WO2015045670A1 - Method for manufacturing granular iron - Google Patents

Method for manufacturing granular iron Download PDF

Info

Publication number
WO2015045670A1
WO2015045670A1 PCT/JP2014/071534 JP2014071534W WO2015045670A1 WO 2015045670 A1 WO2015045670 A1 WO 2015045670A1 JP 2014071534 W JP2014071534 W JP 2014071534W WO 2015045670 A1 WO2015045670 A1 WO 2015045670A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
coating layer
agglomerate
granular iron
granular
Prior art date
Application number
PCT/JP2014/071534
Other languages
French (fr)
Japanese (ja)
Inventor
修三 伊東
泰二 畠山
昌麟 王
杉立 宏志
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201480051885.6A priority Critical patent/CN105555973A/en
Priority to US15/024,481 priority patent/US20160237514A1/en
Publication of WO2015045670A1 publication Critical patent/WO2015045670A1/en
Priority to ZA2016/01918A priority patent/ZA201601918B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/08Making pig-iron other than in blast furnaces in hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/02Particular sequence of the process steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention heats an agglomerate containing iron oxide such as iron ore and a carbon-containing reducing agent (hereinafter sometimes referred to as “carbonaceous reducing agent”), and oxidizes the agglomerate.
  • carbonaceous reducing agent a carbon-containing reducing agent
  • the present invention relates to a method for producing granular iron by reducing and melting iron.
  • Patent Document 1 As a method for producing granular iron by heating an agglomerate containing iron oxide and a carbonaceous reducing agent, for example, the technique of Patent Document 1 is known.
  • a method for producing a solid metal product from carbon containing a metal bearing compound the surface of a molded body containing carbon and the metal bearing compound is coated with a treatment substance, and this is supplied onto a hearth and heated.
  • the coating layer contains a carbonaceous material.
  • the agglomerate charged on the hearth of the moving bed type heating furnace is heated by gas heat transfer or radiant heat by a heating burner provided in the furnace, and the iron oxide contained in the agglomerate is converted into a carbonaceous reducing agent.
  • a heating burner is used as a heating means, an atmospheric gas stream is generated in the furnace. Since this atmospheric gas contains an oxidizing gas such as carbon dioxide and water vapor, the reduced iron obtained by heating and reducing the agglomerates, and the granular iron obtained by melting and agglomerating the reduced iron, Reoxidation may occur with this oxidizing gas.
  • the present invention has been made paying attention to the above-mentioned circumstances, and the object thereof is obtained by reducing and agglomerating the agglomerate by heating, and by melting and agglomerating the reduced iron.
  • An object of the present invention is to provide a method for producing granular iron that can prevent the granular iron from being reoxidized in a moving bed heating furnace and improve the quality of the granular iron.
  • the method for producing granular iron according to the present invention that has solved the above-mentioned problem is to charge an agglomerate containing iron oxide and a carbonaceous reducing agent on the hearth of a moving bed heating furnace, A method for producing granular iron in which iron oxide in an agglomerate is reduced and melted, and the obtained granular iron is discharged outside the furnace and recovered.
  • the agglomerate has fluidity on the surface. It has a gist in that it has a coating layer containing a carbonaceous material.
  • the carbonaceous material may be at least one selected from the group consisting of bituminous coal, subbituminous coal, and lignite.
  • the average thickness of the coating layer is preferably more than 0.30 mm.
  • the agglomerated material is obtained by agglomerating a mixture containing iron oxide and a carbonaceous reducing agent in a first granulator to form a core part, and then a carbon material having fluidity on the surface of the obtained core part. It can manufacture by forming the coating layer containing this with a 2nd granulator.
  • the top of the coating layer does not become lower than the top of the granular iron while heating the agglomerate.
  • the coating layer becomes a shell-like coke while heating the agglomerate. It is preferable that the agglomerate is charged in a single layer on the hearth. Prior to charging the agglomerate onto the hearth, it is preferable to lay a carbonaceous reducing agent on the hearth.
  • the granular iron preferably has a C content of 2.5% by mass or more.
  • the granular iron preferably has an S content of 0.120% by mass or less.
  • the carbonaceous material having fluidity on the surface of the core containing iron oxide and carbonaceous reducing agent The agglomerate having a coating layer containing slag is used, so that the coating layer expands and transforms while the agglomerate is heated, so-called coke, petal-like, shell-like coke. Form.
  • This shell-like coke prevents atmospheric gas from oxidizing the core part and acts as a windbreak wall for protecting the core part.
  • the amount of FeO in the slag does not increase, the decarburization of carbon [C] contained in the semi-molten iron and molten iron to be generated can be suppressed, the carbon content of the granular iron can be increased, and intense slag forming Therefore, the generation of irregular shaped iron can be prevented, the separation of granular iron and slag can be improved, and the quality of the granular iron can be improved.
  • FIG. 1 is a schematic diagram showing a state when an agglomerate charged on the hearth of a heating furnace is heated.
  • FIG. 2 is a schematic diagram showing the step (4) in FIG. 1 in more detail.
  • (1) to (3) in FIG. 3 are photographs, which substitute for a drawing, taken of the agglomerate when the agglomerate was actually heated in a heating furnace.
  • (1) in FIG. 4 is a drawing-substituting photograph in which a cross section of the reduced iron collected in the latter stage of solid reduction is photographed with an optical microscope, and (2) in FIG. 4 is a drawing obtained by performing image processing on (1) in FIG. It is a substitute photo.
  • FIG. 5 is a drawing-substituting photograph in which a cross section of the reduced iron collected just before melting and aggregation is taken with an optical microscope
  • (2) in FIG. 5 is a drawing obtained by performing image processing on (1) in FIG. It is a substitute photo.
  • (1) in FIG. 6 is a drawing-substituting photograph showing a state in which granular iron after melting and aggregation is covered with violently formed slag when an agglomerate having no coating layer belonging to the prior art is heated.
  • FIG. 6 (2) shows a drawing substitute photograph in which the collected granular iron is photographed
  • FIG. 6 (3) shows a drawing substitute photograph in which the collected slag is photographed.
  • FIG. 7 is a drawing-substituting photograph in which the state after melting and agglomeration is completed is obtained for the agglomerate obtained by forming a coating layer containing a carbon material having fluidity on the surface of the core part.
  • (2) in FIG. 7 shows a drawing substitute photograph in which the collected granular iron is photographed
  • (3) in FIG. 7 shows a drawing substitute photograph in which the collected slag is photographed.
  • (1) to (4) in FIG. 8 are schematic views showing a cross section of a petal-like, shell-like coke formed while heating the agglomerate when the thickness of the coating layer is changed. It is.
  • (1) in FIG. No. 4 shown in Table 5 is a drawing substitute photograph taken immediately after heat reduction treatment of No. 4 and (2) of FIG.
  • FIG. 9 (3) is a drawing substitute photograph taken immediately after the heat reduction treatment of No. 5 and No. 5 shown in Table 5.
  • 6 is a drawing substitute photograph taken immediately after the heat reduction treatment of 6.
  • the present inventors have intensively studied in order to prevent reoxidation of granular iron obtained by heating, reducing, and melting iron oxide contained in the agglomerate and to improve the quality of granular iron.
  • studies have been made to reduce the amount of sulfur contained in granular iron, increase the amount of carbon contained in granular iron, prevent generation of irregular shaped granular iron, and improve separation of granular iron and slag. .
  • the above problem can be solved satisfactorily by using an agglomerate having a coating layer containing a carbonaceous material having fluidity on the surface of the core containing iron oxide and a carbonaceous reducing agent. Completed the invention.
  • FIG. 1 is a schematic diagram showing a state when an agglomerate charged on the hearth of a heating furnace is heated.
  • FIG. 2 is a schematic diagram showing the step (4) in FIG. 1 in more detail.
  • (1) in FIG. 3 is a drawing-substituting photograph in which the coating layer is expanded and coked immediately after the agglomerate is charged in the heating furnace.
  • an agglomerate having a coating layer containing a carbon material having fluidity on the surface of a core part containing iron oxide and a carbonaceous reducing agent is placed on the hearth of a moving bed type heating furnace. Charge to heat.
  • a schematic diagram of the agglomerate charged into the heating furnace is shown in FIG.
  • 1 is a nucleus part
  • 2 is a coating layer
  • 3 has shown the agglomerate, respectively.
  • the core part 1 contains iron oxide and a carbonaceous reducing agent, and may further contain a flux or a binder as necessary.
  • the component composition of the core 1 is the same as the conventional one, and will be described in detail later.
  • the coating layer 2 includes a carbon material having fluidity, and may further include a binder as necessary.
  • the component composition and thickness of the coating layer 2 will be described in detail later.
  • the inside of the moving bed type heating furnace is usually heated and held at about 1350 ° C. to 1550 ° C. by a heating burner.
  • the agglomerate 3 is charged on the hearth in the heating furnace, the agglomerate 3 is heated by gas heat transfer and radiant heat by a heating burner.
  • the coating layer 2 is once fluidized and expanded as a whole as shown in (2) of FIG. 1 to quickly form a solid and shell-like coke.
  • cracks are generated at the top of the shell-like coke, they are connected as a whole and form a shell-like spherical body.
  • FIG. 3 (1) shows a state where the coating layer 2 is expanded by heating and cracks are generated in the coating layer 2 at the top of the agglomerate.
  • many cracks are generated in the coating layer 2, but they are connected as a whole and form a shell-like spherical body. Since the shell-like spherical body is composed of solid coke, it is excellent in heat transfer. Therefore, when the shell-like spherical body is heated by the radiant heat in the heating furnace, the core part 1 is also heated by the heat transfer.
  • the reduction of iron oxide proceeds by the action of the carbonaceous reducing agent, and solid reduced iron is formed.
  • the reduction of the iron oxide constituting the core part 1 proceeds from the top side of the core part 1, and reduced iron 4 is generated.
  • the coating layer 2 covering the core 1 is formed with a shell-like spherical body around the core 1,
  • the covering layer 2 is gradually oxidized and consumed by the oxidizing gas contained in the atmospheric gas and becomes thinner.
  • the top portion of the coating layer 2 is oxidized and consumed earlier than the bottom portion, and gradually disappears. Therefore, when the coating layer thickness is thin, as shown in (3) of FIG. 1 and (4) of FIG. An opening is formed at the top.
  • FIG. 3B shows a drawing substitute photograph of the situation at this time.
  • the shell-shaped coke formed from the coating layer 2 in which the opening was formed in the top part has a petal shape.
  • the shell-shaped coke formed becomes thick when the coating layer is thick, the reaction is completed in a state in which the core is wrapped without opening the upper portion of the shell-shaped coke. Therefore, it is clear that it works more effectively to prevent reoxidation by the atmospheric gas. Both the case where the upper part of the shell-like coke is opened and the case where it is not opened fall within the scope of the present invention.
  • the shell-like coke formed from the coating layer 2 having an opening at the top is formed so as to wrap around the granular iron 6. Therefore, in the shell-like coke, reduced iron obtained by heating and reducing the core part, and granular iron obtained by melting and agglomerating the reduced iron are reoxidized by the atmospheric gas in the heating furnace. It has the effect
  • the arrows shown in FIG. 2 indicate the flow of the atmospheric gas.
  • the solid reduction of the iron oxide contained in the core part 1 is completed, and while the melting and aggregation proceed, the reduction obtained by heating and reducing the core part as shown in FIG.
  • a shell-like coke is formed from the coating layer 2 so as to enclose the iron and the granular iron 6 and the slag 7 obtained by melting and agglomerating the reduced iron. Therefore, the atmospheric gas in the heating furnace is reduced iron obtained by heat reduction of an agglomerate having a coating layer on the surface of the core, or granular obtained by melting and agglomerating the reduced iron It becomes difficult to contact the iron 6 directly.
  • the atmospheric gas contains carbon dioxide gas (CO 2 gas) and moisture (H 2 O).
  • CO 2 gas carbon dioxide gas
  • H 2 O carbon monoxide gas
  • the carbon dioxide gas is reduced by the shell-like coke to generate carbon monoxide gas (CO gas) as shown in the following formula (1).
  • the moisture contained in the atmospheric gas comes into contact with the shell-like coke formed from the coating layer 2, the moisture is reduced by the shell-like coke, and as shown in the following formula (2), Gas (H 2 ) and carbon monoxide gas (CO gas) are generated.
  • the reduction degree RD of the atmospheric gas around the shell-shaped coke formed from the coating layer 2 is increased, and the agglomerate having the coating layer on the surface of the core is reduced by heating.
  • the production method of the present invention while heating the agglomerate having the coating layer 2 on the surface of the core part, reduced iron obtained by heating and reducing the agglomerate, The granular iron obtained by melting and agglomerating the reduced iron is sufficiently protected from the oxidizing gas by the shell-like coke formed from the coating layer 2, and the reduced iron and the granular iron are recycled. Oxidation can be prevented.
  • the shell-like coke formed from the coating layer 2 has a petal shape while the agglomerate is heated, and the shell-like coke formed from the coating layer 2
  • the height is not constant, and the effect of the present invention can be obtained even if a part of the height is missing.
  • the reduction of the whole core part 1 proceeds in the solid reduction phase.
  • the reduced iron obtained by heating and reducing the core part 1 with the oxidizing gas contained in the atmospheric gas, or the reduced iron melts and aggregates. Part of the granular iron obtained in this way is reoxidized.
  • FIG. 4 and FIG. 5 show a photograph substituted for a drawing of the reduced iron obtained by heating only the core 1 where the coating layer containing the carbon material having fluidity is not formed.
  • FIG. 4 shows a drawing-substituting photograph in which a cross section of the reduced iron collected in the latter stage of the solid reduction is taken with an optical microscope.
  • FIG. 5 shows a drawing-substituting photograph in which a cross section of the reduced iron collected immediately before melting and aggregation is taken with an optical microscope. 4 and 5, (1) shows a photomicrograph of a cross section taken, and (2) shows a color-coded portion of the reduced portion and the reoxidized portion in the cross section shown in (1). The schematic diagram shown is shown.
  • the FeO produced by re-oxidation quickly melts into the slag that is separated and produced during the melting and agglomeration phase, and increases the FeO concentration in the slag. Further, when FeO melts into slag, it reacts with the generated semi-molten iron and carbon [C] contained in the molten iron and decarburizes this, so that many fine CO gas bubbles are inherent in the slag. As a result of the large expansion, severe slag foaming occurs, and the semi-molten and molten granular iron that is in the process of agglomeration is covered. For this reason, the heat supplied from above the heating furnace is shut off, the reaction time is significantly increased, and the productivity is lowered.
  • the shape of the granular iron becomes irregular, or separation between the granular iron and a part of the slag becomes inadequate, resulting in a problem of reducing the quality of the granular iron.
  • the generation of the oxidizing gas is caused by combustion of a combustion burner used for heating in the heating furnace, combustion of combustible gas generated in accordance with a reduction reaction, leakage of air from the outside to the inside of the heating furnace, and the like.
  • an agglomerate having a coating layer containing a flowable carbonaceous material is used on the surface of the core containing iron oxide and a carbonaceous reducing agent.
  • agglomerate having a coating layer containing a flowable carbonaceous material is used on the surface of the core containing iron oxide and a carbonaceous reducing agent.
  • the above-mentioned fluid carbon material means a carbon material that exhibits heat softening properties at 350 ° C. to 400 ° C.
  • Carbon material showing thermal softening properties means a carbon material having a softening melting point of 350 ° C. to 400 ° C. when the softening melting point of the carbon material is measured by a method specified in ISO 10329 (2009). I mean.
  • the carbon material having fluidity for example, at least one selected from the group consisting of bituminous coal having fluidity, subbituminous coal having fluidity, and brown coal having fluidity is preferably used. It may be used. Among these carbon materials, it is more preferable to use bituminous coal.
  • bituminous coal having fluidity for example, at least one selected from the group consisting of bituminous coal having fluidity, subbituminous coal having fluidity, and brown coal having fluidity is preferably used. It may be used. Among these carbon materials, it is more preferable to use bituminous coal.
  • anthracite although there exists anthracite in a carbon material, anthracite has no fluidity. Therefore, even if the coating layer 2 contains anthracite, a shell-like spherical body is not formed around the granular iron. Therefore, the core part is exposed to the atmospheric gas in the heating furnace, and the reduced iron obtained by heating and reducing the agglomerate and the gran
  • the average thickness of the coating layer 2 is not particularly limited, but is preferably, for example, more than 0.30 mm. By making the average thickness of the coating layer 2 exceed 0.30 mm, the effect of suppressing reoxidation of granular iron can be further strengthened, and a petal-like outer shell can be formed. Moreover, it acts effectively also to raise the intensity
  • the average thickness of the coating layer 2 is more preferably 0.50 mm or more, still more preferably 0.70 mm or more, and particularly preferably 1.00 mm or more.
  • the upper limit of the average thickness of the coating layer 2 is not particularly limited, but if it becomes too thick, the amount of carbon material used increases, so the amount of iron contained in the entire agglomerate decreases and productivity decreases. Moreover, it is useless also economically. Therefore, the average thickness of the coating layer 2 is preferably 2.00 mm or less, more preferably 1.80 mm or less, and still more preferably 1.50 mm or less.
  • the thickness of the coating layer 2 may be measured by observing the cross section of the agglomerate with an optical microscope.
  • the method for producing granular iron according to the present invention includes: A step of agglomerating a mixture containing iron oxide and a carbonaceous reducing agent to form a nucleus (hereinafter sometimes referred to as a nucleus formation step); On the surface of the obtained core part, a step of forming a coating layer containing a carbon material having fluidity (hereinafter sometimes referred to as a surface coating step); The obtained agglomerate is charged on the hearth of a moving bed heating furnace and heated to reduce and melt iron oxide in the agglomerate (hereinafter sometimes referred to as a reductive melting step); A process of discharging and collecting the obtained granular iron outside the furnace (hereinafter sometimes referred to as a recovery process) Are included in this order.
  • a mixture containing iron oxide and a carbonaceous reducing agent is agglomerated to produce a core part of the agglomerate.
  • iron oxide sources such as iron ore, iron sand, iron-making dust, non-ferrous refining residue, and iron-making waste can be used.
  • a carbon-containing reducing agent such as coal or coke
  • coal having fluidity may be used or coal having no fluidity may be used.
  • the above mixture may further contain a flux.
  • the flux has a role of adjusting the melting point and fluidity of the final slag by fusing with the gangue in the iron oxide source and the ash in the carbonaceous reducing agent.
  • CaO supply material for example, CaO supply material, MgO supply material, Al 2 O 3 supply material, SiO 2 supply material, fluorite (CaF 2 ) and the like can be used.
  • CaO supply substance for example, at least one selected from the group consisting of CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (limestone), and CaMg (CO 3 ) 2 (dolomite) is used. be able to.
  • MgO supply substance for example, at least one selected from the group consisting of CaMg (CO 3 ) 2 (dolomite), MgO powder, Mg-containing substance extracted from natural ore or seawater, and MgCO 3 is blended. Also good.
  • Al 2 O 3 supply substance examples include Al 2 O 3 powder, bauxite, boehmite, gibbsite, and diaspore.
  • SiO 2 supply substance for example, SiO 2 powder or silica sand can be used.
  • the above mixture may further contain a binder as a component other than iron oxide, carbonaceous reducing agent, and flux.
  • binder for example, a polysaccharide such as corn starch or starch such as wheat flour can be used.
  • flux may be referred to as an additive.
  • the iron oxide, the carbonaceous reducing agent, and the additive and binder to be blended as necessary may be mixed using a rotating container type mixer, a fixed container type mixer, or the like.
  • the mixture obtained with the above mixer is agglomerated to produce the core of the agglomerate.
  • the average diameter of the core is not particularly limited, but it is recommended to be, for example, 18 to 22 mm.
  • the first granulator used when the mixture is agglomerated for example, a dish granulator, a cylindrical granulator, a twin roll briquette molding machine, an extruder, or the like can be used.
  • the shape of the core is not particularly limited, and may be, for example, a pellet shape or a briquette shape.
  • a coating layer containing a flowable carbonaceous material is formed on the surface of the core portion obtained in the core portion forming step.
  • a binder may be included in addition to the carbon material having fluidity.
  • the binder those exemplified above can be used.
  • the kind of the binder contained in the coating layer and the kind of binder contained in the core may be the same or different.
  • the second granulator used when forming a coating layer containing a carbon material having fluidity on the surface of the core part for example, a dish-type granulator or a cylindrical granulator may be used. it can.
  • the same type of the first granulator and the second granulator may be used, or different types may be used.
  • the size of the agglomerate in which a coating layer containing a fluid carbon material is formed on the surface of the core is not particularly limited, but the maximum particle size is preferably 50 mm or less. If the particle size of the agglomerate is excessively increased, the granulation efficiency is deteriorated. Moreover, when the agglomerate becomes too large, heat transfer to the lower part of the agglomerate becomes worse and productivity is lowered. In addition, the lower limit of the particle size of the agglomerate is about 5 mm.
  • the above agglomerates may also be dried by heating in a heating furnace in the reduction melting process described later, but it is recommended to dry before the reduction melting process.
  • the coating layer may be formed after drying once, but it is preferable to dry after forming the coating layer on the surface of the core part.
  • the agglomerate obtained in the surface coating step is charged on the hearth of the moving bed type heating furnace and heated to reduce, melt, and reduce the iron oxide in the agglomerate. Manufactures granular iron made of iron.
  • the moving bed type heating furnace is a heating furnace in which the hearth moves in the furnace like a belt conveyor, and examples thereof include a rotary hearth furnace and a tunnel furnace.
  • the outer shape of the hearth is designed to be circular or donut shape so that the start point and end point of the hearth are in the same position, and are included in the agglomerate charged on the hearth Iron oxide is heated and reduced during one round of the furnace to produce reduced iron, and subsequently melted and aggregated to produce granular iron and slag.
  • the rotary hearth furnace is provided with charging means for charging the agglomerate into the furnace on the most upstream side in the rotation direction, and with discharging means on the most downstream side in the rotation direction. Since the most downstream side is a rotating structure, the most downstream side is actually immediately upstream of the charging means.
  • the tunnel furnace is a heating furnace in which the hearth moves in the furnace in a linear direction.
  • the agglomerate is preferably heated at 1350 ° C. or higher.
  • the heating temperature is preferably 1350 ° C. or higher, more preferably 1400 ° C. or higher.
  • the heating temperature is preferably 1550 ° C. or lower, more preferably 1500 ° C. or lower.
  • the agglomerate it is preferable to charge the agglomerate so as to form one layer on the hearth.
  • the agglomerates in the lower layer are not sufficiently heated, and reduction and melting become insufficient, making it difficult to produce granular iron.
  • 1 layer means that the agglomerate is not laminated
  • agglomerates may overlap partially, partial overlap does not negate the effect of the present invention.
  • a carbonaceous reducing agent Prior to charging the agglomerate onto the hearth, it is preferable to lay a carbonaceous reducing agent on the hearth as a flooring material. By laying the floor covering, the hearth can be protected.
  • the particle size of the flooring material is preferably 3 mm or less so that the agglomerate and the melt thereof do not sink.
  • the lower limit of the particle size of the floor covering is preferably 0.5 mm or more so as not to be blown off by the burner combustion gas.
  • by-product slag and flooring materials are included in addition to the granular iron.
  • sieving or magnetic separation separator is used outside the furnace. The granular iron can be recovered.
  • iron oxide iron ores having the composition shown in Table 1 below were used.
  • T.W. Fe means total iron. The iron ore used was crushed so that the particle size of 44 ⁇ m or less was 67% by mass.
  • carbonaceous reducing agent carbonaceous materials having the composition shown in Table 2 below were used.
  • T.W. C is all carbon
  • F.I. C means fixed carbon.
  • As the carbon material a material pulverized so that a particle size of 75 ⁇ m or less was about 55% by mass was used.
  • the mixture containing the iron ore and the carbon material was further blended with a binder, an additive, and an appropriate amount of water, and these were agglomerated by a first granulator and granulated into raw pellets serving as a core.
  • a binder flour was used.
  • additives limestone, dolomite, and fluorite were used.
  • a dish granulator was used as the first granulator.
  • the average diameter of the raw pellets was 21 mm.
  • the blending ratio of iron ore, carbonaceous material, binder, and additive is shown in Table 3 below.
  • a part of the obtained raw pellets was charged into a dryer and heated at 160 ° C. to 180 ° C. for about 1.0 hour to remove the adhering water, thereby producing spherical dry pellets.
  • a part of the obtained raw pellet was not dried, and a coating layer containing a fluid carbon material was formed on the surface thereof.
  • a coating layer containing a fluid carbon material was formed on the surface thereof.
  • the charcoal material having fluidity after preparing bituminous coal having fluidity and charging the raw pellets into the second granulator, a mixture of bituminous coal and a small amount of binder (wheat flour) is supplied. A coating layer was formed on the surface of the core.
  • a dish granulator was used as the second granulator.
  • the raw pellet obtained by forming a coating layer on the surface of the core was cut, and the cross section was observed with an optical microscope, and it was confirmed that the average thickness of the coating layer was 1.0 mm.
  • the raw pellets having a coating layer formed on the surface are charged into a dryer and heated at 160 ° C. to 180 ° C. for about 1.0 hour to remove adhering water, and spherical dry pellets (ie, agglomerates) ) Was manufactured.
  • the spherical dry pellets without the coating layer and the spherical dry pellets with the coating layer are charged in a heating furnace (experimental furnace) maintained at about 1450 ° C. and heated to dry.
  • the iron oxide in the pellet was reduced and melted.
  • the atmosphere in the heating furnace was made to be a highly oxidizing atmosphere by simulating an actual machine.
  • the oxidizing gas is represented by carbon dioxide, and a mixed gas atmosphere containing 40% by volume of carbon dioxide and 60% by volume of nitrogen was used.
  • the coating layer expanded, and the carbonaceous material contained in the coating layer was coke around the core to form a petal-like outer shell.
  • This petal-shaped outer shell acted as a windbreak wall that prevented atmospheric gas from contacting the core.
  • the decarburization reaction is an endothermic reaction, heat transfer to iron is significantly delayed, and the reaction time is greatly extended.
  • the formed slag covers the semi-molten iron in the course of agglomeration and inhibits heat radiation from the upper part. This also significantly delays heat transfer to the iron and greatly increases the reaction time.
  • molten granular iron and molten slag are formed, but the slag is greatly foamed, and FeO contained in the slag is still maintained at a high value. It became 171 mass%.
  • generate was less than 2.5 mass% made into a target, and was 2.49 mass%.
  • the quality of the granular iron used as a product is remarkably deteriorated.
  • the temperature rise of the molten granular iron is hindered, and it does not agglomerate within the prescribed reaction time, forming irregular shaped granular iron incorporating a part of slag at a high ratio, In particular, the value of the product granular iron is significantly reduced.
  • (1) in FIG. 6 shows a drawing substitute photograph of the granular iron after completion of melting and aggregation. Moreover, the drawing substitute photograph which image
  • the petal-shaped coke wall plays a very significant role in protecting the core from the oxidizing atmosphere gas, and the core is formed by the atmospheric gas throughout the entire period from the solid reduction phase to the melting and aggregation phase. Remarkable differences were confirmed as compared with the reaction behavior of conventional dry pellets in which the coating layer was not formed, such as reoxidation was significantly suppressed and the reaction was completed.
  • FIG. 7 shows a drawing-substituting photograph in which the state after melting and aggregation is completed is photographed. Moreover, the drawing substitute photograph which image
  • the raw pellets obtained by forming a coating layer on the surface of the core part are charged into a dryer, heated at 160 ° C. to 180 ° C. for about 1.0 hour to remove adhering water, and spherical dried pellets ( That is, it was set as the agglomerate.
  • the spherical dry pellets were charged in a heating furnace (experimental furnace) maintained at about 1450 ° C. and heated to reduce and melt the iron oxide in the dry pellets.
  • the atmosphere in the heating furnace was made to be a highly oxidizing atmosphere by simulating an actual machine. Specifically, a mixed gas atmosphere containing 40% by volume of carbon dioxide and 60% by volume of nitrogen was used.
  • a mixed gas atmosphere containing 40% by volume of carbon dioxide and 60% by volume of nitrogen was used.
  • the coating layer expanded, and the carbonaceous material contained in the coating layer was coke around the core to form a petal-like outer shell.
  • the height of the petal-like outer shell was different for each sample, but all acted as a wind barrier preventing atmospheric gas from contacting the core.
  • the obtained spherical dry pellets were heated under the same conditions as when the coating layer was formed on the surface, and the iron oxide in the dry pellets was reduced and melted.
  • the component composition of the obtained granular iron and slag is shown in Table 5 below.
  • No. No. 8 does not form a coating layer on the surface of the core part, so it cannot prevent reoxidation of granular iron obtained by reduction, and the amount of FeO contained in the slag increases to 6.53% by mass.
  • the distribution ratio was as small as 1.56.
  • the amount of S contained in the granular iron was as high as 0.171% by mass, and the quality of the granular iron could not be improved.
  • the amount of S contained in the granular iron can be reduced as the thickness of the coating layer is increased. In particular, no. For 1 to 6, it was possible to suppress the amount of S contained in the granular iron to 0.120% by mass or less.
  • FIG. 8 is a schematic diagram showing the height of the petal-like wall surface that is formed while the agglomerate is heated and the granular iron is obtained when the thickness of the coating layer is changed. Show. (1) in FIG. 8 shows a case where the average thickness of the coating layer is, for example, 1.30 to 2.00 mm. (2) in FIG. 8 shows a case where the average thickness of the coating layer is, for example, 0.80 to 1.20 mm. (3) in FIG. 8 shows a case where the average thickness of the coating layer is, for example, 0.60 to 0.80 mm. (4) of FIG. 8 shows a case where the average thickness of the coating layer is, for example, more than 0.30 mm and 0.50 mm or less. In FIG. 8, 2 shows a coating layer, 6 shows granular iron, and 7 shows slag.
  • FIG. 9 (1) shows a drawing-substituting photograph taken immediately after the heat reduction treatment of 4.
  • FIG. 9 (2) shows a drawing-substituting photograph taken immediately after the heat reduction treatment of 5.
  • FIG. 9 (3) shows a drawing-substituting photograph taken immediately after heat reduction treatment of 6.
  • the raw pellets having a coating layer formed on the surface are charged into a dryer and heated at 160 ° C. to 180 ° C. for about 1.0 hour to remove adhering water, and spherical dry pellets (ie, agglomerates) ).
  • the spherical dry pellets without the coating layer and the spherical dry pellets with the coating layer are charged in a heating furnace (experimental furnace) maintained at about 1450 ° C. and heated to dry.
  • the iron oxide in the pellet was reduced and melted.
  • the atmosphere in the heating furnace was made to be a highly oxidizing atmosphere by simulating an actual machine. Specifically, a mixed gas atmosphere containing 40% by volume of carbon dioxide and 60% by volume of nitrogen was used.
  • the coating layer expanded, but cracked like a tortoiseshell and deposited on the core as thin fragments, and no petal-like outer shell was formed by coke.
  • the debris deposited on the core part fell to the periphery of the core part as time passed, and the top part of the core part was exposed to the atmospheric gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

Provided is a method for manufacturing granular iron, the method being capable of improving the quality of the granular iron by preventing re-oxidation of reduced iron obtained by heating and reducing agglomerates or of granular iron obtained by melting and condensing said reduced iron in a moving bed-type heating furnace. A method for manufacturing granular iron by charging and heating agglomerates containing iron oxide and a carbonaceous reducing agent on the furnace bottom of a moving bed-type heating furnace and, after reducing and melting the iron oxide in said agglomerates, discharging to the outside of the furnace the granular iron obtained and collecting same. The agglomerates have a covering layer containing a fluid carbon material on the surface.

