WO2015045252A1 - Refrigeration device for container - Google Patents
Refrigeration device for container Download PDFInfo
- Publication number
- WO2015045252A1 WO2015045252A1 PCT/JP2014/004052 JP2014004052W WO2015045252A1 WO 2015045252 A1 WO2015045252 A1 WO 2015045252A1 JP 2014004052 W JP2014004052 W JP 2014004052W WO 2015045252 A1 WO2015045252 A1 WO 2015045252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inverter box
- box
- inverter
- condenser
- air
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/006—Cooling of compressor or motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to a container refrigeration apparatus, and more particularly to a heat dissipation structure of an inverter box provided for variable capacity control of a compressor.
- a container refrigeration apparatus is used to cool the inside of a container used for marine transportation or the like (see, for example, Patent Document 1).
- the container refrigeration apparatus is provided at the opening of the container with one end opened, and has a casing that closes the opening end of the container body.
- a storage space outside the container facing the outside of the container is formed in the lower part of the casing.
- a compressor, a condenser, an outside fan, and the like are housed in the outside storage space.
- the internal storage space is a space partitioned by a partition plate with respect to the internal space of the container.
- An internal fan, an evaporator, and the like are disposed in the internal storage space, and a ventilation path for the internal air is formed.
- the air in the container is guided to the ventilation path in the storage space by the internal fan, and is cooled when passing through the evaporator.
- the cooled air flows out of the ventilation path and is sent again into the container.
- the inside of the container is refrigerated or frozen by circulating the air while cooling it in the air passage.
- an inverter box (an electrical component box) that houses an inverter circuit that performs variable capacity control of a compressor is disposed in an external storage space.
- heat radiation fins are provided on the front and both sides (almost the entire surface except for the back) of the box case with a welded structure, and the heat generated in the AC reactor etc. connected to the inverter circuit is used as outside air. It is possible to release.
- the present invention has been made in view of such problems, and an object thereof is to improve the heat dissipation performance of the inverter box of the container refrigeration apparatus, and to reduce the cost and make it compact.
- 1st invention is equipped with the casing (13) with which a container main body (1) is mounted
- a variable capacity compressor (20) for sending refrigerant to the condenser (21) and an inverter box (15) containing an inverter circuit (46) for controlling the variable capacity compressor (20) are arranged.
- the inverter box (15) has heat radiation fins (32) formed on the outer surface of the box case (31), and the heat radiation fins (32) are connected to the condenser (21 ) Is arranged in an air passage (37) formed so that air passing therethrough flows.
- the air that is blown by the outside fan (25) and passes through the condenser (21) passes through the heat radiation fin (32) disposed in the air passage (37).
- the air passage (37) is not provided in the portion where the radiating fin (32) is arranged, the wind speed is slow, whereas in the present invention, the radiating fin (32) is caused to flow through the air passage (37).
- the wind speed of the passing air increases. Therefore, heat dissipation from the inverter box (15) is promoted.
- heat dissipation of the inverter box (15) is promoted, the electronic component mounted on the inverter board is less likely to be affected by heat.
- the air passage (37) is defined by a component member (13c) of the casing (13) and a component member (31a, 31d) of the inverter box (15). It is characterized by having.
- the air that is blown by the outside fan (25) and passes through the condenser (21) is converted into the component (13c) of the casing (13) and the component (31a, 31d) of the inverter box (15). ),
- the heat radiation from the inverter box (15) is promoted by passing through the heat radiation fins (32) in the air passage (37) defined by the above.
- a pair of support portions (34) projecting outward from the outer surface of the inverter box (15) is formed on the outer surface of the inverter box (15).
- the inverter box (15) is installed on the installation surface (13a) of the external storage space (S1), and the space between the installation surface (13a) and the outer surface of the inverter box (15) is the air passage. (37) It is characterized in that it constitutes an air introduction path (37a) to the heat dissipating fin (32).
- the support portion (34) is provided on the side surface of the inverter box (15), and the installation surface (
- the space between the installation surface (13a) and the side surface of the inverter box (15) becomes the air introduction path (37a).
- a support portion (34) is provided on the upper surface of the inverter box (15), and the inverter box (15a) is installed on the installation surface (13a).
- the outside air formed by the outside fan (25) passes from the introduction path (37a) through the heat dissipating fin (32) in the air passage (37) and from the heat dissipating fin (32) to the inverter box (15 )
- a pair of support legs (34) projecting downward from the lower surface of the inverter box (15) are formed in the lower part of the inverter box (15).
- the inverter box (15) is installed on the installation surface (13a) of the external storage space (S1), and the space between the installation surface (13a) and the lower surface of the inverter box (15) is the air passage ( 37) It is characterized in that it constitutes an air introduction path (37a) to the heat dissipating fin (32) disposed in the interior.
- the support leg (34) is provided in the lower surface of the inverter box (15), if the bottom face of the outside storage space (S1) is used as the installation surface (13a), the installation surface (13a ) And the side surface of the inverter box (15) serves as the air introduction path (37a).
- the outside air formed by the outside fan (25) passes from the introduction path (37a) through the heat dissipating fin (32) in the air passage (37) and from the heat dissipating fin (32) to the inverter box (15 )
- the lower surface of the inverter box (15) is placed against the installation surface (13a) of the external storage space (S1) between the pair of support legs (34).
- An auxiliary support leg (34a) that is in contact is formed.
- the auxiliary support legs (34a) formed between the pair of support legs (34) on the lower surface of the inverter box (15) are provided when the inverter box (15) is installed in the external space. Support. Since the inverter box (15) is supported by the auxiliary support legs (34a), the stability of the inverter box (15) is increased, and the strength when the inverter box (15) is subjected to shock and transportation vibration is also high. Become. In addition, if the auxiliary support leg (34a) is configured as a member that is continuous with the heat radiating fin (32), a heat radiating effect can be obtained even at that portion, so that an effect of improving the heat radiating performance can be realized.
- the condenser (21) is disposed below the external fan (25), and the inverter box (15)
- the fin (32) is arranged facing the depth surface (13c) of the external storage space (S1), and the radiating fin (32) is an air suction side and an external fan on the back side of the external fan (25). It is arranged to be located below (25).
