WO2018147202A1 - Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device - Google Patents

Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device Download PDF

Info

Publication number
WO2018147202A1
WO2018147202A1 PCT/JP2018/003691 JP2018003691W WO2018147202A1 WO 2018147202 A1 WO2018147202 A1 WO 2018147202A1 JP 2018003691 W JP2018003691 W JP 2018003691W WO 2018147202 A1 WO2018147202 A1 WO 2018147202A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
photoelectric conversion
group
organic
conversion element
Prior art date
Application number
PCT/JP2018/003691
Other languages
French (fr)
Japanese (ja)
Inventor
哲生 高橋
塩原 悟
鎌谷 淳
山田 直樹
智奈 山口
博揮 大類
岩脇 洋伸
真澄 板橋
洋祐 西出
広和 宮下
典史 梶本
萌恵 野口
功 河田
祐斗 伊藤
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017221684A external-priority patent/JP7086573B2/en
Priority claimed from JP2017250929A external-priority patent/JP7039285B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201880010394.5A priority Critical patent/CN110301052B/en
Priority to EP18751875.8A priority patent/EP3582275B1/en
Publication of WO2018147202A1 publication Critical patent/WO2018147202A1/en
Priority to US16/523,115 priority patent/US11128791B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This invention relates to the photoelectric conversion element provided with the photoelectric converting layer comprised with an organic semiconductor.
  • Patent Document 1 discloses a small amount of low-molecular-weight organic compound in addition to a bulk heterostructure of a p-type organic semiconductor and an n-type organic semiconductor as a photoelectric conversion layer excellent in heat resistance that suppresses an increase in dark current accompanying a temperature rise. The containing structure is disclosed.
  • Patent Document 2 discloses a photoelectric conversion layer that has improved incident light absorption efficiency by including a structure containing two or more types of electron-donating polymer organic materials in addition to an electron-accepting material. Has been.
  • Patent Documents 1 and 2 as a photoelectric conversion layer made of an organic compound, by adding a third compound in addition to a p-type organic semiconductor and an n-type organic semiconductor, an increase in dark current due to a temperature rise is suppressed.
  • it is disclosed to increase the absorption efficiency of incident light.
  • the present invention aims to reduce dark current in a photoelectric conversion element having a photoelectric conversion layer composed of a bulk heterostructure of a p-type organic semiconductor and an n-type organic semiconductor, and using the photoelectric conversion element, a low-noise optical area.
  • An object is to provide a sensor, an imaging device, and an imaging device.
  • the photoelectric conversion element of the present invention has an anode, a photoelectric conversion layer, and a cathode in this order, and the photoelectric conversion layer includes a first organic semiconductor, a second organic semiconductor, and a third organic semiconductor.
  • the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor are all low-molecular organic semiconductors, and the first organic semiconductor and the second organic semiconductor Among the semiconductors, one is a p-type semiconductor, the other is an n-type semiconductor, and the mass ratio of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is: First organic semiconductor ⁇ second organic semiconductor ⁇ third organic semiconductor, and when the total of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is 100% by mass,
  • the photoelectric conversion element is characterized in that the content of the second organic semiconductor is 6% by mass or more and the content of the third organic semiconductor is 3% by mass or more.
  • a photoelectric conversion element capable of performing photoelectric conversion with a low dark current can be provided by configuring the photoelectric conversion layer with three kinds of low-molecular organic semiconductors.
  • FIG. 1 is a schematic diagram showing a dark current generation mechanism in a photoelectric conversion layer.
  • FIG. 2 is a schematic diagram for explaining the effect of the third organic semiconductor according to the present invention.
  • FIG. 3 is a schematic view of a mixed film of a first organic semiconductor and a second organic semiconductor approximated to a rectangular parallelepiped.
  • FIG. 4 is a diagram showing a correspondence relationship between experimental values and calculated values of SP values of organic semiconductors.
  • FIG. 5 is a schematic diagram showing an example of a preferable relationship between the oxidation potential and the reduction potential of the organic semiconductor according to the present invention.
  • FIG. 6 is a schematic diagram showing an example of a preferable oxidation potential / reduction potential relationship of the organic semiconductor according to the present invention.
  • FIG. 1 is a schematic diagram showing a dark current generation mechanism in a photoelectric conversion layer.
  • FIG. 2 is a schematic diagram for explaining the effect of the third organic semiconductor according to the present invention.
  • FIG. 3 is a schematic view of a mixed
  • FIG. 7 is a schematic cross-sectional view of one embodiment of the photoelectric conversion element of the present invention.
  • FIG. 8 is an equivalent circuit diagram of an example of a pixel including the photoelectric conversion element shown in FIG.
  • FIG. 9 is a plan view schematically showing a configuration of a photoelectric conversion device using the photoelectric conversion element of the present invention.
  • FIG. 10 is a diagram showing a waveform example when determining the oxidation potential and reduction potential of the organic semiconductor used in the present invention by cyclic voltammetry.
  • FIG. 11 is a diagram illustrating an Arrhenius plot of the dark current value of the photoelectric conversion element of the example of the present specification.
  • FIG. 12 is a graph in which the increase rate of the conversion efficiency of the photoelectric conversion element of the example of the present specification is plotted against ⁇ Eg.
  • the photoelectric conversion element of the present invention is a photoelectric conversion element having a reduced dark current, which includes a photoelectric conversion layer made of an organic compound between an anode and a cathode.
  • the photoelectric conversion layer of the present invention has a p-type organic semiconductor and an n-type organic semiconductor, and further has a third organic semiconductor to reduce dark current.
  • the p-type organic semiconductor, the n-type organic semiconductor, and the third organic semiconductor constituting the photoelectric conversion layer are all low-molecular organic semiconductors.
  • the photoelectric conversion layer that is a feature of the present invention will be described.
  • the photoelectric conversion layer generates charges according to the amount of light by absorbing light.
  • the photoelectric conversion layer according to the present invention contains at least a first organic semiconductor, a second organic semiconductor, and a third organic semiconductor, and these organic semiconductors are all low molecular organic semiconductors.
  • One of the first organic semiconductor and the second organic semiconductor is a p-type organic semiconductor (hereinafter referred to as “p-type semiconductor”), and the other is an n-type organic semiconductor (hereinafter referred to as “n-type semiconductor”). ).
  • the one with a lower oxidation potential is a p-type semiconductor
  • the one with a higher oxidation potential is an n-type semiconductor.
  • Photoelectric conversion efficiency (sensitivity) can be improved by mixing a p-type semiconductor and an n-type semiconductor in the photoelectric conversion layer.
  • the mass ratio of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is such that the first organic semiconductor ⁇ the second organic semiconductor ⁇ the third organic semiconductor.
  • the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor when the content (% by mass) in the photoelectric conversion layer is equal, the first, second, Third. That is, when three types of organic semiconductors are equally contained, the organic semiconductor having the largest molecular weight among the three types of organic semiconductors is the first organic semiconductor, and the molecular weight of the three types of organic semiconductors is the same. The smallest organic semiconductor is the third organic semiconductor.
  • the photoelectric conversion layer according to the present invention may be composed of at least the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor. Other than these materials, that is, other materials may be included as long as the current reduction effect is not impaired.
  • the mass ratio of the other material may be equal to or less than the content of the third organic semiconductor.
  • the other material may be an organic semiconductor different from the first to third organic semiconductors. In this case, the mass ratio of the other material that is the organic semiconductor is not more than the content of the third organic semiconductor. is there.
  • the other material is an organic semiconductor and the content thereof is equal to the content of the third organic semiconductor, the one having a higher molecular weight is the third organic semiconductor.
  • the third organic semiconductor of the present invention is added to suppress dark current generated when the photoelectric conversion layer is composed of only the first organic semiconductor and the second organic semiconductor.
  • the third organic semiconductor is also preferably a p-type semiconductor.
  • the third organic semiconductor is also An n-type semiconductor is preferable. Whether the third organic semiconductor is a p-type semiconductor or an n-type semiconductor can be estimated by its oxidation potential.
  • the oxidation potential of the third organic semiconductor is close to the oxidation potential of a compound that is a p-type semiconductor among the first organic semiconductor and the second organic semiconductor, the third organic semiconductor is a p-type semiconductor.
  • the third organic semiconductor is an n-type semiconductor.
  • the photoelectric conversion function of the second organic semiconductor having a lower content in the photoelectric conversion layer than the first organic semiconductor (the electron donor function if the second organic semiconductor is a p-type semiconductor, the electron if the second organic semiconductor is an n-type semiconductor) The acceptor function) may be supplemented by a third organic semiconductor.
  • the wavelength at which the absorptance in the visible light region (wavelength 400 nm to 730 nm) of the third organic semiconductor thin film is maximized is the absorptance in the visible light region of each of the first organic semiconductor and the second organic semiconductor. It is preferable that the wavelength is between two wavelengths that are maximum. Thereby, the absorption of the wavelength region between the absorption bands of the first organic semiconductor and the second organic semiconductor can be efficiently supplemented by the third organic semiconductor.
  • the content of the second organic semiconductor is 6% by mass or more
  • the third organic semiconductor The semiconductor content is 3% by mass or more.
  • a conventional photoelectric conversion layer has a bulk heterostructure in which a p-type semiconductor and an n-type semiconductor are mixed. That is, the photoelectric conversion layer has a binary configuration in which two types of organic semiconductors, a first organic semiconductor and a second organic semiconductor, are used in combination. The mass ratio of the first organic semiconductor in the photoelectric conversion layer is larger than the mass ratio of the second organic semiconductor. In such a photoelectric conversion layer, the first organic semiconductor and the second organic semiconductor supplement each other's absorption wavelength region, whereby panchromatic absorption can be obtained. In such a configuration, sufficient panchromatic absorption can be realized when the mass ratio of the second organic semiconductor in the photoelectric conversion layer is larger.
  • FIG. 1 is a schematic diagram showing a basic dark current generation mechanism in a photoelectric conversion layer.
  • HOMO highest occupied orbital
  • LUMO lowest empty orbital
  • the level relationship is illustrated. It is considered that the dark current is generated when electrons existing in the HOMO level of the p-type semiconductor move to the LUMO level of the n-type semiconductor by thermal energy. In this case, the energy barrier for electron transfer is ⁇ E 1 .
  • each is associated with the same compound, for example, by forming a dimer.
  • the density of states of the HOMO level and the LUMO level forms an energy spread.
  • FIG. 2 is a schematic view for explaining the effect of the third organic semiconductor of the photoelectric conversion element of the present invention.
  • the solid line in FIG. 2 schematically represents the energy distribution of the state density of the HOMO level and the LUMO level in the binary mixed film of the first organic semiconductor and the second organic semiconductor.
  • the broken line is a schematic diagram of the state density energy distribution in the mixed film of the ternary configuration of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor. The broken line will be described later.
  • the first organic semiconductor is an n-type semiconductor
  • the second organic semiconductor is a p-type semiconductor.
  • the energy barrier ⁇ E 2 for electron transfer considering the energy spread of the binary density of states is smaller than ⁇ E 1 when considered in terms of the energy level of a single molecule.
  • the smaller the energy barrier ⁇ E 2 for electron transfer the greater the dark current. That is, as the energy spread of the state density is wider, ⁇ E 2 becomes smaller and dark current is more likely to occur. Therefore, as the mass ratio of the second organic semiconductor in the photoelectric conversion layer increases, the compounds in the second organic semiconductor are more likely to associate with each other, and the energy density of the state density of the HOMO level and the LUMO level is increased. It is thought that it becomes easy to spread. For this reason, it is considered that the dark current increases as the mass ratio of the second organic semiconductor increases.
  • Non-Patent Document 1 describes that in a mixed film of two kinds of organic compounds, molecules are associated with each other when the organic compound at a low concentration is 6% by mass or more. Specifically, it is described that at a mass ratio of 6% by mass or more, the emission of the organic compound becomes longer in wavelength and the tendency of concentration quenching begins to appear. The increase in the wavelength of light emission is considered to be due to the fact that the energy spread of the state density of the HOMO level and the LUMO level is increased and the effective band gap is reduced.
  • the present inventors have discovered the following as a result of intensive studies. Even if the mass ratio of the second organic semiconductor is 6% by mass or more, only the first organic semiconductor and the second organic semiconductor can be obtained by mixing the third organic semiconductor so as to be 3% by mass or more. This means that the dark current can be reduced as compared with the case of mixing.
  • the mass ratio of the second organic semiconductor is 6% by mass or more
  • the mass ratio of the third organic semiconductor is 3% by mass or more.
  • the mass ratio when the total amount of the second organic semiconductor and the third organic semiconductor is 100% by mass.
  • the state density energy represented by the broken line in FIG. 2 represents the HOMO level in the binary mixed film of the first organic semiconductor and the second organic semiconductor of the photoelectric conversion element of the present invention having the third organic semiconductor.
  • 4 schematically shows an energy distribution of density of states of LUMO levels.
  • the state density energy represented by the broken line is less spread than the state density energy represented by the solid line. This is considered that the association of the compounds in the second organic semiconductor is suppressed by further having the third organic semiconductor. As a result, the energy spread of the state density of each level can be suppressed.
  • the first organic semiconductor is an n-type semiconductor and the second organic semiconductor is a p-type semiconductor.
  • the first organic semiconductor is a p-type semiconductor and the second organic semiconductor.
  • n is an n-type semiconductor
  • the effect of mixing the third organic semiconductor is similarly exhibited.
  • the effect obtained by adding the third organic semiconductor can be obtained even when the mass ratio of the first organic semiconductor and the second organic semiconductor is equal.
  • the total amount of the first, second, and third organic semiconductors is 100% by mass, and the mass ratio of the third organic semiconductor is 3% by mass or more. , Preferably 6% by mass or more, particularly preferably 10% by mass or more.
  • the ratio of the mass ratio of the third organic semiconductor to the mass ratio of the second organic semiconductor is preferably 0.12 or more. This is because the association of the second organic semiconductor can be effectively suppressed by the third organic semiconductor.
  • the ratio is more preferably 0.24 or more, and particularly preferably 0.4 or more.
  • the total amount of the first, second, and third organic semiconductors is 100% by mass, and the mass ratio of the second organic semiconductor is more preferably 10% by mass or more.
  • Patent Document 3 describes that when two compounds are mixed, concentration quenching of light emission occurs remarkably when the compound having the lower mixing concentration is 10% by mass or more. That is, when the content is 10% by mass or more, more remarkable association occurs. Therefore, also in the present invention, when the total amount of the first, second, and third organic semiconductors is 100% by mass, the second organic semiconductors are It is considered that the association is remarkable, and the effect of adding the third organic semiconductor is considered to be more remarkable.
  • the light absorption factor of the absorption band of a 2nd organic semiconductor can be made high by making a 2nd organic semiconductor into 10 mass% or more. That is, if the mass ratio of the second organic semiconductor of the photoelectric conversion element of the present invention is 10% by mass or more, the light absorption rate can be increased while suppressing dark current.
  • the second organic semiconductor when the total amount of the first, second and third organic semiconductors is 100% by mass, the second organic semiconductor is preferably 17% by mass or more.
  • the mass ratio of the second organic semiconductor is 17% by mass or more, the probability that the second organic semiconductors are in contact with each other is particularly high. Therefore, it is easy to cause the interaction by more remarkable stacking, and the dark current reduction effect when the third organic semiconductor is mixed becomes remarkable by that amount. The reason will be described with reference to FIG.
  • FIG. 3 is a schematic diagram of a mixed film of a binary configuration of a first organic semiconductor and a second organic semiconductor approximated to a rectangular parallelepiped.
  • the three-dimensional shape of the low-molecular organic compound is that when the position of each atom forming the organic compound is plotted in three-dimensional coordinates, the difference between the maximum value and the minimum value of each coordinate axis of X, Y, Z is the length and Can be approximated to a rectangular parallelepiped with one side as a side.
  • a rectangular parallelepiped of the same size is filled in a three-dimensional space, as shown in FIG.
  • FIG. 3 shows six rectangular parallelepipeds B adjacent to the rectangular parallelepiped A in terms of surfaces and their centers of gravity.
  • the second organic semiconductor having a small mass ratio in the mixed film is a rectangular parallelepiped A.
  • the second organic semiconductors are in contact with each other on the surface. That is, in the mixed film of the first organic semiconductor and the second organic semiconductor, when the mass ratio of the second organic semiconductor is 1/6, that is, approximately 17% by mass or more, the second organic semiconductors are mixed in the mixed film. It can be seen that the surfaces touch each other and can cause strong stacking interactions.
  • the number of rectangular parallelepipeds that contact with the sides is 12 for a total of 18. That is, the condition in which the second organic semiconductors are in contact with each other at the face or side is estimated to be 1/18, that is, approximately 6% by mass or more in the mixed film.
  • the second organic semiconductor when the total amount of the first, second and third organic semiconductors is 100% by mass, the second organic semiconductor is 6% by mass or more, preferably 17% by mass or more.
  • the effect of reducing the dark current by mixing the third organic semiconductor was supported by geometrical considerations.
  • the dark current reduction effect obtained by adding the third organic semiconductor to the mixed film of the first organic semiconductor and the second organic semiconductor is the first, second, and second.
  • the second organic semiconductor is obtained at 6% by mass or more.
  • the dark current reducing effect is exhibited in the third organic semiconductor at 3% by mass or more, but such an effect is obtained until the second organic semiconductor has the same amount as the first organic semiconductor.
  • Three organic semiconductors can be added until the same amount as the second organic semiconductor. Therefore, in the present invention, the mass ratio of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is The first organic semiconductor ⁇ the second organic semiconductor ⁇ the third organic semiconductor.
  • the photoelectric conversion element which concerns on this invention reduces dark current by having 3 mass% or more of 3rd organic semiconductors. In order to further enhance this effect, it is preferable to select a third organic semiconductor having a high effect.
  • the highly effective third organic semiconductor can be selected by using the solubility parameter.
  • the solubility parameter (hereinafter sometimes simply referred to as “SP value”) can be obtained by an experimentally obtained value or calculation. Experimentally, it can be determined experimentally by examining the solubility in various solvents as in Non-Patent Document 3. When the experimental value cannot be used, a method proposed by Fedors (Non-Patent Document 2) can be used as a theoretical estimation method of the SP value.
  • the SP value is obtained as follows. First, a molecular structure is divided into atoms or atomic groups constituting it. The divided unit is hereinafter referred to as a divided unit. From the table described in Non-Patent Document 2, the evaporation energy ( ⁇ E k ) (J / mol) and the molar volume ( ⁇ V k ) (cm 3 / mol) are determined for each divided unit. Next, using these values, the value defined by Equation 1 below is called an SP value. This method is called group contribution method. The SP value is the square root of the cohesive energy density. In the present invention, the unit is (J / cm 3 ) 1/2 .
  • this calculation method cannot be used for compounds having an excluded volume in the molecular structure.
  • the compound having an excluded volume in the molecular structure include fullerene derivatives such as C60. This is because a fullerene derivative having a spherical molecular structure has an excluded volume inside the molecular structure, and thus it is difficult to determine the molecular volume. Similarly, calixarene derivatives and cyclodextrin derivatives are also difficult to calculate because they have an excluded volume inside the molecular structure.
  • Experimental values can be used for SP values of fullerene derivatives and the like that cannot be calculated by this calculation method.
  • the experimental value of the SP value can be obtained according to Non-Patent Document 3.
  • the SP value ( ⁇ T) 20.0 obtained by Non-Patent Document 3 can be used.
  • Table 1 shows the calculated values and experimental values based on Non-Patent Document 2.
  • [4] indicates a quoted value from Non-Patent Document 4
  • [5] indicates a quoted value from Non-Patent Document 5.
  • FIG. 4 is a diagram showing the relationship between the experimental values and the calculated values in Table 1.
  • the calculated value and the experimental value show linearity, and there is no big difference. That is, the SP value of Equation 1 shown in this specification may be handled in the same way as the experimental value.
  • Table 1 the order of the experimental values and the calculated values may be reversed, such as pyridine and aniline, but when looking at FIG. 4 in which the above is plotted, the calculated values and the experimental values are close to each other as a whole. The order relationship does not change greatly.
  • SP value of the first organic semiconductor is SP1
  • SP value of the second organic semiconductor is
  • SP2 and the SP value of the third organic semiconductor are denoted as SP3.
  • These three SP values preferably satisfy the relationships of the following formulas (2) and (3).
  • the second organic semiconductor becomes easier to mix with the third organic semiconductor than to mix with the first organic semiconductor.
  • the third organic semiconductor is easily mixed with the second organic semiconductor.
  • the spread of the state density energy of the HOMO level and the LUMO level due to the association between the second organic semiconductors is suppressed. Thereby, for example, the decrease in ⁇ E12 shown in FIG. 5 is suppressed, and the dark current is reduced.
  • the SP values of the first to third organic semiconductors satisfy the relationships of the following formulas (4) to (6).
  • the second and third organic semiconductors are preferentially mixed rather than mixed with the first organic semiconductor. More preferably, the solubility parameters of the second and third organic semiconductors satisfy the relationship of the following formula (7).
  • the second and third organic semiconductors are preferably p-type.
  • the second and third organic semiconductors are preferably n-type.
  • Such a relationship is preferable because a phase of the first organic semiconductor as the main component is easily formed and a phase in which the second and third organic semiconductors are mixed is easily formed.
  • the first organic semiconductor as the main component becomes the main structure of the phase separation structure as the internal structure of the photoelectric conversion layer, and it is considered that high charge separation efficiency and high charge transport ability are easily realized.
  • the generation of dark current due to thermal excitation is reduced by the mixed state of the second and third organic semiconductors. Therefore, a dark current is reduced and a photoelectric conversion element having high photoelectric conversion characteristics can be obtained.
  • the photoelectric conversion element In order to improve the resolution of the photoelectric conversion element, it is preferable not only to lower N of the S / N ratio but also to improve S.
  • an element having an EQE peak on the long wavelength side is more preferable than an element having an EQE peak on the short wavelength side.
  • the conversion efficiency ( ⁇ ) is high. More specifically, when the first organic semiconductor is an n-type semiconductor and the second and third organic semiconductors are p-type semiconductors, a photoelectric conversion element constituted by the first organic semiconductor and the second organic semiconductor 1 and a photoelectric conversion element 2 composed of a first organic semiconductor and a third organic semiconductor are assumed.
  • the spectrum which shows the value of the external quantum efficiency (EQE) with respect to the wavelength of each photoelectric conversion element is obtained.
  • the conversion efficiency of the photoelectric conversion element 2 is preferably higher than the conversion efficiency of the photoelectric conversion element 1.
  • the photoelectric conversion element 1 and the photoelectric conversion element 2 are assumed as described above.
  • the photoelectric conversion element 1 and the photoelectric conversion element 2 preferably satisfy the following relational expressions (8) and (9). .
  • ⁇ 1 is the conversion efficiency of the photoelectric conversion element 1
  • ⁇ 2 is the conversion efficiency of the photoelectric conversion element 2.
  • or 3rd organic semiconductor is represented as (eta) 3 .
  • ⁇ Eg is an energy difference obtained from an EQE peak wavelength difference between the photoelectric conversion element 1 and the photoelectric conversion element 2.
  • External quantum efficiency is also called quantum efficiency, and is the efficiency at which the total number of photons incident on an element changes to an electrical signal.
  • a high EQE means a high sensitivity as a photoelectric conversion element.
  • the external quantum efficiency or quantum efficiency is also referred to as “EQE”.
  • the EQE is incident on a photoelectric conversion element applied with a predetermined voltage, for example, with an A light source (standard light source) or an Xe light source without being split or split, and is converted from photons to electrons out of all the incident photons. This is the efficiency obtained by measuring the current value with an ammeter instead of an electrical signal.
  • the spectral sensitivity spectrum is obtained by measuring the EQE of each wavelength by separating the incident light.
  • the absorptance of the photoelectric conversion layer is the ratio of light absorption by the film disposed between the electrodes out of the total number of photons incident on the photoelectric conversion element.
  • the conversion efficiency ( ⁇ ) can be obtained, for example, as follows.
  • the absorptance can be measured by forming a transparent pixel portion by using a transparent electrode such as IZO, which is an organic photoelectric conversion element on a transparent substrate, both of which is a lower electrode and an upper electrode. As a measuring device, it is possible to use Shimadzu Solidspec 3700.
  • the photoelectric conversion current can be obtained by subtracting the dark current from the photocurrent that flows during light irradiation of this element, and the external quantum yield can be obtained by converting them into the number of electrons and dividing by the number of irradiated photons.
  • the conversion efficiency ( ⁇ ) can be determined from the external quantum yield and the absorption rate of the photoelectric conversion layer.
  • the photoelectric conversion layer in the present invention is composed of at least first, second and third organic semiconductors, and there are at least two combinations of p-type and n-type ones.
  • a photoelectric conversion element having a photoelectric conversion layer that can be configured by the two combinations has spectral sensitivity characteristics composed of respective absorption wavelength bands and conversion efficiency.
  • the absorption peak wavelength and band gap of the organic semiconductor can be used as an index representing the absorption band of the organic semiconductor.
  • An absorption peak wavelength and an optical absorption edge can be obtained by preparing a thin film made of a single material of about 100 nm or less by vacuum deposition or the like by spin coating or by measuring an absorption spectrum of the film.
  • the absorption peak wavelength here refers to the peak on the longest wavelength side as the absorption band, and is the peak wavelength of the first absorption band.
  • the absorption peak wavelength in the absorption band for example, a single peak indicates the peak, and a multiple peak (also referred to as a vibration structure) indicates the longest wavelength peak.
  • the optical absorption edge corresponds to a band gap.
  • the photoelectric conversion element made of an organic semiconductor having a smaller band gap has a longer absorption peak wavelength and a corresponding EQE peak wavelength on the longer wavelength side.
  • the EQE peak wavelength is unclear, it can be determined by fabricating an element in which the concentration of the organic semiconductor is adjusted so as to increase the absorption rate. If the EQE peak wavelength cannot be confirmed at any concentration, the inflection point at which the EQE value tends to increase when viewed from the long wavelength side to the short wavelength side is used as an index as the spectral characteristics of the EQE. It can be considered as a similar index.
  • Excitation energy transfer is a phenomenon called mainly Förster type (fluorescence resonance) energy transfer. This occurs when there is an overlap between the emission spectrum of the light-absorbed organic semiconductor and the absorption spectrum of another organic semiconductor that receives the energy. The larger the overlap, the easier the energy moves. And energy tends to move from a high state to a low state. That is, the excitation energy moves from the light-absorbed organic semiconductor toward the organic semiconductor having an absorption band on the longer wavelength side.
  • the organic semiconductor serving as the energy acceptor preferably has a high absorption probability, that is, preferably has a large molar extinction coefficient. This energy transfer process is a phenomenon with a very small time constant as well as an electron transfer process.
  • the excitation energy of the photoexcited organic semiconductor moves toward the organic semiconductor with a small band gap. Then, charge separation occurs between a pair of p-type and n-type organic semiconductors including the p-type or n-type organic semiconductor to which the excitation energy has been transferred. It is a feature of the present invention that this combination is a combination of organic semiconductors having sensitivity on the long wavelength side.
  • the combination is included in a photoelectric conversion element having a photoelectric conversion layer made of the first, second, and third organic semiconductors, so that photoexcitation energy absorbed at various wavelengths can be converted into p-type with high conversion efficiency. -It becomes possible to collect charge in n-type combinations and separate them.
  • a photoelectric conversion element having an EQE peak on the short wavelength side in an element provided with a photoelectric conversion layer that can be composed of one organic semiconductor of p-type and n-type among the first, second, and third organic semiconductors A photoelectric conversion element having a high sensitivity can be obtained because the conversion efficiency ( ⁇ ) of a photoelectric conversion element having an EQE peak on the longer wavelength side is high. As a result, the sensitivity of the photoelectric conversion element is improved over the entire wavelength region having absorption, and the S / N ratio is improved.
  • the organic semiconductor has a molar extinction coefficient of at least 1000 mol L ⁇ 1 cm ⁇ 1 , more preferably 10000 mol L ⁇ 1 cm ⁇ 1 or more.
  • the first absorption band of the organic semiconductor group exemplified as the p-type organic semiconductor material is in the visible light region, and the molar extinction coefficient thereof is at least 1000 mol L ⁇ 1 cm ⁇ 1 or more.
  • the molar extinction coefficient is less than 1000 mol L ⁇ 1 cm ⁇ 1 and does not function effectively as an energy acceptor.
  • the first, second, and third organic semiconductors in the present invention are all low molecular organic compounds.
  • Organic compounds are broadly classified into low molecules, oligomer molecules, and polymers, depending on the molecule.
  • the polymer and oligomer molecules are defined by the International Pure Chemicals Association (IUPAC) Polymer Nomenclature Committee as follows.
  • Macromolecule, polymer molecule A molecule having a large molecular mass and having a structure composed of many repetitions of units substantially or conceptually obtained from a molecule having a small relative molecular mass.
  • Oligomer molecule A molecule having a medium relative molecular mass and a structure composed of a small number of repetitions of units substantially or conceptually obtained from a molecule having a small relative molecular mass Say.
  • the first, second, and third organic semiconductors in the present invention are molecules that do not meet the definition of the polymer, polymer molecule, and oligomer molecule. That is, it is a molecule in which the number of repeating units is a small number of times, preferably 3 or less, more preferably 1.
  • fullerene described later is a closed-shell hollow compound, but one closed-shell structure is regarded as one repeating unit.
  • C60 has a low molecular weight because the number of repetitions is one.
  • the organic semiconductor used in the present invention does not exist in nature and is a molecule obtained by synthesis, but does not have molecular weight dispersibility due to a difference in repeating units.
  • the photoelectric conversion layer has a low molecular organic semiconductor having no dispersibility due to the difference in the repeating unit and having a repeating unit of 3 or less, preferably 1, more preferably a molecular weight of 1500 or less having sublimation properties.
  • the low molecular organic semiconductor is used.
  • the present invention is not limited to the oxidation potential and reduction potential relationship of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor. And LUMO level energy spread is suppressed. Therefore, although the dark current reduction effect appears in the present invention, it is preferable because the dark current reduction effect tends to be large when an oxidation potential and reduction potential relationship described below is satisfied.
  • FIG. 5 shows a preferred oxidation potential and reduction potential relationship with the third organic semiconductor when the first organic semiconductor is an n-type semiconductor and the second organic semiconductor is a p-type semiconductor in the present invention.
  • the oxidation potential corresponds to the HOMO level of each organic semiconductor.
  • the reduction potential corresponds to the LUMO level of each organic semiconductor.
  • the oxidation-reduction potential is a potential energy difference between a molecule in a solution and an electrode, and is a physical property value of the molecule alone. In the configuration of FIG. 5, it is preferable that the relationship between the potentials satisfies the following expressions (11) and (12).
  • ⁇ E 13 formed between the level and the HOMO level of the third organic semiconductor is equal to or larger.
  • Delta] E 12 Delta] E 23 to form a third organic semiconductor LUMO level and the HOMO level of the second organic semiconductor is equal to or greater.
  • FIG. 6 shows a preferable oxidation potential and reduction potential relationship with the third organic semiconductor when the first organic semiconductor is a p-type semiconductor and the second organic semiconductor is an n-type semiconductor in the present invention. .
  • the relationship between the potentials satisfies the following expressions (13) and (14).
  • the first organic semiconductor may be an n-type semiconductor or a p-type semiconductor.
  • fullerene which is an n-type semiconductor, or a derivative thereof is used as the first organic semiconductor, the heat resistance is easily stabilized, Is preferable because it is easy.
  • the p-type semiconductor used in the present invention is an electron donor organic semiconductor, which is mainly an organic compound represented by a hole transporting organic compound and has a property of easily donating electrons.
  • the p-type semiconductor preferably has an absorption wavelength in the visible region of 450 nm to 700 nm in order to obtain a panchromatic absorption band.
  • the thickness is preferably 500 nm to 650 nm.
  • the p-type semiconductor is preferably any one of compounds represented by the following general formulas [1] to [5], a quinacridone derivative, and a 3H-phenoxazin-3-one derivative.
  • “forming a ring” does not limit the ring structure to be formed unless otherwise specified.
  • a 5-membered ring may be condensed
  • a 6-membered ring may be condensed
  • a 7-membered ring may be condensed.
  • the condensed ring structure may be an aromatic ring or an alicyclic structure.
  • R 1 is a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted Alternatively, it represents an unsubstituted vinyl group, a substituted or unsubstituted amino group, or a cyano group.
  • n 1 , n 2 and n 3 each independently represents an integer of 0 to 4.
  • X 1 to X 3 each represent a nitrogen atom, a sulfur atom, an oxygen atom, or a carbon atom that may have a substituent.
  • Ar 1 and Ar 2 are each independently selected from a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group. When there are a plurality of Ar 1 and Ar 2 , they may be the same or different, and Ar 1 and Ar 2 may be bonded to each other to form a ring when X 2 or X 3 is a carbon atom.
  • Z 1 is any of a halogen atom, a cyano group, a vinyl group substituted with a cyano group, a substituted or unsubstituted heteroaryl group, or a substituent represented by the following general formulas [1-1] to [1-9] Represents
  • R 521 to R 588 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group. Each independently selected from a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, and a cyano group. * Represents a bonding position with a carbon atom.
  • Ar 1 is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
  • the hetero atom contained in the heterocyclic group is preferably nitrogen.
  • X 1 is preferably a sulfur atom or an oxygen atom.
  • n 1 is preferably 1 and n 2 is preferably 0. When n 2 is 0, Ar 2 represents a single bond.
  • R 20 to R 29 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic ring. Each independently selected from a group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, and a cyano group. Two adjacent R 20 to R 29 may be bonded to each other to form a ring.
  • general formula [2] can be represented by any of the following general formulas [11] to [27].
  • R 31 to R 390 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, substituted or unsubstituted.
  • Each is independently selected from a substituted heterocyclic group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, and a cyano group.
  • halogen atom examples include a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms. Examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a sec-butyl group, an octyl group, a 1-adamantyl group, and a 2-adamantyl group.
  • the alkyl group may be an alkyl group having 1 to 4 carbon atoms.
  • the alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms. Examples include methoxy group, ethoxy group, n-propoxy group, isopropyloxy group, n-butoxy group, tert-butoxy group, sec-butoxy group, octoxy group and the like.
  • the alkoxy group may be an alkoxy group having 1 to 4 carbon atoms.
  • the aryl group is preferably an aryl group having 6 to 20 carbon atoms.
  • Examples include a phenyl group, a naphthyl group, an indenyl group, a biphenyl group, a terphenyl group, a fluorenyl group, an anthracenyl group, a pyrenyl group, a fluoranthenyl group, and a perylenyl group.
  • a phenyl group, a biphenyl group, a terphenyl group, a fluorenyl group, and a naphthyl group have a low molecular weight and are preferable in consideration of the sublimation property of the compound.
  • the heterocyclic group is preferably a heterocyclic group having 3 to 15 carbon atoms.
  • the hetero atom contained in the heterocyclic group is preferably nitrogen.
  • the amino group is preferably an amino group having an alkyl group or an aryl group as a substituent.
  • Heterocyclic groups containing nitrogen atoms such as, dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, amino group such as ditolylamino group, alkoxyl group such as methoxyl group, ethoxyl group, propoxyl group, phenoxyl group 1,3-indandionyl group, 5-fluoro-1,3-indandionyl group, 5,6-difluoro-1,3-indandionyl group, 5,6-dicyano-1,3-indandionyl group, 5-cyano-1 , 3-indandionyl group, cyclopenta [b] naphthalene-1,3 (2H) -dionyl group, Examples include cyclic ketone groups such as enalen-1,3 (2H) -dionyl group, 1,3-diphenyl-2,4,6 (1H, 3H, 5H)
  • the general formula [1] preferably has a structure represented by the following general formula [28].
  • R 391 to R 396 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted complex, Each is independently selected from a cyclic group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, and a cyano group.
  • Two adjacent R 391 to R 396 may be bonded to each other to form a ring.
  • R 394 and R 395 are preferably bonded to form a ring.
  • the organic compound represented by the general formula [28] is a material having strong absorption at an absorption peak wavelength of 522 nm or more and 600 nm or less. Having an absorption peak in this wavelength region is preferable because the photoelectric conversion layer has panchromic properties as described above.
  • M is a metal atom, and the metal atom may have an oxygen atom or a halogen atom as a substituent.
  • L 1 to L 9 are ligands coordinated to the metal M, and are composed of a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and two adjacent L 1 to L 9 are adjacent to each other. Represents a ligand which may be bonded to each other to form a ring.
  • the ligands L 1 to L 9 are ligands in which a substituted or unsubstituted aryl group and a plurality of substituents selected from substituted or unsubstituted heterocyclic groups are bonded.
  • the aryl group constituting the ligand include phenyl group, naphthyl group, indenyl group, biphenyl group, terphenyl group, fluorenyl group, anthracenyl group, pyrenyl group, fluoranthenyl group, and perylenyl group. It is not limited.
  • heterocyclic group constituting the ligand pyridyl group, pyrazyl group, triazyl group, thienyl group, furanyl group, pyrrolyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, thiadiazolyl group, carbazolyl group, acridinyl group, phenanthroyl group, Examples thereof include, but are not limited to, a benzothiophenyl group, a dibenzothiophenyl group, a benzothiazolyl group, a benzoazolyl group, and a benzopyrrolyl group.
