversion layer formed between the first electrode and the second electrode.
- a solid-state imaging device includes a first photoelectric conversion section that is disposed on a base and converts light in a first wavelength range into electric charge, and a first photoelectric conversion section that is disposed on a side opposite to the base of the first photoelectric conversion section. an optical filter that is arranged on the opposite side of the optical filter to the first photoelectric conversion section and that transmits light in a first wavelength range, and that converts light in a second wavelength range different from the first wavelength range into electric charge.
- a second photoelectric conversion section for conversion; a charge storage and transfer layer disposed in the second photoelectric conversion section for accumulating and transferring charges converted in the second photoelectric conversion section; and a charge storage and transfer layer disposed on the optical filter side of the charge storage and transfer layer. and a first sealing body for sealing the constituent material of the optical filter.
- the solid-state imaging device is the solid-state imaging device according to the first embodiment, which is formed along the surface of the optical filter on the first photoelectric conversion unit side, and seals the constituent material of the optical filter.
- the apparatus further includes a second sealing body.
- the solid-state imaging device according to the third embodiment of the present disclosure is the solid-state imaging device according to the first embodiment or the second embodiment. It further includes three sealing bodies.
- a solid-state imaging device includes a first photoelectric conversion section that is disposed on a base and converts light in a first wavelength range into electric charges, and a region different from the first photoelectric conversion section on the base. a third photoelectric conversion section that is disposed on the opposite side of the base of the first photoelectric conversion section and that converts light in a third wavelength range shorter than the first wavelength range into electric charges; A first optical filter that transmits light in the wavelength range, and a third photoelectric conversion unit disposed on the opposite side of the base body, transmits light in the third wavelength range, and has a thickness that is thinner than the thickness of the first optical filter. and a third optical filter having a third optical filter.
- a solid-state imaging device is the solid-state imaging device according to the fourth embodiment, in which an opening is provided in the base and formed in the thickness direction from the surface opposite to the base. Equipped with an insulator with Each of the first optical filter and the third optical filter is disposed within the opening.
- the solid-state imaging device is formed on the surface of each of the first optical filter and the third optical filter opposite to the base body, and on the inner wall of the opening toward the side opposite to the base body from this surface, and the first optical filter
- the optical filter further includes a first sealing body for sealing the constituent materials of each of the third optical filters.
- the opening size is decreased from the surface opposite to the base body toward the base body, and the opening has a tapered cross-sectional shape. is formed.
- the solid-state imaging device is the solid-state imaging device according to the fourth embodiment, and includes a side opposite to the first photoelectric conversion section of the first optical filter and a third photoelectric conversion section of the third optical filter. a second photoelectric conversion section that is disposed on the opposite side and converts light in a second wavelength range different from the first wavelength range and the third wavelength range into charges; It further includes a charge storage and transfer layer that stores and transfers the charges converted in the two photoelectric conversion sections.
- FIG. 1 is a circuit block diagram illustrating a system configuration of a solid-state imaging device according to a first embodiment of the present disclosure.
- FIG. 2 is a circuit diagram of a pixel and a pixel circuit of the solid-state imaging device shown in FIG.
- FIG. 3 is a longitudinal cross-sectional view (a cross-sectional view taken along the line AA shown in FIG. 4) of a pixel of the solid-state imaging device according to the first embodiment.
- FIG. 4 is a plan view of a pixel of the solid-state imaging device shown in FIG. 3.
- FIG. 5 is a first step sectional view illustrating each step of the method for manufacturing the solid-state imaging device according to the first embodiment.
- FIG. 6 is a sectional view of the second step.
- FIG. 1 is a circuit block diagram illustrating a system configuration of a solid-state imaging device according to a first embodiment of the present disclosure.
- FIG. 2 is a circuit diagram of a pixel and a pixel circuit of the solid
- FIG. 7 is a sectional view of the third step.
- FIG. 8 is a sectional view of the fourth step.
- FIG. 9 is a sectional view of the fifth step.
- FIG. 10 is a sectional view of the sixth step.
- FIG. 11 is a sectional view of the seventh step.
- FIG. 12 is a longitudinal cross-sectional view (a cross-sectional view taken along the line BB shown in FIG. 13) corresponding to FIG. 3 of a pixel of a solid-state imaging device according to a second embodiment of the present disclosure.
- FIG. 13 is a plan view corresponding to FIG. 4 of a pixel of the solid-state imaging device shown in FIG. 12.
- FIG. 14 is a vertical cross-sectional view (a cross-sectional view taken along the line CC shown in FIG.
- FIG. 15 is a plan view corresponding to FIG. 4 of a pixel of the solid-state imaging device shown in FIG. 14.
- FIG. 16 is a longitudinal sectional view (a sectional view taken along the line DD shown in FIG. 17) corresponding to FIG. 3 of a pixel of a solid-state imaging device according to a fourth embodiment of the present disclosure.
- FIG. 17 is a plan view corresponding to FIG. 4 of a pixel of the solid-state imaging device shown in FIG. 16.
- FIG. 18 is a vertical cross-sectional view (a cross-sectional view taken along the line EE shown in FIG. 19) corresponding to FIG.
- FIG. 19 is a plan view corresponding to FIG. 4 of a pixel of the solid-state imaging device shown in FIG. 18.
- FIG. 20 is a vertical cross-sectional view corresponding to FIG. 3 of a pixel of a solid-state imaging device according to a sixth embodiment of the present disclosure.
- FIG. 21 is a vertical cross-sectional view corresponding to FIG. 3 of a pixel of a solid-state imaging device according to a seventh embodiment of the present disclosure.
- FIG. 22 is a vertical cross-sectional view corresponding to FIG. 3 of a pixel of a solid-state imaging device according to an eighth embodiment of the present disclosure.
- FIG. 19 is a plan view corresponding to FIG. 4 of a pixel of the solid-state imaging device shown in FIG. 18.
- FIG. 20 is a vertical cross-sectional view corresponding to FIG. 3 of a pixel of a solid-state imaging device according to a sixth embodiment of the present disclosure.
- FIG. 21 is a vertical cross-sectional view
- FIG. 23 is a vertical cross-sectional view corresponding to FIG. 3 of a pixel of a solid-state imaging device according to a ninth embodiment of the present disclosure.
- FIG. 24 is a vertical cross-sectional view corresponding to FIG. 3 of a pixel of a solid-state imaging device according to a tenth embodiment of the present disclosure.
- FIG. 25 is a first step cross-sectional view illustrating each step of the method for manufacturing a solid-state imaging device according to the tenth embodiment.
- FIG. 26 is a sectional view of the second step.
- FIG. 27 is a sectional view of the third step.
- FIG. 28 is a sectional view of the fourth step.
- FIG. 29 is a sectional view of the fifth step.
- FIG. 30 is a sectional view of the sixth step.
- FIG. 31 is a sectional view of the seventh step.
- FIG. 32 is a cross-sectional view of the eighth step.
- FIG. 33 is a plan view corresponding to FIG. 4 of a pixel of a solid-state imaging device according to an eleventh embodiment of the present disclosure.
- FIG. 34 is a plan view corresponding to FIG. 33 of a pixel of the solid-state imaging device according to the first modification of the eleventh embodiment.
- FIG. 35 is a plan view corresponding to FIG. 33 of a pixel of a solid-state imaging device according to a second modification of the eleventh embodiment.
- FIG. 36 is a plan view corresponding to FIG. 33 of a pixel of a solid-state imaging device according to a twelfth embodiment of the present disclosure.
- FIG. 33 is a plan view corresponding to FIG. 4 of a pixel of a solid-state imaging device according to an eleventh embodiment of the present disclosure.
- FIG. 34 is a plan view corresponding to FIG. 33 of
- FIG. 37 is a plan view corresponding to FIG. 35 of a pixel of the solid-state imaging device according to the first modification of the twelfth embodiment.
- FIG. 38 is a block diagram showing an example of a schematic configuration of a vehicle control system.
- FIG. 39 is an explanatory diagram showing an example of the installation positions of the outside-vehicle information detection section and the imaging section.
- FIG. 40 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system.
- FIG. 41 is a block diagram showing an example of the functional configuration of a camera head and a CCU.
- First Embodiment The first embodiment describes a first example in which the present technology is applied to a solid-state imaging device. In the first embodiment, the configuration and manufacturing method of a solid-state imaging device will be described. In particular, in the first embodiment, the structure and manufacturing method of the sealed body will be explained in detail. 2. Second Embodiment In the second embodiment, a second example will be described in which the structure of the sealing body is changed in the solid-state imaging device according to the first embodiment. 3.
- the ninth embodiment describes a ninth example in which the configuration of the optical filter is changed in the solid-state imaging device according to the eighth embodiment.
- 10. 10th Embodiment A 10th embodiment will describe a 10th example in which the configuration of the optical filter is changed in the solid-state imaging device according to the 9th embodiment.
- the structure of the optical filter, the structure of the sealing body, and the manufacturing method will be explained in detail.
- the eleventh embodiment describes an eleventh example in which the configuration of the optical filter is changed in the solid-state imaging device according to any of the fifth to tenth embodiments.
- Twelfth Embodiment describes a twelfth example in which the structure of the through electrode is changed in the solid-state imaging device according to any of the first to eleventh embodiments. Furthermore, in the twelfth embodiment, a first modification example in which the configuration of the through electrode is changed will also be described. 13.
- Application Example to a Mobile Object This application example describes an example in which the present technology is applied to a vehicle control system, which is an example of a mobile object control system. 14.
- Application example to an endoscopic surgery system This application example describes an example in which the present technology is applied to an endoscopic surgery system. 15. Other embodiments
- the arrow X direction shown as appropriate indicates one plane direction of the solid-state imaging device 1 placed on a plane for convenience.
- the arrow Y direction indicates another plane direction orthogonal to the arrow X direction.
- the arrow Z direction indicates an upward direction orthogonal to the arrow X direction and the arrow Y direction. That is, the arrow X direction, arrow Y direction, and arrow Z direction exactly correspond to the X-axis direction, Y-axis direction, and Z-axis direction, respectively, of the three-dimensional coordinate system. Note that these directions are shown to help understand the explanation, and do not limit the direction of the present technology.
- FIG. 1 shows an example of a circuit block for explaining the system configuration of solid-state imaging device 1.
- the solid-state imaging device 1 includes a light-receiving region 101 at the center of the base 2 when viewed from the direction of arrow Z (hereinafter simply referred to as "in plan view").
- a plurality of pixels 100 are regularly arranged.
- a plurality of pixels 100 are arranged with the arrow X direction as a first direction, and a plurality of pixels 100 are arranged with the arrow Y direction as a second direction. That is, the pixels 100 are arranged in a matrix.
- the incident light is converted into an electric charge as a signal.
- the solid-state imaging device 1 further includes peripheral circuits arranged around the light receiving area 101.
- the peripheral circuit includes at least a readout circuit RC1, a readout circuit RC2, and a drive circuit DR.
- one pixel 100 includes two photoelectric conversion units.
- one pixel 100 is constructed of two types of photoelectric conversion units stacked in the direction of arrow Z.
- the readout circuit RC1 includes, for example, a pixel circuit that reads the charge converted in one of the two types of photoelectric conversion sections as a signal.
- the readout circuit RC2 includes, for example, a pixel circuit that reads the charge converted by the other of the two types of photoelectric conversion sections as a signal.
- the drive circuit DR outputs a drive signal that drives the photoelectric conversion section of the pixel 100.
- FIG. 2 shows an example of the circuit configuration of the pixel 100, pixel circuit PC1, and pixel circuit PC2.
- the pixel 100 includes two photoelectric conversion units, a first photoelectric conversion unit 3 and a second photoelectric conversion unit 9.
- the wavelength band of light converted in the first photoelectric conversion unit 3 is different from the wavelength band of light converted in the second photoelectric conversion unit 9.
- the first photoelectric conversion section 3 is composed of a semiconductor photodiode. In the first photoelectric conversion unit 3, charges are generated according to the amount of incident light. The charge is sent as a signal to the pixel circuit PC1.
- the pixel circuit PC1 constructs a readout circuit RC1 (see FIG. 1).
- the pixel circuit PC1 is connected to the first photoelectric conversion section 3.
- the pixel circuit PC1 here includes a transfer transistor TG1, a reset transistor RST1, an amplification transistor AMP1, and a selection transistor SEL1.
- the pixel circuit PC1 may be constructed not to include the transfer transistor TG1 but to include the reset transistor RST1, the amplification transistor AMP1, and the selection transistor SEL1.
- the pixel circuit PC1 may be constructed further including a floating diffusion conversion gain switching transistor.
- the specific configuration of the pixel circuit PC1 is as follows.
- One of the pair of main electrodes of the transfer transistor TG1 is connected to the first photoelectric conversion section 3.
- the other main electrode is connected to the gate electrode of the amplification transistor AMP1 through the floating diffusion FD1.
- a control signal line (horizontal signal line) TS for transferring a control signal is connected to the gate electrode.
- One of the pair of main electrodes of the reset transistor RST1 is connected to the floating diffusion FD1.
- the other main electrode is connected to power supply voltage VDD.
- a reset signal line RS1 for transferring a reset signal is connected to the gate electrode.
- One of the pair of main electrodes of the amplification transistor AMP1 is connected to the power supply voltage VDD.
- the other main electrode is connected to one of the pair of main electrodes of the selection transistor SEL1.
- the other main electrode of the selection transistor SEL1 is connected to the output signal line (vertical signal line) VSL1.
- the gate electrode is connected to the selection signal line SS1.
- the control signal line TS is connected to the drive circuit DR (see FIG. 1).
- the output signal line VSL1 is connected to the read circuit RC1 (see FIG. 1).
- the second photoelectric conversion section 9 is composed of an organic photodiode here.
- charges are generated according to the amount of incident light.
- the charge is sent as a signal to the pixel circuit PC2.
- the pixel circuit PC2 constructs a readout circuit RC2 (see FIG. 1).
- the pixel circuit PC2 is connected to the second photoelectric conversion section 9.
- the pixel circuit PC2 here includes a reset transistor RST2, an amplification transistor AMP2, and a selection transistor SEL2. Furthermore, the pixel circuit PC2 may be constructed further including a floating diffusion conversion gain switching transistor.
- a drive signal line VOA that supplies a drive voltage to one electrode of each pixel 100 and a power supply voltage line VOU that supplies a fixed voltage to the other electrode of the plurality of pixels 100 are connected to the second photoelectric conversion unit 9. ing.
- the second photoelectric conversion section 9 is connected to the gate electrode of the amplification transistor AMP2 through the floating diffusion FD2.
- One of the pair of main electrodes of the reset transistor RST2 is connected to the floating diffusion FD2.
- the other main electrode is connected to power supply voltage VDD.
- a reset signal line RS2 for transferring a reset signal is connected to the gate electrode.
- One of the pair of main electrodes of the amplification transistor AMP2 is connected to the power supply voltage VDD.
- the other main electrode is connected to one of the pair of main electrodes of the selection transistor SEL2.
- the other main electrode of the selection transistor SEL2 is connected to the output signal line (vertical signal line) VSL2.
- the gate electrode is connected to the selection signal line SS2.
- the drive signal line VOA is connected to the drive circuit DR (see FIG. 1).
- the output signal line VSL2 is connected to the readout circuit RC2 (see FIG. 1).
- the through wiring 52 (or the through wiring 42) is described as a component.
- the through wiring 52 includes two types: a first through wiring 521 and a second through wiring 522.
- the first through wiring 521 constitutes a part of a floating diffusion FD2 that connects one electrode of the second photoelectric conversion section 9 and the pixel circuit PC2.
- the second through wiring 522 constitutes a connection wiring that connects the other electrode of the second photoelectric conversion section 9 and the drive signal line VOA.
- through wiring 52 when there is no particular need to distinguish between the first through wiring 521 and the second through wiring 522, they will be collectively referred to as simply "through wiring 52."
- the solid-state imaging device 1 further includes an image processing circuit (not shown).
- Each of the pixel circuit PC1 and the pixel circuit PC2 is connected to an image processing circuit.
- the image processing circuit includes, for example, an analog-to-digital converter (ADC) and a digital signal processor (DSP).
- ADC analog-to-digital converter
- DSP digital signal processor
- the charge converted from light by pixel 100 is an analog signal.
- This analog signal is amplified in each of the pixel circuit PC1 and the pixel circuit PC2.
- the ADC converts analog signals output from each of the pixel circuit PC1 and the pixel circuit PC2 into digital signals.
- DSP performs functional processing of digital signals. That is, the image processing circuit performs signal processing for image creation.
- FIG. 3 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the first embodiment.
- FIG. 4 shows an example of a planar configuration of the pixel 100 shown in FIG. 3.
- the solid-state imaging device 1 is a photodetection device that converts incident light from the outside in the direction of arrow Z into electric charges.
- the solid-state imaging device 1 includes a plurality of pixels 100 that convert incident light into electric charges.
- the planar shape of the pixel 100 is formed into a substantially square rectangular shape.
- a pixel isolation region 110 is provided along the periphery of the pixel 100 when viewed in the direction of arrow Y (hereinafter simply referred to as "side view") and when viewed in plan. Therefore, one pixel 100 is electrically and optically isolated from another pixel 100 with the pixel isolation region 110 interposed therebetween.
- the solid-state imaging device 1 includes a base 2, a first photoelectric conversion section 3, an optical filter 7, a second photoelectric conversion section 9, and a charge storage transfer layer 93 as main components.
- the pixel 100 includes a first photoelectric conversion section 3, an optical filter 7, a second photoelectric conversion section 9, and a charge storage transfer layer 93 as main components.
- the solid-state imaging device 1 includes an optical lens 13.
- the base 2 includes a circuit board 21 and a semiconductor substrate 22.
- the circuit board 21 is formed of, for example, a single crystal silicon (Si) substrate.
- the circuit board 21 includes peripheral circuits of the solid-state imaging device 1.
- the peripheral circuit includes at least a read circuit RC1, a read circuit RC2, and a drive circuit DR. explain in detail.
- Each of readout circuit RC1 and readout circuit RC2 includes a column signal processing circuit and an output circuit.
- the drive circuit DR includes a vertical drive circuit and a horizontal drive circuit.
- the peripheral circuit includes a control circuit.
- the control circuit receives an input clock and data instructing an operation mode, etc., and also outputs data such as internal information of the solid-state imaging device 1. That is, the control circuit generates a clock signal and a control signal that serve as a reference for the operation of the vertical drive circuit, column signal processing circuit, horizontal drive circuit, etc., based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock. These signals are then input to a vertical drive circuit, a column signal processing circuit, a horizontal drive circuit, and the like.
- the vertical drive circuit is composed of, for example, a shift register.
- the vertical drive circuit selects a pixel drive wiring and supplies a pulse for driving the pixel 100 to the selected pixel drive wiring.
- the pixels 100 are driven row by row. That is, the vertical drive circuit sequentially selectively scans each pixel 100 in the pixel area in the vertical direction row by row. Signal charges generated in the photoelectric conversion element of each pixel 100 according to the amount of light received through the vertical signal line are supplied to the column signal processing circuit as a pixel signal.
- a column signal processing circuit is arranged for each column of pixels 100, for example.
- signal processing such as noise removal is performed for each pixel column on the signals output from the pixels 100 for one row. That is, the column signal processing circuit performs signal processing such as CDS (Correlated Double Sampling) for removing fixed pattern noise specific to the pixel 100, signal amplification, and AD conversion.
- CDS Correlated Double Sampling
- a horizontal selection switch is connected between the output stage of the column signal processing circuit and the horizontal signal line.
- the horizontal drive circuit is composed of, for example, a shift register.
- the horizontal drive circuit sequentially outputs horizontal scanning pulses to sequentially select each of the column signal processing circuits, and outputs a pixel signal from each of the column signal processing circuits to the horizontal signal line.
- the output circuit performs signal processing on the signals sequentially supplied from each of the column signal processing circuits through the horizontal signal line, and outputs the processed signals. For example, in the output circuit, only buffering may be performed, black level adjustment, column variation correction, various digital signal processing, etc. may be performed.
- the input/output terminal exchanges signals between the solid-state imaging device 1 and the outside.
- the semiconductor substrate 22 is arranged on the circuit board 21.
- the semiconductor substrate 22 is here formed of a single-crystal Si substrate similarly to the circuit board 21.
- the first photoelectric conversion section 3 is disposed within the semiconductor substrate 22.
- the first photoelectric conversion unit 3 is provided for each pixel 100.
- the first photoelectric conversion unit 3 is constituted by a semiconductor photodiode including a p-type semiconductor region and an n-type semiconductor region, although the detailed configuration is not illustrated.
- the first photoelectric conversion section 3 is constituted by, for example, a PIN (Positive Intrinsic Negative) type photodiode.
- the first photoelectric conversion unit 3 receives incident light in a red light range as a first wavelength range or a blue light range as a first wavelength range, and performs photoelectric conversion according to the amount of received light. generates an electric charge.
- the charges generated in the first photoelectric conversion section 3 are output to the circuit board 21.
- the "first photoelectric conversion unit” according to the present technology corresponds to the first photoelectric conversion unit 3 that receives incident light in a red light range as a first wavelength range or in a blue light range as a first wavelength range. are doing. Further, the “first photoelectric conversion unit” according to the present technology corresponds to the first photoelectric conversion unit 3 that receives incident light in the red light range as the first wavelength range, and the “third photoelectric conversion unit” corresponds to the first photoelectric conversion unit 3 that receives incident light in the red light range as the first wavelength range. It corresponds to the first photoelectric conversion unit 3 (or third photoelectric conversion unit) that receives incident light in a blue light range as a third wavelength range shorter than the first wavelength range.
- the optical filter 7 is disposed on the opposite side of the semiconductor substrate 22 from the circuit board 21 with an insulator 41 interposed therebetween.
- the insulator 41 is made of, for example, silicon oxide (SiO 2 ).
- An insulator 51 is further laminated on the insulator 41, and the optical filter 7 is embedded in an opening 51H formed through the insulator 51 in the thickness direction.
- the insulator 51 is made of, for example, SiO 2 or the like.
- the optical filter 7 includes, as the first wavelength range, a red filter 7R that transmits a red wavelength range, and a blue filter 7B that transmits a blue wavelength range.
- the red filter 7R transmits light having a wavelength of, for example, 585 nm or more and 780 nm or less.
- the blue filter 7B transmits light having a wavelength of, for example, 400 nm or more and 500 nm or less.
- the "first optical filter” according to the present technology corresponds to the red filter 7R or the blue filter 7B.
- the "first optical filter” according to the present technology corresponds to the red filter 7R
- the "third optical filter” according to the present technology corresponds to the blue filter 7B.
- the red filters 7R and the blue filters 7B are arranged alternately in the arrow X direction and the arrow Y direction, respectively.
- two pixels 100 arranged in the direction of arrow X and two pixels 100 arranged in the direction of arrow Y constitute one pixel unit PU.
- two red filters 7R are arranged along one diagonal line d1-d1, which is shown for convenience.
- two blue filters 7B are arranged along the other diagonal line d2-d2, which is shown for convenience.
- the surface of each of the red filter 7R and the blue filter 7B on the side opposite to the base body 2 is formed in a cross-sectional shape that curves toward the base body 2 side.
- the optical filter 7 is formed of, for example, a resin material containing a pigment that colors the resin material.
- the resin for example, organic resin materials such as phthalocyanine derivatives can be practically used.
- the film thickness t1 of the red filter 7R is, for example, 400 nm or more and 850 nm or less.
- the film thickness t3 of the blue filter 7B is, for example, 200 nm or more and 550 nm or less.
- Each of the red filter 7R and the blue filter 7B is formed to have a different thickness for sensitivity adjustment. In the first embodiment, the thickness of the blue filter 7B in the same direction is thinner than the thickness of the red filter 7R in the direction of arrow Z.
- the second photoelectric conversion section 9 is disposed on the opposite side of the optical filter 7 from the first photoelectric conversion section 3 with an insulator 81 interposed therebetween.
- the insulator 81 is made of, for example, SiO 2 .
- the second photoelectric conversion unit 9 is arranged across the plurality of pixels 100.
- the second photoelectric conversion section 9 is arranged across all the pixels 100. Note that in the present technology, the second photoelectric conversion unit 9 may be provided for each pixel 100, each pixel unit PU, each plurality of pixels 100, or each plurality of pixel units PU.
- the second photoelectric conversion section 9 includes a first electrode 91, an organic photoelectric conversion layer 94, and a second electrode 95. Further, the second photoelectric conversion section 9 includes an insulator 92 and a charge storage transfer layer 93.
- the first electrode 91 is disposed on the optical filter 7 side and is formed on the surface of the insulator 81.
- the first electrode 91 is used as a readout electrode or a lower electrode, and is arranged for each pixel 100.
- the first electrode 91 is connected to a predetermined circuit of the circuit board 21 through a wiring 82 and the like disposed within the insulator 81 .
- the first electrode 91 is made of conductive and transparent material such as indium oxide-zinc oxide (IZO) or indium tin oxide (ITO). has been done.
- the thickness of the first electrode 91 is, for example, 10 nm or more and 100 nm or less.
- the organic photoelectric conversion layer 94 is disposed on the opposite side of the first electrode 91 from the optical filter 7 with an insulator 92 interposed therebetween.
- the insulator 92 is made of an insulating material such as SiO 2 , silicon oxynitride (SiON), aluminum oxide (AlO), and hafnium oxide (HfO).
- the film thickness of the insulator 92 is, for example, 1 nm or more and 30 nm or less.
- the organic photoelectric conversion layer 94 uses an organic material.
- organic materials include p-type organic semiconductors, n-type organic semiconductors, laminated structures of p-type organic semiconductors and n-type organic semiconductors, and mixtures (bulk heterostructures) of p-type organic semiconductors and n-type organic semiconductors. Either is available.
- the stacked structure includes a stacked structure in which a p-type organic semiconductor, a mixture of a p-type organic semiconductor and an n-type organic semiconductor (bulk heterostructure), and an n-type organic semiconductor are stacked.
- the stacked structure includes a stacked structure in which a p-type organic semiconductor and a mixture of a p-type organic semiconductor and an n-type organic semiconductor (bulk heterostructure) are stacked.
- the laminated structure includes a laminated structure in which an n-type organic semiconductor and a mixture (bulk heterostructure) of a p-type organic semiconductor and an n-type organic semiconductor are laminated. Note that the stacking order of the stacked structure can be changed as appropriate.
- naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, pentacene derivatives, quinacridone derivatives, thiophene derivatives, thienothiophene derivatives, benzothiophene derivatives, benzothienobenzothiophene derivatives, triallylamine derivatives , carbazole derivatives, perylene derivatives, picene derivatives, chrysene derivatives, fluoranthene derivatives, phthalocyanine derivatives, subphthalocyanine derivatives, subporphyrazine derivatives, metal complexes with heterocyclic compounds as ligands, polythiophene derivatives, polybenzothiadiazole derivatives, polyfluorene Derivatives etc. can be mentioned.
- fullerenes and fullerene derivatives e.g. fullerenes (higher order fullerenes) such as C60, C70, C74, endohedral fullerenes, etc.
- fullerene derivatives e.g. fullerene fluoride, PCBM fullerene compounds, fullerene polymers
- organic semiconductors with larger (deeper) HOMO and LUMO than p-type organic semiconductors and transparent inorganic metal oxides.
- a heterocyclic compound containing a nitrogen atom, an oxygen atom, and a sulfur atom can be used as the n-type organic semiconductor.
- Heterocyclic compounds include, for example, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, isoquinoline derivatives, acridine derivatives, phenazine derivatives, phenanthroline derivatives, tetrazole derivatives, pyrazole derivatives, imidazole derivatives, thiazole derivatives, Oxazole derivatives, imidazole derivatives, benzimidazole derivatives, benzotriazole derivatives, benzoxazole derivatives, benzoxazole derivatives, carbazole derivatives, benzofuran derivatives, dibenzofuran derivatives, subporphyrazine derivatives, polyphenylene vinylene derivatives, polybenzothiadiazole derivatives, polyfluorene derivatives, etc.
- Examples include organic molecules, organometallic complexes, and subphthalocyanine derivatives that have part of the molecular skeleton.
- Groups contained in fullerene derivatives include halogen atoms; linear, branched or cyclic alkyl groups or phenyl groups; groups having linear or condensed aromatic compounds; groups having halides; partial fluoroalkyl groups; Fluoroalkyl group; silylalkyl group; silylalkoxy group; arylsilyl group; arylsulfanyl group; alkylsulfanyl group; arylsulfonyl group; alkylsulfonyl group; arylsulfide group; alkylsulfide group; amino group; alkylamino group; arylamino group ; Hydroxy group; Alkoxy group; Acylamino group; Acyloxy group; Carbonyl group; Carboxy group; Carboxamide group; Carboalkoxy group; Acyl group; Sulfonyl group; Cyano group; Nitro group; Group: These derivatives can be mentioned.
- the thickness of the organic photoelectric conversion layer 94 formed from an organic material is, for example, 1 ⁇ 10 ⁇ 8 m or more and 5 ⁇ 10 ⁇ 7 m or less, although it is not limited.
- the thickness of the organic photoelectric conversion layer 94 is preferably 2.5 ⁇ 10 ⁇ 8 m or more and 3 ⁇ 10 ⁇ 7 m or less. More preferably, the thickness of the organic photoelectric conversion layer 94 is 2.5 ⁇ 10 ⁇ 8 m or more and 2 ⁇ 10 ⁇ 7 m or less. More preferably, the thickness of the organic photoelectric conversion layer 94 is 1 ⁇ 10 ⁇ 7 m or more and 1.8 ⁇ 10 ⁇ 7 m or less.
- P-type means that it is easy to transport holes.
- N-type means that it is easy to transport electrons. Therefore, unlike inorganic semiconductors, the interpretation is not limited to having holes or electrons as thermally excited majority carriers.
- the second photoelectric conversion unit 9 is configured to generate charges by photoelectric conversion from light having a green wavelength as the second wavelength range.
- the wavelength of green light is, for example, 500 nm or more and 585 nm or less.
- the organic material forming the organic photoelectric conversion layer 94 of the second photoelectric conversion unit 9 for example, rhodamine dyes, melacyanine dyes, quinacridone derivatives, subphthalocyanine dyes (subphthalocyanine derivatives), etc. may be used. Can be done.
- coumaric acid for example, is added to the organic material of the organic photoelectric conversion layer.
- Dyes such as tris-8-hydroxyquinolialuminum (Alq3) and melacyanine dyes can be used.
- Alq3 tris-8-hydroxyquinolialuminum
- melacyanine dyes can be used.
- a phthalocyanine dye or a subphthalocyanine dye (subphthalocyanine derivative) is used as the organic material of the organic photoelectric conversion layer. be able to.
- the second photoelectric conversion section 9 may be constructed using an inorganic photoelectric conversion layer instead of the organic photoelectric conversion layer 94.
- crystalline silicon, amorphous silicon, microcrystalline silicon, crystalline selenium, amorphous selenium, a chalcopalite compound, or a III-V group compound semiconductor can be used as the inorganic material for constructing the inorganic photoelectric conversion layer.
- Chalcopalite compounds include CIGS (CuInGaSe), CIS (CuInSe 2 ), CuInS 2 , CuAlS 2 , CuAlSe 2 , CuGaS 2 , CuGaSe 2 , AgAlS 2 , AgAlSe 2 , AgInS 2 or AgInSe 2 It is.
- Group III-V compound semiconductors include GaAs, InP, AlGaAs, InGaP, AlGaInP, InGaAsP, and the like.
- III-V compound semiconductors include CdSe, CdS, In2Se 3 , In 2 S 3 , Bi 2 Se 3 , Bi 2 S 3 , ZnSe, ZnS, PbSe, PbS, and the like.
- quantum dots made of these materials can be used in the organic photoelectric conversion layer 94.
- the organic photoelectric conversion layer 94 can be configured with a laminated structure of a lower semiconductor layer and an upper photoelectric conversion layer. By providing the organic photoelectric conversion layer 94 with a lower semiconductor layer, the organic photoelectric conversion layer 94 can prevent recombination during charge storage, and improve the efficiency of charge transfer to the charge storage and transfer layer 93. can. Furthermore, generation of dark current can be effectively suppressed.
- the upper photoelectric conversion layer can be appropriately selected from the various materials forming the organic photoelectric conversion layer 94 described above.
- the lower semiconductor layer it is possible to use a material that has a large band gap value (for example, a band gap value of 3.0 eV or more) and has higher mobility than the material forming the organic photoelectric conversion layer 94.
- organic semiconductor materials such as oxide semiconductor materials such as IGZO, transition metal dichalcogenides, silicon carbide, diamond, graphene, carbon nanotubes, fused polycyclic hydrocarbon compounds, and fused heterocyclic compounds can be used.
- a material having an ionization potential greater than that of the material forming the organic photoelectric conversion layer 94 can be used as the lower semiconductor layer.
- the charges accumulated are holes as the lower semiconductor layer
- a material having an electron affinity smaller than that of the material forming the organic photoelectric conversion layer 94 can be used.
- the impurity concentration of the material forming the lower semiconductor layer is, for example, 1 ⁇ 10 18 cm ⁇ 3 or less.
- the lower semiconductor layer may have a single layer structure or a multilayer structure. Further, the material forming the lower semiconductor layer may be different in the region corresponding to the first electrode 91 and the region corresponding to the floating diffusion.
- the second electrode 95 is disposed on the opposite side of the organic photoelectric conversion layer 94 from the first electrode 91.
- the second electrode 95 is used as a common electrode or an upper electrode, and is arranged across the plurality of pixels 100.
- the second electrode 95 is connected to a predetermined circuit of the circuit board 21 through wiring (not shown) or the like. A fixed potential is supplied to the second electrode 95.
- the second electrode 95 like the first electrode 91, is made of a conductive and transparent electrode material.
- the second electrode 95 is made of an electrode material such as ITO or IZO.
- the second electrode 95 may be formed of one or more electrode materials selected from IGZO, IAZO, ITZO, IGSiO, ZnO, AZO, and GZO.
- the thickness of the second electrode 95 is, for example, 10 nm or more and 100 nm or less.
- the charge storage transfer layer 93 is disposed between the first electrode 91 and the organic photoelectric conversion layer 94.
- the organic photoelectric conversion layer 94 is disposed on the first electrode 91 with an insulator 92 interposed therebetween.
- the charge storage transfer layer 93 is disposed over a plurality of pixels 100 here.
- Insulator 92 is used as a gate insulating film.
- the insulator 92 one or more materials selected from, for example, SiO 2 , SiON, AlO, and HfO are used.
- the charge storage transfer layer 93 stores charges generated by photoelectric conversion from light in the second photoelectric conversion section 9 .
- the charge storage transfer layer 93 is connected to the through wiring 52, and is connected to a pixel circuit (not shown) mounted on the circuit board 21 (see FIG. 2) through the through wiring 52, the through wiring 42, and the like.
- the through wiring 52, the through wiring 42, etc. form a floating diffusion. That is, the charges accumulated in the charge accumulation transfer layer 93 are transferred to the pixel circuit through the floating diffusion.
- the charge storage transfer layer 93 is formed of an oxide semiconductor, which is a transparent semiconductor.
- IGZO containing, for example, indium (In), gallium (Ga), zinc (Zn), and oxygen (O) is used.
- IAZO containing In, aluminum (Al), Zn, and O, or ITZO containing In, tin (Sn), Zn, and O can also be used.
- one or more semiconductor materials selected from IGSiO, ZnO, AZO, GZO, ITO, and IZO can also be used for the charge storage and transfer layer 93.
- the thickness of the charge storage transfer layer 93 is, for example, 10 nm or more and 100 nm or less.
- the through wiring 52 is formed to penetrate the insulator 51 and the insulator 81 in the film thickness direction. Further, the through wiring 42 is formed to penetrate the insulator 41 in the thickness direction. As shown in FIG. 4, the through wirings 52 and the like are arranged at positions corresponding to corner portions of each pixel 100 in the pixel isolation region 110. In other words, the through wirings 52 and the like are arranged at intersections of the pixel separation regions 110 extending in the direction of the arrow X and the direction of the arrow Y, respectively, in plan view.
- the through wiring 52 and the like are formed of a composite film containing, for example, titanium nitride (TiN) and tungsten (W) laminated on TiN.
- the optical lens 13 has a sealing layer 11 and a sealing layer 12 interposed on the opposite side of the second electrode 95 from the organic photoelectric conversion layer 94. It is arranged.
- both the sealing layer 11 and the sealing layer 12 are formed of one or more sealing materials selected from, for example, AlO, SiN, and SiON.
- the thickness of the sealing layer 11 is, for example, 5 nm or more and 100 nm or less.
- the thickness of the sealing layer 12 is, for example, 50 nm or more and 1000 nm or less.
- the optical lens 13 is formed in a circular shape for each pixel 100 in plan view. Further, the optical lens 13 is formed in a curved shape that is curved toward the light incident side and condenses the incident light when viewed from the side. That is, the optical lens 13 is a so-called on-chip lens, and is formed integrally for each pixel 100 or over a plurality of pixels 100.
- the optical lens 13 is made of, for example, a transparent resin material.
- An antireflection layer 14 is formed on the surface of the optical lens 13.
- the antireflection layer 14 is made of, for example, SiO 2 .
- the first sealing body 601 is disposed between the optical filter 7 and the charge storage transfer layer 93 of the second photoelectric conversion section 9. To explain in detail, the first sealing body 601 is formed along the surface of the optical filter 7 on the charge storage transfer layer 93 side.
- the first sealing body 601 seals the constituent substances of the optical filter 7 that are released from the optical filter 7 during heat treatment during the manufacturing process of the solid-state imaging device 1, for example. In other words, the first sealing body 601 effectively suppresses or blocks the composition from entering the charge storage transfer layer 93 from the optical filter 7 .
- the composition material released from the optical filter 7 is, for example, hydrogen (H 2 ) gas.
- the first sealing body 601 prevents hydrogen from entering the charge storage and transfer layer 93 , prevents the reduction reaction between oxygen and hydrogen within the charge storage and transfer layer 93 , and prevents the charge storage and transfer layer 93 from returning to its original state. Maintains stable functionality.
- the first sealing body 601 is made of one or more sealing materials selected from, for example, SiN, AlO, TiO 2 , HfO, and ZrO.
- the film thickness of the first sealing body 601 is 10 nm or more and 100 nm or less.
- the second sealing body 602 is disposed along the surface of the optical filter 7 on the first photoelectric conversion unit 3 side.
- the second sealing body 602 is formed on the insulator 41 as a base layer of the optical filter 7.
- the second sealing body 602 seals the constituent material of the optical filter 7 released from the optical filter 7.
- the second sealing body 602 has an etching selectivity with respect to the insulator 51 in which the optical filter 7 is embedded. That is, the second sealing body 602 is used as an etching stopper during patterning of the insulator 51 (step of forming the opening 51H) in the manufacturing process of the optical filter 7.
- the second sealing body 602 is formed of one or more sealing materials selected from, for example, SiN, AlO, TiO 2 , HfO, and ZrO. Further, the film thickness of the second sealing body 602 is greater than or equal to 10 nm and less than or equal to 100 nm.
- the third sealing body 603 is arranged along the side surface of the optical filter 7. To explain in detail, the third sealing body 603 is formed between the side surface of the optical filter 7 and the side wall of the opening 51H provided in the insulator 51. Like the first sealing body 601, the third sealing body 603 seals the constituent material of the optical filter 7 released from the optical filter 7. In particular, the third sealing body 603 seals the constituent material released from the side surface of the optical filter 7 through the interface between the insulator 51 and the through wiring 52 to the charge storage transfer layer 93 side.
- the third sealing body 603 like the first sealing body 601, is formed of one or more sealing materials selected from, for example, SiN, AlO, TiO 2 , HfO, and ZrO. Further, the thickness of the third sealing body 603 is 10 nm or more and 100 nm or less.
- the charge storage transfer layer 93 side of the optical filter 7 is sealed by the first sealing body 601, and the first photoelectric conversion unit 3 side of the optical filter 7 is sealed by the second sealing body. 602 , and the side surface of the optical filter 7 is sealed with a third sealing body 603 . That is, the first sealing body 601, the second sealing body 602, and the third sealing body 603 construct the sealing body 6 that covers all the surfaces of the optical filter 7 here.
- FIGS. 5 to 11 represent an example of a series of process cross-sections for explaining the method for manufacturing the solid-state imaging device 1 according to the first embodiment.
- the base 2 is prepared (see FIG. 5).
- the base body 2 is formed of a circuit board 21 and a semiconductor substrate 22 laminated on the circuit board 21.
- a first photoelectric conversion section 3 is formed on the semiconductor substrate 22 for each pixel 100.
- a through wiring (numerical symbol omitted) is formed.
- an insulator 41 is formed on the semiconductor substrate 22 of the base body 2.
- a through wiring 42 and the like are formed within the insulator 41 .
- a second sealing body 602 is formed on the insulator 41 (see FIG. 5).
- the second sealing body 602 is formed of, for example, SiN.
- SiN is formed into a film using a sputtering method or a chemical vapor deposition (CVD) method.
- an insulator 51 is formed on the second sealing body 602.
- the insulator 51 is made of, for example, SiO 2 .
- the film thickness of the insulator 51 is, for example, 400 nm or more and 1100 nm or less.
- an opening 51H is formed in the insulator 51 for each pixel 100.
- the optical filter 7 is embedded in the opening 51H in a post-process.
- the opening 51H is formed by, for example, dry etching using an etching mask (not shown).
- the second sealing body 602 formed as a base layer of the insulator 51 has an etching selectivity with respect to the insulator 51. Therefore, when forming the opening 51H, the second sealing body 602 is used as an etching stopper.
- a third sealing body 603 is formed on the side wall of the opening 51H.
- the third sealing body 603 is formed of, for example, SiN.
- SiN is deposited using a sputtering method or a CVD method. After the film is formed, the SiN is patterned using anisotropic etching such as reactive ion etching (RIE). Note that the third sealing body 603 may be formed on the insulator 51 in addition to the side wall of the opening 51H.
- the optical filter 7 is formed in the opening 51H with a second sealing body 602 and a third sealing body 603 interposed therebetween.
- a red filter 7R and a blue filter 7B are formed.
- a first sealing body 601 is formed on the optical filter 7.
- the first sealing body 601 is also formed on the insulator 51.
- the first sealing body 601 is formed of, for example, SiN. SiN is deposited using a sputtering method or a CVD method.
- the sealing body 6 including the first sealing body 601, the second sealing body 602, and the third sealing body 603 and covering the entire optical filter 7 is completed.
- an insulator 81 is formed on the first sealing body 601.
- the insulator 81 is made of, for example, SiO 2 .
- the surface of the insulator 81 is flattened, and the stepped shapes of the opening 51H, the optical filter 7, etc. are relaxed.
- CMP chemical mechanical polishing
- Wiring 82 is formed on insulator 81 (see FIG. 11). Subsequently, as shown in FIG. 11, the second photoelectric conversion section 9 is formed.
- the second photoelectric conversion section 9 is formed by sequentially stacking a first electrode 91, an insulator 92, a charge storage transfer layer 93, an organic photoelectric conversion layer 94, and a second electrode 95.
- the sealing body 6 seals hydrogen, which is a constituent of the optical filter 7, and effectively suppresses or prevents hydrogen from entering the charge storage transfer layer 93 of the second photoelectric conversion section 9. can.
- a sealing layer 11 and a sealing layer 12 are each formed on the second photoelectric conversion section 9 (see FIG. 3). Then, as shown in FIG. 3 described above, an optical lens 13 and an antireflection layer 14 are formed on the sealing layer 12.
- the solid-state imaging device 1 includes a first photoelectric conversion section 3, an optical filter 7, a second photoelectric conversion section 9, and a charge storage transfer layer 93. Equipped with.
- the first photoelectric conversion unit 3 is disposed on the base 2 and converts light in the first wavelength range into charges.
- the optical filter 7 is disposed on the opposite side of the first photoelectric conversion unit 3 from the base 2 and transmits light in the first wavelength range.
- the second photoelectric conversion section 9 is disposed on the opposite side of the optical filter 7 from the first photoelectric conversion section 3, and converts light in a second wavelength range different from the first wavelength range into charges.
- the charge storage transfer layer 93 is disposed in the second photoelectric conversion section 9 and stores and transfers the charges converted in the second photoelectric conversion section 9.
- the solid-state imaging device 1 further includes a first sealing body 601.
- the first sealing body 601 is disposed on the optical filter 7 side of the charge storage transfer layer 93 and seals the constituent material released from the optical filter 7 .
- the composition substance is a composition substance of the resin material forming the optical filter 7, for example, hydrogen. Therefore, hydrogen released from the optical filter 7 is sealed by the first sealing body 601, so that hydrogen can be effectively suppressed or prevented from entering the charge storage transfer layer 93.
- the charge storage and transfer layer 93 which is made of, for example, an oxide semiconductor, does not undergo oxygen reduction, and therefore functions stably as the charge storage and transfer layer 93. Therefore, it is possible to provide a solid-state imaging device 1 with excellent operational reliability.
- the first sealing body 601 is formed along the surface of the optical filter 7 on the charge storage transfer layer 93 side. In other words, the first sealing body 601 is formed to cover the surface of the optical filter 7 . Therefore, the first sealing body 601 can effectively suppress or prevent release of the constituent material from the optical filter 7 itself.
- the solid-state imaging device 1 further includes a second sealing body 602, as shown in FIG.
- the second sealing body 602 is formed along the surface of the optical filter 7 on the first photoelectric conversion unit 3 side, and seals the constituent material of the optical filter 7 . Therefore, hydrogen released from the first photoelectric conversion unit 3 side of the optical filter 7 is sealed by the second sealing body 602, so that hydrogen can be prevented from entering the charge storage transfer layer 93 more effectively. Can be suppressed or prevented.
- the second sealing body 602 shown in FIG. 3 has an etching selectivity with respect to the insulator 51 in which the optical filter 7 is embedded.
- the second sealing body 602 is also used as an etching stopper when patterning the insulator 51 to form the opening 51H. Therefore, since the etching depth can be accurately controlled by the second sealing body 602, the depth of the opening 51H can be made uniform. Therefore, it is possible to provide a solid-state imaging device 1 with excellent optical characteristics.
- the solid-state imaging device 1 further includes a third sealing body 603, as shown in FIG.
- the third sealing body 603 is formed along the side surface of the optical filter 7 and seals the constituent material of the optical filter 7 . Therefore, hydrogen released from the side surface of the optical filter 7 is sealed by the third sealing body 603.