- the external fan (25) sucks air from the back side (the back side of the external storage space (S1)), and the condenser (21) is placed below the external fan (25).
- the wind speed is fastest below the rear side of the external fan (25).
- the heat dissipating fins (32) of the inverter box (15) are arranged below the back side of the external fan (25), it is possible to increase the air speed by increasing the air speed of the external air. Heat dissipation performance can be obtained.
- the inverter box (15) is arranged on the upstream side of the air flow with respect to the condenser (21), and the inverter box (15 ), A duct member (38) connected to the air passage (37) is disposed between the heat dissipating fin (32) and the condenser (21).
- the outside air that has passed through the air passage (37) flows into the duct member (38) provided between the heat dissipating fin (32) of the inverter box (15) and the condenser (21). ) And further through the condenser (21).
- the inverter box (15) includes an AC reactor (45) connected to the inverter circuit (46) at an upper portion of an internal space. It is characterized by being arranged.
- the AC reactor (45) is a heat generating component, and since this heat generating component is provided in the upper part of the internal space of the inverter box (15), the heat of the AC reactor (45) decreases downward. It is difficult to follow. Therefore, even if parts having low heat resistance are used as parts arranged below the AC reactor (45) in the inverter box (15), the influence of heat on these low heat resistance parts can be suppressed.
- the inverter box (15) includes a partition plate (39) that divides the internal space vertically, and the AC reactor (45) is disposed above the partition plate (39). It is characterized by being arranged.
- the AC reactor (45) in the inverter box (15) is disposed above the partition plate (39), the AC reactor (45) is less likely to drop in heat, and the inverter The influence of heat on the parts arranged below the AC reactor (45) in the box (15) can be more reliably suppressed.
- the heat dissipating fins (32 ) Heat dissipation performance is improved.
- heat dissipation from the inverter box (15) is promoted, making it difficult for the electronic components mounted on the inverter board to be affected by heat, eliminating the need for highly heat-resistant components and reducing the cost of the inverter box (15). Is possible.
- the air passage (37) is defined by the component member (13c) of the casing (13) and the component member (31a, 31d) of the inverter box (15). It is not necessary to separately provide such parts as the apparatus, and the configuration of the apparatus can be simplified.
- the inverter box (15) having the support (34) on the outer surface (side surface or upper surface) is installed on the installation surface (13a) of the external storage space (S1). Since the introduction path (37a) (space) is formed between the surface (13a) and the outer surface of the inverter box (15), the flow of outside air formed by the outside fan (25) An effect is obtained in which the air passage (37) enters the air passage (37) from the passage (37a) and easily flows around the heat dissipating fin (32). And since the air outside a store
- the installation surface ( 13a) and the lower surface of the inverter box (15) form an introduction path (37a) (space), so the flow of outside air formed by the outside fan (25) 37a) can enter the air passage (37) and easily flow around the radiating fin (32). And since the air outside a store
- the stability of the inverter box (15) is improved and only the pair of support legs (34) is provided. Even in the state where the center part is bent due to shock and transportation vibration, the strength is improved, so that the problem of bending can be prevented.
- the auxiliary support leg (34a) as a member that is continuous with the heat dissipating fin (32), it is possible to improve heat dissipation.
- the condenser (21) is arranged below the outdoor fan (25) in such a configuration that the outdoor fan (25) sucks air from the back side (back side) in the container refrigeration apparatus. Since the heat dissipating fins (32) of the inverter box (15) are located below the rear side of the fan (25) outside the box where the wind speed is the fastest in the case, high heat dissipation performance is achieved by increasing the air speed of the outside air Can be obtained.
- the duct member (38) is provided between the heat dissipating fin (32) of the inverter box (15) and the condenser (21), and the outside air is connected to the duct member (38). Since it flows, it is possible to prevent air from leaking between the heat dissipating fin (32) of the inverter box (15) and the condenser (21).
- the AC reactor (45) which is a heat generating component, is provided on the top of the inverter box (15) to suppress the heat from falling, so that the AC in the inverter box (15) is reduced.
- This makes it possible to place components with low heat resistance below the reactor (45). Since parts having low heat resistance can be used in this way, the cost of the inverter box (15) can be reduced.
- the AC reactor (45) in the inverter box (15) is arranged above the partition plate (39) so that the heat of the AC reactor is less likely to decrease.
- the influence of heat on the parts disposed below the AC reactor (45) in the inverter box (15) can be more reliably suppressed. For this reason, it becomes easy to arrange
- FIG. 1 is a schematic longitudinal sectional view of a container refrigeration apparatus and a container body according to an embodiment of the present invention.
- FIG. 2 is a schematic perspective view of the container refrigeration apparatus of FIG. 1 viewed from the outside.
- FIG. 3 is a perspective view of the inverter box as viewed from the front.
- FIG. 4 is a perspective view of the inverter box as viewed from the back.
- FIG. 5 is a partially enlarged detailed sectional view of FIG.
- FIG. 6 is a perspective view of the duct member.
- FIG. 7 is a perspective view showing the inverter box with the front cover removed.
- FIG. 8 is a schematic cross-sectional view in which the internal structure in a state where the inverter box is installed in the container refrigeration apparatus is omitted.
- FIG. 9 is a schematic perspective view of a container refrigeration apparatus according to a modification of the embodiment viewed from the outside.
- FIG. 1 is a schematic vertical sectional view of a container refrigeration apparatus and a container main body according to an embodiment of the present invention
- FIG. 2 is a schematic perspective view of the container refrigeration apparatus shown in FIG.
- This container refrigeration apparatus (10) cools the inside of a container used for maritime transportation or the like.
- the container refrigeration apparatus (10) includes a compressor (20), a condenser (21), an expansion valve (not shown), and an evaporator (23), and performs a refrigeration cycle operation (not shown). )).
- the container refrigeration apparatus (10) also serves as a lid that is attached to the end of the container body (1) and closes the opening surface of the end.
- the casing (13) of the container refrigeration apparatus (10) is provided on the casing body (11) that partitions the outside of the container that is outside the container and the inside of the container that is inside the container, and the back surface (inside of the container) of the casing (13). Provided with a partition plate (14) and the like.