Description

粒状鉄の製造方法Production method of granular iron
 本発明は、例えば、鉄鉱石などの酸化鉄、および炭素を含有する還元剤(以下、「炭素質還元剤」ということがある)を含む塊成物を加熱し、該塊成物中の酸化鉄を還元、溶融して粒状鉄を製造する方法に関する。 The present invention, for example, heats an agglomerate containing iron oxide such as iron ore and a carbon-containing reducing agent (hereinafter sometimes referred to as “carbonaceous reducing agent”), and oxidizes the agglomerate. The present invention relates to a method for producing granular iron by reducing and melting iron.
 酸化鉄および炭素質還元剤を含む塊成物を加熱して粒状鉄を製造する方法としては、例えば、特許文献1の技術が知られている。この文献には、金属軸受化合物を含む炭素から固体金属製品を製造する方法として、炭素と金属軸受化合物を含んでいる成形体の表面を処理物質で被覆し、これを炉床上へ供給して加熱すること、被覆層には、炭素質物質を含有させることが記載されている。 As a method for producing granular iron by heating an agglomerate containing iron oxide and a carbonaceous reducing agent, for example, the technique of Patent Document 1 is known. In this document, as a method for producing a solid metal product from carbon containing a metal bearing compound, the surface of a molded body containing carbon and the metal bearing compound is coated with a treatment substance, and this is supplied onto a hearth and heated. In addition, it is described that the coating layer contains a carbonaceous material.
米国特許第6214087号明細書U.S. Patent No. 6214087
 ところで、移動床式加熱炉の炉床上に装入した塊成物は、炉に設けられた加熱バーナーによるガス伝熱や輻射熱によって加熱され、該塊成物に含まれる酸化鉄が炭素質還元剤により還元されて粒状鉄を生成する。しかし加熱バーナーを加熱手段として用いると、炉内には雰囲気ガスの気流が発生する。この雰囲気ガスには二酸化炭素や水蒸気などの酸化性ガスが含まれるため、塊成物を加熱還元して得られた還元鉄や、該還元鉄を溶融、凝集して得られた粒状鉄は、この酸化性ガスにより再酸化することがある。還元鉄や粒状鉄が再酸化すると還元鉄の生成時に副生するスラグ中のFeO量が増大するため、粒状鉄中の硫黄量[S]に対するスラグ中の硫黄量(S)の比(以下、硫黄分配比と呼ぶことがあり、(S)/[S]と表記することがある。)が低下する。粒状鉄中の硫黄量が増大すると粒状鉄の品質が劣化する。また、スラグ中のFeOは生成する半溶融鉄および溶融鉄に含まれる炭素[C]と反応し、これを脱炭するため、粒状鉄中の炭素量が減少する。また、脱炭反応に伴い、スラグには細かなCOガス気泡が多数内在し、大きく膨張する結果、激しいスラグフォーミングを発生し、凝集途上にある半溶融状態および溶融状態の粒状鉄を覆いつくす。そのため加熱炉の上方から供給される熱を遮断し、反応時間が大幅に長くなり、生産性を低下させるという問題も生じる。また、スラグフォーミングが発生すると粒状鉄の形状が異形となったり、粒状鉄と一部のスラグとの分離が不充分な状態となり、粒状鉄の品質を低下させるという問題も生じる。 By the way, the agglomerate charged on the hearth of the moving bed type heating furnace is heated by gas heat transfer or radiant heat by a heating burner provided in the furnace, and the iron oxide contained in the agglomerate is converted into a carbonaceous reducing agent. To produce granular iron. However, when a heating burner is used as a heating means, an atmospheric gas stream is generated in the furnace. Since this atmospheric gas contains an oxidizing gas such as carbon dioxide and water vapor, the reduced iron obtained by heating and reducing the agglomerates, and the granular iron obtained by melting and agglomerating the reduced iron, Reoxidation may occur with this oxidizing gas. When the reduced iron or granular iron is reoxidized, the amount of FeO in the slag produced as a by-product during the production of reduced iron increases, so the ratio of the amount of sulfur in the slag (S) to the amount of sulfur in the granular iron [S] (hereinafter, This may be referred to as a sulfur distribution ratio and may be expressed as (S) / [S].) When the amount of sulfur in granular iron increases, the quality of granular iron deteriorates. In addition, FeO in the slag reacts with the generated semi-molten iron and carbon [C] contained in the molten iron and decarburizes this, so the amount of carbon in the granular iron is reduced. In addition, due to the decarburization reaction, many fine CO gas bubbles are present in the slag, and as a result of large expansion, intense slag forming occurs, covering the semi-molten and molten granular iron that is in the process of agglomeration. Therefore, the heat supplied from the upper side of the heating furnace is shut off, the reaction time is significantly increased, and the productivity is lowered. In addition, when slag forming occurs, the shape of the granular iron becomes irregular, or separation between the granular iron and a part of the slag becomes inadequate, resulting in a problem of reducing the quality of the granular iron.
 本発明は上記の様な事情に着目してなされたものであって、その目的は、塊成物を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄が移動床式加熱炉内で再酸化することを防止し、粒状鉄の品質を向上できる粒状鉄の製造方法を提供することにある。 The present invention has been made paying attention to the above-mentioned circumstances, and the object thereof is obtained by reducing and agglomerating the agglomerate by heating, and by melting and agglomerating the reduced iron. An object of the present invention is to provide a method for producing granular iron that can prevent the granular iron from being reoxidized in a moving bed heating furnace and improve the quality of the granular iron.
 上記課題を解決することのできた本発明に係る粒状鉄の製造方法とは、酸化鉄および炭素質還元剤を含む塊成物を移動床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元、溶融した後、得られた粒状鉄を炉外へ排出して回収する粒状鉄の製造方法であって、前記塊成物は、表面に、流動性を有する炭材を含む被覆層を有している点に要旨を有している。 The method for producing granular iron according to the present invention that has solved the above-mentioned problem is to charge an agglomerate containing iron oxide and a carbonaceous reducing agent on the hearth of a moving bed heating furnace, A method for producing granular iron in which iron oxide in an agglomerate is reduced and melted, and the obtained granular iron is discharged outside the furnace and recovered. The agglomerate has fluidity on the surface. It has a gist in that it has a coating layer containing a carbonaceous material.
 前記炭材は、瀝青炭、亜瀝青炭、および褐炭よりなる群から選ばれる少なくとも1種を用いることができる。前記被覆層の平均厚みは、0.30mm超であることが好ましい。 The carbonaceous material may be at least one selected from the group consisting of bituminous coal, subbituminous coal, and lignite. The average thickness of the coating layer is preferably more than 0.30 mm.
 前記塊成物は、第1の造粒機で酸化鉄および炭素質還元剤を含む混合物を塊成化して核部を形成した後、得られた核部の表面に、流動性を有する炭材を含む被覆層を第2の造粒機で形成することにより製造できる。 The agglomerated material is obtained by agglomerating a mixture containing iron oxide and a carbonaceous reducing agent in a first granulator to form a core part, and then a carbon material having fluidity on the surface of the obtained core part. It can manufacture by forming the coating layer containing this with a 2nd granulator.
 前記塊成物を加熱している間は、前記被覆層の頂部が前記粒状鉄の頂部よりも低くならないことが好ましい。 It is preferable that the top of the coating layer does not become lower than the top of the granular iron while heating the agglomerate.
 前記被覆層は、前記塊成物を加熱している間に殻状のコークスとなることが好ましい。前記塊成物は、前記炉床上に1層となるように装入することが好ましい。前記塊成物を前記炉床上に装入するに先立って、該炉床上に炭素質還元剤を敷くことが好ましい。 It is preferable that the coating layer becomes a shell-like coke while heating the agglomerate. It is preferable that the agglomerate is charged in a single layer on the hearth. Prior to charging the agglomerate onto the hearth, it is preferable to lay a carbonaceous reducing agent on the hearth.
 前記粒状鉄は、C量が2.5質量%以上であることが好ましい。また、前記粒状鉄は、S量が0.120質量%以下であることが好ましい。 The granular iron preferably has a C content of 2.5% by mass or more. The granular iron preferably has an S content of 0.120% by mass or less.
 塊成物に含まれる酸化鉄を加熱、還元、溶融して粒状鉄を製造するにあたり、本発明によれば、酸化鉄および炭素質還元剤を含む核部の表面に、流動性を有する炭材を含む被覆層を有している塊成物を用いているため、該被覆層は、該塊成物を加熱している間に膨張変成し、いわゆるコークス化し、花弁状で、殻状のコークスを形成する。この殻状のコークスは、雰囲気ガスが核部を酸化するのを防止し、核部を保護するための防風壁として作用する。その結果、塊成物を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄の再酸化が抑えられ、粒状鉄の生成時に副生するスラグ中のFeO量の増加が抑えられる。そのため粒状鉄に含まれる硫黄量を低減でき、粒状鉄の品質を向上できる。さらにはスラグ中のFeO量が増加しないことから、生成する半溶融鉄および溶融鉄に含まれる炭素[C]の脱炭を抑制でき、粒状鉄の炭素量を高めることができるうえ、激しいスラグフォーミングも防ぐことができるため、異形の粒状鉄の発生を防ぎ、粒状鉄とスラグの分離も向上し、粒状鉄の品質を向上できる。 In producing granular iron by heating, reducing and melting iron oxide contained in the agglomerate, according to the present invention, the carbonaceous material having fluidity on the surface of the core containing iron oxide and carbonaceous reducing agent The agglomerate having a coating layer containing slag is used, so that the coating layer expands and transforms while the agglomerate is heated, so-called coke, petal-like, shell-like coke. Form. This shell-like coke prevents atmospheric gas from oxidizing the core part and acts as a windbreak wall for protecting the core part. As a result, reoxidation of reduced iron obtained by heating and reducing the agglomerates and granular iron obtained by melting and agglomerating the reduced iron is suppressed, and slag in the by-product during the production of granular iron is suppressed. An increase in the amount of FeO can be suppressed. Therefore, the amount of sulfur contained in granular iron can be reduced, and the quality of granular iron can be improved. Furthermore, since the amount of FeO in the slag does not increase, the decarburization of carbon [C] contained in the semi-molten iron and molten iron to be generated can be suppressed, the carbon content of the granular iron can be increased, and intense slag forming Therefore, the generation of irregular shaped iron can be prevented, the separation of granular iron and slag can be improved, and the quality of the granular iron can be improved.
図1は、加熱炉の炉床上に装入した塊成物を加熱したときの様子を示した模式図である。FIG. 1 is a schematic diagram showing a state when an agglomerate charged on the hearth of a heating furnace is heated. 図2は、図1における(4)の段階をより詳細に示した模式図である。FIG. 2 is a schematic diagram showing the step (4) in FIG. 1 in more detail. 図3の(1)~(3)は、塊成物を加熱炉内で実際に加熱したときの塊成物を撮影した図面代用写真である。(1) to (3) in FIG. 3 are photographs, which substitute for a drawing, taken of the agglomerate when the agglomerate was actually heated in a heating furnace. 図4の(1)は、固体還元の後期において回収した還元鉄の断面を光学顕微鏡で撮影した図面代用写真であり、図4の(2)は、図4の(1)を画像処理した図面代用写真である。(1) in FIG. 4 is a drawing-substituting photograph in which a cross section of the reduced iron collected in the latter stage of solid reduction is photographed with an optical microscope, and (2) in FIG. 4 is a drawing obtained by performing image processing on (1) in FIG. It is a substitute photo. 図5の(1)は、溶融、凝集直前において回収した還元鉄の断面を光学顕微鏡で撮影した図面代用写真であり、図5の(2)は、図5の(1)を画像処理した図面代用写真である。(1) in FIG. 5 is a drawing-substituting photograph in which a cross section of the reduced iron collected just before melting and aggregation is taken with an optical microscope, and (2) in FIG. 5 is a drawing obtained by performing image processing on (1) in FIG. It is a substitute photo. 図6の(1)は、従来技術に属する被覆層を有しない塊成物を加熱したとき、溶融、凝集完了後の粒状鉄を、激しくフォーミングしたスラグが覆っている状態を撮影した図面代用写真、図6の(2)は、回収した粒状鉄を撮影した図面代用写真、図6の(3)は、回収したスラグを撮影した図面代用写真を夫々示している。(1) in FIG. 6 is a drawing-substituting photograph showing a state in which granular iron after melting and aggregation is covered with violently formed slag when an agglomerate having no coating layer belonging to the prior art is heated. FIG. 6 (2) shows a drawing substitute photograph in which the collected granular iron is photographed, and FIG. 6 (3) shows a drawing substitute photograph in which the collected slag is photographed. 図7の(1)は、核部の表面に、流動性を有する炭材を含む被覆層を形成して得られた塊成物について、溶融、凝集完了後の様子を撮影した図面代用写真、図7の(2)は、回収した粒状鉄を撮影した図面代用写真、図7の(3)は、回収したスラグを撮影した図面代用写真、を夫々示している。(1) in FIG. 7 is a drawing-substituting photograph in which the state after melting and agglomeration is completed is obtained for the agglomerate obtained by forming a coating layer containing a carbon material having fluidity on the surface of the core part. (2) in FIG. 7 shows a drawing substitute photograph in which the collected granular iron is photographed, and (3) in FIG. 7 shows a drawing substitute photograph in which the collected slag is photographed. 図8の(1)~(4)は、被覆層の厚みを変えたときに、塊成物を加熱している間に形成される花弁状で、殻状のコークスの断面を示した模式図である。(1) to (4) in FIG. 8 are schematic views showing a cross section of a petal-like, shell-like coke formed while heating the agglomerate when the thickness of the coating layer is changed. It is. 図9の(1)は、表5に示したNo.4を加熱還元処理した直後に撮影した図面代用写真、図9の(2)は、表5に示したNo.5を加熱還元処理した直後に撮影した図面代用写真、図9の(3)は、表5に示したNo.6を加熱還元処理した直後に撮影した図面代用写真、を夫々示している。(1) in FIG. No. 4 shown in Table 5 is a drawing substitute photograph taken immediately after heat reduction treatment of No. 4 and (2) of FIG. FIG. 9 (3) is a drawing substitute photograph taken immediately after the heat reduction treatment of No. 5 and No. 5 shown in Table 5. 6 is a drawing substitute photograph taken immediately after the heat reduction treatment of 6.
 本発明者らは、塊成物に含まれる酸化鉄を加熱、還元、溶融して得られる粒状鉄の再酸化を防止し、粒状鉄の品質を向上するために、鋭意検討を重ねてきた。特に、粒状鉄に含まれる硫黄量を低減し、粒状鉄に含まれる炭素量を増加させ、異形の粒状鉄の発生を防ぎ、粒状鉄とスラグの分離も向上するために、検討を重ねてきた。その結果、酸化鉄および炭素質還元剤を含む核部の表面に、流動性を有する炭材を含む被覆層を有している塊成物を用いれば、上記課題が見事解決できることを見出し、本発明を完成した。 The present inventors have intensively studied in order to prevent reoxidation of granular iron obtained by heating, reducing, and melting iron oxide contained in the agglomerate and to improve the quality of granular iron. In particular, studies have been made to reduce the amount of sulfur contained in granular iron, increase the amount of carbon contained in granular iron, prevent generation of irregular shaped granular iron, and improve separation of granular iron and slag. . As a result, it was found that the above problem can be solved satisfactorily by using an agglomerate having a coating layer containing a carbonaceous material having fluidity on the surface of the core containing iron oxide and a carbonaceous reducing agent. Completed the invention.
 まず、本発明に係る粒状鉄の製造方法において、粒状鉄の再酸化を防止でき、粒状鉄の品質を向上できる機構について、図面を用いて説明する。図1は、加熱炉の炉床上に装入した塊成物を加熱したときの様子を示した模式図である。図2は、図1における(4)の段階をより詳細に示した模式図である。図3の(1)は、塊成物を加熱炉内に装入した直後に被覆層が膨張しコークス化した状態を撮影した図面代用写真であり、図3の(2)および図3の(3)は核部の表面に被覆層を有している塊成物を加熱、溶融、凝集させたものについて、花弁状で、殻状のコークスとその内部の粒状鉄とスラグ粒を撮影した図面代用写真である。 First, a mechanism capable of preventing reoxidation of granular iron and improving the quality of granular iron in the method for producing granular iron according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a state when an agglomerate charged on the hearth of a heating furnace is heated. FIG. 2 is a schematic diagram showing the step (4) in FIG. 1 in more detail. (1) in FIG. 3 is a drawing-substituting photograph in which the coating layer is expanded and coked immediately after the agglomerate is charged in the heating furnace. 3) is a drawing of a petal-like, coke-like shell, coke, and granular iron and slag grains in an agglomerate that has been heated, melted and agglomerated with a coating layer on the surface of the core. It is a substitute photo.