  • the substituents that the ligands in the general formulas [3] to [5] have that is, the substituents that the aryl group and heterocyclic group have have 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, and butyl group.
  • the halogen atom is fluorine, chlorine, bromine, iodine or the like, and a fluorine atom is preferable.
  • the ligand may have a hydroxy group, a carboxyl group, or the like as a substituent, and may be bonded to a metal atom via the hydroxy group or the carboxyl group.
  • the n-type semiconductor used in the present invention is an electron acceptor organic semiconductor material, which is an organic compound having a property of easily accepting electrons.
  • the n-type semiconductor include a fullerene compound, a metal complex compound, a phthalocyanine compound, a carboxylic acid diimide compound, and the like, and it is preferable to include fullerene or a fullerene derivative as an n-type semiconductor. Since the fullerene molecule or the fullerene derivative molecule is continuous in the first organic semiconductor layer, an electron transport path is formed, so that the electron transport property is improved and the high-speed response of the photoelectric conversion element is improved.
  • fullerene C60 is particularly preferable because it easily forms an electron transport path.
  • the content of fullerene or fullerene derivative is preferably 40% by mass or more and 85% by mass or less from the viewpoint of good photoelectric conversion characteristics when the total amount of the photoelectric conversion layer is 100% by mass.
  • fullerene or fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C80, fullerene C82, fullerene C84, fullerene C90, fullerene C96, fullerene C240, fullerene 540, mixed fullerene, fullerene nanotubes, and the like. It is done.
  • the fullerene derivative is a fullerene having a substituent. Examples of this substituent include an alkyl group, an aryl group, and a heterocyclic group.
  • the sensitivity region can be made near infrared by using a compound having an absorption band in the near infrared region.
  • a compound having an absorption band in the near infrared region may be included.
  • the near-infrared region generally refers to a wavelength band of 800 to 2500 nm, but the following compounds are known as absorbing materials using organic materials.
  • ⁇ E shown in FIG. 1 tends to be small and dark current tends to be large. For this reason, in a photoelectric conversion element including a material having absorption in the near infrared, it is preferable to apply the SP value relationship described above between the organic semiconductors used to reduce dark current.
  • the photoelectric conversion layer according to the present invention preferably does not emit light.
  • the term “non-emission” means that the emission quantum efficiency is 1% or less, preferably 0.5% or less, more preferably 0.1% or less in the visible light region (wavelength 400 nm to 730 nm). In the photoelectric conversion layer, if the emission quantum efficiency exceeds 1%, it is not preferable because it affects sensing performance or imaging performance when applied to a sensor or an imaging device.
  • Luminescence quantum yield is the ratio of photons emitted by luminescence to absorbed photons.
  • Luminescence quantum yield is an absolute PL quantum yield measurement device designed to produce a thin film of the same material composition as the photoelectric conversion layer on a substrate such as quartz glass as a sample and to determine the value of the thin film. Can be measured using.
  • a substrate such as quartz glass as a sample
  • Luminescence quantum yield is an absolute PL quantum yield measurement device designed to produce a thin film of the same material composition as the photoelectric conversion layer on a substrate such as quartz glass as a sample and to determine the value of the thin film. Can be measured using.
  • “C9920-02” manufactured by Hamamatsu Photonics can be used as an absolute quantum yield measuring apparatus.
  • FIG. 7 is a cross-sectional view schematically showing a configuration of one embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element of the present invention has at least an anode 5, a cathode 4, and a photoelectric conversion layer 1 as a first organic compound layer disposed between the anode 5 and the cathode 4, and the photoelectric conversion layer 1
  • it has the specific organic semiconductor composition described above.
  • the photoelectric conversion element 10 of this embodiment is an example provided with the second organic compound layer 2 and the third organic compound layer 3 with the photoelectric conversion layer 1 interposed therebetween.
  • the cathode 4 constituting the photoelectric conversion element 10 of the present embodiment is an electrode that collects holes generated in the photoelectric conversion layer 1 disposed between the anode 5 and the cathode 4.
  • the anode 5 is an electrode that collects electrons generated in the first photoelectric conversion layer 1 disposed between the anode 5 and the cathode 4.
  • the cathode 4 is also called a hole collecting electrode, and the anode 5 is also called an electron collecting electrode.
  • Either the cathode 4 or the anode 5 may be disposed on the substrate side.
  • the electrode arranged on the substrate side is also called a lower electrode.
  • the photoelectric conversion element of the present embodiment may be an element used by applying a voltage between the cathode 4 and the anode 5.
  • the constituent material of the cathode 4 is not particularly limited as long as it is highly conductive and transparent. Specific examples include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and a mixture of a plurality of these.
  • conductive metal oxides such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide, gold, Metal materials such as silver, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides and nitrides of these metal materials (for example, titanium nitride (TiN)), and these metals and conductive metal oxidation Examples thereof include a mixture or laminate with a material, an inorganic conductive material such as copper iodide and copper sulfide, an organic conductive material such as polyaniline, polythiophene and polypyrrole, and a laminate of these with ITO or titanium nitride.
  • the constituent material of the anode 5 is ITO, indium zinc oxide, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2. , FTO (fluorine-doped tin oxide) and the like.
  • the method for forming the electrode can be appropriately selected in consideration of suitability with the electrode material. Specifically, it can be formed by a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method.
  • the electrode can be formed by a method such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (such as a sol-gel method), or an ITO dispersion.
  • the formed ITO can be subjected to UV-ozone treatment, plasma treatment, and the like.
  • various methods such as a reactive sputtering method can be used, and annealing treatment, UV-ozone treatment, plasma treatment, and the like can be further performed.
  • the second organic compound layer 2 may be composed of a single layer, a plurality of layers, or a mixed layer having a plurality of types of materials.
  • the second organic compound layer 2 has a role of transporting holes transferred from the photoelectric conversion layer 1 to the hole collecting electrode 4.
  • the second organic compound layer 2 suppresses electrons from moving from the hole collection electrode 4 to the photoelectric conversion layer 1. That is, the second organic compound layer 2 functions as a hole transport layer or an electron blocking layer, and is a preferable constituent member for preventing the generation of dark current. Therefore, it is preferable that the second organic compound layer 2 has a small electron affinity or LUMO energy.
  • the third organic compound layer 3 has a role of transporting electrons moved from the photoelectric conversion layer 1 to the anode 5. Moreover, since the 3rd organic compound layer 3 is a hole blocking layer which suppresses a hole flowing into the photoelectric converting layer 1 from the anode 5, it is preferable that it is a layer with high ionization potential.
  • the third organic compound layer 3 may be composed of a single layer, a plurality of layers, or a mixed layer having a plurality of types of materials.
  • the layer disposed between the anode 5 and the cathode 4 is limited to the three types of layers described above (the photoelectric conversion layer 1, the second organic compound layer 2, and the third organic compound layer 3). It is not something.
  • An intervening layer can be further provided between at least one of the second organic compound layer 2 and the cathode 4 and between the third organic compound layer 3 and the anode 5. This intervening layer is provided for the purpose of improving the injection efficiency of the charge when the generated charge is injected at the electrode, or preventing the charge from being injected into the organic compound layer when the charge is applied.
  • the intervening layer may be an organic compound layer, an inorganic compound layer, or a mixed layer in which an organic compound and an inorganic compound are mixed.
  • the readout circuit 6 plays a role of reading information based on the charges generated in the photoelectric conversion layer 1 and transmitting the information to, for example, a signal processing circuit (not shown) disposed in the subsequent stage.
  • the readout circuit 6 includes, for example, a transistor that outputs a signal based on charges generated in the photoelectric conversion element 10.
  • an inorganic protective layer 7 is disposed on the cathode 4.
  • the inorganic protective layer 7 protects a member in which the anode 5, the third organic compound layer 3, the photoelectric conversion layer 1, the second organic compound layer 2, and the cathode 4 are laminated in this order. It is a layer for.
  • the constituent material of the inorganic protective layer 7 include silicon oxide, silicon nitride, silicon nitride oxide, and aluminum oxide. Silicon oxide, silicon nitride, and silicon nitride oxide can be formed by a sputtering method or a CVD method, and aluminum oxide can be formed by an ALD method (atomic layer deposition method).
  • the sealing performance of the inorganic protective layer 7 may be such that the water permeability is 10 ⁇ 5 g / m 2 ⁇ day or less.
  • the thickness of the inorganic protective layer 7 is not particularly limited, but is preferably 0.5 ⁇ m or more from the viewpoint of sealing performance. On the other hand, if the sealing performance can be maintained, the thinner one is preferable, and the thickness is particularly preferably 1 ⁇ m or less.
  • the reason why the inorganic protective layer 7 is preferably thin is that, when elements are arranged two-dimensionally and used as an area sensor, there is an effect of reducing color mixing as the distance from the photoelectric conversion layer to the color filter 8 can be shortened.
  • the color filter 8 is disposed on the inorganic protective layer 7 in the photoelectric conversion element 10 of FIG.
  • the color filter 8 include a color filter that transmits red light of visible light.
  • the color filter 8 may be provided for one photoelectric conversion element or for a plurality of photoelectric conversion elements. Further, when the color filters 8 are arranged, for example, a Bayer arrangement may be formed with adjacent photoelectric conversion elements.
  • an optical member may be disposed on the color filter 8, and in FIG. 7, a micro lens 9 is disposed as the optical member.
  • the microlens 9 plays a role of collecting incident light onto the photoelectric conversion layer 1 that is a photoelectric conversion unit.
  • the number of microlenses 9 may be one for each photoelectric conversion element or one for a plurality of photoelectric conversion elements. In the present invention, it is preferable to provide one microlens 9 per photoelectric conversion element.
  • the microlens 9 is arranged on the cathode 4 side to be the light incident side.
  • the present invention is not limited to this, and the inorganic protective layer 7, the color filter 8, A micro lens 9 may be provided. In that case, the preferred electrode materials for the cathode 4 and anode 5 shown above are reversed.
  • the photoelectric conversion element of the present invention may have a substrate.
  • the substrate include a silicon substrate, a glass substrate, and a flexible substrate.
  • Which of the anode 5 and the cathode 4 is arranged on the substrate side is not limited, and may be the order of anode 5 / photoelectric conversion layer 1 / cathode 4 on the substrate, or may be cathode 4 / photoelectric conversion layer 1 / anode 5. .
  • the photoelectric conversion element is preferably annealed after fabrication, but the present invention is not particularly limited by the annealing conditions.
  • the photoelectric conversion element which concerns on this invention can be made into the photoelectric conversion element corresponding to the light of a different color by selecting the organic semiconductor used for the photoelectric converting layer 1.
  • FIG. “Corresponding to different colors” means that the wavelength region of the light photoelectrically converted by the photoelectric conversion layer 1 changes. Further, by stacking a plurality of photoelectric conversion elements corresponding to different colors, a photoelectric conversion device that does not require the color filter 8 can be obtained.
  • FIG. 8 is an equivalent circuit diagram of one pixel 20 using the photoelectric conversion element 10 of FIG.
  • the lower layer of the anode 5 of the photoelectric conversion element 10 is electrically connected to the charge storage unit 15 formed in the semiconductor substrate, and is further connected to the amplification transistor 23.
  • the pixel circuit includes an amplification transistor (SF MOS) 23 that amplifies a signal from the photoelectric conversion element 10, a selection transistor (SEL MOS) 24 that selects a pixel, and a reset transistor (RES MOS) 22 that resets the node B.
  • SF MOS amplification transistor
  • SEL MOS selection transistor
  • RES MOS reset transistor
  • the amplification transistor 23 can output a signal generated by the photoelectric conversion element 10.
  • the photoelectric conversion element 10 and the amplification transistor 23 may be short-circuited.
  • a transfer transistor 25 may be arranged as a switch in the electrical path between the photoelectric conversion element 10 and the amplification transistor 23.
  • the transfer transistor 25 is controlled to be switched on and off by a switching control pulse pTX.
  • a node B representing electrical connection between the photoelectric conversion element 10 and the amplification transistor 23 is shown. Node B is configured to be electrically floating. When the node B is electrically floating, the voltage of the node B can be changed according to the electric charge generated in the photoelectric conversion element 10. Therefore, a signal corresponding to the charge generated in the photoelectric conversion element 10 can be input to the amplification transistor 23.
  • the 8 includes a reset transistor 22 that resets the voltage of the node B in the semiconductor substrate.
  • the reset transistor 22 supplies a reset voltage (not shown) to the node B.
  • the reset transistor 22 is controlled to be switched on and off by a reset control pulse pRES. When the reset transistor 22 is turned on, a reset voltage is supplied to the node B.
  • the charge storage unit 15 is a region for storing charges generated in the photoelectric conversion element 10 and is configured by forming a P-type region and an N-type region in a semiconductor substrate.
  • a power supply voltage is supplied to the drain electrode of the amplification transistor 23.
  • the source electrode of the amplification transistor 23 is connected to the output line 28 via the selection transistor 24.
  • a current source 26 is connected to the output line 28.
  • the amplification transistor 23 and the current source 26 constitute a pixel source follower circuit, and output the signal voltage of the charge storage unit 15 in which the signal charge from the photoelectric conversion element 10 is stored to the output line 28.
  • a column circuit 27 is further connected to the output line 28. A signal from the pixel 20 output to the output line 28 is input to the column circuit 27.
  • 29 is a wiring.
  • FIG. 9 is a plan view schematically showing a configuration of one embodiment of a photoelectric conversion device using the photoelectric conversion element of the present invention.
  • the photoelectric conversion device of the present embodiment includes an imaging region 31, a vertical scanning circuit 32, two readout circuits 33, two horizontal scanning circuits 34, and two output amplifiers 35.
  • An area other than the imaging area 31 is a circuit area 36.
  • the imaging region 31 is configured by arranging a plurality of pixels in a two-dimensional manner.
  • the structure of the pixel the structure of the pixel 20 shown in FIG. 7 can be used as appropriate.
  • the pixel 20 may be configured by stacking the photoelectric conversion elements 10 of the present invention described above.
  • the readout circuit 33 includes, for example, a column amplifier, a CDS circuit, an addition circuit, and the like, and with respect to a signal read out from a pixel in a row selected by the vertical scanning circuit 32 via a vertical signal line (28 in FIG. 8). Amplification, addition, etc.
  • the column amplifier, the CDS circuit, the addition circuit, and the like are arranged for each pixel column or a plurality of pixel columns, for example.
  • the horizontal scanning circuit 34 generates a signal for sequentially reading the signals of the reading circuit 33.
  • the output amplifier 35 amplifies and outputs the signal of the column selected by the horizontal scanning circuit 34.
  • the above configuration is only one configuration example of the photoelectric conversion device, and the present embodiment is not limited to this.
  • the readout circuit 33, the horizontal scanning circuit 34, and the output amplifier 35 are arranged one above the other with the imaging region 31 in between in order to form two systems of output paths. However, three or more output paths may be provided. Signals output from the output amplifiers are synthesized as image signals by the signal processing unit 37.
  • the photoelectric conversion element of the present invention can be used as a constituent member of an optical area sensor by two-dimensionally arranging it in the in-plane direction.
  • the optical area sensor has a plurality of photoelectric conversion elements arranged two-dimensionally in the in-plane direction.
  • information representing the light intensity distribution in a predetermined light receiving area can be obtained by individually outputting signals based on charges referred to by a plurality of photoelectric conversion elements.
  • the photoelectric conversion element of the present invention can be used as a constituent member of an imaging element.
  • the imaging device includes a plurality of pixels (light receiving pixels).
  • the plurality of pixels are arranged in a matrix including a plurality of rows and a plurality of columns.
  • an image signal can be obtained by outputting a signal from each pixel as one pixel signal.
  • each of the plurality of light receiving pixels has at least one photoelectric conversion element and a readout circuit connected to the photoelectric conversion element.
  • the reading circuit includes, for example, a transistor that outputs a signal based on electric charges generated in the photoelectric conversion element.
  • Information based on the read charge is transmitted to the sensor unit connected to the image sensor. Examples of the sensor unit include a CMOS sensor and a CCD sensor.
  • an image can be obtained by collecting information acquired by each pixel in the sensor unit.
  • the image sensor may have, for example, an optical filter such as a color filter so as to correspond to each light receiving pixel.
  • an optical filter such as a color filter so as to correspond to each light receiving pixel.
  • the photoelectric conversion element supports light of a specific wavelength, it is preferable to have a color filter that transmits a wavelength region that can be handled by the photoelectric conversion element.
  • One color filter may be provided for each light receiving pixel, or one color filter may be provided for a plurality of light receiving pixels.
  • the optical filter included in the imaging element is not limited to a color filter, and other low-pass filters that transmit wavelengths of infrared rays or more, UV cut filters that transmit wavelengths of ultraviolet rays or less, and long-pass filters can be used.
  • the imaging element may have an optical member such as a microlens so as to correspond to each light receiving pixel, for example.
  • the microlens included in the imaging element is a lens that condenses light from the outside onto a photoelectric conversion layer included in the photoelectric conversion element included in the imaging element.
  • One microlens may be provided for each light receiving pixel, or one microlens may be provided for a plurality of light receiving pixels. When a plurality of light receiving pixels are provided, it is preferable that one microlens is provided for a plurality (two or more predetermined numbers) of light receiving pixels.
  • the photoelectric conversion element according to the present invention can be used in an imaging apparatus.
  • the imaging apparatus includes an imaging optical unit having a plurality of lenses and an imaging element that receives light that has passed through the imaging optical unit, and uses the photoelectric conversion element of the present invention as the imaging element.
  • the imaging device may be an imaging device having a joint portion that can be joined to the imaging optical unit and an imaging element. More specifically, the imaging device here refers to a digital camera, a digital still camera, or the like.
  • the imaging device may be added to the mobile terminal. Although a portable terminal is not specifically limited, A smart phone, a tablet terminal, etc. may be sufficient.
  • the imaging device may further include a receiving unit that receives a signal from the outside.
  • the signal received by the receiving unit is a signal that controls at least one of the imaging range of the imaging apparatus, the start of imaging, and the end of imaging.
  • the imaging device may further include a transmission unit that transmits an image acquired by imaging to the outside.
  • the imaging device can be used as a network camera by including the reception unit and the transmission unit.
  • the imaging apparatus may further include a receiving unit that performs an external signal.
  • the signal received by the receiving unit is a signal that controls at least one of the imaging range of the imaging device, the start of imaging, and the end of imaging.
  • the imaging device may further include a transmission unit that transmits the captured image to the outside.
  • having a receiving unit and a transmitting unit can be used as a network camera.
  • Evaluation of electrochemical characteristics such as oxidation potential of the compounds used in the examples can be performed by cyclic voltammetry (CV).
  • a CV measurement sample was prepared by dissolving about 1 mg of each compound in 10 mL of orthodichlorobenzene solution of 0.1 M tetrabutylammonium perchlorate and performing a deaeration treatment with nitrogen.
  • the three-electrode method is used for the measurement.
  • Each electrode is composed of a nonaqueous solvent type Ag / Ag + reference electrode, a platinum counter electrode having a diameter of 0.5 mm and a length of 5 cm, and a glassy carbon working electrode having an inner diameter of 3 mm (both -ASS Co., Ltd. was used.
  • a model 660C manufactured by ALS Co., Ltd. and an electrochemical analyzer were used as the apparatus, and the measurement insertion speed was 0.1 V / s.
  • An example of the waveform at this time is shown in FIG.
  • the oxidation potential (Eox) and the reduction potential (Ered) can be measured by the same method.
  • Table 2 shows the oxidation potential and reduction potential of each material.
  • a cathode On the Si substrate, a cathode, an electron blocking layer (EBL), a photoelectric conversion layer, a hole blocking layer (HBL), and an anode were sequentially formed to produce a photoelectric conversion element.
  • EBL electron blocking layer
  • HBL hole blocking layer
  • anode On the Si substrate, a cathode, an electron blocking layer (EBL), a photoelectric conversion layer, a hole blocking layer (HBL), and an anode were sequentially formed to produce a photoelectric conversion element.
  • EBL electron blocking layer
  • HBL hole blocking layer
  • an anode In the electron blocking layer, the photoelectric conversion layer, and the hole blocking layer, the above-described compounds 1 to 14 were used in combinations shown in Table 3. The production procedure is as follows.
  • a Si substrate was prepared in which a wiring layer and an insulating layer were sequentially stacked, and contact holes were formed from the wiring layer at locations corresponding to the respective pixels so as to be conductive by providing an opening in the insulating layer.
  • the contact hole is drawn out to the end of the substrate by wiring to form a pad portion.
  • An IZO electrode was formed so as to overlap the contact hole portion, and desired patterning was performed to form an IZO electrode (cathode) of 3 mm 2 .
  • the film thickness of the IZO electrode was 100 nm.
  • an electron blocking layer, a photoelectric conversion layer, and a hole blocking layer shown in Table 2 having the following constitution were sequentially vacuum-deposited, and an IZO layer similar to the cathode was formed by sputtering to form an anode.
  • hollow sealing was performed using a glass cap and an ultraviolet effect resin to obtain a photoelectric conversion element.
  • the photoelectric conversion element thus obtained was annealed for about 1 hour on a 170 ° C. hot plate with the sealing surface facing upward in order to stabilize the element characteristics.
  • the photoelectric conversion element was held in a constant temperature bath at 60 ° C., and a probe connected to a semiconductor parameter analyzer (Agilent “4155C”) was brought into contact with the electrode to measure dark current.
  • Table 3 shows compounds used for the electron blocking layer, the photoelectric conversion layer, and the hole blocking layer of the photoelectric conversion element, and their compositions.
  • “% by mass” is the total of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor in the ternary configuration, and the first organic semiconductor and the second in the binary configuration.
  • the content of each organic semiconductor when the total organic semiconductor is 100% by mass is shown.
  • “content” means the content of each organic semiconductor when the ternary configuration or the binary configuration is 100 mass%.
  • the “mass ratio” in the table is the content of the third organic semiconductor with respect to the content of the second organic semiconductor.
  • the photoelectric conversion layer is composed of two materials of Compound 2 as the first organic semiconductor and Compound 3 as the second organic semiconductor.
  • the photoelectric conversion layer is 25% by mass, which is the same as that of Comparative Example 1 in which the compound 2 as the first organic semiconductor and the content as the second organic semiconductor are the same.
  • it is constituted by containing a compound 4 as a third organic semiconductor.
  • the relative dark current in Comparative Examples 2 and 3 and Examples 1 to 4 is the ratio of dark current to Comparative Example 1.
  • Examples 1 to 4 in which the content of the third organic semiconductor is 3% by mass or more have a lower dark current than that of Comparative Example 1 that does not have the third organic semiconductor. I understand. On the other hand, in Comparative Examples 2 and 3 in which the content of the third organic semiconductor was less than 3% by mass, a decrease in dark current could not be confirmed as compared with Comparative Example 1 having no third organic semiconductor. Further, in the mass ratio of the third organic semiconductor to the second organic semiconductor, Examples 1 to 4 in which the mass ratio is 0.12 or more are compared with Comparative Example 1 that does not have the third organic semiconductor. The dark current decreased.
  • the photoelectric conversion layer is composed of two materials, compound 2 as the first organic semiconductor and compound 3 as the second organic semiconductor.
  • the photoelectric conversion layer has Comparative Example 1, 4, 5, 6, 7 in which the photoelectric conversion layer is Compound 2 as the first organic semiconductor and the second organic semiconductor.
  • compound 3 which is the same as the above, 3% by mass of compound 4 as a third organic semiconductor is contained.
  • the relative dark current in Examples 1, 5, 6, 7, and Comparative Example 8 is the ratio of dark current to Comparative Examples 1, 4, 5, 6, and 7, respectively.
  • the photoelectric conversion layer is composed of two materials of Compound 2 as the first organic semiconductor and Compound 3 as the second organic semiconductor.
  • the photoelectric conversion layer is added to Compound 2 as the first organic semiconductor and Compound 3 whose content as the second organic semiconductor is 25% by mass as in Comparative Example 1, It is comprised by containing the compound shown in Table 6 as a 3rd organic semiconductor, respectively.
  • compound 2 is an n-type semiconductor
  • compounds 3 to 8 are p-type semiconductors.
  • the relative dark current in Examples 3 and 8 to 11 is the ratio of the dark current to Comparative Example 1.
  • Example 11 ⁇ Eox is negative, and the dark current reduction effect by the third organic semiconductor inclusion of Example 11 is compared with the dark current reduction effects of Examples 3 and 8 to 10 in which ⁇ Eox is 0 or more. I understand that it is small.
  • the photoelectric conversion layer is composed of two materials of the compound 2 as the first organic semiconductor and the compound 7 as the second organic semiconductor.
  • the photoelectric conversion layer has a third organic compound in addition to the compound 2 as the first organic semiconductor and the compound 7 whose content as the second organic semiconductor is 25% by mass as in Comparative Example 1. It is comprised by containing the compound 3 as a semiconductor.
  • the relative dark current in Example 12 is the ratio of dark current to Comparative Example 9.
  • the photoelectric conversion layer is composed of two materials of Compound 7 as the first organic semiconductor and Compound 2 as the second organic semiconductor.
  • the photoelectric conversion layer has a third organic compound in addition to the compound 7 as the first organic semiconductor and the compound 2 whose content as the second organic semiconductor is 40% by mass as in Comparative Example 1. It is comprised by containing the compound 3 as a semiconductor.
  • the first organic semiconductor is an n-type semiconductor and the second organic semiconductor is a p-type semiconductor
  • Comparative Examples 10 and 13 are the first The organic semiconductor is a p-type semiconductor
  • the second organic semiconductor is an n-type organic semiconductor.
  • the relative dark current in Example 13 is the ratio of dark current to Comparative Example 10.
  • Table 8 shows that the third organic material can be used regardless of the type of compound even if the compounds constituting the electron blocking layer, the photoelectric conversion layer, and the hole blocking layer are changed to different compounds. It is confirmed that the dark current reduction effect by using a semiconductor is manifested.
  • the relative dark current in Examples 3 and 14 to 20 in Table 8 is the ratio of dark current to Comparative Examples 1 and 13 to 18, respectively.
  • the element configuration of Examples 14 to 20 is any one of the electron blocking layer, the hole blocking layer, the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor with respect to the element configuration of Example 3. One or two elements are changed to different compounds. From Table 8, Example 14 thru
  • Examples 20, 21, and 22 and Comparative Examples 19 and 22 are device configurations in which the contents of the compound 13 that is the second organic semiconductor and the compound 14 that is the third organic semiconductor are changed.
  • the relative dark currents of Examples 20 and 21 and Comparative Example 19 are the ratio of dark current to that of Comparative Example 18.
  • the relative dark currents of Example 22 and Comparative Example 22 are ratios of dark currents to Comparative Examples 20 and 21, respectively.
  • the dark current is reduced by mixing the third organic semiconductor. The effect was confirmed.
  • Comparative Example 19 in which the content of the second organic semiconductor is 6% by mass or more and the content of the third organic semiconductor does not satisfy 3% by mass or more is an effect of reducing dark current by mixing the third organic semiconductor.
  • Comparative Example 22 in which the content of the third organic semiconductor is 3% by mass or more and the content of the second organic semiconductor does not satisfy 6% by mass or more the dark current reduction effect by mixing the third organic semiconductor is Can not be confirmed.
  • T temperature
  • k B Boltzmann constant
  • E a activation energy
  • J current value at temperature T
  • J 0 frequency factor.
  • the content of the p-type semiconductor (total amount of the second organic semiconductor and the third organic semiconductor) is a comparative example. Despite being greater than 1, the activation energy is increased and the dark current is reduced. This is considered to be because when the third organic semiconductor is mixed in addition to the first organic semiconductor and the second organic semiconductor, the second organic semiconductors can be associated with each other and the interaction due to stacking can be suppressed. . As a result, it is considered that the energy spread of the state density of the HOMO level can be suppressed.
  • the photoelectric conversion layer is composed of two materials of Compound 2 as the first organic semiconductor and Compound 3 as the second organic semiconductor.
  • the photoelectric conversion layer has a third organic compound in addition to the compound 2 as the first organic semiconductor and the compound 3 whose content as the second organic semiconductor is 25% by mass as in Comparative Example 1. It is comprised by containing the compound 4 as a semiconductor.
  • the first organic semiconductor is an n-type semiconductor
  • the second organic semiconductor is a p-type semiconductor
  • the third organic semiconductor is a p-type semiconductor.
  • the third organic semiconductor is used. It is comprised by containing the compound 10 as.
  • the first organic semiconductor is an n-type semiconductor
  • the second organic semiconductor is a p-type semiconductor
  • the third organic semiconductor is an n-type semiconductor.
  • the relative dark current which is the ratio of dark current to Comparative Example 1, was smaller in Example 3 than in Example 23. From this, it can be seen that when the first organic semiconductor is an n-type semiconductor and the second organic semiconductor is a p-type semiconductor, the third organic semiconductor is preferably a p-type semiconductor.
  • the photoelectric conversion layer is composed of two materials of Compound 7 as the first organic semiconductor and Compound 2 as the second organic semiconductor.
  • the photoelectric conversion layer has a third organic compound in addition to the compound 7 as the first organic semiconductor and the compound 2 whose content as the second organic semiconductor is 40% by mass as in Comparative Example 1. It is comprised by containing the compound 3 as a semiconductor.
  • the first organic semiconductor is a p-type semiconductor
  • the second organic semiconductor is an n-type semiconductor
  • the third organic semiconductor is a p-type semiconductor.
  • the third organic semiconductor is used in addition to the compound 2 having a photoelectric conversion layer as the first organic semiconductor and the compound 3 having the same content of 40% by mass as the comparative example 1 as the second organic semiconductor. It is comprised by containing the compound 10 as.
  • the first organic semiconductor is a p-type semiconductor
  • the second organic semiconductor is an n-type semiconductor
  • the third organic semiconductor is an n-type semiconductor.
  • the relative dark current which is the ratio of dark current to Comparative Example 10, was smaller in Example 24 than in Example 13. From this, it can be seen that when the first organic semiconductor is a p-type semiconductor and the second organic semiconductor is an n-type semiconductor, the third organic semiconductor is preferably an n-type semiconductor.
  • Conversion efficiency evaluation results In order to obtain a high S / N ratio, the photoelectric conversion efficiency measurement and evaluation results, which preferably have high photoelectric conversion efficiency, are described below.
  • a photoelectric conversion element having a photoelectric conversion layer containing 25% of each p-type material is excluded from the photoelectric conversion layer.
  • Table 1 shows the results of manufacturing and evaluation performed in the same manner as described above.
  • the following table shows the EQE peak wavelength and the conversion efficiency of a photoelectric conversion element using a combination of p-type and n-type organic semiconductors.
  • the EQE peak wavelength is obtained by measuring the current at the time of irradiating the light of each wavelength and the non-irradiation with the spectral sensitivity light source and the semiconductor parameter analyzer (Agilent 4155C) for the element placed in the dark place. Asked. The photocurrent was converted to the number of electrons and divided by the number of incident photons to obtain EQE. Thereby, EQE of each wavelength was measured to obtain spectral sensitivity characteristics, and the sensitivity peak wavelength on the longest wavelength side was obtained.
  • the band gap is also shown as an index of excitation energy of each material. This band gap was calculated from the absorption spectrum measurement of each 100% film formed by vacuum deposition with a film thickness of about 100 nm.
  • the conversion efficiency of the photoelectric conversion layer can be estimated from the efficiency of the photoelectric conversion element having the photoelectric conversion layer.
  • the conversion efficiency ( ⁇ ) in Table 11 was evaluated as follows as the conversion efficiency of the binary element at a drive voltage of 5V.
  • the mass percentage concentration of the second organic semiconductor is 25%, but this is an index for comparing each combination, and the weight ratio of the second organic semiconductor is limited to 25%.
  • the present inventors have confirmed that the above conversion efficiency is almost constant until the concentration of the second organic semiconductor is about 15 to 50%. Based on such a concentration range, the maximum conversion efficiency is confirmed. It is sufficient that the value is determined. From the above results, it can be seen that the use of fullerene C60 of Compound 2 as an n-type organic semiconductor does not affect the conversion efficiency of photoelectric conversion. This indicates that the absorption transition in the visible part of C60 is a forbidden transition and the molar extinction coefficient is less than 1000 mol L ⁇ 1 cm ⁇ 1 , and does not function effectively as an energy acceptor.
  • a photoelectric conversion element in which the first, second, and third organic semiconductors forming the first organic semiconductor layer described in Table 2 are configured as follows is manufactured, and the conversion efficiency of the element is determined. evaluated.
  • Table 12 shows the relationship between the configuration of the photoelectric conversion layer of the photoelectric conversion element of the present invention and the conversion efficiency, based on the results of Table 11, in order to obtain a photoelectric conversion element with a better S / N ratio.
  • surface and the comparative example produces parts other than a photoelectric converting layer with the method similar to another Example.
  • the conversion efficiency was a value of 500 nm close to the sensitivity peak in Table 11, and the effect of the present invention was verified.
  • an element composed of a combination of the organic semiconductor number 2 and the p-type semiconductor-n-type semiconductor combined among the organic semiconductors 4, 5, and 14 has a low conversion efficiency as in Comparative Examples 24-28 (organic semiconductor 4 , 5, and 14 are shown in italics).
  • Example 25 to 50 and Comparative Examples 23 to 28 the dark current reduction effect of about 0.1 to 0.6 times was observed with the inclusion of the third organic semiconductor as mentioned in the previous examples. It was.
  • Example 3 and Example 25, Example 8 and Example 40, Example 20 and Example 43 are the elements of the same photoelectric converting layer, respectively.
  • Table 13 shows the EQE peak wavelength and the conversion efficiency ( ⁇ ) of a photoelectric conversion element by a combination of a pair of p-type semiconductor and n-type semiconductor. These are shown as characteristics of a binary element configuration of a combination of a p-type semiconductor and an n-type semiconductor included as a configuration in a photoelectric conversion layer having a ternary configuration.
  • the EQE peak wavelength is measured using a spectral sensitivity light source and a semiconductor parameter analyzer (Agilent “4155C”) for photoelectric conversion elements placed in the dark. Then, the photocurrent was obtained. The photocurrent was converted to the number of electrons and divided by the number of incident photons to obtain EQE.
  • the band gap is also shown as an index of excitation energy of each material. This band gap was calculated from the absorption spectrum measurement of each 100% film formed by vacuum deposition with a film thickness of about 100 nm.
  • the conversion efficiency of the photoelectric conversion layer can be estimated from the conversion efficiency ( ⁇ ) of the photoelectric conversion element having the photoelectric conversion layer.
  • the conversion efficiency ( ⁇ ) in Table 13 was evaluated as follows as the conversion efficiency of the binary element at a drive voltage of 5V. A: ⁇ ⁇ 80% B: ⁇ ⁇ 80%
  • the content of the second organic semiconductor is set to 25% by mass, but is used as an index for comparing the respective combinations, in order to evaluate the conversion efficiency ( ⁇ ).
  • it is not limited to 25% by mass.
  • the present inventors have confirmed that the above conversion efficiency ( ⁇ ) is substantially constant up to the content of the second organic semiconductor of about 15 to 50% by mass. It is sufficient that the maximum conversion efficiency value is determined based on this.
  • the “rate of increase in conversion efficiency at 550 nm” in Table 14 as an effect index is the conversion in the p-type semiconductor-n-type semiconductor combination in which the conversion efficiency of the ternary element of the present invention can be configured as a binary element. It is the value divided by the lower efficiency.
  • the OSC described in the table is an abbreviation for Organic Semi-Conductor and is described for the sake of simplicity in the table. The reason why the contents of the second and third organic semiconductors are set as close as possible is to determine the effect.
  • Comparative Example 23 and Comparative Examples 24 and 25 are in a binary configuration and a ternary configuration.
  • Examples 51 and 52 correspond to Comparative Example 26
  • Example 53 corresponds to Comparative Example 27
  • Example 54 corresponds to Comparative Example 28, and
  • Example 55 corresponds to Comparative Example 29.
  • of the configurable binary element is closer to zero.
  • the data of the configurable binary element is based on the contents described in Table 4.
  • FIG. 12 shows the relationship between
  • both ⁇ 1 and ⁇ 2 are selected with a difference of 10% or more.
  • the difference is not limited to 10% or more.
  • each p-type semiconductor-n-type semiconductor constituting the binary element 1 and the binary element 2 is used. The energy level relationship of is important.
  • the organic photoelectric conversion element of the present invention is an element having an excellent characteristic of low dark current. Therefore, in the optical area sensor, the imaging element, and the imaging device using the organic photoelectric conversion element of the present invention, dark current noise derived from the photoelectric conversion element can be reduced.
  • 1 photoelectric conversion layer (first organic compound layer), 2: second organic compound layer, 3: third organic compound layer, 4: cathode, 5: anode, 6: readout circuit, 7: inorganic protective layer 8: Color filter, 9: Micro lens, 10: Photoelectric conversion element, 15: Charge storage unit, 20: One pixel, 22: Reset transistor, 23: Amplification transistor, 24: Selection transistor, 25: Transfer transistor, 26: Current source, 27: column circuit, 28: output line, 29: wiring, 31: imaging region, 32: vertical scanning circuit, 33: readout circuit, 34: horizontal scanning circuit, 35: output amplifier, 36: circuit region, 37 : Signal processing unit, A: Node, B: Node

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)

Abstract

Provided is a photoelectric conversion element that includes: an anode; a photoelectric conversion layer comprising a first organic semiconductor, a second organic semiconductor, and a third organic semiconductor; and a cathode. The first organic semiconductor, second organic semiconductor, and third organic semiconductor are all low-molecular organic semiconductors; the mass ratio thereof satisfies the first organic semiconductor ≥ second organic semiconductor ≥ third organic semiconductor; and when the sum of the first organic semiconductor, second organic semiconductor, and third organic semiconductor is 100 mass%, the content of the second organic semiconductor is 6 mass% or more, and the content of the third organic semiconductor is 3 mass% or more.