- the casing main body (11) is formed in a double structure of an inner casing (11a) made of aluminum and an outer casing (11b) made of FRP (fiber reinforced plastic). And the heat insulation layer (11c) which consists of a foaming agent is formed between the said inner casing (11a) and the outer casing (11b).
- a bulging portion (12) bulging to the inside of the cabinet is formed at the lower part of the casing body (11). And while the internal space (space outside the warehouse) of the bulging part (12) is configured as an external storage space (S1), the bulging part (12) An internal storage space (S2) located above is formed.
- the external storage space (S1) stores a compressor (20), a condenser (21), and an external fan (25), as well as an inverter box (electric component box) (15) and a control box (16 ) Is stored.
- the condenser (21) is disposed above the bottom surface (13a) of the external storage space (S1).
- the outside fan (25) forms an air flow passing through the condenser (21).
- the condenser (21) is disposed below the external fan (25).
- the compressor (20) sends out refrigerant to the condenser (21) and is installed on the installation surface of the external storage space (S1) (in this embodiment, the bottom surface of the external storage space (S1)) (13a) Has been.
- the evaporator (23) and the internal fan (26) are attached to the internal storage space (S2).
- the internal fan (26) supplies the internal air to the evaporator (23), and the evaporator (23) cools the internal air by the refrigerant flowing through the heat transfer tubes taking heat from the internal air.
- the internal air flow path (S3) through which internal air flows.
- the upper end of the internal air flow path (S3) communicates with the internal storage space (S2), while the lower end communicates with the internal storage space.
- the compressor (20) has a motor (not shown) that drives the compression mechanism.
- the rotation speed of the motor of the compressor (20) is controlled in multiple stages by an inverter. That is, the compressor (20) is a variable capacity compressor that is configured to have a variable operating rotational speed.
- the inverter circuit board (46) and the like (see FIG. 7, etc.) connected to the compressor (20) to control the variable capacity of the compressor are accommodated in the inverter box (15).
- FIGS. 3 is a perspective view of the inverter box (15) seen from the front
- FIG. 4 is a perspective view seen from the back
- FIG. 5 is an enlarged cross-sectional view of the main part of the container refrigeration apparatus
- FIG. 6 is a perspective view of the duct member.
- 7 is a perspective view showing the inverter box with the front cover removed
- FIG. 8 is a schematic cross-sectional view of the container refrigeration apparatus with the internal structure omitted with the inverter box installed.
- the inverter box (15) has a box case (31) and a front cover (41).
- the box case (31) is a die-cast aluminum part, and as shown in FIG. 5, a substantially rectangular back plate (31a), a top plate (31b) connected to the four sides of the back plate (31a), and a bottom plate (31c) and left and right side plates (31d), which are integrally formed.
- the back plate (31a) and the top plate (31b) of the box case (31) are integrally formed with heat radiation fins (32, 33) on the outer surface.
- the radiating fin (back plate side radiating fin) (32) of the back plate (31a) extends in the vertical direction of the box case (31), and the radiating fin (top plate side radiating fin) of the top plate (31b). (33) extends in the front-rear direction of the box case (31).
- the rear edge of the back plate side radiating fin (32) and the rear edge of the left and right side plates (31d, 31d) are substantially aligned with each other, and the depth of the casing (13) It is almost in contact with the surface (13a).
- FIG. 8 is a simplified diagram showing the number of the rear side heat radiation fins (32) smaller than the actual number.
- a pair of support legs (support portions) (34) projecting downward from the lower surface of the inverter box (15) is formed in the lower portion of the inverter box (15).
- the attachment part (35) for attaching an inverter box (15) to the bulging part (12) of a casing (13) is provided in the upper part of the both-sides board (31d) of an inverter box (15).
- the inverter box (15) is a bottom surface (S1) of the external storage space (S1) formed in the casing (13) of the container refrigeration system by the bolts that pass through these support legs (34) and the mounting portion (35). It is fixed to the installation surface (13a) and is located below the condenser (21) (on the upstream side of the air flow with respect to the condenser (21)).
- a protruding piece (36) is formed on the upper side of the mounting portion (35) of the left and right side plates (31d) so as to protrude to the back side of the inverter box (15).
- the protruding piece (36) is formed along the recess (13b) formed in the casing (13) of the container refrigeration apparatus.
- the rear edges of the side plates (31d) located at the left and right ends in FIG. 8 are in contact with the depth surface (13c) of the external storage space (S1) of the casing (13), and both side plates ( 31d) is disposed so that the back plate side radiation fin (32) located between the outer storage spaces (S1) faces the depth surface (13c).
- the outside fan (25) is located above the inverter box (15).
- the back plate side heat radiation fin (32) of the inverter box (15) is connected to the outside fan (25). It arrange
- an air passage (37) through which air passing through the condenser (21) flows is provided on the back side of the inverter box (15).
- the air passage (37) is defined by the back plate (31a), both side plates (31d) of the inverter box (15), and the depth surface (13c) of the casing (13).
- the side heat dissipating fins (32) are positioned in parallel between the side plates (31d) in the air passage (37).
- the support plate (34) is formed on the bottom plate (31c) of the inverter box (15), the bottom surface (installation surface) (13a) of the external storage space (S1) and the inverter box (15)
- a space is formed between the bottom plate (31c) as the lower surface. This space serves as an air introduction path (37a) to the back plate side radiation fin (32) disposed in the air passage (37).
- auxiliary support leg (34a) On the lower surface (bottom plate (31c)) of the inverter box (15), there is an auxiliary support leg (34a) that contacts the installation surface (13a) of the external storage space (S1) between the pair of support legs (34). ) Is formed.
- the auxiliary support legs (34a) are formed so as to support the inverter box (15) when the inverter box (15) is installed in the external storage space (S1). Further, by providing this auxiliary support leg (34a), the strength of the inverter box (15) with respect to impact / transport vibration is improved.
- the upper surface (top plate (31b)) of the inverter box (15) is located below the lower surface of the condenser (21). Between the top surface of the back plate-side radiating fin (32) of the inverter box (15) and the bottom surface of the condenser (21), the bottom surface (13a) of the external storage space (S1) and the condenser (21) A duct member (38) connected to the air passage (37) formed between the lower surface and the lower surface is disposed.