 本発明の製造方法では、酸化鉄および炭素質還元剤を含む核部の表面に、流動性を有する炭材を含む被覆層を有している塊成物を、移動床式加熱炉の炉床上に装入して加熱する。加熱炉に装入する塊成物の模式図を図1の(1)に示す。図1の(1)において、1は核部、2は被覆層、3は塊成物を夫々示している。 In the production method of the present invention, an agglomerate having a coating layer containing a carbon material having fluidity on the surface of a core part containing iron oxide and a carbonaceous reducing agent is placed on the hearth of a moving bed type heating furnace. Charge to heat. A schematic diagram of the agglomerate charged into the heating furnace is shown in FIG. In (1) of FIG. 1, 1 is a nucleus part, 2 is a coating layer, 3 has shown the agglomerate, respectively.
 核部1は、酸化鉄および炭素質還元剤を含んでおり、更に、必要に応じて、フラックスやバインダーを含んでいてもよい。核部1の成分組成は、従来と同じであり、後で詳述する。 The core part 1 contains iron oxide and a carbonaceous reducing agent, and may further contain a flux or a binder as necessary. The component composition of the core 1 is the same as the conventional one, and will be described in detail later.
 被覆層2は、流動性を有する炭材を含んでおり、更に、必要に応じて、バインダーを含んでいてもよい。被覆層2の成分組成および厚みについては、後で詳述する。 The coating layer 2 includes a carbon material having fluidity, and may further include a binder as necessary. The component composition and thickness of the coating layer 2 will be described in detail later.
 上記移動床式加熱炉内は、通常、加熱バーナーにより1350℃~1550℃程度に加熱保持されている。この加熱炉内の炉床上に塊成物3を装入すると、該塊成物3は、加熱バーナーによるガス伝熱および輻射熱によって加熱される。このとき、被覆層2は、一旦流動化し、図1の(2)に示すように、全体として膨張し、速やかに固体状で、殻状のコークスを形成する。この殻状コークスの頂部には、亀裂が発生するが、全体としては連結しており、殻状の球状体を形成する。 The inside of the moving bed type heating furnace is usually heated and held at about 1350 ° C. to 1550 ° C. by a heating burner. When the agglomerate 3 is charged on the hearth in the heating furnace, the agglomerate 3 is heated by gas heat transfer and radiant heat by a heating burner. At this time, the coating layer 2 is once fluidized and expanded as a whole as shown in (2) of FIG. 1 to quickly form a solid and shell-like coke. Although cracks are generated at the top of the shell-like coke, they are connected as a whole and form a shell-like spherical body.
 被覆層2が加熱により膨張し、塊成物の頂部における被覆層2に亀裂が生じているときの様子を図3の(1)に示す。図3の(1)に示すように、被覆層2には多くの亀裂が生成しているが、全体としては連結しており、殻状の球状体を形成している。この殻状の球状体は、固体状のコークスで構成されているため、伝熱性に優れている。従って、殻状の球状体が、加熱炉内の輻射熱により加熱されると、伝熱により核部1も加熱される。 FIG. 3 (1) shows a state where the coating layer 2 is expanded by heating and cracks are generated in the coating layer 2 at the top of the agglomerate. As shown in (1) of FIG. 3, many cracks are generated in the coating layer 2, but they are connected as a whole and form a shell-like spherical body. Since the shell-like spherical body is composed of solid coke, it is excellent in heat transfer. Therefore, when the shell-like spherical body is heated by the radiant heat in the heating furnace, the core part 1 is also heated by the heat transfer.
 更に加熱を続けると、図1の(3)に示すように、核部1においては、炭素質還元剤の作用により酸化鉄の還元が進み、固体状の還元鉄が形成される。このとき、核部1を構成している酸化鉄の還元は、核部1の頂部側から進み、還元鉄4が生成する。 When the heating is further continued, as shown in (3) of FIG. 1, in the core 1, the reduction of iron oxide proceeds by the action of the carbonaceous reducing agent, and solid reduced iron is formed. At this time, the reduction of the iron oxide constituting the core part 1 proceeds from the top side of the core part 1, and reduced iron 4 is generated.
 そして更に加熱を続けると、図1の(4)に示すように、核部1を構成している酸化鉄は充分に還元され、還元鉄からなる粒状鉄6と、該粒状鉄6が生成するときに副生するスラグ7に分離する。このときの様子を図3の(3)に示す。 When the heating is further continued, as shown in FIG. 1 (4), the iron oxide constituting the core 1 is sufficiently reduced, and the granular iron 6 made of reduced iron and the granular iron 6 are generated. It is separated into slag 7 that is sometimes by-produced. The state at this time is shown in FIG.
 一方、上記核部1を覆っている被覆層2については、図1の(3)や図1の(4)に示すように、核部1の周囲に殻状の球状体を形成し、この被覆層2は、雰囲気ガスに含まれる酸化性ガスにより徐々に酸化消耗し、薄くなる。このとき、被覆層2の頂部は、底部よりも早く酸化消耗し、徐々に消失するため、被覆層厚みが薄い場合は、図1の(3)や図1の(4)に示すように、頂部に開口が形成される。このときの様子を撮影した図面代用写真を図3の(2)に示す。図3の(2)に示すように、頂部に開口が形成された被覆層2から形成された殻状のコークスは、花弁状を呈していることが分かる。なお、被覆層が厚くなると、形成される殻状のコークスも厚くなるため、殻状のコークスの上部が開放されることなく、核部を包み込んだ状態で反応が完了する。そのため雰囲気ガスによる再酸化防止に、より有効的に作用することは明らかである。殻状のコークスの上部が開放される場合および開放されない場合のいずれも本発明の範囲に入る。 On the other hand, as shown in FIG. 1 (3) and FIG. 1 (4), the coating layer 2 covering the core 1 is formed with a shell-like spherical body around the core 1, The covering layer 2 is gradually oxidized and consumed by the oxidizing gas contained in the atmospheric gas and becomes thinner. At this time, the top portion of the coating layer 2 is oxidized and consumed earlier than the bottom portion, and gradually disappears. Therefore, when the coating layer thickness is thin, as shown in (3) of FIG. 1 and (4) of FIG. An opening is formed at the top. FIG. 3B shows a drawing substitute photograph of the situation at this time. As shown in (2) of FIG. 3, it turns out that the shell-shaped coke formed from the coating layer 2 in which the opening was formed in the top part has a petal shape. In addition, since the shell-shaped coke formed becomes thick when the coating layer is thick, the reaction is completed in a state in which the core is wrapped without opening the upper portion of the shell-shaped coke. Therefore, it is clear that it works more effectively to prevent reoxidation by the atmospheric gas. Both the case where the upper part of the shell-like coke is opened and the case where it is not opened fall within the scope of the present invention.
 図1の(4)に示すように、頂部に開口が形成された被覆層2に由来して形成された殻状のコークスは、粒状鉄6の周囲に、該粒状鉄6を包み込むように形成されるため、該殻状のコークスは、核部を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄が加熱炉内の雰囲気ガスにより再酸化するのを防止する作用を有している。このことを図2を用いてより詳しく説明する。 As shown in FIG. 1 (4), the shell-like coke formed from the coating layer 2 having an opening at the top is formed so as to wrap around the granular iron 6. Therefore, in the shell-like coke, reduced iron obtained by heating and reducing the core part, and granular iron obtained by melting and agglomerating the reduced iron are reoxidized by the atmospheric gas in the heating furnace. It has the effect | action which prevents this. This will be described in more detail with reference to FIG.
 図2において示した矢印は、雰囲気ガスの流れを示している。本発明の製造方法によれば、核部1に含まれる酸化鉄の固体還元が終了し、溶融、凝集が進む間は、図2に示すように、核部を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄6とスラグ7を包み込むように被覆層2に由来して殻状のコークスが形成される。そのため、加熱炉内の雰囲気ガスは、核部の表面に被覆層を有している塊成物を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄6に直接接触し難くなる。また、雰囲気ガスには、二酸化炭素ガス(CO2ガス)や水分(H2O)が含まれるが、二酸化炭素ガスが、被覆層2に由来して形成される殻状のコークスに接触すると、該二酸化炭素ガスは、殻状のコークスにより還元され、下記式(1)に示すように、一酸化炭素ガス(COガス)を生成する。また、雰囲気ガスに含まれる水分が、被覆層2に由来して形成される殻状のコークスに接触すると、該水分は殻状のコークスにより還元され、下記式(2)に示すように、水素ガス(H2)と一酸化炭素ガス(COガス)を生成する。その結果、被覆層2に由来して形成される殻状のコークスの周辺における雰囲気ガスの還元度RDは高くなり、核部の表面に被覆層を有している塊成物を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られる粒状鉄の再酸化が防止される。なお、雰囲気ガスの還元度RDは、下記式(3)で求められる。
CO2+C=2CO ・・・(1)
2O+C=H2+CO ・・・(2)
RD=[(CO+H2)/(CO+H2+CO2+H2O)]×100 ・・・(3)
The arrows shown in FIG. 2 indicate the flow of the atmospheric gas. According to the production method of the present invention, the solid reduction of the iron oxide contained in the core part 1 is completed, and while the melting and aggregation proceed, the reduction obtained by heating and reducing the core part as shown in FIG. A shell-like coke is formed from the coating layer 2 so as to enclose the iron and the granular iron 6 and the slag 7 obtained by melting and agglomerating the reduced iron. Therefore, the atmospheric gas in the heating furnace is reduced iron obtained by heat reduction of an agglomerate having a coating layer on the surface of the core, or granular obtained by melting and agglomerating the reduced iron It becomes difficult to contact the iron 6 directly. The atmospheric gas contains carbon dioxide gas (CO 2 gas) and moisture (H 2 O). When the carbon dioxide gas comes into contact with the shell-like coke formed from the coating layer 2, The carbon dioxide gas is reduced by the shell-like coke to generate carbon monoxide gas (CO gas) as shown in the following formula (1). Further, when the moisture contained in the atmospheric gas comes into contact with the shell-like coke formed from the coating layer 2, the moisture is reduced by the shell-like coke, and as shown in the following formula (2), Gas (H 2 ) and carbon monoxide gas (CO gas) are generated. As a result, the reduction degree RD of the atmospheric gas around the shell-shaped coke formed from the coating layer 2 is increased, and the agglomerate having the coating layer on the surface of the core is reduced by heating. Reoxidation of the obtained reduced iron and granular iron obtained by melting and agglomerating the reduced iron is prevented. Note that the reduction degree RD of the atmospheric gas is obtained by the following formula (3).
CO 2 + C = 2CO (1)
H 2 O + C = H 2 + CO (2)
RD = [(CO + H 2 ) / (CO + H 2 + CO 2 + H 2 O)] × 100 (3)
 本発明の製造方法によれば、核部の表面に被覆層2を有している塊成物を加熱している間は、該塊成物を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄を、被覆層2に由来して形成された殻状のコークスが酸化性ガスから充分に保護しており、上記還元鉄や上記粒状鉄の再酸化を防止できる。この被覆層2に由来して形成された殻状のコークスは、上記塊成物を加熱している間に花弁状となっており、被覆層2に由来して形成された殻状のコークスの高さは、一定ではなく、一部が欠けていても本発明の効果は得られる。 According to the production method of the present invention, while heating the agglomerate having the coating layer 2 on the surface of the core part, reduced iron obtained by heating and reducing the agglomerate, The granular iron obtained by melting and agglomerating the reduced iron is sufficiently protected from the oxidizing gas by the shell-like coke formed from the coating layer 2, and the reduced iron and the granular iron are recycled. Oxidation can be prevented. The shell-like coke formed from the coating layer 2 has a petal shape while the agglomerate is heated, and the shell-like coke formed from the coating layer 2 The height is not constant, and the effect of the present invention can be obtained even if a part of the height is missing.
 これに対し、従来のように、流動性を有する炭材を含む被覆層を形成していない核部1のみを、加熱炉で加熱すると、固体還元期において、核部1全体の還元は進行するものの、核部1自体が雰囲気ガスに直接曝されるため、該雰囲気ガスに含まれる酸化性ガスにより、該核部1を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄の一部は再酸化する。 On the other hand, when only the core part 1 in which the coating layer containing the fluid carbonaceous material is not formed as in the prior art is heated in the heating furnace, the reduction of the whole core part 1 proceeds in the solid reduction phase. However, since the core part 1 itself is directly exposed to the atmospheric gas, the reduced iron obtained by heating and reducing the core part 1 with the oxidizing gas contained in the atmospheric gas, or the reduced iron melts and aggregates. Part of the granular iron obtained in this way is reoxidized.
 流動性を有する炭材を含む被覆層を形成していない核部1のみを加熱して得られる還元鉄を撮影した図面代用写真を図4と図5に示す。図4は、固体還元の後期において回収した還元鉄の断面を光学顕微鏡で撮影した図面代用写真を示している。図5は、溶融、凝集直前において回収した還元鉄の断面を光学顕微鏡で撮影した図面代用写真を示している。また、図4、図5において、(1)は、断面を撮影した顕微鏡写真を示しており、(2)は、(1)に示した断面において、還元された部分と再酸化した部分を色分けして示した模式図を示している。 FIG. 4 and FIG. 5 show a photograph substituted for a drawing of the reduced iron obtained by heating only the core 1 where the coating layer containing the carbon material having fluidity is not formed. FIG. 4 shows a drawing-substituting photograph in which a cross section of the reduced iron collected in the latter stage of the solid reduction is taken with an optical microscope. FIG. 5 shows a drawing-substituting photograph in which a cross section of the reduced iron collected immediately before melting and aggregation is taken with an optical microscope. 4 and 5, (1) shows a photomicrograph of a cross section taken, and (2) shows a color-coded portion of the reduced portion and the reoxidized portion in the cross section shown in (1). The schematic diagram shown is shown.
 図4の(2)、図5の(2)に示すように、還元鉄の上部は、一旦生成した金属鉄の一部が再酸化し、FeOになっていることが分かる。 As shown in (2) of FIG. 4 and (2) of FIG. 5, it can be seen that part of the metallic iron once generated is reoxidized into FeO in the upper part of the reduced iron.
 再酸化により生成したFeOは、溶融、凝集期に、分離生成するスラグに速やかに溶融し、スラグ中のFeO濃度を高める。また、FeOがスラグに溶融する際には、生成する半溶融鉄および溶融鉄に含まれる炭素[C]と反応し、これを脱炭するため、スラグには、細かなCOガス気泡が多数内在し、大きく膨張する結果、激しいスラグフォーミングを発生し、凝集途上にある半溶融状態および溶融状態の粒状鉄を覆いつくす。そのため、加熱炉の上方から供給される熱を遮断し、反応時間が大幅に長くなり、生産性を低下させるという問題も生じる。また、スラグフォーミングが発生すると、粒状鉄の形状が異形となったり、粒状鉄と一部のスラグとの分離が不充分な状態となり、粒状鉄の品質を低下させるという問題も生じる。この酸化性ガスの発生は、加熱炉内の加熱に用いる燃焼バーナーの燃焼、還元反応に伴って発生する可燃ガスの燃焼、加熱炉の外部から内部への空気の漏れ込みなどによる。 The FeO produced by re-oxidation quickly melts into the slag that is separated and produced during the melting and agglomeration phase, and increases the FeO concentration in the slag. Further, when FeO melts into slag, it reacts with the generated semi-molten iron and carbon [C] contained in the molten iron and decarburizes this, so that many fine CO gas bubbles are inherent in the slag. As a result of the large expansion, severe slag foaming occurs, and the semi-molten and molten granular iron that is in the process of agglomeration is covered. For this reason, the heat supplied from above the heating furnace is shut off, the reaction time is significantly increased, and the productivity is lowered. Moreover, when slag forming occurs, the shape of the granular iron becomes irregular, or separation between the granular iron and a part of the slag becomes inadequate, resulting in a problem of reducing the quality of the granular iron. The generation of the oxidizing gas is caused by combustion of a combustion burner used for heating in the heating furnace, combustion of combustible gas generated in accordance with a reduction reaction, leakage of air from the outside to the inside of the heating furnace, and the like.
 なお、本発明の製造方法のように、流動性を有する炭材を含む被覆層を有している塊成物を用いた場合には、塊成物を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄の再酸化が防止されるため、溶融・凝集期に粒状鉄とスラグは、別々に溶融合体して分離する。その結果、スラグフォーミングは発生しない。 In addition, when using the agglomerate which has the coating layer containing the carbonaceous material which has fluidity | liquidity like the manufacturing method of this invention, the reduced iron obtained by heat-reducing the agglomerate or Since re-oxidation of the granular iron obtained by melting and agglomerating the reduced iron is prevented, the granular iron and slag are separately melted and separated during the melting and agglomeration period. As a result, no slag forming occurs.
 以上説明したように、本発明の製造方法では、酸化鉄および炭素質還元剤を含む核部の表面に、流動性を有する炭材を含む被覆層を有している塊成物を用いているところに最大の特徴がある。 As described above, in the production method of the present invention, an agglomerate having a coating layer containing a flowable carbonaceous material is used on the surface of the core containing iron oxide and a carbonaceous reducing agent. However, there is the biggest feature.