- a through wiring 52 is provided on the side surface of the optical filter 7 with an insulator 51 interposed therebetween. The interface between the insulator 51 and the through wiring 52 is likely to become a path for hydrogen to enter. Therefore, hydrogen that enters the charge storage and transfer layer 93 through the entry path is sealed by the third sealing body 603, so that hydrogen entry into the charge storage and transfer layer 93 is suppressed or prevented even more effectively. be able to.
- Second embodiment> A solid-state imaging device 1 according to a second embodiment of the present disclosure will be described using FIGS. 12 and 13. Note that in the second embodiment and subsequent embodiments, the same or substantially the same components as those of the solid-state imaging device 1 according to the first embodiment are denoted by the same reference numerals. and duplicate explanations will be omitted.
- FIG. 12 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the second embodiment.
- FIG. 13 shows an example of a planar configuration of the pixel 100 shown in FIG. 12.
- a first A sealing body 601 is disposed, and a second sealing body 602 is disposed on the optical filter 7 on the first photoelectric conversion unit 3 side.
- the third sealing body 603 is not disposed on the side surface of the optical filter 7 in the solid-state imaging device 1 of the second embodiment.
- the method for manufacturing the solid-state imaging device 1 according to the second embodiment only omits the step of forming the third sealing body 603 shown in FIG.
- the manufacturing method of the imaging device 1 basically includes the same steps.
- the solid-state imaging device 1 according to the second embodiment can provide the same effects as the solid-state imaging device 1 according to the first embodiment.
- the solid-state imaging device 1 includes a first sealing body 601 and a second sealing body 602, as shown in FIG. That is, since the hydrogen released from the optical filter 7 is sealed by the first sealing body 601 and the second sealing body 602, it is possible to effectively suppress or prevent hydrogen from entering the charge storage transfer layer 93. Can be done. Therefore, it is possible to provide a solid-state imaging device 1 with excellent operational reliability.
- the step of forming the third sealing body 603 shown in FIG. 7 described above is omitted, so the number of manufacturing steps can be reduced.
- the solid-state imaging device 1 may have a configuration in which the first sealing body 601 is provided and the second sealing body 602 and the third sealing body 603 are omitted.
- FIG. 14 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the third embodiment.
- FIG. 15 shows an example of a planar configuration of the pixel 100 shown in FIG. 14.
- the optical filter 7 includes an infrared transmission filter 7IRPF instead of the red filter 7R and the blue filter 7B.
- the infrared transmission filter 7IRPF is a filter that transmits near-infrared rays in the first wavelength range, for example, 700 nm or more.
- the solid-state imaging device 1 includes a first sealing body 601, a second sealing body 602, and a third sealing body 603.
- the first sealing body 601 is disposed along the surface of the optical filter 7 on the second photoelectric conversion unit 9 side.
- the second sealing body 602 is disposed along the surface of the optical filter 7 on the first photoelectric conversion unit 3 side.
- the third sealing body 603 is arranged along the side surface of the optical filter 7.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the first embodiment.
- the solid-state imaging device 1 according to the third embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment.
- the solid-state imaging device 1 includes a first sealing body 601, a second sealing body 602, and a third sealing body along the surface of the infrared transmission filter 7IRPF as the optical filter 7.
- a sealing body 603 is provided.
- hydrogen released from the optical filter 7 is sealed by the first sealing body 601, the second sealing body 602, and the third sealing body 603, hydrogen intrusion into the charge storage transfer layer 93 is effectively prevented. can be suppressed or prevented. Therefore, it is possible to provide a solid-state imaging device 1 with excellent operational reliability.
- the solid-state imaging device 1 according to the third embodiment may be applied to the solid-state imaging device 1 according to the second embodiment.
- the optical filter 7 is provided with at least the first sealing body 601, and either the second sealing body 602 or the third sealing body 603 may be omitted.
- FIG. 16 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the fourth embodiment.
- FIG. 17 shows an example of a planar configuration of the pixel 100 shown in FIG. 16.
- the optical filter 7 includes an infrared transmission filter 7IRPF instead of the blue filter 7B. That is, the optical filter 7 includes a red filter 7R that transmits light in the first wavelength range and an infrared transmission filter 7IRPF.
- the arrangement configuration of the red filter 7R and the infrared transmission filter 7IRPF is similar to the arrangement configuration of the red filter 7R and the blue filter 7B of the solid-state imaging device 1 according to the first embodiment.
- the second photoelectric conversion section 9 includes a second photoelectric conversion section 9G and a second photoelectric conversion section 9B that generate charges from light in the second wavelength range.
- the second photoelectric conversion section 9 has a two-layer structure including a second photoelectric conversion section 9G and a second photoelectric conversion section 9B.
- the second photoelectric conversion unit 9G includes a first electrode 91, an insulator 92, , a charge storage transfer layer 93, an organic photoelectric conversion layer 94, and a second electrode 95 are sequentially laminated.
- the organic photoelectric conversion layer 94 generates charges from green light in the second wavelength range by photoelectric conversion.
- the second photoelectric conversion section 9B is arranged on the optical lens 13 side of the second photoelectric conversion section 9G.
- the second photoelectric conversion unit 9B includes, from the second photoelectric conversion unit 9G toward the optical lens 13 side, a first electrode 901, an insulator 902, a charge storage transfer layer 903, an organic photoelectric conversion layer 904, and a second electrode 905, respectively. It is constructed by sequentially laminating layers.
- the organic photoelectric conversion layer 904 generates charges by photoelectric conversion from blue light in the second wavelength range.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the first embodiment.
- the solid-state imaging device 1 according to the fourth embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment.
- the optical filter 7 includes the infrared transmission filter 7IRPF and the second photoelectric conversion section 9 has a two-layer structure
- the effects obtained by the solid-state imaging device 1 according to the first embodiment are The same effects can be obtained.
- a solid-state imaging device 1 according to a fifth embodiment of the present disclosure will be described using FIGS. 18 and 19.
- FIG. 18 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the fifth embodiment.
- FIG. 19 shows an example of a planar configuration of the pixel 100 shown in FIG. 18.
- the solid-state imaging device 1 according to the fifth embodiment is an application example of the solid-state imaging device 1 according to the second embodiment.
- the first sealing body 601 is disposed on the second photoelectric conversion section 9 side of the optical filter 7, and the second sealing body 601 is disposed on the first photoelectric conversion section 3 side of the optical filter 7.
- 602 is arranged.
- the third sealing body 603 is not disposed on the side surface of the optical filter 7 in the solid-state imaging device 1 of the second embodiment.
- the thickness of the optical filter 7 in the direction of the arrow Z is thinner than the thickness of the insulator 51 in the same direction. That is, when the optical filter 7 is embedded in the opening 51H formed in the insulator 51, the inner wall of the opening 5H is exposed from the surface of the optical filter 7 toward the side opposite to the base 2 (in the direction of arrow Z). be done.
- the first sealing body 601 is formed on the surface of the optical filter 7 on the second photoelectric conversion section 9 side, and is also formed in the direction of arrow Z from this surface along the inner wall of the opening 51H. Furthermore, the first sealing body 601 is formed to extend also to the surface of the insulator 51 on the second photoelectric conversion unit 9 side.
- the red filter 7R and blue filter 7B of the optical filter 7 are formed from the surface of the second sealing body 602 within the opening 51H.
- the thickness of each of the red filter 7R and the blue filter 7B in the direction of the arrow Z is the thickness based on the surface of the second sealing body 602.
- the position of the surface of the second sealing body 602 is the same in each of the red filter 7R and the blue filter 7B.
- the red filter 7R and the first photoelectric conversion unit 3 that receives the light in the first wavelength range that has passed through the red filter 7R include the "first optical filter” and "first photoelectric conversion” according to the present technology. Department”.
- the blue filter 7B and the first photoelectric conversion unit 3 that receives the light in the first wavelength range that has passed through the blue filter 7B correspond to a “third optical filter” and a “third photoelectric conversion unit” according to the present technology. ing.
- the film thickness t3 of the blue filter 7B having a shorter wavelength of light is formed thinner than the film thickness t1 of the red filter 7R of the optical filter 7.
- the surface of the red filter 7R on the opposite side to the base body 2 is curved on the side opposite to the base body 2 (the surface on the arrow Z direction side) in side view. It is formed in a cross-sectional shape (protruding to the top).
- the central part of the red filter 7R has a thick film thickness
- the peripheral part has a thin film thickness.
- the surface of the blue filter 7B on the side opposite to the base body 2 side has a cross-sectional shape that is curved toward the base body 2 side (concave toward the side opposite to the arrow Z direction) in side view. is formed.
- the blue filter 7B has a thin film thickness at the center and a thick film thickness at the peripheral part.
- an antireflection layer 45 is provided between the base 2 and the insulator 41.
- the antireflection layer 45 is made of, for example, SiO 2 .
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the second embodiment.
- the solid-state imaging device 1 according to the fifth embodiment can provide the same effects as the solid-state imaging device 1 according to the second embodiment.
- the solid-state imaging device 1 has a first photoelectric conversion section and a third photoelectric conversion section, as shown in FIGS. 18 and 19. It includes a first photoelectric conversion section 3 and an optical filter 7 as a first optical filter and a third optical filter.
- the first photoelectric conversion unit (first photoelectric conversion unit 3) is disposed on the base 2 and converts light in the first wavelength range into charges.
- the third photoelectric conversion unit (first photoelectric conversion unit 3) is disposed on the base 2 in a region different from that of the first photoelectric conversion unit, and charges light in a third wavelength range shorter than the first wavelength range. Convert to The first optical filter is the red filter 7R here.
- the red filter 7R is disposed on the side opposite to the base 2 of the first photoelectric conversion section, and transmits light in the first wavelength range.
- the third optical filter is here the blue filter 7B.
- the blue filter 7B is disposed on the side opposite to the base 2 of the third photoelectric conversion section, transmits light in the third wavelength range, and has a thickness thinner than the thickness of the red filter 7R. In the solid-state imaging device 1 configured in this manner, the thickness of the blue filter 7B that transmits short wavelength light is reduced, so that the sensitivity to blue light can be improved. That is, it is possible to adjust the sensitivity of blue light.
- the first photoelectric conversion section 3 and the second photoelectric conversion section 9 are each stacked, and the height is increased in the direction of arrow Z.
- the blue filter 7B is made thinner, the solid-state imaging device 1 becomes thinner, especially between the first photoelectric conversion section 3 and the second photoelectric conversion section 9, and the height of the solid-state imaging device 1 is reduced.
- the incident path length (waveguide length) of light from the second photoelectric conversion section 9 to the first photoelectric conversion section 3 can be shortened. Therefore, in the light incident path, light leakage to adjacent pixels 100 can be effectively suppressed or prevented, and color mixture occurring between adjacent pixels 100 can be effectively suppressed or prevented.
- the blue filter 7B of the optical filter 7 is formed in a cross-sectional shape that curves toward the base 2 side.
- the peripheral portion of the blue filter 7B is thicker than the central portion. Therefore, light leakage from the peripheral portion of the blue filter 7B to the adjacent pixels 100 can be effectively suppressed or prevented, and color mixture occurring between the adjacent pixels 100 can be effectively suppressed or prevented. .
- the red filter 7R of the optical filter 7 is formed in a cross-sectional shape that curves toward the opposite side from the base body 2.
- the central portion of the red filter 7R is thicker than the peripheral portion. Therefore, as shown by adding the symbol "L1" to the arrow, the red filter 7R can collect the incident light, thereby improving the light collection efficiency.
- the solid-state imaging device 1 also includes an insulator 51, as particularly shown in FIG.
- the insulator 51 is disposed on the base 2 and has an opening 51H formed in the thickness direction from the surface opposite to the base 2.
- Each of the red filter 7R (first optical filter) and the blue filter 7B (third optical filter) of the optical filter 7 is disposed within the opening 51H.
- a first sealing body 601 is formed on the surface of each of the red filter 7R and the blue filter 7B on the side opposite to the base 2, and on the inner wall of the opening 51H from this surface toward the side opposite to the base 2. The first sealing body 601 seals the composition of the optical filter 7 .
- the surface of the first sealing body 601 formed on the inner wall of the opening 51H opposite to the insulator 51, or the surface of the first sealing body 601 and the insulator 51 formed on the inner side wall of the opening 51H is The interface becomes a reflective surface. Therefore, as shown by adding the symbol "L2" to the arrow, the light incident on each of the red filter 7R and the blue filter 7B is reflected by the reflective surface and can be focused. Efficiency can be improved.
- FIG. 20 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the sixth embodiment.
- the solid-state imaging device 1 according to the sixth embodiment is an application example of the solid-state imaging device 1 according to the fifth embodiment. That is, in the solid-state imaging device 1, the opening size of the opening 51H decreases at a constant rate from the surface of the insulator 51 on the side opposite to the base 2 (light incident side) toward the base 2. In side view, the opening 51H has a tapered cross section.
- the angle ⁇ between the surface of the second sealing body 602 and the inner wall surface of the opening 51H is set to, for example, more than 90 degrees and less than 120 degrees.
- the angle ⁇ exceeds 90 degrees, an inclined surface can be formed on the inner wall surface of the opening 51H.
- the angle ⁇ exceeds 120 degrees, it becomes difficult to miniaturize the pixels 100.
- the surface of the blue filter 7B of the optical filter 7 on the side opposite to the base 2 is opposite to the base 2 in side view, similar to the red filter 7R. It is formed in a cross-sectional shape that curves to the side. That is, the red filter 7R and the blue filter 7B are each formed to have the same cross-sectional shape.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the fifth embodiment.
- the solid-state imaging device 1 according to the sixth embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the fifth embodiment.
- the opening 51H of the insulator 51 in which the optical filter 7 is embedded is formed to have a tapered cross-section. Since there is a difference in refractive index between the insulator 51 and the optical filter 7, the interface between the inner wall surface of the opening 51H of the insulator 51 and the side surface of the optical filter 7 becomes a reflective inclined surface. Therefore, as shown by adding the symbol "L3" to the arrow, the incident light is reflected by the reflective inclined surface and can be focused, so that the light focusing efficiency can be improved. In addition, light leakage from the optical filter 7 to adjacent pixels 100 can be effectively suppressed or prevented, and color mixture occurring between adjacent pixels 100 can be effectively suppressed or prevented.
- the red filter 7R and the blue filter 7B of the optical filter 7 are formed in a cross-sectional shape that curves toward the opposite side from the base body 2. Therefore, as shown by adding the symbol "L1" to the arrow, the optical filter 7 can collect the incident light, thereby improving the light collection efficiency.
- Seventh embodiment> A solid-state imaging device 1 according to a seventh embodiment of the present disclosure will be described using FIG. 21.
- FIG. 21 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the seventh embodiment.
- the solid-state imaging device 1 according to the seventh embodiment is an application example of the solid-state imaging device 1 according to the sixth embodiment. That is, in the solid-state imaging device 1, the first sealing body 601 disposed on the surface of the optical filter 7 is formed by laminating two or more layers having different refractive indexes. explain in detail.
- the first sealing body 601 includes a first sealing body 601A disposed on the surface of the optical filter 7 and a first sealing body disposed on the opposite side of the base body 2 of the first sealing body 601A. It is formed by laminating the stopper body 601B.
- the first sealing body 601A is made of, for example, SiN.
- the first sealing body 601B is made of, for example, AlO, which has a refractive index lower than that of the first sealing body 601A.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the sixth embodiment.
- the solid-state imaging device 1 according to the seventh embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the sixth embodiment.
- the first sealing body 601 disposed on the surface of the optical filter 7 is formed by laminating two or more layers. Therefore, the hydrogen released from the optical filter 7 is further sealed by the first sealing body 601, so it is possible to provide the solid-state imaging device 1 with excellent operational reliability.
- the first sealing body 601 disposed on the surface of the optical filter 7 is formed by laminating two or more layers having different refractive indexes.
- the first sealing body 601 is formed by laminating a first sealing body 601A and a first sealing body 601B having a refractive index lower than the refractive index of the first sealing body 601A. . Therefore, the first sealing body 601B on the light incident side of the first sealing body 601 is made of an anti-reflection film, increasing the amount of light transmitted through the optical filter 7 and received by the first photoelectric conversion unit 3. can be done. In other words, the sensitivity of the first photoelectric conversion section 3 can be improved.
- FIG. 22 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the eighth embodiment.
- the solid-state imaging device 1 according to the eighth embodiment is an example of a combination of the solid-state imaging device 1 according to the fifth embodiment and the solid-state imaging device 1 according to the sixth embodiment. be. That is, in the solid-state imaging device 1, similarly to the solid-state imaging device 1 according to the fifth embodiment, the openings 51H are formed to have the same opening size in the thickness direction of the insulator 51. That is, the opening 51H is not formed to have a tapered cross section.
- the red filter 7R and the blue filter 7B of the optical filter 7 are formed to have the same cross-sectional shape, similar to the solid-state imaging device 1 according to the sixth embodiment.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the fifth embodiment or the sixth embodiment.
- Ninth embodiment> A solid-state imaging device 1 according to a ninth embodiment of the present disclosure will be described using FIG. 23.
- FIG. 23 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the ninth embodiment.
- the solid-state imaging device 1 according to the ninth embodiment is an application example of the solid-state imaging device 1 according to the eighth embodiment. That is, in the solid-state imaging device 1, a part of the insulator 51 is disposed between the blue filter 7B of the optical filter 7 and the second sealing body 602.
- the insulator 51 is made of, for example, SiO 2 .
- the second sealing body 602 is made of, for example, SiN, which has a refractive index higher than that of the insulator 51.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the eighth embodiment.
- the solid-state imaging device 1 according to the ninth embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the eighth embodiment.
- a refractive index lower than that of the second sealing body 602 is provided between the blue filter 7B of the optical filter 7 and the second sealing body 602.
- a part of the insulator 51 having the structure is disposed. Therefore, since a part of the insulator 51 is used as an antireflection film, the amount of light transmitted through the blue filter 7B and received by the first photoelectric conversion unit 3 can be increased. In other words, the sensitivity of the first photoelectric conversion section 3 can be improved.
- FIG. 24 shows an example of the vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the tenth embodiment.
- the solid-state imaging device 1 according to the tenth embodiment is an application example of the solid-state imaging device 1 according to the ninth embodiment. That is, in the solid-state imaging device 1, the controllability of the film thicknesses of the red filter 7R and the blue filter 7B of the optical filter 7 is improved.
- the insulator 51 in which the optical filter 7 is embedded includes a first insulator 511 and a second insulator 512 laminated on the first insulator 511. Furthermore, a fourth sealing body 604 is provided between the first insulator 511 and the second insulator 512.
- Each of the first insulator 511 and the second insulator 512 is formed of the same insulating material or different insulating materials.
- each of the first insulator 511 and the second insulator 512 is formed of the same insulating material, for example, SiO 2 .
- the first insulator 511 is formed to have a thickness that approximately corresponds to the thickness of the red filter 7R in the direction of arrow Z minus the thickness of the blue filter 7B in the same direction.
- the second insulator 512 is formed to have a thickness that approximately corresponds to the thickness of the blue filter 7B in the direction of arrow Z.
- the insulator 51 is formed to have a thickness that approximately corresponds to the thickness of the red filter 7R in the direction of arrow Z.
- the fourth sealing body 604 is arranged along the surface of the blue filter 7B on the first photoelectric conversion unit 3 side.
- the fourth sealing body 604 is formed on the first insulator 511 as a base layer of the blue filter 7B.
- the fourth sealing body 604 seals the constituent material of the blue filter 7B, which is released from the blue filter 7B.
- the fourth sealing body 604 has an etching selectivity with respect to the second insulator 512 in which the blue filter 7B is embedded.
- the fourth sealing body 604 is used as an etching stopper during patterning of the insulator 512 (step of forming the opening 51H2, see FIG. 30) in the manufacturing process of the blue filter 7B.
- the fourth sealing body 604 is formed of one or more sealing materials selected from, for example, SiN, AlO, TiO 2 , HfO, and ZrO.
- the red filter 7R of the optical filter 7 is embedded in an opening 51H1 formed in the insulator 51.
- the opening 51H1 is formed to penetrate through each of the second insulator 512, the fourth sealing body 604, and the first insulator 511 of the insulator 51.
- the blue filter 7B is buried in an opening 51H2 formed in the insulator 51.
- the opening 51H2 is formed to penetrate the second insulator 512 of the insulator 51.
- the position of the surface of the red filter 7R opposite to the base 2 is made to match the position of the surface of the blue filter 7B in the same direction.
- FIGS. 25 to 32 show an example of a series of process cross-sections for explaining the method for manufacturing the solid-state imaging device 1 according to the tenth embodiment.
- the base body 2 is prepared in the same manner as in the method for manufacturing the solid-state imaging device 1 according to the first embodiment (hereinafter simply referred to as the "first manufacturing method") (see FIG. 25).
- the base body 2 is formed of a circuit board 21 and a semiconductor substrate 22 laminated on the circuit board 21.
- a first photoelectric conversion section 3 is formed on the semiconductor substrate 22 for each pixel 100.
- a through wiring (numerical symbol omitted) is formed.
- an insulator 41 is formed on the semiconductor substrate 22 of the base body 2.
- a through wiring 42 and the like are formed within the insulator 41 .
- a second sealing body 602 is formed on the insulator 41.
- the second sealing body 602 is formed of, for example, SiN.
- SiN is formed using a sputtering method, a CVD method, or an atomic layer deposition (ALD) method.
- the insulator 51 and the fourth sealing body 604 are formed on the second sealing body 602 (see FIG. 26). Specifically, on the second sealing body 602, the first insulator 511 of the insulator 51, the fourth sealing body 604, and the second insulator 512 of the insulator 51 are sequentially formed. Each of the first insulator 511 and the second insulator 512 is formed of, for example, SiO 2 .
- the fourth sealing body 604 is formed of, for example, SiN.
- a mask 55 is formed on the insulator 51.
- the mask 55 is used as a patterning mask when forming the opening 51H1, and is further used as a polishing-resistant mask during planarization processing.
- the mask 55 is made of SiN, for example.
- an opening 51H1 is formed in the insulator 51 by etching using the mask 55 in the region where the red filter 7R of the optical filter 7 is to be formed.
- the opening 51H1 is formed by sequentially etching each of the second insulator 512, the fourth sealing body 604, and the first insulator 511. For example, dry etching is used for the etching.
- the second sealing body 602 formed as a base layer of the insulator 51 has an etching selectivity with respect to the insulator 51. Therefore, when forming the opening 51H1, the second sealing body 602 is used as an etching stopper.
- the red filter 7R of the optical filter 7 is formed in the opening 51H1 with the second sealing body 602 interposed therebetween.
- the red filter 7R is buried in the opening 51H1 and also formed on the mask 55 outside the opening 51H1.
- the red filter 7R formed on the mask 55 outside the opening 51H1 is removed.
- a CMP method is used for this removal. After this, mask 55 is removed.
- a mask 56 is formed on the insulator 51 (see FIG. 30).
- the mask 56 is used as a patterning mask when forming the opening 51H2, and is further used as a polishing-resistant mask during planarization processing.
- the mask 56 is made of SiN, for example.
- an opening 51H2 is formed in the insulator 51 by etching using the mask 56 in the region of the optical filter 7 where the blue filter 7B is to be formed.
- the opening 51H2 is formed by etching only the second insulator 512.
- dry etching is used for the etching.
- the fourth sealing body 604 formed as a base layer of the second insulator 512 has an etching selectivity with respect to the second insulator 512. Therefore, when forming the opening 51H2, the fourth sealing body 604 is used as an etching stopper.
- the blue filter 7B of the optical filter 7 is formed in the opening 51H2 with the fourth sealing body 604 interposed therebetween.
- the excess blue filter 7B on the surface of the blue filter 7B and on the second insulator 512 is removed using, for example, a CMP method. After this, mask 56 is removed.
- a first sealing body 601 is formed on the optical filter 7, as shown in FIG.
- the steps after the step shown in FIG. 10 of the first manufacturing method are performed. That is, the insulator 81, the wiring 82, the second photoelectric conversion section 9, the sealing layer 11, the sealing layer 12, the optical lens 13, and the antireflection layer 14 are formed in this order (see FIG. 24).
- Components other than the above are the same or substantially the same as those of the solid-state imaging device 1 according to the ninth embodiment and the method for manufacturing the solid-state imaging device 1 according to the first embodiment.
- the solid-state imaging device 1 according to the tenth embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the ninth embodiment.
- a fourth sealing body 604 is disposed between the insulator 512 and the fourth sealing body 604 .
- the red filter 7R of the optical filter 7 is embedded in the opening 51H1 penetrating the first insulator 511, the fourth sealing body 604, and the second insulator 512.
- the thickness of the surface on the side of the base 2 is controlled based on the surface of the second sealing body 602, and the surface on the opposite side to the base 2 is controlled based on the surface of the second insulator 512. (See Figures 27 to 29).
- the blue filter 7B of the optical filter 7 is buried in the opening 51H2 penetrating the second insulator 512.
- the thickness of the surface on the side of the base 2 is controlled based on the surface of the fourth sealing body 604, and the surface on the opposite side to the base 2 is based on the surface of the second insulator 512. (See FIGS. 30 and 31). Therefore, the thickness of each of the red filter 7R and the blue filter 7B of the optical filter 7 is independently and appropriately controlled, so that the controllability of the thickness can be improved.
- FIG. 33 shows an example of a planar configuration of the pixel 100 of the solid-state imaging device 1 according to the eleventh embodiment.
- the optical filter 7 includes two yellow filters 7Y and two cyan filters 7C.
- the two yellow filters 7Y are arranged on one diagonal line in the pixel unit PU.
- the two cyan filters 7C are arranged on the other diagonal in the pixel unit PU.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the eighth embodiment.
- the solid-state imaging device 1 according to the eleventh embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment.
- FIG. 34 shows an example of the planar configuration of the pixel 100 of the solid-state imaging device 1 according to the first modification of the eleventh embodiment.
- the optical filter 7 is provided with a complementary color filter.
- the optical filter 7 includes two red filters 7R and two cyan filters 7C.
- the two red filters 7R are arranged on one diagonal line in the pixel unit PU.
- the two cyan filters 7C are arranged on the other diagonal in the pixel unit PU.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the eleventh embodiment.
- FIG. 35 shows an example of the planar configuration of the pixel 100 of the solid-state imaging device 1 according to the second modification of the eleventh embodiment.
- the optical filter 7 is provided with an infrared transmission filter 7IRPF.
- the optical filter 7 includes four infrared transmission filters 7IRPF.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the eleventh embodiment.
- Twelfth embodiment> A solid-state imaging device 1 according to a twelfth embodiment of the present disclosure will be described using FIGS. 36 and 37.
- FIG. 36 shows an example of a planar configuration of the pixel 100 of the solid-state imaging device 1 according to the twelfth embodiment.
- the through wiring 52 is not provided at all four corners of the pixel 100, but is One common through wiring 52 is provided.
- one through wiring 52 is arranged at the center of four pixels 100 that constitute one pixel unit PU.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the first embodiment.
- FIG. 37 shows an example of the planar configuration of the pixel 100 of the solid-state imaging device 1 according to the first modification of the twelfth embodiment.
- the through wiring 52 is disposed at the intermediate portion of each of the four sides of the pixel 100.
- Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the first embodiment.
- the technology according to the present disclosure (this technology) can be applied to various products.
- the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as a car, electric vehicle, hybrid electric vehicle, motorcycle, bicycle, personal mobility, airplane, drone, ship, robot, etc. It's okay.
- FIG. 38 is a block diagram illustrating a schematic configuration example of a vehicle control system, which is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
- the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
- the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
- a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated as the functional configuration of the integrated control unit 12050.
- the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
- the drive system control unit 12010 includes a drive force generation device such as an internal combustion engine or a drive motor that generates drive force for the vehicle, a drive force transmission mechanism that transmits the drive force to wheels, and a drive force transmission mechanism that controls the steering angle of the vehicle. It functions as a control device for a steering mechanism to adjust and a braking device to generate braking force for the vehicle.
- the body system control unit 12020 controls the operations of various devices installed in the vehicle body according to various programs.
- the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a turn signal, or a fog lamp.
- radio waves transmitted from a portable device that replaces a key or signals from various switches may be input to the body control unit 12020.
- the body system control unit 12020 receives input of these radio waves or signals, and controls the door lock device, power window device, lamp, etc. of the vehicle.
- the external information detection unit 12030 detects information external to the vehicle in which the vehicle control system 12000 is mounted.
- an imaging section 12031 is connected to the outside-vehicle information detection unit 12030.
- the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
- the external information detection unit 12030 may perform object detection processing such as a person, car, obstacle, sign, or text on the road surface or distance detection processing based on the received image.
- the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
- the imaging unit 12031 can output the electrical signal as an image or as distance measurement information.
- the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
- the in-vehicle information detection unit 12040 detects in-vehicle information.
- a driver condition detection section 12041 that detects the condition of the driver is connected to the in-vehicle information detection unit 12040.
- the driver condition detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver condition detection unit 12041. It may be calculated, or it may be determined whether the driver is falling asleep.
- the microcomputer 12051 calculates control target values for the driving force generation device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, Control commands can be output to 12010.
- the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of
- ADAS Advanced Driver Assistance System
- the microcomputer 12051 controls the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving, etc., which does not rely on operation.
- the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the outside information detection unit 12030.
- the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of preventing glare, such as switching from high beam to low beam. It can be carried out.
- the audio and image output unit 12052 transmits an output signal of at least one of audio and images to an output device that can visually or audibly notify information to the occupants of the vehicle or to the outside of the vehicle.
- an audio speaker 12061, a display section 12062, and an instrument panel 12063 are illustrated as output devices.
- the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
- FIG. 39 is a diagram showing an example of the installation position of the imaging section 12031.
- the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
- the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at, for example, the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle.
- An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images in front of the vehicle 12100.
- Imaging units 12102 and 12103 provided in the side mirrors mainly capture images of the sides of the vehicle 12100.
- An imaging unit 12104 provided in the rear bumper or back door mainly captures images of the rear of the vehicle 12100.
- the imaging unit 12105 provided above the windshield inside the vehicle is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
- FIG. 39 shows an example of the imaging range of the imaging units 12101 to 12104.
- An imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
- imaging ranges 12112 and 12113 indicate imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
- an imaging range 12114 shows the imaging range of the imaging unit 12101 provided on the front nose.
- the imaging range of the imaging unit 12104 provided in the rear bumper or back door is shown. For example, by overlapping the image data captured by the imaging units 12101 to 12104, an overhead image of the vehicle 12100 viewed from above can be obtained.
- At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
- at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of image sensors, or may be an image sensor having pixels for phase difference detection.
- the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104. By determining the following, it is possible to extract, in particular, the closest three-dimensional object on the path of vehicle 12100, which is traveling at a predetermined speed (for example, 0 km/h or more) in approximately the same direction as vehicle 12100, as the preceding vehicle. can. Furthermore, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, etc., in which the vehicle travels autonomously without depending on the driver's operation.
- automatic brake control including follow-up stop control
- automatic acceleration control including follow-up start control
- the microcomputer 12051 transfers three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, regular vehicles, large vehicles, pedestrians, and utility poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic obstacle avoidance. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there is a possibility of a collision, the microcomputer 12051 transmits information via the audio speaker 12061 and the display unit 12062. By outputting a warning to the driver via the vehicle control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
- the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceed
- At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
- the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the images captured by the imaging units 12101 to 12104.
- pedestrian recognition involves, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and a pattern matching process is performed on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not.
- the audio image output unit 12052 creates a rectangular outline for emphasis on the recognized pedestrian.
- the display section 12062 is controlled so as to display the .
- the audio image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
- the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
- the imaging unit 12031 By applying the technology according to the present disclosure to the imaging unit 12031, the imaging unit 12031 with a simpler configuration can be realized.
- Example of application to endoscopic surgery system The technology according to the present disclosure (this technology) can be applied to various products.
- the technology according to the present disclosure may be applied to an endoscopic surgery system.
- FIG. 40 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (present technology) can be applied.
- FIG. 40 shows an operator (doctor) 11131 performing surgery on a patient 11132 on a patient bed 11133 using the endoscopic surgery system 11000.
- the endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
- the endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into a body cavity of a patient 11132 over a predetermined length, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
- an endoscope 11100 configured as a so-called rigid scope having a rigid tube 11101 is shown, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible tube. good.
- An opening into which an objective lens is fitted is provided at the tip of the lens barrel 11101.
- a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and the light is guided to the tip of the lens barrel. Irradiation is directed toward an observation target within the body cavity of the patient 11132 through the lens.
- the endoscope 11100 may be a direct-viewing mirror, a diagonal-viewing mirror, or a side-viewing mirror.
- An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from an observation target is focused on the image sensor by the optical system.
- the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
- the image signal is transmitted as RAW data to a camera control unit (CCU) 11201.
- CCU camera control unit
- the CCU 11201 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and centrally controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal, such as development processing (demosaic processing), for displaying an image based on the image signal.
- CPU Central Processing Unit
- GPU Graphics Processing Unit
- the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under control from the CCU 11201.
- the light source device 11203 is composed of a light source such as an LED (light emitting diode), and supplies irradiation light to the endoscope 11100 when photographing the surgical site or the like.
- a light source such as an LED (light emitting diode)
- the input device 11204 is an input interface for the endoscopic surgery system 11000.
- the user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
- the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
- a treatment tool control device 11205 controls driving of an energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, or the like.
- the pneumoperitoneum device 11206 injects gas into the body cavity of the patient 11132 via the pneumoperitoneum tube 11111 in order to inflate the body cavity of the patient 11132 for the purpose of ensuring a field of view with the endoscope 11100 and a working space for the operator. send in.
- the recorder 11207 is a device that can record various information regarding surgery.
- the printer 11208 is a device that can print various types of information regarding surgery in various formats such as text, images, or graphs.
- the light source device 11203 that supplies irradiation light to the endoscope 11100 when photographing the surgical site can be configured, for example, from a white light source configured by an LED, a laser light source, or a combination thereof.
- a white light source configured by a combination of RGB laser light sources
- the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so the white balance of the captured image is adjusted in the light source device 11203. It can be carried out.
- the laser light from each RGB laser light source is irradiated onto the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby supporting each of RGB. It is also possible to capture images in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image sensor.
- the driving of the light source device 11203 may be controlled so that the intensity of the light it outputs is changed at predetermined time intervals.
- the drive of the image sensor of the camera head 11102 in synchronization with the timing of changes in the light intensity to acquire images in a time-division manner and compositing the images, a high dynamic It is possible to generate an image of a range.
- the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band compatible with special light observation.
- Special light observation uses, for example, the wavelength dependence of light absorption in body tissues to illuminate the mucosal surface layer by irradiating a narrower band of light than the light used for normal observation (i.e., white light).
- Narrow Band Imaging is performed to photograph specific tissues such as blood vessels with high contrast.
- fluorescence observation may be performed in which an image is obtained using fluorescence generated by irradiating excitation light.
- Fluorescence observation involves irradiating body tissues with excitation light and observing the fluorescence from the body tissues (autofluorescence observation), or locally injecting reagents such as indocyanine green (ICG) into the body tissues and It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
- the light source device 11203 may be configured to be able to supply narrowband light and/or excitation light compatible with such special light observation.
- FIG. 41 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 40.
- the camera head 11102 includes a lens unit 11401, an imaging section 11402, a driving section 11403, a communication section 11404, and a camera head control section 11405.
- the CCU 11201 includes a communication section 11411, an image processing section 11412, and a control section 11413. Camera head 11102 and CCU 11201 are communicably connected to each other by transmission cable 11400.
- the lens unit 11401 is an optical system provided at the connection part with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
- the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
- the imaging element configuring the imaging unit 11402 may be one (so-called single-plate type) or multiple (so-called multi-plate type).
- image signals corresponding to RGB are generated by each imaging element, and a color image may be obtained by combining them.
- the imaging unit 11402 may be configured to include a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display. By performing 3D display, the operator 11131 can more accurately grasp the depth of the living tissue at the surgical site.
- a plurality of lens units 11401 may be provided corresponding to each imaging element.
- the imaging unit 11402 does not necessarily have to be provided in the camera head 11102.
- the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
- the drive unit 11403 is constituted by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405. Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
- the communication unit 11404 is configured by a communication device for transmitting and receiving various information to and from the CCU 11201.
- the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 to the CCU 11201 via the transmission cable 11400 as RAW data.
- the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405.
- the control signal may include, for example, information specifying the frame rate of the captured image, information specifying the exposure value at the time of capturing, and/or information specifying the magnification and focus of the captured image. Contains information about conditions.
- the above imaging conditions such as the frame rate, exposure value, magnification, focus, etc. may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good.
- the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
- the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
- the communication unit 11411 is configured by a communication device for transmitting and receiving various information to and from the camera head 11102.
- the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
- the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
- the image signal and control signal can be transmitted by electrical communication, optical communication, or the like.
- the image processing unit 11412 performs various image processing on the image signal, which is RAW data, transmitted from the camera head 11102.
- the control unit 11413 performs various controls related to the imaging of the surgical site etc. by the endoscope 11100 and the display of the captured image obtained by imaging the surgical site etc. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
- control unit 11413 causes the display device 11202 to display a captured image showing the surgical site, etc., based on the image signal subjected to image processing by the image processing unit 11412.
- the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape and color of the edge of an object included in the captured image to detect surgical tools such as forceps, specific body parts, bleeding, mist when using the energy treatment tool 11112, etc. can be recognized.
- the control unit 11413 may use the recognition result to superimpose and display various types of surgical support information on the image of the surgical site. By displaying the surgical support information in a superimposed manner and presenting it to the surgeon 11131, it becomes possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
- the transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable thereof.
- communication is performed by wire using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
- the technology according to the present disclosure can be applied to a solid-state imaging device, such as an endoscope 11100, a camera head 11102 (imaging unit 11402), a CCU 11201 (image processing unit 11412), etc. .
- the sealing body shown in FIG. 3 is disposed in the optical filter of the solid-state imaging device.
- the present technology is not limited to the embodiments described above, and can be modified in various ways without departing from the gist thereof.
- the solid-state imaging devices according to two or more embodiments may be combined.
- a solid-state imaging device includes a first photoelectric conversion section, an optical filter, a second photoelectric conversion section, and a charge storage transfer layer.
- the first photoelectric conversion section is disposed on the base and converts light in the first wavelength range into charges.
- the optical filter is disposed on the side opposite to the base of the first photoelectric conversion section and transmits light in the first wavelength range.
- the second photoelectric conversion section is disposed on the opposite side of the optical filter from the first photoelectric conversion section, and converts light in a second wavelength range different from the first wavelength range into charges.
- the charge storage transfer layer is disposed in the second photoelectric conversion section, and stores and transfers charges converted in the second photoelectric conversion section.
- the solid-state imaging device further includes a first sealing body.
- the first encapsulant is disposed on the optical filter side of the charge storage transfer layer and encapsulates the constituent material of the optical filter. Therefore, since the composition material emitted from the optical filter is sealed by the first sealing body, it is possible to effectively suppress or prevent the composition material from entering the charge storage transfer layer. Therefore, it is possible to provide a solid-state imaging device that stably functions as a charge storage transfer layer and has excellent operational reliability.
- a solid-state imaging device is the solid-state imaging device according to the first embodiment, further including a second sealing body.
- the second sealing body is formed along the surface of the optical filter on the first photoelectric conversion unit side, and seals the constituent material of the optical filter. Therefore, the composition material emitted from the first photoelectric conversion part side of the optical filter is sealed by the second sealing body, so that the invasion of the composition material into the charge storage transfer layer is more effectively suppressed or It can be prevented.
- the solid-state imaging device according to the third embodiment of the present disclosure is the solid-state imaging device according to the first embodiment or the second embodiment, further including a third sealing body.
- the third sealing body is formed along the side surface of the optical filter and seals the constituent material of the optical filter. Therefore, the composition material emitted from the side surface of the optical filter is sealed by the third sealing body, so that it is possible to more effectively suppress or prevent the composition material from entering the charge storage transfer layer. .
- a solid-state imaging device includes a first photoelectric conversion section, a third photoelectric conversion section, a first optical filter, and a third optical filter.
- the first photoelectric conversion section is disposed on the base and converts light in the first wavelength range into charges.
- the third photoelectric conversion section is disposed on the base body in a region different from the first photoelectric conversion section, and converts light in a third wavelength range shorter than the first wavelength range into charges.
- the first optical filter is disposed on the side opposite to the base of the first photoelectric conversion section, and transmits light in the first wavelength range.
- the third optical filter is disposed on the opposite side of the base of the third photoelectric conversion section, transmits light in the third wavelength range, and has a thickness thinner than the thickness of the first optical filter. Therefore, the thickness of the third optical filter that transmits short wavelength light is reduced, and the sensitivity to light in the third wavelength range can be improved, so the sensitivity to light in the third wavelength range can be adjusted. Can be done.
- the solid-state imaging device has an opening disposed in the base body and formed in the thickness direction from the surface opposite to the base body. Equipped with an insulator.
- Each of the first optical filter and the third optical filter is disposed within the opening.
- the solid-state imaging device is formed on the surface of each of the first optical filter and the third optical filter opposite to the base body, and on the inner wall of the opening from this surface toward the side opposite to the base body, and the first optical filter , and further includes a first sealing body for sealing the constituent materials of each of the third optical filters. Therefore, the first sealing body along the inner wall of the opening forms a reflective surface that reflects and collects the incident light, so that the light collection efficiency can be improved.
- the opening size is decreased from the surface opposite to the base body toward the base body, and the opening has a tapered cross-sectional shape. is formed. Therefore, since a reflective surface having a tapered cross section is formed on the inner wall of the opening, the light collection efficiency can be further improved.
- the solid-state imaging device is the solid-state imaging device according to the fourth embodiment, and includes a side opposite to the first photoelectric conversion section of the first optical filter and a third photoelectric conversion section of the third optical filter.
- a second photoelectric conversion section is provided on the opposite side.
- the second photoelectric conversion section converts light in a second wavelength range different from the first wavelength range and the third wavelength range into charges.
- the second photoelectric conversion section includes a charge storage and transfer layer that accumulates and transfers charges converted in the second photoelectric conversion section. Therefore, the effects obtained by combining the solid-state imaging device according to the first embodiment and the solid-state imaging device according to the fourth embodiment can be obtained.
- the present technology has the following configuration. According to the present technology having the following configuration, it is possible to provide a solid-state imaging device with excellent operational reliability. Further, according to the present technology having the following configuration, it is possible to provide a solid-state imaging device with excellent sensitivity adjustment. Furthermore, according to the present technology having the following configuration, it is possible to provide a solid-state imaging device that has excellent operational reliability and excellent sensitivity adjustment.
- a first photoelectric conversion section that is disposed on the base and converts light in a first wavelength range into charges
- an optical filter that is disposed on a side opposite to the base of the first photoelectric conversion unit and that transmits light in a first wavelength range
- a second photoelectric conversion section that is disposed on the opposite side of the optical filter from the first photoelectric conversion section and converts light in a second wavelength range different from the first wavelength range into charges
- a charge storage and transfer layer disposed in the second photoelectric conversion unit and accumulating and transferring charges converted in the second photoelectric conversion unit
- a first sealing body disposed on the optical filter side of the charge storage transfer layer and sealing a constituent material of the optical filter.
- the solid-state imaging device further comprising a third sealing body formed along a side surface of the optical filter and sealing a constituent material of the optical filter.
- the first photoelectric conversion section is a photodiode
- the second photoelectric conversion section is a first electrode disposed on the optical filter side; an organic photoelectric conversion layer disposed on a side of the first electrode opposite to the optical filter; a second electrode disposed on the opposite side of the organic photoelectric conversion layer to the optical filter;
- the solid-state imaging device according to any one of (1) to (6), wherein the charge storage transfer layer is disposed between the first electrode and the organic photoelectric conversion layer.
- the charge storage transfer layer is formed of one or more oxide semiconductors selected from IGZO, IAZO, ITZO, IGSiO, ZnO, AZO, GZO, ITO, and IZO. Any one of (1) to (7) above.
- the solid-state imaging device according to item 1. (9) The optical filter is formed by containing a pigment in a resin, The solid-state imaging device according to (3), wherein the first sealing body or the second sealing body blocks hydrogen contained in the resin from entering the charge storage transfer layer. (10) In (3) or (9) above, the first sealing body or the second sealing body is formed of one or more sealing materials selected from SiN, AlO, TiO 2 , HfO, and ZrO. The solid-state imaging device described.
- the optical filter is formed by containing a pigment in a resin, The solid-state imaging device according to (6), wherein the third sealing body blocks hydrogen contained in the resin from entering the charge storage transfer layer.
- a first photoelectric conversion section that is disposed on the base and converts light in the first wavelength range into electric charge; a third photoelectric conversion section that is disposed on the base in a region different from the first photoelectric conversion section and converts light in a third wavelength range shorter than the first wavelength range into charges; a first optical filter that is disposed on a side opposite to the base of the first photoelectric conversion unit and that transmits light in a first wavelength range; a third optical filter disposed on the opposite side of the third photoelectric conversion unit from the base, transmitting light in a third wavelength range, and having a thickness thinner than the thickness of the first optical filter; solid-state imaging device.
- an insulator disposed on the base body and having an opening formed in the thickness direction from a surface opposite to the base body;
- Each of the first optical filter and the third optical filter is disposed within the opening,
- the first optical filter is formed on a surface of each of the first optical filter and the third optical filter opposite to the base, and on the inner wall of the opening from the surface toward the opposite side from the base,
- the solid-state imaging device according to (16) further comprising a first sealing body that seals each constituent material of the third optical filter.
- the first sealing body is formed by laminating two or more layers having different refractive indexes.
- the first optical filter is formed in a cross-sectional shape that curves on the opposite side from the base
- the surface position of the first optical filter on the opposite side to the base body is matched with the surface position on the same side of the third optical filter.
- Solid-state imaging device. The solid-state imaging device according to (23), wherein the insulator is disposed between the third optical filter and the base.
- a second photoelectric conversion unit that converts light in a different second wavelength range into charges; Any one of (16) to (24) above, further comprising a charge storage transfer layer disposed in the second photoelectric conversion section and accumulating and transferring charges converted in the second photoelectric conversion section.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Power Engineering (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
In the present invention, a solid-state imaging device comprises: a first photoelectric conversion unit that is provided on a substrate and converts light in a first wavelength region into an electric charge; an optical filter that is provided on the opposite side of the substrate from the first photoelectric conversion unit and transmits light in the first wavelength region; a second photoelectric conversion unit that is provided on the opposite side of the optical filter from the first photoelectric conversion unit and converts light in a second wavelength region that differs from the first wavelength region into an electric charge; an electric charge storage and transfer layer that is provided to the second photoelectric conversion unit and stores and transfers the electric charge that is converted at the second photoelectric conversion unit; and a first encapsulating body that is provided on the optical filter side of the electric charge storage and transfer layer and encapsulates the constituent material of the optical filter.