- This duct member (38) is a U-shaped member in plan view as shown in FIG. 6, and has a casing (13) whose open side faces the depth surface (13c) of the external storage space (S1). It is fixed to.
- the duct member (38) has a duct member main body (38a) which is a sheet metal part, and a buffer member (38b) integrally provided at the upper end of the duct member main body (38a).
- the buffer member (38b) is formed of an elastic member such as rubber or a bellows member. This is to protect the condenser (21) against the transportation vibration and impact of the container.
- the lower end of the duct member main body (38a) is located on the plane in contact with the protruding pieces (36) of the both side plates (31d) of the inverter box (15), while the upper end of the buffer member (38b) is the condenser ( 21) is in contact with the bottom surface.
- the duct member (38) closes the gap between the side plate (31d) and the condenser (21) constituting the air passage (37).
- FIG. 7 is a perspective view of the inverter box (15) with the front cover (41) removed from the box case (31).
- an AC reactor (45) connected to the inverter circuit is disposed in the inverter box (15) above the internal space.
- the inverter box (15) includes a partition plate (39) that divides the internal space vertically.
- the AC reactor (45) is disposed above the partition plate (39).
- An inverter substrate (46) and a noise filter substrate (47) are installed below the partition plate (39).
- heat transfer fins (40) are provided between the partition plate (39) and the inverter board (46 for absorbing heat in the inverter box (15) and transferring it to the outside of the box case (31). Yes.
- the AC reactor (45) which is the most heat generating component, is arranged at the upper end portion, and the inverter with a small degree of heat generation is provided below the partition plate (39).
- a substrate (46) and a noise filter substrate (47) are provided.
- the front cover (41) is made of sheet metal parts.
- the box case (31) is formed with a locking projection (42) for fastening the front cover (41).
- the front cover (41) which is a sheet metal part, has a bent portion (44) formed at the upper end, and the bent portion (44) has a locking protrusion (42) at a position corresponding to the locking protrusion (42). 42)
- a locking recess (43) for hooking onto 42) is formed.
- the front cover (41) has both edge portions (41a, 41a) fixed to the box case (31) by screws (48) and screw holes (48a).
- the locking protrusion (42) and the locking recess (43) are provided only on the upper surface side of the inverter box (15). For this reason, when the front cover (41) is turned upside down, the locking projection (42) and the locking recess (43) do not engage with each other.
- the screws (48) and screw holes (48a) for attaching the front cover (41) to the box case (31) are also designed so that their positions are not aligned when the front cover (41) is turned upside down. This prevents the front cover (41) from being attached to the box case (31) by mistake.
- packing (49) is provided on the contact surface between the box case (31) and the front cover (41).
- the inverter box (15) is hermetically sealed by the packing (49) by attaching the front cover (41) to the box case (31).
- ground wire (not shown) is fixed to the left end portion of the front cover (41) in FIG. 7, and the other end of this ground wire is the casing (13) of the container refrigeration apparatus (10). ). This prevents loss when the front cover (41) is removed from the box case (31).
- the operation is started by starting the compressor (20), the external fan (25), and the internal fan (26).
- the refrigerant discharged from the compressor (20) is sent to the condenser (21).
- the condenser (21) the refrigerant circulating inside exchanges heat with the outside air sent by the outside fan (25). As a result, the refrigerant dissipates heat to the outside air and condenses.
- the refrigerant condensed in the condenser (21) is depressurized by the expansion valve and then sent to the evaporator (23).
- the refrigerant circulating inside exchanges heat with the internal air sent by the internal fan (26).
- the refrigerant absorbs heat from the internal air and evaporates, and the internal air is cooled.
- the internal air flows into the internal storage space (S2) from the upper side of the partition plate (14) and passes through the evaporator (23). And after cooling with an evaporator (23), it returns to the inside from the lower side of a partition plate (14).
- the refrigerant evaporated in the evaporator (23) is sucked into the compressor (20) and compressed again.
- the air passage (37) is located below and on the back side of the external fan (25) in the external storage space (S1).
- the wind speed is the fastest at the lower position on the back side of the propeller of the external fan (25), and thus the wind speed of the air passing through the air passage (37) is fast in this embodiment. Therefore, the heat of the inverter box (15) is efficiently released.
- the heat dissipating performance of the heat dissipating fin (32) is improved.
- the heat dissipation of the inverter box (15) is promoted, and it is difficult for the electronic components such as capacitors mounted on the inverter board (46) to be affected by heat. 15) Cost reduction is possible.
- the inverter box (15) is made of aluminum die casting and the welding structure of the heat dissipating fins (32) to the box case (31) is abolished. Lightweight and compact.
- the air passage (37) includes the depth surface (13c) that is a component of the casing (13), the back plate (31a) that is a component of the inverter box (15), and both side plates (31d). Therefore, there is no need to separately provide parts such as a duct, and the configuration of the apparatus can be simplified.
- the installation surface (13a) is provided by installing the inverter box (15) having the support legs (34) on the lower surface on the installation surface (bottom surface) (13a) of the external storage space (S1). Since the introduction path (37a) (space) is formed between the inverter box (15) and the lower surface of the inverter box (15), the flow of outside air formed by the outside fan (25) is the introduction path (37a). Almost enters the air passage (37) and flows around the radiation fin (32). As described above, the outside air easily flows around the heat dissipating fins (32), so that the heat dissipating performance is also improved.
- the stability of the inverter box (15) is increased.
- the inverter box (15) has only a pair of support legs (34)
- the auxiliary support leg (34a) is a member that is continuous with the heat dissipating fin (32), an effect of improving heat dissipation can also be obtained.
- the container refrigeration apparatus (10) in the configuration in which the outside fan (25) sucks air from the back side, the lower part of the back side has the fastest wind speed. Therefore, in this embodiment, the outside fan (25)
- the heat dissipating fins (32) of the inverter box (15) are arranged below the rear side of the inverter. Therefore, in this embodiment, it is possible to further increase the heat dissipation effect by increasing the wind speed of the outside air.