 上記流動性を有する炭材とは、350℃~400℃で熱軟化性を示す炭材を意味する。「熱軟化性を示す炭材」とは、ISO 10329(2009年)で規定されている方法で炭材の軟化溶融点を測定したときに、軟化溶融点が350℃~400℃の炭材を意味している。 The above-mentioned fluid carbon material means a carbon material that exhibits heat softening properties at 350 ° C. to 400 ° C. “Carbon material showing thermal softening properties” means a carbon material having a softening melting point of 350 ° C. to 400 ° C. when the softening melting point of the carbon material is measured by a method specified in ISO 10329 (2009). I mean.
 上記流動性を有する炭材としては、例えば、流動性を有する瀝青炭、流動性を有する亜瀝青炭、および流動性を有する褐炭よりなる群から選ばれる少なくとも1種を用いることが好ましく、2種以上を用いても良い。これらの炭材のなかでも、瀝青炭を用いることがより好ましい。なお、炭材には、無煙炭もあるが、無煙炭は流動性を有していない。従って、被覆層2に無煙炭を含有させても、粒状鉄の周囲に殻状の球状体は形成されない。そのため核部は加熱炉内の雰囲気ガスに曝されてしまい、塊成物を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄は再酸化する。 As the carbon material having fluidity, for example, at least one selected from the group consisting of bituminous coal having fluidity, subbituminous coal having fluidity, and brown coal having fluidity is preferably used. It may be used. Among these carbon materials, it is more preferable to use bituminous coal. In addition, although there exists anthracite in a carbon material, anthracite has no fluidity. Therefore, even if the coating layer 2 contains anthracite, a shell-like spherical body is not formed around the granular iron. Therefore, the core part is exposed to the atmospheric gas in the heating furnace, and the reduced iron obtained by heating and reducing the agglomerate and the granular iron obtained by melting and agglomerating the reduced iron are reoxidized.
 上記被覆層2の平均厚みは特に限定されないが、例えば、0.30mm超であることが好ましい。被覆層2の平均厚みを0.30mm超とすることにより、粒状鉄の再酸化抑制効果をより強固なものとし、花弁状の外殻を形成することができる。また、被覆層2の強度を高め、塊成物全体の強度を高めるのにも有効に作用する。被覆層2の平均厚みが、0.30mm以下では、被覆層2の強度が低くなり、また、被覆層2が加熱されることにより形成する殻状の球状体(即ち、花弁状のコークス)の厚みが薄くなるため、加熱時間の経過と共に酸化消耗し、粒状鉄の溶融、凝集までその形状を維持することは困難となる。従って被覆層2の平均厚みは、より好ましくは0.50mm以上であり、更に好ましくは0.70mm以上、特に好ましくは1.00mm以上である。被覆層2の平均厚みの上限も特に限定されないが、厚くなり過ぎると、炭材の使用量が増加するため、塊成物全体に含まれる鉄量が減少し、生産性が低下する。また、経済的にも無駄である。従って被覆層2の平均厚みは、好ましくは2.00mm以下、より好ましくは1.80mm以下、更に好ましくは1.50mm以下である。 The average thickness of the coating layer 2 is not particularly limited, but is preferably, for example, more than 0.30 mm. By making the average thickness of the coating layer 2 exceed 0.30 mm, the effect of suppressing reoxidation of granular iron can be further strengthened, and a petal-like outer shell can be formed. Moreover, it acts effectively also to raise the intensity | strength of the coating layer 2 and to raise the intensity | strength of the whole agglomerate. When the average thickness of the coating layer 2 is 0.30 mm or less, the strength of the coating layer 2 is low, and the shell-like spherical body (that is, petal-like coke) formed by heating the coating layer 2 is also used. Since the thickness is reduced, the oxidation is consumed as the heating time elapses, and it is difficult to maintain the shape until the granular iron is melted and aggregated. Therefore, the average thickness of the coating layer 2 is more preferably 0.50 mm or more, still more preferably 0.70 mm or more, and particularly preferably 1.00 mm or more. The upper limit of the average thickness of the coating layer 2 is not particularly limited, but if it becomes too thick, the amount of carbon material used increases, so the amount of iron contained in the entire agglomerate decreases and productivity decreases. Moreover, it is useless also economically. Therefore, the average thickness of the coating layer 2 is preferably 2.00 mm or less, more preferably 1.80 mm or less, and still more preferably 1.50 mm or less.
 上記被覆層2の厚みは、塊成物の断面を光学顕微鏡で観察することにより測定すればよい。 The thickness of the coating layer 2 may be measured by observing the cross section of the agglomerate with an optical microscope.
 以上、本発明の製造方法を特徴づける塊成物について説明した。 The agglomerates that characterize the production method of the present invention have been described above.
 次に、本発明に係る粒状鉄の製造方法について説明する。 Next, the method for producing granular iron according to the present invention will be described.
 本発明に係る粒状鉄の製造方法は、
 酸化鉄および炭素質還元剤を含む混合物を塊成化して核部を形成する工程(以下、核部形成工程ということがある)と、
 得られた核部の表面に、流動性を有する炭材を含む被覆層を形成する工程(以下、表面被覆工程ということがある)と、
 得られた塊成物を移動床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元、溶融する工程(以下、還元溶融工程ということがある)と、
 得られた粒状鉄を炉外へ排出して回収する工程(以下、回収工程ということがある)
をこの順で含んでいる。
The method for producing granular iron according to the present invention includes:
A step of agglomerating a mixture containing iron oxide and a carbonaceous reducing agent to form a nucleus (hereinafter sometimes referred to as a nucleus formation step);
On the surface of the obtained core part, a step of forming a coating layer containing a carbon material having fluidity (hereinafter sometimes referred to as a surface coating step);
The obtained agglomerate is charged on the hearth of a moving bed heating furnace and heated to reduce and melt iron oxide in the agglomerate (hereinafter sometimes referred to as a reductive melting step);
A process of discharging and collecting the obtained granular iron outside the furnace (hereinafter sometimes referred to as a recovery process)
Are included in this order.
 [核部形成工程]
 核部形成工程では、酸化鉄および炭素質還元剤を含む混合物を塊成化して塊成物の核部を製造する。
[Nucleus formation process]
In the core part forming step, a mixture containing iron oxide and a carbonaceous reducing agent is agglomerated to produce a core part of the agglomerate.
 上記酸化鉄としては、具体的には、鉄鉱石、砂鉄、製鉄ダスト、非鉄精錬残渣、製鉄廃棄物などの酸化鉄源を用いることができる。 As the iron oxide, specifically, iron oxide sources such as iron ore, iron sand, iron-making dust, non-ferrous refining residue, and iron-making waste can be used.
 上記炭素質還元剤としては、炭素を含有する還元剤、例えば、石炭やコークスなどを用いることができる。石炭を用いる場合は、流動性を有する石炭を用いても良いし、流動性を有さない石炭を用いてもよい。 As the carbonaceous reducing agent, a carbon-containing reducing agent such as coal or coke can be used. When coal is used, coal having fluidity may be used or coal having no fluidity may be used.
 上記混合物には、更にフラックスを配合してもよい。上記フラックスとは、酸化鉄源中の脈石や、炭素質還元剤中の灰分と融合し、最終的なスラグの融点や、流動性を調整する役割を有する。 The above mixture may further contain a flux. The flux has a role of adjusting the melting point and fluidity of the final slag by fusing with the gangue in the iron oxide source and the ash in the carbonaceous reducing agent.
 上記フラックスとしては、例えば、CaO供給物質、MgO供給物質、Al23供給物質、SiO2供給物質、蛍石(CaF2)などを用いることができる。上記CaO供給物質としては、例えば、CaO(生石灰)、Ca(OH)2(消石灰)、CaCO3(石灰石)、およびCaMg(CO32(ドロマイト)よりなる群から選ばれる少なくとも一つを用いることができる。上記MgO供給物質としては、例えば、CaMg(CO32(ドロマイト)、MgO粉末、天然鉱石や海水などから抽出されるMg含有物質、MgCO3よりなる群から選ばれる少なくとも一つを配合してもよい。上記Al23供給物質としては、例えば、Al23粉末、ボーキサイト、ベーマイト、ギブサイト、ダイアスポアなどを配合できる。上記SiO2供給物質としては、例えば、SiO2粉末や珪砂などを用いることができる。 As the flux, for example, CaO supply material, MgO supply material, Al 2 O 3 supply material, SiO 2 supply material, fluorite (CaF 2 ) and the like can be used. As said CaO supply substance, for example, at least one selected from the group consisting of CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (limestone), and CaMg (CO 3 ) 2 (dolomite) is used. be able to. As the MgO supply substance, for example, at least one selected from the group consisting of CaMg (CO 3 ) 2 (dolomite), MgO powder, Mg-containing substance extracted from natural ore or seawater, and MgCO 3 is blended. Also good. Examples of the Al 2 O 3 supply substance include Al 2 O 3 powder, bauxite, boehmite, gibbsite, and diaspore. As the SiO 2 supply substance, for example, SiO 2 powder or silica sand can be used.
 上記混合物には、酸化鉄、炭素質還元剤、およびフラックス以外の成分として、バインダーなどを更に配合してもよい。 The above mixture may further contain a binder as a component other than iron oxide, carbonaceous reducing agent, and flux.
 上記バインダーとしては、例えば、コーンスターチや小麦粉等の澱粉などの多糖類などを用いることができる。 As the binder, for example, a polysaccharide such as corn starch or starch such as wheat flour can be used.
 なお、以下では、フラックスを添加剤ということがある。 In the following, flux may be referred to as an additive.
 上記酸化鉄および炭素質還元剤、並びに必要に応じて配合する添加剤およびバインダーは、回転容器形の混合機や固定容器形の混合機等を用いて混合すればよい。 The iron oxide, the carbonaceous reducing agent, and the additive and binder to be blended as necessary may be mixed using a rotating container type mixer, a fixed container type mixer, or the like.
 上記混合機で得られた混合物は塊成化し、塊成物の核部を製造する。上記核部の平均直径は特に限定されないが、例えば、18~22mmであることが推奨される。 ¡The mixture obtained with the above mixer is agglomerated to produce the core of the agglomerate. The average diameter of the core is not particularly limited, but it is recommended to be, for example, 18 to 22 mm.
 上記混合物を塊成化する際に用いる第1の造粒機としては、例えば、皿形造粒機、円筒形造粒機、双ロール型ブリケット成型機、押し出し機などを用いることができる。 As the first granulator used when the mixture is agglomerated, for example, a dish granulator, a cylindrical granulator, a twin roll briquette molding machine, an extruder, or the like can be used.
 上記核部の形状は特に限定されず、例えば、ペレット状やブリケット状などであればよい。 The shape of the core is not particularly limited, and may be, for example, a pellet shape or a briquette shape.
 [表面被覆工程]
 表面被覆工程では、上記核部形成工程で得られた核部の表面に、流動性を有する炭材を含む被覆層を形成する。
[Surface coating process]
In the surface coating step, a coating layer containing a flowable carbonaceous material is formed on the surface of the core portion obtained in the core portion forming step.
 上記被覆層を形成するにあたっては、上記流動性を有する炭材以外に、バインダーを含んでいてもよい。上記バインダーとしては、上記に例示したものを用いることができる。 In forming the coating layer, a binder may be included in addition to the carbon material having fluidity. As the binder, those exemplified above can be used.
 上記被覆層に含有させるバインダーと、上記核部に含有させるバインダーの種類は、同じであってもよいし、異なっていてもよい。 The kind of the binder contained in the coating layer and the kind of binder contained in the core may be the same or different.
 上記核部の表面に、流動性を有する炭材を含む被覆層を形成する際に用いる第2の造粒機としては、例えば、皿形造粒機や円筒形造粒機などを用いることができる。 As the second granulator used when forming a coating layer containing a carbon material having fluidity on the surface of the core part, for example, a dish-type granulator or a cylindrical granulator may be used. it can.
 上記第1の造粒機と上記第2の造粒機は、同じ種類のものを用いてもよいし、異なる種類のものを用いてもよい。 The same type of the first granulator and the second granulator may be used, or different types may be used.
 上記核部の表面に流動性を有する炭材を含む被覆層を形成した塊成物の大きさも特に限定されないが、最大粒径は50mm以下であることが好ましい。塊成物の粒径を過剰に大きくしようとすると、造粒効率が悪くなる。また、塊成物が大きくなり過ぎると、塊成物の下部への伝熱が悪くなり、生産性が低下する。なお、塊成物の粒径の下限値は5mm程度である。 The size of the agglomerate in which a coating layer containing a fluid carbon material is formed on the surface of the core is not particularly limited, but the maximum particle size is preferably 50 mm or less. If the particle size of the agglomerate is excessively increased, the granulation efficiency is deteriorated. Moreover, when the agglomerate becomes too large, heat transfer to the lower part of the agglomerate becomes worse and productivity is lowered. In addition, the lower limit of the particle size of the agglomerate is about 5 mm.
 上記塊成物は、後述する還元溶融工程における加熱炉での加熱で乾燥を兼ねてもよいが、還元溶融工程の前に乾燥させることが推奨される。また、核部を造粒した後に、一旦乾燥してから被覆層を形成してもよいが、核部の表面に、被覆層を形成してから乾燥することが好ましい。 The above agglomerates may also be dried by heating in a heating furnace in the reduction melting process described later, but it is recommended to dry before the reduction melting process. Moreover, after granulating the core part, the coating layer may be formed after drying once, but it is preferable to dry after forming the coating layer on the surface of the core part.
 [還元溶融工程]
 還元溶融工程では、上記表面被覆工程で得られた塊成物を移動床式加熱炉の炉床上に装入して加熱することによって、該塊成物中の酸化鉄を還元、溶融し、還元鉄からなる粒状鉄を製造する。
[Reduction melting process]
In the reduction melting step, the agglomerate obtained in the surface coating step is charged on the hearth of the moving bed type heating furnace and heated to reduce, melt, and reduce the iron oxide in the agglomerate. Manufactures granular iron made of iron.
 上記移動床式加熱炉とは、炉床がベルトコンベアのように炉内を移動する加熱炉であり、例えば、回転炉床炉やトンネル炉が挙げられる。上記回転炉床炉は、炉床の始点と終点が同じ位置になるように、炉床の外観形状が円形またはドーナツ状に設計されており、炉床上に装入された塊成物に含まれる酸化鉄は、炉内を一周する間に加熱還元されて還元鉄を生成し、引き続き溶融、凝集して粒状鉄とスラグを生成する。従って回転炉床炉には、回転方向の最上流側に塊成物を炉内に装入する装入手段が設けられ、回転方向の最下流側に排出手段が設けられる。最下流側は、回転構造であるため、実際には装入手段の直上流側になる。上記トンネル炉とは、炉床が直線方向に炉内を移動する加熱炉である。 The moving bed type heating furnace is a heating furnace in which the hearth moves in the furnace like a belt conveyor, and examples thereof include a rotary hearth furnace and a tunnel furnace. In the rotary hearth furnace, the outer shape of the hearth is designed to be circular or donut shape so that the start point and end point of the hearth are in the same position, and are included in the agglomerate charged on the hearth Iron oxide is heated and reduced during one round of the furnace to produce reduced iron, and subsequently melted and aggregated to produce granular iron and slag. Accordingly, the rotary hearth furnace is provided with charging means for charging the agglomerate into the furnace on the most upstream side in the rotation direction, and with discharging means on the most downstream side in the rotation direction. Since the most downstream side is a rotating structure, the most downstream side is actually immediately upstream of the charging means. The tunnel furnace is a heating furnace in which the hearth moves in the furnace in a linear direction.
 上記塊成物は、1350℃以上で加熱することが好ましい。加熱温度が1350℃を下回ると、還元鉄やスラグが溶融しにくく、高い生産性が得られないことがある。従って加熱温度は、1350℃以上とすることが好ましく、より好ましくは1400℃以上である。しかし加熱温度が1550℃を超えると排ガス温度が高くなるため、排ガス処理設備が大掛かりなものとなって設備コストが増大する。従って加熱温度は1550℃以下とすることが好ましく、より好ましくは1500℃以下である。 The agglomerate is preferably heated at 1350 ° C. or higher. When the heating temperature is lower than 1350 ° C., reduced iron and slag are difficult to melt, and high productivity may not be obtained. Therefore, the heating temperature is preferably 1350 ° C. or higher, more preferably 1400 ° C. or higher. However, when the heating temperature exceeds 1550 ° C., the exhaust gas temperature becomes high, so the exhaust gas treatment facility becomes large and the equipment cost increases. Accordingly, the heating temperature is preferably 1550 ° C. or lower, more preferably 1500 ° C. or lower.