Description
本開示は、固体撮像装置に関する。
The present disclosure relates to a solid-state imaging device.
特許文献1には、イメージセンサが開示されている。イメージセンサは、基板に形成された半導体フォトダイオードと、半導体フォトダイオード上のカラーフィルタと、カラーフィルタ上の有機フォトダイオードとを備えている。
カラーフィルタは、特定の波長域の光を透過させる。カラーフィルタには樹脂材料が使用され、樹脂材料には顔料が含まれている。
有機フォトダイオードは、第1電極と、第1電極上の第2電極と、第1電極と第2電極との間に形成された有機光電変換層とを備えている。Patent Document 1 discloses an image sensor. The image sensor includes a semiconductor photodiode formed on a substrate, a color filter on the semiconductor photodiode, and an organic photodiode on the color filter.
Color filters transmit light in a specific wavelength range. A resin material is used for the color filter, and the resin material contains pigment.
The organic photodiode includes a first electrode, a second electrode on the first electrode, and an organic photoelectric conversion layer formed between the first electrode and the second electrode.
カラーフィルタは、特定の波長域の光を透過させる。カラーフィルタには樹脂材料が使用され、樹脂材料には顔料が含まれている。
有機フォトダイオードは、第1電極と、第1電極上の第2電極と、第1電極と第2電極との間に形成された有機光電変換層とを備えている。
Color filters transmit light in a specific wavelength range. A resin material is used for the color filter, and the resin material contains pigment.
The organic photodiode includes a first electrode, a second electrode on the first electrode, and an organic photoelectric conversion layer formed between the first electrode and the second electrode.
イメージセンサを含む固体撮像装置では、第1電極と有機光電変換層との間に電荷蓄積転送層を採用する開発が進められている。電荷蓄積転送層が採用されると、有機光電変換層において変換された電荷が効率良く蓄積可能となる。電荷蓄積転送層には、例えば酸化物半導体が使用されている。
ところで、特許文献1では、固体撮像装置の製造過程の熱処理等において、カラーフィルタの樹脂材料からその組成物質が放出される点について配慮がなされていない。具体的には、脱ガスとして、カラーフィルタから水素が放出される。この水素が電荷蓄積転送層へ侵入すると、電荷蓄積転送層では酸化物半導体の酸素還元が生じ、電荷蓄積転送層として機能しなくなる。このため、脱ガスに対処し、動作信頼性に優れた固体撮像装置の開発が望まれている。 In solid-state imaging devices including image sensors, development is underway to employ a charge storage transfer layer between a first electrode and an organic photoelectric conversion layer. When a charge storage transfer layer is employed, charges converted in the organic photoelectric conversion layer can be efficiently stored. For example, an oxide semiconductor is used for the charge storage transfer layer.
However, inPatent Document 1, no consideration is given to the fact that constituent substances are released from the resin material of the color filter during heat treatment and the like during the manufacturing process of the solid-state imaging device. Specifically, hydrogen is released from the color filter as degassing. When this hydrogen enters the charge storage and transfer layer, oxygen reduction of the oxide semiconductor occurs in the charge storage and transfer layer, and the layer no longer functions as a charge storage and transfer layer. Therefore, it is desired to develop a solid-state imaging device that can cope with outgassing and has excellent operational reliability.
ところで、特許文献1では、固体撮像装置の製造過程の熱処理等において、カラーフィルタの樹脂材料からその組成物質が放出される点について配慮がなされていない。具体的には、脱ガスとして、カラーフィルタから水素が放出される。この水素が電荷蓄積転送層へ侵入すると、電荷蓄積転送層では酸化物半導体の酸素還元が生じ、電荷蓄積転送層として機能しなくなる。このため、脱ガスに対処し、動作信頼性に優れた固体撮像装置の開発が望まれている。 In solid-state imaging devices including image sensors, development is underway to employ a charge storage transfer layer between a first electrode and an organic photoelectric conversion layer. When a charge storage transfer layer is employed, charges converted in the organic photoelectric conversion layer can be efficiently stored. For example, an oxide semiconductor is used for the charge storage transfer layer.
However, in
本開示の第1実施態様に係る固体撮像装置は、基体に配設され、第1波長域の光を電荷に変換する第1光電変換部と、第1光電変換部の基体とは反対側に配設され、第1波長域の光を透過させる光学フィルタと、光学フィルタの第1光電変換部とは反対側に配設され、第1波長域とは異なる第2波長域の光を電荷に変換する第2光電変換部と、第2光電変換部に配設され、第2光電変換部において変換された電荷を蓄積し転送する電荷蓄積転送層と、電荷蓄積転送層の光学フィルタ側に配設され、光学フィルタの組成物質を封止する第1封止体とを備えている。
A solid-state imaging device according to a first embodiment of the present disclosure includes a first photoelectric conversion section that is disposed on a base and converts light in a first wavelength range into electric charge, and a first photoelectric conversion section that is disposed on a side opposite to the base of the first photoelectric conversion section. an optical filter that is arranged on the opposite side of the optical filter to the first photoelectric conversion section and that transmits light in a first wavelength range, and that converts light in a second wavelength range different from the first wavelength range into electric charge. a second photoelectric conversion section for conversion; a charge storage and transfer layer disposed in the second photoelectric conversion section for accumulating and transferring charges converted in the second photoelectric conversion section; and a charge storage and transfer layer disposed on the optical filter side of the charge storage and transfer layer. and a first sealing body for sealing the constituent material of the optical filter.
本開示の第2実施態様に係る固体撮像装置は、第1実施態様に係る固体撮像装置において、光学フィルタの第1光電変換部側の表面に沿って形成され、光学フィルタの組成物質を封止する第2封止体を更に備えている。
The solid-state imaging device according to the second embodiment of the present disclosure is the solid-state imaging device according to the first embodiment, which is formed along the surface of the optical filter on the first photoelectric conversion unit side, and seals the constituent material of the optical filter. The apparatus further includes a second sealing body.
本開示の第3実施態様に係る固体撮像装置は、第1実施態様又は第2実施態様に係る固体撮像装置において、光学フィルタの側面に沿って形成され、光学フィルタの組成物質を封止する第3封止体を更に備えている。
The solid-state imaging device according to the third embodiment of the present disclosure is the solid-state imaging device according to the first embodiment or the second embodiment. It further includes three sealing bodies.
本開示の第4実施態様に係る固体撮像装置は、基体に配設され、第1波長域の光を電荷に変換する第1光電変換部と、第1光電変換部とは異なる領域において、基体に配設され、第1波長域よりも短波長の第3波長域の光を電荷に変換する第3光電変換部と、第1光電変換部の基体とは反対側に配設され、第1波長域の光を透過させる第1光学フィルタと、第3光電変換部の基体とは反対側に配設され、第3波長域の光を透過させ、第1光学フィルタの厚さよりも薄い厚さを有する第3光学フィルタとを備えている。
A solid-state imaging device according to a fourth embodiment of the present disclosure includes a first photoelectric conversion section that is disposed on a base and converts light in a first wavelength range into electric charges, and a region different from the first photoelectric conversion section on the base. a third photoelectric conversion section that is disposed on the opposite side of the base of the first photoelectric conversion section and that converts light in a third wavelength range shorter than the first wavelength range into electric charges; A first optical filter that transmits light in the wavelength range, and a third photoelectric conversion unit disposed on the opposite side of the base body, transmits light in the third wavelength range, and has a thickness that is thinner than the thickness of the first optical filter. and a third optical filter having a third optical filter.
本開示の第5実施態様に係る固体撮像装置は、第4実施態様に係る固体撮像装置において、基体に配設され、基体とは反対側の表面から厚さ方向に向かって形成された開口を有する絶縁体を備えている。第1光学フィルタ、第3光学フィルタのそれぞれは、開口内に配設されている。そして、固体撮像装置は、第1光学フィルタ、第3光学フィルタのそれぞれの基体とは反対側の表面、及びこの表面から基体とは反対側に向かって開口内側壁に形成され、第1光学フィルタ、第3光学フィルタのそれぞれの組成物質を封止する第1封止体を更に備えている。
A solid-state imaging device according to a fifth embodiment of the present disclosure is the solid-state imaging device according to the fourth embodiment, in which an opening is provided in the base and formed in the thickness direction from the surface opposite to the base. Equipped with an insulator with Each of the first optical filter and the third optical filter is disposed within the opening. The solid-state imaging device is formed on the surface of each of the first optical filter and the third optical filter opposite to the base body, and on the inner wall of the opening toward the side opposite to the base body from this surface, and the first optical filter The optical filter further includes a first sealing body for sealing the constituent materials of each of the third optical filters.
本開示の第6実施態様に係る固体撮像装置では、第5実施態様に係る固体撮像装置において、開口は、基体とは反対側の表面から基体側へ向かって開口寸法を小さくし、断面テーパ形状に形成されている。
In the solid-state imaging device according to the sixth embodiment of the present disclosure, in the solid-state imaging device according to the fifth embodiment, the opening size is decreased from the surface opposite to the base body toward the base body, and the opening has a tapered cross-sectional shape. is formed.
本開示の第7実施態様に係る固体撮像装置は、第4実施態様に係る固体撮像装置において、第1光学フィルタの第1光電変換部とは反対側及び第3光学フィルタの第3光電変換部とは反対側に配設され、第1波長域及び第3波長域とは異なる第2波長域の光を電荷に変換する第2光電変換部と、第2光電変換部に配設され、第2光電変換部において変換された電荷を蓄積し転送する電荷蓄積転送層とを更に備えている。
The solid-state imaging device according to the seventh embodiment of the present disclosure is the solid-state imaging device according to the fourth embodiment, and includes a side opposite to the first photoelectric conversion section of the first optical filter and a third photoelectric conversion section of the third optical filter. a second photoelectric conversion section that is disposed on the opposite side and converts light in a second wavelength range different from the first wavelength range and the third wavelength range into charges; It further includes a charge storage and transfer layer that stores and transfers the charges converted in the two photoelectric conversion sections.
以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1実施の形態
第1実施の形態は、固体撮像装置に、本技術を適用した第1例を説明する。第1実施の形態は、固体撮像装置の構成及び製造方法について説明する。特に、第1実施の形態は、封止体の構成及び製造方法について詳しく説明する。
2.第2実施の形態
第2実施の形態は、第1実施の形態に係る固体撮像装置において、封止体の構成を変えた第2例を説明する。
3.第3実施の形態
第3実施の形態は、第1実施の形態又は第2実施の形態に係る固体撮像装置において、光学フィルタの構成を変えた第3例を説明する。
4.第4実施の形態
第4実施の形態は、第1実施の形態又は第2実施の形態に係る固体撮像装置において、光電変換部の構成を変えた第4例を説明する。 Embodiments of the present disclosure will be described in detail below with reference to the drawings. Note that the explanation will be given in the following order.
1. First Embodiment The first embodiment describes a first example in which the present technology is applied to a solid-state imaging device. In the first embodiment, the configuration and manufacturing method of a solid-state imaging device will be described. In particular, in the first embodiment, the structure and manufacturing method of the sealed body will be explained in detail.
2. Second Embodiment In the second embodiment, a second example will be described in which the structure of the sealing body is changed in the solid-state imaging device according to the first embodiment.
3. Third Embodiment In the third embodiment, a third example will be described in which the configuration of the optical filter is changed in the solid-state imaging device according to the first embodiment or the second embodiment.
4. Fourth Embodiment The fourth embodiment describes a fourth example in which the configuration of the photoelectric conversion section is changed in the solid-state imaging device according to the first embodiment or the second embodiment.
1.第1実施の形態
第1実施の形態は、固体撮像装置に、本技術を適用した第1例を説明する。第1実施の形態は、固体撮像装置の構成及び製造方法について説明する。特に、第1実施の形態は、封止体の構成及び製造方法について詳しく説明する。
2.第2実施の形態
第2実施の形態は、第1実施の形態に係る固体撮像装置において、封止体の構成を変えた第2例を説明する。
3.第3実施の形態
第3実施の形態は、第1実施の形態又は第2実施の形態に係る固体撮像装置において、光学フィルタの構成を変えた第3例を説明する。
4.第4実施の形態
第4実施の形態は、第1実施の形態又は第2実施の形態に係る固体撮像装置において、光電変換部の構成を変えた第4例を説明する。 Embodiments of the present disclosure will be described in detail below with reference to the drawings. Note that the explanation will be given in the following order.
1. First Embodiment The first embodiment describes a first example in which the present technology is applied to a solid-state imaging device. In the first embodiment, the configuration and manufacturing method of a solid-state imaging device will be described. In particular, in the first embodiment, the structure and manufacturing method of the sealed body will be explained in detail.
2. Second Embodiment In the second embodiment, a second example will be described in which the structure of the sealing body is changed in the solid-state imaging device according to the first embodiment.
3. Third Embodiment In the third embodiment, a third example will be described in which the configuration of the optical filter is changed in the solid-state imaging device according to the first embodiment or the second embodiment.
4. Fourth Embodiment The fourth embodiment describes a fourth example in which the configuration of the photoelectric conversion section is changed in the solid-state imaging device according to the first embodiment or the second embodiment.
5.第5実施の形態
第5実施の形態は、第2実施の形態に係る固体撮像装置において、光学フィルタ及び封止体の構成を変えた第5例を説明する。
6.第6実施の形態
第6実施の形態は、第5実施の形態に係る固体撮像装置において、光学フィルタの構成を変えた第6例を説明する。
7.第7実施の形態
第7実施の形態は、第6実施の形態に係る固体撮像装置において、封止体の構成を変えた第7例を説明する。
8.第8実施の形態
第8実施の形態は、第5実施の形態に係る固体撮像装置と第6実施の形態に係る固体撮像装置とを組み合わせた第8例を説明する。
9.第9実施の形態
第9実施の形態は、第8実施の形態に係る固体撮像装置において、光学フィルタの構成を変えた第9例を説明する。
10.第10実施の形態
第10実施の形態は、第9実施の形態に係る固体撮像装置において、光学フィルタの構成を変えた第10例を説明する。特に、第10実施の形態は、光学フィルタの構成、封止体の構成及び製造方法について詳しく説明する。
11.第11実施の形態
第11実施の形態は、第5実施の形態~第10実施の形態のいずれかに係る固体撮像装置において、光学フィルタの構成を変えた第11例を説明する。さらに、第11実施の形態は、光学フィルタの構成を変えた第1変形例及び第2変形例についても説明する。
12.第12実施の形態
第12実施の形態は、第1実施の形態~第11実施の形態のいずれかに係る固体撮像装置において、貫通電極の構成を変えた第12例を説明する。さらに、第12実施の形態は、貫通電極の構成を変えた第1変形例についても説明する。
13.移動体への応用例
この応用例は、移動体制御システムの一例である車両制御システムに本技術を適用した例を説明する。
14.内視鏡手術システムへの応用例
この応用例は、内視鏡手術システムに本技術を適用した例を説明する。
15.その他の実施の形態 5. Fifth Embodiment In the fifth embodiment, a fifth example will be described in which the configurations of the optical filter and the sealing body are changed in the solid-state imaging device according to the second embodiment.
6. Sixth Embodiment The sixth embodiment describes a sixth example in which the configuration of the optical filter is changed in the solid-state imaging device according to the fifth embodiment.
7. Seventh Embodiment The seventh embodiment describes a seventh example in which the configuration of the sealing body is changed in the solid-state imaging device according to the sixth embodiment.
8. Eighth Embodiment The eighth embodiment describes an eighth example in which the solid-state imaging device according to the fifth embodiment and the solid-state imaging device according to the sixth embodiment are combined.
9. Ninth Embodiment The ninth embodiment describes a ninth example in which the configuration of the optical filter is changed in the solid-state imaging device according to the eighth embodiment.
10. 10th Embodiment A 10th embodiment will describe a 10th example in which the configuration of the optical filter is changed in the solid-state imaging device according to the 9th embodiment. In particular, in the tenth embodiment, the structure of the optical filter, the structure of the sealing body, and the manufacturing method will be explained in detail.
11. Eleventh Embodiment The eleventh embodiment describes an eleventh example in which the configuration of the optical filter is changed in the solid-state imaging device according to any of the fifth to tenth embodiments. Furthermore, in the eleventh embodiment, a first modification example and a second modification example in which the configuration of the optical filter is changed will also be described.
12. Twelfth Embodiment The twelfth embodiment describes a twelfth example in which the structure of the through electrode is changed in the solid-state imaging device according to any of the first to eleventh embodiments. Furthermore, in the twelfth embodiment, a first modification example in which the configuration of the through electrode is changed will also be described.
13. Application Example to a Mobile Object This application example describes an example in which the present technology is applied to a vehicle control system, which is an example of a mobile object control system.
14. Application example to an endoscopic surgery system This application example describes an example in which the present technology is applied to an endoscopic surgery system.
15. Other embodiments
第5実施の形態は、第2実施の形態に係る固体撮像装置において、光学フィルタ及び封止体の構成を変えた第5例を説明する。
6.第6実施の形態
第6実施の形態は、第5実施の形態に係る固体撮像装置において、光学フィルタの構成を変えた第6例を説明する。
7.第7実施の形態
第7実施の形態は、第6実施の形態に係る固体撮像装置において、封止体の構成を変えた第7例を説明する。
8.第8実施の形態
第8実施の形態は、第5実施の形態に係る固体撮像装置と第6実施の形態に係る固体撮像装置とを組み合わせた第8例を説明する。
9.第9実施の形態
第9実施の形態は、第8実施の形態に係る固体撮像装置において、光学フィルタの構成を変えた第9例を説明する。
10.第10実施の形態
第10実施の形態は、第9実施の形態に係る固体撮像装置において、光学フィルタの構成を変えた第10例を説明する。特に、第10実施の形態は、光学フィルタの構成、封止体の構成及び製造方法について詳しく説明する。
11.第11実施の形態
第11実施の形態は、第5実施の形態~第10実施の形態のいずれかに係る固体撮像装置において、光学フィルタの構成を変えた第11例を説明する。さらに、第11実施の形態は、光学フィルタの構成を変えた第1変形例及び第2変形例についても説明する。
12.第12実施の形態
第12実施の形態は、第1実施の形態~第11実施の形態のいずれかに係る固体撮像装置において、貫通電極の構成を変えた第12例を説明する。さらに、第12実施の形態は、貫通電極の構成を変えた第1変形例についても説明する。
13.移動体への応用例
この応用例は、移動体制御システムの一例である車両制御システムに本技術を適用した例を説明する。
14.内視鏡手術システムへの応用例
この応用例は、内視鏡手術システムに本技術を適用した例を説明する。
15.その他の実施の形態 5. Fifth Embodiment In the fifth embodiment, a fifth example will be described in which the configurations of the optical filter and the sealing body are changed in the solid-state imaging device according to the second embodiment.
6. Sixth Embodiment The sixth embodiment describes a sixth example in which the configuration of the optical filter is changed in the solid-state imaging device according to the fifth embodiment.
7. Seventh Embodiment The seventh embodiment describes a seventh example in which the configuration of the sealing body is changed in the solid-state imaging device according to the sixth embodiment.
8. Eighth Embodiment The eighth embodiment describes an eighth example in which the solid-state imaging device according to the fifth embodiment and the solid-state imaging device according to the sixth embodiment are combined.
9. Ninth Embodiment The ninth embodiment describes a ninth example in which the configuration of the optical filter is changed in the solid-state imaging device according to the eighth embodiment.
10. 10th Embodiment A 10th embodiment will describe a 10th example in which the configuration of the optical filter is changed in the solid-state imaging device according to the 9th embodiment. In particular, in the tenth embodiment, the structure of the optical filter, the structure of the sealing body, and the manufacturing method will be explained in detail.
11. Eleventh Embodiment The eleventh embodiment describes an eleventh example in which the configuration of the optical filter is changed in the solid-state imaging device according to any of the fifth to tenth embodiments. Furthermore, in the eleventh embodiment, a first modification example and a second modification example in which the configuration of the optical filter is changed will also be described.
12. Twelfth Embodiment The twelfth embodiment describes a twelfth example in which the structure of the through electrode is changed in the solid-state imaging device according to any of the first to eleventh embodiments. Furthermore, in the twelfth embodiment, a first modification example in which the configuration of the through electrode is changed will also be described.
13. Application Example to a Mobile Object This application example describes an example in which the present technology is applied to a vehicle control system, which is an example of a mobile object control system.
14. Application example to an endoscopic surgery system This application example describes an example in which the present technology is applied to an endoscopic surgery system.
15. Other embodiments
<1.第1実施の形態>
図1~図11を用いて、本開示の第1実施の形態に係る固体撮像装置1を説明する。 <1. First embodiment>
A solid-state imaging device 1 according to a first embodiment of the present disclosure will be described using FIGS. 1 to 11.
図1~図11を用いて、本開示の第1実施の形態に係る固体撮像装置1を説明する。 <1. First embodiment>
A solid-
ここで、図中、適宜、示されている矢印X方向は、便宜的に平面上に載置された固体撮像装置1の1つの平面方向を示している。矢印Y方向は、矢印X方向に対して直交する他の1つの平面方向を示している。また、矢印Z方向は、矢印X方向及び矢印Y方向に対して直交する上方向を示している。つまり、矢印X方向、矢印Y方向、矢印Z方向は、丁度、三次元座標系のX軸方向、Y軸方向、Z軸方向に各々一致している。
なお、これらの各方向は、説明の理解を助けるために示されており、本技術の方向を限定するものではない。 Here, in the figure, the arrow X direction shown as appropriate indicates one plane direction of the solid-state imaging device 1 placed on a plane for convenience. The arrow Y direction indicates another plane direction orthogonal to the arrow X direction. Further, the arrow Z direction indicates an upward direction orthogonal to the arrow X direction and the arrow Y direction. That is, the arrow X direction, arrow Y direction, and arrow Z direction exactly correspond to the X-axis direction, Y-axis direction, and Z-axis direction, respectively, of the three-dimensional coordinate system.
Note that these directions are shown to help understand the explanation, and do not limit the direction of the present technology.
なお、これらの各方向は、説明の理解を助けるために示されており、本技術の方向を限定するものではない。 Here, in the figure, the arrow X direction shown as appropriate indicates one plane direction of the solid-
Note that these directions are shown to help understand the explanation, and do not limit the direction of the present technology.
[固体撮像装置1の構成]
(1)固体撮像装置1の全体のシステム構成
図1は、固体撮像装置1のシステム構成を説明する回路ブロックの一例を表している。 [Configuration of solid-state imaging device 1]
(1) Overall system configuration of solid-state imaging device 1 FIG. 1 shows an example of a circuit block for explaining the system configuration of solid-state imaging device 1.
(1)固体撮像装置1の全体のシステム構成
図1は、固体撮像装置1のシステム構成を説明する回路ブロックの一例を表している。 [Configuration of solid-state imaging device 1]
(1) Overall system configuration of solid-
固体撮像装置1は、矢印Z方向から見て(以下、単に「平面視において」という。)、基体2の中央部に受光領域101を備えている。受光領域101には、複数の画素100が規則的に配列されている。
画素100は、矢印X方向を第1方向として複数配列され、かつ、矢印Y方向を第2方向として複数配列されている。つまり、画素100は、行列状に配列されている。画素100では、入射された光が信号としての電荷に変換される。 The solid-state imaging device 1 includes a light-receiving region 101 at the center of the base 2 when viewed from the direction of arrow Z (hereinafter simply referred to as "in plan view"). In the light receiving area 101, a plurality of pixels 100 are regularly arranged.
A plurality ofpixels 100 are arranged with the arrow X direction as a first direction, and a plurality of pixels 100 are arranged with the arrow Y direction as a second direction. That is, the pixels 100 are arranged in a matrix. In the pixel 100, the incident light is converted into an electric charge as a signal.
画素100は、矢印X方向を第1方向として複数配列され、かつ、矢印Y方向を第2方向として複数配列されている。つまり、画素100は、行列状に配列されている。画素100では、入射された光が信号としての電荷に変換される。 The solid-
A plurality of
固体撮像装置1には、更に受光領域101の周囲に周辺回路が配設されている。周辺回路には、読出回路RC1、読出回路RC2及び駆動回路DRが少なくとも含まれている。
The solid-state imaging device 1 further includes peripheral circuits arranged around the light receiving area 101. The peripheral circuit includes at least a readout circuit RC1, a readout circuit RC2, and a drive circuit DR.
後に詳細に説明するが、1つの画素100は、2つの光電変換部を備えている。ここでは、1つの画素100は、矢印Z方向に積層された2種類の光電変換部により構築されている。
読出回路RC1は、例えば、2種類のうちの一方の光電変換部において変換された電荷を信号として読み取る画素回路を備えている。読出回路RC2は、例えば、2種類のうちの他方の光電変換部において変換された電荷を信号として読み取る画素回路を備えている。
駆動回路DRは、画素100の光電変換部を駆動する駆動信号を出力する。 As will be described in detail later, onepixel 100 includes two photoelectric conversion units. Here, one pixel 100 is constructed of two types of photoelectric conversion units stacked in the direction of arrow Z.
The readout circuit RC1 includes, for example, a pixel circuit that reads the charge converted in one of the two types of photoelectric conversion sections as a signal. The readout circuit RC2 includes, for example, a pixel circuit that reads the charge converted by the other of the two types of photoelectric conversion sections as a signal.
The drive circuit DR outputs a drive signal that drives the photoelectric conversion section of thepixel 100.
読出回路RC1は、例えば、2種類のうちの一方の光電変換部において変換された電荷を信号として読み取る画素回路を備えている。読出回路RC2は、例えば、2種類のうちの他方の光電変換部において変換された電荷を信号として読み取る画素回路を備えている。
駆動回路DRは、画素100の光電変換部を駆動する駆動信号を出力する。 As will be described in detail later, one
The readout circuit RC1 includes, for example, a pixel circuit that reads the charge converted in one of the two types of photoelectric conversion sections as a signal. The readout circuit RC2 includes, for example, a pixel circuit that reads the charge converted by the other of the two types of photoelectric conversion sections as a signal.
The drive circuit DR outputs a drive signal that drives the photoelectric conversion section of the
(2)画素100、画素回路PC1及び画素回路PC2の回路構成
図2は、画素100、画素回路PC1及び画素回路PC2の回路構成の一例を表している。
画素100は、第1光電変換部3と、第2光電変換部9との2つの光電変換部を備えている。第1光電変換部3において変換される光の波長帯域は、第2光電変換部9において変換される光の波長帯域に対して異なっている。 (2) Circuit configuration of thepixel 100, pixel circuit PC1, and pixel circuit PC2 FIG. 2 shows an example of the circuit configuration of the pixel 100, pixel circuit PC1, and pixel circuit PC2.
Thepixel 100 includes two photoelectric conversion units, a first photoelectric conversion unit 3 and a second photoelectric conversion unit 9. The wavelength band of light converted in the first photoelectric conversion unit 3 is different from the wavelength band of light converted in the second photoelectric conversion unit 9.
図2は、画素100、画素回路PC1及び画素回路PC2の回路構成の一例を表している。
画素100は、第1光電変換部3と、第2光電変換部9との2つの光電変換部を備えている。第1光電変換部3において変換される光の波長帯域は、第2光電変換部9において変換される光の波長帯域に対して異なっている。 (2) Circuit configuration of the
The
第1光電変換部3は、半導体フォトダイオードにより構成されている。第1光電変換部3では、入射された光量に応じて電荷が生成される。電荷は、信号として、画素回路PC1に送られる。画素回路PC1は、読出回路RC1を構築している(図1参照)。
The first photoelectric conversion section 3 is composed of a semiconductor photodiode. In the first photoelectric conversion unit 3, charges are generated according to the amount of incident light. The charge is sent as a signal to the pixel circuit PC1. The pixel circuit PC1 constructs a readout circuit RC1 (see FIG. 1).
画素回路PC1は、第1光電変換部3に接続されている。画素回路PC1は、ここでは、転送トランジスタTG1と、リセットトランジスタRST1と、増幅トランジスタAMP1と、選択トランジスタSEL1とを備えている。
なお、画素回路PC1は、転送トランジスタTG1を含めずに、リセットトランジスタRST1と、増幅トランジスタAMP1と、選択トランジスタSEL1とを備えて構築されてもよい。また、画素回路PC1は、更にフローティングディフュージョン変換ゲイン切替えトランジスタを備えて構築されてもよい。 The pixel circuit PC1 is connected to the firstphotoelectric conversion section 3. The pixel circuit PC1 here includes a transfer transistor TG1, a reset transistor RST1, an amplification transistor AMP1, and a selection transistor SEL1.
Note that the pixel circuit PC1 may be constructed not to include the transfer transistor TG1 but to include the reset transistor RST1, the amplification transistor AMP1, and the selection transistor SEL1. Furthermore, the pixel circuit PC1 may be constructed further including a floating diffusion conversion gain switching transistor.
なお、画素回路PC1は、転送トランジスタTG1を含めずに、リセットトランジスタRST1と、増幅トランジスタAMP1と、選択トランジスタSEL1とを備えて構築されてもよい。また、画素回路PC1は、更にフローティングディフュージョン変換ゲイン切替えトランジスタを備えて構築されてもよい。 The pixel circuit PC1 is connected to the first
Note that the pixel circuit PC1 may be constructed not to include the transfer transistor TG1 but to include the reset transistor RST1, the amplification transistor AMP1, and the selection transistor SEL1. Furthermore, the pixel circuit PC1 may be constructed further including a floating diffusion conversion gain switching transistor.
画素回路PC1の具体的な構成は、以下の通りである。
転送トランジスタTG1の一対の主電極のうち、一方の主電極は、第1光電変換部3に接続されている。他方の主電極は、フローティングディフュージョンFD1を通して増幅トランジスタAMP1のゲート電極に接続されている。ゲート電極には、制御信号を転送する制御信号線(水平信号線)TSが接続されている。
リセットトランジスタRST1の一対の主電極のうち、一方の主電極は、フローティングディフュージョンFD1に接続されている。他方の主電極は、電源電圧VDDに接続されている。ゲート電極には、リセット信号を転送するリセット信号線RS1が接続されている。
増幅トランジスタAMP1の一対の主電極のうち、一方の主電極は、電源電圧VDDに接続されている。他方の主電極は、選択トランジスタSEL1の一対の主電極の一方の主電極に接続されている。
選択トランジスタSEL1の他方の主電極は、出力信号線(垂直信号線)VSL1に接続されている。ゲート電極は、選択信号線SS1に接続されている。
ここで、制御信号線TSは、駆動回路DR(図1参照)に接続されている。また、出力信号線VSL1は、読出回路RC1に接続されている(図1参照)。 The specific configuration of the pixel circuit PC1 is as follows.
One of the pair of main electrodes of the transfer transistor TG1 is connected to the firstphotoelectric conversion section 3. The other main electrode is connected to the gate electrode of the amplification transistor AMP1 through the floating diffusion FD1. A control signal line (horizontal signal line) TS for transferring a control signal is connected to the gate electrode.
One of the pair of main electrodes of the reset transistor RST1 is connected to the floating diffusion FD1. The other main electrode is connected to power supply voltage VDD. A reset signal line RS1 for transferring a reset signal is connected to the gate electrode.
One of the pair of main electrodes of the amplification transistor AMP1 is connected to the power supply voltage VDD. The other main electrode is connected to one of the pair of main electrodes of the selection transistor SEL1.
The other main electrode of the selection transistor SEL1 is connected to the output signal line (vertical signal line) VSL1. The gate electrode is connected to the selection signal line SS1.
Here, the control signal line TS is connected to the drive circuit DR (see FIG. 1). Further, the output signal line VSL1 is connected to the read circuit RC1 (see FIG. 1).
転送トランジスタTG1の一対の主電極のうち、一方の主電極は、第1光電変換部3に接続されている。他方の主電極は、フローティングディフュージョンFD1を通して増幅トランジスタAMP1のゲート電極に接続されている。ゲート電極には、制御信号を転送する制御信号線(水平信号線)TSが接続されている。
リセットトランジスタRST1の一対の主電極のうち、一方の主電極は、フローティングディフュージョンFD1に接続されている。他方の主電極は、電源電圧VDDに接続されている。ゲート電極には、リセット信号を転送するリセット信号線RS1が接続されている。
増幅トランジスタAMP1の一対の主電極のうち、一方の主電極は、電源電圧VDDに接続されている。他方の主電極は、選択トランジスタSEL1の一対の主電極の一方の主電極に接続されている。
選択トランジスタSEL1の他方の主電極は、出力信号線(垂直信号線)VSL1に接続されている。ゲート電極は、選択信号線SS1に接続されている。
ここで、制御信号線TSは、駆動回路DR(図1参照)に接続されている。また、出力信号線VSL1は、読出回路RC1に接続されている(図1参照)。 The specific configuration of the pixel circuit PC1 is as follows.
One of the pair of main electrodes of the transfer transistor TG1 is connected to the first
One of the pair of main electrodes of the reset transistor RST1 is connected to the floating diffusion FD1. The other main electrode is connected to power supply voltage VDD. A reset signal line RS1 for transferring a reset signal is connected to the gate electrode.
One of the pair of main electrodes of the amplification transistor AMP1 is connected to the power supply voltage VDD. The other main electrode is connected to one of the pair of main electrodes of the selection transistor SEL1.
The other main electrode of the selection transistor SEL1 is connected to the output signal line (vertical signal line) VSL1. The gate electrode is connected to the selection signal line SS1.
Here, the control signal line TS is connected to the drive circuit DR (see FIG. 1). Further, the output signal line VSL1 is connected to the read circuit RC1 (see FIG. 1).
第2光電変換部9は、ここでは、有機フォトダイオードにより構成されている。第2光電変換部9では、入射された光量に応じて電荷が生成される。電荷は、信号として、画素回路PC2に送られる。画素回路PC2は、読出回路RC2を構築している(図1参照)。
The second photoelectric conversion section 9 is composed of an organic photodiode here. In the second photoelectric conversion unit 9, charges are generated according to the amount of incident light. The charge is sent as a signal to the pixel circuit PC2. The pixel circuit PC2 constructs a readout circuit RC2 (see FIG. 1).
画素回路PC2は、第2光電変換部9に接続されている。画素回路PC2は、ここでは、リセットトランジスタRST2と、増幅トランジスタAMP2と、選択トランジスタSEL2とを備えている。また、また、画素回路PC2は、更にフローティングディフュージョン変換ゲイン切替えトランジスタを備えて構築されてもよい。
The pixel circuit PC2 is connected to the second photoelectric conversion section 9. The pixel circuit PC2 here includes a reset transistor RST2, an amplification transistor AMP2, and a selection transistor SEL2. Furthermore, the pixel circuit PC2 may be constructed further including a floating diffusion conversion gain switching transistor.
第2光電変換部9には、各画素100の一方の電極に駆動電圧を供給する駆動信号線VOAと、複数の画素100の他方の電極に固定電圧を供給する電源電圧線VOUとが接続されている。
第2光電変換部9は、フローティングディフュージョンFD2を通して増幅トランジスタAMP2のゲート電極に接続されている。
リセットトランジスタRST2の一対の主電極のうち、一方の主電極は、フローティングディフュージョンFD2に接続されている。他方の主電極は、電源電圧VDDに接続されている。ゲート電極には、リセット信号を転送するリセット信号線RS2が接続されている。
増幅トランジスタAMP2の一対の主電極のうち、一方の主電極は、電源電圧VDDに接続されている。他方の主電極は、選択トランジスタSEL2の一対の主電極の一方の主電極に接続されている。
選択トランジスタSEL2の他方の主電極は、出力信号線(垂直信号線)VSL2に接続されている。ゲート電極は、選択信号線SS2に接続されている。
ここで、駆動信号線VOAは、駆動回路DR(図1参照)に接続されている。また、出力信号線VSL2は、読出回路RC2に接続されている(図1参照)。 A drive signal line VOA that supplies a drive voltage to one electrode of eachpixel 100 and a power supply voltage line VOU that supplies a fixed voltage to the other electrode of the plurality of pixels 100 are connected to the second photoelectric conversion unit 9. ing.
The secondphotoelectric conversion section 9 is connected to the gate electrode of the amplification transistor AMP2 through the floating diffusion FD2.
One of the pair of main electrodes of the reset transistor RST2 is connected to the floating diffusion FD2. The other main electrode is connected to power supply voltage VDD. A reset signal line RS2 for transferring a reset signal is connected to the gate electrode.
One of the pair of main electrodes of the amplification transistor AMP2 is connected to the power supply voltage VDD. The other main electrode is connected to one of the pair of main electrodes of the selection transistor SEL2.
The other main electrode of the selection transistor SEL2 is connected to the output signal line (vertical signal line) VSL2. The gate electrode is connected to the selection signal line SS2.
Here, the drive signal line VOA is connected to the drive circuit DR (see FIG. 1). Further, the output signal line VSL2 is connected to the readout circuit RC2 (see FIG. 1).
第2光電変換部9は、フローティングディフュージョンFD2を通して増幅トランジスタAMP2のゲート電極に接続されている。
リセットトランジスタRST2の一対の主電極のうち、一方の主電極は、フローティングディフュージョンFD2に接続されている。他方の主電極は、電源電圧VDDに接続されている。ゲート電極には、リセット信号を転送するリセット信号線RS2が接続されている。
増幅トランジスタAMP2の一対の主電極のうち、一方の主電極は、電源電圧VDDに接続されている。他方の主電極は、選択トランジスタSEL2の一対の主電極の一方の主電極に接続されている。
選択トランジスタSEL2の他方の主電極は、出力信号線(垂直信号線)VSL2に接続されている。ゲート電極は、選択信号線SS2に接続されている。
ここで、駆動信号線VOAは、駆動回路DR(図1参照)に接続されている。また、出力信号線VSL2は、読出回路RC2に接続されている(図1参照)。 A drive signal line VOA that supplies a drive voltage to one electrode of each
The second
One of the pair of main electrodes of the reset transistor RST2 is connected to the floating diffusion FD2. The other main electrode is connected to power supply voltage VDD. A reset signal line RS2 for transferring a reset signal is connected to the gate electrode.
One of the pair of main electrodes of the amplification transistor AMP2 is connected to the power supply voltage VDD. The other main electrode is connected to one of the pair of main electrodes of the selection transistor SEL2.
The other main electrode of the selection transistor SEL2 is connected to the output signal line (vertical signal line) VSL2. The gate electrode is connected to the selection signal line SS2.
Here, the drive signal line VOA is connected to the drive circuit DR (see FIG. 1). Further, the output signal line VSL2 is connected to the readout circuit RC2 (see FIG. 1).
ここで、本技術では、貫通配線52(又は貫通配線42)が構成要素として説明されている。貫通配線52は、第1貫通配線521と第2貫通配線522との2種類を備えている。
第1貫通配線521は、第2光電変換部9の一方の電極と画素回路PC2とを接続するフローティングディフュージョンFD2の一部を構成している。
また、第2貫通配線522は、第2光電変換部9の他方の電極と駆動信号線VOAとを接続する接続配線を構成している。本技術の説明において、第1貫通配線521、第2貫通配線522のそれぞれの区別を特に必要としないとき、総称して、単に「貫通配線52」として説明する。 Here, in the present technology, the through wiring 52 (or the through wiring 42) is described as a component. The throughwiring 52 includes two types: a first through wiring 521 and a second through wiring 522.
The first throughwiring 521 constitutes a part of a floating diffusion FD2 that connects one electrode of the second photoelectric conversion section 9 and the pixel circuit PC2.
Further, the second through wiring 522 constitutes a connection wiring that connects the other electrode of the secondphotoelectric conversion section 9 and the drive signal line VOA. In the description of the present technology, when there is no particular need to distinguish between the first through wiring 521 and the second through wiring 522, they will be collectively referred to as simply "through wiring 52."
第1貫通配線521は、第2光電変換部9の一方の電極と画素回路PC2とを接続するフローティングディフュージョンFD2の一部を構成している。
また、第2貫通配線522は、第2光電変換部9の他方の電極と駆動信号線VOAとを接続する接続配線を構成している。本技術の説明において、第1貫通配線521、第2貫通配線522のそれぞれの区別を特に必要としないとき、総称して、単に「貫通配線52」として説明する。 Here, in the present technology, the through wiring 52 (or the through wiring 42) is described as a component. The through
The first through
Further, the second through wiring 522 constitutes a connection wiring that connects the other electrode of the second
固体撮像装置1は、更に図示省略の画像処理回路を備えている。画素回路PC1、画素回路PC2のそれぞれは、画像処理回路に接続されている。
画像処理回路は、例えば、アナログデジタルコンバータ(ADC)とデジタルシグナルプロセッサ(DSP)とを備えている。
画素100により光から変換された電荷は、アナログ信号である。このアナログ信号は、画素回路PC1、画素回路PC2のそれぞれにおいて増幅処理される。ADCは、画素回路PC1、画素回路PC2のそれぞれから出力されるアナログ信号をデジタル信号に変換する。DSPは、デジタル信号の機能処理を行う。つまり、画像処理回路では、画像作成の信号処理が行われる。 The solid-state imaging device 1 further includes an image processing circuit (not shown). Each of the pixel circuit PC1 and the pixel circuit PC2 is connected to an image processing circuit.
The image processing circuit includes, for example, an analog-to-digital converter (ADC) and a digital signal processor (DSP).
The charge converted from light bypixel 100 is an analog signal. This analog signal is amplified in each of the pixel circuit PC1 and the pixel circuit PC2. The ADC converts analog signals output from each of the pixel circuit PC1 and the pixel circuit PC2 into digital signals. DSP performs functional processing of digital signals. That is, the image processing circuit performs signal processing for image creation.
画像処理回路は、例えば、アナログデジタルコンバータ(ADC)とデジタルシグナルプロセッサ(DSP)とを備えている。
画素100により光から変換された電荷は、アナログ信号である。このアナログ信号は、画素回路PC1、画素回路PC2のそれぞれにおいて増幅処理される。ADCは、画素回路PC1、画素回路PC2のそれぞれから出力されるアナログ信号をデジタル信号に変換する。DSPは、デジタル信号の機能処理を行う。つまり、画像処理回路では、画像作成の信号処理が行われる。 The solid-
The image processing circuit includes, for example, an analog-to-digital converter (ADC) and a digital signal processor (DSP).
The charge converted from light by
(3)固体撮像装置1の装置構成
図3は、第1実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図4は、図3に示される画素100の平面構成の一例を表している。
固体撮像装置1は、矢印Z方向の外部から入射される入射光を電荷に変換する光検出装置である。 (3) Device configuration of solid-state imaging device 1 FIG. 3 shows an example of a vertical cross-sectional configuration of the pixel 100 of the solid-state imaging device 1 according to the first embodiment. FIG. 4 shows an example of a planar configuration of the pixel 100 shown in FIG. 3.
The solid-state imaging device 1 is a photodetection device that converts incident light from the outside in the direction of arrow Z into electric charges.
図3は、第1実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図4は、図3に示される画素100の平面構成の一例を表している。
固体撮像装置1は、矢印Z方向の外部から入射される入射光を電荷に変換する光検出装置である。 (3) Device configuration of solid-
The solid-
固体撮像装置1は、前述の通り、入射光を電荷に変換する複数の画素100を備えている。平面視において、画素100の平面形状は、略正方形状の矩形状に形成されている。
さらに、矢印Y方向に見て(以下、単に「側面視において」という。)及び平面視において、画素100の周囲に沿って画素分離領域110が配設されている。このため、1つの画素100は、他の1つの画素100に対して、画素分離領域110を介在させて電気的に、かつ、光学的に分離されている。 As described above, the solid-state imaging device 1 includes a plurality of pixels 100 that convert incident light into electric charges. In plan view, the planar shape of the pixel 100 is formed into a substantially square rectangular shape.
Further, apixel isolation region 110 is provided along the periphery of the pixel 100 when viewed in the direction of arrow Y (hereinafter simply referred to as "side view") and when viewed in plan. Therefore, one pixel 100 is electrically and optically isolated from another pixel 100 with the pixel isolation region 110 interposed therebetween.
さらに、矢印Y方向に見て(以下、単に「側面視において」という。)及び平面視において、画素100の周囲に沿って画素分離領域110が配設されている。このため、1つの画素100は、他の1つの画素100に対して、画素分離領域110を介在させて電気的に、かつ、光学的に分離されている。 As described above, the solid-
Further, a
側面視において、固体撮像装置1は、基体2と、第1光電変換部3と、光学フィルタ7と、第2光電変換部9と、電荷蓄積転送層93とを主要な構成要素として備えている。そして、画素100は、第1光電変換部3と、光学フィルタ7と、第2光電変換部9と、電荷蓄積転送層93とを主要な構成要素として備えている。
さらに、固体撮像装置1は、光学レンズ13を備えている。 In a side view, the solid-state imaging device 1 includes a base 2, a first photoelectric conversion section 3, an optical filter 7, a second photoelectric conversion section 9, and a charge storage transfer layer 93 as main components. . The pixel 100 includes a first photoelectric conversion section 3, an optical filter 7, a second photoelectric conversion section 9, and a charge storage transfer layer 93 as main components.
Further, the solid-state imaging device 1 includes an optical lens 13.
さらに、固体撮像装置1は、光学レンズ13を備えている。 In a side view, the solid-
Further, the solid-
(4)基体2の構成
図3に示されるように、固体撮像装置1において、基体2は、回路基板21と、半導体基板22とを備えている。
回路基板21は、例えば単結晶シリコン(Si)基板により形成されている。回路基板21は、固体撮像装置1の周辺回路を備えている。図3での図示は省略するが、前述の図1及び図2に示されるように、周辺回路には、読出回路RC1、読出回路RC2及び駆動回路DRが少なくとも含まれている。詳しく説明する。
読出回路RC1、読出回路RC2のそれぞれには、カラム信号処理回路と、出力回路とが含まれている。また、駆動回路DRには、垂直駆動回路と、水平駆動回路とが含まれている。さらに、周辺回路には、制御回路が含まれている。 (4) Configuration ofBase 2 As shown in FIG. 3, in the solid-state imaging device 1, the base 2 includes a circuit board 21 and a semiconductor substrate 22.