- the duct member (38) is provided between the upper surface of the radiating fin (32) of the inverter box (15) and the lower surface of the condenser (21), and the duct member (38) is provided. Since the outside air flows, it is possible to prevent the air from leaking between the upper surface of the radiating fin (32) of the inverter box (15) and the lower surface of the condenser (21).
- the AC reactor (45) which is a heat generating component
- the AC reactor (45) is provided on the upper portion of the inverter box (15)
- the AC reactor (45) in the inverter box (15) is arranged above the partition plate (39), it is more difficult for the AC reactor to drop in heat. Therefore, it is possible to more reliably suppress the influence of heat on the components arranged below the AC reactor (45) in the inverter box (15). Therefore, since it becomes easy to arrange
- the front cover (41) of the inverter box (15) is connected to the casing (13) of the container refrigeration system (10) with a ground wire, when the front cover (41) is removed during maintenance, etc.
- the front cover (41) can be prevented from being lost.
- the directionality which attaches a front cover (41) to a box case (31) is defined, incorrect attachment can be prevented and workability at the time of attachment is also improved.
- the inverter box (15) and the control box (16) are connected with the pressure equalizing tube (52), the inverter box (15) can be connected even if the internal space pressure rises. Since it is possible to prevent a gap from occurring in the packing (49), water can be prevented from entering the inverter box (15), and the reliability of the inverter box (15) can be improved.
- the condenser (21) is arrange
- a condenser (21) having a shape having three heat exchange surfaces (21a, 21b, 21c) in a bent relationship with each other is used.
- the replacement surfaces (21a, 21b, 21c) may be arranged so as to be located on the right side, above and below the outside fan (25) in FIG.
- the inverter box (15) is arranged on the right side of the heat exchange part (21a) of the condenser (21) in FIG. Further, in this configuration, a pair of support portions (FIGS. 3 and 4) projecting outward (right direction) from the outer surface (right side surface) of the inverter box (15) on the outer surface (right side surface) of the inverter box (15). (Corresponding to the support leg (34))) (34).
- the support (34) with the right side of the inner casing (11a) as the installation surface (13a)
- the inverter box (15) is installed on the installation surface (13a) of the external storage space (S1) ing.
- the air passage (37) is partitioned by the back side of the inverter box (15), specifically, the back plate (31a) of the inverter box (15) and the depth surface (13c) of the casing (13).
- the back plate side radiating fin (32) is formed on the back surface of the inverter box (15) in the same manner as the above embodiment, and the back plate side radiating fin (32) Located in the air passage (37).
- the space between the right side surface of the casing (13), which is the installation surface (13a), and the outer surface (right side surface) of the inverter box (15) is configured in the same manner as in the above embodiment ( 37) This is an air introduction path (37a) to the heat dissipating fins (32) arranged in the interior.
- the support leg (34) is provided on the lower surface of the inverter box (15) so that the bottom surface of the inverter box (15) floats from the bottom surface (installation surface) (13a) of the external storage space (S1).
- the introduction case (37a) may be formed by fixing the box case (31) to the depth surface (13c) of the casing (13) without providing the support legs (34).
- auxiliary support leg (34a) is not necessarily provided.
- the position of the air passage (37) in which the radiating fin (32) is arranged and the direction of the inverter box (15) may be appropriately determined according to the device configuration of the container refrigeration apparatus (10). It is not necessary to limit the arrangement to the above.
- the radiating fin (32) does not necessarily have to be formed integrally with the inverter box (15).
- FIG. 9 shows an example in which the condenser (21) is formed in a shape that surrounds the external fan (25) from three directions, but the condenser (21) is formed of the external fan (25). You may use what was formed in the shape (angular ring shape or annular shape) surrounding the perimeter.
- the inverter box (15) is not limited to the lower side or the side of the heat exchanger (21), but is located above the space if the air passage (37) toward the heat exchanger (21) is formed. May be formed and placed in the space.
- the radiating fin (32) is arranged in the air passage (37) through which the outside air flows, other arrangements such as the arrangement of the heat exchanger (21) and the inverter box (15) are provided.
- the configuration may be changed as appropriate.
- the present invention is useful for a heat dissipation structure of an inverter box provided for variable capacity control of a compressor in a container refrigeration apparatus.
- Container body 10 Container refrigeration equipment 13 Casing 13a Bottom (installation surface) 13c Depth surface 15 Inverter box 20 Variable capacity compressor 21 Condenser 25 Fan outside the box 31 Box case 32 Back plate side radiating fin (radiating fin) 34 Support leg (support part) 34a Auxiliary support leg 37 Air passage 37a Introduction path 38 Duct member 39 Partition plate 45 AC reactor 46 Inverter circuit S1 Storage space outside the cabinet
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Heat radiation fins (32) are formed on the outer surface of the box case (31) of an inverter box (15), and the heat radiation fins (32) are arranged within an air flow passage (37) through which air passing through a condenser (21) flows. As a result of this configuration, the heat radiation performance of the inverter box (15) of a refrigeration device for a container is improved, and the inverter box is reduced in cost and size.
Description
本発明は、コンテナ用冷凍装置に関し、特に圧縮機を可変容量制御するために設けられるインバータボックスの放熱構造に関するものである。
The present invention relates to a container refrigeration apparatus, and more particularly to a heat dissipation structure of an inverter box provided for variable capacity control of a compressor.
従来、海上輸送等に用いるコンテナ内を冷却するために、コンテナ用冷凍装置が用いられている(例えば、特許文献1参照)。
Conventionally, a container refrigeration apparatus is used to cool the inside of a container used for marine transportation or the like (see, for example, Patent Document 1).
コンテナ用冷凍装置は、一端が開放されたコンテナの開口部に設けられており、コンテナ本体の開口端部を閉塞するケーシングを有している。このケーシングの下部には、コンテナの庫外に臨む庫外収納空間が形成されている。庫外収納空間内には、圧縮機、凝縮器、庫外ファン等が収容されている。
The container refrigeration apparatus is provided at the opening of the container with one end opened, and has a casing that closes the opening end of the container body. A storage space outside the container facing the outside of the container is formed in the lower part of the casing. A compressor, a condenser, an outside fan, and the like are housed in the outside storage space.