 上記塊成物は、上記炉床上に1層となるように装入することが好ましい。炉床上に塊成物を2層以上積層すると、下層の塊成物が充分に加熱されず、還元、溶融が不充分となり、粒状鉄の製造が困難となる。なお、1層とは、炉床に対して塊成物が縦方向に積層していないことを意味し、塊成物の横方向には空隙があってもよい。即ち、塊成物は、密集して充填されていなくてもよい。また、部分的に塊成物同士が重なることがあるが、部分的な重なりは本発明の効果を打ち消すものではない。 It is preferable to charge the agglomerate so as to form one layer on the hearth. When two or more layers of agglomerates are laminated on the hearth, the agglomerates in the lower layer are not sufficiently heated, and reduction and melting become insufficient, making it difficult to produce granular iron. In addition, 1 layer means that the agglomerate is not laminated | stacked on the vertical direction with respect to a hearth, and there may be a space | gap in the horizontal direction of an agglomerate. That is, the agglomerates need not be densely packed. Moreover, although agglomerates may overlap partially, partial overlap does not negate the effect of the present invention.
 上記塊成物を上記炉床上に装入するに先立って、該炉床上に炭素質還元剤を床敷材として敷くことが好ましい。床敷材を敷くことにより、炉床を保護できる。 Prior to charging the agglomerate onto the hearth, it is preferable to lay a carbonaceous reducing agent on the hearth as a flooring material. By laying the floor covering, the hearth can be protected.
 上記床敷材の粒径は、塊成物やその溶融物が潜り込まないように3mm以下であることが好ましい。上記床敷材の粒径の下限については、バーナーの燃焼ガスによって吹き飛ばされないように0.5mm以上であることが好ましい。 The particle size of the flooring material is preferably 3 mm or less so that the agglomerate and the melt thereof do not sink. The lower limit of the particle size of the floor covering is preferably 0.5 mm or more so as not to be blown off by the burner combustion gas.
 [回収工程]
 回収工程では、上記還元溶融工程で得られた粒状鉄を炉外へ排出し、粒状鉄を回収する。
[Recovery process]
In the recovery step, the granular iron obtained in the reduction melting step is discharged out of the furnace, and the granular iron is recovered.
 また、上記粒状鉄を炉外へ排出する際には、粒状鉄の他、副生するスラグや、床敷材が含まれているため、炉外において、例えば、篩分けや磁選分離機を用いて粒状鉄を回収すればよい。 In addition, when discharging the granular iron to the outside of the furnace, by-product slag and flooring materials are included in addition to the granular iron. For example, sieving or magnetic separation separator is used outside the furnace. The granular iron can be recovered.
 本発明の製造方法では、C量が2.5質量%以上の粒状鉄を製造することが可能となる。また、本発明の製造方法では、S量が0.120質量%以下の粒状鉄を製造することが可能となる。 In the production method of the present invention, it is possible to produce granular iron having a C content of 2.5% by mass or more. Moreover, in the manufacturing method of this invention, it becomes possible to manufacture granular iron whose S amount is 0.120 mass% or less.
 本願は、2013年9月25日に出願された日本国特許出願第2013-198980号に基づく優先権の利益を主張するものである。日本国特許出願第2013-198980号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2013-198980 filed on September 25, 2013. The entire contents of the specification of Japanese Patent Application No. 2013-198980 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with modifications within a range that can meet the above and the gist described below. Of course, these are all possible and are included in the technical scope of the present invention.
 [実験例1]
 本実験例では、流動性を有する炭材を含む被覆層を表面に有している塊成物と、当該被覆層を有していない塊成物を準備し、これらを加熱炉で加熱し、得られた粒状鉄の再酸化が抑えられているかどうかを調べた。
[Experiment 1]
In this experimental example, an agglomerate having a coating layer containing a carbon material having fluidity on the surface and an agglomerate not having the coating layer are prepared, and these are heated in a heating furnace. It was investigated whether reoxidation of the obtained granular iron was suppressed.
 まず、酸化鉄および炭素質還元剤を含む塊成物を製造した。 First, an agglomerate containing iron oxide and a carbonaceous reducing agent was produced.
 上記酸化鉄としては、下記表1に示す成分組成の鉄鉱石を用いた。表1において、T.Feは全鉄を意味している。鉄鉱石としては、粒径44μm以下のものが67質量%となるように粉砕したものを用いた。 As the iron oxide, iron ores having the composition shown in Table 1 below were used. In Table 1, T.W. Fe means total iron. The iron ore used was crushed so that the particle size of 44 μm or less was 67% by mass.
 上記炭素質還元剤としては、下記表2に示す成分組成の炭材を用いた。表2において、T.Cは全炭素、F.Cは固定炭素を意味している。炭材としては、粒径75μm以下のものが約55質量%となるように粉砕したものを用いた。 As the carbonaceous reducing agent, carbonaceous materials having the composition shown in Table 2 below were used. In Table 2, T.W. C is all carbon, F.I. C means fixed carbon. As the carbon material, a material pulverized so that a particle size of 75 μm or less was about 55% by mass was used.
 上記鉄鉱石および炭材を含む混合物に、更にバインダー、添加剤、および適量の水を配合し、これらを第1の造粒機で塊成化して核部となる生ペレットに造粒した。バインダーとしては、小麦粉を用いた。添加剤としては、石灰石、ドロマイト、蛍石を用いた。第1の造粒機としては、皿形造粒機を用いた。生ペレットの平均直径は21mmとした。鉄鉱石、炭材、バインダー、および添加剤の配合割合を下記表3に示す。 The mixture containing the iron ore and the carbon material was further blended with a binder, an additive, and an appropriate amount of water, and these were agglomerated by a first granulator and granulated into raw pellets serving as a core. As the binder, flour was used. As additives, limestone, dolomite, and fluorite were used. A dish granulator was used as the first granulator. The average diameter of the raw pellets was 21 mm. The blending ratio of iron ore, carbonaceous material, binder, and additive is shown in Table 3 below.
 得られた生ペレットの一部は、乾燥機に装入し、160℃~180℃で約1.0時間加熱して付着水を除去し、球状の乾燥ペレットを製造した。 A part of the obtained raw pellets was charged into a dryer and heated at 160 ° C. to 180 ° C. for about 1.0 hour to remove the adhering water, thereby producing spherical dry pellets.
 一方、得られた生ペレットの一部は、乾燥せずに、その表面に、流動性を有する炭材を含む被覆層を形成した。上記流動性を有する炭材としては、流動性を有する瀝青炭を準備し、上記生ペレットを第2の造粒機に装入した後、瀝青炭と少量のバインダー(小麦粉)を混合した混合物を供給し、核部の表面に被覆層を形成した。第2の造粒機としては、皿形造粒機を用いた。核部の表面に被覆層を形成して得られた生ペレットを切断し、断面を光学顕微鏡で観察し、被覆層の平均厚みは1.0mmであることを確認した。次に、表面に被覆層を形成した生ペレットを乾燥機に装入し、160℃~180℃で約1.0時間加熱して付着水を除去し、球状の乾燥ペレット(即ち、塊成物)を製造した。 On the other hand, a part of the obtained raw pellet was not dried, and a coating layer containing a fluid carbon material was formed on the surface thereof. As the charcoal material having fluidity, after preparing bituminous coal having fluidity and charging the raw pellets into the second granulator, a mixture of bituminous coal and a small amount of binder (wheat flour) is supplied. A coating layer was formed on the surface of the core. A dish granulator was used as the second granulator. The raw pellet obtained by forming a coating layer on the surface of the core was cut, and the cross section was observed with an optical microscope, and it was confirmed that the average thickness of the coating layer was 1.0 mm. Next, the raw pellets having a coating layer formed on the surface are charged into a dryer and heated at 160 ° C. to 180 ° C. for about 1.0 hour to remove adhering water, and spherical dry pellets (ie, agglomerates) ) Was manufactured.
 次に、被覆層を形成していない球状の乾燥ペレットと、被覆層を形成した球状の乾燥ペレットを、夫々、約1450℃に保持した加熱炉(実験炉)に装入して加熱し、乾燥ペレット中の酸化鉄を還元、溶融した。 Next, the spherical dry pellets without the coating layer and the spherical dry pellets with the coating layer are charged in a heating furnace (experimental furnace) maintained at about 1450 ° C. and heated to dry. The iron oxide in the pellet was reduced and melted.
 加熱炉内の雰囲気は、実機を模擬して、高酸化性雰囲気とした。具体的には、酸化性ガスは二酸化炭素で代表し、二酸化炭素を40体積%、窒素を60体積%含む混合ガス雰囲気とした。その結果、上記乾燥ペレットを加熱炉へ装入すると、被覆層は膨張し、核部の周囲には、被覆層に含まれる炭材がコークス化して花弁状の外殻が形成された。この花弁状の外殻は、雰囲気ガスが核部に接触するのを防ぐ防風壁として作用していた。 The atmosphere in the heating furnace was made to be a highly oxidizing atmosphere by simulating an actual machine. Specifically, the oxidizing gas is represented by carbon dioxide, and a mixed gas atmosphere containing 40% by volume of carbon dioxide and 60% by volume of nitrogen was used. As a result, when the dried pellets were charged into a heating furnace, the coating layer expanded, and the carbonaceous material contained in the coating layer was coke around the core to form a petal-like outer shell. This petal-shaped outer shell acted as a windbreak wall that prevented atmospheric gas from contacting the core.
 加熱炉内で、酸化鉄を還元、溶融した後、得られた粒状鉄を炉外へ排出して粒状鉄を回収した。このとき粒状鉄の生成時に副生したスラグも併せて回収した。得られた粒状鉄およびスラグの成分組成を下記表4に示す。 After reducing and melting iron oxide in a heating furnace, the obtained granular iron was discharged out of the furnace to recover the granular iron. At this time, slag produced as a by-product during the production of granular iron was also collected. The component composition of the obtained granular iron and slag is shown in Table 4 below.
 また、下記表4には、粒状鉄に含まれるS量[S]に対する、スラグに含まれるS量(S)の比(硫黄分配比)を算出し、併せて示した。 Further, in Table 4 below, the ratio (sulfur distribution ratio) of the S amount (S) contained in the slag to the S amount [S] contained in the granular iron was calculated and shown together.
 表4に基づいて次のように考察できる。 Based on Table 4, it can be considered as follows.
 (被覆層無し)
 被覆層を形成していない場合は、下記表4に示すように、スラグ中のFeO量が6.53質量%と多くなった。その結果、硫黄分配比が1.56となり、粒状鉄に含まれるS量は0.171質量%となり、粒状鉄の品質を向上できなかった。
(No coating layer)
When the coating layer was not formed, as shown in Table 4 below, the amount of FeO in the slag increased to 6.53 mass%. As a result, the sulfur distribution ratio was 1.56, the amount of S contained in the granular iron was 0.171% by mass, and the quality of the granular iron could not be improved.
 スラグ中のFeO量が増加した理由は、次のように考えられる。即ち、固体還元期において、被覆層を形成していない乾燥ペレットは、その上部から還元鉄が生成するものの、雰囲気中の酸化性ガスによりその一部が再酸化(Fe+CO2=FeO+CO)され、生成したFeOが溶融スラグ中に溶解し、高FeO含有溶融スラグを生成する。その後、溶融凝集期に、溶融還元反応を伴い、その結果、スラグ中のFeOと溶融粒状鉄中の[C]との反応(脱炭反応)を引き起こし、激しいスラグフォーミング現象が発生する。脱炭反応は吸熱反応であるため、鉄への伝熱が著しく遅れ、反応時間が大幅に延びるという欠点を有している。また、フォーミングしたスラグは、凝集途上の半溶融鉄を覆い尽くし、上部からの熱輻射を阻害するため、これによっても鉄への伝熱が著しく遅れ、反応時間が大幅に延びる。最終的には溶融粒状鉄と溶融スラグを形成するものの、スラグは大きく発泡し、スラグに含まれるFeOは依然として高い値を維持しているため、生成する粒状鉄中の[S]は、0.171質量%となった。また、生成する粒状鉄中の[C]は、目標とする2.5質量%を下回り、2.49質量%となった。従って、製品となる粒状鉄の品質を著しく劣化させる結果となっている。また、激しいスラグフォーミングのため、溶融粒状鉄の温度上昇が妨げられ、所定の反応時間内では完全に凝集することなく、高い比率で一部スラグを取り込んだ異形状の粒状鉄を形成し、形状的にも製品粒鉄の価値を著しく落とす結果となっている。 The reason why the amount of FeO in the slag has increased is considered as follows. That is, in the solid reduction phase, dry pellets that do not form a coating layer generate reduced iron from the top, but part of them are re-oxidized (Fe + CO 2 = FeO + CO) by the oxidizing gas in the atmosphere. The dissolved FeO is dissolved in the molten slag to produce a high FeO-containing molten slag. Thereafter, a melt-reduction reaction is involved in the melt-aggregation period, and as a result, a reaction (decarburization reaction) between FeO in the slag and [C] in the molten granular iron is caused, and a severe slag forming phenomenon occurs. Since the decarburization reaction is an endothermic reaction, heat transfer to iron is significantly delayed, and the reaction time is greatly extended. In addition, the formed slag covers the semi-molten iron in the course of agglomeration and inhibits heat radiation from the upper part. This also significantly delays heat transfer to the iron and greatly increases the reaction time. Eventually, molten granular iron and molten slag are formed, but the slag is greatly foamed, and FeO contained in the slag is still maintained at a high value. It became 171 mass%. Moreover, [C] in the granular iron to produce | generate was less than 2.5 mass% made into a target, and was 2.49 mass%. Therefore, the quality of the granular iron used as a product is remarkably deteriorated. In addition, due to intense slag forming, the temperature rise of the molten granular iron is hindered, and it does not agglomerate within the prescribed reaction time, forming irregular shaped granular iron incorporating a part of slag at a high ratio, In particular, the value of the product granular iron is significantly reduced.
 ここで、溶融、凝集完了後の粒状鉄を撮影した図面代用写真を図6の(1)に示す。また、回収した粒状鉄を撮影した図面代用写真を図6の(2)に示す。また、回収したスラグを撮影した図面代用写真を図6の(3)に示す。 Here, (1) in FIG. 6 shows a drawing substitute photograph of the granular iron after completion of melting and aggregation. Moreover, the drawing substitute photograph which image | photographed the collect | recovered granular iron is shown to (2) of FIG. Moreover, the drawing substitute photograph which image | photographed the collect | recovered slag is shown to (3) of FIG.
 本実験例では、反応時間(即ち、炉内滞留時間)を充分確保したため、図6の(2)に示すように、回収された粒鉄は異形状であるものの、粒状鉄とスラグに分離されていることが分かる。しかし実機においては、生産性の観点から炉内滞留時間を充分に確保することが困難であり、凝集が完全に完了する前に炉外へ搬出せざるを得ないのが実情である。そのため、粒状鉄形状の更なる劣化と、一部スラグとメタルの分離が不十分な状態で炉外に排出され、製品粒鉄品質と歩留の低下が避けられない状況にあった。 In the present experimental example, since the reaction time (that is, the residence time in the furnace) was sufficiently secured, the recovered granular iron was separated into granular iron and slag as shown in (2) of FIG. I understand that However, in an actual machine, it is difficult to ensure a sufficient residence time in the furnace from the viewpoint of productivity, and the fact is that it must be carried out of the furnace before the aggregation is completely completed. Therefore, further deterioration of the granular iron shape and partial slag and metal separation are insufficiently discharged to the outside of the furnace, and it is inevitable that the quality of the product granular iron and the yield will be reduced.
 (被覆層有り)
 被覆層を形成した乾燥ペレットを加熱反応場に装入すると、被覆層に含まれる炭材は、速やかにコークス化する。このとき、被覆層には大きな亀裂が発生するが、被覆層が剥離落下することはなく、図2に示すように、コークス壁を形成し、核部を包み込む極めて特徴ある現象が確認された。このコークス壁は、核部に含まれる酸化鉄の還元反応を進行させると共に、上部は、雰囲気ガスにより徐々に酸化消耗(C+CO2=2CO、C+H2O=CO+H2)しながら、上部が解放された花弁状になる場合があることが判明した。更に、固体還元が完了すると、核部の内部に生成した粒状鉄と、その他の酸化物は、花弁状のコークス壁内の底部で溶融しながら凝集し、溶融粒状鉄と溶融スラグに分離し、反応が完了する。
(With coating layer)
When the dry pellets on which the coating layer is formed are charged into the heating reaction field, the carbonaceous material contained in the coating layer is rapidly coked. At this time, a large crack was generated in the coating layer, but the coating layer was not peeled and dropped, and as shown in FIG. 2, a very characteristic phenomenon of forming a coke wall and wrapping the core was confirmed. The coke wall advances the reduction reaction of iron oxide contained in the core part, and the upper part is released while being gradually oxidized and consumed by the atmospheric gas (C + CO 2 = 2CO, C + H 2 O = CO + H 2 ). It has been found that there may be petals. Furthermore, when the solid reduction is completed, the granular iron generated inside the core and other oxides aggregate while melting at the bottom in the petal-like coke wall, and are separated into molten granular iron and molten slag, The reaction is complete.
 この様に、花弁状のコークス壁は、核部を酸化性雰囲気ガスから保護する極めて有意な役割を果たし、核部は、固体還元期から溶融、凝集期のほぼ全期間に亘って雰囲気ガスによる再酸化が大幅に抑制され、反応が完了する等、従来の被覆層を形成していない乾燥ペレットの反応挙動と比べて顕著な差が確認された。 In this way, the petal-shaped coke wall plays a very significant role in protecting the core from the oxidizing atmosphere gas, and the core is formed by the atmospheric gas throughout the entire period from the solid reduction phase to the melting and aggregation phase. Remarkable differences were confirmed as compared with the reaction behavior of conventional dry pellets in which the coating layer was not formed, such as reoxidation was significantly suppressed and the reaction was completed.