Thecircuit board 21 is formed of, for example, a single crystal silicon (Si) substrate. The circuit board 21 includes peripheral circuits of the solid-state imaging device 1. Although not shown in FIG. 3, as shown in FIGS. 1 and 2 described above, the peripheral circuit includes at least a read circuit RC1, a read circuit RC2, and a drive circuit DR. explain in detail.
Each of readout circuit RC1 and readout circuit RC2 includes a column signal processing circuit and an output circuit. Further, the drive circuit DR includes a vertical drive circuit and a horizontal drive circuit. Furthermore, the peripheral circuit includes a control circuit.
図3に示されるように、固体撮像装置1において、基体2は、回路基板21と、半導体基板22とを備えている。
回路基板21は、例えば単結晶シリコン(Si)基板により形成されている。回路基板21は、固体撮像装置1の周辺回路を備えている。図3での図示は省略するが、前述の図1及び図2に示されるように、周辺回路には、読出回路RC1、読出回路RC2及び駆動回路DRが少なくとも含まれている。詳しく説明する。
読出回路RC1、読出回路RC2のそれぞれには、カラム信号処理回路と、出力回路とが含まれている。また、駆動回路DRには、垂直駆動回路と、水平駆動回路とが含まれている。さらに、周辺回路には、制御回路が含まれている。 (4) Configuration of
The
Each of readout circuit RC1 and readout circuit RC2 includes a column signal processing circuit and an output circuit. Further, the drive circuit DR includes a vertical drive circuit and a horizontal drive circuit. Furthermore, the peripheral circuit includes a control circuit.
まず、制御回路は、入力クロックと、動作モード等を指令するデータとを受け取り、又固体撮像装置1の内部情報等のデータを出力する。すなわち、制御回路は、垂直同期信号、水平同期信号及びマスタクロックに基づいて、垂直駆動回路、カラム信号処理回路及び水平駆動回路等の動作の基準となるクロック信号や制御信号を生成する。そして、これらの信号は、垂直駆動回路、カラム信号処理回路及び水平駆動回路等に入力される。
First, the control circuit receives an input clock and data instructing an operation mode, etc., and also outputs data such as internal information of the solid-state imaging device 1. That is, the control circuit generates a clock signal and a control signal that serve as a reference for the operation of the vertical drive circuit, column signal processing circuit, horizontal drive circuit, etc., based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock. These signals are then input to a vertical drive circuit, a column signal processing circuit, a horizontal drive circuit, and the like.
垂直駆動回路は、例えばシフトレジスタにより構成されている。垂直駆動回路は、画素駆動配線を選択し、選択された画素駆動配線に画素100を駆動するためのパルスを供給する。画素100は、行単位において駆動される。すなわち、垂直駆動回路は、画素領域の各画素100を行単位において順次垂直方向に選択走査する。垂直信号線を通して各画素100の光電変換素子に受光量に応じて生成された信号電荷が、画素信号としてカラム信号処理回路に供給される。
The vertical drive circuit is composed of, for example, a shift register. The vertical drive circuit selects a pixel drive wiring and supplies a pulse for driving the pixel 100 to the selected pixel drive wiring. The pixels 100 are driven row by row. That is, the vertical drive circuit sequentially selectively scans each pixel 100 in the pixel area in the vertical direction row by row. Signal charges generated in the photoelectric conversion element of each pixel 100 according to the amount of light received through the vertical signal line are supplied to the column signal processing circuit as a pixel signal.
カラム信号処理回路は、画素100の例えば列毎に配置されている。カラム信号処理回路では、1行分の画素100から出力される信号に対して、画素列毎にノイズ除去等の信号処理が行われる。すなわち、カラム信号処理回路は、画素100に固有の固定パターンノイズを除去するCDS(Correlated Double Sampling)、信号増幅、AD変換等の信号処理を行う。カラム信号処理回路の出力段には、水平選択スイッチが水平信号線との間に接続されている。
A column signal processing circuit is arranged for each column of pixels 100, for example. In the column signal processing circuit, signal processing such as noise removal is performed for each pixel column on the signals output from the pixels 100 for one row. That is, the column signal processing circuit performs signal processing such as CDS (Correlated Double Sampling) for removing fixed pattern noise specific to the pixel 100, signal amplification, and AD conversion. A horizontal selection switch is connected between the output stage of the column signal processing circuit and the horizontal signal line.
水平駆動回路は、例えばシフトレジスタにより構成されている。水平駆動回路は、水平走査パルスを順次出力することにより、カラム信号処理回路の各々を順番に選択し、カラム信号処理回路の各々から画素信号を水平信号線に出力する。
The horizontal drive circuit is composed of, for example, a shift register. The horizontal drive circuit sequentially outputs horizontal scanning pulses to sequentially select each of the column signal processing circuits, and outputs a pixel signal from each of the column signal processing circuits to the horizontal signal line.
出力回路は、カラム信号処理回路の各々から水平信号線を通して順次供給される信号に対して、信号処理を行って出力する。例えば、出力回路では、バッファリングだけを行う場合、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を行う場合がある。入出力端子は、固体撮像装置1とその外部との信号の遣り取りを行う。
The output circuit performs signal processing on the signals sequentially supplied from each of the column signal processing circuits through the horizontal signal line, and outputs the processed signals. For example, in the output circuit, only buffering may be performed, black level adjustment, column variation correction, various digital signal processing, etc. may be performed. The input/output terminal exchanges signals between the solid-state imaging device 1 and the outside.
半導体基板22は、回路基板21に配設されている。半導体基板22は、ここでは、回路基板21と同様に、単結晶Si基板により形成されている。
The semiconductor substrate 22 is arranged on the circuit board 21. The semiconductor substrate 22 is here formed of a single-crystal Si substrate similarly to the circuit board 21.
(5)第1光電変換部3の構成
第1光電変換部3は、半導体基板22内に配設されている。第1光電変換部3は、画素100毎に配設されている。
第1光電変換部3は、詳細な構成の図示を省略するが、p型半導体領域とn型半導体領域とを含む半導体フォトダイオードにより構成されている。ここでは、第1光電変換部3は、例えばPIN(Positive Intrinsic Negative)型フォトダイオードにより構成されている。
第1実施の形態において、第1光電変換部3では、第1波長域としての赤色光域、又は第1波長域としての青色光域の入射光を受光し、受光量に応じて光電変換された電荷を生成する。第1光電変換部3において生成された電荷は、回路基板21へ出力される。
ここで、本技術に係る「第1光電変換部」は、第1波長域としての赤色光域、又は第1波長域としての青色光域の入射光を受光する第1光電変換部3に対応している。また、本技術に係る「第1光電変換部」は、第1波長域としての赤色光域の入射光を受光する第1光電変換部3に対応し、「第3光電変換部」は、第1波長域よりも短波長の第3波長域としての青色光域の入射光を受光する第1光電変換部3(又は第3光電変換部)に対応している。 (5) Configuration of the firstphotoelectric conversion section 3 The first photoelectric conversion section 3 is disposed within the semiconductor substrate 22. The first photoelectric conversion unit 3 is provided for each pixel 100.
The firstphotoelectric conversion unit 3 is constituted by a semiconductor photodiode including a p-type semiconductor region and an n-type semiconductor region, although the detailed configuration is not illustrated. Here, the first photoelectric conversion section 3 is constituted by, for example, a PIN (Positive Intrinsic Negative) type photodiode.
In the first embodiment, the firstphotoelectric conversion unit 3 receives incident light in a red light range as a first wavelength range or a blue light range as a first wavelength range, and performs photoelectric conversion according to the amount of received light. generates an electric charge. The charges generated in the first photoelectric conversion section 3 are output to the circuit board 21.
Here, the "first photoelectric conversion unit" according to the present technology corresponds to the firstphotoelectric conversion unit 3 that receives incident light in a red light range as a first wavelength range or in a blue light range as a first wavelength range. are doing. Further, the "first photoelectric conversion unit" according to the present technology corresponds to the first photoelectric conversion unit 3 that receives incident light in the red light range as the first wavelength range, and the "third photoelectric conversion unit" corresponds to the first photoelectric conversion unit 3 that receives incident light in the red light range as the first wavelength range. It corresponds to the first photoelectric conversion unit 3 (or third photoelectric conversion unit) that receives incident light in a blue light range as a third wavelength range shorter than the first wavelength range.
第1光電変換部3は、半導体基板22内に配設されている。第1光電変換部3は、画素100毎に配設されている。
第1光電変換部3は、詳細な構成の図示を省略するが、p型半導体領域とn型半導体領域とを含む半導体フォトダイオードにより構成されている。ここでは、第1光電変換部3は、例えばPIN(Positive Intrinsic Negative)型フォトダイオードにより構成されている。
第1実施の形態において、第1光電変換部3では、第1波長域としての赤色光域、又は第1波長域としての青色光域の入射光を受光し、受光量に応じて光電変換された電荷を生成する。第1光電変換部3において生成された電荷は、回路基板21へ出力される。
ここで、本技術に係る「第1光電変換部」は、第1波長域としての赤色光域、又は第1波長域としての青色光域の入射光を受光する第1光電変換部3に対応している。また、本技術に係る「第1光電変換部」は、第1波長域としての赤色光域の入射光を受光する第1光電変換部3に対応し、「第3光電変換部」は、第1波長域よりも短波長の第3波長域としての青色光域の入射光を受光する第1光電変換部3(又は第3光電変換部)に対応している。 (5) Configuration of the first
The first
In the first embodiment, the first
Here, the "first photoelectric conversion unit" according to the present technology corresponds to the first
(6)光学フィルタ7の構成
光学フィルタ7は、半導体基板22の回路基板21とは反対側に絶縁体41を介在して配設されている。絶縁体41は、例えば酸化シリコン(SiO2)等により形成されている。絶縁体41には更に絶縁体51が積層され、光学フィルタ7は、絶縁体51に厚さ方向に貫通して形成された開口51H内に埋設されている。絶縁体51は、例えばSiO2等により形成されている。
光学フィルタ7は、前述の通り、第1波長域として、赤色波長域を透過させる赤色フィルタ7Rと、青色波長域を透過させる青色フィルタ7Bとを備えている。赤色フィルタ7Rは、例えば585nm以上780nm以下の波長を有する光を透過させる。青色フィルタ7Bは、例えば400nm以上500nm以下の波長を有する光を透過させる。
ここで、本技術に係る「第1光学フィルタ」は、赤色フィルタ7R又は青色フィルタ7Bに対応している。また、本技術に係る「第1光学フィルタ」は、赤色フィルタ7Rに対応し、本技術に係る「第3光学フィルタ」は、青色フィルタ7Bに対応している。 (6) Configuration ofoptical filter 7 The optical filter 7 is disposed on the opposite side of the semiconductor substrate 22 from the circuit board 21 with an insulator 41 interposed therebetween. The insulator 41 is made of, for example, silicon oxide (SiO 2 ). An insulator 51 is further laminated on the insulator 41, and the optical filter 7 is embedded in an opening 51H formed through the insulator 51 in the thickness direction. The insulator 51 is made of, for example, SiO 2 or the like.
As described above, theoptical filter 7 includes, as the first wavelength range, a red filter 7R that transmits a red wavelength range, and a blue filter 7B that transmits a blue wavelength range. The red filter 7R transmits light having a wavelength of, for example, 585 nm or more and 780 nm or less. The blue filter 7B transmits light having a wavelength of, for example, 400 nm or more and 500 nm or less.
Here, the "first optical filter" according to the present technology corresponds to thered filter 7R or the blue filter 7B. Further, the "first optical filter" according to the present technology corresponds to the red filter 7R, and the "third optical filter" according to the present technology corresponds to the blue filter 7B.
光学フィルタ7は、半導体基板22の回路基板21とは反対側に絶縁体41を介在して配設されている。絶縁体41は、例えば酸化シリコン(SiO2)等により形成されている。絶縁体41には更に絶縁体51が積層され、光学フィルタ7は、絶縁体51に厚さ方向に貫通して形成された開口51H内に埋設されている。絶縁体51は、例えばSiO2等により形成されている。
光学フィルタ7は、前述の通り、第1波長域として、赤色波長域を透過させる赤色フィルタ7Rと、青色波長域を透過させる青色フィルタ7Bとを備えている。赤色フィルタ7Rは、例えば585nm以上780nm以下の波長を有する光を透過させる。青色フィルタ7Bは、例えば400nm以上500nm以下の波長を有する光を透過させる。
ここで、本技術に係る「第1光学フィルタ」は、赤色フィルタ7R又は青色フィルタ7Bに対応している。また、本技術に係る「第1光学フィルタ」は、赤色フィルタ7Rに対応し、本技術に係る「第3光学フィルタ」は、青色フィルタ7Bに対応している。 (6) Configuration of
As described above, the
Here, the "first optical filter" according to the present technology corresponds to the
図4に示されるように、赤色フィルタ7R、青色フィルタ7Bのそれぞれは、矢印X方向、矢印Y方向のそれぞれにおいて、交互に配列されている。
ここで、矢印X方向に配列された2個の画素100及び矢印Y方向に配列された2個の画素100は、1つの画素単位PUを構築している。画素単位PUにおいて、便宜的に表している一方の対角線d1-d1に沿って、2個の赤色フィルタ7Rが配列されている。また、画素単位PUにおいて、便宜的に表している他の一方の対角線d2-d2に沿って、2個の青色フィルタ7Bが配列されている。
ここで、赤色フィルタ7R、青色フィルタ7Bのそれぞれの基体2とは反対側の表面は、基体2側に湾曲する断面形状に形成されている。 As shown in FIG. 4, thered filters 7R and the blue filters 7B are arranged alternately in the arrow X direction and the arrow Y direction, respectively.
Here, twopixels 100 arranged in the direction of arrow X and two pixels 100 arranged in the direction of arrow Y constitute one pixel unit PU. In the pixel unit PU, two red filters 7R are arranged along one diagonal line d1-d1, which is shown for convenience. Furthermore, in the pixel unit PU, two blue filters 7B are arranged along the other diagonal line d2-d2, which is shown for convenience.
Here, the surface of each of thered filter 7R and the blue filter 7B on the side opposite to the base body 2 is formed in a cross-sectional shape that curves toward the base body 2 side.
ここで、矢印X方向に配列された2個の画素100及び矢印Y方向に配列された2個の画素100は、1つの画素単位PUを構築している。画素単位PUにおいて、便宜的に表している一方の対角線d1-d1に沿って、2個の赤色フィルタ7Rが配列されている。また、画素単位PUにおいて、便宜的に表している他の一方の対角線d2-d2に沿って、2個の青色フィルタ7Bが配列されている。
ここで、赤色フィルタ7R、青色フィルタ7Bのそれぞれの基体2とは反対側の表面は、基体2側に湾曲する断面形状に形成されている。 As shown in FIG. 4, the
Here, two
Here, the surface of each of the
光学フィルタ7は、例えば、樹脂材料に色を付ける顔料を含んで形成されている。詳しく説明すると、樹脂としては、例えばフタロシアニン誘導体等の有機樹脂材料を実用的に使用することができる。
また、赤色フィルタ7Rの膜厚t1は、例えば400nm以上850nm以下である。青色フィルタ7Bの膜厚t3は、例えば200nm以上550nm以下である。赤色フィルタ7R、青色フィルタ7Bのそれぞれは、感度調整のために、異なる膜厚に形成されている。
第1実施の形態では、赤色フィルタ7Rの矢印Z方向の厚さに対して、青色フィルタ7Bの同一方向の厚さは薄く形成されている。 Theoptical filter 7 is formed of, for example, a resin material containing a pigment that colors the resin material. To explain in detail, as the resin, for example, organic resin materials such as phthalocyanine derivatives can be practically used.
Further, the film thickness t1 of thered filter 7R is, for example, 400 nm or more and 850 nm or less. The film thickness t3 of the blue filter 7B is, for example, 200 nm or more and 550 nm or less. Each of the red filter 7R and the blue filter 7B is formed to have a different thickness for sensitivity adjustment.
In the first embodiment, the thickness of theblue filter 7B in the same direction is thinner than the thickness of the red filter 7R in the direction of arrow Z.
また、赤色フィルタ7Rの膜厚t1は、例えば400nm以上850nm以下である。青色フィルタ7Bの膜厚t3は、例えば200nm以上550nm以下である。赤色フィルタ7R、青色フィルタ7Bのそれぞれは、感度調整のために、異なる膜厚に形成されている。
第1実施の形態では、赤色フィルタ7Rの矢印Z方向の厚さに対して、青色フィルタ7Bの同一方向の厚さは薄く形成されている。 The
Further, the film thickness t1 of the
In the first embodiment, the thickness of the
(7)第2光電変換部9の構成
第2光電変換部9は、光学フィルタ7の第1光電変換部3とは反対側に、絶縁体81を介在させて配設されている。絶縁体81には、例えばSiO2等が使用されている。第2光電変換部9は、複数の画素100にわたって配設されている。ここでは、すべての画素100にわたって第2光電変換部9が配設されている。
なお、本技術では、第2光電変換部9は、画素100毎、画素単位PU毎、複数の画素100毎、又は複数の画素単位PU毎に配設されてもよい。 (7) Configuration of secondphotoelectric conversion section 9 The second photoelectric conversion section 9 is disposed on the opposite side of the optical filter 7 from the first photoelectric conversion section 3 with an insulator 81 interposed therebetween. The insulator 81 is made of, for example, SiO 2 . The second photoelectric conversion unit 9 is arranged across the plurality of pixels 100. Here, the second photoelectric conversion section 9 is arranged across all the pixels 100.
Note that in the present technology, the secondphotoelectric conversion unit 9 may be provided for each pixel 100, each pixel unit PU, each plurality of pixels 100, or each plurality of pixel units PU.
第2光電変換部9は、光学フィルタ7の第1光電変換部3とは反対側に、絶縁体81を介在させて配設されている。絶縁体81には、例えばSiO2等が使用されている。第2光電変換部9は、複数の画素100にわたって配設されている。ここでは、すべての画素100にわたって第2光電変換部9が配設されている。
なお、本技術では、第2光電変換部9は、画素100毎、画素単位PU毎、複数の画素100毎、又は複数の画素単位PU毎に配設されてもよい。 (7) Configuration of second
Note that in the present technology, the second
第2光電変換部9は、第1電極91と、有機光電変換層94と、第2電極95とを備えている。さらに、第2光電変換部9は、絶縁体92と、電荷蓄積転送層93とを備えている。
The second photoelectric conversion section 9 includes a first electrode 91, an organic photoelectric conversion layer 94, and a second electrode 95. Further, the second photoelectric conversion section 9 includes an insulator 92 and a charge storage transfer layer 93.
(7-1)第1電極91の構成
第1電極91は、光学フィルタ7側に配設され、絶縁体81の表面上に形成されている。第1電極91は、読出電極又は下部電極として使用され、画素100毎に配置されている。第1電極91は、絶縁体81内に配設された配線82等を通して回路基板21の所定回路に接続されている。
第1電極91には、導電性を有し、かつ、透明性を有する、例えば酸化インジウム-酸化亜鉛系酸化物(IZO:Indium Zinc Oxide)、又は酸化インジウム錫(ITO:Indium Tin Oxide)が使用されている。第1電極91の膜厚は、例えば10nm以上100nm以下である。 (7-1) Configuration of thefirst electrode 91 The first electrode 91 is disposed on the optical filter 7 side and is formed on the surface of the insulator 81. The first electrode 91 is used as a readout electrode or a lower electrode, and is arranged for each pixel 100. The first electrode 91 is connected to a predetermined circuit of the circuit board 21 through a wiring 82 and the like disposed within the insulator 81 .
Thefirst electrode 91 is made of conductive and transparent material such as indium oxide-zinc oxide (IZO) or indium tin oxide (ITO). has been done. The thickness of the first electrode 91 is, for example, 10 nm or more and 100 nm or less.
第1電極91は、光学フィルタ7側に配設され、絶縁体81の表面上に形成されている。第1電極91は、読出電極又は下部電極として使用され、画素100毎に配置されている。第1電極91は、絶縁体81内に配設された配線82等を通して回路基板21の所定回路に接続されている。
第1電極91には、導電性を有し、かつ、透明性を有する、例えば酸化インジウム-酸化亜鉛系酸化物(IZO:Indium Zinc Oxide)、又は酸化インジウム錫(ITO:Indium Tin Oxide)が使用されている。第1電極91の膜厚は、例えば10nm以上100nm以下である。 (7-1) Configuration of the
The
(7-2)有機光電変換層94の構成
有機光電変換層94は、第1電極91の光学フィルタ7とは反対側に、絶縁体92を介在させて配設されている。
絶縁体92は、例えばSiO2、酸窒化シリコン(SiON)、酸化アルミニウム(AlO)、酸化ハフニウム(HfO)等の絶縁材料により形成されている。絶縁体92の膜厚は、例えば1nm以上30nm以下である。 (7-2) Structure of OrganicPhotoelectric Conversion Layer 94 The organic photoelectric conversion layer 94 is disposed on the opposite side of the first electrode 91 from the optical filter 7 with an insulator 92 interposed therebetween.
Theinsulator 92 is made of an insulating material such as SiO 2 , silicon oxynitride (SiON), aluminum oxide (AlO), and hafnium oxide (HfO). The film thickness of the insulator 92 is, for example, 1 nm or more and 30 nm or less.
有機光電変換層94は、第1電極91の光学フィルタ7とは反対側に、絶縁体92を介在させて配設されている。
絶縁体92は、例えばSiO2、酸窒化シリコン(SiON)、酸化アルミニウム(AlO)、酸化ハフニウム(HfO)等の絶縁材料により形成されている。絶縁体92の膜厚は、例えば1nm以上30nm以下である。 (7-2) Structure of Organic
The
有機光電変換層94には、有機系材料が使用されている。有機系材料としては、p型有機半導体、n型有機半導体、p型有機半導体とn型有機半導体との積層構造体、p型有機半導体とn型有機半導体との混合体(バルクヘテロ構造体)のいずれかが使用可能である。
積層構造体には、p型有機半導体、p型有機半導体とn型有機半導体との混合体(バルクヘテロ構造体)、n型有機半導体のそれぞれを積層した積層構造体が含まれる。また、積層構造体には、p型有機半導体、p型有機半導体とn型有機半導体との混合体(バルクヘテロ構造体)のそれぞれを積層した積層構造体が含まれる。さらに、積層構造体には、n型有機半導体、p型有機半導体とn型有機半導体との混合体(バルクヘテロ構造)のそれぞれを積層した積層構造体が含まれる。なお、積層構造体の積層順序は、適宜、変更可能である。 The organicphotoelectric conversion layer 94 uses an organic material. Examples of organic materials include p-type organic semiconductors, n-type organic semiconductors, laminated structures of p-type organic semiconductors and n-type organic semiconductors, and mixtures (bulk heterostructures) of p-type organic semiconductors and n-type organic semiconductors. Either is available.
The stacked structure includes a stacked structure in which a p-type organic semiconductor, a mixture of a p-type organic semiconductor and an n-type organic semiconductor (bulk heterostructure), and an n-type organic semiconductor are stacked. Further, the stacked structure includes a stacked structure in which a p-type organic semiconductor and a mixture of a p-type organic semiconductor and an n-type organic semiconductor (bulk heterostructure) are stacked. Furthermore, the laminated structure includes a laminated structure in which an n-type organic semiconductor and a mixture (bulk heterostructure) of a p-type organic semiconductor and an n-type organic semiconductor are laminated. Note that the stacking order of the stacked structure can be changed as appropriate.
積層構造体には、p型有機半導体、p型有機半導体とn型有機半導体との混合体(バルクヘテロ構造体)、n型有機半導体のそれぞれを積層した積層構造体が含まれる。また、積層構造体には、p型有機半導体、p型有機半導体とn型有機半導体との混合体(バルクヘテロ構造体)のそれぞれを積層した積層構造体が含まれる。さらに、積層構造体には、n型有機半導体、p型有機半導体とn型有機半導体との混合体(バルクヘテロ構造)のそれぞれを積層した積層構造体が含まれる。なお、積層構造体の積層順序は、適宜、変更可能である。 The organic
The stacked structure includes a stacked structure in which a p-type organic semiconductor, a mixture of a p-type organic semiconductor and an n-type organic semiconductor (bulk heterostructure), and an n-type organic semiconductor are stacked. Further, the stacked structure includes a stacked structure in which a p-type organic semiconductor and a mixture of a p-type organic semiconductor and an n-type organic semiconductor (bulk heterostructure) are stacked. Furthermore, the laminated structure includes a laminated structure in which an n-type organic semiconductor and a mixture (bulk heterostructure) of a p-type organic semiconductor and an n-type organic semiconductor are laminated. Note that the stacking order of the stacked structure can be changed as appropriate.
p型有機半導体として、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、ペリレン誘導体、テトラセン誘導体、ペンタセン誘導体、キナクリドン誘導体、チオフェン誘導体、チエノチオフェン誘導体、ベンゾチオフェン誘導体、ベンゾチエノベンゾチオフェン誘導体、トリアリルアミン誘導体、カルバゾール誘導体、ペリレン誘導体、ピセン誘導体、クリセン誘導体、フルオランテン誘導体、フタロシアニン誘導体、サブフタロシアニン誘導体、サブポルフィラジン誘導体、複素環化合物を配位子とする金属錯体、ポリチオフェン誘導体、ポリベンゾチアジアゾール誘導体、ポリフルオレン誘導体等を挙げることができる。
As p-type organic semiconductors, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, pentacene derivatives, quinacridone derivatives, thiophene derivatives, thienothiophene derivatives, benzothiophene derivatives, benzothienobenzothiophene derivatives, triallylamine derivatives , carbazole derivatives, perylene derivatives, picene derivatives, chrysene derivatives, fluoranthene derivatives, phthalocyanine derivatives, subphthalocyanine derivatives, subporphyrazine derivatives, metal complexes with heterocyclic compounds as ligands, polythiophene derivatives, polybenzothiadiazole derivatives, polyfluorene Derivatives etc. can be mentioned.
n型有機半導体として、フラーレン及びフラーレン誘導体((例えば、C60や、C70、C74等のフラーレン(高次フラーレン)、内包フラーレン等)又はフラーレン誘導体(例えば、フラーレンフッ化物やPCBMフラーレン化合物、フラーレン多量体等))、p型有機半導体よりもHOMO及びLUMOが大きい(深い)有機半導体、透明な無機金属酸化物を挙げることができる。
n型有機半導体として、具体的には、窒素原子、酸素原子、硫黄原子を含有する複素環化合物を使用することができる。複素環化合物には、例えば、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、イソキノリン誘導体、アクリジン誘導体、フェナジン誘導体、フェナントロリン誘導体、テトラゾール誘導体、ピラゾール誘導体、イミダゾール誘導体、チアゾール誘導体、オキサゾール誘導体、イミダゾール誘導体、ベンズイミダゾール誘導体、ベンゾトリアゾール誘導体、ベンズオキサゾール誘導体、ベンズオキサゾール誘導体、カルバゾール誘導体、ベンゾフラン誘導体、ジベンゾフラン誘導体、サブポルフィラジン誘導体、ポリフェニレンビニレン誘導体、ポリベンゾチアジアゾール誘導体、ポリフルオレン誘導体等を分子骨格の一部に有する有機分子、有機金属錯体やサブフタロシアニン誘導体を挙げることができる。 As n-type organic semiconductors, fullerenes and fullerene derivatives (e.g. fullerenes (higher order fullerenes) such as C60, C70, C74, endohedral fullerenes, etc.) or fullerene derivatives (e.g. fullerene fluoride, PCBM fullerene compounds, fullerene polymers) are used. etc.)), organic semiconductors with larger (deeper) HOMO and LUMO than p-type organic semiconductors, and transparent inorganic metal oxides.
Specifically, a heterocyclic compound containing a nitrogen atom, an oxygen atom, and a sulfur atom can be used as the n-type organic semiconductor. Heterocyclic compounds include, for example, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, isoquinoline derivatives, acridine derivatives, phenazine derivatives, phenanthroline derivatives, tetrazole derivatives, pyrazole derivatives, imidazole derivatives, thiazole derivatives, Oxazole derivatives, imidazole derivatives, benzimidazole derivatives, benzotriazole derivatives, benzoxazole derivatives, benzoxazole derivatives, carbazole derivatives, benzofuran derivatives, dibenzofuran derivatives, subporphyrazine derivatives, polyphenylene vinylene derivatives, polybenzothiadiazole derivatives, polyfluorene derivatives, etc. Examples include organic molecules, organometallic complexes, and subphthalocyanine derivatives that have part of the molecular skeleton.
n型有機半導体として、具体的には、窒素原子、酸素原子、硫黄原子を含有する複素環化合物を使用することができる。複素環化合物には、例えば、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、イソキノリン誘導体、アクリジン誘導体、フェナジン誘導体、フェナントロリン誘導体、テトラゾール誘導体、ピラゾール誘導体、イミダゾール誘導体、チアゾール誘導体、オキサゾール誘導体、イミダゾール誘導体、ベンズイミダゾール誘導体、ベンゾトリアゾール誘導体、ベンズオキサゾール誘導体、ベンズオキサゾール誘導体、カルバゾール誘導体、ベンゾフラン誘導体、ジベンゾフラン誘導体、サブポルフィラジン誘導体、ポリフェニレンビニレン誘導体、ポリベンゾチアジアゾール誘導体、ポリフルオレン誘導体等を分子骨格の一部に有する有機分子、有機金属錯体やサブフタロシアニン誘導体を挙げることができる。 As n-type organic semiconductors, fullerenes and fullerene derivatives (e.g. fullerenes (higher order fullerenes) such as C60, C70, C74, endohedral fullerenes, etc.) or fullerene derivatives (e.g. fullerene fluoride, PCBM fullerene compounds, fullerene polymers) are used. etc.)), organic semiconductors with larger (deeper) HOMO and LUMO than p-type organic semiconductors, and transparent inorganic metal oxides.
Specifically, a heterocyclic compound containing a nitrogen atom, an oxygen atom, and a sulfur atom can be used as the n-type organic semiconductor. Heterocyclic compounds include, for example, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, isoquinoline derivatives, acridine derivatives, phenazine derivatives, phenanthroline derivatives, tetrazole derivatives, pyrazole derivatives, imidazole derivatives, thiazole derivatives, Oxazole derivatives, imidazole derivatives, benzimidazole derivatives, benzotriazole derivatives, benzoxazole derivatives, benzoxazole derivatives, carbazole derivatives, benzofuran derivatives, dibenzofuran derivatives, subporphyrazine derivatives, polyphenylene vinylene derivatives, polybenzothiadiazole derivatives, polyfluorene derivatives, etc. Examples include organic molecules, organometallic complexes, and subphthalocyanine derivatives that have part of the molecular skeleton.
フラーレン誘導体に含まれる基等として、ハロゲン原子;直鎖、分岐若しくは環状のアルキル基若しくはフェニル基;直鎖若しくは縮環した芳香族化合物を有する基;ハロゲン化物を有する基;パーシャルフルオロアルキル基;パーフルオロアルキル基;シリルアルキル基;シリルアルコキシ基;アリールシリル基;アリールスルファニル基;アルキルスルファニル基;アリールスルホニル基;アルキルスルホニル基;アリールスルフィド基;アルキルスルフィド基;アミノ基;アルキルアミノ基;アリールアミノ基;ヒドロキシ基;アルコキシ基;アシルアミノ基;アシルオキシ基;カルボニル基;カルボキシ基;カルボキソアミド基;カルボアルコキシ基;アシル基;スルホニル基;シアノ基;ニトロ基;カルコゲン化物を有する基;ホスフィン基;ホスホン基;これらの誘導体を挙げることができる。
Groups contained in fullerene derivatives include halogen atoms; linear, branched or cyclic alkyl groups or phenyl groups; groups having linear or condensed aromatic compounds; groups having halides; partial fluoroalkyl groups; Fluoroalkyl group; silylalkyl group; silylalkoxy group; arylsilyl group; arylsulfanyl group; alkylsulfanyl group; arylsulfonyl group; alkylsulfonyl group; arylsulfide group; alkylsulfide group; amino group; alkylamino group; arylamino group ; Hydroxy group; Alkoxy group; Acylamino group; Acyloxy group; Carbonyl group; Carboxy group; Carboxamide group; Carboalkoxy group; Acyl group; Sulfonyl group; Cyano group; Nitro group; Group: These derivatives can be mentioned.
有機系材料から形成された有機光電変換層94の厚さは、限定されるものではないが、例えば、1×10-8m以上5×10-7m以下である。有機光電変換層94の厚さは、好ましくは、2.5×10-8m以上3×10-7m以下である。より好ましくは、有機光電変換層94の厚さは、2.5×10-8m以上2×10-7m以下である。一層好ましくは、有機光電変換層94の厚さは、1×10-7m以上1.8×10-7m以下である。
なお、有機半導体は、多くはp型とn型とに分類されている。p型とは、正孔を輸送し易いという意味である。n型とは、電子を輸送し易いという意味である。従って、無機半導体のように、熱励起の多数キャリアとして正孔又は電子を有しているという解釈に限定されるものではない。 The thickness of the organicphotoelectric conversion layer 94 formed from an organic material is, for example, 1×10 −8 m or more and 5×10 −7 m or less, although it is not limited. The thickness of the organic photoelectric conversion layer 94 is preferably 2.5×10 −8 m or more and 3×10 −7 m or less. More preferably, the thickness of the organic photoelectric conversion layer 94 is 2.5×10 −8 m or more and 2×10 −7 m or less. More preferably, the thickness of the organic photoelectric conversion layer 94 is 1×10 −7 m or more and 1.8×10 −7 m or less.
Note that most organic semiconductors are classified into p-type and n-type. P-type means that it is easy to transport holes. N-type means that it is easy to transport electrons. Therefore, unlike inorganic semiconductors, the interpretation is not limited to having holes or electrons as thermally excited majority carriers.
なお、有機半導体は、多くはp型とn型とに分類されている。p型とは、正孔を輸送し易いという意味である。n型とは、電子を輸送し易いという意味である。従って、無機半導体のように、熱励起の多数キャリアとして正孔又は電子を有しているという解釈に限定されるものではない。 The thickness of the organic
Note that most organic semiconductors are classified into p-type and n-type. P-type means that it is easy to transport holes. N-type means that it is easy to transport electrons. Therefore, unlike inorganic semiconductors, the interpretation is not limited to having holes or electrons as thermally excited majority carriers.
そして、第1実施の形態では、第2光電変換部9は、第2波長域としての緑色の波長の光から光電変換により電荷を生成する構成とされている。緑色の光の波長は、例えば500nm以上585nm以下である。
このような第2光電変換部9の有機光電変換層94を形成する有機材料としては、例えば、ローダミン系色素、メラシアニン系色素、キナクリドン誘導体、サブフタロシアニン系色素(サブフタロシアニン誘導体)等を使用することができる。 In the first embodiment, the secondphotoelectric conversion unit 9 is configured to generate charges by photoelectric conversion from light having a green wavelength as the second wavelength range. The wavelength of green light is, for example, 500 nm or more and 585 nm or less.
As the organic material forming the organicphotoelectric conversion layer 94 of the second photoelectric conversion unit 9, for example, rhodamine dyes, melacyanine dyes, quinacridone derivatives, subphthalocyanine dyes (subphthalocyanine derivatives), etc. may be used. Can be done.
このような第2光電変換部9の有機光電変換層94を形成する有機材料としては、例えば、ローダミン系色素、メラシアニン系色素、キナクリドン誘導体、サブフタロシアニン系色素(サブフタロシアニン誘導体)等を使用することができる。 In the first embodiment, the second
As the organic material forming the organic
なお、第2光電変換部9において、青色の波長の光を光電変換する場合(図16に示される第2光電変換部9B参照)には、有機光電変換層の有機材料に、例えば、クマリン酸色素、トリス-8-ヒドリキシキノリアルミニウム(Alq3)、メラシアニン系色素等を使用することができる。
また、第2光電変換部9において、赤色の波長の光を光電変換する場合には、有機光電変換層の有機材料に、例えば、フタロシアニン系色素、サブフタロシアニン系色素(サブフタロシアニン誘導体)を使用することができる。 Note that when photoelectrically converting light with a blue wavelength in the second photoelectric conversion section 9 (see second photoelectric conversion section 9B shown in FIG. 16), coumaric acid, for example, is added to the organic material of the organic photoelectric conversion layer. Dyes such as tris-8-hydroxyquinolialuminum (Alq3) and melacyanine dyes can be used.
In addition, in the case of photoelectrically converting red wavelength light in the secondphotoelectric conversion unit 9, for example, a phthalocyanine dye or a subphthalocyanine dye (subphthalocyanine derivative) is used as the organic material of the organic photoelectric conversion layer. be able to.
また、第2光電変換部9において、赤色の波長の光を光電変換する場合には、有機光電変換層の有機材料に、例えば、フタロシアニン系色素、サブフタロシアニン系色素(サブフタロシアニン誘導体)を使用することができる。 Note that when photoelectrically converting light with a blue wavelength in the second photoelectric conversion section 9 (see second photoelectric conversion section 9B shown in FIG. 16), coumaric acid, for example, is added to the organic material of the organic photoelectric conversion layer. Dyes such as tris-8-hydroxyquinolialuminum (Alq3) and melacyanine dyes can be used.
In addition, in the case of photoelectrically converting red wavelength light in the second
さらに、第2光電変換部9は、有機光電変換層94に代えて、無機光電変換層により構築してもよい。この場合、無機光電変換層を構築する無機系材料として、結晶シリコン、アモルファスシリコン、微結晶シリコン、結晶セレン、アモルファスセレン、カルコパライト系化合物又はIII-V族化合物半導体が使用可能である。
カルコパライト系化合物には、CIGS(CuInGaSe)、CIS(CuInSe2)、CuInS2、CuAlS2、CuAlSe2、CuGaS2、CuGaSe2、AgAlS2、AgAlSe2、AgInS2又はAgInSe2が含まれている。
III-V族化合物半導体には、GaAs、InP、AlGaAs、InGaP、AlGaInP、InGaAsP等が含まれている。さらに、III-V族化合物半導体は、CdSe、CdS、In2Se3、In2S3、Bi2Se3、Bi2S3、ZnSe、ZnS、PbSe、PbS等も含まれている。
加えて、これらの材料からなる量子ドットを有機光電変換層94に使用することが可能である。 Furthermore, the secondphotoelectric conversion section 9 may be constructed using an inorganic photoelectric conversion layer instead of the organic photoelectric conversion layer 94. In this case, crystalline silicon, amorphous silicon, microcrystalline silicon, crystalline selenium, amorphous selenium, a chalcopalite compound, or a III-V group compound semiconductor can be used as the inorganic material for constructing the inorganic photoelectric conversion layer.
Chalcopalite compounds include CIGS (CuInGaSe), CIS (CuInSe 2 ), CuInS 2 , CuAlS 2 , CuAlSe 2 , CuGaS 2 , CuGaSe 2 , AgAlS 2 , AgAlSe 2 , AgInS 2 or AgInSe 2 It is.
Group III-V compound semiconductors include GaAs, InP, AlGaAs, InGaP, AlGaInP, InGaAsP, and the like. Further, the III-V compound semiconductors include CdSe, CdS, In2Se 3 , In 2 S 3 , Bi 2 Se 3 , Bi 2 S 3 , ZnSe, ZnS, PbSe, PbS, and the like.
In addition, quantum dots made of these materials can be used in the organicphotoelectric conversion layer 94.
カルコパライト系化合物には、CIGS(CuInGaSe)、CIS(CuInSe2)、CuInS2、CuAlS2、CuAlSe2、CuGaS2、CuGaSe2、AgAlS2、AgAlSe2、AgInS2又はAgInSe2が含まれている。
III-V族化合物半導体には、GaAs、InP、AlGaAs、InGaP、AlGaInP、InGaAsP等が含まれている。さらに、III-V族化合物半導体は、CdSe、CdS、In2Se3、In2S3、Bi2Se3、Bi2S3、ZnSe、ZnS、PbSe、PbS等も含まれている。
加えて、これらの材料からなる量子ドットを有機光電変換層94に使用することが可能である。 Furthermore, the second
Chalcopalite compounds include CIGS (CuInGaSe), CIS (CuInSe 2 ), CuInS 2 , CuAlS 2 , CuAlSe 2 , CuGaS 2 , CuGaSe 2 , AgAlS 2 , AgAlSe 2 , AgInS 2 or AgInSe 2 It is.
Group III-V compound semiconductors include GaAs, InP, AlGaAs, InGaP, AlGaInP, InGaAsP, and the like. Further, the III-V compound semiconductors include CdSe, CdS, In2Se 3 , In 2 S 3 , Bi 2 Se 3 , Bi 2 S 3 , ZnSe, ZnS, PbSe, PbS, and the like.
In addition, quantum dots made of these materials can be used in the organic
また、図示を省略するが、有機光電変換層94は、下層半導体層、上層光電変換層のそれぞれの積層構造により構成可能である。有機光電変換層94に下層半導体層を備えることにより、有機光電変換層94では、電荷蓄積時の再結合を防止することができ、電荷蓄積転送層93への電荷の転送効率を向上させることができる。さらに、暗電流の生成を効果的に抑制することができる。
Further, although not shown in the drawings, the organic photoelectric conversion layer 94 can be configured with a laminated structure of a lower semiconductor layer and an upper photoelectric conversion layer. By providing the organic photoelectric conversion layer 94 with a lower semiconductor layer, the organic photoelectric conversion layer 94 can prevent recombination during charge storage, and improve the efficiency of charge transfer to the charge storage and transfer layer 93. can. Furthermore, generation of dark current can be effectively suppressed.
上層光電変換層としては、前述の有機光電変換層94を形成する各種材料から、適宜、選択することができる。
The upper photoelectric conversion layer can be appropriately selected from the various materials forming the organic photoelectric conversion layer 94 described above.
一方、下層半導体層としては、バンドギャップ値が大きく(例えば、3.0eV以上のバンドギャップ値)、かつ、有機光電変換層94を形成する材料よりも高い移動度を有する材料を使用することが好ましい。具体的には、IGZO等の酸化物半導体材料、遷移金属ダイカルコゲナイド、シリコンカーバイド、ダイヤモンド、グラフェン、カーボンナノチューブ、縮合多環炭化水素化合物や縮合複素環化合物等の有機半導体材料を使用することができる。
また、下層半導体層として、蓄積する電荷が電子である場合、有機光電変換層94を形成する材料のイオン化ポテンシャルよりも大きなイオン化ポテンシャルを有する材料を使用することができる。 On the other hand, as the lower semiconductor layer, it is possible to use a material that has a large band gap value (for example, a band gap value of 3.0 eV or more) and has higher mobility than the material forming the organicphotoelectric conversion layer 94. preferable. Specifically, organic semiconductor materials such as oxide semiconductor materials such as IGZO, transition metal dichalcogenides, silicon carbide, diamond, graphene, carbon nanotubes, fused polycyclic hydrocarbon compounds, and fused heterocyclic compounds can be used. .
Furthermore, when the accumulated charges are electrons, a material having an ionization potential greater than that of the material forming the organicphotoelectric conversion layer 94 can be used as the lower semiconductor layer.
また、下層半導体層として、蓄積する電荷が電子である場合、有機光電変換層94を形成する材料のイオン化ポテンシャルよりも大きなイオン化ポテンシャルを有する材料を使用することができる。 On the other hand, as the lower semiconductor layer, it is possible to use a material that has a large band gap value (for example, a band gap value of 3.0 eV or more) and has higher mobility than the material forming the organic
Furthermore, when the accumulated charges are electrons, a material having an ionization potential greater than that of the material forming the organic
一方、下層半導体層として、蓄積する電荷が正孔である場合、有機光電変換層94を形成する材料の電子親和力よりも小さな電子親和力を有する材料を使用することができる。
また、下層半導体層を形成する材料では、不純物濃度は、例えば1×1018cm-3以下であることが好ましい。下層半導体層は、単層構造であっても、多層構造であってもよい。また、下層半導体層を形成する材料は、第1電極91に対応する領域、フローティングディフュージョンに対応する領域のそれぞれにおいて異なっていてもよい。 On the other hand, when the charges accumulated are holes as the lower semiconductor layer, a material having an electron affinity smaller than that of the material forming the organicphotoelectric conversion layer 94 can be used.
Further, it is preferable that the impurity concentration of the material forming the lower semiconductor layer is, for example, 1×10 18 cm −3 or less. The lower semiconductor layer may have a single layer structure or a multilayer structure. Further, the material forming the lower semiconductor layer may be different in the region corresponding to thefirst electrode 91 and the region corresponding to the floating diffusion.
また、下層半導体層を形成する材料では、不純物濃度は、例えば1×1018cm-3以下であることが好ましい。下層半導体層は、単層構造であっても、多層構造であってもよい。また、下層半導体層を形成する材料は、第1電極91に対応する領域、フローティングディフュージョンに対応する領域のそれぞれにおいて異なっていてもよい。 On the other hand, when the charges accumulated are holes as the lower semiconductor layer, a material having an electron affinity smaller than that of the material forming the organic
Further, it is preferable that the impurity concentration of the material forming the lower semiconductor layer is, for example, 1×10 18 cm −3 or less. The lower semiconductor layer may have a single layer structure or a multilayer structure. Further, the material forming the lower semiconductor layer may be different in the region corresponding to the
(7-3)第2電極95の構成
第2電極95は、有機光電変換層94の第1電極91とは反対側に配設されている。第2電極95は、共通電極又は上部電極として使用され、複数の画素100にわたって配置されている。第2電極95は、図示省略の配線等を通して回路基板21の所定回路に接続されている。第2電極95には、固定電位が供給されている。
第2電極95は、第1電極91と同様に、導電性を有し、かつ、透明性を有する電極材料により形成されている。第2電極95は、例えばITO、IZO等の電極材料により形成されている。また、第2電極95は、IGZO、IAZO、ITZO、IGSiO、ZnO、AZO及びGZOから選択される1以上の電極材料により形成してもよい。
第2電極95の膜厚は、例えば10nm以上100nm以下である。 (7-3) Configuration ofsecond electrode 95 The second electrode 95 is disposed on the opposite side of the organic photoelectric conversion layer 94 from the first electrode 91. The second electrode 95 is used as a common electrode or an upper electrode, and is arranged across the plurality of pixels 100. The second electrode 95 is connected to a predetermined circuit of the circuit board 21 through wiring (not shown) or the like. A fixed potential is supplied to the second electrode 95.