Description

光電変換素子、及びこれを用いた光エリアセンサ、撮像素子、撮像装置Photoelectric conversion element, and optical area sensor, imaging element, and imaging apparatus using the same
 本発明は、有機半導体で構成される光電変換層を備えた光電変換素子に関する。 This invention relates to the photoelectric conversion element provided with the photoelectric converting layer comprised with an organic semiconductor.
 近年、有機化合物からなる光電変換層を備え、信号読み出し用基板上に形成された構造を有する固体撮像素子の開発が進んでいる。
 上記有機光電変換層の一般的な構造としては、p型有機半導体とn型有機半導体の二つの有機化合物を混合することで形成されるバルクヘテロ構造が挙げられ、そこに第三の有機半導体を加えることで、より高い性能を発現する光電変換素子の開発が行われている。
 特許文献1には、温度上昇に伴う暗電流の上昇を抑制した耐熱性に優れた光電変換層として、p型有機半導体とn型有機半導体のバルクヘテロ構造に加えて、少量の低分子有機化合物を含有する構造が開示されている。また、特許文献2には、電子受容性材料に加えて、2種以上の電子供与性の高分子有機材料を含有する構造とすることで、入射光の吸収効率を向上した光電変換層が開示されている。
 特許文献1及び2には、有機化合物からなる光電変換層として、p型有機半導体とn型有機半導体に加えて第三の化合物を添加することにより、温度上昇に伴う暗電流上昇を抑制する、又は、入射光の吸収効率を上昇させることが開示されている。しかしながら、光電変換素子の常温における暗電流を低減する構成については開示がない。
 そこで、本発明は、p型有機半導体とn型有機半導体のバルクヘテロ構造からなる光電変換層を有する光電変換素子において、暗電流の低減を図り、該光電変換素子を用いて、低ノイズの光エリアセンサ、撮像素子、撮像装置を提供することを目的とする。
2. Description of the Related Art In recent years, development of solid-state imaging devices having a structure including a photoelectric conversion layer made of an organic compound and formed on a signal readout substrate has been progressing.
A general structure of the organic photoelectric conversion layer includes a bulk heterostructure formed by mixing two organic compounds of a p-type organic semiconductor and an n-type organic semiconductor, and a third organic semiconductor is added thereto. Thus, development of photoelectric conversion elements that exhibit higher performance has been performed.
Patent Document 1 discloses a small amount of low-molecular-weight organic compound in addition to a bulk heterostructure of a p-type organic semiconductor and an n-type organic semiconductor as a photoelectric conversion layer excellent in heat resistance that suppresses an increase in dark current accompanying a temperature rise. The containing structure is disclosed. Further, Patent Document 2 discloses a photoelectric conversion layer that has improved incident light absorption efficiency by including a structure containing two or more types of electron-donating polymer organic materials in addition to an electron-accepting material. Has been.
In Patent Documents 1 and 2, as a photoelectric conversion layer made of an organic compound, by adding a third compound in addition to a p-type organic semiconductor and an n-type organic semiconductor, an increase in dark current due to a temperature rise is suppressed. Alternatively, it is disclosed to increase the absorption efficiency of incident light. However, there is no disclosure about a configuration that reduces the dark current of the photoelectric conversion element at room temperature.
Therefore, the present invention aims to reduce dark current in a photoelectric conversion element having a photoelectric conversion layer composed of a bulk heterostructure of a p-type organic semiconductor and an n-type organic semiconductor, and using the photoelectric conversion element, a low-noise optical area. An object is to provide a sensor, an imaging device, and an imaging device.
特開2015-92546号公報Japanese Patent Laying-Open No. 2015-92546 特開2005-32793号公報JP 2005-32793 A 国際公開第2014/104315号パンフレットInternational Publication No. 2014/104315 Pamphlet
 本発明の光電変換素子は、アノードと、光電変換層と、カソードと、をこの順で有し、前記光電変換層が第一の有機半導体と第二の有機半導体と第三の有機半導体とを有する光電変換素子であって、前記第一の有機半導体と前記第二の有機半導体と前記第三の有機半導体はいずれも低分子有機半導体であり、前記第一の有機半導体と前記第二の有機半導体のうち、一方がp型半導体であり、他方がn型半導体であり、前記第一の有機半導体と前記第二の有機半導体と前記第三の有機半導体の質量比が、
 第一の有機半導体≧第二の有機半導体≧第三の有機半導体
であり、 前記第一の有機半導体と前記第二の有機半導体と前記第三の有機半導体の合計を100質量%とした時、前記第二の有機半導体の含有量が6質量%以上であり、前記第三の有機半導体の含有量が3質量%以上であることを特徴とする光電変換素子である。
The photoelectric conversion element of the present invention has an anode, a photoelectric conversion layer, and a cathode in this order, and the photoelectric conversion layer includes a first organic semiconductor, a second organic semiconductor, and a third organic semiconductor. The first organic semiconductor, the second organic semiconductor, and the third organic semiconductor are all low-molecular organic semiconductors, and the first organic semiconductor and the second organic semiconductor Among the semiconductors, one is a p-type semiconductor, the other is an n-type semiconductor, and the mass ratio of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is:
First organic semiconductor ≧ second organic semiconductor ≧ third organic semiconductor, and when the total of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is 100% by mass, The photoelectric conversion element is characterized in that the content of the second organic semiconductor is 6% by mass or more and the content of the third organic semiconductor is 3% by mass or more.
 本発明によれば、光電変換層を3種類の低分子有機半導体で構成することによって、低暗電流で光電変換が可能な光電変換素子が提供できる。 According to the present invention, a photoelectric conversion element capable of performing photoelectric conversion with a low dark current can be provided by configuring the photoelectric conversion layer with three kinds of low-molecular organic semiconductors.
図1は光電変換層における暗電流の生成メカニズムを示す模式図である。FIG. 1 is a schematic diagram showing a dark current generation mechanism in a photoelectric conversion layer. 図2は本発明に係る第三の有機半導体の効果について説明するための模式図である。FIG. 2 is a schematic diagram for explaining the effect of the third organic semiconductor according to the present invention. 図3は直方体に近似した第一の有機半導体と第二の有機半導体の混合膜の模式図である。FIG. 3 is a schematic view of a mixed film of a first organic semiconductor and a second organic semiconductor approximated to a rectangular parallelepiped. 図4は有機半導体のSP値の実験値と計算値の対応関係を示す図である。FIG. 4 is a diagram showing a correspondence relationship between experimental values and calculated values of SP values of organic semiconductors. 図5は本発明に係る有機半導体の好ましい酸化電位,還元電位関係の一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of a preferable relationship between the oxidation potential and the reduction potential of the organic semiconductor according to the present invention. 図6は本発明に係る有機半導体の好ましい酸化電位,還元電位関係の一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of a preferable oxidation potential / reduction potential relationship of the organic semiconductor according to the present invention. 図7は本発明の光電変換素子の一実施形態の断面模式図である。FIG. 7 is a schematic cross-sectional view of one embodiment of the photoelectric conversion element of the present invention. 図8は図7に記載の光電変換素子を含む画素の一例の等価回路図である。FIG. 8 is an equivalent circuit diagram of an example of a pixel including the photoelectric conversion element shown in FIG. 図9は本発明の光電変換素子を用いた光電変換装置の構成を模式的に示す平面図である。FIG. 9 is a plan view schematically showing a configuration of a photoelectric conversion device using the photoelectric conversion element of the present invention. 図10は本発明において用いられる有機半導体の酸化電位、還元電位をサイクリックボルタンメトリーにより決定する際の波形例を示す図である。FIG. 10 is a diagram showing a waveform example when determining the oxidation potential and reduction potential of the organic semiconductor used in the present invention by cyclic voltammetry. 図11は本明細書の実施例の光電変換素子の暗電流値のアレニウスプロットを示した図である。FIG. 11 is a diagram illustrating an Arrhenius plot of the dark current value of the photoelectric conversion element of the example of the present specification. 図12は、本明細書の実施例の光電変換素子の変換効率の上昇率をΔEgに対してプロットした図である。FIG. 12 is a graph in which the increase rate of the conversion efficiency of the photoelectric conversion element of the example of the present specification is plotted against ΔEg.
 本発明について、適宜図面を参照しながら実施形態について詳細に説明するが、以下に説明する実施形態に限定されるものではない。また以下の説明において特段説明されていない部分や、図面において特段図示されなかった部分に関しては、当該技術分野の周知又は公知の技術を適用することができる。 The embodiments of the present invention will be described in detail with reference to the drawings as appropriate, but are not limited to the embodiments described below. In addition, a well-known or publicly known technique in the technical field can be applied to a part not specifically described in the following description or a part not specifically illustrated in the drawings.
 本発明の光電変換素子は、アノードとカソードとの間に、有機化合物からなる光電変換層を備えた暗電流が低減された光電変換素子である。本発明の光電変換層は、p型有機半導体とn型有機半導体とを有し、さらに、第三の有機半導体を有することによって、暗電流を低減することを特徴としている。本発明において、光電変換層を構成するp型有機半導体とn型有機半導体及び第三の有機半導体はいずれも低分子有機半導体である。 The photoelectric conversion element of the present invention is a photoelectric conversion element having a reduced dark current, which includes a photoelectric conversion layer made of an organic compound between an anode and a cathode. The photoelectric conversion layer of the present invention has a p-type organic semiconductor and an n-type organic semiconductor, and further has a third organic semiconductor to reduce dark current. In the present invention, the p-type organic semiconductor, the n-type organic semiconductor, and the third organic semiconductor constituting the photoelectric conversion layer are all low-molecular organic semiconductors.
 (光電変換層)
 先ず、本発明の特徴である光電変換層について説明する。
 光電変換層は、光を吸収することでその光量に応じた電荷を発生する。本発明に係る光電変換層は、少なくとも、第一の有機半導体と、第二の有機半導体と、第三の有機半導体と、を含有し、これらの有機半導体はいずれも低分子有機半導体である。また、第一の有機半導体と第二の有機半導体とは、一方がp型有機半導体(以下、「p型半導体」と記す)であり、他方がn型有機半導体(以下、「n型半導体」と記す)である。具体的には、第一の有機半導体と第二の有機半導体のうち酸化電位が小さい方がp型半導体であり、酸化電位が大きい方がn型半導体である。光電変換層中に、p型半導体とn型半導体を混合することにより、光電変換効率(感度)を向上させることができる。
(Photoelectric conversion layer)
First, the photoelectric conversion layer that is a feature of the present invention will be described.
The photoelectric conversion layer generates charges according to the amount of light by absorbing light. The photoelectric conversion layer according to the present invention contains at least a first organic semiconductor, a second organic semiconductor, and a third organic semiconductor, and these organic semiconductors are all low molecular organic semiconductors. One of the first organic semiconductor and the second organic semiconductor is a p-type organic semiconductor (hereinafter referred to as “p-type semiconductor”), and the other is an n-type organic semiconductor (hereinafter referred to as “n-type semiconductor”). ). Specifically, of the first organic semiconductor and the second organic semiconductor, the one with a lower oxidation potential is a p-type semiconductor, and the one with a higher oxidation potential is an n-type semiconductor. Photoelectric conversion efficiency (sensitivity) can be improved by mixing a p-type semiconductor and an n-type semiconductor in the photoelectric conversion layer.
 本発明において、第一の有機半導体と第二の有機半導体と第三の有機半導体の質量比は、第一の有機半導体≧第二の有機半導体≧第三の有機半導体である。
 尚、第一の有機半導体と第二の有機半導体と第三の有機半導体において、光電変換層における含有量(質量%)が等しい場合には、分子量が大きい有機半導体から順に第一、第二、第三とする。即ち、3種類の有機半導体が等しく含有されている場合には、3種類の有機半導体の中で分子量が最も大きい有機半導体が第一の有機半導体であり、3種類の有機半導体の中で分子量が最も小さい有機半導体が第三の有機半導体である。また、3種類の有機半導体のうち、2種類の含有量が等しく、残りの1種類の含有量が先の2種類よりも多い場合、上記2種類の有機半導体のうち、分子量が大きい方が第二の有機半導体で、小さい方が第三の有機半導体である。また、3種類の有機半導体のうち、2種類の含有量が等しく、残りの1種類の含有量が先の2種類よりも少ない場合、上記2種類の有機半導体のうち、分子量が大きい方が第一の有機半導体で、小さい方が第二の有機半導体である。
In the present invention, the mass ratio of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is such that the first organic semiconductor ≧ the second organic semiconductor ≧ the third organic semiconductor.
In addition, in the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor, when the content (% by mass) in the photoelectric conversion layer is equal, the first, second, Third. That is, when three types of organic semiconductors are equally contained, the organic semiconductor having the largest molecular weight among the three types of organic semiconductors is the first organic semiconductor, and the molecular weight of the three types of organic semiconductors is the same. The smallest organic semiconductor is the third organic semiconductor. Moreover, when two types of content is equal among three types of organic semiconductors and the content of the remaining one type is higher than the previous two types, the higher the molecular weight among the two types of organic semiconductors. The smaller one of the two organic semiconductors is the third organic semiconductor. Moreover, when two types of content is equal among three types of organic semiconductors and the content of the remaining one type is less than the previous two types, the higher the molecular weight of the two types of organic semiconductors, One organic semiconductor and the smaller one is the second organic semiconductor.
 また、本発明に係る光電変換層は、少なくとも第一の有機半導体と第二の有機半導体と第三の有機半導体とにより構成されていればよいが、光電変換機能や本発明の効果である暗電流低減効果を損ねない範囲で、これら以外の材料、すなわち他の材料、を含んでいても構わない。他の材料の質量比は、第三の有機半導体の含有量以下であってよい。他の材料は、第一乃至第三の有機半導体とは異なる有機半導体であってもよいが、その場合、有機半導体である他の材料の質量比は、第三の有機半導体の含有量以下である。他の材料が有機半導体であり、その含有量が第三の有機半導体の含有量と等しい場合、分子量が大きい方が第三の有機半導体である。 Moreover, the photoelectric conversion layer according to the present invention may be composed of at least the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor. Other than these materials, that is, other materials may be included as long as the current reduction effect is not impaired. The mass ratio of the other material may be equal to or less than the content of the third organic semiconductor. The other material may be an organic semiconductor different from the first to third organic semiconductors. In this case, the mass ratio of the other material that is the organic semiconductor is not more than the content of the third organic semiconductor. is there. When the other material is an organic semiconductor and the content thereof is equal to the content of the third organic semiconductor, the one having a higher molecular weight is the third organic semiconductor.
 本発明の第三の有機半導体は、第一の有機半導体と第二の有機半導体のみで光電変換層を構成した際に生じる暗電流を抑制するために添加される。第二の有機半導体がp型半導体である場合、第三の有機半導体もp型半導体であることが好ましく、同様に、第二の有機半導体がn型半導体である場合、第三の有機半導体もn型半導体であることが好ましい。第三の有機半導体がp型半導体であるかn型半導体であるかは、その酸化電位で見積もることができる。第三の有機半導体の酸化電位が、第一の有機半導体と第二の有機半導体のうちp型半導体である化合物の酸化電位に近い場合は、第三の有機半導体はp型半導体である。同様に、第三の有機半導体の酸化電位が、第一の有機半導体と第二の有機半導体のうちn型半導体である化合物の酸化電位に近い場合は、第三の有機半導体はn型半導体である。これによって、第一の有機半導体よりも光電変換層中の含有量が少ない第二の有機半導体の光電変換機能(第二の有機半導体がp型半導体ならば電子ドナー機能、n型半導体ならば電子アクセプタ機能)を、第三の有機半導体によって補ってよい。 The third organic semiconductor of the present invention is added to suppress dark current generated when the photoelectric conversion layer is composed of only the first organic semiconductor and the second organic semiconductor. When the second organic semiconductor is a p-type semiconductor, the third organic semiconductor is also preferably a p-type semiconductor. Similarly, when the second organic semiconductor is an n-type semiconductor, the third organic semiconductor is also An n-type semiconductor is preferable. Whether the third organic semiconductor is a p-type semiconductor or an n-type semiconductor can be estimated by its oxidation potential. When the oxidation potential of the third organic semiconductor is close to the oxidation potential of a compound that is a p-type semiconductor among the first organic semiconductor and the second organic semiconductor, the third organic semiconductor is a p-type semiconductor. Similarly, when the oxidation potential of the third organic semiconductor is close to the oxidation potential of a compound that is an n-type semiconductor of the first organic semiconductor and the second organic semiconductor, the third organic semiconductor is an n-type semiconductor. is there. As a result, the photoelectric conversion function of the second organic semiconductor having a lower content in the photoelectric conversion layer than the first organic semiconductor (the electron donor function if the second organic semiconductor is a p-type semiconductor, the electron if the second organic semiconductor is an n-type semiconductor) The acceptor function) may be supplemented by a third organic semiconductor.
 第三の有機半導体の薄膜の可視光領域(波長400nm乃至730nm)での吸収率が最大となる波長は、第一の有機半導体及び第二の有機半導体のそれぞれの可視光領域での吸収率が最大となる二つの波長の間の波長であることが好ましい。これによって、第一の有機半導体と第二の有機半導体の吸収帯の間の波長領域の吸収を第三の有機半導体で効率的に補うことができる。 The wavelength at which the absorptance in the visible light region (wavelength 400 nm to 730 nm) of the third organic semiconductor thin film is maximized is the absorptance in the visible light region of each of the first organic semiconductor and the second organic semiconductor. It is preferable that the wavelength is between two wavelengths that are maximum. Thereby, the absorption of the wavelength region between the absorption bands of the first organic semiconductor and the second organic semiconductor can be efficiently supplemented by the third organic semiconductor.
 また、第一の有機半導体と第二の有機半導体と第三の有機半導体の合計量を100質量%とした時、第二の有機半導体の含有量が6質量%以上であり、第三の有機半導体の含有量が3質量%以上である。本発明者等は、光電変換層中の有機半導体の組成が上記関係を満たすことで、良好な光電変換特性を示す光電変換素子を作製できることを見出した。以下に詳細を説明する。 Further, when the total amount of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is 100% by mass, the content of the second organic semiconductor is 6% by mass or more, and the third organic semiconductor The semiconductor content is 3% by mass or more. The present inventors have found that a photoelectric conversion element exhibiting good photoelectric conversion characteristics can be produced when the composition of the organic semiconductor in the photoelectric conversion layer satisfies the above relationship. Details will be described below.
 従来の光電変換層は、p型半導体とn型半導体とが混合されたバルクへテロ構造を有している。すなわち、光電変換層が、第一の有機半導体と第二の有機半導体の2種類の有機半導体を併用する二元構成である。光電変換層中の第一の有機半導体の質量比は第二の有機半導体の質量比よりも大きい。係る光電変換層では、第一の有機半導体と第二の有機半導体が、互いの吸収波長領域を補い合うことによって、パンクロマティックな吸収を得ることができる。そして係る構成では、第二の有機半導体の光電変換層中における質量比がより大きい方が、十分なパンクロマティックな吸収を実現できる。 A conventional photoelectric conversion layer has a bulk heterostructure in which a p-type semiconductor and an n-type semiconductor are mixed. That is, the photoelectric conversion layer has a binary configuration in which two types of organic semiconductors, a first organic semiconductor and a second organic semiconductor, are used in combination. The mass ratio of the first organic semiconductor in the photoelectric conversion layer is larger than the mass ratio of the second organic semiconductor. In such a photoelectric conversion layer, the first organic semiconductor and the second organic semiconductor supplement each other's absorption wavelength region, whereby panchromatic absorption can be obtained. In such a configuration, sufficient panchromatic absorption can be realized when the mass ratio of the second organic semiconductor in the photoelectric conversion layer is larger.
 しかしながら、本発明者等は、第二の有機半導体の質量比が大きくなるに従い、光電変換素子に電圧印加した際の暗電流が増大することを見出した。その理由を図面を用いて以下に説明する。 However, the present inventors have found that the dark current when a voltage is applied to the photoelectric conversion element increases as the mass ratio of the second organic semiconductor increases. The reason will be described below with reference to the drawings.
 図1は光電変換層における、基本的な暗電流の生成メカニズムを示す模式図であり、p型半導体とn型半導体の単分子における、HOMO(最高被占軌道)準位、LUMO(最低空軌道)準位の関係を図示している。暗電流はp型半導体のHOMO準位に存在する電子が、熱エネルギーによってn型半導体のLUMO準位へ移動することにより、発生すると考えられる。その際の電子移動のエネルギー障壁がΔE1である。 FIG. 1 is a schematic diagram showing a basic dark current generation mechanism in a photoelectric conversion layer. HOMO (highest occupied orbital) level, LUMO (lowest empty orbital) in a single molecule of a p-type semiconductor and an n-type semiconductor. ) The level relationship is illustrated. It is considered that the dark current is generated when electrons existing in the HOMO level of the p-type semiconductor move to the LUMO level of the n-type semiconductor by thermal energy. In this case, the energy barrier for electron transfer is ΔE 1 .
 ところが、第一の有機半導体と第二の有機半導体との混合膜中では、それぞれが、例えば二量体を形成するなどして、同一化合物同士で会合している。その結果、HOMO準位、LUMO準位の状態密度がエネルギー的な広がりを形成する。 However, in the mixed film of the first organic semiconductor and the second organic semiconductor, each is associated with the same compound, for example, by forming a dimer. As a result, the density of states of the HOMO level and the LUMO level forms an energy spread.
 図2は本発明の光電変換素子の第三の有機半導体の効果を説明するための模式図である。図2中の実線は、第一の有機半導体と第二の有機半導体の二元構成の混合膜における、HOMO準位、LUMO準位の状態密度のエネルギー分布を模式的に表したものである。一方、破線は、第一の有機半導体、第二の有機半導体、第三の有機半導体の三元構成の混合膜における、状態密度エネルギー分布の模式図である。破線については後述する。図2において、第一の有機半導体がn型半導体であり、第二の有機半導体がp型半導体である。
 二元構成の状態密度のエネルギー的な広がりを考慮した電子移動のエネルギー障壁ΔE2は、単分子のエネルギー準位で考える際のΔE1よりも小さい。電子移動のエネルギー障壁ΔEが小さいほど、暗電流は大きい。すなわち、状態密度のエネルギー的な広がりが広いほど、ΔE2が小さくなり、暗電流が発生し易くなる。したがって、光電変換層中での第二の有機半導体の質量比が大きくなるほど、第二の有機半導体中の化合物同士が会合しやすくなり、HOMO準位およびLUMO準位の状態密度のエネルギー的な広がりも広がりやすくなると考えられる。そのため、第二の有機半導体の質量比が大きくなるに従い暗電流が増大すると考えられる。
FIG. 2 is a schematic view for explaining the effect of the third organic semiconductor of the photoelectric conversion element of the present invention. The solid line in FIG. 2 schematically represents the energy distribution of the state density of the HOMO level and the LUMO level in the binary mixed film of the first organic semiconductor and the second organic semiconductor. On the other hand, the broken line is a schematic diagram of the state density energy distribution in the mixed film of the ternary configuration of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor. The broken line will be described later. In FIG. 2, the first organic semiconductor is an n-type semiconductor, and the second organic semiconductor is a p-type semiconductor.
The energy barrier ΔE 2 for electron transfer considering the energy spread of the binary density of states is smaller than ΔE 1 when considered in terms of the energy level of a single molecule. The smaller the energy barrier ΔE 2 for electron transfer, the greater the dark current. That is, as the energy spread of the state density is wider, ΔE 2 becomes smaller and dark current is more likely to occur. Therefore, as the mass ratio of the second organic semiconductor in the photoelectric conversion layer increases, the compounds in the second organic semiconductor are more likely to associate with each other, and the energy density of the state density of the HOMO level and the LUMO level is increased. It is thought that it becomes easy to spread. For this reason, it is considered that the dark current increases as the mass ratio of the second organic semiconductor increases.
 上述の第二の有機半導体中の化合物同士の会合による、HOMO準位、LUMO準位の状態密度のエネルギー的な広がりを形成する現象は、第二の有機半導体の質量比が、第一と第二の有機半導体との合計を100質量%とした場合、6質量%以上の場合に起こることが知られている。非特許文献1には、2種類の有機化合物の混合膜において、低濃度の有機化合物が6質量%以上で分子同士が会合することが記載されている。具体的には、6質量%以上の質量比において、該有機化合物の発光が長波長化して濃度消光する傾向が見え始めることが記載されている。発光が長波長化するということは、HOMO準位、LUMO準位の状態密度のエネルギーの広がりが大きくなり、実効的なバンドギャップが小さくなっているためと考えられる。 The phenomenon of forming an energy spread of the density of states of the HOMO level and the LUMO level due to the association of the compounds in the second organic semiconductor described above is that the mass ratio of the second organic semiconductor is the first and the second. It is known that when the sum of the two organic semiconductors is 100% by mass, it occurs when the amount is 6% by mass or more. Non-Patent Document 1 describes that in a mixed film of two kinds of organic compounds, molecules are associated with each other when the organic compound at a low concentration is 6% by mass or more. Specifically, it is described that at a mass ratio of 6% by mass or more, the emission of the organic compound becomes longer in wavelength and the tendency of concentration quenching begins to appear. The increase in the wavelength of light emission is considered to be due to the fact that the energy spread of the state density of the HOMO level and the LUMO level is increased and the effective band gap is reduced.
 第二の有機半導体の質量比が大きくなるに従い暗電流が増大することの対策として、本発明者等は、鋭意検討の結果、以下のことを発見した。それは、第二の有機半導体の質量比が6質量%以上の場合でも、第三の有機半導体を3質量%以上となるように混合することによって、第一の有機半導体と第二の有機半導体のみを混合した場合に比べて、暗電流を低減できるということである。尚、本発明において、第二の有機半導体の質量比が6質量%以上である、及び、第三の有機半導体の質量比が3質量%以上である、とは、いずれも第一の有機半導体と第二の有機半導体と第三の有機半導体の合計量を100質量%とした時の質量比である。 As a countermeasure against an increase in dark current as the mass ratio of the second organic semiconductor increases, the present inventors have discovered the following as a result of intensive studies. Even if the mass ratio of the second organic semiconductor is 6% by mass or more, only the first organic semiconductor and the second organic semiconductor can be obtained by mixing the third organic semiconductor so as to be 3% by mass or more. This means that the dark current can be reduced as compared with the case of mixing. In the present invention, the mass ratio of the second organic semiconductor is 6% by mass or more, and the mass ratio of the third organic semiconductor is 3% by mass or more. And the mass ratio when the total amount of the second organic semiconductor and the third organic semiconductor is 100% by mass.
 以下に、本発明者等が考察した第三の有機半導体の混合による暗電流低減効果の機構について、図2を用いて説明する。
図2の破線で表された状態密度エネルギーは、第三の有機半導体を有する本発明の光電変換素子の第一の有機半導体と第二の有機半導体の二元構成の混合膜における、HOMO準位、LUMO準位の状態密度のエネルギー分布を模式的に表したものである。破線で表された状態密度エネルギーは、実線で表された状態密度エネルギーに比べて、エネルギーの広がりが抑えられている。これは、第三の有機半導体をさらに有することで、第二の有機半導体中の化合物同士の会合が抑制されていると考えられる。その結果、各準位の状態密度のエネルギーの広がりを抑えることができる。有機化合物の会合、二量体の形成、スタッキング等による相互作用は、特に同一の化合物同士で起こり易いため、異なる化合物が混在する場合はそれが阻害されるのである。また、第三の有機半導体による状態密度のエネルギーの広がりを抑える効果は第一の有機半導体に対してももたらされる。しかしながら、第一の有機半導体よりも質量比が小さい第二の有機半導体の方が、第三の有機半導体の混合により、分子同士が会合せずに、分散性の高い状態を実現し易い。その結果、第二の有機半導体の方が、各準位の状態密度のエネルギーの広がりを抑制しやすいと考えられる。
Below, the mechanism of the dark current reduction effect by the mixing of the third organic semiconductor considered by the present inventors will be described with reference to FIG.
The state density energy represented by the broken line in FIG. 2 represents the HOMO level in the binary mixed film of the first organic semiconductor and the second organic semiconductor of the photoelectric conversion element of the present invention having the third organic semiconductor. 4 schematically shows an energy distribution of density of states of LUMO levels. The state density energy represented by the broken line is less spread than the state density energy represented by the solid line. This is considered that the association of the compounds in the second organic semiconductor is suppressed by further having the third organic semiconductor. As a result, the energy spread of the state density of each level can be suppressed. Interactions due to association of organic compounds, dimer formation, stacking, and the like are particularly likely to occur between the same compounds, and therefore, when different compounds coexist, they are inhibited. Moreover, the effect of suppressing the energy spread of the state density by the third organic semiconductor is also brought about for the first organic semiconductor. However, the second organic semiconductor having a smaller mass ratio than the first organic semiconductor is more likely to achieve a highly dispersible state because the molecules are not associated with each other due to the mixing of the third organic semiconductor. As a result, it is considered that the second organic semiconductor can more easily suppress the energy spread of the state density of each level.
 また、図2においては、第一の有機半導体がn型半導体、第二の有機半導体がp型半導体の場合を例として説明したが、第一の有機半導体がp型半導体、第二の有機半導体がn型半導体の場合においても、同様に第三の有機半導体の混合による効果は発現すると考えられる。尚、第三の有機半導体を加えたことによる効果は、第一の有機半導体と第二の有機半導体の質量比が等しい場合でも得られる。 In FIG. 2, the first organic semiconductor is an n-type semiconductor and the second organic semiconductor is a p-type semiconductor. However, the first organic semiconductor is a p-type semiconductor and the second organic semiconductor. In the case where n is an n-type semiconductor, it is considered that the effect of mixing the third organic semiconductor is similarly exhibited. The effect obtained by adding the third organic semiconductor can be obtained even when the mass ratio of the first organic semiconductor and the second organic semiconductor is equal.
 本発明では、第一、第二、第三の有機半導体の合計量を100質量%として、第三の有機半導体の質量比が3質量%以上で、暗電流が低減される効果を発現するが、好ましくは6質量%以上であり、特に好ましくは10質量%以上である。また、第二の有機半導体の質量比に対する、第三の有機半導体の質量比の比は0.12以上であることが好ましい。これは、第二の有機半導体の会合を、第三の有機半導体によって効果的に抑制できるためである。係る比は、より好ましくは、0.24以上であり、特に好ましくは0.4以上である。 In the present invention, the total amount of the first, second, and third organic semiconductors is 100% by mass, and the mass ratio of the third organic semiconductor is 3% by mass or more. , Preferably 6% by mass or more, particularly preferably 10% by mass or more. The ratio of the mass ratio of the third organic semiconductor to the mass ratio of the second organic semiconductor is preferably 0.12 or more. This is because the association of the second organic semiconductor can be effectively suppressed by the third organic semiconductor. The ratio is more preferably 0.24 or more, and particularly preferably 0.4 or more.
 本発明に係る光電変換素子は、第一、第二、第三の有機半導体の合計量を100質量%として、第二の有機半導体の質量比が10質量%以上であることがさらに好ましい。特許文献3には、二つの化合物を混合した場合、混合濃度の低い方の化合物を10質量%以上とする場合に、顕著に発光の濃度消光が起こることが記載されている。すなわち、10質量%以上とした場合に、より顕著な会合が起こる。したがって、本発明においても、第一、第二、第三の有機半導体の合計量を100質量%とした時、第二の有機半導体が10質量%以上の場合に、第二の有機半導体同士が顕著な会合をすると考えられ、第三の有機半導体の添加効果がより顕著になると考えられる。また、第二の有機半導体を10質量%以上とすることで、第二の有機半導体の吸収帯の光の吸収率を高くすることができる。
 つまり、本発明の光電変換素子の第二の有機半導体の質量比が10質量%以上であれば、暗電流を抑制しつつ、光の吸収率を高くすることができる。
In the photoelectric conversion element according to the present invention, the total amount of the first, second, and third organic semiconductors is 100% by mass, and the mass ratio of the second organic semiconductor is more preferably 10% by mass or more. Patent Document 3 describes that when two compounds are mixed, concentration quenching of light emission occurs remarkably when the compound having the lower mixing concentration is 10% by mass or more. That is, when the content is 10% by mass or more, more remarkable association occurs. Therefore, also in the present invention, when the total amount of the first, second, and third organic semiconductors is 100% by mass, the second organic semiconductors are It is considered that the association is remarkable, and the effect of adding the third organic semiconductor is considered to be more remarkable. Moreover, the light absorption factor of the absorption band of a 2nd organic semiconductor can be made high by making a 2nd organic semiconductor into 10 mass% or more.