 ここで、溶融、凝集完了後の様子を撮影した図面代用写真を図7の(1)に示す。また、回収した粒状鉄を撮影した図面代用写真を図7の(2)に示す。また、回収したスラグを撮影した図面代用写真を図7の(3)に示す。 Here, (1) in FIG. 7 shows a drawing-substituting photograph in which the state after melting and aggregation is completed is photographed. Moreover, the drawing substitute photograph which image | photographed the collect | recovered granular iron is shown to (2) of FIG. In addition, FIG. 7 (3) shows a drawing-substituting photograph in which the collected slag is photographed.
 この結果、本発明法によれば、図7の(2)、(3)に示すように、ほぼ同一形状の粒状鉄が得られると共に、併せて回収されるスラグとの分離性も良好となる。また、表4に示すように、スラグに含まれるFeO量は、0.29質量%となり、粒状鉄の再酸化は抑制されていることが分かる。また、硫黄分配比は、14.64となり、粒状鉄に含まれるS量は、0.059質量%まで低減できた。 As a result, according to the method of the present invention, as shown in (2) and (3) of FIG. 7, substantially the same shape of granular iron is obtained, and the separability from the recovered slag is also improved. . Moreover, as shown in Table 4, the amount of FeO contained in the slag is 0.29% by mass, indicating that reoxidation of the granular iron is suppressed. Moreover, the sulfur distribution ratio was 14.64, and the amount of S contained in the granular iron could be reduced to 0.059% by mass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [実験例2]
 本実験例では、核部の表面に形成する被覆層の厚みを変えた塊成物を製造し、これを加熱炉で加熱し、得られた粒状鉄の再酸化が抑えられているかどうかを調べた。
[Experiment 2]
In this experimental example, an agglomerate with a different thickness of the coating layer formed on the surface of the core is manufactured, and this is heated in a heating furnace to check whether reoxidation of the obtained granular iron is suppressed. It was.
 まず、上記実験例1の手順に従って、核部の表面に、被覆層の厚みを変えて被覆層を形成した生ペレットを製造した。被覆層を形成した核部を切断し、断面を光学顕微鏡で観察して被覆層の厚みを確認した。その結果、被覆層の平均厚みは0.30~2.00mmであった。 First, according to the procedure of Experimental Example 1 above, raw pellets having a coating layer formed on the surface of the core by changing the thickness of the coating layer were manufactured. The core portion where the coating layer was formed was cut, and the cross section was observed with an optical microscope to confirm the thickness of the coating layer. As a result, the average thickness of the coating layer was 0.30 to 2.00 mm.
 核部の表面に被覆層を形成して得られた生ペレットは、乾燥機に装入し、160℃~180℃で約1.0時間加熱して付着水を除去し、球状の乾燥ペレット(即ち、塊成物)とした。 The raw pellets obtained by forming a coating layer on the surface of the core part are charged into a dryer, heated at 160 ° C. to 180 ° C. for about 1.0 hour to remove adhering water, and spherical dried pellets ( That is, it was set as the agglomerate.
 次に、球状の乾燥ペレットを、約1450℃に保持した加熱炉(実験炉)に装入して加熱し、乾燥ペレット中の酸化鉄を還元、溶融した。加熱炉内の雰囲気は、実機を模擬して、高酸化性雰囲気とした。具体的には、二酸化炭素を40体積%、窒素を60体積%含む混合ガス雰囲気とした。その結果、上記乾燥ペレットを加熱炉へ装入すると、被覆層は膨張し、核部の周囲には、被覆層に含まれる炭材がコークス化して花弁状の外殻が形成された。この花弁状の外殻の高さは、サンプル毎に異なっていたが、いずれも雰囲気ガスが核部に接触するのを防ぐ防風壁として作用していた。 Next, the spherical dry pellets were charged in a heating furnace (experimental furnace) maintained at about 1450 ° C. and heated to reduce and melt the iron oxide in the dry pellets. The atmosphere in the heating furnace was made to be a highly oxidizing atmosphere by simulating an actual machine. Specifically, a mixed gas atmosphere containing 40% by volume of carbon dioxide and 60% by volume of nitrogen was used. As a result, when the dried pellets were charged into a heating furnace, the coating layer expanded, and the carbonaceous material contained in the coating layer was coke around the core to form a petal-like outer shell. The height of the petal-like outer shell was different for each sample, but all acted as a wind barrier preventing atmospheric gas from contacting the core.
 加熱炉内で、酸化鉄を還元、溶融した後、得られた粒状鉄を炉外へ排出して粒状鉄を回収した。このとき粒状鉄の生成時に副生したスラグも併せて回収した。得られた粒状鉄およびスラグの成分組成を下記表5に示す。 After reducing and melting iron oxide in a heating furnace, the obtained granular iron was discharged out of the furnace to recover the granular iron. At this time, slag produced as a by-product during the production of granular iron was also collected. The component composition of the obtained granular iron and slag is shown in Table 5 below.
 一方、下記表5には、比較例として、表面に被覆層を形成していない生ペレットをそのまま乾燥機に装入し、表面に被覆層を形成した場合と同じ条件で乾燥して球状の乾燥ペレットを製造した。 On the other hand, in Table 5 below, as a comparative example, raw pellets with no coating layer formed on the surface were charged into a dryer as they were and dried under the same conditions as when the coating layer was formed on the surface, and dried in a spherical shape. Pellets were produced.
 得られた球状の乾燥ペレットを、表面に被覆層を形成した場合と同じ条件で加熱し、乾燥ペレット中の酸化鉄を還元、溶融した。得られた粒状鉄およびスラグの成分組成を下記表5に示す。 The obtained spherical dry pellets were heated under the same conditions as when the coating layer was formed on the surface, and the iron oxide in the dry pellets was reduced and melted. The component composition of the obtained granular iron and slag is shown in Table 5 below.
 また、下記表5には、粒状鉄に含まれるS量[S]に対する、スラグに含まれるS量(S)の比(硫黄分配比)を算出し、併せて示した。 Also, in Table 5 below, the ratio (sulfur distribution ratio) of the S amount (S) contained in the slag to the S amount [S] contained in the granular iron was calculated and shown together.
 下記表5に基づいて次のように考察できる。 Based on Table 5 below, it can be considered as follows.
 No.8は、核部の表面に被覆層を形成していないため、還元して得られた粒状鉄の再酸化を防止できず、スラグに含まれるFeO量が6.53質量%と多くなり、硫黄分配比が1.56と小さくなった。その結果、粒状鉄に含まれるS量は、0.171質量%と高くなり、粒状鉄の品質を改善できなかった。 No. No. 8 does not form a coating layer on the surface of the core part, so it cannot prevent reoxidation of granular iron obtained by reduction, and the amount of FeO contained in the slag increases to 6.53% by mass. The distribution ratio was as small as 1.56. As a result, the amount of S contained in the granular iron was as high as 0.171% by mass, and the quality of the granular iron could not be improved.
 これに対し、No.1~7は、核部の表面に被覆層を形成したため、塊成物に含まれる酸化鉄を還元して得られた還元鉄や粒状鉄が加熱炉内において再酸化するのを防止でき、スラグに含まれるFeO量が0.18~2.23質量%と少なくなり、硫黄分配比は、41.64~2.96と大きくなった。その結果、粒状鉄に含まれるS量は、0.022~0.139質量%と低くなり、粒状鉄の品質を改善できた。また、表5から明らかなように、被覆層の厚みを大きくするほど、スラグに含まれるFeO量は少なくなり、硫黄分配比は、大きくなる傾向が読み取れる。従って被覆層の厚みを大きくするほど、粒状鉄に含まれるS量は低減できることが分かる。特にNo.1~6については、粒状鉄に含まれるS量を0.120質量%以下に抑えることが可能であった。 On the other hand, No. In Nos. 1 to 7, since a coating layer was formed on the surface of the core, reduced iron and granular iron obtained by reducing iron oxide contained in the agglomerate can be prevented from being re-oxidized in the heating furnace. The amount of FeO contained in the steel was reduced to 0.18 to 2.23 mass%, and the sulfur distribution ratio was increased to 41.64 to 2.96. As a result, the amount of S contained in the granular iron was as low as 0.022 to 0.139% by mass, and the quality of the granular iron could be improved. Further, as is apparent from Table 5, it can be seen that as the thickness of the coating layer increases, the amount of FeO contained in the slag decreases and the sulfur distribution ratio tends to increase. Therefore, it can be seen that the amount of S contained in the granular iron can be reduced as the thickness of the coating layer is increased. In particular, no. For 1 to 6, it was possible to suppress the amount of S contained in the granular iron to 0.120% by mass or less.
 一方、核部の表面に被覆層を形成していないNo.8では、粒状鉄に含まれる炭素量は、2.49質量%と低い値となったが、核部の表面に被覆層を形成したNo.1~7では、粒状鉄に含まれる炭素量は、2.65~3.52質量%と高くなり、核部の表面に被覆層を形成することによって、粒状鉄の品質を改善できることが分かる。 On the other hand, No. with no coating layer formed on the surface of the core. In No. 8, the amount of carbon contained in the granular iron was a low value of 2.49% by mass, but No. 8 in which a coating layer was formed on the surface of the core part. In Nos. 1 to 7, the amount of carbon contained in the granular iron is as high as 2.65 to 3.52% by mass, and it can be seen that the quality of the granular iron can be improved by forming a coating layer on the surface of the core.
 なお、被覆層の平均厚みが大きくなるほど、加熱還元処理後に形成されている花弁状の外殻の高さは高く維持される傾向があることが分かった。 It has been found that the higher the average thickness of the coating layer, the higher the height of the petal-like outer shell formed after the heat reduction treatment.
 被覆層の厚みを変えたときに、塊成物を加熱している間に形成され、粒状鉄が得られた後に残存している花弁状の壁面の高さを示した模式図を図8に示す。図8の(1)は、被覆層の平均厚みが、例えば、1.30~2.00mmの場合を示している。図8の(2)は、被覆層の平均厚みが、例えば、0.80~1.20mmの場合を示している。図8の(3)は、被覆層の平均厚みが、例えば、0.60~0.80mmの場合を示している。図8の(4)は、被覆層の平均厚みが、例えば、0.30mm超0.50mm以下の場合を示している。図8において、2は被覆層、6は粒状鉄、7はスラグを夫々示している。 FIG. 8 is a schematic diagram showing the height of the petal-like wall surface that is formed while the agglomerate is heated and the granular iron is obtained when the thickness of the coating layer is changed. Show. (1) in FIG. 8 shows a case where the average thickness of the coating layer is, for example, 1.30 to 2.00 mm. (2) in FIG. 8 shows a case where the average thickness of the coating layer is, for example, 0.80 to 1.20 mm. (3) in FIG. 8 shows a case where the average thickness of the coating layer is, for example, 0.60 to 0.80 mm. (4) of FIG. 8 shows a case where the average thickness of the coating layer is, for example, more than 0.30 mm and 0.50 mm or less. In FIG. 8, 2 shows a coating layer, 6 shows granular iron, and 7 shows slag.
 また、表5に示したNo.4を加熱還元処理した直後に撮影した図面代用写真を図9の(1)に示す。表5に示したNo.5を加熱還元処理した直後に撮影した図面代用写真を図9の(2)に示す。表5に示したNo.6を加熱還元処理した直後に撮影した図面代用写真を図9の(3)に示す。 In addition, No. shown in Table 5 FIG. 9 (1) shows a drawing-substituting photograph taken immediately after the heat reduction treatment of 4. No. shown in Table 5 FIG. 9 (2) shows a drawing-substituting photograph taken immediately after the heat reduction treatment of 5. No. shown in Table 5 FIG. 9 (3) shows a drawing-substituting photograph taken immediately after heat reduction treatment of 6.
 また、No.7に示した被覆層の平均厚みが0.30mmの場合は、小規模のスラグフォーミングが発生していたが、No.6に示した被覆層の平均厚みが0.50mmの場合は、スラグフォーミングの発生は認められなかった。一方、No.8に示した核部の表面に被覆層を形成しない場合は、極めて激しいスラグフォーミングが発生していた。 Also, No. When the average thickness of the coating layer shown in FIG. 7 was 0.30 mm, small-scale slag foaming occurred. When the average thickness of the coating layer shown in FIG. 6 was 0.50 mm, no slag foaming was observed. On the other hand, no. When a coating layer was not formed on the surface of the core shown in FIG. 8, extremely severe slag forming occurred.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [実験例3]
 本実験例では、核部の表面に形成する被覆層に配合する炭材として、流動性を有さないものを用いて塊成物を製造し、これを加熱炉で加熱し、得られた粒状鉄の再酸化が抑えられているかどうかを調べた。
[Experiment 3]
In this experimental example, as the carbon material to be blended in the coating layer formed on the surface of the core part, an agglomerate is produced using a material having no fluidity, and this is heated in a heating furnace, and the obtained granular material It was investigated whether iron reoxidation was suppressed.
 まず、上記実験例1の手順に従って、核部の表面に、平均厚みが0.50mmの被覆層を形成した生ペレットを製造した。このとき流動性を有する瀝青炭の代わりに、流動性を有しない炭材として無煙炭を用いた。この無煙炭の成分組成を下記表6に示す。 First, according to the procedure of Experimental Example 1, raw pellets having a coating layer having an average thickness of 0.50 mm were manufactured on the surface of the core. At this time, anthracite coal was used as a charcoal material having no fluidity instead of the bituminous coal having fluidity. The component composition of the anthracite coal is shown in Table 6 below.
 次に、表面に被覆層を形成した生ペレットを乾燥機に装入し、160℃~180℃で約1.0時間加熱して付着水を除去し、球状の乾燥ペレット(即ち、塊成物)とした。 Next, the raw pellets having a coating layer formed on the surface are charged into a dryer and heated at 160 ° C. to 180 ° C. for about 1.0 hour to remove adhering water, and spherical dry pellets (ie, agglomerates) ).
 次に、被覆層を形成していない球状の乾燥ペレットと、被覆層を形成した球状の乾燥ペレットを、夫々、約1450℃に保持した加熱炉(実験炉)に装入して加熱し、乾燥ペレット中の酸化鉄を還元、溶融した。 Next, the spherical dry pellets without the coating layer and the spherical dry pellets with the coating layer are charged in a heating furnace (experimental furnace) maintained at about 1450 ° C. and heated to dry. The iron oxide in the pellet was reduced and melted.
 加熱炉内の雰囲気は、実機を模擬して、高酸化性雰囲気とした。具体的には、二酸化炭素を40体積%、窒素を60体積%含む混合ガス雰囲気とした。 The atmosphere in the heating furnace was made to be a highly oxidizing atmosphere by simulating an actual machine. Specifically, a mixed gas atmosphere containing 40% by volume of carbon dioxide and 60% by volume of nitrogen was used.
 その結果、上記乾燥ペレットを加熱炉へ装入すると、被覆層は膨張したが、亀甲状に割れ、薄い破片として核部の上に堆積し、コークスによる花弁状の外殻は形成されなかった。核部の上に堆積した破片は、時間の経過とともに核部の周辺に落下し、核部の頂部は、雰囲気ガスに曝される結果となった。 As a result, when the dried pellets were charged into a heating furnace, the coating layer expanded, but cracked like a tortoiseshell and deposited on the core as thin fragments, and no petal-like outer shell was formed by coke. The debris deposited on the core part fell to the periphery of the core part as time passed, and the top part of the core part was exposed to the atmospheric gas.
 加熱炉内で、酸化鉄を還元、溶融した後、得られた粒状鉄を炉外へ排出して粒状鉄を回収した。このとき粒状鉄の生成時に副生したスラグも併せて回収した。得られた粒状鉄およびスラグの成分組成を下記表7に示す。 After reducing and melting iron oxide in a heating furnace, the obtained granular iron was discharged out of the furnace to recover the granular iron. At this time, slag produced as a by-product during the production of granular iron was also collected. The composition of the obtained granular iron and slag is shown in Table 7 below.
 また、下記表7には、粒状鉄に含まれるS量[S]に対する、スラグに含まれるS量(S)の比(硫黄分配比)を算出し、併せて示した。 Further, in Table 7 below, the ratio (sulfur distribution ratio) of the S amount (S) contained in the slag to the S amount [S] contained in the granular iron was calculated and shown together.
 表7に基づいて次のように考察できる。核部の表面に被覆層を形成した場合であっても、該被覆層に配合する炭材が、流動性を有しない場合は、塊成物を加熱還元して得られた還元鉄や、該還元鉄が溶融、凝集して得られた粒状鉄の再酸化を防止できず、スラグに含まれるFeO量を低減できないことが分かる。その結果、硫黄分配比が小さくなり、粒状鉄に含まれる硫黄量は高くなり、品質を改善できないことが分かる。 Based on Table 7, it can be considered as follows. Even when a coating layer is formed on the surface of the core, if the carbonaceous material blended in the coating layer does not have fluidity, reduced iron obtained by heating and reducing the agglomerate, It can be seen that reoxidation of granular iron obtained by melting and agglomerating reduced iron cannot be prevented, and the amount of FeO contained in slag cannot be reduced. As a result, it is understood that the sulfur distribution ratio is reduced, the amount of sulfur contained in the granular iron is increased, and the quality cannot be improved.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 1 核部
 2 被覆層
 3 塊成物
 4 還元鉄
 6 粒状鉄
 7 スラグ
1 Core 2 Covering Layer 3 Agglomerate 4 Reduced Iron 6 Granular Iron 7 Slag