Thesecond electrode 95, like the first electrode 91, is made of a conductive and transparent electrode material. The second electrode 95 is made of an electrode material such as ITO or IZO. Further, the second electrode 95 may be formed of one or more electrode materials selected from IGZO, IAZO, ITZO, IGSiO, ZnO, AZO, and GZO.
The thickness of thesecond electrode 95 is, for example, 10 nm or more and 100 nm or less.
第2電極95は、有機光電変換層94の第1電極91とは反対側に配設されている。第2電極95は、共通電極又は上部電極として使用され、複数の画素100にわたって配置されている。第2電極95は、図示省略の配線等を通して回路基板21の所定回路に接続されている。第2電極95には、固定電位が供給されている。
第2電極95は、第1電極91と同様に、導電性を有し、かつ、透明性を有する電極材料により形成されている。第2電極95は、例えばITO、IZO等の電極材料により形成されている。また、第2電極95は、IGZO、IAZO、ITZO、IGSiO、ZnO、AZO及びGZOから選択される1以上の電極材料により形成してもよい。
第2電極95の膜厚は、例えば10nm以上100nm以下である。 (7-3) Configuration of
The
The thickness of the
(7-4)電荷蓄積転送層93の構成
電荷蓄積転送層93は、第1電極91と有機光電変換層94との間に配設されている。詳しく説明すると、有機光電変換層94は、第1電極91上に絶縁体92を介在させて配設されている。電荷蓄積転送層93は、ここでは複数の画素100にわたって配設されている。
絶縁体92は、ゲート絶縁膜として使用されている。絶縁体92には、例えばSiO2、SiON、AlO及びHfOから選択される1以上が使用されている。
電荷蓄積転送層93は、第2光電変換部9において光から光電変換より生成された電荷を蓄積する。電荷蓄積転送層93は、貫通配線52に接続され、貫通配線52、貫通配線42等を通して、回路基板21に搭載された図示省略の画素回路(図2参照)に接続されている。貫通配線52、貫通配線42等はフローティングディフュージョンを形成している。つまり、電荷蓄積転送層93において蓄積された電荷は、フローティングディフュージョンを通して画素回路に転送される。 (7-4) Configuration of ChargeStorage Transfer Layer 93 The charge storage transfer layer 93 is disposed between the first electrode 91 and the organic photoelectric conversion layer 94. To explain in detail, the organic photoelectric conversion layer 94 is disposed on the first electrode 91 with an insulator 92 interposed therebetween. The charge storage transfer layer 93 is disposed over a plurality of pixels 100 here.
Insulator 92 is used as a gate insulating film. For the insulator 92, one or more materials selected from, for example, SiO 2 , SiON, AlO, and HfO are used.
The chargestorage transfer layer 93 stores charges generated by photoelectric conversion from light in the second photoelectric conversion section 9 . The charge storage transfer layer 93 is connected to the through wiring 52, and is connected to a pixel circuit (not shown) mounted on the circuit board 21 (see FIG. 2) through the through wiring 52, the through wiring 42, and the like. The through wiring 52, the through wiring 42, etc. form a floating diffusion. That is, the charges accumulated in the charge accumulation transfer layer 93 are transferred to the pixel circuit through the floating diffusion.
電荷蓄積転送層93は、第1電極91と有機光電変換層94との間に配設されている。詳しく説明すると、有機光電変換層94は、第1電極91上に絶縁体92を介在させて配設されている。電荷蓄積転送層93は、ここでは複数の画素100にわたって配設されている。
絶縁体92は、ゲート絶縁膜として使用されている。絶縁体92には、例えばSiO2、SiON、AlO及びHfOから選択される1以上が使用されている。
電荷蓄積転送層93は、第2光電変換部9において光から光電変換より生成された電荷を蓄積する。電荷蓄積転送層93は、貫通配線52に接続され、貫通配線52、貫通配線42等を通して、回路基板21に搭載された図示省略の画素回路(図2参照)に接続されている。貫通配線52、貫通配線42等はフローティングディフュージョンを形成している。つまり、電荷蓄積転送層93において蓄積された電荷は、フローティングディフュージョンを通して画素回路に転送される。 (7-4) Configuration of Charge
The charge
電荷蓄積転送層93は、透明半導体である酸化物半導体により形成されている。電荷蓄積転送層93には、例えばインジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)を含むIGZOが使用されている。また、電荷蓄積転送層93は、In、アルミニウム(Al)、Zn、Oを含むIAZO、或いはIn、錫(Sn)、Zn、Oを含むITZOも使用可能である。さらに、電荷蓄積転送層93には、IGSiO、ZnO、AZO、GZO、ITO及びIZOから選択される1以上の半導体材料も使用することができる。
電荷蓄積転送層93の厚さは、例えば10nm以上100nm以下である。 The chargestorage transfer layer 93 is formed of an oxide semiconductor, which is a transparent semiconductor. For the charge storage transfer layer 93, IGZO containing, for example, indium (In), gallium (Ga), zinc (Zn), and oxygen (O) is used. Further, for the charge storage transfer layer 93, IAZO containing In, aluminum (Al), Zn, and O, or ITZO containing In, tin (Sn), Zn, and O can also be used. Furthermore, one or more semiconductor materials selected from IGSiO, ZnO, AZO, GZO, ITO, and IZO can also be used for the charge storage and transfer layer 93.
The thickness of the chargestorage transfer layer 93 is, for example, 10 nm or more and 100 nm or less.
電荷蓄積転送層93の厚さは、例えば10nm以上100nm以下である。 The charge
The thickness of the charge
ここで、貫通配線52は、絶縁体51及び絶縁体81を膜厚方向に貫通して形成されている。また、貫通配線42は、絶縁体41を厚さ方向に貫通して形成されている。
図4に示されるように、貫通配線52等は、画素分離領域110において、各画素100の角部分に対応する位置に配設されている。表現を代えれば、貫通配線52等は、平面視において矢印X方向、矢印Y方向にそれぞれ延設された画素分離領域110の交差位置に配設されている。
貫通配線52等は、例えば窒化チタン(TiN)と、TiN上に積層されたタングステン(W)とを含む複合膜により形成されている。 Here, the throughwiring 52 is formed to penetrate the insulator 51 and the insulator 81 in the film thickness direction. Further, the through wiring 42 is formed to penetrate the insulator 41 in the thickness direction.
As shown in FIG. 4, the throughwirings 52 and the like are arranged at positions corresponding to corner portions of each pixel 100 in the pixel isolation region 110. In other words, the through wirings 52 and the like are arranged at intersections of the pixel separation regions 110 extending in the direction of the arrow X and the direction of the arrow Y, respectively, in plan view.
The throughwiring 52 and the like are formed of a composite film containing, for example, titanium nitride (TiN) and tungsten (W) laminated on TiN.
図4に示されるように、貫通配線52等は、画素分離領域110において、各画素100の角部分に対応する位置に配設されている。表現を代えれば、貫通配線52等は、平面視において矢印X方向、矢印Y方向にそれぞれ延設された画素分離領域110の交差位置に配設されている。
貫通配線52等は、例えば窒化チタン(TiN)と、TiN上に積層されたタングステン(W)とを含む複合膜により形成されている。 Here, the through
As shown in FIG. 4, the through
The through
(8)光学レンズ13の構成
図3に戻って、光学レンズ13は、第2電極95の有機光電変換層94とは反対側に、封止層11、封止層12のそれぞれを介在して配設されている。
ここで、封止層11、封止層12は、いずれも、例えばAlO、SiN及びSiONから選択される1以上の封止材料により形成されている。封止層11の膜厚は、例えば5nm以上100nm以下である。封止層12の膜厚は、例えば50nm以上1000nm以下である。 (8) Configuration ofoptical lens 13 Returning to FIG. 3, the optical lens 13 has a sealing layer 11 and a sealing layer 12 interposed on the opposite side of the second electrode 95 from the organic photoelectric conversion layer 94. It is arranged.
Here, both thesealing layer 11 and the sealing layer 12 are formed of one or more sealing materials selected from, for example, AlO, SiN, and SiON. The thickness of the sealing layer 11 is, for example, 5 nm or more and 100 nm or less. The thickness of the sealing layer 12 is, for example, 50 nm or more and 1000 nm or less.
図3に戻って、光学レンズ13は、第2電極95の有機光電変換層94とは反対側に、封止層11、封止層12のそれぞれを介在して配設されている。
ここで、封止層11、封止層12は、いずれも、例えばAlO、SiN及びSiONから選択される1以上の封止材料により形成されている。封止層11の膜厚は、例えば5nm以上100nm以下である。封止層12の膜厚は、例えば50nm以上1000nm以下である。 (8) Configuration of
Here, both the
光学レンズ13は、ここでは、平面視において、画素100毎に円形状に形成されている。また、光学レンズ13は、側面視において、光入射側へ湾曲し入射光を集光する湾曲形状に形成されている。
つまり、光学レンズ13は、いわゆるオンチップレンズであり、画素100毎に、又は複数の画素100にわたって一体に形成されている。光学レンズ13は、例えば透明樹脂材料により形成されている。 Here, theoptical lens 13 is formed in a circular shape for each pixel 100 in plan view. Further, the optical lens 13 is formed in a curved shape that is curved toward the light incident side and condenses the incident light when viewed from the side.
That is, theoptical lens 13 is a so-called on-chip lens, and is formed integrally for each pixel 100 or over a plurality of pixels 100. The optical lens 13 is made of, for example, a transparent resin material.
つまり、光学レンズ13は、いわゆるオンチップレンズであり、画素100毎に、又は複数の画素100にわたって一体に形成されている。光学レンズ13は、例えば透明樹脂材料により形成されている。 Here, the
That is, the
光学レンズ13の表面には、反射防止層14が形成されている。反射防止層14は、例えばSiO2により形成されている。
An antireflection layer 14 is formed on the surface of the optical lens 13. The antireflection layer 14 is made of, for example, SiO 2 .
(9)第1封止体601、第2封止体602及び第3封止体603の構成
第1実施の形態に係る固体撮像装置1では、電荷蓄積転送層93の光学フィルタ7側に、第1封止体601、第2封止体602及び第3封止体603が配設されている。以下に詳しく説明する。 (9) Structures of thefirst sealing body 601, the second sealing body 602, and the third sealing body 603 In the solid-state imaging device 1 according to the first embodiment, on the optical filter 7 side of the charge storage transfer layer 93, A first sealing body 601, a second sealing body 602, and a third sealing body 603 are provided. This will be explained in detail below.
第1実施の形態に係る固体撮像装置1では、電荷蓄積転送層93の光学フィルタ7側に、第1封止体601、第2封止体602及び第3封止体603が配設されている。以下に詳しく説明する。 (9) Structures of the
(9-1)第1封止体601の構成
第1封止体601は、光学フィルタ7と第2光電変換部9の電荷蓄積転送層93との間に配設されている。詳しく説明すると、第1封止体601は、光学フィルタ7の電荷蓄積転送層93側の表面に沿って形成されている。
第1封止体601は、例えば固体撮像装置1の製造過程の熱処理において、光学フィルタ7から放出される、光学フィルタ7の組成物質を封止する。表現を代えれば、第1封止体601は、光学フィルタ7から電荷蓄積転送層93への組成物質の侵入を効果的に抑制、又は遮断する。ここで、光学フィルタ7から放出される組成物質としては、例えば水素(H2)ガスである。つまり、第1封止体601は、電荷蓄積転送層93への水素の侵入を阻止し、電荷蓄積転送層93内において酸素と水素との還元反応を防止し、電荷蓄積転送層93の本来の機能を安定に保持させている。 (9-1) Configuration of thefirst sealing body 601 The first sealing body 601 is disposed between the optical filter 7 and the charge storage transfer layer 93 of the second photoelectric conversion section 9. To explain in detail, the first sealing body 601 is formed along the surface of the optical filter 7 on the charge storage transfer layer 93 side.
Thefirst sealing body 601 seals the constituent substances of the optical filter 7 that are released from the optical filter 7 during heat treatment during the manufacturing process of the solid-state imaging device 1, for example. In other words, the first sealing body 601 effectively suppresses or blocks the composition from entering the charge storage transfer layer 93 from the optical filter 7 . Here, the composition material released from the optical filter 7 is, for example, hydrogen (H 2 ) gas. In other words, the first sealing body 601 prevents hydrogen from entering the charge storage and transfer layer 93 , prevents the reduction reaction between oxygen and hydrogen within the charge storage and transfer layer 93 , and prevents the charge storage and transfer layer 93 from returning to its original state. Maintains stable functionality.
第1封止体601は、光学フィルタ7と第2光電変換部9の電荷蓄積転送層93との間に配設されている。詳しく説明すると、第1封止体601は、光学フィルタ7の電荷蓄積転送層93側の表面に沿って形成されている。
第1封止体601は、例えば固体撮像装置1の製造過程の熱処理において、光学フィルタ7から放出される、光学フィルタ7の組成物質を封止する。表現を代えれば、第1封止体601は、光学フィルタ7から電荷蓄積転送層93への組成物質の侵入を効果的に抑制、又は遮断する。ここで、光学フィルタ7から放出される組成物質としては、例えば水素(H2)ガスである。つまり、第1封止体601は、電荷蓄積転送層93への水素の侵入を阻止し、電荷蓄積転送層93内において酸素と水素との還元反応を防止し、電荷蓄積転送層93の本来の機能を安定に保持させている。 (9-1) Configuration of the
The
第1封止体601は、例えばSiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている。第1封止体601の膜厚は、10nm以上100nm以下である。
The first sealing body 601 is made of one or more sealing materials selected from, for example, SiN, AlO, TiO 2 , HfO, and ZrO. The film thickness of the first sealing body 601 is 10 nm or more and 100 nm or less.
(9-2)第2封止体602の構成
第2封止体602は、光学フィルタ7の第1光電変換部3側の表面に沿って配設されている。詳しく説明すると、第2封止体602は、光学フィルタ7の下地層として絶縁体41上に形成されている。
第2封止体602は、第1封止体601と同様に、光学フィルタ7から放出される、光学フィルタ7の組成物質を封止する。また、第2封止体602は、光学フィルタ7が埋設される絶縁体51に対してエッチング選択比を有する。つまり、光学フィルタ7の製造工程における絶縁体51のパターンニング(開口51Hの形成工程)の際に、第2封止体602は、エッチングストッパとして使用される。 (9-2) Configuration ofsecond sealing body 602 The second sealing body 602 is disposed along the surface of the optical filter 7 on the first photoelectric conversion unit 3 side. To explain in detail, the second sealing body 602 is formed on the insulator 41 as a base layer of the optical filter 7.
Like thefirst sealing body 601, the second sealing body 602 seals the constituent material of the optical filter 7 released from the optical filter 7. Further, the second sealing body 602 has an etching selectivity with respect to the insulator 51 in which the optical filter 7 is embedded. That is, the second sealing body 602 is used as an etching stopper during patterning of the insulator 51 (step of forming the opening 51H) in the manufacturing process of the optical filter 7.
第2封止体602は、光学フィルタ7の第1光電変換部3側の表面に沿って配設されている。詳しく説明すると、第2封止体602は、光学フィルタ7の下地層として絶縁体41上に形成されている。
第2封止体602は、第1封止体601と同様に、光学フィルタ7から放出される、光学フィルタ7の組成物質を封止する。また、第2封止体602は、光学フィルタ7が埋設される絶縁体51に対してエッチング選択比を有する。つまり、光学フィルタ7の製造工程における絶縁体51のパターンニング(開口51Hの形成工程)の際に、第2封止体602は、エッチングストッパとして使用される。 (9-2) Configuration of
Like the
第2封止体602は、第1封止体601と同様に、例えばSiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている。また、第2封止体602の膜厚は、10nm以上100nm以下である。
The second sealing body 602, like the first sealing body 601, is formed of one or more sealing materials selected from, for example, SiN, AlO, TiO 2 , HfO, and ZrO. Further, the film thickness of the second sealing body 602 is greater than or equal to 10 nm and less than or equal to 100 nm.
(9-3)第3封止体603の構成
第3封止体603は、光学フィルタ7の側面に沿って配設されている。詳しく説明すると、第3封止体603は、光学フィルタ7の側面と絶縁体51に配設された開口51Hの側壁との間に形成されている。
第3封止体603は、第1封止体601と同様に、光学フィルタ7から放出される、光学フィルタ7の組成物質を封止する。特に、第3封止体603では、光学フィルタ7の側面から、絶縁体51と貫通配線52との界面を通じて電荷蓄積転送層93側へ放出される組成物質を封止する。 (9-3) Configuration of thethird sealing body 603 The third sealing body 603 is arranged along the side surface of the optical filter 7. To explain in detail, the third sealing body 603 is formed between the side surface of the optical filter 7 and the side wall of the opening 51H provided in the insulator 51.
Like thefirst sealing body 601, the third sealing body 603 seals the constituent material of the optical filter 7 released from the optical filter 7. In particular, the third sealing body 603 seals the constituent material released from the side surface of the optical filter 7 through the interface between the insulator 51 and the through wiring 52 to the charge storage transfer layer 93 side.
第3封止体603は、光学フィルタ7の側面に沿って配設されている。詳しく説明すると、第3封止体603は、光学フィルタ7の側面と絶縁体51に配設された開口51Hの側壁との間に形成されている。
第3封止体603は、第1封止体601と同様に、光学フィルタ7から放出される、光学フィルタ7の組成物質を封止する。特に、第3封止体603では、光学フィルタ7の側面から、絶縁体51と貫通配線52との界面を通じて電荷蓄積転送層93側へ放出される組成物質を封止する。 (9-3) Configuration of the
Like the
第3封止体603は、第1封止体601と同様に、例えばSiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている。また、第3封止体603の膜厚は、10nm以上100nm以下である。
The third sealing body 603, like the first sealing body 601, is formed of one or more sealing materials selected from, for example, SiN, AlO, TiO 2 , HfO, and ZrO. Further, the thickness of the third sealing body 603 is 10 nm or more and 100 nm or less.
第1実施の形態に係る固体撮像装置1では、光学フィルタ7の電荷蓄積転送層93側が第1封止体601により封止され、光学フィルタ7の第1光電変換部3側が第2封止体602により封止され、光学フィルタ7の側面が第3封止体603により封止されている。すなわち、第1封止体601、第2封止体602及び第3封止体603は、ここでは、光学フィルタ7のすべての表面を覆う封止体6を構築している。
In the solid-state imaging device 1 according to the first embodiment, the charge storage transfer layer 93 side of the optical filter 7 is sealed by the first sealing body 601, and the first photoelectric conversion unit 3 side of the optical filter 7 is sealed by the second sealing body. 602 , and the side surface of the optical filter 7 is sealed with a third sealing body 603 . That is, the first sealing body 601, the second sealing body 602, and the third sealing body 603 construct the sealing body 6 that covers all the surfaces of the optical filter 7 here.
[固体撮像装置1の製造方法]
次に、図5~図11を用いて、前述の固体撮像装置1の製造方法を説明する。図5~図11は、第1実施の形態に係る固体撮像装置1の製造方法を説明する一連の工程断面の一例を表している。 [Method for manufacturing solid-state imaging device 1]
Next, a method for manufacturing the solid-state imaging device 1 described above will be explained using FIGS. 5 to 11. 5 to 11 represent an example of a series of process cross-sections for explaining the method for manufacturing the solid-state imaging device 1 according to the first embodiment.
次に、図5~図11を用いて、前述の固体撮像装置1の製造方法を説明する。図5~図11は、第1実施の形態に係る固体撮像装置1の製造方法を説明する一連の工程断面の一例を表している。 [Method for manufacturing solid-state imaging device 1]
Next, a method for manufacturing the solid-
まず、基体2が準備される(図5参照)。基体2は、回路基板21と、この回路基板21に積層された半導体基板22とにより形成される。半導体基板22には、画素100毎に第1光電変換部3が形成される。また、画素100間の画素分離領域110には、貫通配線(符号省略)が形成される。
引き続き、基体2の半導体基板22上に絶縁体41が形成される。絶縁体41内には、貫通配線42等が形成される。 First, thebase 2 is prepared (see FIG. 5). The base body 2 is formed of a circuit board 21 and a semiconductor substrate 22 laminated on the circuit board 21. A first photoelectric conversion section 3 is formed on the semiconductor substrate 22 for each pixel 100. Further, in the pixel isolation region 110 between the pixels 100, a through wiring (numerical symbol omitted) is formed.
Subsequently, aninsulator 41 is formed on the semiconductor substrate 22 of the base body 2. A through wiring 42 and the like are formed within the insulator 41 .
引き続き、基体2の半導体基板22上に絶縁体41が形成される。絶縁体41内には、貫通配線42等が形成される。 First, the
Subsequently, an
次に、絶縁体41上に第2封止体602が形成される(図5参照)。第2封止体602は、例えばSiNにより形成される。SiNは、スパッタリング法又は化学的気相成長(CVD:Chemical Vapor Deposition)法を用いて成膜される。
Next, a second sealing body 602 is formed on the insulator 41 (see FIG. 5). The second sealing body 602 is formed of, for example, SiN. SiN is formed into a film using a sputtering method or a chemical vapor deposition (CVD) method.
図5に示されるように、第2封止体602上に絶縁体51が形成される。絶縁体51は、例えばSiO2により形成される。絶縁体51の膜厚は、例えば400nm以上1100nm以下である。
As shown in FIG. 5, an insulator 51 is formed on the second sealing body 602. The insulator 51 is made of, for example, SiO 2 . The film thickness of the insulator 51 is, for example, 400 nm or more and 1100 nm or less.
図6に示されるように、絶縁体51において、画素100毎に開口51Hが形成される。開口51Hには、後工程において、光学フィルタ7が埋設される。開口51Hは、図示省略のエッチングマスクを用い、例えばドライエッチングにより形成される。
ここで、絶縁体51の下地層として形成された第2封止体602は、絶縁体51に対してエッチング選択比を有している。このため、開口51Hを形成するとき、第2封止体602は、エッチングストッパとして使用される。 As shown in FIG. 6, anopening 51H is formed in the insulator 51 for each pixel 100. The optical filter 7 is embedded in the opening 51H in a post-process. The opening 51H is formed by, for example, dry etching using an etching mask (not shown).
Here, thesecond sealing body 602 formed as a base layer of the insulator 51 has an etching selectivity with respect to the insulator 51. Therefore, when forming the opening 51H, the second sealing body 602 is used as an etching stopper.
ここで、絶縁体51の下地層として形成された第2封止体602は、絶縁体51に対してエッチング選択比を有している。このため、開口51Hを形成するとき、第2封止体602は、エッチングストッパとして使用される。 As shown in FIG. 6, an
Here, the
図7に示されるように、開口51Hの側壁に、第3封止体603が形成される。第3封止体603は、例えばSiNにより形成される。SiNは、スパッタリング法又はCVD法を用いて成膜される。成膜された後、反応性イオンエッチング(RIE)等の異方性エッチングを用いて、SiNがパターンニングされる。
なお、第3封止体603は、開口51Hの側壁に加えて、絶縁体51上に形成されていてもよい。 As shown in FIG. 7, athird sealing body 603 is formed on the side wall of the opening 51H. The third sealing body 603 is formed of, for example, SiN. SiN is deposited using a sputtering method or a CVD method. After the film is formed, the SiN is patterned using anisotropic etching such as reactive ion etching (RIE).
Note that thethird sealing body 603 may be formed on the insulator 51 in addition to the side wall of the opening 51H.
なお、第3封止体603は、開口51Hの側壁に加えて、絶縁体51上に形成されていてもよい。 As shown in FIG. 7, a
Note that the
図8に示されるように、開口51H内に、第2封止体602及び第3封止体603を介在させて光学フィルタ7が形成される。ここでは、光学フィルタ7として、赤色フィルタ7R及び青色フィルタ7Bが形成される。
As shown in FIG. 8, the optical filter 7 is formed in the opening 51H with a second sealing body 602 and a third sealing body 603 interposed therebetween. Here, as the optical filter 7, a red filter 7R and a blue filter 7B are formed.
図9に示されるように、光学フィルタ7上に第1封止体601が形成される。第1封止体601は、絶縁体51上にも形成される。第1封止体601は、例えばSiNにより形成される。SiNは、スパッタリング法又はCVD法を用いて成膜される。
第1封止体601が形成されると、第1封止体601、第2封止体602及び第3封止体603を備え、光学フィルタ7をすべて覆う封止体6が完成する。 As shown in FIG. 9, afirst sealing body 601 is formed on the optical filter 7. The first sealing body 601 is also formed on the insulator 51. The first sealing body 601 is formed of, for example, SiN. SiN is deposited using a sputtering method or a CVD method.
When thefirst sealing body 601 is formed, the sealing body 6 including the first sealing body 601, the second sealing body 602, and the third sealing body 603 and covering the entire optical filter 7 is completed.
第1封止体601が形成されると、第1封止体601、第2封止体602及び第3封止体603を備え、光学フィルタ7をすべて覆う封止体6が完成する。 As shown in FIG. 9, a
When the
図10に示されるように、第1封止体601上に絶縁体81が形成される。絶縁体81は、例えばSiO2により形成される。絶縁体81の表面は平坦化され、開口51H、光学フィルタ7等の段差形状が緩和される。平坦化には、例えば化学機械研磨(CMP:Chemical Mechanical Polishing)法が使用される。
As shown in FIG. 10, an insulator 81 is formed on the first sealing body 601. The insulator 81 is made of, for example, SiO 2 . The surface of the insulator 81 is flattened, and the stepped shapes of the opening 51H, the optical filter 7, etc. are relaxed. For example, chemical mechanical polishing (CMP) is used for planarization.
絶縁体81に配線82が形成される(図11参照)。引き続き、図11に示されるように、第2光電変換部9が形成される。
第2光電変換部9は、第1電極91、絶縁体92、電荷蓄積転送層93、有機光電変換層94、第2電極95のそれぞれを順次積層することにより形成される。Wiring 82 is formed on insulator 81 (see FIG. 11). Subsequently, as shown in FIG. 11, the second photoelectric conversion section 9 is formed.
The secondphotoelectric conversion section 9 is formed by sequentially stacking a first electrode 91, an insulator 92, a charge storage transfer layer 93, an organic photoelectric conversion layer 94, and a second electrode 95.
第2光電変換部9は、第1電極91、絶縁体92、電荷蓄積転送層93、有機光電変換層94、第2電極95のそれぞれを順次積層することにより形成される。
The second
ここで、光学フィルタ7を形成する工程の後、光学フィルタ7が封止体6により封止されている。このため、封止体6により、光学フィルタ7の組成物質である水素が封止され、第2光電変換部9の電荷蓄積転送層93への水素の侵入を効果的に抑制又は防止することができる。
Here, after the step of forming the optical filter 7, the optical filter 7 is sealed with the sealing body 6. Therefore, the sealing body 6 seals hydrogen, which is a constituent of the optical filter 7, and effectively suppresses or prevents hydrogen from entering the charge storage transfer layer 93 of the second photoelectric conversion section 9. can.
次に、第2光電変換部9上に封止層11、封止層12のそれぞれが形成される(図3参照)。そして、前述の図3に示されるように、封止層12上に光学レンズ13及び反射防止層14が形成される。
Next, a sealing layer 11 and a sealing layer 12 are each formed on the second photoelectric conversion section 9 (see FIG. 3). Then, as shown in FIG. 3 described above, an optical lens 13 and an antireflection layer 14 are formed on the sealing layer 12.
これら一連の工程が終了すると、第1実施の形態に係る固体撮像装置1の製造方法が終了し、固体撮像装置1が完成する。
When these series of steps are completed, the method for manufacturing the solid-state imaging device 1 according to the first embodiment is completed, and the solid-state imaging device 1 is completed.
[作用効果]
第1実施の形態に係る固体撮像装置1は、図3及び図4に示されるように、第1光電変換部3と、光学フィルタ7と、第2光電変換部9と、電荷蓄積転送層93とを備える。
第1光電変換部3は、基体2に配設され、第1波長域の光を電荷に変換する。光学フィルタ7は、第1光電変換部3の基体2とは反対側に配設され、第1波長域の光を透過させる。第2光電変換部9は、光学フィルタ7の第1光電変換部3とは反対側に配設され、第1波長域とは異なる第2波長域の光を電荷に変換する。電荷蓄積転送層93は、第2光電変換部9に配設され、第2光電変換部9において変換された電荷を蓄積し転送する。
ここで、固体撮像装置1は、更に第1封止体601を備える。第1封止体601は、電荷蓄積転送層93の光学フィルタ7側に配設され、光学フィルタ7から放出される組成物質を封止する。組成物質は、光学フィルタ7を形成する樹脂材料の組成物質である、例えば水素である。
このため、光学フィルタ7から放出される水素は第1封止体601により封止されるので、電荷蓄積転送層93への水素の侵入を効果的に抑制又は防止することができる。つまり、電荷蓄積転送層93である例えば酸化物半導体では、酸素還元が生じることがないので、電荷蓄積転送層93として安定に機能する。従って、動作信頼性に優れた固体撮像装置1を提供することができる。 [Effect]
As shown in FIGS. 3 and 4, the solid-state imaging device 1 according to the first embodiment includes a first photoelectric conversion section 3, an optical filter 7, a second photoelectric conversion section 9, and a charge storage transfer layer 93. Equipped with.
The firstphotoelectric conversion unit 3 is disposed on the base 2 and converts light in the first wavelength range into charges. The optical filter 7 is disposed on the opposite side of the first photoelectric conversion unit 3 from the base 2 and transmits light in the first wavelength range. The second photoelectric conversion section 9 is disposed on the opposite side of the optical filter 7 from the first photoelectric conversion section 3, and converts light in a second wavelength range different from the first wavelength range into charges. The charge storage transfer layer 93 is disposed in the second photoelectric conversion section 9 and stores and transfers the charges converted in the second photoelectric conversion section 9.
Here, the solid-state imaging device 1 further includes a first sealing body 601. The first sealing body 601 is disposed on the optical filter 7 side of the charge storage transfer layer 93 and seals the constituent material released from the optical filter 7 . The composition substance is a composition substance of the resin material forming the optical filter 7, for example, hydrogen.
Therefore, hydrogen released from theoptical filter 7 is sealed by the first sealing body 601, so that hydrogen can be effectively suppressed or prevented from entering the charge storage transfer layer 93. In other words, the charge storage and transfer layer 93, which is made of, for example, an oxide semiconductor, does not undergo oxygen reduction, and therefore functions stably as the charge storage and transfer layer 93. Therefore, it is possible to provide a solid-state imaging device 1 with excellent operational reliability.
第1実施の形態に係る固体撮像装置1は、図3及び図4に示されるように、第1光電変換部3と、光学フィルタ7と、第2光電変換部9と、電荷蓄積転送層93とを備える。
第1光電変換部3は、基体2に配設され、第1波長域の光を電荷に変換する。光学フィルタ7は、第1光電変換部3の基体2とは反対側に配設され、第1波長域の光を透過させる。第2光電変換部9は、光学フィルタ7の第1光電変換部3とは反対側に配設され、第1波長域とは異なる第2波長域の光を電荷に変換する。電荷蓄積転送層93は、第2光電変換部9に配設され、第2光電変換部9において変換された電荷を蓄積し転送する。
ここで、固体撮像装置1は、更に第1封止体601を備える。第1封止体601は、電荷蓄積転送層93の光学フィルタ7側に配設され、光学フィルタ7から放出される組成物質を封止する。組成物質は、光学フィルタ7を形成する樹脂材料の組成物質である、例えば水素である。
このため、光学フィルタ7から放出される水素は第1封止体601により封止されるので、電荷蓄積転送層93への水素の侵入を効果的に抑制又は防止することができる。つまり、電荷蓄積転送層93である例えば酸化物半導体では、酸素還元が生じることがないので、電荷蓄積転送層93として安定に機能する。従って、動作信頼性に優れた固体撮像装置1を提供することができる。 [Effect]
As shown in FIGS. 3 and 4, the solid-
The first
Here, the solid-
Therefore, hydrogen released from the
また、固体撮像装置1では、図3に示されるように、第1封止体601は、光学フィルタ7の電荷蓄積転送層93側の表面に沿って形成される。表現を代えれば、第1封止体601は、光学フィルタ7の表面を覆って形成される。
このため、第1封止体601により、光学フィルタ7自体からの組成物質の放出を効果的に抑制又は防止することができる。 Further, in the solid-state imaging device 1, as shown in FIG. 3, the first sealing body 601 is formed along the surface of the optical filter 7 on the charge storage transfer layer 93 side. In other words, the first sealing body 601 is formed to cover the surface of the optical filter 7 .
Therefore, thefirst sealing body 601 can effectively suppress or prevent release of the constituent material from the optical filter 7 itself.
このため、第1封止体601により、光学フィルタ7自体からの組成物質の放出を効果的に抑制又は防止することができる。 Further, in the solid-
Therefore, the
また、固体撮像装置1は、図3に示されるように、更に第2封止体602を備える。第2封止体602は、光学フィルタ7の第1光電変換部3側の表面に沿って形成され、光学フィルタ7の組成物質を封止する。
このため、光学フィルタ7の第1光電変換部3側から放出される水素が、第2封止体602により封止されるので、電荷蓄積転送層93への水素の侵入をより一層効果的に抑制又は防止することができる。 Furthermore, the solid-state imaging device 1 further includes a second sealing body 602, as shown in FIG. The second sealing body 602 is formed along the surface of the optical filter 7 on the first photoelectric conversion unit 3 side, and seals the constituent material of the optical filter 7 .
Therefore, hydrogen released from the firstphotoelectric conversion unit 3 side of the optical filter 7 is sealed by the second sealing body 602, so that hydrogen can be prevented from entering the charge storage transfer layer 93 more effectively. Can be suppressed or prevented.
このため、光学フィルタ7の第1光電変換部3側から放出される水素が、第2封止体602により封止されるので、電荷蓄積転送層93への水素の侵入をより一層効果的に抑制又は防止することができる。 Furthermore, the solid-
Therefore, hydrogen released from the first
また、固体撮像装置1では、図3に示される第2封止体602は、光学フィルタ7が埋設される絶縁体51に対して、エッチング選択比を有する。固体撮像装置1の製造方法において、図6に示されるように、第2封止体602は、絶縁体51をパターンニングして開口51Hを形成する際のエッチングストッパとしても使用される。
このため、第2封止体602により、エッチング深さを正確に制御することができるので、開口51Hの深さを均一化することができる。従って、光学特性に優れた固体撮像装置1を提供することができる。 Furthermore, in the solid-state imaging device 1, the second sealing body 602 shown in FIG. 3 has an etching selectivity with respect to the insulator 51 in which the optical filter 7 is embedded. In the method for manufacturing the solid-state imaging device 1, as shown in FIG. 6, the second sealing body 602 is also used as an etching stopper when patterning the insulator 51 to form the opening 51H.
Therefore, since the etching depth can be accurately controlled by thesecond sealing body 602, the depth of the opening 51H can be made uniform. Therefore, it is possible to provide a solid-state imaging device 1 with excellent optical characteristics.
このため、第2封止体602により、エッチング深さを正確に制御することができるので、開口51Hの深さを均一化することができる。従って、光学特性に優れた固体撮像装置1を提供することができる。 Furthermore, in the solid-
Therefore, since the etching depth can be accurately controlled by the
また、固体撮像装置1は、図3に示されるように、更に第3封止体603を備える。第3封止体603は、光学フィルタ7の側面に沿って形成され、光学フィルタ7の組成物質を封止する。
このため、光学フィルタ7の側面から放出される水素が、第3封止体603により封止される。光学フィルタ7の側面には、絶縁体51を介在させて貫通配線52が配設されている。絶縁体51と貫通配線52との界面は、水素の侵入経路になり易い。従って、侵入経路を通じて電荷蓄積転送層93へ侵入する水素が第3封止体603により未然に封止されるので、水素の電荷蓄積転送層93への侵入をより一層効果的に抑制又は防止することができる。 Furthermore, the solid-state imaging device 1 further includes a third sealing body 603, as shown in FIG. The third sealing body 603 is formed along the side surface of the optical filter 7 and seals the constituent material of the optical filter 7 .
Therefore, hydrogen released from the side surface of theoptical filter 7 is sealed by the third sealing body 603. A through wiring 52 is provided on the side surface of the optical filter 7 with an insulator 51 interposed therebetween. The interface between the insulator 51 and the through wiring 52 is likely to become a path for hydrogen to enter. Therefore, hydrogen that enters the charge storage and transfer layer 93 through the entry path is sealed by the third sealing body 603, so that hydrogen entry into the charge storage and transfer layer 93 is suppressed or prevented even more effectively. be able to.
このため、光学フィルタ7の側面から放出される水素が、第3封止体603により封止される。光学フィルタ7の側面には、絶縁体51を介在させて貫通配線52が配設されている。絶縁体51と貫通配線52との界面は、水素の侵入経路になり易い。従って、侵入経路を通じて電荷蓄積転送層93へ侵入する水素が第3封止体603により未然に封止されるので、水素の電荷蓄積転送層93への侵入をより一層効果的に抑制又は防止することができる。 Furthermore, the solid-
Therefore, hydrogen released from the side surface of the
<2.第2実施の形態>
図12及び図13を用いて、本開示の第2実施の形態に係る固体撮像装置1を説明する。
なお、第2実施の形態及びそれ以降の実施の形態において、第1実施の形態に係る固体撮像装置1の構成要素と同一の構成要素、又は実質的に同一の構成要素には同一の符号を付し、重複する説明は省略する。 <2. Second embodiment>
A solid-state imaging device 1 according to a second embodiment of the present disclosure will be described using FIGS. 12 and 13.
Note that in the second embodiment and subsequent embodiments, the same or substantially the same components as those of the solid-state imaging device 1 according to the first embodiment are denoted by the same reference numerals. and duplicate explanations will be omitted.
図12及び図13を用いて、本開示の第2実施の形態に係る固体撮像装置1を説明する。
なお、第2実施の形態及びそれ以降の実施の形態において、第1実施の形態に係る固体撮像装置1の構成要素と同一の構成要素、又は実質的に同一の構成要素には同一の符号を付し、重複する説明は省略する。 <2. Second embodiment>
A solid-
Note that in the second embodiment and subsequent embodiments, the same or substantially the same components as those of the solid-
[固体撮像装置1の構成]
図12は、第2実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図13は、図12に示される画素100の平面構成の一例を表している。
図12に示されるように、第2実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1と同様に、光学フィルタ7の第2光電変換部9側に第1封止体601が配設され、光学フィルタ7の第1光電変換部3側に第2封止体602が配設されている。そして、第1実施の形態の固体撮像装置1とは異なり、第2実施の形態に係る固体撮像装置1では、光学フィルタ7の側面には第3封止体603が配設されていない。 [Configuration of solid-state imaging device 1]
FIG. 12 shows an example of a vertical cross-sectional configuration of thepixel 100 of the solid-state imaging device 1 according to the second embodiment. FIG. 13 shows an example of a planar configuration of the pixel 100 shown in FIG. 12.
As shown in FIG. 12, in the solid-state imaging device 1 according to the second embodiment, like the solid-state imaging device 1 according to the first embodiment, a first A sealing body 601 is disposed, and a second sealing body 602 is disposed on the optical filter 7 on the first photoelectric conversion unit 3 side. Unlike the solid-state imaging device 1 of the first embodiment, the third sealing body 603 is not disposed on the side surface of the optical filter 7 in the solid-state imaging device 1 of the second embodiment.
図12は、第2実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図13は、図12に示される画素100の平面構成の一例を表している。
図12に示されるように、第2実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1と同様に、光学フィルタ7の第2光電変換部9側に第1封止体601が配設され、光学フィルタ7の第1光電変換部3側に第2封止体602が配設されている。そして、第1実施の形態の固体撮像装置1とは異なり、第2実施の形態に係る固体撮像装置1では、光学フィルタ7の側面には第3封止体603が配設されていない。 [Configuration of solid-state imaging device 1]
FIG. 12 shows an example of a vertical cross-sectional configuration of the
As shown in FIG. 12, in the solid-
上記以外の構成要素は、図12及び図13に示されるように、第1実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
また、第2実施の形態に係る固体撮像装置1の製造方法は、前述の図7に示される第3封止体603を形成する工程が省略されるだけで、第1実施の形態に係る固体撮像装置1の製造方法に対して基本的に同一の工程を備えている。 Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the first embodiment, as shown in FIGS. 12 and 13.
Furthermore, the method for manufacturing the solid-state imaging device 1 according to the second embodiment only omits the step of forming the third sealing body 603 shown in FIG. The manufacturing method of the imaging device 1 basically includes the same steps.
また、第2実施の形態に係る固体撮像装置1の製造方法は、前述の図7に示される第3封止体603を形成する工程が省略されるだけで、第1実施の形態に係る固体撮像装置1の製造方法に対して基本的に同一の工程を備えている。 Components other than the above are the same or substantially the same as the components of the solid-
Furthermore, the method for manufacturing the solid-
[作用効果]
第2実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
特に、固体撮像装置1は、図12に示されるように、第1封止体601及び第2封止体602を備える。すなわち、光学フィルタ7から放出される水素は第1封止体601及び第2封止体602により封止されるので、電荷蓄積転送層93への水素の侵入を効果的に抑制又は防止することができる。従って、動作信頼性に優れた固体撮像装置1を提供することができる。 [Effect]
The solid-state imaging device 1 according to the second embodiment can provide the same effects as the solid-state imaging device 1 according to the first embodiment.
In particular, the solid-state imaging device 1 includes a first sealing body 601 and a second sealing body 602, as shown in FIG. That is, since the hydrogen released from the optical filter 7 is sealed by the first sealing body 601 and the second sealing body 602, it is possible to effectively suppress or prevent hydrogen from entering the charge storage transfer layer 93. Can be done. Therefore, it is possible to provide a solid-state imaging device 1 with excellent operational reliability.
第2実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
特に、固体撮像装置1は、図12に示されるように、第1封止体601及び第2封止体602を備える。すなわち、光学フィルタ7から放出される水素は第1封止体601及び第2封止体602により封止されるので、電荷蓄積転送層93への水素の侵入を効果的に抑制又は防止することができる。従って、動作信頼性に優れた固体撮像装置1を提供することができる。 [Effect]
The solid-
In particular, the solid-
また、固体撮像装置1の製造方法では、前述の図7に示される第3封止体603を形成する工程が省略されるので、製造工程を削減することができる。
Furthermore, in the method for manufacturing the solid-state imaging device 1, the step of forming the third sealing body 603 shown in FIG. 7 described above is omitted, so the number of manufacturing steps can be reduced.
なお、第2実施の形態に係る固体撮像装置1は、第1封止体601を配設し、第2封止体602及び第3封止体603を省略する構成としてもよい。
Note that the solid-state imaging device 1 according to the second embodiment may have a configuration in which the first sealing body 601 is provided and the second sealing body 602 and the third sealing body 603 are omitted.
<3.第3実施の形態>
図14及び図15を用いて、本開示の第3実施の形態に係る固体撮像装置1を説明する。 <3. Third embodiment>
A solid-state imaging device 1 according to a third embodiment of the present disclosure will be described using FIGS. 14 and 15.
図14及び図15を用いて、本開示の第3実施の形態に係る固体撮像装置1を説明する。 <3. Third embodiment>
A solid-
[固体撮像装置1の構成]
図14は、第3実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図15は、図14に示される画素100の平面構成の一例を表している。
図14及び図15に示されるように、第3実施の形態に係る固体撮像装置1では、光学フィルタ7は、赤色フィルタ7R及び青色フィルタ7Bに代えて、赤外線透過フィルタ7IRPFにより構成されている。赤外線透過フィルタ7IRPFは、第1波長域としての例えば700nm以上の近赤外線を透過させるフィルタである。 [Configuration of solid-state imaging device 1]
FIG. 14 shows an example of a vertical cross-sectional configuration of thepixel 100 of the solid-state imaging device 1 according to the third embodiment. FIG. 15 shows an example of a planar configuration of the pixel 100 shown in FIG. 14.
As shown in FIGS. 14 and 15, in the solid-state imaging device 1 according to the third embodiment, the optical filter 7 includes an infrared transmission filter 7IRPF instead of the red filter 7R and the blue filter 7B. The infrared transmission filter 7IRPF is a filter that transmits near-infrared rays in the first wavelength range, for example, 700 nm or more.
図14は、第3実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図15は、図14に示される画素100の平面構成の一例を表している。
図14及び図15に示されるように、第3実施の形態に係る固体撮像装置1では、光学フィルタ7は、赤色フィルタ7R及び青色フィルタ7Bに代えて、赤外線透過フィルタ7IRPFにより構成されている。赤外線透過フィルタ7IRPFは、第1波長域としての例えば700nm以上の近赤外線を透過させるフィルタである。 [Configuration of solid-state imaging device 1]
FIG. 14 shows an example of a vertical cross-sectional configuration of the
As shown in FIGS. 14 and 15, in the solid-
第1実施の形態に係る固体撮像装置1と同様に、固体撮像装置1は、第1封止体601、第2封止体602及び第3封止体603を備えている。第1封止体601は、光学フィルタ7の第2光電変換部9側の表面に沿って配設されている。第2封止体602は、光学フィルタ7の第1光電変換部3側の表面に沿って配設されている。また、第3封止体603は、光学フィルタ7の側面に沿って配設されている。
Similar to the solid-state imaging device 1 according to the first embodiment, the solid-state imaging device 1 includes a first sealing body 601, a second sealing body 602, and a third sealing body 603. The first sealing body 601 is disposed along the surface of the optical filter 7 on the second photoelectric conversion unit 9 side. The second sealing body 602 is disposed along the surface of the optical filter 7 on the first photoelectric conversion unit 3 side. Further, the third sealing body 603 is arranged along the side surface of the optical filter 7.
上記以外の構成要素は、第1実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the first embodiment.
[作用効果]
第3実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
特に、固体撮像装置1は、図14及び図15に示されるように、光学フィルタ7としての赤外線透過フィルタ7IRPFの表面に沿って、第1封止体601、第2封止体602及び第3封止体603を備える。すなわち、光学フィルタ7から放出される水素は第1封止体601、第2封止体602及び第3封止体603により封止されるので、電荷蓄積転送層93への水素の侵入を効果的に抑制又は防止することができる。従って、動作信頼性に優れた固体撮像装置1を提供することができる。 [Effect]
The solid-state imaging device 1 according to the third embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment.
In particular, as shown in FIGS. 14 and 15, the solid-state imaging device 1 includes a first sealing body 601, a second sealing body 602, and a third sealing body along the surface of the infrared transmission filter 7IRPF as the optical filter 7. A sealing body 603 is provided. In other words, since hydrogen released from the optical filter 7 is sealed by the first sealing body 601, the second sealing body 602, and the third sealing body 603, hydrogen intrusion into the charge storage transfer layer 93 is effectively prevented. can be suppressed or prevented. Therefore, it is possible to provide a solid-state imaging device 1 with excellent operational reliability.