一方、ケーシングの上部には、コンテナの庫内に臨む庫内収納空間が形成されている。庫内収納空間は、コンテナの庫内空間に対して仕切板によって区画された空間である。庫内収納空間内には、庫内ファン、蒸発器等が配設されていて、庫内空気の通風路が形成されている。
On the other hand, in the upper part of the casing, a storage space inside the container facing the container is formed. The internal storage space is a space partitioned by a partition plate with respect to the internal space of the container. An internal fan, an evaporator, and the like are disposed in the internal storage space, and a ventilation path for the internal air is formed.
コンテナ用冷凍装置の運転時には、庫内ファンによってコンテナ庫内の空気が庫内収納空間内の通風路に導かれ、蒸発器を通過する際に冷却される。冷却後の空気は通風路を流出し、コンテナの庫内へ再び送られる。以上のように、コンテナ用冷凍装置では、庫内空気を通風路で冷却しながら循環させることで、コンテナ庫内の冷蔵や冷凍を行うようにしている。
During operation of the container refrigeration system, the air in the container is guided to the ventilation path in the storage space by the internal fan, and is cooled when passing through the evaporator. The cooled air flows out of the ventilation path and is sent again into the container. As described above, in the container refrigeration apparatus, the inside of the container is refrigerated or frozen by circulating the air while cooling it in the air passage.
ここで、特許文献1のコンテナ用冷凍装置では、圧縮機を可変容量制御するインバータ回路を収納したインバータボックス(電装品ボックス)が庫外収納空間に配置されている。上記インバータボックスを冷却する構造としては、ボックスケースの前面と両側面(背面以外のほぼ全体)に溶接構造で放熱フィンを設け、インバータ回路に接続されているACリアクタ等で発生した熱を外気に放出することが考えられる。
Here, in the container refrigeration apparatus disclosed in Patent Document 1, an inverter box (an electrical component box) that houses an inverter circuit that performs variable capacity control of a compressor is disposed in an external storage space. As the structure for cooling the inverter box, heat radiation fins are provided on the front and both sides (almost the entire surface except for the back) of the box case with a welded structure, and the heat generated in the AC reactor etc. connected to the inverter circuit is used as outside air. It is possible to release.
しかしながら、上記のような放熱構造を採用した場合でも、インバータボックス内の温度が基準温度よりも高くなると、インバータ基板に搭載している電子部品に熱の影響が生じてしまうおそれがある。そこで、熱の影響を避けるためには上記電子部品に耐熱温度の高い部品を用いる必要が生じ、コストが高くなってしまう。また、ボックスケースの全面に放熱フィンを設ける構造を採用すると、ボックスケースのサイズが大きくなり、コスト的にも不利になる。
However, even when the heat dissipation structure as described above is adopted, if the temperature in the inverter box becomes higher than the reference temperature, there is a possibility that the electronic components mounted on the inverter board may be affected by heat. Therefore, in order to avoid the influence of heat, it is necessary to use a component having a high heat-resistant temperature as the electronic component, resulting in an increase in cost. In addition, when a structure in which heat radiating fins are provided on the entire surface of the box case is adopted, the size of the box case becomes large, which is disadvantageous in terms of cost.
本発明は、このような問題点に鑑みてなされたものであり、その目的は、コンテナ用冷凍装置のインバータボックスの放熱性能を改善するとともに、コストダウンとコンパクト化を可能にすることである。
The present invention has been made in view of such problems, and an object thereof is to improve the heat dissipation performance of the inverter box of the container refrigeration apparatus, and to reduce the cost and make it compact.
第1の発明は、コンテナ本体(1)に装着されるケーシング(13)と、該ケーシング(13)の庫外側に形成された庫外収納空間(S1)を備え、上記庫外収納空間(S1)に、該庫外収納空間(S1)の底面(13a)より上方に位置する凝縮器(21)と、該凝縮器(21)を通過する空気流れを形成する庫外ファン(25)と、上記凝縮器(21)へ冷媒を送り出す可変容量圧縮機(20)と、該可変容量圧縮機(20)を制御するインバータ回路(46)を収納したインバータボックス(15)とが配置されたコンテナ用冷凍装置を前提としている。
1st invention is equipped with the casing (13) with which a container main body (1) is mounted | worn, and the external storage space (S1) formed in the warehouse outer side of this casing (13), The said external storage space (S1) ), A condenser (21) located above the bottom surface (13a) of the external storage space (S1), and an external fan (25) that forms an air flow passing through the condenser (21), For containers in which a variable capacity compressor (20) for sending refrigerant to the condenser (21) and an inverter box (15) containing an inverter circuit (46) for controlling the variable capacity compressor (20) are arranged A refrigeration system is assumed.
そして、このコンテナ用冷凍装置では、上記インバータボックス(15)が、ボックスケース(31)の外面に形成された放熱フィン(32)を有し、該放熱フィン(32)が、上記凝縮器(21)を通過する空気が流れるように形成された空気通路(37)内に配置されていることを特徴としている。
In this container refrigeration apparatus, the inverter box (15) has heat radiation fins (32) formed on the outer surface of the box case (31), and the heat radiation fins (32) are connected to the condenser (21 ) Is arranged in an air passage (37) formed so that air passing therethrough flows.
この第1の発明では、庫外ファン(25)により送風されて凝縮器(21)を通る空気が、上記空気通路(37)内に配置されている放熱フィン(32)を通過する。従来であれば放熱フィン(32)を配置する部分に空気通路(37)は設けられていないから風速が遅いのに対して、この発明では空気通路(37)を流れて放熱フィン(32)を通過する空気の風速が速くなる。したがって、インバータボックス(15)からの放熱が促進される。また、インバータボックス(15)の放熱が促進されるため、インバータ基板に搭載する電子部品に熱の影響が生じにくくなる。
In the first aspect of the invention, the air that is blown by the outside fan (25) and passes through the condenser (21) passes through the heat radiation fin (32) disposed in the air passage (37). Conventionally, since the air passage (37) is not provided in the portion where the radiating fin (32) is arranged, the wind speed is slow, whereas in the present invention, the radiating fin (32) is caused to flow through the air passage (37). The wind speed of the passing air increases. Therefore, heat dissipation from the inverter box (15) is promoted. Moreover, since heat dissipation of the inverter box (15) is promoted, the electronic component mounted on the inverter board is less likely to be affected by heat.