That is, if the mass ratio of the second organic semiconductor of the photoelectric conversion element of the present invention is 10% by mass or more, the light absorption rate can be increased while suppressing dark current.
 さらに本発明において、第一、第二、第三の有機半導体の合計量を100質量%とした時、第二の有機半導体が17質量%以上であることが好ましい。第二の有機半導体の質量比が17質量%以上の場合は、第二の有機半導体同士が面で接する確率が特に高くなる。そのため、より顕著なスタッキングによる相互作用を起こしやすく、その分、第三の有機半導体を混合した際の暗電流低減効果が顕著となるためである。その理由を、図3を用いて説明する。 Furthermore, in the present invention, when the total amount of the first, second and third organic semiconductors is 100% by mass, the second organic semiconductor is preferably 17% by mass or more. When the mass ratio of the second organic semiconductor is 17% by mass or more, the probability that the second organic semiconductors are in contact with each other is particularly high. Therefore, it is easy to cause the interaction by more remarkable stacking, and the dark current reduction effect when the third organic semiconductor is mixed becomes remarkable by that amount. The reason will be described with reference to FIG.
 図3は、直方体に近似した第一の有機半導体と第二の有機半導体の二元構成の混合膜の模式図である。
 低分子有機化合物の三次元的な形状は、有機化合物を形成する各原子の位置を三次元座標にプロットした際に、X、Y、Zの各座標軸の最大値と最小値の差が長さとなる辺を一辺とする直方体に近似できる。同じ大きさの直方体を三次元空間に充填した場合、図3に示すように、ある直方体Aの各面に対して、X軸方向に2個、Y軸方向に2個、Z軸方向に2個、合計6個の直方体Bが面で隣接する。図3には、直方体Aとその重心に加え、直方体Aに対して面で隣接する6個の直方体Bとその重心が示されている。ここで、混合膜中の質量比が小さい第二の有機半導体が直方体Aであるとする。6個の直方体Bが全て第一の有機半導体である場合、第二の有機半導体同士が面で接することはない。一方、直方体Aが第二の有機半導体であり、6個の直方体Bのうち、少なくとも一つが第二の有機半導体である場合、第二の有機半導体同士が面で接することになる。つまり、第一有機半導体と第二の有機半導体の混合膜において、第二の有機半導体の質量比が1/6、即ちおおよそ17質量%以上の場合、該混合膜中で第二の有機半導体同士が面で接触し、強いスタッキングによる相互作用を起こし得ることが分かる。
FIG. 3 is a schematic diagram of a mixed film of a binary configuration of a first organic semiconductor and a second organic semiconductor approximated to a rectangular parallelepiped.
The three-dimensional shape of the low-molecular organic compound is that when the position of each atom forming the organic compound is plotted in three-dimensional coordinates, the difference between the maximum value and the minimum value of each coordinate axis of X, Y, Z is the length and Can be approximated to a rectangular parallelepiped with one side as a side. When a rectangular parallelepiped of the same size is filled in a three-dimensional space, as shown in FIG. 3, two in the X-axis direction, two in the Y-axis direction, and two in the Z-axis direction with respect to each surface of a certain rectangular parallelepiped A A total of six cuboids B are adjacent on the surface. In addition to the rectangular parallelepiped A and its center of gravity, FIG. 3 shows six rectangular parallelepipeds B adjacent to the rectangular parallelepiped A in terms of surfaces and their centers of gravity. Here, it is assumed that the second organic semiconductor having a small mass ratio in the mixed film is a rectangular parallelepiped A. When all of the six rectangular parallelepipeds B are the first organic semiconductors, the second organic semiconductors are not in contact with each other on the surface. On the other hand, when the rectangular parallelepiped A is the second organic semiconductor and at least one of the six rectangular parallelepipeds B is the second organic semiconductor, the second organic semiconductors are in contact with each other on the surface. That is, in the mixed film of the first organic semiconductor and the second organic semiconductor, when the mass ratio of the second organic semiconductor is 1/6, that is, approximately 17% by mass or more, the second organic semiconductors are mixed in the mixed film. It can be seen that the surfaces touch each other and can cause strong stacking interactions.
 低分子有機化合物を直方体に近似した場合、面で接する場合に顕著なスタッキングによる相互作用が起こり易いが、辺で接する場合も程度は小さいがスタッキングによる相互作用が引き起こされることが考えられる。ここで、直方体Aに面で接する6個の直方体に加えて、辺で接する直方体の数は12個であり、合計18個である。つまり、第二の有機半導体同士が面もしくは辺で接する条件は、混合膜中の含有量が1/18、即ちおおよそ6質量%以上と見積もられる。すなわち、6質量%未満では、第二の有機半導体同士の相互作用が小さいので、第三の有機半導体の混合による暗電流低減効果を発現しにくい。
 以上の通り、第二の有機半導体同士の会合による、HOMO準位、LUMO準位の状態密度のエネルギーの広がりを形成する現象は、第二の有機半導体の含有量が6質量%以上の場合に起こることが、非特許文献1における記載からのみならず、幾何学的な考察からも裏付けられた。
When a low molecular weight organic compound is approximated to a rectangular parallelepiped, a significant stacking interaction is likely to occur when contacting with a surface, but a small degree of contact with a side may cause an interaction due to stacking. Here, in addition to the six rectangular parallelepipeds that contact the rectangular parallelepiped A on the surface, the number of rectangular parallelepipeds that contact with the sides is 12 for a total of 18. That is, the condition in which the second organic semiconductors are in contact with each other at the face or side is estimated to be 1/18, that is, approximately 6% by mass or more in the mixed film. That is, when the amount is less than 6% by mass, the interaction between the second organic semiconductors is small, so that the dark current reduction effect due to the mixing of the third organic semiconductors is hardly exhibited.
As described above, the phenomenon of forming the energy spread of the state density of the HOMO level and the LUMO level due to the association between the second organic semiconductors occurs when the content of the second organic semiconductor is 6% by mass or more. What happened was supported not only from the description in Non-Patent Document 1, but also from geometric considerations.
 以上のことから、本発明において、第一、第二、第三の有機半導体の合計量を100質量%とした時、第二の有機半導体が6質量%以上、好ましくは17質量%以上で、第三の有機半導体の混合による暗電流低減効果が幾何学的な考察から裏付けられた。 From the above, in the present invention, when the total amount of the first, second and third organic semiconductors is 100% by mass, the second organic semiconductor is 6% by mass or more, preferably 17% by mass or more. The effect of reducing the dark current by mixing the third organic semiconductor was supported by geometrical considerations.
 尚、上記のように、本発明においては、第一の有機半導体と第二の有機半導体の混合膜に第三の有機半導体を添加したことによる暗電流低減効果は、第一、第二、第三の有機半導体の合計量を100質量%とした時、第二の有機半導体が6質量%以上で得られる。また、暗電流低減効果は第三の有機半導体は3質量%以上で発現されるが、係る効果は、第二の有機半導体が第一の有機半導体と同量となるまで得られ、さらに、第三の有機半導体を第二の有機半導体と同量となるまで添加できる。よって、本発明において、第一の有機半導体と第二の有機半導体と第三の有機半導体の質量比は、
 第一の有機半導体≧第二の有機半導体≧第三の有機半導体
となる。
 本発明に係る光電変換素子は、第三の有機半導体を3質量%以上有することで暗電流を低減する。この効果をさらに高めるためには、効果が高い第三の有機半導体を選定することが好ましい。効果の高い第三の有機半導体は、溶解度パラメータを用いることで選定できる。
As described above, in the present invention, the dark current reduction effect obtained by adding the third organic semiconductor to the mixed film of the first organic semiconductor and the second organic semiconductor is the first, second, and second. When the total amount of the three organic semiconductors is 100% by mass, the second organic semiconductor is obtained at 6% by mass or more. In addition, the dark current reducing effect is exhibited in the third organic semiconductor at 3% by mass or more, but such an effect is obtained until the second organic semiconductor has the same amount as the first organic semiconductor. Three organic semiconductors can be added until the same amount as the second organic semiconductor. Therefore, in the present invention, the mass ratio of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is
The first organic semiconductor ≧ the second organic semiconductor ≧ the third organic semiconductor.
The photoelectric conversion element which concerns on this invention reduces dark current by having 3 mass% or more of 3rd organic semiconductors. In order to further enhance this effect, it is preferable to select a third organic semiconductor having a high effect. The highly effective third organic semiconductor can be selected by using the solubility parameter.
 溶解度パラメータ(以下、単に「SP値」と記載することもある。)は、実験により得られた値もしくは計算により求めることができる。実験的には非特許文献3のように種々の溶媒への溶解性を調べることで実験的に決定できる。実験値が利用できない場合は、SP値の理論的な推算方法としてFedors(非特許文献2)によって提案された方法を用いることができる。 The solubility parameter (hereinafter sometimes simply referred to as “SP value”) can be obtained by an experimentally obtained value or calculation. Experimentally, it can be determined experimentally by examining the solubility in various solvents as in Non-Patent Document 3. When the experimental value cannot be used, a method proposed by Fedors (Non-Patent Document 2) can be used as a theoretical estimation method of the SP value.
 Fedorsよって提案された方法では、以下のようにしてSP値を求める。まず、分子構造を、それを構成する原子又は原子団に分割する。分割された単位を以下分割単位と呼ぶ。非特許文献2に記載された表より、それぞれの分割単位に対して、蒸発エネルギー(ΔEk)(J/mol)及びモル体積(ΔVk)(cm/mol)を求める。
 次にこれらの値を用い、以下の数式1で定義される値をSP値とよぶ。この手法は、原子団寄与法と呼ばれる。SP値は凝集エネルギー密度の平方根であり、本発明において、単位は(J/cm1/2とする。
Figure JPOXMLDOC01-appb-M000005
In the method proposed by Fedors, the SP value is obtained as follows. First, a molecular structure is divided into atoms or atomic groups constituting it. The divided unit is hereinafter referred to as a divided unit. From the table described in Non-Patent Document 2, the evaporation energy (ΔE k ) (J / mol) and the molar volume (ΔV k ) (cm 3 / mol) are determined for each divided unit.
Next, using these values, the value defined by Equation 1 below is called an SP value. This method is called group contribution method. The SP value is the square root of the cohesive energy density. In the present invention, the unit is (J / cm 3 ) 1/2 .
Figure JPOXMLDOC01-appb-M000005
 しかし、この計算方法は、分子構造内に排除体積を有する化合物には、用いることができない。分子構造内に排除体積を有する化合物としては、C60等のフラーレン誘導体が挙げられる。これは球状の分子構造のフラーレン誘導体は分子構造の内部に排除体積があるため分子体積の決定が困難なことによる。同様に、カリックスアレーン誘導体やシクロデキストリン誘導体なども分子構造の内部に排除体積があるため計算は困難である。
 この計算方法では算出できない、フラーレン誘導体等のSP値には、実験値を用いることができる。SP値の実験値は非特許文献3に従い求めることができる。C60は非特許文献3により得られたSP値(σT)20.0を用いることができる。
However, this calculation method cannot be used for compounds having an excluded volume in the molecular structure. Examples of the compound having an excluded volume in the molecular structure include fullerene derivatives such as C60. This is because a fullerene derivative having a spherical molecular structure has an excluded volume inside the molecular structure, and thus it is difficult to determine the molecular volume. Similarly, calixarene derivatives and cyclodextrin derivatives are also difficult to calculate because they have an excluded volume inside the molecular structure.
Experimental values can be used for SP values of fullerene derivatives and the like that cannot be calculated by this calculation method. The experimental value of the SP value can be obtained according to Non-Patent Document 3. For C60, the SP value (σT) 20.0 obtained by Non-Patent Document 3 can be used.
 非特許文献2に基づいた計算値と実験値を表1に示す。表1中、[4]は非特許文献4からの引用値であることを示し、[5]は非特許文献5からの引用値であることを示す。 Table 1 shows the calculated values and experimental values based on Non-Patent Document 2. In Table 1, [4] indicates a quoted value from Non-Patent Document 4, and [5] indicates a quoted value from Non-Patent Document 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図4は、表1の実験値と計算値との関係を表した図である。計算値と実験値とは、線形性を示しており、大きな乖離はない。つまり、本明細書で示した数式1のSP値は、実験値と同じように扱ってよい。
 表1においてピリジンとアニリンのように実験値と計算値で序列が逆転する場合はあるが、上記をプロットした図4を見ると全体としては、計算値と実験値は互いに近い値を示しており序列関係は大きく変化しない。
 本明細書において、第一の有機半導体のSP値をSP1、第二の有機半導体のSP値を 
FIG. 4 is a diagram showing the relationship between the experimental values and the calculated values in Table 1. The calculated value and the experimental value show linearity, and there is no big difference. That is, the SP value of Equation 1 shown in this specification may be handled in the same way as the experimental value.
In Table 1, the order of the experimental values and the calculated values may be reversed, such as pyridine and aniline, but when looking at FIG. 4 in which the above is plotted, the calculated values and the experimental values are close to each other as a whole. The order relationship does not change greatly.
In this specification, SP value of the first organic semiconductor is SP1, and SP value of the second organic semiconductor is
 SP2、第三の有機半導体のSP値をSP3と表記する。
 この3つのSP値は次の式(2)および(3)の関係を満たすことが好ましい。
|SP1-SP2|>|SP2-SP3|   ・・・(2)
|SP1-SP3|>|SP2-SP3|   ・・・(3)
 この関係を満たすことで、第二の有機半導体は、第一の有機半導体と混和するよりも、第三の有機半導体と混和しやすくなる。同様に第三の有機半導体は、第二の有機半導体と混和しやすくなる。第二および第三の有機半導体が混和することで、第二の有機半導体同士の会合による、HOMO準位、LUMO準位の状態密度エネルギーの広がりが抑制される。これによって、たとえば図5に示すΔE12の減少が抑制され、暗電流が低減する。
SP2 and the SP value of the third organic semiconductor are denoted as SP3.
These three SP values preferably satisfy the relationships of the following formulas (2) and (3).
| SP1-SP2 |> | SP2-SP3 | (2)
| SP1-SP3 |> | SP2-SP3 | (3)
By satisfying this relationship, the second organic semiconductor becomes easier to mix with the third organic semiconductor than to mix with the first organic semiconductor. Similarly, the third organic semiconductor is easily mixed with the second organic semiconductor. By mixing the second and third organic semiconductors, the spread of the state density energy of the HOMO level and the LUMO level due to the association between the second organic semiconductors is suppressed. Thereby, for example, the decrease in ΔE12 shown in FIG. 5 is suppressed, and the dark current is reduced.
 第一乃至第三の有機半導体のSP値は、下記の式(4)~(6)の関係を満たすことがさらに好ましい。
|SP1-SP2|≧2.5    ・・・(4)
|SP1-SP3|≧2.5    ・・・(5)
|SP2-SP3|≦2.5    ・・・(6)
More preferably, the SP values of the first to third organic semiconductors satisfy the relationships of the following formulas (4) to (6).
| SP1-SP2 | ≧ 2.5 (4)
| SP1-SP3 | ≧ 2.5 (5)
| SP2-SP3 | ≦ 2.5 (6)
 上記のような関係になるように材料の組み合わせを考慮することで、第二、第三の有機半導体が、第一の有機半導体と混和するよりも優先的に混和した状態になる。
 第二、第三の有機半導体の溶解度パラメータが以下式(7)の関係を満たすことがより好ましい。
|SP2-SP3|≦1.0    ・・・(7)
By considering the combination of materials so as to have the above relationship, the second and third organic semiconductors are preferentially mixed rather than mixed with the first organic semiconductor.
More preferably, the solubility parameters of the second and third organic semiconductors satisfy the relationship of the following formula (7).
| SP2-SP3 | ≦ 1.0 (7)
 第一の有機半導体がn型の場合は、第二と第三の有機半導体はp型が好ましい。一方、第一の有機半導体がp型の場合は、第二と第三の有機半導体はn型が好ましい。 When the first organic semiconductor is n-type, the second and third organic semiconductors are preferably p-type. On the other hand, when the first organic semiconductor is p-type, the second and third organic semiconductors are preferably n-type.
 このような関係とすることで、主成分である第一の有機半導体の相が形成されやすく、かつ第二と第三の有機半導体が混ざり合った相が形成されやすいので好ましい。その際、主成分たる第一の有機半導体が、光電変換層の内部構造として相分離構造の主要構造となり、高い電荷分離効率と高い電荷輸送能を実現しやすくなると考えられる。このとき、熱励起による暗電流発生は、第二と第三の有機半導体の混和状態によって低減される。よって、暗電流は低下するとともに、高い光電変換特性を有する光電変換素子が得られる。 Such a relationship is preferable because a phase of the first organic semiconductor as the main component is easily formed and a phase in which the second and third organic semiconductors are mixed is easily formed. At that time, the first organic semiconductor as the main component becomes the main structure of the phase separation structure as the internal structure of the photoelectric conversion layer, and it is considered that high charge separation efficiency and high charge transport ability are easily realized. At this time, the generation of dark current due to thermal excitation is reduced by the mixed state of the second and third organic semiconductors. Therefore, a dark current is reduced and a photoelectric conversion element having high photoelectric conversion characteristics can be obtained.
 以上の通り、本発明によりS/N比のうちのNを低減することで暗電流を低減させることを説明した。 As described above, it has been explained that the dark current is reduced by reducing N of the S / N ratio according to the present invention.
 光電変換素子の解像度を向上させるためには、S/N比のNを下げるのみならず、Sを向上させることが好ましい。そのためには、第一、第二、第三の有機半導体から2種類の光電変換素子を構成した場合、短波長側にEQEピークを持つ素子よりも、長波長側にEQEピークを有する素子の方が、変換効率(η)が高いことが好ましい。
 より具体的には、第一の有機半導体がn型半導体、第二および第三の有機半導体がp型半導体である場合、第一の有機半導体と第二の有機半導体で構成される光電変換素子1と、第一の有機半導体と第三の有機半導体で構成される光電変換素子2とを想定する。
 そして、それぞれの光電変換素子の波長に対する外部量子効率(EQE)の値を示すスペクトルを得る。光電変換素子1において、スペクトルのピークが光電変換素子2よりも短波長側に現れる場合、光電変換素子2の変換効率が、光電変換素子1の変換効率よりも高いことが好ましい。
In order to improve the resolution of the photoelectric conversion element, it is preferable not only to lower N of the S / N ratio but also to improve S. For this purpose, when two types of photoelectric conversion elements are formed from the first, second, and third organic semiconductors, an element having an EQE peak on the long wavelength side is more preferable than an element having an EQE peak on the short wavelength side. However, it is preferable that the conversion efficiency (η) is high.
More specifically, when the first organic semiconductor is an n-type semiconductor and the second and third organic semiconductors are p-type semiconductors, a photoelectric conversion element constituted by the first organic semiconductor and the second organic semiconductor 1 and a photoelectric conversion element 2 composed of a first organic semiconductor and a third organic semiconductor are assumed.
And the spectrum which shows the value of the external quantum efficiency (EQE) with respect to the wavelength of each photoelectric conversion element is obtained. In the photoelectric conversion element 1, when the peak of the spectrum appears on the shorter wavelength side than the photoelectric conversion element 2, the conversion efficiency of the photoelectric conversion element 2 is preferably higher than the conversion efficiency of the photoelectric conversion element 1.
 一方、上記のように光電変換素子1と光電変換素子2とを想定する。光電変換素子1において、スペクトルのピークが光電変換素子2よりも長波長側に現れる場合、光電変換素子1及び光電変換素子2は、下記の関係式(8)及び(9)を満たすことが好ましい。
η>η       ・・・・・(8)
|ΔEg|≦0.052eV・・・・・(9)
 ηは光電変換素子1の変換効率であり、ηは光電変換素子2の変換効率である。そして、第一乃至第三の有機半導体を有する光電変換素子の変換効率はηと表す。
 ΔEgは光電変換素子1と光電変換素子2とのEQEピーク波長差から求まるエネルギー差である。上記の関係を満たすことで、変換効率の異なるp型半導体-n型半導体の組み合わせ間でのエネルギーの往来が可能になる。具体的には、光電変換素子2のp型半導体-n型半導体の組み合わせから光電変換素子1のp型半導体-n型半導体の組み合わせへエネルギーを一部受け渡し可能になることで、変換効率の高い光電変換素子1の電荷分離能を活用できるのである。これにより一定の変換効率向上が期待でき、η>η>ηの関係を作り出すことが可能になるのである。
On the other hand, the photoelectric conversion element 1 and the photoelectric conversion element 2 are assumed as described above. In the photoelectric conversion element 1, when the spectrum peak appears on the longer wavelength side than the photoelectric conversion element 2, the photoelectric conversion element 1 and the photoelectric conversion element 2 preferably satisfy the following relational expressions (8) and (9). .
η 1 > η 2 (8)
| ΔEg | ≦ 0.052 eV (9)
η 1 is the conversion efficiency of the photoelectric conversion element 1, and η 2 is the conversion efficiency of the photoelectric conversion element 2. And the conversion efficiency of the photoelectric conversion element which has a 1st thru | or 3rd organic semiconductor is represented as (eta) 3 .
ΔEg is an energy difference obtained from an EQE peak wavelength difference between the photoelectric conversion element 1 and the photoelectric conversion element 2. By satisfying the above relationship, energy can be transferred between combinations of p-type semiconductors and n-type semiconductors having different conversion efficiencies. Specifically, a part of energy can be transferred from the combination of the p-type semiconductor-n-type semiconductor of the photoelectric conversion element 2 to the combination of the p-type semiconductor-n-type semiconductor of the photoelectric conversion element 1, so that the conversion efficiency is high. The charge separation ability of the photoelectric conversion element 1 can be utilized. As a result, a certain improvement in conversion efficiency can be expected, and a relationship of η 1 > η 3 > η 2 can be created.
 光電変換素子の感度において、光の吸収特性、光から電子への変換効率が高いことが好ましい。吸収特性が優れていても電荷分離する能力が低い場合は、感度の良い素子は得られないからである。そこで吸収した光子を電子に変換する確率として変換効率(η)を下記の式(10)の関係とする。
変換効率(η)= 外部量子収率/光電変換層の吸収率    ・・・(10)
In the sensitivity of the photoelectric conversion element, it is preferable that the light absorption characteristics and the conversion efficiency from light to electrons are high. This is because a device with high sensitivity cannot be obtained if the ability to separate charges is low even though the absorption characteristics are excellent. Therefore, the conversion efficiency (η) is represented by the following equation (10) as the probability of converting the absorbed photons into electrons.
Conversion efficiency (η) = external quantum yield / absorption rate of photoelectric conversion layer (10)
 外部量子効率(External Quantum Efficiency)とは量子効率(Quantaum Efficiency)とも呼ばれ、素子に入射した全光子数が電気信号に変わる効率のことである。このEQEが高いことが、光電変換素子としての感度が高いことを意味する。以下、外部量子効率または量子効率を「EQE」とも記載する。
 EQEは所定の電圧で印加された光電変換素子に、例えば、A光源(標準光源)やXe光源を分光もしくは分光せずに入射し、入射した全ての光子数のうち光子から電子に変換されて電気信号に変わったものを電流計に電流値を測定して得られる効率のことである。この時入射光を分光して各波長のEQEを測定することで分光感度スペクトルが得られる。
 光電変換層の吸収率とは、光電変換素子に入射される総光子数のうち電極の間に配置された膜で光吸収される割合のことである。
 変換効率(η)は、例えば、次のようにして求めることができる。透明基板上の有機光電変換素子であって下部電極、上部電極ともたとえばIZOのような透明電極を用いることにより透過する画素部を形成することで、吸収率測定が可能になる。測定装置としては島津製作所Solidspec3700などを用いて可能である。この素子の光照射時に流れる光電流から暗電流を差し引くことで、光電変換電流を求められ、それらを電子数に換算し、照射光子数で除することで外部量子収率を求めることができる。この外部量子収率と光電変換層の吸収率から前述のとおり変換効率(η)を求めることが可能になる。
External quantum efficiency is also called quantum efficiency, and is the efficiency at which the total number of photons incident on an element changes to an electrical signal. A high EQE means a high sensitivity as a photoelectric conversion element. Hereinafter, the external quantum efficiency or quantum efficiency is also referred to as “EQE”.
The EQE is incident on a photoelectric conversion element applied with a predetermined voltage, for example, with an A light source (standard light source) or an Xe light source without being split or split, and is converted from photons to electrons out of all the incident photons. This is the efficiency obtained by measuring the current value with an ammeter instead of an electrical signal. At this time, the spectral sensitivity spectrum is obtained by measuring the EQE of each wavelength by separating the incident light.
The absorptance of the photoelectric conversion layer is the ratio of light absorption by the film disposed between the electrodes out of the total number of photons incident on the photoelectric conversion element.
The conversion efficiency (η) can be obtained, for example, as follows. The absorptance can be measured by forming a transparent pixel portion by using a transparent electrode such as IZO, which is an organic photoelectric conversion element on a transparent substrate, both of which is a lower electrode and an upper electrode. As a measuring device, it is possible to use Shimadzu Solidspec 3700. The photoelectric conversion current can be obtained by subtracting the dark current from the photocurrent that flows during light irradiation of this element, and the external quantum yield can be obtained by converting them into the number of electrons and dividing by the number of irradiated photons. As described above, the conversion efficiency (η) can be determined from the external quantum yield and the absorption rate of the photoelectric conversion layer.
 本発明における光電変換層は少なくとも第一、第二、第三の有機半導体からなり、そのp型、n型の各1つからなる組み合わせは少なくとも二通りである。この二通りの組み合わせで構成可能な光電変換層を具備した光電変換素子は、それぞれの吸収波長帯と変換効率からなる分光感度特性を有することになる。 The photoelectric conversion layer in the present invention is composed of at least first, second and third organic semiconductors, and there are at least two combinations of p-type and n-type ones. A photoelectric conversion element having a photoelectric conversion layer that can be configured by the two combinations has spectral sensitivity characteristics composed of respective absorption wavelength bands and conversion efficiency.
 有機半導体の吸収帯を表す指標として、有機半導体の吸収ピーク波長とバンドギャップを用いることができる。真空蒸着により成膜やスピンコート法などで100nm以下程度の単一材料からなる薄膜を作成し、その膜の吸収スペクトルを測定することで吸収ピーク波長や光学吸収端を求めることが可能である。ここでいう吸収ピーク波長は吸収帯として最も長波長側にあるピークを指し、第一吸収帯のピーク波長のことである。その吸収帯における吸収ピーク波長は、たとえば一重ピークのものはそのピークを、多重ピーク(振動構造ともいう)のものは最も長波長のピークを指す。一方で光学吸収端はバンドギャップに相当する。 The absorption peak wavelength and band gap of the organic semiconductor can be used as an index representing the absorption band of the organic semiconductor. An absorption peak wavelength and an optical absorption edge can be obtained by preparing a thin film made of a single material of about 100 nm or less by vacuum deposition or the like by spin coating or by measuring an absorption spectrum of the film. The absorption peak wavelength here refers to the peak on the longest wavelength side as the absorption band, and is the peak wavelength of the first absorption band. As for the absorption peak wavelength in the absorption band, for example, a single peak indicates the peak, and a multiple peak (also referred to as a vibration structure) indicates the longest wavelength peak. On the other hand, the optical absorption edge corresponds to a band gap.
 吸収特性とEQEの分光特性は対応するので、バンドギャップが小さい有機半導体からなる光電変換素子ほど、吸収ピーク波長も長波長側にあり、それに対応するEQEピーク波長も長波長側にある。EQEピーク波長が不明瞭な場合は、吸収率が高くなるように有機半導体の濃度を調節した素子を作製すれば判定は可能である。仮に、いかなる濃度でもEQEピーク波長を確認できない場合、EQEの分光特性として長波長側から短波長側に見て時にEQE値が上昇傾向に転ずる屈曲点を指標とし、該屈曲点をEQEピーク波長と同様の指標として考えることができる。 Since the absorption characteristics and the spectral characteristics of EQE correspond to each other, the photoelectric conversion element made of an organic semiconductor having a smaller band gap has a longer absorption peak wavelength and a corresponding EQE peak wavelength on the longer wavelength side. When the EQE peak wavelength is unclear, it can be determined by fabricating an element in which the concentration of the organic semiconductor is adjusted so as to increase the absorption rate. If the EQE peak wavelength cannot be confirmed at any concentration, the inflection point at which the EQE value tends to increase when viewed from the long wavelength side to the short wavelength side is used as an index as the spectral characteristics of the EQE. It can be considered as a similar index.
 光電変換層における第一、第二、第三の有機半導体の間では、光を吸収し励起状態となった有機半導体から電荷分離が起こるまでの間にエネルギー移動過程が発生する。励起エネルギー移動は主にフェルスター型(蛍光共鳴)エネルギー移動と呼ばれる現象である。光吸収した有機半導体の発光スペクトルとそのエネルギーを受け取る別の有機半導体の吸収スペクトルに重なりがあると発生し、重なりが大きいほどエネルギーは移動しやすくなる。そして、エネルギーは高い状態から低い状態へと移動しやすい。つまり励起エネルギーは光吸収した有機半導体からより長波長側に吸収帯を持つ有機半導体に向かって移動する。特に、そのエネルギー受容体となる有機半導体は吸収確率が高いことが好ましく、つまりはモル吸光係数が大きいことが好ましい。このエネルギー移動過程は電子移動過程とならび非常に時定数の小さい現象である。 Between the first, second, and third organic semiconductors in the photoelectric conversion layer, an energy transfer process occurs until charge separation occurs from the organic semiconductor that is in an excited state by absorbing light. Excitation energy transfer is a phenomenon called mainly Förster type (fluorescence resonance) energy transfer. This occurs when there is an overlap between the emission spectrum of the light-absorbed organic semiconductor and the absorption spectrum of another organic semiconductor that receives the energy. The larger the overlap, the easier the energy moves. And energy tends to move from a high state to a low state. That is, the excitation energy moves from the light-absorbed organic semiconductor toward the organic semiconductor having an absorption band on the longer wavelength side. In particular, the organic semiconductor serving as the energy acceptor preferably has a high absorption probability, that is, preferably has a large molar extinction coefficient. This energy transfer process is a phenomenon with a very small time constant as well as an electron transfer process.
 光励起された有機半導体の持つ励起エネルギーはバンドギャップの小さい有機半導体に向けて移動する。そして励起エネルギーの移動した先のp型またはn型の有機半導体を含んだ一対のp型-n型の有機半導体の間で電荷分離が起こる。この組み合わせが、長波長側に感度を有する有機半導体の組み合わせであることが本発明の特徴となる。その組み合わせが、第一、第二、第三の有機半導体からなる光電変換層を有する光電変換素子の中に含まれることで、さまざまな波長で吸収された光励起エネルギーを、変換効率の高いp型-n型の組み合わせに集めて電荷分離させることが可能になる。すなわち、第一、第二、第三の有機半導体のうちp型およびn型の各一つの有機半導体で構成できうる光電変換層を具備した素子において、短波長側にEQEピークを持つ光電変換素子より長波長側にEQEピークを有する光電変換素子の変換効率(η)が高いことで、高い感度の光電変換素子が得られるのである。これにより光電変換素子の感度が吸収を持つ全波長域にわたって向上し、S/N比を向上させるのである。 The excitation energy of the photoexcited organic semiconductor moves toward the organic semiconductor with a small band gap. Then, charge separation occurs between a pair of p-type and n-type organic semiconductors including the p-type or n-type organic semiconductor to which the excitation energy has been transferred. It is a feature of the present invention that this combination is a combination of organic semiconductors having sensitivity on the long wavelength side. The combination is included in a photoelectric conversion element having a photoelectric conversion layer made of the first, second, and third organic semiconductors, so that photoexcitation energy absorbed at various wavelengths can be converted into p-type with high conversion efficiency. -It becomes possible to collect charge in n-type combinations and separate them. That is, a photoelectric conversion element having an EQE peak on the short wavelength side in an element provided with a photoelectric conversion layer that can be composed of one organic semiconductor of p-type and n-type among the first, second, and third organic semiconductors A photoelectric conversion element having a high sensitivity can be obtained because the conversion efficiency (η) of a photoelectric conversion element having an EQE peak on the longer wavelength side is high. As a result, the sensitivity of the photoelectric conversion element is improved over the entire wavelength region having absorption, and the S / N ratio is improved.