第3実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
特に、固体撮像装置1は、図14及び図15に示されるように、光学フィルタ7としての赤外線透過フィルタ7IRPFの表面に沿って、第1封止体601、第2封止体602及び第3封止体603を備える。すなわち、光学フィルタ7から放出される水素は第1封止体601、第2封止体602及び第3封止体603により封止されるので、電荷蓄積転送層93への水素の侵入を効果的に抑制又は防止することができる。従って、動作信頼性に優れた固体撮像装置1を提供することができる。 [Effect]
The solid-
In particular, as shown in FIGS. 14 and 15, the solid-
なお、第3実施の形態に係る固体撮像装置1は、第2実施の形態に係る固体撮像装置1に適用してもよい。この場合、光学フィルタ7には、少なくとも第1封止体601が配設され、第2封止体602、第3封止体603のいずれか一方が省略されてもよい。
Note that the solid-state imaging device 1 according to the third embodiment may be applied to the solid-state imaging device 1 according to the second embodiment. In this case, the optical filter 7 is provided with at least the first sealing body 601, and either the second sealing body 602 or the third sealing body 603 may be omitted.
<4.第4実施の形態>
図16及び図17を用いて、本開示の第4実施の形態に係る固体撮像装置1を説明する。 <4. Fourth embodiment>
A solid-state imaging device 1 according to a fourth embodiment of the present disclosure will be described using FIGS. 16 and 17.
図16及び図17を用いて、本開示の第4実施の形態に係る固体撮像装置1を説明する。 <4. Fourth embodiment>
A solid-
[固体撮像装置1の構成]
図16は、第4実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図17は、図16に示される画素100の平面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 16 shows an example of a vertical cross-sectional configuration of thepixel 100 of the solid-state imaging device 1 according to the fourth embodiment. FIG. 17 shows an example of a planar configuration of the pixel 100 shown in FIG. 16.
図16は、第4実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図17は、図16に示される画素100の平面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 16 shows an example of a vertical cross-sectional configuration of the
図16及び図17に示されるように、第4実施の形態に係る固体撮像装置1では、光学フィルタ7は、青色フィルタ7Bに代えて、赤外線透過フィルタ7IRPFにより構成されている。すなわち、光学フィルタ7は、第1波長域の光を透過させる赤色フィルタ7R及び赤外線透過フィルタ7IRPFにより構成されている。赤色フィルタ7R及び赤外線透過フィルタ7IRPFの配列構成は、第1実施の形態に係る固体撮像装置1の赤色フィルタ7R及び青色フィルタ7Bの配列構成と同様である。
As shown in FIGS. 16 and 17, in the solid-state imaging device 1 according to the fourth embodiment, the optical filter 7 includes an infrared transmission filter 7IRPF instead of the blue filter 7B. That is, the optical filter 7 includes a red filter 7R that transmits light in the first wavelength range and an infrared transmission filter 7IRPF. The arrangement configuration of the red filter 7R and the infrared transmission filter 7IRPF is similar to the arrangement configuration of the red filter 7R and the blue filter 7B of the solid-state imaging device 1 according to the first embodiment.
一方、固体撮像装置1では、第2光電変換部9は、第2波長域の光から電荷を発生させる第2光電変換部9G及び第2光電変換部9Bを備えている。第2光電変換部9は、第2光電変換部9G及び第2光電変換部9Bの2層構造により構成されている。
On the other hand, in the solid-state imaging device 1, the second photoelectric conversion section 9 includes a second photoelectric conversion section 9G and a second photoelectric conversion section 9B that generate charges from light in the second wavelength range. The second photoelectric conversion section 9 has a two-layer structure including a second photoelectric conversion section 9G and a second photoelectric conversion section 9B.
第2光電変換部9Gは、第1実施の形態に係る固体撮像装置1の第2光電変換部9と同様に、光学フィルタ7から光学レンズ13側へ向かって、第1電極91、絶縁体92、電荷蓄積転送層93、有機光電変換層94、第2電極95のそれぞれを順次積層し構成されている。有機光電変換層94は、第2波長域としての緑色光から光電変換により電荷を生成する。
Similarly to the second photoelectric conversion unit 9 of the solid-state imaging device 1 according to the first embodiment, the second photoelectric conversion unit 9G includes a first electrode 91, an insulator 92, , a charge storage transfer layer 93, an organic photoelectric conversion layer 94, and a second electrode 95 are sequentially laminated. The organic photoelectric conversion layer 94 generates charges from green light in the second wavelength range by photoelectric conversion.
第2光電変換部9Bは、第2光電変換部9Gの光学レンズ13側に配設されている。第2光電変換部9Bは、第2光電変換部9Gから光学レンズ13側へ向かって、第1電極901、絶縁体902、電荷蓄積転送層903、有機光電変換層904、第2電極905のそれぞれを順次積層し構成されている。有機光電変換層904は、第2波長域としての青色光から光電変換により電荷を生成する。
The second photoelectric conversion section 9B is arranged on the optical lens 13 side of the second photoelectric conversion section 9G. The second photoelectric conversion unit 9B includes, from the second photoelectric conversion unit 9G toward the optical lens 13 side, a first electrode 901, an insulator 902, a charge storage transfer layer 903, an organic photoelectric conversion layer 904, and a second electrode 905, respectively. It is constructed by sequentially laminating layers. The organic photoelectric conversion layer 904 generates charges by photoelectric conversion from blue light in the second wavelength range.
上記以外の構成要素は、第1実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the first embodiment.
[作用効果]
第4実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
特に、光学フィルタ7に赤外線透過フィルタ7IRPFを有し、第2光電変換部9が2層構造とされる固体撮像装置1においても、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-state imaging device 1 according to the fourth embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment.
In particular, even in the solid-state imaging device 1 in which the optical filter 7 includes the infrared transmission filter 7IRPF and the second photoelectric conversion section 9 has a two-layer structure, the effects obtained by the solid-state imaging device 1 according to the first embodiment are The same effects can be obtained.
第4実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
特に、光学フィルタ7に赤外線透過フィルタ7IRPFを有し、第2光電変換部9が2層構造とされる固体撮像装置1においても、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-
In particular, even in the solid-
<5.第5実施の形態>
図18及び図19を用いて、本開示の第5実施の形態に係る固体撮像装置1を説明する。 <5. Fifth embodiment>
A solid-state imaging device 1 according to a fifth embodiment of the present disclosure will be described using FIGS. 18 and 19.
図18及び図19を用いて、本開示の第5実施の形態に係る固体撮像装置1を説明する。 <5. Fifth embodiment>
A solid-
[固体撮像装置1の構成]
図18は、第5実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図19は、図18に示される画素100の平面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 18 shows an example of a vertical cross-sectional configuration of thepixel 100 of the solid-state imaging device 1 according to the fifth embodiment. FIG. 19 shows an example of a planar configuration of the pixel 100 shown in FIG. 18.
図18は、第5実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。図19は、図18に示される画素100の平面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 18 shows an example of a vertical cross-sectional configuration of the
図18及び図19に示されるように、第5実施の形態に係る固体撮像装置1は、第2実施の形態に係る固体撮像装置1の応用例である。詳しく説明すると、固体撮像装置1では、光学フィルタ7の第2光電変換部9側に第1封止体601が配設され、光学フィルタ7の第1光電変換部3側に第2封止体602が配設されている。そして、第1実施の形態の固体撮像装置1とは異なり、第2実施の形態に係る固体撮像装置1では、光学フィルタ7の側面には第3封止体603が配設されていない。
As shown in FIGS. 18 and 19, the solid-state imaging device 1 according to the fifth embodiment is an application example of the solid-state imaging device 1 according to the second embodiment. To explain in detail, in the solid-state imaging device 1, the first sealing body 601 is disposed on the second photoelectric conversion section 9 side of the optical filter 7, and the second sealing body 601 is disposed on the first photoelectric conversion section 3 side of the optical filter 7. 602 is arranged. Unlike the solid-state imaging device 1 of the first embodiment, the third sealing body 603 is not disposed on the side surface of the optical filter 7 in the solid-state imaging device 1 of the second embodiment.
第2実施の形態に係る固体撮像装置1と同様に、光学フィルタ7の矢印Z方向の厚さは、絶縁体51の同一方向の厚さに対して薄く形成されている。つまり、絶縁体51に形成された開口51H内に光学フィルタ7が埋設されると、光学フィルタ7の表面から基体2とは反対側に向かって(矢印Z方向へ向かって)開口5H内壁が露出される。
第1封止体601は、光学フィルタ7の第2光電変換部9側の表面に形成されるとともに、この表面から開口51H内壁に沿って矢印Z方向にも形成されている。さらに、第1封止体601は、絶縁体51の第2光電変換部9側の表面にも延びて形成されている。 Similar to the solid-state imaging device 1 according to the second embodiment, the thickness of the optical filter 7 in the direction of the arrow Z is thinner than the thickness of the insulator 51 in the same direction. That is, when the optical filter 7 is embedded in the opening 51H formed in the insulator 51, the inner wall of the opening 5H is exposed from the surface of the optical filter 7 toward the side opposite to the base 2 (in the direction of arrow Z). be done.
Thefirst sealing body 601 is formed on the surface of the optical filter 7 on the second photoelectric conversion section 9 side, and is also formed in the direction of arrow Z from this surface along the inner wall of the opening 51H. Furthermore, the first sealing body 601 is formed to extend also to the surface of the insulator 51 on the second photoelectric conversion unit 9 side.
第1封止体601は、光学フィルタ7の第2光電変換部9側の表面に形成されるとともに、この表面から開口51H内壁に沿って矢印Z方向にも形成されている。さらに、第1封止体601は、絶縁体51の第2光電変換部9側の表面にも延びて形成されている。 Similar to the solid-
The
光学フィルタ7の赤色フィルタ7R及び青色フィルタ7Bは、開口51H内において、第2封止体602の表面から形成されている。表現を代えれば、赤色フィルタ7R、青色フィルタ7Bのそれぞれの矢印Z方向の厚さは、第2封止体602の表面を基準とした厚さである。ここでは、赤色フィルタ7R、青色フィルタ7Bのそれぞれにおいて、第2封止体602の表面の位置は同一とされている。
第5実施の形態において、赤色フィルタ7R及び赤色フィルタ7Rを透過した第1波長域の光を受光する第1光電変換部3は、本技術に係る「第1光学フィルタ」及び「第1光電変換部」に対応している。また、青色フィルタ7B及び青色フィルタ7Bを透過した第1波長域の光を受光する第1光電変換部3は、本技術に係る「第3光学フィルタ」及び「第3光電変換部」に対応している。 Thered filter 7R and blue filter 7B of the optical filter 7 are formed from the surface of the second sealing body 602 within the opening 51H. In other words, the thickness of each of the red filter 7R and the blue filter 7B in the direction of the arrow Z is the thickness based on the surface of the second sealing body 602. Here, the position of the surface of the second sealing body 602 is the same in each of the red filter 7R and the blue filter 7B.
In the fifth embodiment, thered filter 7R and the first photoelectric conversion unit 3 that receives the light in the first wavelength range that has passed through the red filter 7R include the "first optical filter" and "first photoelectric conversion" according to the present technology. Department”. Furthermore, the blue filter 7B and the first photoelectric conversion unit 3 that receives the light in the first wavelength range that has passed through the blue filter 7B correspond to a “third optical filter” and a “third photoelectric conversion unit” according to the present technology. ing.
第5実施の形態において、赤色フィルタ7R及び赤色フィルタ7Rを透過した第1波長域の光を受光する第1光電変換部3は、本技術に係る「第1光学フィルタ」及び「第1光電変換部」に対応している。また、青色フィルタ7B及び青色フィルタ7Bを透過した第1波長域の光を受光する第1光電変換部3は、本技術に係る「第3光学フィルタ」及び「第3光電変換部」に対応している。 The
In the fifth embodiment, the
ここで、第1実施の形態において説明したように、光学フィルタ7の赤色フィルタ7Rの膜厚t1に対して、光の波長が短い青色フィルタ7Bの膜厚t3は、薄く形成されている。
さらに、第5実施の形態では、赤色フィルタ7Rの基体2側とは反対側の表面(矢印Z方向側の表面)は、側面視において、基体2とは反対側に湾曲する(矢印Z方向側へ突出する)断面形状に形成されている。表現を代えれば、赤色フィルタ7Rの中央部の膜厚は厚く、周辺部の膜厚は薄く形成されている。
加えて、青色フィルタ7Bの基体2側とは反対側の表面(矢印Z方向側の表面)は、側面視において、基体2側に湾曲する(矢印Z方向とは反対側へ窪む)断面形状に形成されている。表現を代えれば、青色フィルタ7Bの中央部の膜厚は薄く、周辺部の膜厚は厚く形成されている。 Here, as described in the first embodiment, the film thickness t3 of theblue filter 7B having a shorter wavelength of light is formed thinner than the film thickness t1 of the red filter 7R of the optical filter 7.
Furthermore, in the fifth embodiment, the surface of thered filter 7R on the opposite side to the base body 2 (the surface on the arrow Z direction side) is curved on the side opposite to the base body 2 (the surface on the arrow Z direction side) in side view. It is formed in a cross-sectional shape (protruding to the top). In other words, the central part of the red filter 7R has a thick film thickness, and the peripheral part has a thin film thickness.
In addition, the surface of theblue filter 7B on the side opposite to the base body 2 side (the surface on the side in the arrow Z direction) has a cross-sectional shape that is curved toward the base body 2 side (concave toward the side opposite to the arrow Z direction) in side view. is formed. In other words, the blue filter 7B has a thin film thickness at the center and a thick film thickness at the peripheral part.
さらに、第5実施の形態では、赤色フィルタ7Rの基体2側とは反対側の表面(矢印Z方向側の表面)は、側面視において、基体2とは反対側に湾曲する(矢印Z方向側へ突出する)断面形状に形成されている。表現を代えれば、赤色フィルタ7Rの中央部の膜厚は厚く、周辺部の膜厚は薄く形成されている。
加えて、青色フィルタ7Bの基体2側とは反対側の表面(矢印Z方向側の表面)は、側面視において、基体2側に湾曲する(矢印Z方向とは反対側へ窪む)断面形状に形成されている。表現を代えれば、青色フィルタ7Bの中央部の膜厚は薄く、周辺部の膜厚は厚く形成されている。 Here, as described in the first embodiment, the film thickness t3 of the
Furthermore, in the fifth embodiment, the surface of the
In addition, the surface of the
また、図18に示されるように、第5実施の形態では、基体2と絶縁体41との間に、反射防止層45が配設されている。反射防止層45は、例えばSiO2により形成されている。
Further, as shown in FIG. 18, in the fifth embodiment, an antireflection layer 45 is provided between the base 2 and the insulator 41. The antireflection layer 45 is made of, for example, SiO 2 .
上記以外の構成要素は、第2実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the second embodiment.
[作用効果]
第5実施の形態に係る固体撮像装置1では、第2実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-state imaging device 1 according to the fifth embodiment can provide the same effects as the solid-state imaging device 1 according to the second embodiment.
第5実施の形態に係る固体撮像装置1では、第2実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-
また、第1実施の形態に係る固体撮像装置1においても説明したように、固体撮像装置1は、図18及び図19に示されるように、第1光電変換部及び第3光電変換部としての第1光電変換部3と、第1光学フィルタ及び第3光学フィルタとしての光学フィルタ7とを備える。
第1光電変換部(第1光電変換部3)は、基体2に配設され、第1波長域の光を電荷に変換する。第3光電変換部(第1光電変換部3)は、第1光電変換部とは異なる領域において、基体2に配設され、第1波長域よりも短波長の第3波長域の光を電荷に変換する。
第1光学フィルタは、ここでは赤色フィルタ7Rである。赤色フィルタ7Rは、第1光電変換部の基体2とは反対側に配設され、第1波長域の光を透過させる。第3光学フィルタは、ここでは、青色フィルタ7Bである。青色フィルタ7Bは、第3光電変換部の基体2とは反対側に配設され、第3波長域の光を透過させ、赤色フィルタ7Rの厚さよりも薄い厚さを有する。
このように構成される固体撮像装置1では、短波長の光を透過させる青色フィルタ7Bの厚さが薄膜化されるので、青色光の感度を向上させることができる。すなわち、青色光の感度調整を行うことができる。 Further, as described in the solid-state imaging device 1 according to the first embodiment, the solid-state imaging device 1 has a first photoelectric conversion section and a third photoelectric conversion section, as shown in FIGS. 18 and 19. It includes a first photoelectric conversion section 3 and an optical filter 7 as a first optical filter and a third optical filter.
The first photoelectric conversion unit (first photoelectric conversion unit 3) is disposed on thebase 2 and converts light in the first wavelength range into charges. The third photoelectric conversion unit (first photoelectric conversion unit 3) is disposed on the base 2 in a region different from that of the first photoelectric conversion unit, and charges light in a third wavelength range shorter than the first wavelength range. Convert to
The first optical filter is thered filter 7R here. The red filter 7R is disposed on the side opposite to the base 2 of the first photoelectric conversion section, and transmits light in the first wavelength range. The third optical filter is here the blue filter 7B. The blue filter 7B is disposed on the side opposite to the base 2 of the third photoelectric conversion section, transmits light in the third wavelength range, and has a thickness thinner than the thickness of the red filter 7R.
In the solid-state imaging device 1 configured in this manner, the thickness of the blue filter 7B that transmits short wavelength light is reduced, so that the sensitivity to blue light can be improved. That is, it is possible to adjust the sensitivity of blue light.
第1光電変換部(第1光電変換部3)は、基体2に配設され、第1波長域の光を電荷に変換する。第3光電変換部(第1光電変換部3)は、第1光電変換部とは異なる領域において、基体2に配設され、第1波長域よりも短波長の第3波長域の光を電荷に変換する。
第1光学フィルタは、ここでは赤色フィルタ7Rである。赤色フィルタ7Rは、第1光電変換部の基体2とは反対側に配設され、第1波長域の光を透過させる。第3光学フィルタは、ここでは、青色フィルタ7Bである。青色フィルタ7Bは、第3光電変換部の基体2とは反対側に配設され、第3波長域の光を透過させ、赤色フィルタ7Rの厚さよりも薄い厚さを有する。
このように構成される固体撮像装置1では、短波長の光を透過させる青色フィルタ7Bの厚さが薄膜化されるので、青色光の感度を向上させることができる。すなわち、青色光の感度調整を行うことができる。 Further, as described in the solid-
The first photoelectric conversion unit (first photoelectric conversion unit 3) is disposed on the
The first optical filter is the
In the solid-
加えて、固体撮像装置1では、第1光電変換部3、第2光電変換部9のそれぞれが積層され、矢印Z方向において高背化される。ここで、青色フィルタ7Bが薄膜化されるので、固体撮像装置1は、特に第1光電変換部3と第2光電変換部9との間が薄くなり、低背化される。つまり、第2光電変換部9から第1光電変換部3へ至る、光の入射経路長(導波路長)を短くすることができる。
このため、上記光の入射経路において、隣接する画素100への光漏れを効果的に抑制又は防止することができ、隣接する画素100同士に発生する混色を効果的に抑制又は防止することができる。 In addition, in the solid-state imaging device 1, the first photoelectric conversion section 3 and the second photoelectric conversion section 9 are each stacked, and the height is increased in the direction of arrow Z. Here, since the blue filter 7B is made thinner, the solid-state imaging device 1 becomes thinner, especially between the first photoelectric conversion section 3 and the second photoelectric conversion section 9, and the height of the solid-state imaging device 1 is reduced. In other words, the incident path length (waveguide length) of light from the second photoelectric conversion section 9 to the first photoelectric conversion section 3 can be shortened.
Therefore, in the light incident path, light leakage toadjacent pixels 100 can be effectively suppressed or prevented, and color mixture occurring between adjacent pixels 100 can be effectively suppressed or prevented. .
このため、上記光の入射経路において、隣接する画素100への光漏れを効果的に抑制又は防止することができ、隣接する画素100同士に発生する混色を効果的に抑制又は防止することができる。 In addition, in the solid-
Therefore, in the light incident path, light leakage to
また、固体撮像装置1では、特に図18に示されるように、光学フィルタ7の青色フィルタ7Bは、基体2側に湾曲する断面形状に形成される。つまり、青色フィルタ7Bの中央部の厚さに対して、周辺部の厚さが厚く形成される。
このため、青色フィルタ7Bの周辺部から隣接する画素100への光漏れを効果的に抑制又は防止することができ、隣接する画素100同士に発生する混色を効果的に抑制又は防止することができる。 Further, in the solid-state imaging device 1, as particularly shown in FIG. 18, the blue filter 7B of the optical filter 7 is formed in a cross-sectional shape that curves toward the base 2 side. In other words, the peripheral portion of the blue filter 7B is thicker than the central portion.
Therefore, light leakage from the peripheral portion of theblue filter 7B to the adjacent pixels 100 can be effectively suppressed or prevented, and color mixture occurring between the adjacent pixels 100 can be effectively suppressed or prevented. .
このため、青色フィルタ7Bの周辺部から隣接する画素100への光漏れを効果的に抑制又は防止することができ、隣接する画素100同士に発生する混色を効果的に抑制又は防止することができる。 Further, in the solid-
Therefore, light leakage from the peripheral portion of the
また、固体撮像装置1では、特に図18に示されるように、光学フィルタ7の赤色フィルタ7Rは、基体2とは反対側に湾曲する断面形状に形成される。つまり、赤色フィルタ7Rの周辺部の厚さに対して、中央部の厚さが厚く形成される。
このため、矢印に符号「L1」を付けて示されるように、赤色フィルタ7Rでは、入射される光を集光させることができるので、集光効率を向上させることができる。 Further, in the solid-state imaging device 1, as particularly shown in FIG. 18, the red filter 7R of the optical filter 7 is formed in a cross-sectional shape that curves toward the opposite side from the base body 2. In other words, the central portion of the red filter 7R is thicker than the peripheral portion.
Therefore, as shown by adding the symbol "L1" to the arrow, thered filter 7R can collect the incident light, thereby improving the light collection efficiency.
このため、矢印に符号「L1」を付けて示されるように、赤色フィルタ7Rでは、入射される光を集光させることができるので、集光効率を向上させることができる。 Further, in the solid-
Therefore, as shown by adding the symbol "L1" to the arrow, the
また、固体撮像装置1は、特に図18に示されるように、絶縁体51を備える。絶縁体51は、基体2に配設され、基体2とは反対側の表面から厚さ方向に向かって形成された開口51Hを有する。
光学フィルタ7の赤色フィルタ7R(第1光学フィルタ)、青色フィルタ7B(第3光学フィルタ)のそれぞれは、開口51H内に配設される。赤色フィルタ7R、青色フィルタ7Bのそれぞれの基体2とは反対側の表面、及びこの表面から基体2とは反対側に向かって開口51H内側壁には、第1封止体601が形成される。第1封止体601は、光学フィルタ7の組成物質を封止する。
このように構成される固体撮像装置1では、開口51H内側壁に形成された第1封止体601の絶縁体51とは反対側の表面、又は第1封止体601と絶縁体51との界面が反射面となる。このため、矢印に符号「L2」を付けて示されるように、赤色フィルタ7R、青色フィルタ7Bのそれぞれに入射される光が反射面により反射され、かつ、集光させることができるので、集光効率を向上させることができる。 The solid-state imaging device 1 also includes an insulator 51, as particularly shown in FIG. The insulator 51 is disposed on the base 2 and has an opening 51H formed in the thickness direction from the surface opposite to the base 2.
Each of thered filter 7R (first optical filter) and the blue filter 7B (third optical filter) of the optical filter 7 is disposed within the opening 51H. A first sealing body 601 is formed on the surface of each of the red filter 7R and the blue filter 7B on the side opposite to the base 2, and on the inner wall of the opening 51H from this surface toward the side opposite to the base 2. The first sealing body 601 seals the composition of the optical filter 7 .
In the solid-state imaging device 1 configured as described above, the surface of the first sealing body 601 formed on the inner wall of the opening 51H opposite to the insulator 51, or the surface of the first sealing body 601 and the insulator 51 formed on the inner side wall of the opening 51H is The interface becomes a reflective surface. Therefore, as shown by adding the symbol "L2" to the arrow, the light incident on each of the red filter 7R and the blue filter 7B is reflected by the reflective surface and can be focused. Efficiency can be improved.
光学フィルタ7の赤色フィルタ7R(第1光学フィルタ)、青色フィルタ7B(第3光学フィルタ)のそれぞれは、開口51H内に配設される。赤色フィルタ7R、青色フィルタ7Bのそれぞれの基体2とは反対側の表面、及びこの表面から基体2とは反対側に向かって開口51H内側壁には、第1封止体601が形成される。第1封止体601は、光学フィルタ7の組成物質を封止する。
このように構成される固体撮像装置1では、開口51H内側壁に形成された第1封止体601の絶縁体51とは反対側の表面、又は第1封止体601と絶縁体51との界面が反射面となる。このため、矢印に符号「L2」を付けて示されるように、赤色フィルタ7R、青色フィルタ7Bのそれぞれに入射される光が反射面により反射され、かつ、集光させることができるので、集光効率を向上させることができる。 The solid-
Each of the
In the solid-
<6.第6実施の形態>
図20を用いて、本開示の第6実施の形態に係る固体撮像装置1を説明する。 <6. Sixth embodiment>
A solid-state imaging device 1 according to a sixth embodiment of the present disclosure will be described using FIG. 20.
図20を用いて、本開示の第6実施の形態に係る固体撮像装置1を説明する。 <6. Sixth embodiment>
A solid-
[固体撮像装置1の構成]
図20は、第6実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 20 shows an example of a vertical cross-sectional configuration of thepixel 100 of the solid-state imaging device 1 according to the sixth embodiment.
図20は、第6実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 20 shows an example of a vertical cross-sectional configuration of the
図20に示されるように、第6実施の形態に係る固体撮像装置1は、第5実施の形態に係る固体撮像装置1の応用例である。すなわち、固体撮像装置1では、開口51Hは、絶縁体51の基体2とは反対側(光入射側)の表面から基体2側に向かって一定の割合において開口寸法を小さくしている。側面視において、開口51Hは、断面テーパ形状に形成されている。
As shown in FIG. 20, the solid-state imaging device 1 according to the sixth embodiment is an application example of the solid-state imaging device 1 according to the fifth embodiment. That is, in the solid-state imaging device 1, the opening size of the opening 51H decreases at a constant rate from the surface of the insulator 51 on the side opposite to the base 2 (light incident side) toward the base 2. In side view, the opening 51H has a tapered cross section.
開口51H内において、第2封止体602の表面と開口51H内側壁面とがなす角度θは、例えば90度を超えて120度以下に設定されている。角度θが90度を超えると、開口51H内壁面に傾斜面を形成することができる。逆に、角度θが120度を越えると、画素100の微細化が難しくなる。
In the opening 51H, the angle θ between the surface of the second sealing body 602 and the inner wall surface of the opening 51H is set to, for example, more than 90 degrees and less than 120 degrees. When the angle θ exceeds 90 degrees, an inclined surface can be formed on the inner wall surface of the opening 51H. Conversely, if the angle θ exceeds 120 degrees, it becomes difficult to miniaturize the pixels 100.
また、第6実施の形態に係る固体撮像装置1では、光学フィルタ7の青色フィルタ7Bの基体2側とは反対側の表面は、赤色フィルタ7Rと同様に、側面視において、基体2とは反対側に湾曲する断面形状に形成されている。すなわち、赤色フィルタ7R、青色フィルタ7Bのそれぞれが、同一断面形状に形成されている。
Furthermore, in the solid-state imaging device 1 according to the sixth embodiment, the surface of the blue filter 7B of the optical filter 7 on the side opposite to the base 2 is opposite to the base 2 in side view, similar to the red filter 7R. It is formed in a cross-sectional shape that curves to the side. That is, the red filter 7R and the blue filter 7B are each formed to have the same cross-sectional shape.
上記以外の構成要素は、第5実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the fifth embodiment.
[作用効果]
第6実施の形態に係る固体撮像装置1では、第5実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-state imaging device 1 according to the sixth embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the fifth embodiment.
第6実施の形態に係る固体撮像装置1では、第5実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-
また、固体撮像装置1では、特に図20に示されるように、光学フィルタ7が埋設される絶縁体51の開口51Hが断面テーパ形状に形成される。絶縁体51、光学フィルタ7のそれぞれには屈折率差が存在するので、絶縁体51の開口51H内壁面と光学フィルタ7の側面との境界面は反射傾斜面となる。
このため、矢印に符号「L3」を付けて示されるように、入射される光は、反射傾斜面に反射され、かつ、集光させることができるので、集光効率を向上させることができる。
加えて、光学フィルタ7から隣接する画素100への光漏れを効果的に抑制又は防止することができ、隣接する画素100同士に発生する混色を効果的に抑制又は防止することができる。 Further, in the solid-state imaging device 1, as particularly shown in FIG. 20, the opening 51H of the insulator 51 in which the optical filter 7 is embedded is formed to have a tapered cross-section. Since there is a difference in refractive index between the insulator 51 and the optical filter 7, the interface between the inner wall surface of the opening 51H of the insulator 51 and the side surface of the optical filter 7 becomes a reflective inclined surface.
Therefore, as shown by adding the symbol "L3" to the arrow, the incident light is reflected by the reflective inclined surface and can be focused, so that the light focusing efficiency can be improved.
In addition, light leakage from theoptical filter 7 to adjacent pixels 100 can be effectively suppressed or prevented, and color mixture occurring between adjacent pixels 100 can be effectively suppressed or prevented.
このため、矢印に符号「L3」を付けて示されるように、入射される光は、反射傾斜面に反射され、かつ、集光させることができるので、集光効率を向上させることができる。
加えて、光学フィルタ7から隣接する画素100への光漏れを効果的に抑制又は防止することができ、隣接する画素100同士に発生する混色を効果的に抑制又は防止することができる。 Further, in the solid-
Therefore, as shown by adding the symbol "L3" to the arrow, the incident light is reflected by the reflective inclined surface and can be focused, so that the light focusing efficiency can be improved.
In addition, light leakage from the
また、固体撮像装置1では、図20に示されるように、光学フィルタ7の赤色フィルタ7R及び青色フィルタ7Bは、基体2とは反対側に湾曲する断面形状に形成される。このため、矢印に符号「L1」を付けて示されるように、光学フィルタ7では、入射される光を集光させることができるので、集光効率を向上させることができる。
Furthermore, in the solid-state imaging device 1, as shown in FIG. 20, the red filter 7R and the blue filter 7B of the optical filter 7 are formed in a cross-sectional shape that curves toward the opposite side from the base body 2. Therefore, as shown by adding the symbol "L1" to the arrow, the optical filter 7 can collect the incident light, thereby improving the light collection efficiency.
<7.第7実施の形態>
図21を用いて、本開示の第7実施の形態に係る固体撮像装置1を説明する。 <7. Seventh embodiment>
A solid-state imaging device 1 according to a seventh embodiment of the present disclosure will be described using FIG. 21.
図21を用いて、本開示の第7実施の形態に係る固体撮像装置1を説明する。 <7. Seventh embodiment>
A solid-
[固体撮像装置1の構成]
図21は、第7実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 21 shows an example of a vertical cross-sectional configuration of thepixel 100 of the solid-state imaging device 1 according to the seventh embodiment.
図21は、第7実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 21 shows an example of a vertical cross-sectional configuration of the
図21に示されるように、第7実施の形態に係る固体撮像装置1は、第6実施の形態に係る固体撮像装置1の応用例である。すなわち、固体撮像装置1では、光学フィルタ7の表面に配設された第1封止体601が、屈折率が異なる2以上の層を積層して形成されている。
詳しく説明する。ここでは、第1封止体601は、光学フィルタ7の表面に配設された第1封止体601Aと、第1封止体601Aの基体2とは反対側に配設された第1封止体601Bとを積層して形成されている。第1封止体601Aは、例えばSiNにより形成されている。第1封止体601Bは、第1封止体601Aの屈折率よりも低い屈折率を有する、例えばAlOにより形成されている。 As shown in FIG. 21, the solid-state imaging device 1 according to the seventh embodiment is an application example of the solid-state imaging device 1 according to the sixth embodiment. That is, in the solid-state imaging device 1, the first sealing body 601 disposed on the surface of the optical filter 7 is formed by laminating two or more layers having different refractive indexes.
explain in detail. Here, thefirst sealing body 601 includes a first sealing body 601A disposed on the surface of the optical filter 7 and a first sealing body disposed on the opposite side of the base body 2 of the first sealing body 601A. It is formed by laminating the stopper body 601B. The first sealing body 601A is made of, for example, SiN. The first sealing body 601B is made of, for example, AlO, which has a refractive index lower than that of the first sealing body 601A.
詳しく説明する。ここでは、第1封止体601は、光学フィルタ7の表面に配設された第1封止体601Aと、第1封止体601Aの基体2とは反対側に配設された第1封止体601Bとを積層して形成されている。第1封止体601Aは、例えばSiNにより形成されている。第1封止体601Bは、第1封止体601Aの屈折率よりも低い屈折率を有する、例えばAlOにより形成されている。 As shown in FIG. 21, the solid-
explain in detail. Here, the
上記以外の構成要素は、第6実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the sixth embodiment.
[作用効果]
第7実施の形態に係る固体撮像装置1では、第6実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-state imaging device 1 according to the seventh embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the sixth embodiment.
第7実施の形態に係る固体撮像装置1では、第6実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-
また、固体撮像装置1では、図21に示されるように、光学フィルタ7の表面に配設された第1封止体601は、2以上の層を積層して形成される。このため、光学フィルタ7から放出される水素は第1封止体601により更に封止されるので、動作信頼性に優れた固体撮像装置1を提供することができる。
Furthermore, in the solid-state imaging device 1, as shown in FIG. 21, the first sealing body 601 disposed on the surface of the optical filter 7 is formed by laminating two or more layers. Therefore, the hydrogen released from the optical filter 7 is further sealed by the first sealing body 601, so it is possible to provide the solid-state imaging device 1 with excellent operational reliability.
また、固体撮像装置1では、図21に示されるように、光学フィルタ7の表面に配設された第1封止体601は、屈折率が異なる2以上の層を積層して形成される。詳しく説明すると、第1封止体601は、第1封止体601Aと、第1封止体601Aの屈折率よりも低い屈折率を有する第1封止体601Bとを積層して形成される。
このため、第1封止体601の光入射側となる第1封止体601Bは反射防止膜とされるので、光学フィルタ7を透過して第1光電変換部3に受光される光量を増加させることができる。つまり、第1光電変換部3の感度を向上させることができる。 Furthermore, in the solid-state imaging device 1, as shown in FIG. 21, the first sealing body 601 disposed on the surface of the optical filter 7 is formed by laminating two or more layers having different refractive indexes. To explain in detail, the first sealing body 601 is formed by laminating a first sealing body 601A and a first sealing body 601B having a refractive index lower than the refractive index of the first sealing body 601A. .
Therefore, thefirst sealing body 601B on the light incident side of the first sealing body 601 is made of an anti-reflection film, increasing the amount of light transmitted through the optical filter 7 and received by the first photoelectric conversion unit 3. can be done. In other words, the sensitivity of the first photoelectric conversion section 3 can be improved.
このため、第1封止体601の光入射側となる第1封止体601Bは反射防止膜とされるので、光学フィルタ7を透過して第1光電変換部3に受光される光量を増加させることができる。つまり、第1光電変換部3の感度を向上させることができる。 Furthermore, in the solid-
Therefore, the
<8.第8実施の形態>
図22を用いて、本開示の第8実施の形態に係る固体撮像装置1を説明する。 <8. Eighth embodiment>
A solid-state imaging device 1 according to an eighth embodiment of the present disclosure will be described using FIG. 22.
図22を用いて、本開示の第8実施の形態に係る固体撮像装置1を説明する。 <8. Eighth embodiment>
A solid-
[固体撮像装置1の構成]
図22は、第8実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 22 shows an example of a vertical cross-sectional configuration of thepixel 100 of the solid-state imaging device 1 according to the eighth embodiment.
図22は、第8実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 22 shows an example of a vertical cross-sectional configuration of the
図22に示されるように、第8実施の形態に係る固体撮像装置1は、第5実施の形態に係る固体撮像装置1と第6実施の形態に係る固体撮像装置1とを組み合わせた例である。すなわち、固体撮像装置1では、第5実施の形態に係る固体撮像装置1と同様に、開口51Hは、絶縁体51の厚さ方向において、同一の開口寸法に形成されている。つまり、開口51Hは、断面テーパ形状に形成されていない。
As shown in FIG. 22, the solid-state imaging device 1 according to the eighth embodiment is an example of a combination of the solid-state imaging device 1 according to the fifth embodiment and the solid-state imaging device 1 according to the sixth embodiment. be. That is, in the solid-state imaging device 1, similarly to the solid-state imaging device 1 according to the fifth embodiment, the openings 51H are formed to have the same opening size in the thickness direction of the insulator 51. That is, the opening 51H is not formed to have a tapered cross section.
また、固体撮像装置1では、第6実施の形態に係る固体撮像装置1と同様に、光学フィルタ7の赤色フィルタ7R及び青色フィルタ7Bが、同一断面形状に形成されている。
Furthermore, in the solid-state imaging device 1, the red filter 7R and the blue filter 7B of the optical filter 7 are formed to have the same cross-sectional shape, similar to the solid-state imaging device 1 according to the sixth embodiment.
上記以外の構成要素は、第5実施の形態又は第6実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the fifth embodiment or the sixth embodiment.
[作用効果]
第8実施の形態に係る固体撮像装置1では、第5実施の形態に係る固体撮像装置1により得られる作用効果と第6実施の形態に係る固体撮像装置1により得られる作用効果とを見合わせた作用効果を得ることができる。 [Effect]
In the solid-state imaging device 1 according to the eighth embodiment, the effects obtained by the solid-state imaging device 1 according to the fifth embodiment and the effects obtained by the solid-state imaging device 1 according to the sixth embodiment are canceled. Effects can be obtained.
第8実施の形態に係る固体撮像装置1では、第5実施の形態に係る固体撮像装置1により得られる作用効果と第6実施の形態に係る固体撮像装置1により得られる作用効果とを見合わせた作用効果を得ることができる。 [Effect]
In the solid-
<9.第9実施の形態>
図23を用いて、本開示の第9実施の形態に係る固体撮像装置1を説明する。 <9. Ninth embodiment>
A solid-state imaging device 1 according to a ninth embodiment of the present disclosure will be described using FIG. 23.
図23を用いて、本開示の第9実施の形態に係る固体撮像装置1を説明する。 <9. Ninth embodiment>
A solid-
[固体撮像装置1の構成]
図23は、第9実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 23 shows an example of a vertical cross-sectional configuration of thepixel 100 of the solid-state imaging device 1 according to the ninth embodiment.
図23は、第9実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 23 shows an example of a vertical cross-sectional configuration of the
図23に示されるように、第9実施の形態に係る固体撮像装置1は、第8実施の形態に係る固体撮像装置1の応用例である。すなわち、固体撮像装置1では、光学フィルタ7の青色フィルタ7Bと第2封止体602との間に絶縁体51の一部が配設されている。
ここでは、絶縁体51は、例えばSiO2により形成されている。第2封止体602は、絶縁体51の屈折率よりも高い屈折率を有する、例えばSiNにより形成されている。 As shown in FIG. 23, the solid-state imaging device 1 according to the ninth embodiment is an application example of the solid-state imaging device 1 according to the eighth embodiment. That is, in the solid-state imaging device 1, a part of the insulator 51 is disposed between the blue filter 7B of the optical filter 7 and the second sealing body 602.
Here, theinsulator 51 is made of, for example, SiO 2 . The second sealing body 602 is made of, for example, SiN, which has a refractive index higher than that of the insulator 51.
ここでは、絶縁体51は、例えばSiO2により形成されている。第2封止体602は、絶縁体51の屈折率よりも高い屈折率を有する、例えばSiNにより形成されている。 As shown in FIG. 23, the solid-
Here, the
上記以外の構成要素は、第8実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the eighth embodiment.
[作用効果]
第9実施の形態に係る固体撮像装置1では、第8実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-state imaging device 1 according to the ninth embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the eighth embodiment.
第9実施の形態に係る固体撮像装置1では、第8実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-
また、固体撮像装置1では、図23に示されるように、光学フィルタ7の青色フィルタ7Bと第2封止体602との間に、第2封止体602の屈折率よりも低い屈折率を有する絶縁体51の一部が配設される。
このため、絶縁体51の一部は反射防止膜とされるので、青色フィルタ7Bを透過して第1光電変換部3に受光される光量を増加させることができる。つまり、第1光電変換部3の感度を向上させることができる。 In the solid-state imaging device 1, as shown in FIG. 23, a refractive index lower than that of the second sealing body 602 is provided between the blue filter 7B of the optical filter 7 and the second sealing body 602. A part of the insulator 51 having the structure is disposed.
Therefore, since a part of theinsulator 51 is used as an antireflection film, the amount of light transmitted through the blue filter 7B and received by the first photoelectric conversion unit 3 can be increased. In other words, the sensitivity of the first photoelectric conversion section 3 can be improved.
このため、絶縁体51の一部は反射防止膜とされるので、青色フィルタ7Bを透過して第1光電変換部3に受光される光量を増加させることができる。つまり、第1光電変換部3の感度を向上させることができる。 In the solid-
Therefore, since a part of the
<10.第10実施の形態>
図24~図32を用いて、本開示の第10実施の形態に係る固体撮像装置1及びその製造方法を説明する。 <10. 10th embodiment>
A solid-state imaging device 1 and a manufacturing method thereof according to a tenth embodiment of the present disclosure will be described using FIGS. 24 to 32.
図24~図32を用いて、本開示の第10実施の形態に係る固体撮像装置1及びその製造方法を説明する。 <10. 10th embodiment>
A solid-
[固体撮像装置1の構成]
図24は、第10実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 24 shows an example of the vertical cross-sectional configuration of thepixel 100 of the solid-state imaging device 1 according to the tenth embodiment.
図24は、第10実施の形態に係る固体撮像装置1の画素100の縦断面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 24 shows an example of the vertical cross-sectional configuration of the
図24に示されるように、第10実施の形態に係る固体撮像装置1は、第9実施の形態に係る固体撮像装置1の応用例である。すなわち、固体撮像装置1では、光学フィルタ7の赤色フィルタ7R、青色フィルタ7Bのそれぞれの膜厚の制御性が向上されている。
As shown in FIG. 24, the solid-state imaging device 1 according to the tenth embodiment is an application example of the solid-state imaging device 1 according to the ninth embodiment. That is, in the solid-state imaging device 1, the controllability of the film thicknesses of the red filter 7R and the blue filter 7B of the optical filter 7 is improved.
詳しく説明する。固体撮像装置1では、光学フィルタ7を埋設する絶縁体51が、第1絶縁体511と、第1絶縁体511上に積層された第2絶縁体512とを備えている。さらに、第1絶縁体511と第2絶縁体512との間に、第4封止体604が配設されている。
explain in detail. In the solid-state imaging device 1, the insulator 51 in which the optical filter 7 is embedded includes a first insulator 511 and a second insulator 512 laminated on the first insulator 511. Furthermore, a fourth sealing body 604 is provided between the first insulator 511 and the second insulator 512.
第1絶縁体511、第2絶縁体512のそれぞれは、同一の絶縁性材料又は異なる絶縁性材料により形成されている。ここでは、第1絶縁体511、第2絶縁体512のそれぞれは、同一の絶縁材料、例えばSiO2により形成されている。
第1絶縁体511は、赤色フィルタ7Rの矢印Z方向の厚さから青色フィルタ7Bの同一方向の厚さを差し引いた厚さにほぼ相当する厚さに形成されている。一方、第2絶縁体512は、青色フィルタ7Bの矢印Z方向の厚さにほぼ相当する厚さに形成されている。また、絶縁体51は、赤色フィルタ7Rの矢印Z方向の厚さにほぼ相当する厚さに形成されている。 Each of thefirst insulator 511 and the second insulator 512 is formed of the same insulating material or different insulating materials. Here, each of the first insulator 511 and the second insulator 512 is formed of the same insulating material, for example, SiO 2 .
Thefirst insulator 511 is formed to have a thickness that approximately corresponds to the thickness of the red filter 7R in the direction of arrow Z minus the thickness of the blue filter 7B in the same direction. On the other hand, the second insulator 512 is formed to have a thickness that approximately corresponds to the thickness of the blue filter 7B in the direction of arrow Z. Further, the insulator 51 is formed to have a thickness that approximately corresponds to the thickness of the red filter 7R in the direction of arrow Z.
第1絶縁体511は、赤色フィルタ7Rの矢印Z方向の厚さから青色フィルタ7Bの同一方向の厚さを差し引いた厚さにほぼ相当する厚さに形成されている。一方、第2絶縁体512は、青色フィルタ7Bの矢印Z方向の厚さにほぼ相当する厚さに形成されている。また、絶縁体51は、赤色フィルタ7Rの矢印Z方向の厚さにほぼ相当する厚さに形成されている。 Each of the
The
第4封止体604は、第2封止体602と同様に、青色フィルタ7Bの第1光電変換部3側の表面に沿って配設されている。詳しく説明すると、第4封止体604は、青色フィルタ7Bの下地層として第1絶縁体511上に形成されている。
第4封止体604は、第2封止体602と同様に、青色フィルタ7Bから放出される、青色フィルタ7Bの組成物質を封止する。また、第4封止体604は、青色フィルタ7Bが埋設される第2絶縁体512に対してエッチング選択比を有する。つまり、青色フィルタ7Bの製造工程における絶縁体512のパターンニング(開口51H2の形成工程。図30参照。)の際に、第4封止体604は、エッチングストッパとして使用される。 Like thesecond sealing body 602, the fourth sealing body 604 is arranged along the surface of the blue filter 7B on the first photoelectric conversion unit 3 side. To explain in detail, the fourth sealing body 604 is formed on the first insulator 511 as a base layer of the blue filter 7B.
Similarly to thesecond sealing body 602, the fourth sealing body 604 seals the constituent material of the blue filter 7B, which is released from the blue filter 7B. Further, the fourth sealing body 604 has an etching selectivity with respect to the second insulator 512 in which the blue filter 7B is embedded. In other words, the fourth sealing body 604 is used as an etching stopper during patterning of the insulator 512 (step of forming the opening 51H2, see FIG. 30) in the manufacturing process of the blue filter 7B.