第2の発明は、第1の発明において、上記空気通路(37)が、上記ケーシング(13)の構成部材(13c)とインバータボックス(15)の構成部材(31a,31d)とにより区画形成されていることを特徴としている。
In a second aspect based on the first aspect, the air passage (37) is defined by a component member (13c) of the casing (13) and a component member (31a, 31d) of the inverter box (15). It is characterized by having.
この第2の発明では、庫外ファン(25)により送風されて凝縮器(21)を通る空気が、ケーシング(13)の構成部材(13c)とインバータボックス(15)の構成部材(31a,31d)とにより区画形成されている空気通路(37)内の放熱フィン(32)を通過することにより、インバータボックス(15)からの放熱が促進される。
In the second aspect of the invention, the air that is blown by the outside fan (25) and passes through the condenser (21) is converted into the component (13c) of the casing (13) and the component (31a, 31d) of the inverter box (15). ), The heat radiation from the inverter box (15) is promoted by passing through the heat radiation fins (32) in the air passage (37) defined by the above.
第3の発明は、第1または第2の発明において、上記インバータボックス(15)の外面には該インバータボックス(15)の外面から外方へ突出する一対の支持部(34)が形成されるとともに、該インバータボックス(15)が庫外収納空間(S1)の設置面(13a)に設置され、上記設置面(13a)とインバータボックス(15)の外面との間の空間が、上記空気通路(37)内に配置された放熱フィン(32)への空気の導入路(37a)を構成していることを特徴としている。
According to a third invention, in the first or second invention, a pair of support portions (34) projecting outward from the outer surface of the inverter box (15) is formed on the outer surface of the inverter box (15). The inverter box (15) is installed on the installation surface (13a) of the external storage space (S1), and the space between the installation surface (13a) and the outer surface of the inverter box (15) is the air passage. (37) It is characterized in that it constitutes an air introduction path (37a) to the heat dissipating fin (32).
この第3の発明では、庫外収納空間(S1)の左右の側面を設置面(13a)にする場合は、インバータボックス(15)の側面に支持部(34)を設けて、その設置面(13a)にインバータボックス(15)を設置すると、その設置面(13a)とインバータボックス(15)の側面との間の空間が、上記空気の導入路(37a)となる。また、庫外収納空間(S1)の上面を設置面(13a)にする場合は、インバータボックス(15)の上面に支持部(34)を設けて、その設置面(13a)にインバータボックス(15)を設置すると、その設置面(13a)とインバータボックス(15)の上面との間の空間が、上記空気の導入路(37a)となる。そして、上記庫外ファン(25)により形成される庫外空気は、上記導入路(37a)から空気通路(37)内の放熱フィン(32)を通り、放熱フィン(32)からインバータボックス(15)の熱を奪う。
In this third invention, when the left and right side surfaces of the external storage space (S1) are used as the installation surface (13a), the support portion (34) is provided on the side surface of the inverter box (15), and the installation surface ( When the inverter box (15) is installed in 13a), the space between the installation surface (13a) and the side surface of the inverter box (15) becomes the air introduction path (37a). When the upper surface of the external storage space (S1) is the installation surface (13a), a support portion (34) is provided on the upper surface of the inverter box (15), and the inverter box (15a) is installed on the installation surface (13a). ) Is installed, the space between the installation surface (13a) and the upper surface of the inverter box (15) becomes the air introduction path (37a). The outside air formed by the outside fan (25) passes from the introduction path (37a) through the heat dissipating fin (32) in the air passage (37) and from the heat dissipating fin (32) to the inverter box (15 )
第4の発明は、第1または第2の発明において、上記インバータボックス(15)の下部には該インバータボックス(15)の下面から下方へ突出する一対の支持脚(34)が形成されるとともに、該インバータボックス(15)が庫外収納空間(S1)の設置面(13a)に設置され、上記設置面(13a)とインバータボックス(15)の下面との間の空間が、上記空気通路(37)内に配置された放熱フィン(32)への空気の導入路(37a)を構成していることを特徴としている。
According to a fourth invention, in the first or second invention, a pair of support legs (34) projecting downward from the lower surface of the inverter box (15) are formed in the lower part of the inverter box (15). The inverter box (15) is installed on the installation surface (13a) of the external storage space (S1), and the space between the installation surface (13a) and the lower surface of the inverter box (15) is the air passage ( 37) It is characterized in that it constitutes an air introduction path (37a) to the heat dissipating fin (32) disposed in the interior.
この第4の発明では、インバータボックス(15)の下面に支持脚(34)が設けられているので、庫外収納空間(S1)の底面を設置面(13a)にすると、その設置面(13a)とインバータボックス(15)の側面との間の空間が、上記空気の導入路(37a)となる。そして、上記庫外ファン(25)により形成される庫外空気は、上記導入路(37a)から空気通路(37)内の放熱フィン(32)を通り、放熱フィン(32)からインバータボックス(15)の熱を奪う。
In this 4th invention, since the support leg (34) is provided in the lower surface of the inverter box (15), if the bottom face of the outside storage space (S1) is used as the installation surface (13a), the installation surface (13a ) And the side surface of the inverter box (15) serves as the air introduction path (37a). The outside air formed by the outside fan (25) passes from the introduction path (37a) through the heat dissipating fin (32) in the air passage (37) and from the heat dissipating fin (32) to the inverter box (15 )
第5の発明は、第4の発明において、上記インバータボックス(15)の下面には、上記一対の支持脚(34)の間で上記庫外収納空間(S1)の設置面(13a)に当接する補助支持脚(34a)が形成されていることを特徴としている。
According to a fifth invention, in the fourth invention, the lower surface of the inverter box (15) is placed against the installation surface (13a) of the external storage space (S1) between the pair of support legs (34). An auxiliary support leg (34a) that is in contact is formed.