 変換効率の高いp型-n型の有機半導体の各含有量はエネルギー受容体として機能する必要があるため、いずれの有機半導体であっても少なくとも3%以上であり好ましくは6%以上である。エネルギー移動における受容体として、有機半導体のモル吸光係数は少なくも1000molL-1cm-1であり、より好ましくは10000molL-1cm-1以上である。たとえば、p型有機半導体材料として例示されている有機半導体群の第一吸収帯は可視光域にあり、そのモル吸光係数は少なくとも1000molL-1cm-1以上である。一方で、C60などは可視域に吸収帯を持つものの、モル吸光係数が1000molL-1cm-1未満でありエネルギー受容体として有効に機能しない。 Each content of the p-type-n-type organic semiconductor having high conversion efficiency needs to function as an energy acceptor. Therefore, in any organic semiconductor, it is at least 3% or more, preferably 6% or more. As a receptor for energy transfer, the organic semiconductor has a molar extinction coefficient of at least 1000 mol L −1 cm −1 , more preferably 10000 mol L −1 cm −1 or more. For example, the first absorption band of the organic semiconductor group exemplified as the p-type organic semiconductor material is in the visible light region, and the molar extinction coefficient thereof is at least 1000 mol L −1 cm −1 or more. On the other hand, although C60 and the like have an absorption band in the visible range, the molar extinction coefficient is less than 1000 mol L −1 cm −1 and does not function effectively as an energy acceptor.
 本発明における第一、第二、第三の有機半導体はいずれも、低分子有機化合物である。有機化合物は分子によって低分子、オリゴマー分子、高分子に大別されるが、高分子とオリゴマー分子は国際純正応用化学連合(IUPAC)高分子命名法委員会が以下の様に定義している。
 高分子、ポリマー分子(macromolecule,polymer molecule):分子質量の大きい分子で、相対分子質量の小さい分子から実質的又は概念的に得られる単位の多数回の繰返しで構成された構造をもつものをいう。
 オリゴマー分子(oligomer molecule):中程度の大きさの相対分子質量をもつ分子で、相対分子質量の小さい分子から実質的又は概念的に得られる単位の少数回の繰返しで構成された構造をもつものをいう。
The first, second, and third organic semiconductors in the present invention are all low molecular organic compounds. Organic compounds are broadly classified into low molecules, oligomer molecules, and polymers, depending on the molecule. The polymer and oligomer molecules are defined by the International Pure Chemicals Association (IUPAC) Polymer Nomenclature Committee as follows.
Macromolecule, polymer molecule: A molecule having a large molecular mass and having a structure composed of many repetitions of units substantially or conceptually obtained from a molecule having a small relative molecular mass. .
Oligomer molecule: A molecule having a medium relative molecular mass and a structure composed of a small number of repetitions of units substantially or conceptually obtained from a molecule having a small relative molecular mass Say.
 本発明における第一、第二、第三の有機半導体は、上記高分子、ポリマー分子、オリゴマー分子の定義にあてはまらない分子である。即ち、繰り返し単位の繰り返し数が少数回、好ましくは3以下、より好ましくは1である分子である。
 例えば、後述するフラーレンは閉殻空洞状の化合物のであるが、1つの閉殻構造を1つの繰り返し単位と見なし、例えばC60は、繰り返し数が1であるため、低分子である。
 また、高分子には主に化学合成して得られる合成高分子と、自然界に存在する天然高分子とがある。天然高分子には分子量が単分散の高分子が存在するが、合成高分子は、一般的に繰り返し単位の違いによる分子量の分散性を有する。一方、本発明に用いられる有機半導体は天然に存在せず、合成して得られる分子であるが、繰り返し単位の違いによる分子量の分散性は有さない。
The first, second, and third organic semiconductors in the present invention are molecules that do not meet the definition of the polymer, polymer molecule, and oligomer molecule. That is, it is a molecule in which the number of repeating units is a small number of times, preferably 3 or less, more preferably 1.
For example, fullerene described later is a closed-shell hollow compound, but one closed-shell structure is regarded as one repeating unit. For example, C60 has a low molecular weight because the number of repetitions is one.
In addition, there are mainly synthetic polymers obtained by chemical synthesis and natural polymers existing in nature. Although natural polymers include monodisperse polymers, synthetic polymers generally have molecular weight dispersibility due to differences in repeating units. On the other hand, the organic semiconductor used in the present invention does not exist in nature and is a molecule obtained by synthesis, but does not have molecular weight dispersibility due to a difference in repeating units.
 このような分散性の有無は、光電変換素子における光電変換層に用いた場合に、重要な違いを生じる。分散性を有する高分子化合物を光電変換層に用いると、光電変換層に含まれる化合物のHOMO、LUMO準位の状態密度のエネルギー的な広がりが大きくなり、p型半導体のHOMOとn型半導体のLUMO間のエネルギー障壁が制御できなくなる。その結果、電界を印加した際に暗電流を発生させる準位が形成されてしまう。よって、本発明において、光電変換層には、繰り返し単位の違いによる分散性を有さない、繰り返し単位が3以下、好ましくは1である低分子有機半導体、より好ましくは昇華性を有する分子量1500以下の低分子有機半導体を用いる。 The presence or absence of such dispersibility makes an important difference when used for a photoelectric conversion layer in a photoelectric conversion element. When a polymer compound having dispersibility is used for the photoelectric conversion layer, the energy spread of the state density of the HOMO and LUMO levels of the compound contained in the photoelectric conversion layer increases, and the HOMO of the p-type semiconductor and the n-type semiconductor The energy barrier between LUMOs becomes uncontrollable. As a result, a level that generates a dark current when an electric field is applied is formed. Therefore, in the present invention, the photoelectric conversion layer has a low molecular organic semiconductor having no dispersibility due to the difference in the repeating unit and having a repeating unit of 3 or less, preferably 1, more preferably a molecular weight of 1500 or less having sublimation properties. The low molecular organic semiconductor is used.
 本発明は、第一の有機半導体と第二の有機半導体と第三の有機半導体の酸化電位、還元電位関係に因らず、第三の有機半導体の混合により、第二の有機半導体のHOMO準位、LUMO準位のエネルギーの広がりが抑制される。よって、本発明においては暗電流低減効果が発現するが、以下に説明する酸化電位、還元電位関係を満たす場合に、暗電流低減効果が大きくなり易いため好ましい。 The present invention is not limited to the oxidation potential and reduction potential relationship of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor. And LUMO level energy spread is suppressed. Therefore, although the dark current reduction effect appears in the present invention, it is preferable because the dark current reduction effect tends to be large when an oxidation potential and reduction potential relationship described below is satisfied.
 図5に、本発明において、第一の有機半導体がn型半導体、第二の有機半導体がp型半導体である場合の、第三の有機半導体との好ましい酸化電位、還元電位関係を示す。酸化電位はそれぞれの有機半導体のHOMO準位に相当する。還元電位はそれぞれの有機半導体のLUMO準位に相当する。尚、酸化還元電位は溶液中の分子と電極間でのポテンシャルエネルギー差であり、分子単独の物性値である。図5の構成では、各電位の関係が以下の式(11)および(12)を満たすことが好ましい。 FIG. 5 shows a preferred oxidation potential and reduction potential relationship with the third organic semiconductor when the first organic semiconductor is an n-type semiconductor and the second organic semiconductor is a p-type semiconductor in the present invention. The oxidation potential corresponds to the HOMO level of each organic semiconductor. The reduction potential corresponds to the LUMO level of each organic semiconductor. The oxidation-reduction potential is a potential energy difference between a molecule in a solution and an electrode, and is a physical property value of the molecule alone. In the configuration of FIG. 5, it is preferable that the relationship between the potentials satisfies the following expressions (11) and (12).
 Eox2≦Eox3     ・・・(11)
 Ered1≧Ered3      ・・・(12)
Eox2:第二の有機半導体の酸化電位
Eox3:第三の有機半導体の酸化電位
Ered1:第一の有機半導体の還元電位
Ered3:第三の有機半導体の還元電位
Eox2 ≦ Eox3 (11)
Ered1 ≧ Ered3 (12)
Eox2: oxidation potential of the second organic semiconductor Eox3: oxidation potential of the third organic semiconductor Ered1: reduction potential of the first organic semiconductor Ered3: reduction potential of the third organic semiconductor
 上記式(11)および(12)が満たされた場合、第一の有機半導体のLUMO準位と第二の有機半導体のHOMO準位で形成するΔE12に対して、第一の有機半導体のLUMO準位と第三の有機半導体のHOMO準位で形成するΔE13が等しい、又は大きくなる。同様に、ΔE12に対して、第三の有機半導体のLUMO準位と第二の有機半導体のHOMO準位で形成するΔE23が等しい、又は大きくなる。その結果、第一の有機半導体と第二の有機半導体との間で発生する暗電流に対して、第三の有機半導体と他の有機半導体との間で発生する暗電流への寄与を減らすことができる。 When the above formulas (11) and (12) are satisfied, the LUMO of the first organic semiconductor with respect to ΔE 12 formed at the LUMO level of the first organic semiconductor and the HOMO level of the second organic semiconductor. ΔE 13 formed between the level and the HOMO level of the third organic semiconductor is equal to or larger. Similarly, with respect to Delta] E 12, Delta] E 23 to form a third organic semiconductor LUMO level and the HOMO level of the second organic semiconductor is equal to or greater. As a result, the dark current generated between the first organic semiconductor and the second organic semiconductor is reduced in contribution to the dark current generated between the third organic semiconductor and the other organic semiconductor. Can do.
 また、図6に、本発明において、第一の有機半導体がp型半導体、第二の有機半導体がn型半導体である場合の、第三の有機半導体との好ましい酸化電位、還元電位関係を示す。図6の構成では、各電位の関係が以下の式(13)および(14)を満たすことが好ましい。 FIG. 6 shows a preferable oxidation potential and reduction potential relationship with the third organic semiconductor when the first organic semiconductor is a p-type semiconductor and the second organic semiconductor is an n-type semiconductor in the present invention. . In the configuration of FIG. 6, it is preferable that the relationship between the potentials satisfies the following expressions (13) and (14).
 Eox1≦Eox3      ・・・(13)
 Ered2≧Ered3       ・・・(14)
Eox1:第一の有機半導体の酸化電位
Eox3:第三の有機半導体の酸化電位
Ered2:第一の有機半導体の還元電位
Ered3:第三の有機半導体の還元電位
Eox1 ≦ Eox3 (13)
Ered2 ≧ Ered3 (14)
Eox1: oxidation potential of the first organic semiconductor Eox3: oxidation potential of the third organic semiconductor Ered2: reduction potential of the first organic semiconductor Ered3: reduction potential of the third organic semiconductor
 このような酸化電位、還元電位関係が好ましい理由は、前述した、第一の有機半導体がn型半導体、第二の有機半導体がp型半導体である場合と同様、ΔE12≦ΔE13、ΔE12≦ΔE23となることが好ましいためである。 The reason why such an oxidation potential / reduction potential relationship is preferable is that ΔE12 ≦ ΔE13, ΔE12 ≦ ΔE23, as in the case where the first organic semiconductor is an n-type semiconductor and the second organic semiconductor is a p-type semiconductor. This is because it is preferable.
 本発明において、第一の有機半導体は、n型半導体でもp型半導体でも良いが、第一の有機半導体としてn型半導体であるフラーレンやその誘導体を用いた場合、耐熱性が安定しやすく、取り扱いが容易であることから好ましい。 In the present invention, the first organic semiconductor may be an n-type semiconductor or a p-type semiconductor. However, when fullerene, which is an n-type semiconductor, or a derivative thereof is used as the first organic semiconductor, the heat resistance is easily stabilized, Is preferable because it is easy.
 (p型半導体)
 本発明において用いられるp型半導体とは、電子ドナー性有機半導体であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物である。p型半導体は、パンクロマティック吸収帯を得るために吸収波長が450nm乃至700nmの可視域にあることが好ましい。特にパンクロマティックな吸収帯を得るためには500nm乃至650nmにあることが好ましい。これにより、緑色領域以外にも450nm乃至470nm付近の青領域や600nm乃至630nm付近の赤領域の感度も一緒に向上させることができ、パンクロマティック性が向上する。
(P-type semiconductor)
The p-type semiconductor used in the present invention is an electron donor organic semiconductor, which is mainly an organic compound represented by a hole transporting organic compound and has a property of easily donating electrons. The p-type semiconductor preferably has an absorption wavelength in the visible region of 450 nm to 700 nm in order to obtain a panchromatic absorption band. In particular, in order to obtain a panchromatic absorption band, the thickness is preferably 500 nm to 650 nm. Thereby, the sensitivity of the blue region near 450 nm to 470 nm and the red region near 600 nm to 630 nm can be improved together with the green region, and the panchromatic property is improved.
 p型半導体は、下記一般式[1]乃至[5]で示される化合物、キナクリドン誘導体、3H-フェノキサジン-3-オン誘導体のいずれかであることが好ましい。尚、本明細書において、「環を形成する」とは、特に断らない限り、形成する環構造を限定しない。例えば、5員環を縮環させても、6員環を縮環させても、7員環を縮環させてもよい。縮環する環構造は、芳香環であっても、脂環構造であってもよい。 The p-type semiconductor is preferably any one of compounds represented by the following general formulas [1] to [5], a quinacridone derivative, and a 3H-phenoxazin-3-one derivative. In the present specification, “forming a ring” does not limit the ring structure to be formed unless otherwise specified. For example, a 5-membered ring may be condensed, a 6-membered ring may be condensed, or a 7-membered ring may be condensed. The condensed ring structure may be an aromatic ring or an alicyclic structure.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式[1]において、R1は水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアリール基、置換或いは無置換の複素環基、置換或いは無置換のビニル基、置換或いは無置換のアミノ基、又はシアノ基を表す。
 n1、n2、n3はそれぞれ独立に0乃至4の整数を表す。
 X1乃至X3は窒素原子、硫黄原子、酸素原子、置換基を有してもよい炭素原子のいずれかを表す。
 Ar1及びAr2は置換或いは無置換のアリール基又は置換或いは無置換の複素環基からそれぞれ独立に選ばれる。Ar1及びAr2が複数ある場合はそれぞれ同じでも異なってもよく、Ar1及びAr2はX2又はX3が炭素原子の場合、互いに結合して環を形成してもよい。
 Z1はハロゲン原子、シアノ基、シアノ基で置換されたビニル基、置換若しくは無置換のヘテロアリール基又は以下の一般式[1-1]乃至[1-9]で表される置換基のいずれかを表す。
In the general formula [1], R 1 is a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted Alternatively, it represents an unsubstituted vinyl group, a substituted or unsubstituted amino group, or a cyano group.
n 1 , n 2 and n 3 each independently represents an integer of 0 to 4.
X 1 to X 3 each represent a nitrogen atom, a sulfur atom, an oxygen atom, or a carbon atom that may have a substituent.
Ar 1 and Ar 2 are each independently selected from a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group. When there are a plurality of Ar 1 and Ar 2 , they may be the same or different, and Ar 1 and Ar 2 may be bonded to each other to form a ring when X 2 or X 3 is a carbon atom.
Z 1 is any of a halogen atom, a cyano group, a vinyl group substituted with a cyano group, a substituted or unsubstituted heteroaryl group, or a substituent represented by the following general formulas [1-1] to [1-9] Represents
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式[1-1]乃至[1-9]において、R521乃至R588は水素原子、ハロゲン原子、置換又は無置換のアルキル基、置換又は無置換のアルコキシ基、置換又は無置換のアリール基、置換又は無置換の複素環基、置換又は無置換のビニル基、置換又は無置換のアミノ基、およびシアノ基からそれぞれ独立に選ばれる。*は炭素原子との結合位置を表す。 In the general formulas [1-1] to [1-9], R 521 to R 588 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group. Each independently selected from a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, and a cyano group. * Represents a bonding position with a carbon atom.
 上記一般式[1]で表される有機化合物の中でも、Ar1は置換若しくは無置換のアリール基、又は置換或いは無置換の複素環基であることが好ましい。当該複素環基に含まれるヘテロ原子は窒素であることが好ましい。X1は硫黄原子又は酸素原子であることが好ましい。n1は1であり、n2は0であることが好ましい。nが0の場合、Arは単結合を表す。 Among the organic compounds represented by the general formula [1], Ar 1 is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group. The hetero atom contained in the heterocyclic group is preferably nitrogen. X 1 is preferably a sulfur atom or an oxygen atom. n 1 is preferably 1 and n 2 is preferably 0. When n 2 is 0, Ar 2 represents a single bond.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式[2]において、R20乃至R29は水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアリール基、置換或いは無置換の複素環基、置換或いは無置換のビニル基、置換或いは無置換のアミノ基、シアノ基からそれぞれ独立に選ばれる。R20乃至R29のうちの隣り合う2つは互いに結合して環を形成してもよい。 In the general formula [2], R 20 to R 29 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic ring. Each independently selected from a group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, and a cyano group. Two adjacent R 20 to R 29 may be bonded to each other to form a ring.
 一般式[2]は、より具体的には以下の一般式[11]乃至[27]のいずれかで表すことができる。 More specifically, the general formula [2] can be represented by any of the following general formulas [11] to [27].
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式[11]乃至[27]において、R31乃至R390は水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアリール基、置換或いは無置換の複素環基、置換或いは無置換のビニル基、置換或いは無置換のアミノ基、シアノ基からそれぞれ独立に選ばれる。 In the general formulas [11] to [27], R 31 to R 390 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, substituted or unsubstituted. Each is independently selected from a substituted heterocyclic group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, and a cyano group.
 上記一般式[1]及び[2]、一般式[1-1]乃至[1-9]、一般式[11]乃至[27]の置換基の具体例を以下に示す。
 ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が挙げられ、フッ素原子であることが好ましい。
Specific examples of the substituents of the general formulas [1] and [2], the general formulas [1-1] to [1-9], and the general formulas [11] to [27] are shown below.
Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
 アルキル基は、炭素原子数1乃至10のアルキル基が好ましい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、オクチル基、1-アダマンチル基、2-アダマンチル基などが挙げられる。アルキル基は、炭素原子数1乃至4のアルキル基であってもよい。 The alkyl group is preferably an alkyl group having 1 to 10 carbon atoms. Examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a sec-butyl group, an octyl group, a 1-adamantyl group, and a 2-adamantyl group. The alkyl group may be an alkyl group having 1 to 4 carbon atoms.
 アルコキシ基は、炭素原子数1乃至10のアルコキシ基が好ましい。例えば、メトキシ基、エトキシ基、n-プロピオキシ基、イソプロピオキシ基、n-ブトキシ基、tert-ブトキシ基、sec-ブトキシ基、オクトキシ基などが挙げられる。アルコキシ基は炭素原子数1乃至4のアルコキシ基であってもよい。 The alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms. Examples include methoxy group, ethoxy group, n-propoxy group, isopropyloxy group, n-butoxy group, tert-butoxy group, sec-butoxy group, octoxy group and the like. The alkoxy group may be an alkoxy group having 1 to 4 carbon atoms.
 アリール基は、炭素原子数6乃至20のアリール基が好ましい。例えば、フェニル基、ナフチル基、インデニル基、ビフェニル基、ターフェニル基、フルオレニル基、アントラセニル基、ピレニル基、フルオランテニル基、ペリレニル基などが挙げられ。特に、フェニル基、ビフェニル基、ターフェニル基、フルオレニル基、ナフチル基が分子量は低く、化合物の昇華性を考慮すると好ましい。 The aryl group is preferably an aryl group having 6 to 20 carbon atoms. Examples include a phenyl group, a naphthyl group, an indenyl group, a biphenyl group, a terphenyl group, a fluorenyl group, an anthracenyl group, a pyrenyl group, a fluoranthenyl group, and a perylenyl group. In particular, a phenyl group, a biphenyl group, a terphenyl group, a fluorenyl group, and a naphthyl group have a low molecular weight and are preferable in consideration of the sublimation property of the compound.
 複素環基は、炭素原子数3乃至15の複素環基が好ましい。例えば、ピリジル基、ピラジル基、トリアジル基、チエニル基、フラニル基、ピロリル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、カルバゾリル基、アクリジニル基、フェナントロリル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ベンゾチアゾリル基、ベンゾアゾリル基、ベンゾピロリル基などが挙げられる。複素環基に含まれるヘテロ原子は、窒素が好ましい。 The heterocyclic group is preferably a heterocyclic group having 3 to 15 carbon atoms. For example, pyridyl group, pyrazyl group, triazyl group, thienyl group, furanyl group, pyrrolyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, thiadiazolyl group, carbazolyl group, acridinyl group, phenanthryl group, benzothiophenyl group, dibenzothiophenyl group Benzothiazolyl group, benzoazolyl group, benzopyrrolyl group and the like. The hetero atom contained in the heterocyclic group is preferably nitrogen.
 アミノ基は、アルキル基、アリール基を置換基として有するアミノ基が好ましい。例えば、N-メチルアミノ基、N-エチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N-メチル-N-エチルアミノ基、N-ベンジルアミノ基、N-メチル-N-ベンジルアミノ基、N,N-ジベンジルアミノ基、アニリノ基、N,N-ジフェニルアミノ基、N,N-ジナフチルアミノ基、N,N-ジフルオレニルアミノ基、N-フェニル-N-トリルアミノ基、N,N-ジトリルアミノ基、N-メチル-N-フェニルアミノ基、N,N-ジアニソイルアミノ基、N-メシチル-N-フェニルアミノ基、N,N-ジメシチルアミノ基、N-フェニル-N-(4-tert-ブチルフェニル)アミノ基、N-フェニル-N-(4-トリフルオロメチルフェニル)アミノ基等が挙げられる。アミノ基が置換基として有するアルキル基やアリール基は、上記の置換基の例示で示された通りである。 The amino group is preferably an amino group having an alkyl group or an aryl group as a substituent. For example, N-methylamino group, N-ethylamino group, N, N-dimethylamino group, N, N-diethylamino group, N-methyl-N-ethylamino group, N-benzylamino group, N-methyl-N -Benzylamino group, N, N-dibenzylamino group, anilino group, N, N-diphenylamino group, N, N-dinaphthylamino group, N, N-difluorenylamino group, N-phenyl-N- Tolylamino group, N, N-ditolylamino group, N-methyl-N-phenylamino group, N, N-dianisoylamino group, N-mesityl-N-phenylamino group, N, N-dimesitylamino group, N-phenyl- N- (4-tert-butylphenyl) amino group, N-phenyl-N- (4-trifluoromethylphenyl) amino group and the like can be mentioned. The alkyl group and aryl group which the amino group has as a substituent are as shown in the above examples of the substituent.
 一般式[1]及び[2]、一般式[1-1]乃至[1-9]、一般式[11]乃至[27]におけるアルキル基、アリール基、複素環基、アミノ基、ビニル基、アリール基が有する置換基は次の置換基が挙げられる。当該置換基は、メチル基、エチル基、プロピル基、ブチル基などの炭素原子数1乃至4のアルキル基、ベンジル基などのアラルキル基、フェニル基、ビフェニル基などのアリール基、ピリジル基、ピロリル基などの窒素原子を含む複素環基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基などのアミノ基、メトキシル基、エトキシル基、プロポキシル基、フェノキシル基などのアルコキシル基、1,3-インダンジオニル基、5-フルオロ-1,3-インダンジオニル基、5,6-ジフルオロ-1,3-インダンジオニル基、5,6-ジシアノ-1,3-インダンジオニル基、5-シアノ-1,3-インダンジオニル基、シクロペンタ[b]ナフタレン-1,3(2H)-ジオニル基、フェナレン-1,3(2H)-ジオニル基、1,3-ジフェニル-2,4,6(1H,3H,5H)-ピリミジントリオニル基などの環状ケトン基、シアノ基、ハロゲン原子などが挙げられる。ハロゲン原子はフッ素、塩素、臭素、ヨウ素などであり、フッ素原子が好ましい。 In general formulas [1] and [2], general formulas [1-1] to [1-9], and general formulas [11] to [27], an alkyl group, an aryl group, a heterocyclic group, an amino group, a vinyl group, Examples of the substituent that the aryl group has include the following substituents. The substituent is an alkyl group having 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group or butyl group, aralkyl group such as benzyl group, aryl group such as phenyl group or biphenyl group, pyridyl group, pyrrolyl group. Heterocyclic groups containing nitrogen atoms such as, dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, amino group such as ditolylamino group, alkoxyl group such as methoxyl group, ethoxyl group, propoxyl group, phenoxyl group 1,3-indandionyl group, 5-fluoro-1,3-indandionyl group, 5,6-difluoro-1,3-indandionyl group, 5,6-dicyano-1,3-indandionyl group, 5-cyano-1 , 3-indandionyl group, cyclopenta [b] naphthalene-1,3 (2H) -dionyl group, Examples include cyclic ketone groups such as enalen-1,3 (2H) -dionyl group, 1,3-diphenyl-2,4,6 (1H, 3H, 5H) -pyrimidinetrionyl group, cyano group, and halogen atom. . The halogen atom is fluorine, chlorine, bromine, iodine or the like, and a fluorine atom is preferable.
 一般式[1]は、下記の一般式[28]で表される構造を有することが好ましい。 The general formula [1] preferably has a structure represented by the following general formula [28].
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記一般式[28]において、R391乃至R396は水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアリール基、置換或いは無置換の複素環基、置換或いは無置換のビニル基、置換或いは無置換のアミノ基、シアノ基からそれぞれ独立に選ばれる。R391乃至R396のうちの隣接する2つは、互いに結合して環を形成してもよい。特にR394とR395とが結合して環を形成することが好ましい。 In the general formula [28], R 391 to R 396 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted complex, Each is independently selected from a cyclic group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, and a cyano group. Two adjacent R 391 to R 396 may be bonded to each other to form a ring. In particular, R 394 and R 395 are preferably bonded to form a ring.
 また一般式[28]で表される有機化合物は、吸収ピーク波長が522nm以上600nm以下において強い吸収を持つ材料である。この波長領域に吸収ピークを有するとは、前述の通り、光電変換層がパンクロミック性を有するために好ましい。 The organic compound represented by the general formula [28] is a material having strong absorption at an absorption peak wavelength of 522 nm or more and 600 nm or less. Having an absorption peak in this wavelength region is preferable because the photoelectric conversion layer has panchromic properties as described above.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式[3]乃至[5]において、Mは金属原子であり、該金属原子は酸素原子又はハロゲン原子を置換基として有してもよい。 In the general formulas [3] to [5], M is a metal atom, and the metal atom may have an oxygen atom or a halogen atom as a substituent.
 L1乃至L9は金属Mに配位する配位子であって、置換若しくは無置換のアリール基又は置換若しくは無置換の複素環基からなり、それぞれL1乃至L9のうちの隣り合う2つは互いに結合して環を形成してもよい配位子を表す。 L 1 to L 9 are ligands coordinated to the metal M, and are composed of a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and two adjacent L 1 to L 9 are adjacent to each other. Represents a ligand which may be bonded to each other to form a ring.
 上記一般式[3]乃至[5]において、Mがイリジウムである場合は、6配位錯体であることが好ましい。Mがプラチナ、バナジウム、コバルト、ガリウム、チタンである場合は、4配位錯体であることが好ましい。当該配位数とすることで錯体の安定性が高いためである。 In the above general formulas [3] to [5], when M is iridium, a hexacoordinate complex is preferable. When M is platinum, vanadium, cobalt, gallium, or titanium, a tetracoordinate complex is preferable. This is because the stability of the complex is high by setting the coordination number.
 上記一般式[3]乃至[5]について配位子L1乃至L9の具体例を以下に示す。
 配位子L1乃至L9は置換或いは無置換のアリール基と置換或いは無置換の複素環基から選ばれる置換基を複数結合させた配位子である。
 配位子を構成するアリール基として、フェニル基、ナフチル基、インデニル基、ビフェニル基、ターフェニル基、フルオレニル基、アントラセニル基、ピレニル基、フルオランテニル基、ペリレニル基などが挙げられるが、これらに限定されるものではない。
Specific examples of the ligands L 1 to L 9 for the general formulas [3] to [5] are shown below.
The ligands L 1 to L 9 are ligands in which a substituted or unsubstituted aryl group and a plurality of substituents selected from substituted or unsubstituted heterocyclic groups are bonded.
Examples of the aryl group constituting the ligand include phenyl group, naphthyl group, indenyl group, biphenyl group, terphenyl group, fluorenyl group, anthracenyl group, pyrenyl group, fluoranthenyl group, and perylenyl group. It is not limited.
 配位子を構成する複素環基として、ピリジル基、ピラジル基、トリアジル基、チエニル基、フラニル基、ピロリル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、カルバゾリル基、アクリジニル基、フェナントロリル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ベンゾチアゾリル基、ベンゾアゾリル基、ベンゾピロリル基などが挙げられるが、これらに限定されるものではない。 As the heterocyclic group constituting the ligand, pyridyl group, pyrazyl group, triazyl group, thienyl group, furanyl group, pyrrolyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, thiadiazolyl group, carbazolyl group, acridinyl group, phenanthroyl group, Examples thereof include, but are not limited to, a benzothiophenyl group, a dibenzothiophenyl group, a benzothiazolyl group, a benzoazolyl group, and a benzopyrrolyl group.
 一般式[3]乃至[5]における配位子が有する置換基、即ちアリール基及び複素環基が有する置換基は、メチル基、エチル基、プロピル基、ブチル基などの炭素原子数1乃至4のアルキル基、ベンジル基などのアラルキル基、フェニル基、ビフェニル基などのアリール基、ピリジル基、ピロリル基などの窒素原子を含む複素環基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基などのアミノ基、メトキシル基、エトキシル基、プロポキシル基、フェノキシル基などのアルコキシル基、1,3-インダンジオニル基、5,-フルオロ-1,3-インダンジオニル基、5,6-ジフルオロ-1,3-インダンジオニル基、5,6-ジシアノ-1,3-インダンジオニル基、5-シアノ-1,3-インダンジオニル基、シクロペンタ[b]ナフタレン-1,3(2H)-ジオニル基、フェナレン-1,3(2H)-ジオニル基、1,3-ジフェニル-2,4,6(1H,3H,5H)-ピリミジントリオニル基などの環状ケトン基、シアノ基、ハロゲン原子などが挙げられる。ハロゲン原子はフッ素、塩素、臭素、ヨウ素などであり、フッ素原子が好ましい。
 配位子は、ヒドロキシ基やカルボキシル基等を置換基として有し、ヒドロキシ基やカルボキシル基を介して金属原子結合してもよい。
The substituents that the ligands in the general formulas [3] to [5] have, that is, the substituents that the aryl group and heterocyclic group have have 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, and butyl group. Alkyl groups, aralkyl groups such as benzyl groups, aryl groups such as phenyl groups and biphenyl groups, heterocyclic groups containing nitrogen atoms such as pyridyl groups and pyrrolyl groups, dimethylamino groups, diethylamino groups, dibenzylamino groups, diphenylamino Group, amino group such as ditolylamino group, alkoxyl group such as methoxyl group, ethoxyl group, propoxyl group, phenoxyl group, 1,3-indandionyl group, 5, -fluoro-1,3-indandionyl group, 5,6- Difluoro-1,3-indandionyl group, 5,6-dicyano-1,3-indandionyl group, 5-cyano-1 3-indandionyl group, cyclopenta [b] naphthalene-1,3 (2H) -dionyl group, phenalene-1,3 (2H) -dionyl group, 1,3-diphenyl-2,4,6 (1H, 3H, 5H ) -Pyrimidinetrionyl group and other cyclic ketone groups, cyano groups, halogen atoms and the like. The halogen atom is fluorine, chlorine, bromine, iodine or the like, and a fluorine atom is preferable.
The ligand may have a hydroxy group, a carboxyl group, or the like as a substituent, and may be bonded to a metal atom via the hydroxy group or the carboxyl group.
 以下に、上記一般式[1]乃至[5]で示されるp型半導体のうち、好ましい化合物を例示する。 Hereinafter, preferred compounds among the p-type semiconductors represented by the general formulas [1] to [5] are exemplified.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (n型半導体)
 本発明において用いられるn型半導体とは、電子アクセプタ性有機半導体材料であり、電子を受容しやすい性質がある有機化合物である。n型半導体としては、フラーレン系化合物、金属錯体系化合物、フタロシアニン系化合物、カルボン酸ジイミド系化合物等が挙げられるが、フラーレン又はフラーレン誘導体をn型半導体として含むことが好ましい。フラーレン分子又はフラーレン誘導体分子が第一の有機半導体層において連なることで、電子の輸送経路が形成されるため、電子輸送性が向上し、光電変換素子の高速応答性が向上する。フラーレン分子又はフラーレン誘導体分子の中でも、フラーレンC60が、電子の輸送経路を形成し易いので、特に好ましい。フラーレン又はフラーレン誘導体の含有量は、光電変換層の全量を100質量%とした場合、光電変換特性の良好さから40質量%以上85質量%以下が好ましい。
(N-type semiconductor)
The n-type semiconductor used in the present invention is an electron acceptor organic semiconductor material, which is an organic compound having a property of easily accepting electrons. Examples of the n-type semiconductor include a fullerene compound, a metal complex compound, a phthalocyanine compound, a carboxylic acid diimide compound, and the like, and it is preferable to include fullerene or a fullerene derivative as an n-type semiconductor. Since the fullerene molecule or the fullerene derivative molecule is continuous in the first organic semiconductor layer, an electron transport path is formed, so that the electron transport property is improved and the high-speed response of the photoelectric conversion element is improved. Among fullerene molecules or fullerene derivative molecules, fullerene C60 is particularly preferable because it easily forms an electron transport path. The content of fullerene or fullerene derivative is preferably 40% by mass or more and 85% by mass or less from the viewpoint of good photoelectric conversion characteristics when the total amount of the photoelectric conversion layer is 100% by mass.
 フラーレン又はフラーレン誘導体は、例えば、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレン540、ミックスドフラーレン、フラーレンナノチューブ等が挙げられる。
 フラーレン誘導体は、フラーレンに置換基を有するものである。この置換基は、アルキル基、アリール基、複素環基等が挙げられる。
Examples of fullerene or fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C80, fullerene C82, fullerene C84, fullerene C90, fullerene C96, fullerene C240, fullerene 540, mixed fullerene, fullerene nanotubes, and the like. It is done.
The fullerene derivative is a fullerene having a substituent. Examples of this substituent include an alkyl group, an aryl group, and a heterocyclic group.
 (近赤外吸収材料)
 三元構成の光電変換素子においては近赤外域に吸収帯を有する化合物を用いることで感度領域を近赤外化することが可能である。その場合、第一、第二、第三のいずれかの有機半導体として、近赤外領域に吸収帯を有する化合物が含まれてもよい。近赤外域とは一般には800~2500nmの波長帯を指すが、有機材料を使った吸収材料としては下記のような化合物が知られている。
(Near-infrared absorbing material)
In a ternary photoelectric conversion element, the sensitivity region can be made near infrared by using a compound having an absorption band in the near infrared region. In that case, as the first, second, or third organic semiconductor, a compound having an absorption band in the near infrared region may be included. The near-infrared region generally refers to a wavelength band of 800 to 2500 nm, but the following compounds are known as absorbing materials using organic materials.
Figure JPOXMLDOC01-appb-C000019