Claims (10)

  1.  酸化鉄および炭素質還元剤を含む塊成物を移動床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元、溶融した後、得られた粒状鉄を炉外へ排出して回収する粒状鉄の製造方法であって、
     前記塊成物は、表面に、流動性を有する炭材を含む被覆層を有していることを特徴とする粒状鉄の製造方法。
    An agglomerate containing iron oxide and a carbonaceous reducing agent is charged on the hearth of a moving bed type heating furnace and heated, and the iron oxide in the agglomerate is reduced and melted. A method for producing granular iron that is discharged outside the furnace and collected.
    The said agglomerate has the coating layer containing the carbonaceous material which has fluidity | liquidity on the surface, The manufacturing method of the granular iron characterized by the above-mentioned.
  2.  前記炭材は、瀝青炭、亜瀝青炭、および褐炭よりなる群から選ばれる少なくとも1種である請求項1に記載の製造方法。 The production method according to claim 1, wherein the carbon material is at least one selected from the group consisting of bituminous coal, subbituminous coal, and lignite.
  3.  前記被覆層の平均厚みは、0.30mm超である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein an average thickness of the coating layer is more than 0.30 mm.
  4.  前記塊成物は、
     第1の造粒機で酸化鉄および炭素質還元剤を含む混合物を塊成化して核部を形成した後、
     得られた核部の表面に、流動性を有する炭材を含む被覆層を第2の造粒機で形成したものである請求項1に記載の製造方法。
    The agglomerates are
    After agglomerating the mixture containing iron oxide and carbonaceous reducing agent in the first granulator to form the core,
    The manufacturing method according to claim 1, wherein a coating layer containing a fluid carbon material is formed on the surface of the obtained core by a second granulator.
  5.  前記塊成物を加熱している間は、前記被覆層の頂部が前記粒状鉄の頂部よりも低くならない請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the top of the coating layer does not become lower than the top of the granular iron while the agglomerate is heated.
  6.  前記被覆層は、前記塊成物を加熱している間に殻状のコークスとなる請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the coating layer becomes a shell-like coke while the agglomerate is heated.
  7.  前記塊成物は、前記炉床上に1層となるように装入する請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the agglomerates are charged in a single layer on the hearth.
  8.  前記塊成物を前記炉床上に装入するに先立って、該炉床上に炭素質還元剤を敷く請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein a carbonaceous reducing agent is laid on the hearth prior to charging the agglomerate onto the hearth.
  9.  前記粒状鉄は、C量が2.5質量%以上である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the granular iron has a C content of 2.5% by mass or more.
  10.  前記粒状鉄は、S量が0.120質量%以下である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the granular iron has an S content of 0.120% by mass or less.
PCT/JP2014/071534 2013-09-25 2014-08-18 Method for manufacturing granular iron WO2015045670A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480051885.6A CN105555973A (en) 2013-09-25 2014-08-18 Method for manufacturing granular iron
US15/024,481 US20160237514A1 (en) 2013-09-25 2014-08-18 Method for manufacturing iron nuggets
ZA2016/01918A ZA201601918B (en) 2013-09-25 2016-03-18 Method for manufacturing granular iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-198980 2013-09-25
JP2013198980A JP2015063740A (en) 2013-09-25 2013-09-25 Method for producing granular iron