第4封止体604は、第2封止体602と同様に、青色フィルタ7Bから放出される、青色フィルタ7Bの組成物質を封止する。また、第4封止体604は、青色フィルタ7Bが埋設される第2絶縁体512に対してエッチング選択比を有する。つまり、青色フィルタ7Bの製造工程における絶縁体512のパターンニング(開口51H2の形成工程。図30参照。)の際に、第4封止体604は、エッチングストッパとして使用される。 Like the
Similarly to the
第4封止体604は、第2封止体602と同様に、例えばSiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている。
Like the second sealing body 602, the fourth sealing body 604 is formed of one or more sealing materials selected from, for example, SiN, AlO, TiO 2 , HfO, and ZrO.
光学フィルタ7の赤色フィルタ7Rは、絶縁体51に形成された開口51H1内に埋設されている。開口51H1は、絶縁体51の第2絶縁体512、第4封止体604、第1絶縁体511のそれぞれを貫通して形成されている。
一方、青色フィルタ7Bは、絶縁体51に形成された開口51H2内に埋設されている。開口51H2は、絶縁体51の第2絶縁体512を貫通して形成されている。
第10実施の形態では、赤色フィルタ7Rの基体2とは反対側の表面の位置は、青色フィルタ7Bの同一方向の表面の位置に対して一致させている。 Thered filter 7R of the optical filter 7 is embedded in an opening 51H1 formed in the insulator 51. The opening 51H1 is formed to penetrate through each of the second insulator 512, the fourth sealing body 604, and the first insulator 511 of the insulator 51.
On the other hand, theblue filter 7B is buried in an opening 51H2 formed in the insulator 51. The opening 51H2 is formed to penetrate the second insulator 512 of the insulator 51.
In the tenth embodiment, the position of the surface of thered filter 7R opposite to the base 2 is made to match the position of the surface of the blue filter 7B in the same direction.
一方、青色フィルタ7Bは、絶縁体51に形成された開口51H2内に埋設されている。開口51H2は、絶縁体51の第2絶縁体512を貫通して形成されている。
第10実施の形態では、赤色フィルタ7Rの基体2とは反対側の表面の位置は、青色フィルタ7Bの同一方向の表面の位置に対して一致させている。 The
On the other hand, the
In the tenth embodiment, the position of the surface of the
[固体撮像装置1の製造方法]
次に、図25~図32を用いて、前述の固体撮像装置1の製造方法を説明する。図25~図32は、第10実施の形態に係る固体撮像装置1の製造方法を説明する一連の工程断面の一例を表している。 [Method for manufacturing solid-state imaging device 1]
Next, a method for manufacturing the solid-state imaging device 1 described above will be explained using FIGS. 25 to 32. 25 to 32 show an example of a series of process cross-sections for explaining the method for manufacturing the solid-state imaging device 1 according to the tenth embodiment.
次に、図25~図32を用いて、前述の固体撮像装置1の製造方法を説明する。図25~図32は、第10実施の形態に係る固体撮像装置1の製造方法を説明する一連の工程断面の一例を表している。 [Method for manufacturing solid-state imaging device 1]
Next, a method for manufacturing the solid-
まず、第1実施の形態に係る固体撮像装置1の製造方法(以下、単に「第1製造方法」という。)と同様に、基体2が準備される(図25参照)。基体2は、回路基板21と、この回路基板21に積層された半導体基板22とにより形成される。半導体基板22には、画素100毎に第1光電変換部3が形成される。また、画素100間の画素分離領域110には、貫通配線(符号省略)が形成される。
引き続き、基体2の半導体基板22上に絶縁体41が形成される。絶縁体41内には、貫通配線42等が形成される。 First, thebase body 2 is prepared in the same manner as in the method for manufacturing the solid-state imaging device 1 according to the first embodiment (hereinafter simply referred to as the "first manufacturing method") (see FIG. 25). The base body 2 is formed of a circuit board 21 and a semiconductor substrate 22 laminated on the circuit board 21. A first photoelectric conversion section 3 is formed on the semiconductor substrate 22 for each pixel 100. Further, in the pixel isolation region 110 between the pixels 100, a through wiring (numerical symbol omitted) is formed.
Subsequently, aninsulator 41 is formed on the semiconductor substrate 22 of the base body 2. A through wiring 42 and the like are formed within the insulator 41 .
引き続き、基体2の半導体基板22上に絶縁体41が形成される。絶縁体41内には、貫通配線42等が形成される。 First, the
Subsequently, an
図25に示されるように、絶縁体41上に第2封止体602が形成される。第2封止体602は、例えばSiNにより形成される。SiNは、スパッタリング法、CVD法又は原子層堆積(ALD:Atomic Layer Deposition)法を用いて成膜される。
As shown in FIG. 25, a second sealing body 602 is formed on the insulator 41. The second sealing body 602 is formed of, for example, SiN. SiN is formed using a sputtering method, a CVD method, or an atomic layer deposition (ALD) method.
次に、第2封止体602上に絶縁体51及び第4封止体604が形成される(図26参照)。詳しく説明すると、第2封止体602上に、絶縁体51の第1絶縁体511、第4封止体604、絶縁体51の第2絶縁体512のそれぞれが順次形成される。第1絶縁体511、第2絶縁体512のそれぞれは、例えばSiO2により形成される。第4封止体604は、例えばSiNにより形成される。
Next, the insulator 51 and the fourth sealing body 604 are formed on the second sealing body 602 (see FIG. 26). Specifically, on the second sealing body 602, the first insulator 511 of the insulator 51, the fourth sealing body 604, and the second insulator 512 of the insulator 51 are sequentially formed. Each of the first insulator 511 and the second insulator 512 is formed of, for example, SiO 2 . The fourth sealing body 604 is formed of, for example, SiN.
図26に示されるように、絶縁体51上にマスク55が形成される。マスク55は、開口51H1を形成するときのパターンニングマスクとして使用され、更に平坦化処理のときの耐研磨マスクとして使用される。マスク55は、例えばSiNにより形成される。
As shown in FIG. 26, a mask 55 is formed on the insulator 51. The mask 55 is used as a patterning mask when forming the opening 51H1, and is further used as a polishing-resistant mask during planarization processing. The mask 55 is made of SiN, for example.
図27に示されるように、光学フィルタ7の赤色フィルタ7Rが形成される領域において、マスク55を用いてエッチングを行い、絶縁体51に開口51H1が形成される。開口51H1は、第2絶縁体512、第4封止体604、第1絶縁体511のそれぞれを順次連続してエッチングすることにより形成される。エッチングには、例えばドライエッチングが使用される。
ここで、絶縁体51の下地層として形成された第2封止体602は、絶縁体51に対してエッチング選択比を有している。このため、開口51H1を形成するとき、第2封止体602は、エッチングストッパとして使用される。 As shown in FIG. 27, an opening 51H1 is formed in theinsulator 51 by etching using the mask 55 in the region where the red filter 7R of the optical filter 7 is to be formed. The opening 51H1 is formed by sequentially etching each of the second insulator 512, the fourth sealing body 604, and the first insulator 511. For example, dry etching is used for the etching.
Here, thesecond sealing body 602 formed as a base layer of the insulator 51 has an etching selectivity with respect to the insulator 51. Therefore, when forming the opening 51H1, the second sealing body 602 is used as an etching stopper.
ここで、絶縁体51の下地層として形成された第2封止体602は、絶縁体51に対してエッチング選択比を有している。このため、開口51H1を形成するとき、第2封止体602は、エッチングストッパとして使用される。 As shown in FIG. 27, an opening 51H1 is formed in the
Here, the
図28に示されるように、開口51H1内に、第2封止体602を介在させて光学フィルタ7の赤色フィルタ7Rが形成される。赤色フィルタ7Rは、開口51H1内に埋設されるとともに、開口51H1外においてマスク55上にも形成される。
As shown in FIG. 28, the red filter 7R of the optical filter 7 is formed in the opening 51H1 with the second sealing body 602 interposed therebetween. The red filter 7R is buried in the opening 51H1 and also formed on the mask 55 outside the opening 51H1.
図29に示されるように、開口51H1外においてマスク55上に形成された余分な赤色フィルタ7Rが除去される。この除去には、例えばCMP法が使用される。
この後、マスク55は除去される。 As shown in FIG. 29, thered filter 7R formed on the mask 55 outside the opening 51H1 is removed. For example, a CMP method is used for this removal.
After this,mask 55 is removed.
この後、マスク55は除去される。 As shown in FIG. 29, the
After this,
引き続き、絶縁体51上にマスク56が形成される(図30参照)。マスク56は、開口51H2を形成するときのパターンニングマスクとして使用され、更に平坦化処理のときの耐研磨マスクとして使用される。マスク56は、例えばSiNにより形成される。
Subsequently, a mask 56 is formed on the insulator 51 (see FIG. 30). The mask 56 is used as a patterning mask when forming the opening 51H2, and is further used as a polishing-resistant mask during planarization processing. The mask 56 is made of SiN, for example.
図30に示されるように、光学フィルタ7の青色フィルタ7Bが形成される領域において、マスク56を用いてエッチングを行い、絶縁体51に開口51H2が形成される。開口51H2は、第2絶縁体512のみをエッチングすることにより形成される。エッチングには、例えばドライエッチングが使用される。
ここで、第2絶縁体512の下地層として形成された第4封止体604は、第2絶縁体512に対してエッチング選択比を有している。このため、開口51H2を形成するとき、第4封止体604は、エッチングストッパとして使用される。 As shown in FIG. 30, an opening 51H2 is formed in theinsulator 51 by etching using the mask 56 in the region of the optical filter 7 where the blue filter 7B is to be formed. The opening 51H2 is formed by etching only the second insulator 512. For example, dry etching is used for the etching.
Here, thefourth sealing body 604 formed as a base layer of the second insulator 512 has an etching selectivity with respect to the second insulator 512. Therefore, when forming the opening 51H2, the fourth sealing body 604 is used as an etching stopper.
ここで、第2絶縁体512の下地層として形成された第4封止体604は、第2絶縁体512に対してエッチング選択比を有している。このため、開口51H2を形成するとき、第4封止体604は、エッチングストッパとして使用される。 As shown in FIG. 30, an opening 51H2 is formed in the
Here, the
図31に示されるように、赤色フィルタ7Rを形成する工程と同様に、開口51H2内に、第4封止体604を介在させて光学フィルタ7の青色フィルタ7Bが形成される。図示は省略するが、青色フィルタ7Bの表面及び第2絶縁体512上の余分な青色フィルタ7Bは、例えばCMP法を用いて除去される。
この後、マスク56は除去される。 As shown in FIG. 31, similarly to the step of forming thered filter 7R, the blue filter 7B of the optical filter 7 is formed in the opening 51H2 with the fourth sealing body 604 interposed therebetween. Although not shown, the excess blue filter 7B on the surface of the blue filter 7B and on the second insulator 512 is removed using, for example, a CMP method.
After this,mask 56 is removed.
この後、マスク56は除去される。 As shown in FIG. 31, similarly to the step of forming the
After this,
第1製造方法の図9に示される工程と同様に、図32に示されるように、光学フィルタ7上に第1封止体601が形成される。
Similar to the step shown in FIG. 9 of the first manufacturing method, a first sealing body 601 is formed on the optical filter 7, as shown in FIG.
この後、第1製造方法の図10に示される工程以降の工程が行われる。すなわち、絶縁体81、配線82、第2光電変換部9、封止層11、封止層12、光学レンズ13、反射防止層14のそれぞれが順次形成される(図24参照)。
After this, the steps after the step shown in FIG. 10 of the first manufacturing method are performed. That is, the insulator 81, the wiring 82, the second photoelectric conversion section 9, the sealing layer 11, the sealing layer 12, the optical lens 13, and the antireflection layer 14 are formed in this order (see FIG. 24).
これら一連の工程が終了すると、第10実施の形態に係る固体撮像装置1の製造方法が終了し、固体撮像装置1が完成する。
When these series of steps are completed, the method for manufacturing the solid-state imaging device 1 according to the tenth embodiment is completed, and the solid-state imaging device 1 is completed.
上記以外の構成要素は、第9実施の形態に係る固体撮像装置1並びに第1実施の形態に係る固体撮像装置1の製造方法の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as those of the solid-state imaging device 1 according to the ninth embodiment and the method for manufacturing the solid-state imaging device 1 according to the first embodiment.
[作用効果]
第10実施の形態に係る固体撮像装置1では、第9実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-state imaging device 1 according to the tenth embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the ninth embodiment.
第10実施の形態に係る固体撮像装置1では、第9実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-
また、固体撮像装置1では、図24に示されるように、光学フィルタ7を埋設する絶縁体51が、第1絶縁体511及び第2絶縁体512を有し、第1絶縁体511と第2絶縁体512との間に第4封止体604が配設されている。
光学フィルタ7の赤色フィルタ7Rは、第1絶縁体511、第4封止体604及び第2絶縁体512を貫通する開口51H1内に埋設される。このとき、赤色フィルタ7Rでは、基体2側の表面は第2封止体602の表面を基準とし、基体2とは反対側の表面は第2絶縁体512の表面を基準として、厚さが制御される(図27~図29参照)。
一方、光学フィルタ7の青色フィルタ7Bは、第2絶縁体512を貫通する開口51H2内に埋設される。このとき、青色フィルタ7Bでは、基体2側の表面は第4封止体604の表面を基準とし、基体2とは反対側の表面は第2絶縁体512の表面を基準として、厚さが制御される(図30及び図31参照)。
このため、光学フィルタ7の赤色フィルタ7R、青色フィルタ7Bのそれぞれの厚さが独立に、かつ、適切に制御されるので、厚さの制御性を向上させることができる。 Furthermore, in the solid-state imaging device 1, as shown in FIG. A fourth sealing body 604 is disposed between the insulator 512 and the fourth sealing body 604 .
Thered filter 7R of the optical filter 7 is embedded in the opening 51H1 penetrating the first insulator 511, the fourth sealing body 604, and the second insulator 512. At this time, in the red filter 7R, the thickness of the surface on the side of the base 2 is controlled based on the surface of the second sealing body 602, and the surface on the opposite side to the base 2 is controlled based on the surface of the second insulator 512. (See Figures 27 to 29).
On the other hand, theblue filter 7B of the optical filter 7 is buried in the opening 51H2 penetrating the second insulator 512. At this time, in the blue filter 7B, the thickness of the surface on the side of the base 2 is controlled based on the surface of the fourth sealing body 604, and the surface on the opposite side to the base 2 is based on the surface of the second insulator 512. (See FIGS. 30 and 31).
Therefore, the thickness of each of thered filter 7R and the blue filter 7B of the optical filter 7 is independently and appropriately controlled, so that the controllability of the thickness can be improved.
光学フィルタ7の赤色フィルタ7Rは、第1絶縁体511、第4封止体604及び第2絶縁体512を貫通する開口51H1内に埋設される。このとき、赤色フィルタ7Rでは、基体2側の表面は第2封止体602の表面を基準とし、基体2とは反対側の表面は第2絶縁体512の表面を基準として、厚さが制御される(図27~図29参照)。
一方、光学フィルタ7の青色フィルタ7Bは、第2絶縁体512を貫通する開口51H2内に埋設される。このとき、青色フィルタ7Bでは、基体2側の表面は第4封止体604の表面を基準とし、基体2とは反対側の表面は第2絶縁体512の表面を基準として、厚さが制御される(図30及び図31参照)。
このため、光学フィルタ7の赤色フィルタ7R、青色フィルタ7Bのそれぞれの厚さが独立に、かつ、適切に制御されるので、厚さの制御性を向上させることができる。 Furthermore, in the solid-
The
On the other hand, the
Therefore, the thickness of each of the
<11.第11実施の形態>
図33~図35を用いて、本開示の第11実施の形態に係る固体撮像装置1を説明する。 <11. Eleventh embodiment>
A solid-state imaging device 1 according to an eleventh embodiment of the present disclosure will be described using FIGS. 33 to 35.
図33~図35を用いて、本開示の第11実施の形態に係る固体撮像装置1を説明する。 <11. Eleventh embodiment>
A solid-
[固体撮像装置1の構成]
図33は、第11実施の形態に係る固体撮像装置1の画素100の平面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 33 shows an example of a planar configuration of thepixel 100 of the solid-state imaging device 1 according to the eleventh embodiment.
図33は、第11実施の形態に係る固体撮像装置1の画素100の平面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 33 shows an example of a planar configuration of the
図33に示されるように、第11実施の形態に係る固体撮像装置1では、光学フィルタ7に補色フィルタが配設されている。詳しく説明すると、1つの画素単位PUにおいて、光学フィルタ7は、2つの黄色フィルタ7Yと、2つのシアン色フィルタ7Cとを備えている。2つの黄色フィルタ7Yは、画素単位PUにおいて、一方の対角線上に配設されている。また、2つのシアン色フィルタ7Cは、画素単位PUにおいて、他方の対角線上に配設されている。
As shown in FIG. 33, in the solid-state imaging device 1 according to the eleventh embodiment, a complementary color filter is provided in the optical filter 7. To explain in detail, in one pixel unit PU, the optical filter 7 includes two yellow filters 7Y and two cyan filters 7C. The two yellow filters 7Y are arranged on one diagonal line in the pixel unit PU. Further, the two cyan filters 7C are arranged on the other diagonal in the pixel unit PU.
上記以外の構成要素は、第8実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the eighth embodiment.
[作用効果]
第11実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-state imaging device 1 according to the eleventh embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment.
第11実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。 [Effect]
The solid-
[第1変形例]
図34は、第11実施の形態の第1変形例に係る固体撮像装置1の画素100の平面構成の一例を表している。 [First modification]
FIG. 34 shows an example of the planar configuration of thepixel 100 of the solid-state imaging device 1 according to the first modification of the eleventh embodiment.
図34は、第11実施の形態の第1変形例に係る固体撮像装置1の画素100の平面構成の一例を表している。 [First modification]
FIG. 34 shows an example of the planar configuration of the
図34に示されるように、第1変形例に係る固体撮像装置1では、光学フィルタ7に補色フィルタが配設されている。詳しく説明すると、1つの画素単位PUにおいて、光学フィルタ7は、2つの赤色フィルタ7Rと、2つのシアン色フィルタ7Cとを備えている。2つの赤色フィルタ7Rは、画素単位PUにおいて、一方の対角線上に配設されている。また、2つのシアン色フィルタ7Cは、画素単位PUにおいて、他方の対角線上に配設されている。
As shown in FIG. 34, in the solid-state imaging device 1 according to the first modification, the optical filter 7 is provided with a complementary color filter. To explain in detail, in one pixel unit PU, the optical filter 7 includes two red filters 7R and two cyan filters 7C. The two red filters 7R are arranged on one diagonal line in the pixel unit PU. Further, the two cyan filters 7C are arranged on the other diagonal in the pixel unit PU.
上記以外の構成要素は、第11実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the eleventh embodiment.
第11実施の形態の第1変形例に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
In the solid-state imaging device 1 according to the first modification of the eleventh embodiment, it is possible to obtain the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment.
[第2変形例]
図35は、第11実施の形態の第2変形例に係る固体撮像装置1の画素100の平面構成の一例を表している。 [Second modification]
FIG. 35 shows an example of the planar configuration of thepixel 100 of the solid-state imaging device 1 according to the second modification of the eleventh embodiment.
図35は、第11実施の形態の第2変形例に係る固体撮像装置1の画素100の平面構成の一例を表している。 [Second modification]
FIG. 35 shows an example of the planar configuration of the
図35に示されるように、第2変形例に係る固体撮像装置1では、光学フィルタ7に赤外線透過フィルタ7IRPFが配設されている。詳しく説明すると、1つの画素単位PUにおいて、光学フィルタ7は、4つの赤外線透過フィルタ7IRPFを備えている。
As shown in FIG. 35, in the solid-state imaging device 1 according to the second modification, the optical filter 7 is provided with an infrared transmission filter 7IRPF. To explain in detail, in one pixel unit PU, the optical filter 7 includes four infrared transmission filters 7IRPF.
上記以外の構成要素は、第11実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the eleventh embodiment.
第11実施の形態の第2変形例に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
In the solid-state imaging device 1 according to the second modification of the eleventh embodiment, the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment can be obtained.
<12.第12実施の形態>
図36及び図37を用いて、本開示の第12実施の形態に係る固体撮像装置1を説明する。 <12. Twelfth embodiment>
A solid-state imaging device 1 according to a twelfth embodiment of the present disclosure will be described using FIGS. 36 and 37.
図36及び図37を用いて、本開示の第12実施の形態に係る固体撮像装置1を説明する。 <12. Twelfth embodiment>
A solid-
[固体撮像装置1の構成]
図36は、第12実施の形態に係る固体撮像装置1の画素100の平面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 36 shows an example of a planar configuration of thepixel 100 of the solid-state imaging device 1 according to the twelfth embodiment.
図36は、第12実施の形態に係る固体撮像装置1の画素100の平面構成の一例を表している。 [Configuration of solid-state imaging device 1]
FIG. 36 shows an example of a planar configuration of the
図36に示されるように、第12実施の形態に係る固体撮像装置1では、画素100の4つのすべての角部に貫通配線52が配設されるのではなく、複数の画素100に対して1つの共通の貫通配線52が配設されている。ここでは、1つの画素単位PUを構築する4つの画素100の中央部分に、1つの貫通配線52が配設されている。
As shown in FIG. 36, in the solid-state imaging device 1 according to the twelfth embodiment, the through wiring 52 is not provided at all four corners of the pixel 100, but is One common through wiring 52 is provided. Here, one through wiring 52 is arranged at the center of four pixels 100 that constitute one pixel unit PU.
上記以外の構成要素は、第1実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the first embodiment.
[作用効果]
第12実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
[第1変形例]
図37は、第12実施の形態の第1変形例に係る固体撮像装置1の画素100の平面構成の一例を表している。 [Effect]
The solid-state imaging device 1 according to the twelfth embodiment can provide the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment.
[First modification]
FIG. 37 shows an example of the planar configuration of thepixel 100 of the solid-state imaging device 1 according to the first modification of the twelfth embodiment.
第12実施の形態に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
[第1変形例]
図37は、第12実施の形態の第1変形例に係る固体撮像装置1の画素100の平面構成の一例を表している。 [Effect]
The solid-
[First modification]
FIG. 37 shows an example of the planar configuration of the
図37に示されるように、第1変形例に係る固体撮像装置1では、画素100の4つの辺の各中間部に貫通配線52が配設されている。
As shown in FIG. 37, in the solid-state imaging device 1 according to the first modification, the through wiring 52 is disposed at the intermediate portion of each of the four sides of the pixel 100.
上記以外の構成要素は、第1実施の形態に係る固体撮像装置1の構成要素と同一又は実質的に同一である。
Components other than the above are the same or substantially the same as the components of the solid-state imaging device 1 according to the first embodiment.
第1変形例に係る固体撮像装置1では、第1実施の形態に係る固体撮像装置1により得られる作用効果と同様の作用効果を得ることができる。
In the solid-state imaging device 1 according to the first modification, it is possible to obtain the same effects as those obtained by the solid-state imaging device 1 according to the first embodiment.
<13.移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。 <13. Example of application to mobile objects>
The technology according to the present disclosure (this technology) can be applied to various products. For example, the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as a car, electric vehicle, hybrid electric vehicle, motorcycle, bicycle, personal mobility, airplane, drone, ship, robot, etc. It's okay.
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。 <13. Example of application to mobile objects>
The technology according to the present disclosure (this technology) can be applied to various products. For example, the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as a car, electric vehicle, hybrid electric vehicle, motorcycle, bicycle, personal mobility, airplane, drone, ship, robot, etc. It's okay.
図38は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
FIG. 38 is a block diagram illustrating a schematic configuration example of a vehicle control system, which is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図38に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。
The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 38, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050. Further, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated.
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a drive force generation device such as an internal combustion engine or a drive motor that generates drive force for the vehicle, a drive force transmission mechanism that transmits the drive force to wheels, and a drive force transmission mechanism that controls the steering angle of the vehicle. It functions as a control device for a steering mechanism to adjust and a braking device to generate braking force for the vehicle.
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
The body system control unit 12020 controls the operations of various devices installed in the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a turn signal, or a fog lamp. In this case, radio waves transmitted from a portable device that replaces a key or signals from various switches may be input to the body control unit 12020. The body system control unit 12020 receives input of these radio waves or signals, and controls the door lock device, power window device, lamp, etc. of the vehicle.
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
The external information detection unit 12030 detects information external to the vehicle in which the vehicle control system 12000 is mounted. For example, an imaging section 12031 is connected to the outside-vehicle information detection unit 12030. The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The external information detection unit 12030 may perform object detection processing such as a person, car, obstacle, sign, or text on the road surface or distance detection processing based on the received image.
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electrical signal as an image or as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
The in-vehicle information detection unit 12040 detects in-vehicle information. For example, a driver condition detection section 12041 that detects the condition of the driver is connected to the in-vehicle information detection unit 12040. The driver condition detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver condition detection unit 12041. It may be calculated, or it may be determined whether the driver is falling asleep.
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
The microcomputer 12051 calculates control target values for the driving force generation device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, Control commands can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
In addition, the microcomputer 12051 controls the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving, etc., which does not rely on operation.
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
Furthermore, the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of preventing glare, such as switching from high beam to low beam. It can be carried out.
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図38の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
The audio and image output unit 12052 transmits an output signal of at least one of audio and images to an output device that can visually or audibly notify information to the occupants of the vehicle or to the outside of the vehicle. In the example of FIG. 38, an audio speaker 12061, a display section 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
図39は、撮像部12031の設置位置の例を示す図である。
FIG. 39 is a diagram showing an example of the installation position of the imaging section 12031.
図39では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。
In FIG. 39, the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at, for example, the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle. An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images in front of the vehicle 12100. Imaging units 12102 and 12103 provided in the side mirrors mainly capture images of the sides of the vehicle 12100. An imaging unit 12104 provided in the rear bumper or back door mainly captures images of the rear of the vehicle 12100. The imaging unit 12105 provided above the windshield inside the vehicle is mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
なお、図39には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
Note that FIG. 39 shows an example of the imaging range of the imaging units 12101 to 12104. An imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, imaging ranges 12112 and 12113 indicate imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and an imaging range 12114 shows the imaging range of the imaging unit 12101 provided on the front nose. The imaging range of the imaging unit 12104 provided in the rear bumper or back door is shown. For example, by overlapping the image data captured by the imaging units 12101 to 12104, an overhead image of the vehicle 12100 viewed from above can be obtained.
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of image sensors, or may be an image sensor having pixels for phase difference detection.
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
For example, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104. By determining the following, it is possible to extract, in particular, the closest three-dimensional object on the path of vehicle 12100, which is traveling at a predetermined speed (for example, 0 km/h or more) in approximately the same direction as vehicle 12100, as the preceding vehicle. can. Furthermore, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, etc., in which the vehicle travels autonomously without depending on the driver's operation.
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
For example, the microcomputer 12051 transfers three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, regular vehicles, large vehicles, pedestrians, and utility poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic obstacle avoidance. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there is a possibility of a collision, the microcomputer 12051 transmits information via the audio speaker 12061 and the display unit 12062. By outputting a warning to the driver via the vehicle control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the images captured by the imaging units 12101 to 12104. Such pedestrian recognition involves, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and a pattern matching process is performed on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not. This is done by a procedure that determines the When the microcomputer 12051 determines that a pedestrian is present in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 creates a rectangular outline for emphasis on the recognized pedestrian. The display section 12062 is controlled so as to display the . The audio image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。撮像部12031に本開示に係る技術を適用することにより、より簡易な構成の撮像部12031を実現できる。
An example of a vehicle control system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. By applying the technology according to the present disclosure to the imaging unit 12031, the imaging unit 12031 with a simpler configuration can be realized.
<14.内視鏡手術システムへの応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。 <14. Example of application to endoscopic surgery system>
The technology according to the present disclosure (this technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。 <14. Example of application to endoscopic surgery system>
The technology according to the present disclosure (this technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
図40は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
FIG. 40 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (present technology) can be applied.
図40では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
FIG. 40 shows an operator (doctor) 11131 performing surgery on a patient 11132 on a patient bed 11133 using the endoscopic surgery system 11000. As illustrated, the endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
The endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into a body cavity of a patient 11132 over a predetermined length, and a camera head 11102 connected to the proximal end of the lens barrel 11101. In the illustrated example, an endoscope 11100 configured as a so-called rigid scope having a rigid tube 11101 is shown, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible tube. good.
鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
An opening into which an objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and the light is guided to the tip of the lens barrel. Irradiation is directed toward an observation target within the body cavity of the patient 11132 through the lens. Note that the endoscope 11100 may be a direct-viewing mirror, a diagonal-viewing mirror, or a side-viewing mirror.
カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from an observation target is focused on the image sensor by the optical system. The observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted as RAW data to a camera control unit (CCU) 11201.
CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
The CCU 11201 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and centrally controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal, such as development processing (demosaic processing), for displaying an image based on the image signal.
表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
The display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under control from the CCU 11201.
光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
The light source device 11203 is composed of a light source such as an LED (light emitting diode), and supplies irradiation light to the endoscope 11100 when photographing the surgical site or the like.
入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
The input device 11204 is an input interface for the endoscopic surgery system 11000. The user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
A treatment tool control device 11205 controls driving of an energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, or the like. The pneumoperitoneum device 11206 injects gas into the body cavity of the patient 11132 via the pneumoperitoneum tube 11111 in order to inflate the body cavity of the patient 11132 for the purpose of ensuring a field of view with the endoscope 11100 and a working space for the operator. send in. The recorder 11207 is a device that can record various information regarding surgery. The printer 11208 is a device that can print various types of information regarding surgery in various formats such as text, images, or graphs.
なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
Note that the light source device 11203 that supplies irradiation light to the endoscope 11100 when photographing the surgical site can be configured, for example, from a white light source configured by an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so the white balance of the captured image is adjusted in the light source device 11203. It can be carried out. In this case, the laser light from each RGB laser light source is irradiated onto the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby supporting each of RGB. It is also possible to capture images in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image sensor.
また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
Furthermore, the driving of the light source device 11203 may be controlled so that the intensity of the light it outputs is changed at predetermined time intervals. By controlling the drive of the image sensor of the camera head 11102 in synchronization with the timing of changes in the light intensity to acquire images in a time-division manner and compositing the images, a high dynamic It is possible to generate an image of a range.
また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
Additionally, the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band compatible with special light observation. Special light observation uses, for example, the wavelength dependence of light absorption in body tissues to illuminate the mucosal surface layer by irradiating a narrower band of light than the light used for normal observation (i.e., white light). Narrow Band Imaging is performed to photograph specific tissues such as blood vessels with high contrast. Alternatively, in the special light observation, fluorescence observation may be performed in which an image is obtained using fluorescence generated by irradiating excitation light. Fluorescence observation involves irradiating body tissues with excitation light and observing the fluorescence from the body tissues (autofluorescence observation), or locally injecting reagents such as indocyanine green (ICG) into the body tissues and It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 may be configured to be able to supply narrowband light and/or excitation light compatible with such special light observation.
図41は、図40に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
FIG. 41 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 40.
カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
The camera head 11102 includes a lens unit 11401, an imaging section 11402, a driving section 11403, a communication section 11404, and a camera head control section 11405. The CCU 11201 includes a communication section 11411, an image processing section 11412, and a control section 11413. Camera head 11102 and CCU 11201 are communicably connected to each other by transmission cable 11400.
レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
The lens unit 11401 is an optical system provided at the connection part with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
The imaging element configuring the imaging unit 11402 may be one (so-called single-plate type) or multiple (so-called multi-plate type). When the imaging unit 11402 is configured with a multi-plate type, for example, image signals corresponding to RGB are generated by each imaging element, and a color image may be obtained by combining them. Alternatively, the imaging unit 11402 may be configured to include a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display. By performing 3D display, the operator 11131 can more accurately grasp the depth of the living tissue at the surgical site. Note that when the imaging section 11402 is configured with a multi-plate type, a plurality of lens units 11401 may be provided corresponding to each imaging element.
また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
Furthermore, the imaging unit 11402 does not necessarily have to be provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
The drive unit 11403 is constituted by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405. Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
The communication unit 11404 is configured by a communication device for transmitting and receiving various information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 to the CCU 11201 via the transmission cable 11400 as RAW data.
また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
Furthermore, the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405. The control signal may include, for example, information specifying the frame rate of the captured image, information specifying the exposure value at the time of capturing, and/or information specifying the magnification and focus of the captured image. Contains information about conditions.
なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
Note that the above imaging conditions such as the frame rate, exposure value, magnification, focus, etc. may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good. In the latter case, the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
The camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
The communication unit 11411 is configured by a communication device for transmitting and receiving various information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
Furthermore, the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102. The image signal and control signal can be transmitted by electrical communication, optical communication, or the like.
画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
The image processing unit 11412 performs various image processing on the image signal, which is RAW data, transmitted from the camera head 11102.
制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
The control unit 11413 performs various controls related to the imaging of the surgical site etc. by the endoscope 11100 and the display of the captured image obtained by imaging the surgical site etc. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
Furthermore, the control unit 11413 causes the display device 11202 to display a captured image showing the surgical site, etc., based on the image signal subjected to image processing by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape and color of the edge of an object included in the captured image to detect surgical tools such as forceps, specific body parts, bleeding, mist when using the energy treatment tool 11112, etc. can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may use the recognition result to superimpose and display various types of surgical support information on the image of the surgical site. By displaying the surgical support information in a superimposed manner and presenting it to the surgeon 11131, it becomes possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
The transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable thereof.
ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
Here, in the illustrated example, communication is performed by wire using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、固体撮像装置、例えば、内視鏡11100や、カメラヘッド11102(の撮像部11402)、CCU11201(の画像処理部11412)等)に適用され得る。具体的には、固体撮像装置の光学フィルタに、図3に示される封止体が配設される。固体撮像装置に本開示に係る技術を適用することにより、固体撮像装置の動作信頼性が向上され、より鮮明な術部画像を得ることができるため、術者が術部を確実に確認することが可能になる。また、より低レイテンシで術部画像を得ることができるため、術者が術部を触接観察している場合と同様の感覚で処置を行うことが可能になる。
An example of an endoscopic surgery system to which the technology according to the present disclosure can be applied has been described above. Among the configurations described above, the technology according to the present disclosure can be applied to a solid-state imaging device, such as an endoscope 11100, a camera head 11102 (imaging unit 11402), a CCU 11201 (image processing unit 11412), etc. . Specifically, the sealing body shown in FIG. 3 is disposed in the optical filter of the solid-state imaging device. By applying the technology according to the present disclosure to a solid-state imaging device, the operational reliability of the solid-state imaging device is improved and a clearer surgical site image can be obtained, allowing the surgeon to reliably confirm the surgical site. becomes possible. Furthermore, since images of the surgical site can be obtained with lower latency, it becomes possible for the operator to perform treatment with the same feeling as when observing the surgical site by touch.
なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
Although an endoscopic surgery system has been described here as an example, the technology according to the present disclosure may be applied to other systems, such as a microsurgical system.
<15.その他の実施の形態>
本技術は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内において、種々変更可能である。
例えば、上記第1実施の形態から第12実施の形態に係る固体撮像装置のうち、2以上の実施の形態に係る固体撮像装置を組み合わせてもよい。 <15. Other embodiments>
The present technology is not limited to the embodiments described above, and can be modified in various ways without departing from the gist thereof.
For example, among the solid-state imaging devices according to the first to twelfth embodiments, the solid-state imaging devices according to two or more embodiments may be combined.
本技術は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内において、種々変更可能である。
例えば、上記第1実施の形態から第12実施の形態に係る固体撮像装置のうち、2以上の実施の形態に係る固体撮像装置を組み合わせてもよい。 <15. Other embodiments>
The present technology is not limited to the embodiments described above, and can be modified in various ways without departing from the gist thereof.
For example, among the solid-state imaging devices according to the first to twelfth embodiments, the solid-state imaging devices according to two or more embodiments may be combined.
本開示の第1実施態様に係る固体撮像装置は、第1光電変換部と、光学フィルタと、第2光電変換部と、電荷蓄積転送層とを備える。
第1光電変換部は、基体に配設され、第1波長域の光を電荷に変換する。光学フィルタは、第1光電変換部の基体とは反対側に配設され、第1波長域の光を透過させる。第2光電変換部は、光学フィルタの第1光電変換部とは反対側に配設され、第1波長域とは異なる第2波長域の光を電荷に変換する。電荷蓄積転送層は、第2光電変換部に配設され、第2光電変換部において変換された電荷を蓄積し転送する。
ここで、固体撮像装置は、更に第1封止体を備える。第1封止体は、電荷蓄積転送層の光学フィルタ側に配設され、光学フィルタの組成物質を封止する。
このため、光学フィルタから放出される組成物質は第1封止体により封止されるので、電荷蓄積転送層への組成物質の侵入を効果的に抑制又は防止することができる。従って、電荷蓄積転送層として安定に機能し、動作信頼性に優れた固体撮像装置を提供することができる。 A solid-state imaging device according to a first embodiment of the present disclosure includes a first photoelectric conversion section, an optical filter, a second photoelectric conversion section, and a charge storage transfer layer.
The first photoelectric conversion section is disposed on the base and converts light in the first wavelength range into charges. The optical filter is disposed on the side opposite to the base of the first photoelectric conversion section and transmits light in the first wavelength range. The second photoelectric conversion section is disposed on the opposite side of the optical filter from the first photoelectric conversion section, and converts light in a second wavelength range different from the first wavelength range into charges. The charge storage transfer layer is disposed in the second photoelectric conversion section, and stores and transfers charges converted in the second photoelectric conversion section.
Here, the solid-state imaging device further includes a first sealing body. The first encapsulant is disposed on the optical filter side of the charge storage transfer layer and encapsulates the constituent material of the optical filter.
Therefore, since the composition material emitted from the optical filter is sealed by the first sealing body, it is possible to effectively suppress or prevent the composition material from entering the charge storage transfer layer. Therefore, it is possible to provide a solid-state imaging device that stably functions as a charge storage transfer layer and has excellent operational reliability.
第1光電変換部は、基体に配設され、第1波長域の光を電荷に変換する。光学フィルタは、第1光電変換部の基体とは反対側に配設され、第1波長域の光を透過させる。第2光電変換部は、光学フィルタの第1光電変換部とは反対側に配設され、第1波長域とは異なる第2波長域の光を電荷に変換する。電荷蓄積転送層は、第2光電変換部に配設され、第2光電変換部において変換された電荷を蓄積し転送する。
ここで、固体撮像装置は、更に第1封止体を備える。第1封止体は、電荷蓄積転送層の光学フィルタ側に配設され、光学フィルタの組成物質を封止する。
このため、光学フィルタから放出される組成物質は第1封止体により封止されるので、電荷蓄積転送層への組成物質の侵入を効果的に抑制又は防止することができる。従って、電荷蓄積転送層として安定に機能し、動作信頼性に優れた固体撮像装置を提供することができる。 A solid-state imaging device according to a first embodiment of the present disclosure includes a first photoelectric conversion section, an optical filter, a second photoelectric conversion section, and a charge storage transfer layer.
The first photoelectric conversion section is disposed on the base and converts light in the first wavelength range into charges. The optical filter is disposed on the side opposite to the base of the first photoelectric conversion section and transmits light in the first wavelength range. The second photoelectric conversion section is disposed on the opposite side of the optical filter from the first photoelectric conversion section, and converts light in a second wavelength range different from the first wavelength range into charges. The charge storage transfer layer is disposed in the second photoelectric conversion section, and stores and transfers charges converted in the second photoelectric conversion section.
Here, the solid-state imaging device further includes a first sealing body. The first encapsulant is disposed on the optical filter side of the charge storage transfer layer and encapsulates the constituent material of the optical filter.
Therefore, since the composition material emitted from the optical filter is sealed by the first sealing body, it is possible to effectively suppress or prevent the composition material from entering the charge storage transfer layer. Therefore, it is possible to provide a solid-state imaging device that stably functions as a charge storage transfer layer and has excellent operational reliability.
また、本開示の第2実施態様に係る固体撮像装置は、第1実施態様に係る固体撮像装置において、更に第2封止体を備える。第2封止体は、光学フィルタの第1光電変換部側の表面に沿って形成され、光学フィルタの組成物質を封止する。
このため、光学フィルタの第1光電変換部側から放出される組成物質が、第2封止体により封止されるので、電荷蓄積転送層への組成物質の侵入をより一層効果的に抑制又は防止することができる。 Further, a solid-state imaging device according to a second embodiment of the present disclosure is the solid-state imaging device according to the first embodiment, further including a second sealing body. The second sealing body is formed along the surface of the optical filter on the first photoelectric conversion unit side, and seals the constituent material of the optical filter.
Therefore, the composition material emitted from the first photoelectric conversion part side of the optical filter is sealed by the second sealing body, so that the invasion of the composition material into the charge storage transfer layer is more effectively suppressed or It can be prevented.
このため、光学フィルタの第1光電変換部側から放出される組成物質が、第2封止体により封止されるので、電荷蓄積転送層への組成物質の侵入をより一層効果的に抑制又は防止することができる。 Further, a solid-state imaging device according to a second embodiment of the present disclosure is the solid-state imaging device according to the first embodiment, further including a second sealing body. The second sealing body is formed along the surface of the optical filter on the first photoelectric conversion unit side, and seals the constituent material of the optical filter.
Therefore, the composition material emitted from the first photoelectric conversion part side of the optical filter is sealed by the second sealing body, so that the invasion of the composition material into the charge storage transfer layer is more effectively suppressed or It can be prevented.
また、本開示の第3実施態様に係る固体撮像装置は、第1実施態様又は第2実施態様に係る固体撮像装置において、更に第3封止体を備える。第3封止体は、光学フィルタの側面に沿って形成され、光学フィルタの組成物質を封止する。
このため、光学フィルタの側面から放出される組成物質が、第3封止体により封止されるので、電荷蓄積転送層への組成物質の侵入をより一層効果的に抑制又は防止することができる。 Moreover, the solid-state imaging device according to the third embodiment of the present disclosure is the solid-state imaging device according to the first embodiment or the second embodiment, further including a third sealing body. The third sealing body is formed along the side surface of the optical filter and seals the constituent material of the optical filter.
Therefore, the composition material emitted from the side surface of the optical filter is sealed by the third sealing body, so that it is possible to more effectively suppress or prevent the composition material from entering the charge storage transfer layer. .
このため、光学フィルタの側面から放出される組成物質が、第3封止体により封止されるので、電荷蓄積転送層への組成物質の侵入をより一層効果的に抑制又は防止することができる。 Moreover, the solid-state imaging device according to the third embodiment of the present disclosure is the solid-state imaging device according to the first embodiment or the second embodiment, further including a third sealing body. The third sealing body is formed along the side surface of the optical filter and seals the constituent material of the optical filter.
Therefore, the composition material emitted from the side surface of the optical filter is sealed by the third sealing body, so that it is possible to more effectively suppress or prevent the composition material from entering the charge storage transfer layer. .
また、本開示の第4実施態様に係る固体撮像装置は、第1光電変換部と、第3光電変換部と、第1光学フィルタと、第3光学フィルタとを備える。
第1光電変換部は、基体に配設され、第1波長域の光を電荷に変換する。第3光電変換部は、第1光電変換部とは異なる領域において、基体に配設され、第1波長域よりも短波長の第3波長域の光を電荷に変換する。第1光学フィルタは、第1光電変換部の基体とは反対側に配設され、第1波長域の光を透過させる。第3光学フィルタは、第3光電変換部の基体とは反対側に配設され、第3波長域の光を透過させ、第1光学フィルタの厚さよりも薄い厚さを有する。
このため、短波長の光を透過させる第3光学フィルタの厚さが薄膜化され、第3波長域の光の感度を向上させることができるので、第3波長域の光の感度調整を行うことができる。 Further, a solid-state imaging device according to a fourth embodiment of the present disclosure includes a first photoelectric conversion section, a third photoelectric conversion section, a first optical filter, and a third optical filter.
The first photoelectric conversion section is disposed on the base and converts light in the first wavelength range into charges. The third photoelectric conversion section is disposed on the base body in a region different from the first photoelectric conversion section, and converts light in a third wavelength range shorter than the first wavelength range into charges. The first optical filter is disposed on the side opposite to the base of the first photoelectric conversion section, and transmits light in the first wavelength range. The third optical filter is disposed on the opposite side of the base of the third photoelectric conversion section, transmits light in the third wavelength range, and has a thickness thinner than the thickness of the first optical filter.
Therefore, the thickness of the third optical filter that transmits short wavelength light is reduced, and the sensitivity to light in the third wavelength range can be improved, so the sensitivity to light in the third wavelength range can be adjusted. Can be done.
第1光電変換部は、基体に配設され、第1波長域の光を電荷に変換する。第3光電変換部は、第1光電変換部とは異なる領域において、基体に配設され、第1波長域よりも短波長の第3波長域の光を電荷に変換する。第1光学フィルタは、第1光電変換部の基体とは反対側に配設され、第1波長域の光を透過させる。第3光学フィルタは、第3光電変換部の基体とは反対側に配設され、第3波長域の光を透過させ、第1光学フィルタの厚さよりも薄い厚さを有する。
このため、短波長の光を透過させる第3光学フィルタの厚さが薄膜化され、第3波長域の光の感度を向上させることができるので、第3波長域の光の感度調整を行うことができる。 Further, a solid-state imaging device according to a fourth embodiment of the present disclosure includes a first photoelectric conversion section, a third photoelectric conversion section, a first optical filter, and a third optical filter.
The first photoelectric conversion section is disposed on the base and converts light in the first wavelength range into charges. The third photoelectric conversion section is disposed on the base body in a region different from the first photoelectric conversion section, and converts light in a third wavelength range shorter than the first wavelength range into charges. The first optical filter is disposed on the side opposite to the base of the first photoelectric conversion section, and transmits light in the first wavelength range. The third optical filter is disposed on the opposite side of the base of the third photoelectric conversion section, transmits light in the third wavelength range, and has a thickness thinner than the thickness of the first optical filter.
Therefore, the thickness of the third optical filter that transmits short wavelength light is reduced, and the sensitivity to light in the third wavelength range can be improved, so the sensitivity to light in the third wavelength range can be adjusted. Can be done.