 近赤外領域の吸収を有する材料はバンドギャップが小さいため図1に示すΔEが小さくなりやすく、暗電流が大きくなる傾向がある。このため、近赤外に吸収を有する材料が含まれる光電変換素子においては、用いる有機半導体間に前述したSP値関係を適用し、暗電流を低減させることが好ましい。
Figure JPOXMLDOC01-appb-C000019

Since a material having absorption in the near infrared region has a small band gap, ΔE shown in FIG. 1 tends to be small and dark current tends to be large. For this reason, in a photoelectric conversion element including a material having absorption in the near infrared, it is preferable to apply the SP value relationship described above between the organic semiconductors used to reduce dark current.
 本発明に係る光電変換層は、非発光であることが好ましい。非発光とは、可視光領域(波長400nm乃至730nm)において発光量子効率が1%以下、好ましくは0.5%以下、より好ましくは0.1%以下である。光電変換層において、発光量子効率が1%を超えると、センサや撮像素子に適用した場合にセンシング性能又は撮像性能に影響を与えるため、好ましくない。発光量子収率とは、吸収されるフォトンに対して、ルミネッセンスによって放出されるフォトンの比である。発光量子収率は、石英ガラスなどの基板上に光電変換層と同様の材料組成の薄膜をサンプルとして作製し、そのサンプルを、薄膜の値を求めるために設計された絶対PL量子収率測定装置を使用して測定できる。例えば、絶対量子収率測定装置としては、浜松ホトニクス社製「C9920-02」を用いることができる。 The photoelectric conversion layer according to the present invention preferably does not emit light. The term “non-emission” means that the emission quantum efficiency is 1% or less, preferably 0.5% or less, more preferably 0.1% or less in the visible light region (wavelength 400 nm to 730 nm). In the photoelectric conversion layer, if the emission quantum efficiency exceeds 1%, it is not preferable because it affects sensing performance or imaging performance when applied to a sensor or an imaging device. Luminescence quantum yield is the ratio of photons emitted by luminescence to absorbed photons. Luminescence quantum yield is an absolute PL quantum yield measurement device designed to produce a thin film of the same material composition as the photoelectric conversion layer on a substrate such as quartz glass as a sample and to determine the value of the thin film. Can be measured using. For example, “C9920-02” manufactured by Hamamatsu Photonics can be used as an absolute quantum yield measuring apparatus.
 (光電変換素子)
 図7は、本発明の光電変換素子の一実施形態の構成を模式的に示す断面図である。本発明の光電変換素子は、少なくともアノード5と、カソード4と、アノード5とカソード4との間に配置される第1の有機化合物層としての光電変換層1を有し、該光電変換層1が、上記した特定の有機半導体組成を有している。本実施形態の光電変換素子10は、光電変換層1を挟んで、第2の有機化合物層2と第3の有機化合物層3とを備えた例である。
(Photoelectric conversion element)
FIG. 7 is a cross-sectional view schematically showing a configuration of one embodiment of the photoelectric conversion element of the present invention. The photoelectric conversion element of the present invention has at least an anode 5, a cathode 4, and a photoelectric conversion layer 1 as a first organic compound layer disposed between the anode 5 and the cathode 4, and the photoelectric conversion layer 1 However, it has the specific organic semiconductor composition described above. The photoelectric conversion element 10 of this embodiment is an example provided with the second organic compound layer 2 and the third organic compound layer 3 with the photoelectric conversion layer 1 interposed therebetween.
 本実施形態の光電変換素子10を構成するカソード4は、アノード5とカソード4との間に配置されている光電変換層1で発生した正孔を捕集する電極である。また、アノード5は、アノード5とカソード4との間に配置されている第1の光電変換層1で発生した電子を捕集する電極である。カソード4は正孔捕集電極とも呼ばれ、アノード5は電子捕集電極とも呼ばれる。カソード4及びアノード5のいずれが基板側に配置されていてもよい。基板側に配置された電極は下部電極とも呼ばれる。
 本実施形態の光電変換素子は、カソード4とアノード5との間に電圧を印加して用いる素子であってよい。
The cathode 4 constituting the photoelectric conversion element 10 of the present embodiment is an electrode that collects holes generated in the photoelectric conversion layer 1 disposed between the anode 5 and the cathode 4. The anode 5 is an electrode that collects electrons generated in the first photoelectric conversion layer 1 disposed between the anode 5 and the cathode 4. The cathode 4 is also called a hole collecting electrode, and the anode 5 is also called an electron collecting electrode. Either the cathode 4 or the anode 5 may be disposed on the substrate side. The electrode arranged on the substrate side is also called a lower electrode.
The photoelectric conversion element of the present embodiment may be an element used by applying a voltage between the cathode 4 and the anode 5.
 カソード4の構成材料としては、導電性が高く、透明性を有する材料であれば特に制限されない。具体的には、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、これらを複数種組み合わせた混合物等が挙げられる。さらに具体的には、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム等の導電性金属酸化物、金、銀、クロム、ニッケル、チタン、タングステン、アルミ等の金属材料及びこれら金属材料の酸化物や窒化物等の導電性化合物(例えば、窒化チタン(TiN)等)、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅等の無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料、及びこれらとITO又は窒化チタンとの積層物等が挙げられる。カソード4の構成材料として、特に好ましくは、窒化チタン、窒化モリブデン、窒化タンタル及び窒化タングステンから選択される材料である。 The constituent material of the cathode 4 is not particularly limited as long as it is highly conductive and transparent. Specific examples include metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and a mixture of a plurality of these. More specifically, conductive metal oxides such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide, gold, Metal materials such as silver, chromium, nickel, titanium, tungsten, and aluminum, and conductive compounds such as oxides and nitrides of these metal materials (for example, titanium nitride (TiN)), and these metals and conductive metal oxidation Examples thereof include a mixture or laminate with a material, an inorganic conductive material such as copper iodide and copper sulfide, an organic conductive material such as polyaniline, polythiophene and polypyrrole, and a laminate of these with ITO or titanium nitride. As a constituent material of the cathode 4, a material selected from titanium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride is particularly preferable.
 アノード5の構成材料として、具体的には、ITO、インジウム亜鉛酸化物、SnO2、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO2、FTO(フッ素ドープ酸化スズ)等が挙げられる。 Specifically, the constituent material of the anode 5 is ITO, indium zinc oxide, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2. , FTO (fluorine-doped tin oxide) and the like.
 電極を形成する方法は、電極材料との適正を考慮して適宜選択できる。具体的には、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等により形成できる。
 電極がITOの場合、電子ビーム法、スパッタリング法、抵抗加熱蒸着法、化学反応法(ゾルーゲル法など)、ITOの分散物の塗布などの方法で形成できる。更に、形成されたITOに、UV-オゾン処理、プラズマ処理などを施すことができる。電極がTiNの場合、反応性スパッタリング法をはじめとする各種の方法が用いられ、更にアニール処理、UV-オゾン処理、プラズマ処理などを施すことができる。
The method for forming the electrode can be appropriately selected in consideration of suitability with the electrode material. Specifically, it can be formed by a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method.
When the electrode is ITO, the electrode can be formed by a method such as an electron beam method, a sputtering method, a resistance heating vapor deposition method, a chemical reaction method (such as a sol-gel method), or an ITO dispersion. Furthermore, the formed ITO can be subjected to UV-ozone treatment, plasma treatment, and the like. When the electrode is TiN, various methods such as a reactive sputtering method can be used, and annealing treatment, UV-ozone treatment, plasma treatment, and the like can be further performed.
 本実施形態において、第2の有機化合物層2は、一層で構成されていてもよいし、複数の層で構成されていてもよく、複数種の材料を有する混合層であってもよい。図7の光電変換素子10において、第2の有機化合物層2は、光電変換層1から移動した正孔を正孔捕集電極4へ輸送する役割を有する。また第2の有機化合物層2は、正孔捕集電極4から光電変換層1へ電子が移動するのを抑制する。つまり、第2の有機化合物層2は、正孔輸送層又は電子ブロッキング層として機能し、暗電流の発生を阻止する上で好ましい構成部材である。よって、第2の有機化合物層2は、電子親和力或いはLUMOエネルギーが小さいことが好ましい。 In the present embodiment, the second organic compound layer 2 may be composed of a single layer, a plurality of layers, or a mixed layer having a plurality of types of materials. In the photoelectric conversion element 10 of FIG. 7, the second organic compound layer 2 has a role of transporting holes transferred from the photoelectric conversion layer 1 to the hole collecting electrode 4. In addition, the second organic compound layer 2 suppresses electrons from moving from the hole collection electrode 4 to the photoelectric conversion layer 1. That is, the second organic compound layer 2 functions as a hole transport layer or an electron blocking layer, and is a preferable constituent member for preventing the generation of dark current. Therefore, it is preferable that the second organic compound layer 2 has a small electron affinity or LUMO energy.
 また、本実施形態において、第3の有機化合物層3は、光電変換層1から移動した電子をアノード5へ輸送する役割を有する。また第3の有機化合物層3は、アノード5から光電変換層1へ正孔が流れ込むのを抑制する正孔ブロッキング層であるため、イオン化ポテンシャルが高い層であることが好ましい。第3の有機化合物層3は、一層で構成されていてもよいし、複数の層で構成されていてもよく、複数種の材料を有する混合層であってもよい。 In the present embodiment, the third organic compound layer 3 has a role of transporting electrons moved from the photoelectric conversion layer 1 to the anode 5. Moreover, since the 3rd organic compound layer 3 is a hole blocking layer which suppresses a hole flowing into the photoelectric converting layer 1 from the anode 5, it is preferable that it is a layer with high ionization potential. The third organic compound layer 3 may be composed of a single layer, a plurality of layers, or a mixed layer having a plurality of types of materials.
 本発明において、アノード5とカソード4との間に配置される層は、上述した三種類の層(光電変換層1、第2の有機化合物層2、第3の有機化合物層3)に限定されるものではない。第2の有機化合物層2とカソード4との間、及び第3の有機化合物層3とアノード5の間の少なくとも一方に介在層をさらに設けることができる。この介在層は、発生した電荷を電極にて注入する際の電荷の注入効率の向上させる、もしくは電荷を印加した際に電荷が有機化合物層に注入するのを阻止する目的で設けられる。この介在層を設ける場合、この介在層は有機化合物層であっても、無機化合物層であっても、また、有機化合物と無機化合物とが混在する混合層であってもよい。 In the present invention, the layer disposed between the anode 5 and the cathode 4 is limited to the three types of layers described above (the photoelectric conversion layer 1, the second organic compound layer 2, and the third organic compound layer 3). It is not something. An intervening layer can be further provided between at least one of the second organic compound layer 2 and the cathode 4 and between the third organic compound layer 3 and the anode 5. This intervening layer is provided for the purpose of improving the injection efficiency of the charge when the generated charge is injected at the electrode, or preventing the charge from being injected into the organic compound layer when the charge is applied. When this intervening layer is provided, the intervening layer may be an organic compound layer, an inorganic compound layer, or a mixed layer in which an organic compound and an inorganic compound are mixed.
 図7の光電変換素子10のアノード5は、読み出し回路6と接続されているが、読み出し回路6は、カソード4と接続されていてもよい。読み出し回路6には、光電変換層1において発生した電荷に基づく情報を読み出し、例えば、後段に配された信号処理回路(不図示)に当該情報を伝える役割を果たす。読み出し回路6は、例えば、光電変換素子10において生じた電荷に基づく信号を出力するトランジスタが含まれている。 7, the anode 5 of the photoelectric conversion element 10 is connected to the readout circuit 6, but the readout circuit 6 may be connected to the cathode 4. The readout circuit 6 plays a role of reading information based on the charges generated in the photoelectric conversion layer 1 and transmitting the information to, for example, a signal processing circuit (not shown) disposed in the subsequent stage. The readout circuit 6 includes, for example, a transistor that outputs a signal based on charges generated in the photoelectric conversion element 10.
 図7の光電変換素子10において、カソード4の上には無機保護層7が配置されている。無機保護層7は、アノード5と、第3の有機化合物層3と、光電変換層1と、第2の有機化合物層2と、カソード4と、がこの順で積層されてなる部材を保護するための層である。無機保護層7の構成材料としては、酸化シリコン、窒化シリコン、窒化酸化シリコン、アルミニウム酸化物などが挙げられる。酸化シリコン、窒化シリコン、窒化酸化シリコンは、スパッタリング法、CVD法により形成でき、アルミニウム酸化物は、ALD法(原子層堆積法)により形成できる。無機保護層7の封止性能は、水透過率が、10-5g/m2・day以下であればよい。また、無機保護層7の膜厚は特に限定されるものではないが、封止性能の観点から0.5μm以上であることが好ましい。一方で封止性能を保てるならば薄い方がよく、1μm以下であることが特に好ましい。無機保護層7が薄い方が好ましい理由は、二次元に素子を並べエリアセンサとして用いる際に、光電変換層からカラーフィルタ8までの距離が短くできるほど混色を低減させる効果があるためである。 In the photoelectric conversion element 10 of FIG. 7, an inorganic protective layer 7 is disposed on the cathode 4. The inorganic protective layer 7 protects a member in which the anode 5, the third organic compound layer 3, the photoelectric conversion layer 1, the second organic compound layer 2, and the cathode 4 are laminated in this order. It is a layer for. Examples of the constituent material of the inorganic protective layer 7 include silicon oxide, silicon nitride, silicon nitride oxide, and aluminum oxide. Silicon oxide, silicon nitride, and silicon nitride oxide can be formed by a sputtering method or a CVD method, and aluminum oxide can be formed by an ALD method (atomic layer deposition method). The sealing performance of the inorganic protective layer 7 may be such that the water permeability is 10 −5 g / m 2 · day or less. The thickness of the inorganic protective layer 7 is not particularly limited, but is preferably 0.5 μm or more from the viewpoint of sealing performance. On the other hand, if the sealing performance can be maintained, the thinner one is preferable, and the thickness is particularly preferably 1 μm or less. The reason why the inorganic protective layer 7 is preferably thin is that, when elements are arranged two-dimensionally and used as an area sensor, there is an effect of reducing color mixing as the distance from the photoelectric conversion layer to the color filter 8 can be shortened.
 図7の光電変換素子10において、無機保護層7の上には、カラーフィルタ8が配置されている。カラーフィルタ8は、例えば、可視光のうち赤色の光を透過するカラーフィルタ等が挙げられる。また本発明において、カラーフィルタ8の設け方としては、光電変換素子一個あたり一つであってもよいし、光電変換素子複数個あたり一つであってもよい。さらにカラーフィルタ8を配列する際には、例えば、隣接する光電変換素子とで、ベイヤー配列を形成してよい。 7, the color filter 8 is disposed on the inorganic protective layer 7 in the photoelectric conversion element 10 of FIG. Examples of the color filter 8 include a color filter that transmits red light of visible light. In the present invention, the color filter 8 may be provided for one photoelectric conversion element or for a plurality of photoelectric conversion elements. Further, when the color filters 8 are arranged, for example, a Bayer arrangement may be formed with adjacent photoelectric conversion elements.
 図7の光電変換素子10において、カラーフィルタ8の上に光学部材を配置しても良く、図7においては、光学部材としてマイクロレンズ9が配置されている。マイクロレンズ9は、入射した光を光電変換部である光電変換層1に集光する役割を果たす。また本発明において、マイクロレンズ9の設け方としては、光電変換素子一個あたり一つであってもよいし、光電変換素子複数個あたり一つであってもよい。本発明においては、光電変換素子一個あたり一つのマイクロレンズ9を設けることが好ましい。 In the photoelectric conversion element 10 of FIG. 7, an optical member may be disposed on the color filter 8, and in FIG. 7, a micro lens 9 is disposed as the optical member. The microlens 9 plays a role of collecting incident light onto the photoelectric conversion layer 1 that is a photoelectric conversion unit. In the present invention, the number of microlenses 9 may be one for each photoelectric conversion element or one for a plurality of photoelectric conversion elements. In the present invention, it is preferable to provide one microlens 9 per photoelectric conversion element.
 尚、図7においては、カソード4側にマイクロレンズ9を配置して光入射側としたが、本発明はこれに限定されるものではなく、アノード5側に無機保護層7、カラーフィルタ8、マイクロレンズ9を設けても良い。その場合、先に示したカソード4及びアノード5のそれぞれに好ましい電極材料は逆になる。 In FIG. 7, the microlens 9 is arranged on the cathode 4 side to be the light incident side. However, the present invention is not limited to this, and the inorganic protective layer 7, the color filter 8, A micro lens 9 may be provided. In that case, the preferred electrode materials for the cathode 4 and anode 5 shown above are reversed.
 また、図7においては図示されていないが、本発明の光電変換素子は、基板を有していてもよい。基板として、例えば、シリコン基板、ガラス基板、フレキシブル基板等が挙げられる。基板側にアノード5及びカソード4のいずれを配置するかは限定されず、基板上にアノード5/光電変換層1/カソード4の順でもよいし、カソード4/光電変換層1/アノード5でもよい。 Although not shown in FIG. 7, the photoelectric conversion element of the present invention may have a substrate. Examples of the substrate include a silicon substrate, a glass substrate, and a flexible substrate. Which of the anode 5 and the cathode 4 is arranged on the substrate side is not limited, and may be the order of anode 5 / photoelectric conversion layer 1 / cathode 4 on the substrate, or may be cathode 4 / photoelectric conversion layer 1 / anode 5. .
 以上が光電変換素子における主な構成である。実際には該光電変換素子は作製後にアニールされることが好ましいが、そのアニール条件によって本発明は特に限定されるものではない。 The above is the main configuration of the photoelectric conversion element. Actually, the photoelectric conversion element is preferably annealed after fabrication, but the present invention is not particularly limited by the annealing conditions.
 本発明に係る光電変換素子は、光電変換層1に用いる有機半導体を選択することで、異なる色の光に対応する光電変換素子とすることができる。異なる色に対応するとは、光電変換層1が光電変換する光の波長領域が変化することを意味する。
 また、それぞれ異なる色に対応する複数の光電変換素子を積層することで、カラーフィルタ8が必要ない光電変換装置とすることもできる。
The photoelectric conversion element which concerns on this invention can be made into the photoelectric conversion element corresponding to the light of a different color by selecting the organic semiconductor used for the photoelectric converting layer 1. FIG. “Corresponding to different colors” means that the wavelength region of the light photoelectrically converted by the photoelectric conversion layer 1 changes.
Further, by stacking a plurality of photoelectric conversion elements corresponding to different colors, a photoelectric conversion device that does not require the color filter 8 can be obtained.
 図8は図7の光電変換素子10を用いた一画素20の等価回路図である。光電変換素子10のアノード5の下層は、半導体基板内に形成された電荷蓄積部15に電気的に接続され、更に増幅トランジスタ23に接続される。画素回路は、光電変換素子10からの信号を増幅する増幅トランジスタ(SF MOS)23、画素を選択する選択トランジスタ(SEL MOS)24、ノードBをリセットするリセットトランジスタ(RES MOS)22を含む。 FIG. 8 is an equivalent circuit diagram of one pixel 20 using the photoelectric conversion element 10 of FIG. The lower layer of the anode 5 of the photoelectric conversion element 10 is electrically connected to the charge storage unit 15 formed in the semiconductor substrate, and is further connected to the amplification transistor 23. The pixel circuit includes an amplification transistor (SF MOS) 23 that amplifies a signal from the photoelectric conversion element 10, a selection transistor (SEL MOS) 24 that selects a pixel, and a reset transistor (RES MOS) 22 that resets the node B.
 このような構成により、増幅トランジスタ23が光電変換素子10で生じた信号を出力することができる。光電変換素子10と増幅トランジスタ23とは短絡されてもよい。図8に示すように光電変換素子10と増幅トランジスタ23との間の電気経路に、スイッチとして転送トランジスタ25が配されてもよい。転送トランジスタ25は、切り替え制御パルスpTXによりオンとオフとが切り替えられるように制御される。図8の画素構成では、光電変換素子10と増幅トランジスタ23との電気的な接続を表すノードBが示されている。ノードBは、電気的にフローティングとすることが可能となるように構成される。ノードBが電気的にフローティングになることにより、ノードBの電圧が光電変換素子10で生じた電荷に応じて変化しうる。従って、増幅トランジスタ23に光電変換素子10で生じた電荷に応じた信号を入力できる。 With such a configuration, the amplification transistor 23 can output a signal generated by the photoelectric conversion element 10. The photoelectric conversion element 10 and the amplification transistor 23 may be short-circuited. As shown in FIG. 8, a transfer transistor 25 may be arranged as a switch in the electrical path between the photoelectric conversion element 10 and the amplification transistor 23. The transfer transistor 25 is controlled to be switched on and off by a switching control pulse pTX. In the pixel configuration of FIG. 8, a node B representing electrical connection between the photoelectric conversion element 10 and the amplification transistor 23 is shown. Node B is configured to be electrically floating. When the node B is electrically floating, the voltage of the node B can be changed according to the electric charge generated in the photoelectric conversion element 10. Therefore, a signal corresponding to the charge generated in the photoelectric conversion element 10 can be input to the amplification transistor 23.
 図8の画素構成では、半導体基板内のノードBの電圧をリセットするリセットトランジスタ22を有する。リセットトランジスタ22は、リセット電圧(不図示)をノードBに供給する。リセットトランジスタ22は、リセット制御パルスpRESによりオンとオフとが切り替えられるように制御される。リセットトランジスタ22がオンすることで、ノードBにリセット電圧が供給される。電荷蓄積部15は、光電変換素子10で発生した電荷を蓄積する領域であり、半導体基板内にP型領域及びN型領域を形成して構成される。 8 includes a reset transistor 22 that resets the voltage of the node B in the semiconductor substrate. The reset transistor 22 supplies a reset voltage (not shown) to the node B. The reset transistor 22 is controlled to be switched on and off by a reset control pulse pRES. When the reset transistor 22 is turned on, a reset voltage is supplied to the node B. The charge storage unit 15 is a region for storing charges generated in the photoelectric conversion element 10 and is configured by forming a P-type region and an N-type region in a semiconductor substrate.
 増幅トランジスタ23のドレイン電極には、電源電圧が供給される。増幅トランジスタ23のソース電極は、選択トランジスタ24を介して、出力線28に接続される。出力線28には、電流源26が接続される。増幅トランジスタ23及び電流源26は画素ソースフォロワ回路を構成し、光電変換素子10からの信号電荷が蓄積された電荷蓄積部15の信号電圧を出力線28に出力する。出力線28には、さらに列回路27が接続される。出力線28に出力された画素20からの信号は、列回路27に入力される。尚、図8中、29は配線である。 A power supply voltage is supplied to the drain electrode of the amplification transistor 23. The source electrode of the amplification transistor 23 is connected to the output line 28 via the selection transistor 24. A current source 26 is connected to the output line 28. The amplification transistor 23 and the current source 26 constitute a pixel source follower circuit, and output the signal voltage of the charge storage unit 15 in which the signal charge from the photoelectric conversion element 10 is stored to the output line 28. A column circuit 27 is further connected to the output line 28. A signal from the pixel 20 output to the output line 28 is input to the column circuit 27. In FIG. 8, 29 is a wiring.
 (光電変換装置)
 図9は、本発明の光電変換素子を用いた光電変換装置の一実施形態の構成を模式的に示す平面図である。本実施形態の光電変換装置は、撮像領域31と、垂直走査回路32と、2つの読み出し回路33と、2つの水平走査回路34と、2つの出力アンプ35を備えている。撮像領域31以外の領域が回路領域36である。
(Photoelectric conversion device)
FIG. 9 is a plan view schematically showing a configuration of one embodiment of a photoelectric conversion device using the photoelectric conversion element of the present invention. The photoelectric conversion device of the present embodiment includes an imaging region 31, a vertical scanning circuit 32, two readout circuits 33, two horizontal scanning circuits 34, and two output amplifiers 35. An area other than the imaging area 31 is a circuit area 36.
 撮像領域31は、複数の画素が2次元状に配列されて構成される。画素の構造は図7に示された画素20の構造を適宜用いることができる。また、上記した、本発明の光電変換素子10を積層して画素20を構成しても良い。読み出し回路33は、例えば、列アンプ、CDS回路、加算回路等を含み、垂直走査回路32によって選択された行の画素から垂直信号線(図8の28)を介して読み出された信号に対して増幅、加算等を行う。列アンプ、CDS回路、加算回路等は、例えば、画素列又は複数の画素列毎に配置される。水平走査回路34は、読み出し回路33の信号を順番に読み出すための信号を生成する。出力アンプ35は、水平走査回路34によって選択された列の信号を増幅して出力する。 The imaging region 31 is configured by arranging a plurality of pixels in a two-dimensional manner. As the structure of the pixel, the structure of the pixel 20 shown in FIG. 7 can be used as appropriate. In addition, the pixel 20 may be configured by stacking the photoelectric conversion elements 10 of the present invention described above. The readout circuit 33 includes, for example, a column amplifier, a CDS circuit, an addition circuit, and the like, and with respect to a signal read out from a pixel in a row selected by the vertical scanning circuit 32 via a vertical signal line (28 in FIG. 8). Amplification, addition, etc. The column amplifier, the CDS circuit, the addition circuit, and the like are arranged for each pixel column or a plurality of pixel columns, for example. The horizontal scanning circuit 34 generates a signal for sequentially reading the signals of the reading circuit 33. The output amplifier 35 amplifies and outputs the signal of the column selected by the horizontal scanning circuit 34.
 以上の構成は、光電変換装置の一つの構成例に過ぎず、本実施形態は、これに限定されるものではない。読み出し回路33と水平走査回路34と出力アンプ35とは、2系統の出力経路を構成するため、撮像領域31を挟んで上下に1つずつ配置されている。しかし、出力経路は3つ以上設けられていてもよい。各出力アンプから出力された信号は信号処理部37で画像信号として合成される。 The above configuration is only one configuration example of the photoelectric conversion device, and the present embodiment is not limited to this. The readout circuit 33, the horizontal scanning circuit 34, and the output amplifier 35 are arranged one above the other with the imaging region 31 in between in order to form two systems of output paths. However, three or more output paths may be provided. Signals output from the output amplifiers are synthesized as image signals by the signal processing unit 37.
 (光エリアセンサ)
 本発明の光電変換素子を、面内方向に二次元に配置させることで光エリアセンサの構成部材として用いることができる。光エリアセンサは、面内方向に二次元に配置された複数の光電変換素子を有している。このような構成において、複数の光電変換素子で称した電荷に基づく信号を個別に出力することで、所定の受光エリアにおける光強度の分布を表わす情報を得ることができる。尚、この光エリアセンサに含まれる光電変換素子を、上述した光電変換装置に換えてもよい。
(Optical area sensor)
The photoelectric conversion element of the present invention can be used as a constituent member of an optical area sensor by two-dimensionally arranging it in the in-plane direction. The optical area sensor has a plurality of photoelectric conversion elements arranged two-dimensionally in the in-plane direction. In such a configuration, information representing the light intensity distribution in a predetermined light receiving area can be obtained by individually outputting signals based on charges referred to by a plurality of photoelectric conversion elements. In addition, you may replace the photoelectric conversion element contained in this optical area sensor with the photoelectric conversion apparatus mentioned above.
 (撮像素子)
 さらに、本発明の光電変換素子は、撮像素子の構成部材として用いることができる。撮像素子は、複数の画素(受光画素)を含む。複数の画素は、複数の行及び複数の列を含む行列に配置されている。このような構成において、各画素からの信号を1つの画素信号として出力することで、画像信号を得ることができる。撮像素子において、複数の受光画素はそれぞれ少なくとも1つの光電変換素子と、該光電変換素子に接続されている読み出し回路を有している。読み出し回路は、例えば、光電変換素子において生じた電荷に基づく信号を出力するトランジスタを含む。読み出された電荷に基づく情報が撮像素子に接続されているセンサ部に伝えられる。センサ部としては、CMOSセンサやCCDセンサが挙げられる。撮像素子では、それぞれの画素で取得した情報が、センサ部に集められることで画像を得ることができる。
(Image sensor)
Furthermore, the photoelectric conversion element of the present invention can be used as a constituent member of an imaging element. The imaging device includes a plurality of pixels (light receiving pixels). The plurality of pixels are arranged in a matrix including a plurality of rows and a plurality of columns. In such a configuration, an image signal can be obtained by outputting a signal from each pixel as one pixel signal. In the imaging element, each of the plurality of light receiving pixels has at least one photoelectric conversion element and a readout circuit connected to the photoelectric conversion element. The reading circuit includes, for example, a transistor that outputs a signal based on electric charges generated in the photoelectric conversion element. Information based on the read charge is transmitted to the sensor unit connected to the image sensor. Examples of the sensor unit include a CMOS sensor and a CCD sensor. In the image sensor, an image can be obtained by collecting information acquired by each pixel in the sensor unit.
 撮像素子は、例えば、カラーフィルタ等の光学フィルタを、各受光画素にそれぞれ対応するように有してもよい。光電変換素子が、特定の波長の光に対応している場合、この光電変換素子が対応可能な波長領域を透過するカラーフィルタを有することが好ましい。カラーフィルタは、受光画素1つにつき1つ設けてもよいし、複数の受光画素につき1つのカラーフィルタを設けてもよい。尚、撮像素子が有する光フィルタは、カラーフィルタに限定されず、他にも、赤外線以上の波長を透過するローパスフィルタ、紫外線以下の波長を透過するUVカットフィルタ、ロングパスフィルタ等が使用できる。 The image sensor may have, for example, an optical filter such as a color filter so as to correspond to each light receiving pixel. When the photoelectric conversion element supports light of a specific wavelength, it is preferable to have a color filter that transmits a wavelength region that can be handled by the photoelectric conversion element. One color filter may be provided for each light receiving pixel, or one color filter may be provided for a plurality of light receiving pixels. The optical filter included in the imaging element is not limited to a color filter, and other low-pass filters that transmit wavelengths of infrared rays or more, UV cut filters that transmit wavelengths of ultraviolet rays or less, and long-pass filters can be used.
 撮像素子は、マイクロレンズ等の光学部材を、例えば、各受光画素にそれぞれ対応するように有してもよい。撮像素子が有するマイクロレンズは、外部からの光を撮像素子が有する光電変換素子を構成する光電変換層に集光するレンズである。マイクロレンズは、受光画素1つにつき1つ設けてもよいし、複数の受光画素につき1つ設けてもよい。受光画素が複数設けられている場合は、複数(2以上の所定数)の受光画素につき1つのマイクロレンズが設けられることが好ましい。 The imaging element may have an optical member such as a microlens so as to correspond to each light receiving pixel, for example. The microlens included in the imaging element is a lens that condenses light from the outside onto a photoelectric conversion layer included in the photoelectric conversion element included in the imaging element. One microlens may be provided for each light receiving pixel, or one microlens may be provided for a plurality of light receiving pixels. When a plurality of light receiving pixels are provided, it is preferable that one microlens is provided for a plurality (two or more predetermined numbers) of light receiving pixels.
 (撮像装置)
 本発明に係る光電変換素子は、撮像装置に用いることができる。撮像装置は、複数のレンズを有する撮像光学部と、該撮像光学部を通過した光を受光する撮像素子と、を有し、該撮像素子として本発明の光電変換素子を用いる。また、撮像装置は、撮像光学部と接合可能な接合部と、撮像素子とを有する撮像装置であってもよい。ここでいう撮像装置とは、より具体的には、デジタルカメラやデジタルスチルカメラ等をいう。撮像装置は、携帯端末に付加されていてよい。携帯端末は、特に限定されないが、スマートフォン、タブレット端末等であってよい。
(Imaging device)
The photoelectric conversion element according to the present invention can be used in an imaging apparatus. The imaging apparatus includes an imaging optical unit having a plurality of lenses and an imaging element that receives light that has passed through the imaging optical unit, and uses the photoelectric conversion element of the present invention as the imaging element. Further, the imaging device may be an imaging device having a joint portion that can be joined to the imaging optical unit and an imaging element. More specifically, the imaging device here refers to a digital camera, a digital still camera, or the like. The imaging device may be added to the mobile terminal. Although a portable terminal is not specifically limited, A smart phone, a tablet terminal, etc. may be sufficient.
 また撮像装置は、外部からの信号を受信する受信部をさらに有してもよい。受信部が受信する信号は、撮像装置の撮像範囲、撮像の開始及び撮像の終了の少なくともいずれかを制御する信号である。また撮像装置は、撮像により取得した画像を外部に送信する送信部をさらに有してもよい。このように、受信部や送信部を有することで、撮像装置をネットーワークカメラとして用いることができる。 Further, the imaging device may further include a receiving unit that receives a signal from the outside. The signal received by the receiving unit is a signal that controls at least one of the imaging range of the imaging apparatus, the start of imaging, and the end of imaging. The imaging device may further include a transmission unit that transmits an image acquired by imaging to the outside. As described above, the imaging device can be used as a network camera by including the reception unit and the transmission unit.
 また、撮像装置は、外部からの信号をする受信部をさらに有してもよい。受信部が受信する信号は、撮像装置の撮像範囲、撮像の開始、撮像の終了の少なくともいずれかを制御する信号である。また、撮像装置は、撮像した画像を外部に送信する送信部をさらに有してもよい。このように、受信部や送信部を有することで、ネットーワークカメラとして用いることができる。 In addition, the imaging apparatus may further include a receiving unit that performs an external signal. The signal received by the receiving unit is a signal that controls at least one of the imaging range of the imaging device, the start of imaging, and the end of imaging. The imaging device may further include a transmission unit that transmits the captured image to the outside. Thus, having a receiving unit and a transmitting unit can be used as a network camera.
 以下、本発明の実施例について説明するが、本発明は下記実施例に記載の範囲内に限定されるものではない。
 以下に、実施例で用いた化合物を示す。
Examples of the present invention will be described below, but the present invention is not limited to the scope described in the following examples.
The compounds used in the examples are shown below.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 実施例で用いた化合物の酸化電位などの電気化学特性の評価は、サイクリックボルタンメトリー(CV)によって行うことができる。
 CV測定サンプルは、0.1Mテトラブチルアンモニウム過塩素酸塩のオルトジクロロベンゼン溶液10mLに各化合物を1mg程度溶解させ、窒素による脱気処理を行うことにより調製した。測定には三電極法を用い、各電極には、非水溶媒系Ag/Ag+参照電極、直径0.5mm、長さ5cmの白金カウンター電極、内径3mmのガラス状カーボン作用電極(いずれもビー・エー・エス株式会社製)を用いた。装置にはALS社製のモデル660C、電気化学アナライザーを用い、測定の挿引速度は、0.1V/sとした。このときの波形の例を図10に示す。バイアス極性を変えることで同様な方法で酸化電位(Eox)と還元電位(Ered)を測定できる。表2に各材料の酸化電位、還元電位を示す。
Evaluation of electrochemical characteristics such as oxidation potential of the compounds used in the examples can be performed by cyclic voltammetry (CV).
A CV measurement sample was prepared by dissolving about 1 mg of each compound in 10 mL of orthodichlorobenzene solution of 0.1 M tetrabutylammonium perchlorate and performing a deaeration treatment with nitrogen. The three-electrode method is used for the measurement. Each electrode is composed of a nonaqueous solvent type Ag / Ag + reference electrode, a platinum counter electrode having a diameter of 0.5 mm and a length of 5 cm, and a glassy carbon working electrode having an inner diameter of 3 mm (both -ASS Co., Ltd. was used. A model 660C manufactured by ALS Co., Ltd. and an electrochemical analyzer were used as the apparatus, and the measurement insertion speed was 0.1 V / s. An example of the waveform at this time is shown in FIG. By changing the bias polarity, the oxidation potential (Eox) and the reduction potential (Ered) can be measured by the same method. Table 2 shows the oxidation potential and reduction potential of each material.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 Si基板の上に、カソード、電子ブロッキング層(EBL)、光電変換層、正孔ブロッキング層(HBL)、アノードを順次形成して光電変換素子を作製した。電子ブロッキング層、光電変換層、正孔ブロッキング層には、上記した化合物1乃至14を表3に示す組合せで用いた。作製手順は以下の通りである。 On the Si substrate, a cathode, an electron blocking layer (EBL), a photoelectric conversion layer, a hole blocking layer (HBL), and an anode were sequentially formed to produce a photoelectric conversion element. In the electron blocking layer, the photoelectric conversion layer, and the hole blocking layer, the above-described compounds 1 to 14 were used in combinations shown in Table 3. The production procedure is as follows.
 先ず、配線層、絶縁層が順次積層され、各画素に対応する箇所に配線層からコンタクトホールが絶縁層に開口を設けて導通可能なように形成されているSi基板を準備した。上記コンタクトホールは配線によって基板端まで引き出されパッド部が形成されている。このコンタクトホール部に重なるようにIZO電極を成膜し所望のパターニングを行い3mm2となるIZO電極(カソード)を形成した。この時、IZO電極の膜厚を100nmとした。このIZO基板上に、下記構成で表2の電子ブロッキング層、光電変換層、正孔ブロッキング層を順次真空蒸着し、さらにカソードと同様のIZO層をスパッタにより成膜してアノードを形成した。 First, a Si substrate was prepared in which a wiring layer and an insulating layer were sequentially stacked, and contact holes were formed from the wiring layer at locations corresponding to the respective pixels so as to be conductive by providing an opening in the insulating layer. The contact hole is drawn out to the end of the substrate by wiring to form a pad portion. An IZO electrode was formed so as to overlap the contact hole portion, and desired patterning was performed to form an IZO electrode (cathode) of 3 mm 2 . At this time, the film thickness of the IZO electrode was 100 nm. On this IZO substrate, an electron blocking layer, a photoelectric conversion layer, and a hole blocking layer shown in Table 2 having the following constitution were sequentially vacuum-deposited, and an IZO layer similar to the cathode was formed by sputtering to form an anode.
 アノードを形成後、ガラスキャップと紫外線効果樹脂を使って中空封止を行い、光電変換素子を得た。このようにして得られた光電変換素子は素子特性を安定させるために、170℃のホットプレート上で封止面を上向きとして1時間ほどアニールした。 After forming the anode, hollow sealing was performed using a glass cap and an ultraviolet effect resin to obtain a photoelectric conversion element. The photoelectric conversion element thus obtained was annealed for about 1 hour on a 170 ° C. hot plate with the sealing surface facing upward in order to stabilize the element characteristics.
 得られた光電変換素子に5Vの電圧を印加して流れる電流値を確認した所、いずれの素子でも(明所での電流)/(暗所での電流)=10倍以上の比であるため光電変換素子として機能していることを確認した。次いで、光電変換素子を60℃の恒温槽内に保持し、半導体パラメータアナライザー(Agilent社「4155C」)に配線されたプロバーを電極にコンタクトさせて暗電流を測定した。 When the value of the flowing current was confirmed by applying a voltage of 5 V to the obtained photoelectric conversion element, the ratio of (current in the light place) / (current in the dark place) = 10 times or more in any element. It confirmed that it functioned as a photoelectric conversion element. Next, the photoelectric conversion element was held in a constant temperature bath at 60 ° C., and a probe connected to a semiconductor parameter analyzer (Agilent “4155C”) was brought into contact with the electrode to measure dark current.
 表3に光電変換素子の電子ブロッキング層、光電変換層、正孔ブロッキング層に用いた化合物と、その組成を示す。尚、以下の表において、「質量%」は、三元構成では第一の有機半導体と第二の有機半導体と第三の有機半導体の合計、二元構成では第一の有機半導体と第二の有機半導体の合計、を100質量%とした時の、各有機半導体の含有量を示す。また、以下の表の説明においても、「含有量」とは、上記三元構成又は二元構成を100質量%とした時の各有機半導体の含有量を意味する。また、表中の「質量比」は、第二の有機半導体の含有量に対する第三の有機半導体の含有量である。 Table 3 shows compounds used for the electron blocking layer, the photoelectric conversion layer, and the hole blocking layer of the photoelectric conversion element, and their compositions. In the table below, “% by mass” is the total of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor in the ternary configuration, and the first organic semiconductor and the second in the binary configuration. The content of each organic semiconductor when the total organic semiconductor is 100% by mass is shown. In the description of the following table, “content” means the content of each organic semiconductor when the ternary configuration or the binary configuration is 100 mass%. The “mass ratio” in the table is the content of the third organic semiconductor with respect to the content of the second organic semiconductor.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 以下、比較する実施例及び比較例を抜き出した表に基づいて説明する。 Hereinafter, description will be made based on the table for extracting the comparative examples and comparative examples.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表4に示す比較例1は、光電変換層が第一の有機半導体としての化合物2と、第二の有機半導体としての化合物3の二つの材料によって構成されている。比較例2、3、実施例1乃至実施例4は、光電変換層が、第一の有機半導体としての化合物2と、第二の有機半導体としての含有量が比較例1と同じ25質量%である化合物3に加え、第三の有機半導体としての化合物4を含有することによって構成されている。ここで、比較例2、3、実施例1乃至4における相対暗電流は、比較例1に対する暗電流の比である。表4から、第三の有機半導体の含有量が3質量%以上となる実施例1乃至4は、第三の有機半導体を有さない比較例1に対して、優位に暗電流が低下することが分かる。一方、第三の有機半導体の含有量が3質量%未満である比較例2、3は、第三の有機半導体を有さない比較例1に対して、暗電流の低下は確認できなかった。また、第二の有機半導体に対する第三の有機半導体の質量比では、該質量比が0.12以上となる実施例1乃至4は、第三の有機半導体を有さない比較例1に対して、暗電流が低下した。 In Comparative Example 1 shown in Table 4, the photoelectric conversion layer is composed of two materials of Compound 2 as the first organic semiconductor and Compound 3 as the second organic semiconductor. In Comparative Examples 2 and 3 and Examples 1 to 4, the photoelectric conversion layer is 25% by mass, which is the same as that of Comparative Example 1 in which the compound 2 as the first organic semiconductor and the content as the second organic semiconductor are the same. In addition to a certain compound 3, it is constituted by containing a compound 4 as a third organic semiconductor. Here, the relative dark current in Comparative Examples 2 and 3 and Examples 1 to 4 is the ratio of dark current to Comparative Example 1. From Table 4, Examples 1 to 4 in which the content of the third organic semiconductor is 3% by mass or more have a lower dark current than that of Comparative Example 1 that does not have the third organic semiconductor. I understand. On the other hand, in Comparative Examples 2 and 3 in which the content of the third organic semiconductor was less than 3% by mass, a decrease in dark current could not be confirmed as compared with Comparative Example 1 having no third organic semiconductor. Further, in the mass ratio of the third organic semiconductor to the second organic semiconductor, Examples 1 to 4 in which the mass ratio is 0.12 or more are compared with Comparative Example 1 that does not have the third organic semiconductor. The dark current decreased.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表5に示す、比較例1、4、5、6、7は光電変換層が第一の有機半導体としての化合物2と、第二の有機半導体としての化合物3の二つの材料によって構成されている。実施例1、5、6、7、比較例8は、光電変換層が、第一の有機半導体としての化合物2と、第二の有機半導体としての、比較例1、4、5、6、7と同じである化合物3に加え、第三の有機半導体としての化合物4を3質量%含有することによって構成されている。ここで、実施例1、5、6、7、比較例8における相対暗電流は、それぞれ比較例1、4、5、6、7に対する暗電流の比である。表5から、第二の有機半導体の含有量が6質量%よりも大きくなる実施例1、5、6、7は、第三の有機半導体を有さない比較例1、4、5、6に対して、優位に暗電流が低下することが分かる。一方、第二の有機半導体の含有量が6質量%未満である比較例8は、第三の有機半導体を有さない比較例7に対して、暗電流の低下は確認できなかった。また、実施例1、5、6の相対暗電流より、第二の有機半導体の含有量が10質量%以上の場合、第三の有機半導体の混合による暗電流低減効果が大きく、好ましいことが分かる。また、実施例1、5の相対暗電流より、第二の有機半導体の含有量が17質量%以上の場合、第三の有機半導体の混合による暗電流低減効果が大きく、より好ましいことが分かる。 In Comparative Examples 1, 4, 5, 6, and 7 shown in Table 5, the photoelectric conversion layer is composed of two materials, compound 2 as the first organic semiconductor and compound 3 as the second organic semiconductor. . In Examples 1, 5, 6, 7, and Comparative Example 8, the photoelectric conversion layer has Comparative Example 1, 4, 5, 6, 7 in which the photoelectric conversion layer is Compound 2 as the first organic semiconductor and the second organic semiconductor. In addition to compound 3 which is the same as the above, 3% by mass of compound 4 as a third organic semiconductor is contained. Here, the relative dark current in Examples 1, 5, 6, 7, and Comparative Example 8 is the ratio of dark current to Comparative Examples 1, 4, 5, 6, and 7, respectively. From Table 5, Examples 1, 5, 6, and 7 in which the content of the second organic semiconductor is larger than 6% by mass are compared with Comparative Examples 1, 4, 5, and 6 that do not have the third organic semiconductor. On the other hand, it can be seen that the dark current is significantly reduced. On the other hand, in Comparative Example 8 in which the content of the second organic semiconductor was less than 6% by mass, a decrease in dark current could not be confirmed as compared with Comparative Example 7 having no third organic semiconductor. In addition, it can be seen from the relative dark currents of Examples 1, 5, and 6 that when the content of the second organic semiconductor is 10% by mass or more, the dark current reduction effect by mixing the third organic semiconductor is large and preferable. . In addition, it can be seen from the relative dark currents of Examples 1 and 5 that when the content of the second organic semiconductor is 17% by mass or more, the dark current reduction effect by mixing the third organic semiconductor is large, which is more preferable.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表6に示す、比較例1は光電変換層が第一の有機半導体としての化合物2と、第二の有機半導体としての化合物3の二つの材料によって構成されている。実施例3、8乃至11は、光電変換層が、第一の有機半導体としての化合物2と、第二の有機半導体としての含有量が比較例1と同じ25質量%である化合物3に加え、第三の有機半導体としての、それぞれ表6に示す化合物を含有することによって構成されている。また、表6に示す光電変換素子において、化合物2はn型半導体であり、化合物3乃至8はp型半導体である。ここで、実施例3、8乃至11における相対暗電流は、比較例1に対する暗電流の比である。表6から、第二の有機半導体の酸化電位Eox2、第三の有機半導体の酸化電位Eox3、第一の有機半導体の還元電位Ered1、第三の有機半導体の還元電位Ered3を用いて表される式(15)、式(16)における、ΔEox、ΔEredが0以上である。
 ΔEox=(Eox3)-(Eox2)   ・・・(15)
 ΔEred=(Ered1)-(Ered3)   ・・・(16)
つまり、以下の(11)および(12)を満たす、実施例3、8乃至10は、第三の有機半導体含有による暗電流低減効果が大きいことが分かる。
 Eox2≦Eox3   ・・・(11)
 Ered1≧Ered3   ・・・(12)
In Comparative Example 1 shown in Table 6, the photoelectric conversion layer is composed of two materials of Compound 2 as the first organic semiconductor and Compound 3 as the second organic semiconductor. In Examples 3, 8 to 11, the photoelectric conversion layer is added to Compound 2 as the first organic semiconductor and Compound 3 whose content as the second organic semiconductor is 25% by mass as in Comparative Example 1, It is comprised by containing the compound shown in Table 6 as a 3rd organic semiconductor, respectively. In the photoelectric conversion element shown in Table 6, compound 2 is an n-type semiconductor, and compounds 3 to 8 are p-type semiconductors. Here, the relative dark current in Examples 3 and 8 to 11 is the ratio of the dark current to Comparative Example 1. From Table 6, the expression expressed using the oxidation potential Eox2 of the second organic semiconductor, the oxidation potential Eox3 of the third organic semiconductor, the reduction potential Ered1 of the first organic semiconductor, and the reduction potential Ered3 of the third organic semiconductor. In (15) and (16), ΔEox and ΔEred are 0 or more.
ΔEox = (Eox3) − (Eox2) (15)
ΔEred = (Ered1) − (Ered3) (16)
That is, it can be seen that Examples 3, 8 to 10 satisfying the following (11) and (12) have a large dark current reducing effect due to the third organic semiconductor inclusion.
Eox2 ≦ Eox3 (11)
Ered1 ≧ Ered3 (12)
 ここで、実施例11はΔEoxが負であり、実施例11の第三の有機半導体含有による暗電流低減効果は、ΔEoxが0以上である実施例3、8乃至10の暗電流低減効果に比べて小さいことが分かる。 Here, in Example 11, ΔEox is negative, and the dark current reduction effect by the third organic semiconductor inclusion of Example 11 is compared with the dark current reduction effects of Examples 3 and 8 to 10 in which ΔEox is 0 or more. I understand that it is small.
 一方、比較例9は光電変換層が第一の有機半導体としての化合物2と、第二の有機半導体としての化合物7の二つの材料によって構成されている。実施例12は、光電変換層が、第一の有機半導体としての化合物2と、第二の有機半導体としての含有量が比較例1と同じ25質量%である化合物7に加え、第三の有機半導体としての化合物3を含有することによって構成されている。ここで、実施例12における相対暗電流は、比較例9に対する暗電流の比である。 On the other hand, in Comparative Example 9, the photoelectric conversion layer is composed of two materials of the compound 2 as the first organic semiconductor and the compound 7 as the second organic semiconductor. In Example 12, the photoelectric conversion layer has a third organic compound in addition to the compound 2 as the first organic semiconductor and the compound 7 whose content as the second organic semiconductor is 25% by mass as in Comparative Example 1. It is comprised by containing the compound 3 as a semiconductor. Here, the relative dark current in Example 12 is the ratio of dark current to Comparative Example 9.
 上記結果より、ΔEoxが負である実施例11、12は、第三の有機半導体の混合による暗電流低減効果は認められるが、ΔEoxが0以上である、実施例3、8乃至10よりも、暗電流低減効果が小さいことが分かる。 From the above results, in Examples 11 and 12 in which ΔEox is negative, the dark current reduction effect due to the mixing of the third organic semiconductor is recognized, but rather than Examples 3, 8 to 10 in which ΔEox is 0 or more, It can be seen that the dark current reduction effect is small.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表7に示す、比較例10は光電変換層が第一の有機半導体としての化合物7と、第二の有機半導体としての化合物2の二つの材料によって構成されている。実施例13は、光電変換層が、第一の有機半導体としての化合物7と、第二の有機半導体としての含有量が比較例1と同じ40質量%である化合物2に加え、第三の有機半導体としての化合物3を含有することによって構成されている。実施例1乃至12、比較例1乃至9は、第一の有機半導体がn型半導体、第二の有機半導体がp型半導体であるのに対し、比較例10、実施例13は、第一の有機半導体がp型半導体、第二の有機半導体がn型有機半導体である。ここで、実施例13における相対暗電流は、比較例10に対する暗電流の比である。 In Comparative Example 10 shown in Table 7, the photoelectric conversion layer is composed of two materials of Compound 7 as the first organic semiconductor and Compound 2 as the second organic semiconductor. In Example 13, the photoelectric conversion layer has a third organic compound in addition to the compound 7 as the first organic semiconductor and the compound 2 whose content as the second organic semiconductor is 40% by mass as in Comparative Example 1. It is comprised by containing the compound 3 as a semiconductor. In Examples 1 to 12 and Comparative Examples 1 to 9, the first organic semiconductor is an n-type semiconductor and the second organic semiconductor is a p-type semiconductor, whereas Comparative Examples 10 and 13 are the first The organic semiconductor is a p-type semiconductor, and the second organic semiconductor is an n-type organic semiconductor. Here, the relative dark current in Example 13 is the ratio of dark current to Comparative Example 10.
 上記結果より、第一の有機半導体がp型半導体、第二の有機半導体がn型半導体である場合でも、第三の有機半導体を含有することによる暗電流低減効果が示された。 From the above results, even when the first organic semiconductor is a p-type semiconductor and the second organic semiconductor is an n-type semiconductor, the dark current reducing effect by containing the third organic semiconductor was shown.
 表8は実施例3の素子構成に対して、電子ブロッキング層、光電変換層、正孔ブロッキング層を構成する化合物を異なる化合物に変更しても、化合物の種類に因らず、第三の有機半導体を用いることによる暗電流低減効果が発現することを確認するものである。 Table 8 shows that the third organic material can be used regardless of the type of compound even if the compounds constituting the electron blocking layer, the photoelectric conversion layer, and the hole blocking layer are changed to different compounds. It is confirmed that the dark current reduction effect by using a semiconductor is manifested.
 表8中の実施例3、14乃至20における相対暗電流は、それぞれ、比較例1、13乃至18に対する暗電流の比である。実施例14乃至20の素子構成は、実施例3の素子構成に対して、電子ブロッキング層、正孔ブロッキング層、第一の有機半導体、第二の有機半導体、第三の有機半導体のいずれか1つ乃至2つを、異なる化合物に変更した素子構成である。表8より、実施例14乃至20は、第三の有機半導体の混合による暗電流低減効果が確認できた。 The relative dark current in Examples 3 and 14 to 20 in Table 8 is the ratio of dark current to Comparative Examples 1 and 13 to 18, respectively. The element configuration of Examples 14 to 20 is any one of the electron blocking layer, the hole blocking layer, the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor with respect to the element configuration of Example 3. One or two elements are changed to different compounds. From Table 8, Example 14 thru | or 20 has confirmed the dark current reduction effect by mixing of the 3rd organic semiconductor.
 実施例20、21、22、比較例19、22は、第二の有機半導体である化合物13と、第三の有機半導体である化合物14の含有量を変化させた素子構成である。実施例20、21、比較例19の相対暗電流は、比較例18に対する暗電流の比である。また、実施例22、比較例22の相対暗電流は、それぞれ比較例20、21に対する暗電流の比である。第二の有機半導体の含有量6質量%以上で且つ、第三の有機半導体の含有量が3質量%以上を満たす実施例20、21、22は、第三の有機半導体の混合による暗電流低減効果が確認できた。一方、第二の有機半導体の含有量が6質量%以上で且つ第三の有機半導体の含有量が3質量%以上を満たさない比較例19は、第三の有機半導体の混合による暗電流低減効果を確認できなかった。また、第三の有機半導体の含有量が3質量%以上で、第二の有機半導体の含有量が6質量%以上を満たさない比較例22は、第三の有機半導体の混合による暗電流低減効果を確認できなかった。 Examples 20, 21, and 22 and Comparative Examples 19 and 22 are device configurations in which the contents of the compound 13 that is the second organic semiconductor and the compound 14 that is the third organic semiconductor are changed. The relative dark currents of Examples 20 and 21 and Comparative Example 19 are the ratio of dark current to that of Comparative Example 18. The relative dark currents of Example 22 and Comparative Example 22 are ratios of dark currents to Comparative Examples 20 and 21, respectively. In Examples 20, 21, and 22 where the content of the second organic semiconductor is 6% by mass or more and the content of the third organic semiconductor is 3% by mass or more, the dark current is reduced by mixing the third organic semiconductor. The effect was confirmed. On the other hand, Comparative Example 19 in which the content of the second organic semiconductor is 6% by mass or more and the content of the third organic semiconductor does not satisfy 3% by mass or more is an effect of reducing dark current by mixing the third organic semiconductor. Could not be confirmed. Further, in Comparative Example 22 in which the content of the third organic semiconductor is 3% by mass or more and the content of the second organic semiconductor does not satisfy 6% by mass or more, the dark current reduction effect by mixing the third organic semiconductor is Could not be confirmed.
 (検証実験)
 暗電流の発生原因を解析するために、比較例1の光電変換素子の暗電流の温度依存性を測定してアレニウスプロットを行った結果を図11に示す。図11に示されるように、60℃(T/1000=3.0)くらいから高温側(図11中の横軸左側)に向かって傾きが大きくなる。この傾きから次式(17)に従い活性化エネルギーを求めた。
(Verification experiment)
In order to analyze the cause of the dark current, FIG. 11 shows the results of measuring the temperature dependence of the dark current of the photoelectric conversion element of Comparative Example 1 and performing an Arrhenius plot. As shown in FIG. 11, the inclination increases from about 60 ° C. (T / 1000 = 3.0) toward the high temperature side (the left side of the horizontal axis in FIG. 11). The activation energy was determined from this slope according to the following equation (17).