Publications (1)

Publication Number Publication Date
WO2015045670A1 true WO2015045670A1 (en) 2015-04-02

Family

ID=52742824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071534 WO2015045670A1 (en) 2013-09-25 2014-08-18 Method for manufacturing granular iron

Country Status (5)

Country Link
US (1) US20160237514A1 (en)
JP (1) JP2015063740A (en)
CN (1) CN105555973A (en)
WO (1) WO2015045670A1 (en)
ZA (1) ZA201601918B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447157A4 (en) * 2016-04-22 2020-03-18 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
JP2020527192A (en) * 2017-07-10 2020-09-03 中冶南方工程技術有限公司 Method of manufacturing metallic iron
US11608543B2 (en) 2016-04-27 2023-03-21 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7540199B2 (en) 2020-05-26 2024-08-27 住友金属鉱山株式会社 Method for preparing molten raw material and method for recovering valuable metals
JP7540198B2 (en) 2020-05-26 2024-08-27 住友金属鉱山株式会社 Method for preparing molten raw material and method for recovering valuable metals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235575A (en) * 2008-03-05 2009-10-15 Jfe Steel Corp Method and apparatus for charging raw material into movable-type hearth furnace
JP2010285684A (en) * 2009-05-14 2010-12-24 Kobe Steel Ltd Method for producing agglomerated ore including carbonaceous material to be used for vertical furnace
JP2011032534A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing surface-coated iron ore

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241853A (en) * 2001-02-13 2002-08-28 Nippon Steel Corp Non-burning agglomerate for blast furnace
US8470068B2 (en) * 2004-12-07 2013-06-25 Nu-Iron Technology, Llc Method and system for producing metallic iron nuggets
JP2008214715A (en) * 2007-03-06 2008-09-18 Jfe Steel Kk Method for manufacturing nonfired agglomerated ore for iron manufacture
JP5503420B2 (en) * 2010-06-07 2014-05-28 株式会社神戸製鋼所 Method for producing granular metal
US8869896B2 (en) * 2011-05-13 2014-10-28 Baker Hughes Incorporated Multi-position mechanical spear for multiple tension cuts while removing cuttings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235575A (en) * 2008-03-05 2009-10-15 Jfe Steel Corp Method and apparatus for charging raw material into movable-type hearth furnace
JP2010285684A (en) * 2009-05-14 2010-12-24 Kobe Steel Ltd Method for producing agglomerated ore including carbonaceous material to be used for vertical furnace
JP2011032534A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing surface-coated iron ore

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447157A4 (en) * 2016-04-22 2020-03-18 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
AU2017253321B2 (en) * 2016-04-22 2020-06-25 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
EP3778938A1 (en) * 2016-04-22 2021-02-17 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
US11479832B2 (en) 2016-04-22 2022-10-25 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
US11608543B2 (en) 2016-04-27 2023-03-21 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method
JP2020527192A (en) * 2017-07-10 2020-09-03 中冶南方工程技術有限公司 Method of manufacturing metallic iron

Also Published As

Publication number Publication date
US20160237514A1 (en) 2016-08-18
CN105555973A (en) 2016-05-04
JP2015063740A (en) 2015-04-09
ZA201601918B (en) 2017-06-28

Similar Documents

Publication Publication Date Title
KR100457896B1 (en) Method for producing reduced iron
WO2015045670A1 (en) Method for manufacturing granular iron
US10301704B2 (en) Method for smelting saprolite ore
US10144981B2 (en) Process for manufacturing reduced iron agglomerates
JP6294152B2 (en) Manufacturing method of granular metallic iron
JP6014009B2 (en) Method for producing reduced iron
JP2009270193A (en) Method for producing granular metallic iron
WO2014129282A1 (en) Method for manufacturing reduced iron
JP6235439B2 (en) Manufacturing method of granular metallic iron
JP6043271B2 (en) Method for producing reduced iron
JP5210555B2 (en) Manufacturing method of granular metallic iron
JP2013221187A (en) Method for producing agglomerate
JP2015209570A (en) Production method of reduced iron
WO2014034589A1 (en) Method for producing reduced iron agglomerates
JP5042203B2 (en) Production of granular metallic iron
WO2014065240A1 (en) Process for manufacturing reduced iron
JP6294135B2 (en) Method for producing reduced iron
JP2015101740A (en) Method for manufacturing reduced iron
JP2014181369A (en) Method of producing reduced iron
JP2015074809A (en) Method for producing granular metal iron
JP2001348622A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP6250482B2 (en) Manufacturing method of granular metallic iron
JP2014167164A (en) Method for manufacturing reduced iron
JP2015196900A (en) Method for manufacturing reduced iron
JPS58210109A (en) Production of low sulfur reduced iron

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051885.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15024481

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016115723

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016/0384.1

Country of ref document: KZ

122 Ep: pct application non-entry in european phase

Ref document number: 14849064

Country of ref document: EP

Kind code of ref document: A1