また、第5実施態様に係る固体撮像装置は、第4実施態様に係る固体撮像装置において、基体に配設され、基体とは反対側の表面から厚さ方向に向かって形成された開口を有する絶縁体を備えている。第1光学フィルタ、第3光学フィルタのそれぞれは、開口内に配設されている。そして、固体撮像装置は、第1光学フィルタ、第3光学フィルタのそれぞれの基体とは反対側の表面、及びこの表面から基体とは反対側に向かって開口内側壁に形成され、第1光学フィルタ、第3光学フィルタのそれぞれの組成物質を封止する第1封止体を更に備える。
このため、開口内側壁に沿った第1封止体により、入射される光を反射させ、かつ、集光させる反射面が構成されるので、集光効率を向上させることができる。 Further, in the solid-state imaging device according to the fourth embodiment, the solid-state imaging device according to the fifth embodiment has an opening disposed in the base body and formed in the thickness direction from the surface opposite to the base body. Equipped with an insulator. Each of the first optical filter and the third optical filter is disposed within the opening. The solid-state imaging device is formed on the surface of each of the first optical filter and the third optical filter opposite to the base body, and on the inner wall of the opening from this surface toward the side opposite to the base body, and the first optical filter , and further includes a first sealing body for sealing the constituent materials of each of the third optical filters.
Therefore, the first sealing body along the inner wall of the opening forms a reflective surface that reflects and collects the incident light, so that the light collection efficiency can be improved.
このため、開口内側壁に沿った第1封止体により、入射される光を反射させ、かつ、集光させる反射面が構成されるので、集光効率を向上させることができる。 Further, in the solid-state imaging device according to the fourth embodiment, the solid-state imaging device according to the fifth embodiment has an opening disposed in the base body and formed in the thickness direction from the surface opposite to the base body. Equipped with an insulator. Each of the first optical filter and the third optical filter is disposed within the opening. The solid-state imaging device is formed on the surface of each of the first optical filter and the third optical filter opposite to the base body, and on the inner wall of the opening from this surface toward the side opposite to the base body, and the first optical filter , and further includes a first sealing body for sealing the constituent materials of each of the third optical filters.
Therefore, the first sealing body along the inner wall of the opening forms a reflective surface that reflects and collects the incident light, so that the light collection efficiency can be improved.
本開示の第6実施態様に係る固体撮像装置では、第5実施態様に係る固体撮像装置において、開口は、基体とは反対側の表面から基体側へ向かって開口寸法を小さくし、断面テーパ形状に形成される。
このため、開口内壁に断面テーパ形状の反射面が構成されるので、更に集光効率を向上させることができる。 In the solid-state imaging device according to the sixth embodiment of the present disclosure, in the solid-state imaging device according to the fifth embodiment, the opening size is decreased from the surface opposite to the base body toward the base body, and the opening has a tapered cross-sectional shape. is formed.
Therefore, since a reflective surface having a tapered cross section is formed on the inner wall of the opening, the light collection efficiency can be further improved.
このため、開口内壁に断面テーパ形状の反射面が構成されるので、更に集光効率を向上させることができる。 In the solid-state imaging device according to the sixth embodiment of the present disclosure, in the solid-state imaging device according to the fifth embodiment, the opening size is decreased from the surface opposite to the base body toward the base body, and the opening has a tapered cross-sectional shape. is formed.
Therefore, since a reflective surface having a tapered cross section is formed on the inner wall of the opening, the light collection efficiency can be further improved.
本開示の第7実施態様に係る固体撮像装置は、第4実施態様に係る固体撮像装置において、第1光学フィルタの第1光電変換部とは反対側及び第3光学フィルタの第3光電変換部とは反対側に第2光電変換部を備える。第2光電変換部は、第1波長域及び第3波長域とは異なる第2波長域の光を電荷に変換する。第2光電変換部には、第2光電変換部において変換された電荷を蓄積し転送する電荷蓄積転送層を備える。
このため、第1実施態様に係る固体撮像装置と第4実施態様に係る固体撮像装置とを組み合わせた作用効果を得ることができる。 The solid-state imaging device according to the seventh embodiment of the present disclosure is the solid-state imaging device according to the fourth embodiment, and includes a side opposite to the first photoelectric conversion section of the first optical filter and a third photoelectric conversion section of the third optical filter. A second photoelectric conversion section is provided on the opposite side. The second photoelectric conversion section converts light in a second wavelength range different from the first wavelength range and the third wavelength range into charges. The second photoelectric conversion section includes a charge storage and transfer layer that accumulates and transfers charges converted in the second photoelectric conversion section.
Therefore, the effects obtained by combining the solid-state imaging device according to the first embodiment and the solid-state imaging device according to the fourth embodiment can be obtained.
このため、第1実施態様に係る固体撮像装置と第4実施態様に係る固体撮像装置とを組み合わせた作用効果を得ることができる。 The solid-state imaging device according to the seventh embodiment of the present disclosure is the solid-state imaging device according to the fourth embodiment, and includes a side opposite to the first photoelectric conversion section of the first optical filter and a third photoelectric conversion section of the third optical filter. A second photoelectric conversion section is provided on the opposite side. The second photoelectric conversion section converts light in a second wavelength range different from the first wavelength range and the third wavelength range into charges. The second photoelectric conversion section includes a charge storage and transfer layer that accumulates and transfers charges converted in the second photoelectric conversion section.
Therefore, the effects obtained by combining the solid-state imaging device according to the first embodiment and the solid-state imaging device according to the fourth embodiment can be obtained.
<本技術の構成>
本技術は、以下の構成を備えている。以下の構成の本技術によれば、動作信頼性に優れた固体撮像装置を提供することができる。また、以下の構成の本技術によれば、感度調整に優れた固体撮像装置を提供することができる。さらに、以下の構成の本技術によれば、動作信頼性に優れるとともに、感度調整に優れた固体撮像装置を提供することができる。
(1)
基体に配設され、第1波長域の光を電荷に変換する第1光電変換部と、
前記第1光電変換部の前記基体とは反対側に配設され、第1波長域の光を透過させる光学フィルタと、
前記光学フィルタの前記第1光電変換部とは反対側に配設され、前記第1波長域とは異なる第2波長域の光を電荷に変換する第2光電変換部と、
前記第2光電変換部に配設され、前記第2光電変換部において変換された電荷を蓄積し転送する電荷蓄積転送層と、
前記電荷蓄積転送層の前記光学フィルタ側に配設され、前記光学フィルタの組成物質を封止する第1封止体と
を備えている固体撮像装置。
(2)
前記第1封止体は、前記光学フィルタの前記電荷蓄積転送層側の表面に沿って形成されている
前記(1)に記載の固体撮像装置。
(3)
前記光学フィルタの前記第1光電変換部側の表面に沿って形成され、前記光学フィルタの組成物質を封止する第2封止体を更に備えている
前記(1)又は(2)に記載の固体撮像装置。
(4)
前記第2封止体は、前記光学フィルタが埋設される絶縁体に対して、エッチング選択比を有する
前記(3)に記載の固体撮像装置。
(5)
前記光学フィルタの側面から離間された領域に、前記電荷蓄積転送層から前記基体側へ貫通する貫通配線が配設されている
前記(1)~前記(4)のいずれか1つに記載の固体撮像装置。
(6)
前記光学フィルタの側面に沿って形成され、前記光学フィルタの組成物質を封止する第3封止体を更に備えている
前記(5)に記載の固体撮像装置。
(7)
前記第1光電変換部は、フォトダイオードであり、
前記第2光電変換部は、
前記光学フィルタ側に配設された第1電極と、
前記第1電極の前記光学フィルタとは反対側に配設された有機光電変換層と、
前記有機光電変換層の前記光学フィルタとは反対側に配設された第2電極とを備え、
前記電荷蓄積転送層は、前記第1電極と前記有機光電変換層との間に配設されている
前記(1)~前記(6)のいずれか1つに記載の固体撮像装置。
(8)
前記電荷蓄積転送層は、IGZO、IAZO、ITZO、IGSiO、ZnO、AZO、GZO、ITO及びIZOから選択される1以上の酸化物半導体により形成されている
前記(1)~前記(7)のいずれか1つに記載の固体撮像装置。
(9)
前記光学フィルタは、樹脂に顔料を含んで形成され、
前記第1封止体又は前記第2封止体は、前記樹脂に含まれる水素の前記電荷蓄積転送層への侵入を遮断する
前記(3)に記載の固体撮像装置。
(10)
前記第1封止体又は前記第2封止体は、SiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている
前記(3)又は前記(9)に記載の固体撮像装置。
(11)
前記第1封止体又は前記第2封止体の膜厚は、10nm以上100nm以下である
前記(10)に記載の固体撮像装置。
(12)
前記光学フィルタは、樹脂に顔料を含んで形成され、
前記第3封止体は、前記樹脂に含まれる水素の前記電荷蓄積転送層への侵入を遮断する
前記(6)に記載の固体撮像装置。
(13)
前記第3封止体は、SiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている
前記(6)又は前記(12)に記載の固体撮像装置。
(14)
前記第3封止体の膜厚は、10nm以上100nm以下である
前記(11)に記載の固体撮像装置。
(15)
前記光学フィルタは、カラーフィルタ及び赤外線透過フィルタから選択される1以上を含んで構成されている
前記(1)から前記(14)のいずれか1つに記載の固体撮像装置。 <Configuration of this technology>
The present technology has the following configuration. According to the present technology having the following configuration, it is possible to provide a solid-state imaging device with excellent operational reliability. Further, according to the present technology having the following configuration, it is possible to provide a solid-state imaging device with excellent sensitivity adjustment. Furthermore, according to the present technology having the following configuration, it is possible to provide a solid-state imaging device that has excellent operational reliability and excellent sensitivity adjustment.
(1)
a first photoelectric conversion section that is disposed on the base and converts light in a first wavelength range into charges;
an optical filter that is disposed on a side opposite to the base of the first photoelectric conversion unit and that transmits light in a first wavelength range;
a second photoelectric conversion section that is disposed on the opposite side of the optical filter from the first photoelectric conversion section and converts light in a second wavelength range different from the first wavelength range into charges;
a charge storage and transfer layer disposed in the second photoelectric conversion unit and accumulating and transferring charges converted in the second photoelectric conversion unit;
a first sealing body disposed on the optical filter side of the charge storage transfer layer and sealing a constituent material of the optical filter.
(2)
The solid-state imaging device according to (1), wherein the first sealing body is formed along the surface of the optical filter on the charge storage transfer layer side.
(3)
The method according to (1) or (2), further comprising a second sealing body formed along the surface of the optical filter on the first photoelectric conversion unit side and sealing the constituent material of the optical filter. Solid-state imaging device.
(4)
The solid-state imaging device according to (3), wherein the second sealing body has an etching selectivity with respect to the insulator in which the optical filter is embedded.
(5)
The solid according to any one of (1) to (4) above, wherein a through wiring that penetrates from the charge storage transfer layer to the base body side is provided in a region spaced from a side surface of the optical filter. Imaging device.
(6)
The solid-state imaging device according to (5), further comprising a third sealing body formed along a side surface of the optical filter and sealing a constituent material of the optical filter.
(7)
The first photoelectric conversion section is a photodiode,
The second photoelectric conversion section is
a first electrode disposed on the optical filter side;
an organic photoelectric conversion layer disposed on a side of the first electrode opposite to the optical filter;
a second electrode disposed on the opposite side of the organic photoelectric conversion layer to the optical filter;
The solid-state imaging device according to any one of (1) to (6), wherein the charge storage transfer layer is disposed between the first electrode and the organic photoelectric conversion layer.
(8)
The charge storage transfer layer is formed of one or more oxide semiconductors selected from IGZO, IAZO, ITZO, IGSiO, ZnO, AZO, GZO, ITO, and IZO. Any one of (1) to (7) above. The solid-state imaging device according toitem 1.
(9)
The optical filter is formed by containing a pigment in a resin,
The solid-state imaging device according to (3), wherein the first sealing body or the second sealing body blocks hydrogen contained in the resin from entering the charge storage transfer layer.
(10)
In (3) or (9) above, the first sealing body or the second sealing body is formed of one or more sealing materials selected from SiN, AlO, TiO 2 , HfO, and ZrO. The solid-state imaging device described.
(11)
The solid-state imaging device according to (10), wherein the first sealed body or the second sealed body has a film thickness of 10 nm or more and 100 nm or less.
(12)
The optical filter is formed by containing a pigment in a resin,
The solid-state imaging device according to (6), wherein the third sealing body blocks hydrogen contained in the resin from entering the charge storage transfer layer.
(13)
The solid-state imaging device according to (6) or (12), wherein the third sealing body is formed of one or more sealing materials selected from SiN, AlO, TiO 2 , HfO, and ZrO.
(14)
The solid-state imaging device according to (11), wherein the third sealing body has a thickness of 10 nm or more and 100 nm or less.
(15)
The solid-state imaging device according to any one of (1) to (14), wherein the optical filter includes one or more selected from a color filter and an infrared transmission filter.
本技術は、以下の構成を備えている。以下の構成の本技術によれば、動作信頼性に優れた固体撮像装置を提供することができる。また、以下の構成の本技術によれば、感度調整に優れた固体撮像装置を提供することができる。さらに、以下の構成の本技術によれば、動作信頼性に優れるとともに、感度調整に優れた固体撮像装置を提供することができる。
(1)
基体に配設され、第1波長域の光を電荷に変換する第1光電変換部と、
前記第1光電変換部の前記基体とは反対側に配設され、第1波長域の光を透過させる光学フィルタと、
前記光学フィルタの前記第1光電変換部とは反対側に配設され、前記第1波長域とは異なる第2波長域の光を電荷に変換する第2光電変換部と、
前記第2光電変換部に配設され、前記第2光電変換部において変換された電荷を蓄積し転送する電荷蓄積転送層と、
前記電荷蓄積転送層の前記光学フィルタ側に配設され、前記光学フィルタの組成物質を封止する第1封止体と
を備えている固体撮像装置。
(2)
前記第1封止体は、前記光学フィルタの前記電荷蓄積転送層側の表面に沿って形成されている
前記(1)に記載の固体撮像装置。
(3)
前記光学フィルタの前記第1光電変換部側の表面に沿って形成され、前記光学フィルタの組成物質を封止する第2封止体を更に備えている
前記(1)又は(2)に記載の固体撮像装置。
(4)
前記第2封止体は、前記光学フィルタが埋設される絶縁体に対して、エッチング選択比を有する
前記(3)に記載の固体撮像装置。
(5)
前記光学フィルタの側面から離間された領域に、前記電荷蓄積転送層から前記基体側へ貫通する貫通配線が配設されている
前記(1)~前記(4)のいずれか1つに記載の固体撮像装置。
(6)
前記光学フィルタの側面に沿って形成され、前記光学フィルタの組成物質を封止する第3封止体を更に備えている
前記(5)に記載の固体撮像装置。
(7)
前記第1光電変換部は、フォトダイオードであり、
前記第2光電変換部は、
前記光学フィルタ側に配設された第1電極と、
前記第1電極の前記光学フィルタとは反対側に配設された有機光電変換層と、
前記有機光電変換層の前記光学フィルタとは反対側に配設された第2電極とを備え、
前記電荷蓄積転送層は、前記第1電極と前記有機光電変換層との間に配設されている
前記(1)~前記(6)のいずれか1つに記載の固体撮像装置。
(8)
前記電荷蓄積転送層は、IGZO、IAZO、ITZO、IGSiO、ZnO、AZO、GZO、ITO及びIZOから選択される1以上の酸化物半導体により形成されている
前記(1)~前記(7)のいずれか1つに記載の固体撮像装置。
(9)
前記光学フィルタは、樹脂に顔料を含んで形成され、
前記第1封止体又は前記第2封止体は、前記樹脂に含まれる水素の前記電荷蓄積転送層への侵入を遮断する
前記(3)に記載の固体撮像装置。
(10)
前記第1封止体又は前記第2封止体は、SiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている
前記(3)又は前記(9)に記載の固体撮像装置。
(11)
前記第1封止体又は前記第2封止体の膜厚は、10nm以上100nm以下である
前記(10)に記載の固体撮像装置。
(12)
前記光学フィルタは、樹脂に顔料を含んで形成され、
前記第3封止体は、前記樹脂に含まれる水素の前記電荷蓄積転送層への侵入を遮断する
前記(6)に記載の固体撮像装置。
(13)
前記第3封止体は、SiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている
前記(6)又は前記(12)に記載の固体撮像装置。
(14)
前記第3封止体の膜厚は、10nm以上100nm以下である
前記(11)に記載の固体撮像装置。
(15)
前記光学フィルタは、カラーフィルタ及び赤外線透過フィルタから選択される1以上を含んで構成されている
前記(1)から前記(14)のいずれか1つに記載の固体撮像装置。 <Configuration of this technology>
The present technology has the following configuration. According to the present technology having the following configuration, it is possible to provide a solid-state imaging device with excellent operational reliability. Further, according to the present technology having the following configuration, it is possible to provide a solid-state imaging device with excellent sensitivity adjustment. Furthermore, according to the present technology having the following configuration, it is possible to provide a solid-state imaging device that has excellent operational reliability and excellent sensitivity adjustment.
(1)
a first photoelectric conversion section that is disposed on the base and converts light in a first wavelength range into charges;
an optical filter that is disposed on a side opposite to the base of the first photoelectric conversion unit and that transmits light in a first wavelength range;
a second photoelectric conversion section that is disposed on the opposite side of the optical filter from the first photoelectric conversion section and converts light in a second wavelength range different from the first wavelength range into charges;
a charge storage and transfer layer disposed in the second photoelectric conversion unit and accumulating and transferring charges converted in the second photoelectric conversion unit;
a first sealing body disposed on the optical filter side of the charge storage transfer layer and sealing a constituent material of the optical filter.
(2)
The solid-state imaging device according to (1), wherein the first sealing body is formed along the surface of the optical filter on the charge storage transfer layer side.
(3)
The method according to (1) or (2), further comprising a second sealing body formed along the surface of the optical filter on the first photoelectric conversion unit side and sealing the constituent material of the optical filter. Solid-state imaging device.
(4)
The solid-state imaging device according to (3), wherein the second sealing body has an etching selectivity with respect to the insulator in which the optical filter is embedded.
(5)
The solid according to any one of (1) to (4) above, wherein a through wiring that penetrates from the charge storage transfer layer to the base body side is provided in a region spaced from a side surface of the optical filter. Imaging device.
(6)
The solid-state imaging device according to (5), further comprising a third sealing body formed along a side surface of the optical filter and sealing a constituent material of the optical filter.
(7)
The first photoelectric conversion section is a photodiode,
The second photoelectric conversion section is
a first electrode disposed on the optical filter side;
an organic photoelectric conversion layer disposed on a side of the first electrode opposite to the optical filter;
a second electrode disposed on the opposite side of the organic photoelectric conversion layer to the optical filter;
The solid-state imaging device according to any one of (1) to (6), wherein the charge storage transfer layer is disposed between the first electrode and the organic photoelectric conversion layer.
(8)
The charge storage transfer layer is formed of one or more oxide semiconductors selected from IGZO, IAZO, ITZO, IGSiO, ZnO, AZO, GZO, ITO, and IZO. Any one of (1) to (7) above. The solid-state imaging device according to
(9)
The optical filter is formed by containing a pigment in a resin,
The solid-state imaging device according to (3), wherein the first sealing body or the second sealing body blocks hydrogen contained in the resin from entering the charge storage transfer layer.
(10)
In (3) or (9) above, the first sealing body or the second sealing body is formed of one or more sealing materials selected from SiN, AlO, TiO 2 , HfO, and ZrO. The solid-state imaging device described.
(11)
The solid-state imaging device according to (10), wherein the first sealed body or the second sealed body has a film thickness of 10 nm or more and 100 nm or less.
(12)
The optical filter is formed by containing a pigment in a resin,
The solid-state imaging device according to (6), wherein the third sealing body blocks hydrogen contained in the resin from entering the charge storage transfer layer.
(13)
The solid-state imaging device according to (6) or (12), wherein the third sealing body is formed of one or more sealing materials selected from SiN, AlO, TiO 2 , HfO, and ZrO.
(14)
The solid-state imaging device according to (11), wherein the third sealing body has a thickness of 10 nm or more and 100 nm or less.
(15)
The solid-state imaging device according to any one of (1) to (14), wherein the optical filter includes one or more selected from a color filter and an infrared transmission filter.
(16)
基体に配設され、第1波長域の光を電荷に変換する第1光電変換部と、
前記第1光電変換部とは異なる領域において、前記基体に配設され、第1波長域よりも短波長の第3波長域の光を電荷に変換する第3光電変換部と、
前記第1光電変換部の前記基体とは反対側に配設され、第1波長域の光を透過させる第1光学フィルタと、
前記第3光電変換部の前記基体とは反対側に配設され、第3波長域の光を透過させ、前記第1光学フィルタの厚さよりも薄い厚さを有する第3光学フィルタと
を備えている固体撮像装置。
(17)
前記基体に配設され、前記基体とは反対側の表面から厚さ方向に向かって形成された開口を有する絶縁体を備え、
前記第1光学フィルタ、前記第3光学フィルタのそれぞれは、前記開口内に配設され、
前記第1光学フィルタ、前記第3光学フィルタのそれぞれの前記基体とは反対側の表面、及び当該表面から前記基体とは反対側に向かって前記開口内側壁に形成され、前記第1光学フィルタ、前記第3光学フィルタのそれぞれの組成物質を封止する第1封止体を更に備えている
前記(16)に記載の固体撮像装置。
(18)
前記第1封止体は、屈折率が異なる2以上の層を積層して形成されている
前記(17)に記載の固体撮像装置。
(19)
前記開口は、前記基体とは反対側の表面から前記基体側へ向かって開口寸法を小さくし、断面テーパ形状に形成されている
前記(17)又は前記(18)に記載の固体撮像装置。
(20)
前記第1光学フィルタ、前記第3光学フィルタのそれぞれは、前記基体とは反対側に湾曲する断面形状に形成されている
前記(16)から前記(19)のいずれか1つに記載の固体撮像装置。
(21)
前記第1光学フィルタ、前記第3光学フィルタのそれぞれは、前記基体側に湾曲する断面形状に形成されている
前記(16)から前記(19)のいずれか1つに記載の固体撮像装置。
(22)
前記第1光学フィルタは、前記基体とは反対側に湾曲する断面形状に形成され、
前記第3光学フィルタは、前記基体側に湾曲する断面形状に形成されている
前記(16)から前記(19)のいずれか1つに記載の固体撮像装置。
(23)
前記第1光学フィルタの前記基体とは反対側の表面位置は、前記第3光学フィルタの同一側の表面位置に一致されている
前記(16)から前記(19)のいずれか1つに記載の固体撮像装置。
(24)
前記第3光学フィルタと前記基体との間に、前記絶縁体が配設されている
前記(23)に記載の固体撮像装置。
(25)
前記第1光学フィルタの前記第1光電変換部とは反対側及び前記第3光学フィルタの前記第3光電変換部とは反対側に配設され、前記第1波長域及び前記第3波長域とは異なる第2波長域の光を電荷に変換する第2光電変換部と、
前記第2光電変換部に配設され、前記第2光電変換部において変換された電荷を蓄積し転送する電荷蓄積転送層とを更に備えている
前記(16)から前記(24)のいずれか1つに記載の固体撮像装置。 (16)
a first photoelectric conversion section that is disposed on the base and converts light in the first wavelength range into electric charge;
a third photoelectric conversion section that is disposed on the base in a region different from the first photoelectric conversion section and converts light in a third wavelength range shorter than the first wavelength range into charges;
a first optical filter that is disposed on a side opposite to the base of the first photoelectric conversion unit and that transmits light in a first wavelength range;
a third optical filter disposed on the opposite side of the third photoelectric conversion unit from the base, transmitting light in a third wavelength range, and having a thickness thinner than the thickness of the first optical filter; solid-state imaging device.
(17)
an insulator disposed on the base body and having an opening formed in the thickness direction from a surface opposite to the base body;
Each of the first optical filter and the third optical filter is disposed within the opening,
The first optical filter is formed on a surface of each of the first optical filter and the third optical filter opposite to the base, and on the inner wall of the opening from the surface toward the opposite side from the base, The solid-state imaging device according to (16), further comprising a first sealing body that seals each constituent material of the third optical filter.
(18)
The solid-state imaging device according to (17), wherein the first sealing body is formed by laminating two or more layers having different refractive indexes.
(19)
The solid-state imaging device according to (17) or (18), wherein the opening has a tapered cross-sectional shape with an opening size decreasing from the surface opposite to the base toward the base.
(20)
The solid-state imaging according to any one of (16) to (19), wherein each of the first optical filter and the third optical filter is formed to have a cross-sectional shape that curves on the opposite side of the base body. Device.
(21)
The solid-state imaging device according to any one of (16) to (19), wherein each of the first optical filter and the third optical filter is formed to have a cross-sectional shape that curves toward the base body.
(22)
The first optical filter is formed in a cross-sectional shape that curves on the opposite side from the base,
The solid-state imaging device according to any one of (16) to (19), wherein the third optical filter is formed to have a cross-sectional shape that curves toward the base body.
(23)
The surface position of the first optical filter on the opposite side to the base body is matched with the surface position on the same side of the third optical filter. Solid-state imaging device.
(24)
The solid-state imaging device according to (23), wherein the insulator is disposed between the third optical filter and the base.
(25)
disposed on a side of the first optical filter opposite to the first photoelectric conversion section and on a side opposite to the third photoelectric conversion section of the third optical filter, and configured to be connected to the first wavelength range and the third wavelength range. a second photoelectric conversion unit that converts light in a different second wavelength range into charges;
Any one of (16) to (24) above, further comprising a charge storage transfer layer disposed in the second photoelectric conversion section and accumulating and transferring charges converted in the second photoelectric conversion section. The solid-state imaging device described in .
基体に配設され、第1波長域の光を電荷に変換する第1光電変換部と、
前記第1光電変換部とは異なる領域において、前記基体に配設され、第1波長域よりも短波長の第3波長域の光を電荷に変換する第3光電変換部と、
前記第1光電変換部の前記基体とは反対側に配設され、第1波長域の光を透過させる第1光学フィルタと、
前記第3光電変換部の前記基体とは反対側に配設され、第3波長域の光を透過させ、前記第1光学フィルタの厚さよりも薄い厚さを有する第3光学フィルタと
を備えている固体撮像装置。
(17)
前記基体に配設され、前記基体とは反対側の表面から厚さ方向に向かって形成された開口を有する絶縁体を備え、
前記第1光学フィルタ、前記第3光学フィルタのそれぞれは、前記開口内に配設され、
前記第1光学フィルタ、前記第3光学フィルタのそれぞれの前記基体とは反対側の表面、及び当該表面から前記基体とは反対側に向かって前記開口内側壁に形成され、前記第1光学フィルタ、前記第3光学フィルタのそれぞれの組成物質を封止する第1封止体を更に備えている
前記(16)に記載の固体撮像装置。
(18)
前記第1封止体は、屈折率が異なる2以上の層を積層して形成されている
前記(17)に記載の固体撮像装置。
(19)
前記開口は、前記基体とは反対側の表面から前記基体側へ向かって開口寸法を小さくし、断面テーパ形状に形成されている
前記(17)又は前記(18)に記載の固体撮像装置。
(20)
前記第1光学フィルタ、前記第3光学フィルタのそれぞれは、前記基体とは反対側に湾曲する断面形状に形成されている
前記(16)から前記(19)のいずれか1つに記載の固体撮像装置。
(21)
前記第1光学フィルタ、前記第3光学フィルタのそれぞれは、前記基体側に湾曲する断面形状に形成されている
前記(16)から前記(19)のいずれか1つに記載の固体撮像装置。
(22)
前記第1光学フィルタは、前記基体とは反対側に湾曲する断面形状に形成され、
前記第3光学フィルタは、前記基体側に湾曲する断面形状に形成されている
前記(16)から前記(19)のいずれか1つに記載の固体撮像装置。
(23)
前記第1光学フィルタの前記基体とは反対側の表面位置は、前記第3光学フィルタの同一側の表面位置に一致されている
前記(16)から前記(19)のいずれか1つに記載の固体撮像装置。
(24)
前記第3光学フィルタと前記基体との間に、前記絶縁体が配設されている
前記(23)に記載の固体撮像装置。
(25)
前記第1光学フィルタの前記第1光電変換部とは反対側及び前記第3光学フィルタの前記第3光電変換部とは反対側に配設され、前記第1波長域及び前記第3波長域とは異なる第2波長域の光を電荷に変換する第2光電変換部と、
前記第2光電変換部に配設され、前記第2光電変換部において変換された電荷を蓄積し転送する電荷蓄積転送層とを更に備えている
前記(16)から前記(24)のいずれか1つに記載の固体撮像装置。 (16)
a first photoelectric conversion section that is disposed on the base and converts light in the first wavelength range into electric charge;
a third photoelectric conversion section that is disposed on the base in a region different from the first photoelectric conversion section and converts light in a third wavelength range shorter than the first wavelength range into charges;
a first optical filter that is disposed on a side opposite to the base of the first photoelectric conversion unit and that transmits light in a first wavelength range;
a third optical filter disposed on the opposite side of the third photoelectric conversion unit from the base, transmitting light in a third wavelength range, and having a thickness thinner than the thickness of the first optical filter; solid-state imaging device.
(17)
an insulator disposed on the base body and having an opening formed in the thickness direction from a surface opposite to the base body;
Each of the first optical filter and the third optical filter is disposed within the opening,
The first optical filter is formed on a surface of each of the first optical filter and the third optical filter opposite to the base, and on the inner wall of the opening from the surface toward the opposite side from the base, The solid-state imaging device according to (16), further comprising a first sealing body that seals each constituent material of the third optical filter.
(18)
The solid-state imaging device according to (17), wherein the first sealing body is formed by laminating two or more layers having different refractive indexes.
(19)
The solid-state imaging device according to (17) or (18), wherein the opening has a tapered cross-sectional shape with an opening size decreasing from the surface opposite to the base toward the base.
(20)
The solid-state imaging according to any one of (16) to (19), wherein each of the first optical filter and the third optical filter is formed to have a cross-sectional shape that curves on the opposite side of the base body. Device.
(21)
The solid-state imaging device according to any one of (16) to (19), wherein each of the first optical filter and the third optical filter is formed to have a cross-sectional shape that curves toward the base body.
(22)
The first optical filter is formed in a cross-sectional shape that curves on the opposite side from the base,
The solid-state imaging device according to any one of (16) to (19), wherein the third optical filter is formed to have a cross-sectional shape that curves toward the base body.
(23)
The surface position of the first optical filter on the opposite side to the base body is matched with the surface position on the same side of the third optical filter. Solid-state imaging device.
(24)
The solid-state imaging device according to (23), wherein the insulator is disposed between the third optical filter and the base.
(25)
disposed on a side of the first optical filter opposite to the first photoelectric conversion section and on a side opposite to the third photoelectric conversion section of the third optical filter, and configured to be connected to the first wavelength range and the third wavelength range. a second photoelectric conversion unit that converts light in a different second wavelength range into charges;
Any one of (16) to (24) above, further comprising a charge storage transfer layer disposed in the second photoelectric conversion section and accumulating and transferring charges converted in the second photoelectric conversion section. The solid-state imaging device described in .
本出願は、日本国特許庁において2022年8月31日に出願された日本特許出願番号2022-137910号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
This application claims priority based on Japanese Patent Application No. 2022-137910 filed on August 31, 2022 at the Japan Patent Office, and all contents of this application are incorporated herein by reference. be used for.
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
Various modifications, combinations, subcombinations, and changes may occur to those skilled in the art, depending on design requirements and other factors, which may come within the scope of the appended claims and their equivalents. It is understood that the
Claims (25)
- 基体に配設され、第1波長域の光を電荷に変換する第1光電変換部と、
前記第1光電変換部の前記基体とは反対側に配設され、第1波長域の光を透過させる光学フィルタと、
前記光学フィルタの前記第1光電変換部とは反対側に配設され、前記第1波長域とは異なる第2波長域の光を電荷に変換する第2光電変換部と、
前記第2光電変換部に配設され、前記第2光電変換部において変換された電荷を蓄積し転送する電荷蓄積転送層と、
前記電荷蓄積転送層の前記光学フィルタ側に配設され、前記光学フィルタの組成物質を封止する第1封止体と
を備えている固体撮像装置。 a first photoelectric conversion section that is disposed on the base and converts light in the first wavelength range into electric charge;
an optical filter that is disposed on a side opposite to the base of the first photoelectric conversion unit and that transmits light in a first wavelength range;
a second photoelectric conversion section that is disposed on the opposite side of the optical filter from the first photoelectric conversion section and converts light in a second wavelength range different from the first wavelength range into charges;
a charge storage and transfer layer disposed in the second photoelectric conversion unit and accumulating and transferring charges converted in the second photoelectric conversion unit;
a first sealing body disposed on the optical filter side of the charge storage transfer layer and sealing a constituent material of the optical filter. - 前記第1封止体は、前記光学フィルタの前記電荷蓄積転送層側の表面に沿って形成されている
請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the first sealing body is formed along a surface of the optical filter on the charge storage transfer layer side. - 前記光学フィルタの前記第1光電変換部側の表面に沿って形成され、前記光学フィルタの組成物質を封止する第2封止体を更に備えている
請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, further comprising a second sealing body formed along a surface of the optical filter on the first photoelectric conversion unit side and sealing a constituent material of the optical filter. - 前記第2封止体は、前記光学フィルタが埋設される絶縁体に対して、エッチング選択比を有する
請求項3に記載の固体撮像装置。 The solid-state imaging device according to claim 3, wherein the second sealing body has an etching selectivity with respect to an insulator in which the optical filter is embedded. - 前記光学フィルタの側面から離間された領域に、前記電荷蓄積転送層から前記基体側へ貫通する貫通配線が配設されている
請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, further comprising a through wiring that penetrates from the charge storage transfer layer toward the base body in a region spaced apart from a side surface of the optical filter. - 前記光学フィルタの側面に沿って形成され、前記光学フィルタの組成物質を封止する第3封止体を更に備えている
請求項5に記載の固体撮像装置。 The solid-state imaging device according to claim 5, further comprising a third sealing body formed along a side surface of the optical filter and sealing a constituent material of the optical filter. - 前記第1光電変換部は、フォトダイオードであり、
前記第2光電変換部は、
前記光学フィルタ側に配設された第1電極と、
前記第1電極の前記光学フィルタとは反対側に配設された有機光電変換層と、
前記有機光電変換層の前記光学フィルタとは反対側に配設された第2電極とを備え、
前記電荷蓄積転送層は、前記第1電極と前記有機光電変換層との間に配設されている
請求項1に記載の固体撮像装置。 The first photoelectric conversion section is a photodiode,
The second photoelectric conversion section is
a first electrode disposed on the optical filter side;
an organic photoelectric conversion layer disposed on a side of the first electrode opposite to the optical filter;
a second electrode disposed on the opposite side of the organic photoelectric conversion layer to the optical filter;
The solid-state imaging device according to claim 1, wherein the charge storage transfer layer is disposed between the first electrode and the organic photoelectric conversion layer. - 前記電荷蓄積転送層は、IGZO、IAZO、ITZO、IGSiO、ZnO、AZO、GZO、ITO及びIZOから選択される1以上の酸化物半導体により形成されている
請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the charge storage transfer layer is formed of one or more oxide semiconductors selected from IGZO, IAZO, ITZO, IGSiO, ZnO, AZO, GZO, ITO, and IZO. - 前記光学フィルタは、樹脂に顔料を含んで形成され、
前記第1封止体又は前記第2封止体は、前記樹脂に含まれる水素の前記電荷蓄積転送層への侵入を遮断する
請求項3に記載の固体撮像装置。 The optical filter is formed by containing a pigment in a resin,
The solid-state imaging device according to claim 3, wherein the first sealing body or the second sealing body blocks hydrogen contained in the resin from entering the charge storage transfer layer. - 前記第1封止体又は前記第2封止体は、SiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている
請求項3に記載の固体撮像装置。 The solid-state imaging device according to claim 3, wherein the first sealing body or the second sealing body is formed of one or more sealing materials selected from SiN, AlO, TiO2 , HfO, and ZrO. - 前記第1封止体又は前記第2封止体の膜厚は、10nm以上100nm以下である
請求項10に記載の固体撮像装置。 The solid-state imaging device according to claim 10, wherein the first sealing body or the second sealing body has a film thickness of 10 nm or more and 100 nm or less. - 前記光学フィルタは、樹脂に顔料を含んで形成され、
前記第3封止体は、前記樹脂に含まれる水素の前記電荷蓄積転送層への侵入を遮断する
請求項6に記載の固体撮像装置。 The optical filter is formed by containing a pigment in a resin,
The solid-state imaging device according to claim 6, wherein the third sealing body blocks hydrogen contained in the resin from entering the charge storage transfer layer. - 前記第3封止体は、SiN、AlO、TiO2、HfO及びZrOから選択される1以上の封止材料により形成されている
請求項6に記載の固体撮像装置。 The solid-state imaging device according to claim 6, wherein the third sealing body is formed of one or more sealing materials selected from SiN, AlO, TiO2 , HfO, and ZrO. - 前記第3封止体の膜厚は、10nm以上100nm以下である
請求項11に記載の固体撮像装置。 The solid-state imaging device according to claim 11, wherein the third sealing body has a thickness of 10 nm or more and 100 nm or less. - 前記光学フィルタは、カラーフィルタ及び赤外線透過フィルタから選択される1以上を含んで構成されている
請求項1に記載の固体撮像装置。 The solid-state imaging device according to claim 1, wherein the optical filter includes one or more selected from a color filter and an infrared transmission filter. - 基体に配設され、第1波長域の光を電荷に変換する第1光電変換部と、
前記第1光電変換部とは異なる領域において、前記基体に配設され、第1波長域よりも短波長の第3波長域の光を電荷に変換する第3光電変換部と、
前記第1光電変換部の前記基体とは反対側に配設され、第1波長域の光を透過させる第1光学フィルタと、
前記第3光電変換部の前記基体とは反対側に配設され、第3波長域の光を透過させ、前記第1光学フィルタの厚さよりも薄い厚さを有する第3光学フィルタと
を備えている固体撮像装置。 a first photoelectric conversion section that is disposed on the base and converts light in a first wavelength range into charges;
a third photoelectric conversion section that is disposed on the base in a region different from the first photoelectric conversion section and converts light in a third wavelength range shorter than the first wavelength range into charges;
a first optical filter that is disposed on a side opposite to the base of the first photoelectric conversion unit and that transmits light in a first wavelength range;
a third optical filter disposed on the opposite side of the third photoelectric conversion unit from the base, transmitting light in a third wavelength range, and having a thickness thinner than the thickness of the first optical filter; solid-state imaging device. - 前記基体に配設され、前記基体とは反対側の表面から厚さ方向に向かって形成された開口を有する絶縁体を備え、
前記第1光学フィルタ、前記第3光学フィルタのそれぞれは、前記開口内に配設され、
前記第1光学フィルタ、前記第3光学フィルタのそれぞれの前記基体とは反対側の表面、及び当該表面から前記基体とは反対側に向かって前記開口内側壁に形成され、前記第1光学フィルタ、前記第3光学フィルタのそれぞれの組成物質を封止する第1封止体を更に備えている
請求項16に記載の固体撮像装置。 an insulator disposed on the base body and having an opening formed in the thickness direction from a surface opposite to the base body;
Each of the first optical filter and the third optical filter is disposed within the opening,
The first optical filter is formed on a surface of each of the first optical filter and the third optical filter opposite to the base, and on the inner wall of the opening from the surface toward the opposite side from the base, The solid-state imaging device according to claim 16, further comprising a first sealing body that seals each constituent material of the third optical filter. - 前記第1封止体は、屈折率が異なる2以上の層を積層して形成されている
請求項17に記載の固体撮像装置。 The solid-state imaging device according to claim 17, wherein the first sealing body is formed by laminating two or more layers having different refractive indexes. - 前記開口は、前記基体とは反対側の表面から前記基体側へ向かって開口寸法を小さくし、断面テーパ形状に形成されている
請求項17に記載の固体撮像装置。 The solid-state imaging device according to claim 17, wherein the opening has a tapered cross-sectional shape with an opening size decreasing from the surface opposite to the base toward the base. - 前記第1光学フィルタ、前記第3光学フィルタのそれぞれは、前記基体とは反対側に湾曲する断面形状に形成されている
請求項16に記載の固体撮像装置。 The solid-state imaging device according to claim 16, wherein each of the first optical filter and the third optical filter is formed to have a cross-sectional shape that curves on a side opposite to the base. - 前記第1光学フィルタ、前記第3光学フィルタのそれぞれは、前記基体側に湾曲する断面形状に形成されている
請求項16に記載の固体撮像装置。 The solid-state imaging device according to claim 16, wherein each of the first optical filter and the third optical filter is formed to have a cross-sectional shape that curves toward the base body. - 前記第1光学フィルタは、前記基体とは反対側に湾曲する断面形状に形成され、
前記第3光学フィルタは、前記基体側に湾曲する断面形状に形成されている
請求項16に記載の固体撮像装置。 The first optical filter is formed in a cross-sectional shape that curves on the opposite side from the base,
The solid-state imaging device according to claim 16, wherein the third optical filter is formed to have a cross-sectional shape that curves toward the base body. - 前記第1光学フィルタの前記基体とは反対側の表面位置は、前記第3光学フィルタの同一側の表面位置に一致されている
請求項16に記載の固体撮像装置。 The solid-state imaging device according to claim 16, wherein a surface position of the first optical filter on the opposite side to the base body is matched with a surface position on the same side of the third optical filter. - 前記第3光学フィルタと前記基体との間に、前記絶縁体が配設されている
請求項23に記載の固体撮像装置。 The solid-state imaging device according to claim 23, wherein the insulator is disposed between the third optical filter and the base. - 前記第1光学フィルタの前記第1光電変換部とは反対側及び前記第3光学フィルタの前記第3光電変換部とは反対側に配設され、前記第1波長域及び前記第3波長域とは異なる第2波長域の光を電荷に変換する第2光電変換部と、
前記第2光電変換部に配設され、前記第2光電変換部において変換された電荷を蓄積し転送する電荷蓄積転送層とを更に備えている
請求項16に記載の固体撮像装置。 disposed on a side of the first optical filter opposite to the first photoelectric conversion section and on a side opposite to the third photoelectric conversion section of the third optical filter, and configured to be connected to the first wavelength range and the third wavelength range. a second photoelectric conversion unit that converts light in a different second wavelength range into charges;
The solid-state imaging device according to claim 16, further comprising a charge storage and transfer layer that is disposed in the second photoelectric conversion section and that stores and transfers charges converted in the second photoelectric conversion section.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-137910 | 2022-08-31 | ||
JP2022137910 | 2022-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024048488A1 true WO2024048488A1 (en) | 2024-03-07 |
Family
ID=90099861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/030869 WO2024048488A1 (en) | 2022-08-31 | 2023-08-28 | Solid-state imaging device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024048488A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015092546A (en) * | 2013-09-30 | 2015-05-14 | 富士フイルム株式会社 | Photoelectric conversion device and image pickup device |
JP2015170620A (en) * | 2014-03-04 | 2015-09-28 | 株式会社東芝 | solid-state imaging device |
JP2019169693A (en) * | 2018-03-23 | 2019-10-03 | パナソニックIpマネジメント株式会社 | Photoelectric conversion material and photoelectric conversion element |
JP2019192802A (en) * | 2018-04-26 | 2019-10-31 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device and manufacturing method of imaging device |
WO2022131268A1 (en) * | 2020-12-16 | 2022-06-23 | ソニーセミコンダクタソリューションズ株式会社 | Photoelectric conversion element, light detection apparatus, light detection system, electronic device, and moving body |
-
2023
- 2023-08-28 WO PCT/JP2023/030869 patent/WO2024048488A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015092546A (en) * | 2013-09-30 | 2015-05-14 | 富士フイルム株式会社 | Photoelectric conversion device and image pickup device |
JP2015170620A (en) * | 2014-03-04 | 2015-09-28 | 株式会社東芝 | solid-state imaging device |
JP2019169693A (en) * | 2018-03-23 | 2019-10-03 | パナソニックIpマネジメント株式会社 | Photoelectric conversion material and photoelectric conversion element |
JP2019192802A (en) * | 2018-04-26 | 2019-10-31 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device and manufacturing method of imaging device |
WO2022131268A1 (en) * | 2020-12-16 | 2022-06-23 | ソニーセミコンダクタソリューションズ株式会社 | Photoelectric conversion element, light detection apparatus, light detection system, electronic device, and moving body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10840398B2 (en) | Photoelectric conversion element, method for manufacturing same, and imaging apparatus | |
JP7524082B2 (en) | Image sensor and image pickup device | |
JP7359766B2 (en) | Solid-state image sensor, solid-state image sensor, and readout method for solid-state image sensor | |
JP7372243B2 (en) | Image sensor and imaging device | |
WO2019181456A1 (en) | Solid-state imaging element and solid-state imaging device | |
JP7420713B2 (en) | Solid-state imaging device, solid-state imaging device, electronic device, and method for manufacturing solid-state imaging device | |
US12002832B2 (en) | Solid-state image sensor, solid-state imaging device, and method of manufacturing solid-state image sensor | |
US11990497B2 (en) | Solid-state imaging element and electronic device | |
TW202232743A (en) | Solid-state imaging device and electronic apparatus | |
TWI810298B (en) | Solid-state imaging device and manufacturing method thereof | |
WO2017159130A1 (en) | Photoelectric conversion element, method for manufacturing same, and imaging apparatus | |
WO2024048488A1 (en) | Solid-state imaging device | |
US20220173166A1 (en) | Solid-state imaging device and electronic equipment | |
WO2023248618A1 (en) | Solid-state imaging device | |
WO2024106013A1 (en) | Solid-state imaging device | |
WO2024100993A1 (en) | Solid-state imaging device | |
WO2024202539A1 (en) | Light detection device | |
WO2023100725A1 (en) | Light detection device, electronic apparatus, and light detection system | |
WO2023181919A1 (en) | Imaging element, method for manufacturing imaging element, and optical detection device | |
WO2023153308A1 (en) | Photoelectric conversion element and optical detection device | |
WO2024070293A1 (en) | Photoelectric conversion element, and photodetector | |
KR20230073188A (en) | Solid-state imaging devices and electronic devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23860250 Country of ref document: EP Kind code of ref document: A1 |