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000028
 ここでT:温度、kB:ボルツマン定数、Ea:活性化エネルギー、J:温度Tでの電流値、J0:頻度因子である。 Here, T: temperature, k B : Boltzmann constant, E a : activation energy, J: current value at temperature T, J 0 : frequency factor.
 比較例11、12、実施例8の光電変換素子についても、比較例1と同様に活性化エネルギーを求めた。表9には、各光電変換素子における、光電変換層の構成と、化合物3を25質量%とした光電変換層が二元構成の光電変換素子(比較例1)の値によって規格化した、活性化エネルギーと暗電流をまとめた。 For the photoelectric conversion elements of Comparative Examples 11 and 12 and Example 8, the activation energy was determined in the same manner as in Comparative Example 1. Table 9 shows the activity of the photoelectric conversion layer in each photoelectric conversion element, and the photoelectric conversion layer in which the compound 3 is 25% by mass is normalized by the value of the binary conversion photoelectric conversion element (Comparative Example 1). Energy and dark current are summarized.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表9より、光電変換層が二元構成の素子は、第二の有機半導体である化合物3の含有量を増やすにつれて、活性化エネルギーが小さくなり、暗電流が増大する事が分かる。その理由としては、第二の有機半導体の含有量が増えると、第二の有機半導体同士で会合し、HOMO準位の状態密度のエネルギー分布が広がるために、活性化エネルギーが小さくなり、暗電流が増大するためと考えられる。 From Table 9, it can be seen that in the element having a binary photoelectric conversion layer, the activation energy decreases and the dark current increases as the content of the compound 3, which is the second organic semiconductor, is increased. The reason for this is that as the content of the second organic semiconductor increases, the second organic semiconductors associate with each other and the energy distribution of the state density of the HOMO level widens, so that the activation energy decreases, and the dark current This is thought to increase.
 一方、実施例8の光電変換素子は、第三の有機半導体を混合している分、p型半導体の含有量(第二の有機半導体と第三の有機半導体の合計量)としては、比較例1よりも多いにも関わらず、活性化エネルギーは大きくなり、暗電流は低下している。これは、第一の有機半導体と第二の有機半導体に加えて第三の有機半導体を混合すると、第二の有機半導体同士が会合し、スタッキングによる相互作用が強まることを抑制できるためと考えられる。その結果、HOMO準位の状態密度のエネルギー的な広がりを抑えることができると考えられる。 On the other hand, in the photoelectric conversion element of Example 8, since the third organic semiconductor is mixed, the content of the p-type semiconductor (total amount of the second organic semiconductor and the third organic semiconductor) is a comparative example. Despite being greater than 1, the activation energy is increased and the dark current is reduced. This is considered to be because when the third organic semiconductor is mixed in addition to the first organic semiconductor and the second organic semiconductor, the second organic semiconductors can be associated with each other and the interaction due to stacking can be suppressed. . As a result, it is considered that the energy spread of the state density of the HOMO level can be suppressed.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 比較例1は光電変換層が第一の有機半導体として化合物2と、第二の有機半導体として化合物3の二つの材料によって構成されている。実施例3は、光電変換層が、第一の有機半導体としての化合物2と、第二の有機半導体としての含有量が比較例1と同じ25質量%である化合物3に加え、第三の有機半導体としての化合物4を含有することによって構成されている。実施例3では、第一の有機半導体がn型半導体、第二の有機半導体がp型半導体、第三の有機半導体がp型半導体である。実施例23は、光電変換層が第一の有機半導体としての化合物2と、第二の有機半導体としての含有量が比較例1と同じ25質量%である化合物3に加え、第三の有機半導体としての化合物10を含有することによって構成されている。実施例23では、第一の有機半導体がn型半導体、第二の有機半導体がp型半導体、第三の有機半導体がn型半導体である。 In Comparative Example 1, the photoelectric conversion layer is composed of two materials of Compound 2 as the first organic semiconductor and Compound 3 as the second organic semiconductor. In Example 3, the photoelectric conversion layer has a third organic compound in addition to the compound 2 as the first organic semiconductor and the compound 3 whose content as the second organic semiconductor is 25% by mass as in Comparative Example 1. It is comprised by containing the compound 4 as a semiconductor. In Example 3, the first organic semiconductor is an n-type semiconductor, the second organic semiconductor is a p-type semiconductor, and the third organic semiconductor is a p-type semiconductor. In Example 23, in addition to the compound 2 in which the photoelectric conversion layer is the first organic semiconductor and the compound 3 in which the content as the second organic semiconductor is 25% by mass as in Comparative Example 1, the third organic semiconductor is used. It is comprised by containing the compound 10 as. In Example 23, the first organic semiconductor is an n-type semiconductor, the second organic semiconductor is a p-type semiconductor, and the third organic semiconductor is an n-type semiconductor.
 比較例1に対する暗電流の比である相対暗電流は、実施例23よりも実施例3の方が小さかった。ここから、第一の有機半導体がn型半導体、第二の有機半導体がp型半導体である場合は、第三の有機半導体がp型半導体であることが好ましいことが分かる。 The relative dark current, which is the ratio of dark current to Comparative Example 1, was smaller in Example 3 than in Example 23. From this, it can be seen that when the first organic semiconductor is an n-type semiconductor and the second organic semiconductor is a p-type semiconductor, the third organic semiconductor is preferably a p-type semiconductor.
 比較例10は光電変換層が第一の有機半導体としての化合物7と、第二の有機半導体としての化合物2の二つの材料によって構成されている。実施例13は、光電変換層が、第一の有機半導体としての化合物7と、第二の有機半導体としての含有量が比較例1と同じ40質量%である化合物2に加え、第三の有機半導体としての化合物3を含有することによって構成されている。実施例13では、第一の有機半導体がp型半導体、第二の有機半導体がn型半導体、第三の有機半導体がp型半導体である。実施例24は、光電変換層が第一の有機半導体としての化合物2と、第二の有機半導体としての含有量が比較例1と同じ40質量%である化合物3に加え、第三の有機半導体としての化合物10を含有することによって構成されている。実施例24では、第一の有機半導体がp型半導体、第二の有機半導体がn型半導体、第三の有機半導体がn型半導体である。 In Comparative Example 10, the photoelectric conversion layer is composed of two materials of Compound 7 as the first organic semiconductor and Compound 2 as the second organic semiconductor. In Example 13, the photoelectric conversion layer has a third organic compound in addition to the compound 7 as the first organic semiconductor and the compound 2 whose content as the second organic semiconductor is 40% by mass as in Comparative Example 1. It is comprised by containing the compound 3 as a semiconductor. In Example 13, the first organic semiconductor is a p-type semiconductor, the second organic semiconductor is an n-type semiconductor, and the third organic semiconductor is a p-type semiconductor. In Example 24, in addition to the compound 2 having a photoelectric conversion layer as the first organic semiconductor and the compound 3 having the same content of 40% by mass as the comparative example 1 as the second organic semiconductor, the third organic semiconductor is used. It is comprised by containing the compound 10 as. In Example 24, the first organic semiconductor is a p-type semiconductor, the second organic semiconductor is an n-type semiconductor, and the third organic semiconductor is an n-type semiconductor.
 比較例10に対する暗電流の比である相対暗電流は、実施例13よりも実施例24の方が小さかった。ここから、第一の有機半導体がp型半導体、第二の有機半導体がn型半導体である場合は、第三の有機半導体がn型半導体であることが好ましいことが分かる。 The relative dark current, which is the ratio of dark current to Comparative Example 10, was smaller in Example 24 than in Example 13. From this, it can be seen that when the first organic semiconductor is a p-type semiconductor and the second organic semiconductor is an n-type semiconductor, the third organic semiconductor is preferably an n-type semiconductor.
(変換効率の評価結果)
 高S/N比を得るためには、光電変換の効率が高いことが好ましい、光電変換の効率の測定と評価結果について以下に説明する。まず、p型-n型の組み合わせごとの変換効率を事前に評価しておくために各p型材料を25%含んだ光電変換層を有する光電変換素子を、光電変換層を除き他の実施例と同様な方法で作製して評価を行った結果を表に示す。なお、変換効率は、
変換効率(η)= 外部量子収率(EQE)/光電変換層の吸収率
の関係より、外部量子効率および、光電変換層の吸収率を別途求めてから計算した値である。下記表にはp型-n型の有機半導体の組み合わせによる光電変換素子のEQEピーク波長と変換効率について示した。EQEピーク波長は、暗所に置いた素子に対して、分光感度光源と半導体パラメータアナライザー(Agilent 4155C)を用いて、各波長の光を照射時と非照射時の電流を測定して光電流を求めた。その光電流を電子数に換算し入射光子数で除してEQEとした。それにより各波長のEQEを測定して分光感度特性を取得し、もっとも長波長側の感度ピーク波長を求めた。また、各材料の励起エネルギーの指標としてバンドギャップも示した。このバンドギャップはそれぞれの100%膜を100nm程度の膜厚で真空蒸着により成膜した薄膜の吸収スペクトル測定から算出した。
 光電変換層の変換効率は、当該光電変換層を有する光電変換素子の効率から見積もることができる。
(Conversion efficiency evaluation results)
In order to obtain a high S / N ratio, the photoelectric conversion efficiency measurement and evaluation results, which preferably have high photoelectric conversion efficiency, are described below. First, in order to evaluate the conversion efficiency for each combination of p-type and n-type in advance, a photoelectric conversion element having a photoelectric conversion layer containing 25% of each p-type material is excluded from the photoelectric conversion layer. Table 1 shows the results of manufacturing and evaluation performed in the same manner as described above. The conversion efficiency is
Conversion efficiency (η) = external quantum yield (EQE) / a value calculated after separately obtaining the external quantum efficiency and the absorption rate of the photoelectric conversion layer from the relationship of the absorption rate of the photoelectric conversion layer. The following table shows the EQE peak wavelength and the conversion efficiency of a photoelectric conversion element using a combination of p-type and n-type organic semiconductors. The EQE peak wavelength is obtained by measuring the current at the time of irradiating the light of each wavelength and the non-irradiation with the spectral sensitivity light source and the semiconductor parameter analyzer (Agilent 4155C) for the element placed in the dark place. Asked. The photocurrent was converted to the number of electrons and divided by the number of incident photons to obtain EQE. Thereby, EQE of each wavelength was measured to obtain spectral sensitivity characteristics, and the sensitivity peak wavelength on the longest wavelength side was obtained. The band gap is also shown as an index of excitation energy of each material. This band gap was calculated from the absorption spectrum measurement of each 100% film formed by vacuum deposition with a film thickness of about 100 nm.
The conversion efficiency of the photoelectric conversion layer can be estimated from the efficiency of the photoelectric conversion element having the photoelectric conversion layer.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表11における変換効率(η)は、駆動電圧5Vにおける二元素子の変換効率として下記のように評価した。
A:η≧80
B:80>η≧60
C:η<60
The conversion efficiency (η) in Table 11 was evaluated as follows as the conversion efficiency of the binary element at a drive voltage of 5V.
A: η ≧ 80
B: 80> η ≧ 60
C: η <60
 なお上記素子構成においては第二の有機半導体の質量パーセント濃度は25%としているが、各組み合せを比較するうえでの指標としているものであり、第二の有機半導体の重量比は25%に限られない。例えば、本発明者らは上記の変換効率は第二の有機半導体の濃度が15~50%程度まではほぼ一定であることは確認しており、そのような濃度範囲を踏まえて最大の変換効率値が決定されていればよい。
 また上記の結果から化合物2のフラーレンC60をn型の有機半導体として用いても光電変換の変換効率には影響がないことがわかる。これはC60の可視部における吸収遷移が禁制遷移でありモル吸光係数が1000molL-1cm-1未満でありエネルギー受容体として有効に機能しないことを示している。
In the above element configuration, the mass percentage concentration of the second organic semiconductor is 25%, but this is an index for comparing each combination, and the weight ratio of the second organic semiconductor is limited to 25%. I can't. For example, the present inventors have confirmed that the above conversion efficiency is almost constant until the concentration of the second organic semiconductor is about 15 to 50%. Based on such a concentration range, the maximum conversion efficiency is confirmed. It is sufficient that the value is determined.
From the above results, it can be seen that the use of fullerene C60 of Compound 2 as an n-type organic semiconductor does not affect the conversion efficiency of photoelectric conversion. This indicates that the absorption transition in the visible part of C60 is a forbidden transition and the molar extinction coefficient is less than 1000 mol L −1 cm −1 , and does not function effectively as an energy acceptor.
 上記を踏まえて、表2に記載の第一の有機半導体層を形成する第一、第二、第三の有機半導体を下記構成のようにした光電変換素子を作製し、その素子の変換効率を評価した。
 表12には、よりS/N比の優れた光電変換素子を得るために、表11の結果をもとに、本発明の光電変換素子の光電変換層の構成と変換効率の関係について示す。なお下記表中の実施例、比較例の素子は光電変換層以外の部分はその他の実施例と同様の方法で作製したものである。また変換効率は表11における感度ピークに近い500nmの値を採用し本発明の効果を検証した。
Based on the above, a photoelectric conversion element in which the first, second, and third organic semiconductors forming the first organic semiconductor layer described in Table 2 are configured as follows is manufactured, and the conversion efficiency of the element is determined. evaluated.
Table 12 shows the relationship between the configuration of the photoelectric conversion layer of the photoelectric conversion element of the present invention and the conversion efficiency, based on the results of Table 11, in order to obtain a photoelectric conversion element with a better S / N ratio. In addition, the element of the Example in the following table | surface and the comparative example produces parts other than a photoelectric converting layer with the method similar to another Example. The conversion efficiency was a value of 500 nm close to the sensitivity peak in Table 11, and the effect of the present invention was verified.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 上記結果について解説する。実施例25~50にあるように長波長側にEQEピークをもちその変換効率の高いp型―n型の組み合わせを有する素子においては変換効率が高かった。実施例25~30の有機半導体2と3のみの素子の変換効率と比べて、より長波長側に変換効率の高いEQEピークを有する有機半導体2と4の組み合わせが含まれる素子の変換効率がより高い結果となった。特に有機半導体2と有機半導体6,13,15,16,18のいずれかの組み合わせを含んだ素子においては特に高い変換効率を示していた。 Explain the above results. As in Examples 25 to 50, an element having an EQE peak on the long wavelength side and a p-type / n-type combination having high conversion efficiency showed high conversion efficiency. Compared with the conversion efficiency of the organic semiconductors 2 and 3 only in Examples 25 to 30, the conversion efficiency of the element including the combination of the organic semiconductors 2 and 4 having an EQE peak having a higher conversion efficiency on the longer wavelength side is higher. The result was high. In particular, the device including any combination of the organic semiconductor 2 and the organic semiconductors 6, 13, 15, 16, and 18 showed particularly high conversion efficiency.
 一方で有機半導体番号2と、有機半導体4、5、14の中で組み合わせたp型半導体―n型半導体の組み合わせからなる素子は比較例24~28のように変換効率が低かった(有機半導体4,5,14については斜体で表示)。 On the other hand, an element composed of a combination of the organic semiconductor number 2 and the p-type semiconductor-n-type semiconductor combined among the organic semiconductors 4, 5, and 14 has a low conversion efficiency as in Comparative Examples 24-28 ( organic semiconductor 4 , 5, and 14 are shown in italics).
 また、比較例23においては、励起エネルギーを受容する側を構成するp型半導体-n型半導体の組み合わせとなる有機半導体2と有機半導体4のうち、有機半導体4の濃度が低すぎることで、有効な励起エネルギー捕集ができていないため、変換効率は上昇しなかった。 In Comparative Example 23, the concentration of the organic semiconductor 4 out of the organic semiconductor 2 and the organic semiconductor 4 that are a combination of the p-type semiconductor and the n-type semiconductor constituting the side that accepts the excitation energy is effective. The conversion efficiency did not increase because the excitation energy could not be collected.
 また、実施例25~50および比較例23~28ではこれまでの実施例で挙げたような第三の有機半導体の含有に伴い0.1~0.6倍程度の暗電流の低下効果が見られた。なお、実施例3と実施例25、実施例8と実施例40、実施例20と実施例43はそれぞれ同じ光電変換層の素子である。 In Examples 25 to 50 and Comparative Examples 23 to 28, the dark current reduction effect of about 0.1 to 0.6 times was observed with the inclusion of the third organic semiconductor as mentioned in the previous examples. It was. In addition, Example 3 and Example 25, Example 8 and Example 40, Example 20 and Example 43 are the elements of the same photoelectric converting layer, respectively.
 よって、第一、第二、第三の有機半導体のうちp型およびn型の各一つの有機半導体で構成できうる光電変換層を具備した素子において、短波長側にEQEピークを持つ光電変換素子より長波長側にEQEピークを有する光電変換素子の変換効率(η)が高いことにより、高い感度の光電変換素子が得られる。かつ、暗電流も低下する。これにより高いS/N比の光電変換素子が得られる。 Therefore, a photoelectric conversion element having an EQE peak on the short wavelength side in an element having a photoelectric conversion layer that can be composed of one of the p-type and n-type organic semiconductors among the first, second, and third organic semiconductors. Since the conversion efficiency (η) of the photoelectric conversion element having an EQE peak on the longer wavelength side is high, a photoelectric conversion element with high sensitivity can be obtained. And dark current also falls. Thereby, a photoelectric conversion element having a high S / N ratio is obtained.
 一方、短波長側にEQEピークを有する素子の変換効率が、長波長側にEQEピークを有する素子よりも高い場合は以下通りである。 On the other hand, the case where the conversion efficiency of the element having the EQE peak on the short wavelength side is higher than that of the element having the EQE peak on the long wavelength side is as follows.
 表13には一対のp型半導体-n型半導体の組み合わせによる光電変換素子のEQEピーク波長と変換効率(η)について示した。これらは三元構成の光電変換層において、構成として含まれるp型半導体-n型半導体の組み合わせの二元素子構成の特性として示すものである。EQEピーク波長は、暗所に置いた光電変換素子に対して、分光感度光源と半導体パラメータアナライザー(Agilent社「4155C」)を用いて、各波長の光を照射時と非照射時の電流を測定して光電流を求めた。その光電流を電子数に換算し入射光子数で除してEQEとした。それにより各波長のEQEを測定して分光感度特性を取得し、最も長波長側の感度ピーク波長を求めた。また、各材料の励起エネルギーの指標としてバンドギャップも示した。このバンドギャップはそれぞれの100%膜を100nm程度の膜厚で真空蒸着により成膜した薄膜の吸収スペクトル測定から算出した。
 光電変換層の変換効率は、当該光電変換層を有する光電変換素子の変換効率(η)から見積もることができる。
Table 13 shows the EQE peak wavelength and the conversion efficiency (η) of a photoelectric conversion element by a combination of a pair of p-type semiconductor and n-type semiconductor. These are shown as characteristics of a binary element configuration of a combination of a p-type semiconductor and an n-type semiconductor included as a configuration in a photoelectric conversion layer having a ternary configuration. The EQE peak wavelength is measured using a spectral sensitivity light source and a semiconductor parameter analyzer (Agilent “4155C”) for photoelectric conversion elements placed in the dark. Then, the photocurrent was obtained. The photocurrent was converted to the number of electrons and divided by the number of incident photons to obtain EQE. Thereby, the EQE of each wavelength was measured to obtain the spectral sensitivity characteristic, and the sensitivity peak wavelength on the longest wavelength side was obtained. The band gap is also shown as an index of excitation energy of each material. This band gap was calculated from the absorption spectrum measurement of each 100% film formed by vacuum deposition with a film thickness of about 100 nm.
The conversion efficiency of the photoelectric conversion layer can be estimated from the conversion efficiency (η) of the photoelectric conversion element having the photoelectric conversion layer.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表13における変換効率(η)は、駆動電圧5Vにおける二元素子の変換効率として下記のように評価した。
A:η≧80%
B:η<80%
The conversion efficiency (η) in Table 13 was evaluated as follows as the conversion efficiency of the binary element at a drive voltage of 5V.
A: η ≧ 80%
B: η <80%
 尚、上記の光電変換素子構成においては、第二の有機半導体の含有量を25質量%としているが、各組み合せを比較するうえでの指標としているのであり、変換効率(η)を評価するために25質量%に限定されるものではない。例えば、本発明者らは上記の変換効率(η)は第二の有機半導体の含有量が15乃至50質量%程度まではほぼ一定であることは確認しており、そのような含有量範囲を踏まえて最大の変換効率値が決定されていればよい。 In the above photoelectric conversion element configuration, the content of the second organic semiconductor is set to 25% by mass, but is used as an index for comparing the respective combinations, in order to evaluate the conversion efficiency (η). However, it is not limited to 25% by mass. For example, the present inventors have confirmed that the above conversion efficiency (η) is substantially constant up to the content of the second organic semiconductor of about 15 to 50% by mass. It is sufficient that the maximum conversion efficiency value is determined based on this.
 次に、三元素子の構成材料に含まれる有機半導体を用いた二元構成素子のEQEピーク波長の差から決まるエネルギー差(|ΔEg|)と、三元素子での550nmの変換効率の上昇率を指標として評価した結果を示す。尚、効果の指標とした表14中の「550nmの変換効率の上昇率」は、本発明の三元素子の変換効率を二元素子として構成可能なp型半導体-n型半導体の組み合わせにおける変換効率の低い方で割った値である。表中に記載のOSCとは、Organic Semi-Conductorの略で表中での簡略表記のため便宜上記載している。なお、第二と第三の有機半導体の含有量をなるべく近く設定してあるのは、効果を見極めるためである。 Next, the energy difference (| ΔEg |) determined from the difference in the EQE peak wavelength of the binary constituent element using the organic semiconductor contained in the constituent material of the ternary element, and the increase rate of the conversion efficiency of 550 nm in the ternary element The results of evaluation using as an index are shown. The “rate of increase in conversion efficiency at 550 nm” in Table 14 as an effect index is the conversion in the p-type semiconductor-n-type semiconductor combination in which the conversion efficiency of the ternary element of the present invention can be configured as a binary element. It is the value divided by the lower efficiency. The OSC described in the table is an abbreviation for Organic Semi-Conductor and is described for the sake of simplicity in the table. The reason why the contents of the second and third organic semiconductors are set as close as possible is to determine the effect.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表14においては比較例23と比較例24,25が二元構成と三元構成の関係になっている。同様な関係として、比較例26に対しては実施例51、52、比較例27に対しては実施例53、比較例28に対して実施例54、比較例29に対して実施例55が対応する。表14の結果から、構成可能な二元素子の|ΔEg|が0に近いほど変換効率の上昇率が高い傾向がみられる。なお構成可能な2元素子のデータは表4に記載の内容に基づいている。 In Table 14, Comparative Example 23 and Comparative Examples 24 and 25 are in a binary configuration and a ternary configuration. In a similar relationship, Examples 51 and 52 correspond to Comparative Example 26, Example 53 corresponds to Comparative Example 27, Example 54 corresponds to Comparative Example 28, and Example 55 corresponds to Comparative Example 29. To do. From the results of Table 14, there is a tendency that the rate of increase in conversion efficiency increases as | ΔEg | of the configurable binary element is closer to zero. The data of the configurable binary element is based on the contents described in Table 4.
 表14における|ΔEg|と550nmの変換効率の上昇率の関係を図12に示す。図12に示したように0.052eV付近に屈曲点を持っていた。その際、EQE測定の精度を考慮し本評価においては変換効率の上昇率が102%以上であることを有効と判断した。この結果、|ΔEg|は0.052eV以下であることが好ましいことが示された。この結果は、低いエネルギー準位へ緩和した励起子は0.052eV以下程度の障壁であれば別のp型半導体-n型半導体の組み合わせを使って高効率に電荷分離できることを示している。尚、変換効率の上昇率については、組み合わせる二元素子1と二元素子2の変換効率ηとηの差が大きい方が、当然ながら効果は大きいものとなる。今回の実施例においてはいずれもηとηは10%以上の差があるものを選んだ。しかしながら、本発明においてはその差が10%以上であることに限定されるものではなく、これまで述べてきたように二元素子1と二元素子2を構成する各p型半導体-n型半導体の持つエネルギー準位の関係が重要である。 FIG. 12 shows the relationship between | ΔEg | in Table 14 and the rate of increase in conversion efficiency at 550 nm. As shown in FIG. 12, it had a bending point in the vicinity of 0.052 eV. At that time, considering the accuracy of EQE measurement, it was determined that the rate of increase in conversion efficiency was 102% or higher in this evaluation. As a result, it was shown that | ΔEg | is preferably 0.052 eV or less. This result shows that the exciton relaxed to a low energy level can be separated with high efficiency by using another p-type semiconductor-n-type semiconductor combination if the barrier is about 0.052 eV or less. As for the rate of increase in conversion efficiency, the larger the difference between the conversion efficiencies η 1 and η 2 of the binary element 1 and the binary element 2 to be combined, of course, the greater the effect. In this embodiment, both η 1 and η 2 are selected with a difference of 10% or more. However, in the present invention, the difference is not limited to 10% or more. As described so far, each p-type semiconductor-n-type semiconductor constituting the binary element 1 and the binary element 2 is used. The energy level relationship of is important.
 次に第一の有機半導体、第二の有機半導体および第三の有機半導体の好ましい含有量について検証を行った。この検証は第二の有機半導体と第三の有機半導体のいずれの濃度が高いほうがよいかを検証した。 Next, the preferred contents of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor were verified. This verification verified which concentration of the second organic semiconductor and the third organic semiconductor should be higher.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表15から、実施例51、56乃至61にあるように第二の有機半導体が化合物4である場合に三元素子で変換効率が高い。これは変換効率が高い二元素子1を構成する有機半導体の含有率が高い方が直接的に光電変換する比率が高まること、および二元素子2を構成する有機半導体からエネルギーを受けとって電荷分離を起こす確率が高まる比率が高まること、に由来する。反対に実施例62乃至68のように第二の有機半導体が化合物5であった場合、三元素子の550nmの変換効率は上昇するものの、その効果は大きくない。よって、変換効率の高い組み合わせとしては第一と第二の有機半導体であることが好ましいことが示された。また、記載はしていないが表14、15のいずれの組み合わせにおいても、三元素子での暗電流低下効果が見られた。 From Table 15, when the second organic semiconductor is Compound 4 as in Examples 51 and 56 to 61, the conversion efficiency is high in the ternary element. This is because the ratio of direct photoelectric conversion increases when the content of the organic semiconductor constituting the binary element 1 having high conversion efficiency is high, and charge separation is performed by receiving energy from the organic semiconductor constituting the binary element 2. It is derived from the fact that the ratio of increasing the probability of causing an increase is increased. On the contrary, when the second organic semiconductor is Compound 5 as in Examples 62 to 68, the conversion efficiency of the ternary element at 550 nm increases, but the effect is not great. Therefore, it was shown that the first and second organic semiconductors are preferable as a combination with high conversion efficiency. Moreover, although not described, the dark current lowering effect in the ternary element was observed in any combination of Tables 14 and 15.
 (溶解度パラメータの計算結果)
 第二の有機半導体と第三の有機半導体が選択的に混和しやすくなることで、第二の有機半導体同士の会合による、HOMO、LUMO準位の状態密度のエネルギー的な広がりを形成する現象が抑制される。実施例中のいくつかの有機半導体について計算を行い上記の関係になっているかを検証した。以下に各有機半導体のSP値の関係をまとめた表を示す。なお、SP値において、第一の有機半導体である化合物2はC60であることから非特許文献3に記載の値を用いた。第二の有機半導体と第三の有機半導体のSP値については、非特許文献2に基づき計算により求めた。
(Solubility parameter calculation results)
As the second organic semiconductor and the third organic semiconductor are selectively mixed easily, the phenomenon of forming an energy spread of the state density of the HOMO and LUMO levels due to the association between the second organic semiconductors is caused. It is suppressed. It calculated about several organic semiconductors in an Example, and verified whether it was said relationship. The table | surface which put together the relationship of SP value of each organic semiconductor is shown below. In addition, in SP value, since the compound 2 which is a 1st organic semiconductor is C60, the value of the nonpatent literature 3 was used. The SP values of the second organic semiconductor and the third organic semiconductor were obtained by calculation based on Non-Patent Document 2.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表13の検証例Eに含まれる化合物6をジメチルアントラセン(SP3=20.2)に替えた以外は同様の素子を作成した。その素子の暗電流を評価したところ相対暗電流(三元/二元)は、約0.9であり、暗電流の低下は確認されたが、暗電流の低下量は他の素子に比べて小さかった。
 以上の通り、本発明に係る三元構成の光電変換素子は、第三の有機半導体の質量を3質量%以上とすることで、低い暗電流特性が得られている。
A similar device was prepared except that Compound 6 contained in Verification Example E in Table 13 was replaced with dimethylanthracene (SP3 = 20.2). When the dark current of the device was evaluated, the relative dark current (ternary / binary) was about 0.9, and a decrease in dark current was confirmed, but the amount of dark current decrease was less than that of other devices. It was small.
As described above, the photoelectric conversion element having a ternary structure according to the present invention has low dark current characteristics when the mass of the third organic semiconductor is 3 mass% or more.
 以上のことから本発明の有機光電変換素子は、低い暗電流という特性の優れた素子となる。よって、本発明の有機光電変換素子を用いた光エリアセンサや撮像素子、撮像装置においては、光電変換素子に由来する暗電流ノイズを少なくできる。 From the above, the organic photoelectric conversion element of the present invention is an element having an excellent characteristic of low dark current. Therefore, in the optical area sensor, the imaging element, and the imaging device using the organic photoelectric conversion element of the present invention, dark current noise derived from the photoelectric conversion element can be reduced.
 この出願は2017年2月7日に出願された日本国特許出願番号2017-020239、2017年11月17日に出願された日本国特許出願番号2017-221684、および2017年12月27日に出願された日本国特許出願番号2017-250929の優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。 This application is Japanese Patent Application No. 2017-020239 filed on Feb. 7, 2017, Japanese Patent Application No. 2017-221684 filed on Nov. 17, 2017, and filed on Dec. 27, 2017. And claims the priority of Japanese Patent Application No. 2017-250929, which is incorporated herein by reference.
 1:光電変換層(第1の有機化合物層)、2:第2の有機化合物層、3:第3の有機化合物層、4:カソード、5:アノード、6:読み出し回路、7:無機保護層、8:カラーフィルタ、9:マイクロレンズ、10:光電変換素子、15:電荷蓄積部、20:一画素、22:リセットトランジスタ、23:増幅トランジスタ、24:選択トランジスタ、25:転送トランジスタ、26:電流源、27:列回路、28:出力線、29:配線、31:撮像領域、32:垂直走査回路、33:読み出し回路、34:水平走査回路、35:出力アンプ、36:回路領域、37:信号処理部、A:ノード、B:ノード 1: photoelectric conversion layer (first organic compound layer), 2: second organic compound layer, 3: third organic compound layer, 4: cathode, 5: anode, 6: readout circuit, 7: inorganic protective layer 8: Color filter, 9: Micro lens, 10: Photoelectric conversion element, 15: Charge storage unit, 20: One pixel, 22: Reset transistor, 23: Amplification transistor, 24: Selection transistor, 25: Transfer transistor, 26: Current source, 27: column circuit, 28: output line, 29: wiring, 31: imaging region, 32: vertical scanning circuit, 33: readout circuit, 34: horizontal scanning circuit, 35: output amplifier, 36: circuit region, 37 : Signal processing unit, A: Node, B: Node

Claims (19)

  1.  アノードと、光電変換層と、カソードと、をこの順で有し、前記光電変換層は第一の有機半導体と第二の有機半導体と第三の有機半導体とを有する光電変換素子であって、
     前記第一の有機半導体と前記第二の有機半導体と前記第三の有機半導体はいずれも低分子有機半導体であり、
     前記第一の有機半導体と前記第二の有機半導体のうち、一方がp型半導体であり、他方がn型半導体であり、
     前記第一の有機半導体と前記第二の有機半導体と前記第三の有機半導体の質量比が、
     第一の有機半導体≧第二の有機半導体≧第三の有機半導体
    であり、
     前記第一の有機半導体と前記第二の有機半導体と前記第三の有機半導体の合計を100質量%とした時、前記第二の有機半導体の含有量が6質量%以上であり、前記第三の有機半導体の含有量が3質量%以上であることを特徴とする光電変換素子。
    An anode, a photoelectric conversion layer, and a cathode in this order, the photoelectric conversion layer is a photoelectric conversion element having a first organic semiconductor, a second organic semiconductor, and a third organic semiconductor,
    The first organic semiconductor, the second organic semiconductor, and the third organic semiconductor are all low molecular organic semiconductors,
    Of the first organic semiconductor and the second organic semiconductor, one is a p-type semiconductor and the other is an n-type semiconductor,
    The mass ratio of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is
    First organic semiconductor ≧ second organic semiconductor ≧ third organic semiconductor,
    When the total of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is 100% by mass, the content of the second organic semiconductor is 6% by mass or more, and the third The content of the organic semiconductor is 3% by mass or more.
  2.  前記第二の有機半導体に対する、前記第三の有機半導体の質量比が、0.12以上であることを特徴とする請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein a mass ratio of the third organic semiconductor to the second organic semiconductor is 0.12 or more.
  3.  前記第一の有機半導体と前記第二の有機半導体と前記第三の有機半導体の合計を100質量%とした時、前記第二の有機半導体の含有量が10質量%以上であることを特徴とする請求項1又は2に記載の光電変換素子。 When the total of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor is 100% by mass, the content of the second organic semiconductor is 10% by mass or more. The photoelectric conversion element according to claim 1 or 2.
  4.  前記第一の有機半導体がn型半導体であり、前記第二の有機半導体がp型半導体であることを特徴とする請求項1乃至3のいずれか一項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 3, wherein the first organic semiconductor is an n-type semiconductor, and the second organic semiconductor is a p-type semiconductor.
  5.  前記第三の有機半導体がp型半導体であることを特徴とする請求項4に記載の光電変換素子。 The photoelectric conversion element according to claim 4, wherein the third organic semiconductor is a p-type semiconductor.
  6.  前記第一の有機半導体の溶解度パラメータをSP1とし、前記第二の有機半導体の溶解度パラメータをSP2とし、前記第三の有機半導体の溶解度パラメータをSP3とする場合、該SP1、該SP2、該SP3が、式(2)および(3)を満たすことを特徴とする請求項1乃至5のいずれか一項に記載の光電変換素子。
    |SP1-SP2|>|SP2-SP3|  ・・・(2)
    |SP1-SP3|>|SP2-SP3|  ・・・(3)
    When the solubility parameter of the first organic semiconductor is SP1, the solubility parameter of the second organic semiconductor is SP2, and the solubility parameter of the third organic semiconductor is SP3, the SP1, SP2, and SP3 are The photoelectric conversion element according to claim 1, wherein the formulas (2) and (3) are satisfied.
    | SP1-SP2 |> | SP2-SP3 | (2)
    | SP1-SP3 |> | SP2-SP3 | (3)
  7.  前記SP1、前記SP2および前記SP3が式(4)~(6)を満たすことを特徴とする請求項6に記載の光電変換素子。
    |SP1-SP2|≧2.5  ・・・(4)
    |SP1-SP3|≧2.5  ・・・(5)
    |SP2-SP3|≦2.5  ・・・(6)
    The photoelectric conversion element according to claim 6, wherein the SP1, the SP2, and the SP3 satisfy the formulas (4) to (6).
    | SP1-SP2 | ≧ 2.5 (4)
    | SP1-SP3 | ≧ 2.5 (5)
    | SP2-SP3 | ≦ 2.5 (6)
  8.  前記SP2および前記SP3が式(7)を満たすことを特徴とする請求項6または7に記載の光電変換素子。
    |SP2-SP3|≦1.0    ・・・(7)
    The photoelectric conversion element according to claim 6 or 7, wherein the SP2 and the SP3 satisfy the formula (7).
    | SP2-SP3 | ≦ 1.0 (7)
  9.  前記第二の有機半導体の酸化電位をEox2、前記第三の有機半導体の酸化電位をEox3、前記第一の有機半導体の還元電位をEred1、前記第三の有機半導体の還元電位をEred3とした時、各電位の関係が、式(11)および(12)を満たすことを特徴とする請求項4又は5に記載の光電変換素子。
    Eox2≦Eox3     ・・・(11)
    Ered1≧Ered3      ・・・(12)
    When the oxidation potential of the second organic semiconductor is Eox2, the oxidation potential of the third organic semiconductor is Eox3, the reduction potential of the first organic semiconductor is Ered1, and the reduction potential of the third organic semiconductor is Ered3. The photoelectric conversion element according to claim 4, wherein the relationship between the potentials satisfies the expressions (11) and (12).
    Eox2 ≦ Eox3 (11)
    Ered1 ≧ Ered3 (12)
  10.  前記第一の有機半導体、前記第二の有機半導体、前記第三の有機半導体のうち、p型半導体である有機半導体が、一般式[1]乃至[5]で示される化合物、キナクリドン誘導体、3H-フェノキサジン-3-オン誘導体のいずれかであることを特徴とする請求項1乃至9のいずれか一項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000001

    (一般式[1]において、
     R1は水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアリール基、置換或いは無置換の複素環基、置換或いは無置換のビニル基、置換或いは無置換のアミノ基、又はシアノ基を表す。
     n、n、nはそれぞれ独立に0乃至4の整数を表す。
     X乃至Xは窒素原子、硫黄原子、酸素原子、置換基を有してもよい炭素原子のいずれかを表す。
     Ar及びArは置換或いは無置換のアリール基、又は置換或いは無置換の複素環基からそれぞれ独立に選ばれる。Ar及びArが複数ある場合はそれぞれ同じでも異なってもよく、Ar及びArはX又はXが炭素原子の場合、互いに結合して環を形成してもよい。
     Zはハロゲン原子、シアノ基、シアノ基で置換されたビニル基、置換或いは無置換のヘテロアリール基又は以下の一般式[1-1]乃至[1-9]で表される置換基のいずれかを表す。
    Figure JPOXMLDOC01-appb-C000002

     一般式[1-1]乃至[1-9]において、R521乃至R588は水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアリール基、置換或いは無置換の複素環基、置換或いは無置換のビニル基、置換或いは無置換のアミノ基、およびシアノ基からそれぞれ独立に選ばれる。*は炭素原子との結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000003

    (一般式[2]において、
     R20乃至R29は水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアリール基、置換或いは無置換の複素環基、置換或いは無置換のビニル基、置換或いは無置換のアミノ基、およびシアノ基からそれぞれ独立に選ばれる。R20乃至R29のうちの隣り合う2つは互いに結合して環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000004

    (一般式[3]乃至[5]において、
     Mは金属原子であり、前記金属原子は酸素原子又はハロゲン原子を置換基として有してもよい。
     L1乃至L9は金属Mに配位する配位子であって、置換或いは無置換のアリール基又は置換或いは無置換の複素環基からなり、それぞれL1乃至L9のうちの隣り合う2つは互いに結合して環を形成してもよい配位子を表す。)
    Among the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor, an organic semiconductor that is a p-type semiconductor is a compound represented by general formulas [1] to [5], a quinacridone derivative, 3H 10. The photoelectric conversion device according to claim 1, wherein the photoelectric conversion device is any one of -phenoxazin-3-one derivatives.
    Figure JPOXMLDOC01-appb-C000001

    (In general formula [1],
    R 1 is a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted vinyl group, A substituted or unsubstituted amino group or a cyano group is represented.
    n 1 , n 2 , and n 3 each independently represents an integer of 0 to 4.
    X 1 to X 3 each represents a nitrogen atom, a sulfur atom, an oxygen atom, or a carbon atom that may have a substituent.
    Ar 1 and Ar 2 are each independently selected from a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group. When there are a plurality of Ar 1 and Ar 2 , they may be the same or different, and Ar 1 and Ar 2 may be bonded to each other to form a ring when X 2 or X 3 is a carbon atom.
    Z 1 is any of a halogen atom, a cyano group, a vinyl group substituted with a cyano group, a substituted or unsubstituted heteroaryl group, or a substituent represented by the following general formulas [1-1] to [1-9] Represents
    Figure JPOXMLDOC01-appb-C000002

    In the general formulas [1-1] to [1-9], R 521 to R 588 are a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group. Each independently selected from a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, and a cyano group. * Represents a bonding position with a carbon atom. )
    Figure JPOXMLDOC01-appb-C000003

    (In general formula [2],
    R 20 to R 29 are hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted Each is independently selected from a vinyl group, a substituted or unsubstituted amino group, and a cyano group. Two adjacent R 20 to R 29 may be bonded to each other to form a ring. )
    Figure JPOXMLDOC01-appb-C000004

    (In the general formulas [3] to [5],
    M is a metal atom, and the metal atom may have an oxygen atom or a halogen atom as a substituent.
    L 1 to L 9 are ligands coordinated to the metal M, and are composed of a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and two adjacent L 1 to L 9 are adjacent to each other. Represents a ligand which may be bonded to each other to form a ring. )
  11.  前記第一の有機半導体及び前記第二の有機半導体のうち、n型半導体である有機半導体は、フラーレン又はフラーレン誘導体であることを特徴とする請求項1乃至10のいずれか一項に記載の光電変換素子。 The photoelectric semiconductor according to any one of claims 1 to 10, wherein an organic semiconductor that is an n-type semiconductor among the first organic semiconductor and the second organic semiconductor is a fullerene or a fullerene derivative. Conversion element.
  12.  前記フラーレン誘導体は、フラーレンC60であることを特徴とする請求項11に記載の光電変換素子。 The photoelectric conversion element according to claim 11, wherein the fullerene derivative is fullerene C60.
  13.  前記第一の有機半導体、前記第二の有機半導体および前記第三の有機半導体は、以下の条件を満たすことを特徴とする請求項1乃至12のいずれか一項に記載の光電変換素子。
    (条件)前記第一の有機半導体、前記第二の有機半導体および前記第三の有機半導体の身を用いて、2つの互いに異なる光電変換層を形成した場合、
     前記2つの互いに異なる光電変換層のうち、長波長側にEQEピークを有する光電変換層の変換効率は、前記2つの互いに異なる光電変換層のうち、短波長側にEQEピークを有する光電変換層の変換効率以上である。
    The photoelectric conversion element according to any one of claims 1 to 12, wherein the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor satisfy the following conditions.
    (Conditions) When two different photoelectric conversion layers are formed using the bodies of the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor,
    Of the two different photoelectric conversion layers, the conversion efficiency of the photoelectric conversion layer having the EQE peak on the long wavelength side is the conversion efficiency of the photoelectric conversion layer having the EQE peak on the short wavelength side of the two different photoelectric conversion layers. More than conversion efficiency.
  14.  前記第一の有機半導体、前記第二の有機半導体および前記第三の有機半導体は、以下の条件を満たすことを特徴とする請求項1乃至12のいずれか一項に記載の光電変換素子。
    (条件)前記第一の有機半導体、前記第二の有機半導体および前記第三の有機半導体の身を用いて、2つの互いに異なる光電変換層を形成した場合、以下の式(8)及び(9)を満たす。
    η>η       ・・・・・(8)
    |ΔEg|≦0.052eV・・・・・(9)
     ηは長波長側にEQEピークを有する素子の変換効率であり、ηは短波長側にEQEピークを有する素子の変換効率である。そして、第一乃至第三の有機半導体を有する光電変換素子の変換効率はηと表す。
     ΔEgは第一、第二、第三の有機半導体のうちp型およびn型の各一つの有機半導体で構成される光電変換層を有する二元素子のEQEピーク波長差から求まるエネルギー差である。
    The photoelectric conversion element according to any one of claims 1 to 12, wherein the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor satisfy the following conditions.
    (Condition) When two different photoelectric conversion layers are formed using the first organic semiconductor, the second organic semiconductor, and the third organic semiconductor, the following formulas (8) and (9) Is satisfied.
    η 1 > η 2 (8)
    | ΔEg | ≦ 0.052 eV (9)
    η 1 is the conversion efficiency of an element having an EQE peak on the long wavelength side, and η 2 is the conversion efficiency of an element having an EQE peak on the short wavelength side. And the conversion efficiency of the photoelectric conversion element which has a 1st thru | or 3rd organic semiconductor is represented as (eta) 3 .
    ΔEg is an energy difference obtained from an EQE peak wavelength difference of a binary element having a photoelectric conversion layer composed of one organic semiconductor of p-type and n-type among the first, second, and third organic semiconductors.
  15.  光電変換素子を備えた複数の画素を有し、前記複数の画素が二次元に配置されている光エリアセンサであって、
     前記光電変換素子は請求項1乃至14のいずれか一項に記載の光電変換素子であることを特徴とする光エリアセンサ。
    An optical area sensor having a plurality of pixels including photoelectric conversion elements, wherein the plurality of pixels are two-dimensionally arranged,
    The said photoelectric conversion element is a photoelectric conversion element as described in any one of Claims 1 thru | or 14, The optical area sensor characterized by the above-mentioned.
  16.  光電変換素子と前記光電変換素子に接続されている読み出し回路とを備えた複数の画素、及び、前記画素に接続されている信号処理回路、を有する撮像素子であって、
     前記光電変換素子は請求項1乃至14のいずれか一項に記載の光電変換素子であることを特徴とする撮像素子。
    An imaging device having a plurality of pixels each including a photoelectric conversion element and a readout circuit connected to the photoelectric conversion element, and a signal processing circuit connected to the pixel,
    The said photoelectric conversion element is a photoelectric conversion element as described in any one of Claims 1 thru | or 14, The imaging element characterized by the above-mentioned.
  17.  複数のレンズを有する撮像光学部と、前記撮像光学部を通過した光を受光する撮像素子とを有し、前記撮像素子が請求項16に記載の撮像素子であることを特徴とする撮像装置。 An imaging apparatus comprising: an imaging optical unit having a plurality of lenses; and an imaging device that receives light that has passed through the imaging optical unit, wherein the imaging device is the imaging device according to claim 16.
  18.  前記撮像装置は、外部からの信号を受信する受信部をさらに有し、前記信号は、前記撮像装置の撮像範囲、撮像の開始、撮像の終了の少なくともいずれかを制御する信号であることを特徴とする請求項17に記載の撮像装置。 The imaging apparatus further includes a receiving unit that receives a signal from the outside, and the signal is a signal that controls at least one of an imaging range, an imaging start, and an imaging end of the imaging apparatus. The imaging device according to claim 17.
  19.  前記撮像装置は、取得した画像を外部に送信する送信部をさらに有することを特徴とする請求項17又は18に記載の撮像装置。 The imaging apparatus according to claim 17 or 18, wherein the imaging apparatus further includes a transmission unit that transmits an acquired image to the outside.
PCT/JP2018/003691 2017-02-07 2018-02-02 Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device WO2018147202A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880010394.5A CN110301052B (en) 2017-02-07 2018-02-02 Photoelectric conversion element, and optical area sensor, image pickup element, and image pickup apparatus using the same
EP18751875.8A EP3582275B1 (en) 2017-02-07 2018-02-02 Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device
US16/523,115 US11128791B2 (en) 2017-02-07 2019-07-26 Photoelectric conversion element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-020239 2017-02-07
JP2017020239 2017-02-07
JP2017-221684 2017-11-17
JP2017221684A JP7086573B2 (en) 2017-11-17 2017-11-17 Photoelectric conversion element, optical area sensor using it, image sensor, image sensor
JP2017250929A JP7039285B2 (en) 2017-02-07 2017-12-27 Photoelectric conversion element, optical area sensor using it, image sensor, image sensor
JP2017-250929 2017-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/523,115 Continuation US11128791B2 (en) 2017-02-07 2019-07-26 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2018147202A1 true WO2018147202A1 (en) 2018-08-16

Family

ID=63108203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003691 WO2018147202A1 (en) 2017-02-07 2018-02-02 Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device

Country Status (1)

Country Link
WO (1) WO2018147202A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3696857A1 (en) * 2019-01-22 2020-08-19 Samsung Electronics Co., Ltd. Photoelectric diodes and organic sensors and electronic devices
US20210135126A1 (en) * 2019-11-05 2021-05-06 Samsung Electronics Co., Ltd. Photoelectric conversion device and sensor and electronic device
US11128791B2 (en) 2017-02-07 2021-09-21 Canon Kabushiki Kaisha Photoelectric conversion element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032793A (en) 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Organic photoelectric converter
JP2011119694A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element and process for production thereof
JP2011228630A (en) * 2010-03-31 2011-11-10 Fujifilm Corp Imaging device and manufacturing method thereof
WO2014104315A1 (en) 2012-12-28 2014-07-03 出光興産株式会社 Organic electroluminescent element
WO2015045806A1 (en) * 2013-09-30 2015-04-02 富士フイルム株式会社 Photoelectric conversion element and imaging element
WO2015061771A1 (en) * 2013-10-25 2015-04-30 The Regents Of The University Of Michigan Exciton management in organic photovoltaic multi-donor energy cascades
JP2015530761A (en) * 2012-10-05 2015-10-15 ユニバーシティ オブ サザン カリフォルニア Acceptor and donor energy sensitization in organic photovoltaics.
WO2016194630A1 (en) * 2015-05-29 2016-12-08 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state image capture device
JP2017020239A (en) 2015-07-10 2017-01-26 ミサワホーム株式会社 Foundation structure and foundation construction method
JP2017143133A (en) * 2016-02-09 2017-08-17 キヤノン株式会社 Organic photoelectric conversion element, optical area sensor, imaging device, and imaging apparatus
JP2017221684A (en) 2017-07-24 2017-12-21 キヤノン株式会社 Image processing device and method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032793A (en) 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Organic photoelectric converter
JP2011119694A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element and process for production thereof
JP2011228630A (en) * 2010-03-31 2011-11-10 Fujifilm Corp Imaging device and manufacturing method thereof
JP2015530761A (en) * 2012-10-05 2015-10-15 ユニバーシティ オブ サザン カリフォルニア Acceptor and donor energy sensitization in organic photovoltaics.
WO2014104315A1 (en) 2012-12-28 2014-07-03 出光興産株式会社 Organic electroluminescent element
WO2015045806A1 (en) * 2013-09-30 2015-04-02 富士フイルム株式会社 Photoelectric conversion element and imaging element
JP2015092546A (en) 2013-09-30 2015-05-14 富士フイルム株式会社 Photoelectric conversion device and image pickup device
WO2015061771A1 (en) * 2013-10-25 2015-04-30 The Regents Of The University Of Michigan Exciton management in organic photovoltaic multi-donor energy cascades
WO2016194630A1 (en) * 2015-05-29 2016-12-08 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state image capture device
JP2017020239A (en) 2015-07-10 2017-01-26 ミサワホーム株式会社 Foundation structure and foundation construction method
JP2017143133A (en) * 2016-02-09 2017-08-17 キヤノン株式会社 Organic photoelectric conversion element, optical area sensor, imaging device, and imaging apparatus
JP2017221684A (en) 2017-07-24 2017-12-21 キヤノン株式会社 Image processing device and method thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BARTON, A.F.: "Solubility parameters", CHEMICAL REVIEWS, vol. 75, no. 6, 1975, pages 731 - 753, XP009030593, doi:10.1021/cr60298a003
CHANG-GUA ZHEN ET AL.: "Achieving Highly Efficient Fluorescent Blue Organic Light-Emitting Diodes Through Optimizing Molecular Structures and Device Configuration", ADVANCED FUNCTIONAL MATERIALS, vol. 21, no. 4, 2011, pages 699 - 707, XP001560457, doi:10.1002/adfm.201002165
MARK, J.E.: "Physical Properties of Polymers Handbook", vol. 1076, 2007, SPRINGER
R.F. FEDORS, ENG. SCI., vol. 14, no. 2, 1974, pages 147 - 154
R.S. RUOFFDORIS S. TSEDONALD C.LORENTS, J.: "Ripudaman Malhotra", PHYS. CHEM., vol. 97, 1993, pages 3379 - 3383
XIAO, XIN ET AL.: "Small-Molecule Photovol taics Based on Functionalized Squaraine Donor Blends", ADVANCED MATERIALS, vol. 24, no. 15, 26 March 2012 (2012-03-26), pages 1956 - 1960, XP055093454, Retrieved from the Internet <URL:doi:10.1002/adma.201104261> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128791B2 (en) 2017-02-07 2021-09-21 Canon Kabushiki Kaisha Photoelectric conversion element
EP3696857A1 (en) * 2019-01-22 2020-08-19 Samsung Electronics Co., Ltd. Photoelectric diodes and organic sensors and electronic devices
US11004909B2 (en) 2019-01-22 2021-05-11 Samsung Electronics Co., Ltd. Photoelectric diodes including photoelectric conversion layer and compensation later, and organic sensors and electronic devices including same
US20210135126A1 (en) * 2019-11-05 2021-05-06 Samsung Electronics Co., Ltd. Photoelectric conversion device and sensor and electronic device

Similar Documents

Publication Publication Date Title
CN110301052B (en) Photoelectric conversion element, and optical area sensor, image pickup element, and image pickup apparatus using the same
KR102540846B1 (en) Compound for organic photoelectric device and organic photoelectric device, image sensor and electronic device including the same
KR102557864B1 (en) Compound and organic photoelectric device, image sensor and electronic device including the same
EP3961737B1 (en) Composition for photoelectric device, and image sensor and electronic device including the same
JP7102114B2 (en) Photoelectric conversion element, image sensor and image sensor
WO2017138363A1 (en) Organic photoelectric conversion element, optical area sensor, imaging element and imaging device
WO2011105624A1 (en) Photoelectric conversion device, imaging device and production methods thereof
WO2016178463A1 (en) Dopant for organic optoelectronic device, organic optoelectronic device and display device
TWI683463B (en) Photoelectric conversion element and image sensor using the same
US20190267545A1 (en) Photoelectric conversion element, and imaging element and imaging apparatus including the same
WO2018147202A1 (en) Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device
KR20160011039A (en) Compound, organic optoelectronic device and image sensor
KR20150120243A (en) Compound and organic photoelectronic device and image sensor
JP2019099570A (en) Fullerene derivatives, and thin film, photoelectric element, image sensor and electronic device comprising the same
JP7086573B2 (en) Photoelectric conversion element, optical area sensor using it, image sensor, image sensor
JP7039285B2 (en) Photoelectric conversion element, optical area sensor using it, image sensor, image sensor
WO2018088325A1 (en) Photoelectric conversion element, imaging element and imaging device
EP3858841A1 (en) Compound and photoelectric device, image sensor, and electronic device including the same
US20220209134A1 (en) Blue light absorbing film, and photoelectric device, image sensor and electronic device including the same
EP3805241A1 (en) Compound and photoelectric device, image sensor, and electronic device including the same
KR102673643B1 (en) Fullerene derivatives, and organic photoelectric device, image sensor, and electronic device including the same
JP2018078240A (en) Photoelectric conversion element, image pick-up device having the same and imaging apparatus
CN115700059A (en) Photoelectric conversion element, imaging element, photosensor, and compound
JP2020088387A (en) Photoelectric conversion devices, organic sensors, and electronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018751875

Country of ref document: EP

Effective date: 20190909