この第5の発明では、インバータボックス(15)の下面の一対の支持脚(34)の間に形成された補助支持脚(34a)が、インバータボックス(15)を庫外空間に設置するときの支えとなる。補助支持脚(34a)でインバータボックス(15)を支える構成にしたので、インバータボックス(15)の安定性が高くなり、かつインバータボックス(15)に衝撃・輸送振動がかかったときの強度も高くなる。また、補助支持脚(34a)を放熱フィン(32)に連続する部材として構成すると、その部分でも放熱効果が得られるから、放熱性能を高める効果も実現できる。
In the fifth invention, the auxiliary support legs (34a) formed between the pair of support legs (34) on the lower surface of the inverter box (15) are provided when the inverter box (15) is installed in the external space. Support. Since the inverter box (15) is supported by the auxiliary support legs (34a), the stability of the inverter box (15) is increased, and the strength when the inverter box (15) is subjected to shock and transportation vibration is also high. Become. In addition, if the auxiliary support leg (34a) is configured as a member that is continuous with the heat radiating fin (32), a heat radiating effect can be obtained even at that portion, so that an effect of improving the heat radiating performance can be realized.
第6の発明は、第1から第5の発明の何れか1つにおいて、上記凝縮器(21)が庫外ファン(25)の下方に配置されるとともに、上記インバータボックス(15)は、放熱フィン(32)が上記庫外収納空間(S1)の奥行き面(13c)を向いて配置されるとともに、放熱フィン(32)が庫外ファン(25)の奥側の空気吸込側かつ庫外ファン(25)の下方に位置するように配置されていることを特徴としている。
According to a sixth invention, in any one of the first to fifth inventions, the condenser (21) is disposed below the external fan (25), and the inverter box (15) The fin (32) is arranged facing the depth surface (13c) of the external storage space (S1), and the radiating fin (32) is an air suction side and an external fan on the back side of the external fan (25). It is arranged to be located below (25).
ここで、コンテナ用冷凍装置で庫外ファン(25)が空気を背面側(庫外収納空間(S1)の奥側)から吸い込む構成で凝縮器(21)を庫外ファン(25)の下方に配置する場合、庫外ファン(25)の背面側の下方が最も風速が速い。この第6の発明では、その庫外ファン(25)の背面側の下方にインバータボックス(15)の放熱フィン(32)を配置するようにしたので、庫外空気の風速を上げることにより、高い放熱性能を得ることができる。
Here, in the container refrigeration system, the external fan (25) sucks air from the back side (the back side of the external storage space (S1)), and the condenser (21) is placed below the external fan (25). When arranged, the wind speed is fastest below the rear side of the external fan (25). In the sixth aspect of the invention, since the heat dissipating fins (32) of the inverter box (15) are arranged below the back side of the external fan (25), it is possible to increase the air speed by increasing the air speed of the external air. Heat dissipation performance can be obtained.
第7の発明は、第1から第6の発明の何れか1つにおいて、上記インバータボックス(15)が上記凝縮器(21)に対して空気流れの上流側に配置され、上記インバータボックス(15)の放熱フィン(32)と上記凝縮器(21)との間に、上記空気通路(37)に連接するダクト部材(38)が配置されていることを特徴としている。
According to a seventh invention, in any one of the first to sixth inventions, the inverter box (15) is arranged on the upstream side of the air flow with respect to the condenser (21), and the inverter box (15 ), A duct member (38) connected to the air passage (37) is disposed between the heat dissipating fin (32) and the condenser (21).
この第7の発明では、空気通路(37)を通った庫外空気は、インバータボックス(15)の放熱フィン(32)と上記凝縮器(21)との間に設けられているダクト部材(38)を通り、さらに凝縮器(21)を通過する。
In the seventh aspect of the invention, the outside air that has passed through the air passage (37) flows into the duct member (38) provided between the heat dissipating fin (32) of the inverter box (15) and the condenser (21). ) And further through the condenser (21).
第8の発明は、第1から第7の発明の何れか1つにおいて、上記インバータボックス(15)には、内部空間の上部に、上記インバータ回路(46)に接続されるACリアクタ(45)が配置されていることを特徴としている。
According to an eighth invention, in any one of the first to seventh inventions, the inverter box (15) includes an AC reactor (45) connected to the inverter circuit (46) at an upper portion of an internal space. It is characterized by being arranged.
この第8の発明では、ACリアクタ(45)が発熱部品であり、この発熱部品をインバータボックス(15)の内部空間の上部に設けているので、ACリアクタ(45)の熱が下方へは下がっていきにくい。したがって、インバータボックス(15)内のACリアクタ(45)の下方に配置する部品には、耐熱性の低い部品を用いても、それらの耐熱性の低い部品への熱の影響を抑えられる。
In this eighth invention, the AC reactor (45) is a heat generating component, and since this heat generating component is provided in the upper part of the internal space of the inverter box (15), the heat of the AC reactor (45) decreases downward. It is difficult to follow. Therefore, even if parts having low heat resistance are used as parts arranged below the AC reactor (45) in the inverter box (15), the influence of heat on these low heat resistance parts can be suppressed.
第9の発明は、第8の発明において、上記インバータボックス(15)が内部空間を上下に区画する仕切板(39)を備え、該仕切板(39)の上方に上記ACリアクタ(45)が配置されていることを特徴としている。
According to a ninth invention, in the eighth invention, the inverter box (15) includes a partition plate (39) that divides the internal space vertically, and the AC reactor (45) is disposed above the partition plate (39). It is characterized by being arranged.
この第9の発明では、インバータボックス(15)内のACリアクタ(45)を仕切板(39)の上方に配置しているので、ACリアクタ(45)の熱の下降がより生じにくくなり、インバータボックス(15)内のACリアクタ(45)の下方に配置する部品への熱の影響をより確実に抑えられる。
In the ninth aspect of the invention, since the AC reactor (45) in the inverter box (15) is disposed above the partition plate (39), the AC reactor (45) is less likely to drop in heat, and the inverter The influence of heat on the parts arranged below the AC reactor (45) in the box (15) can be more reliably suppressed.
本発明によれば、庫外ファン(25)により送風されて凝縮器(21)を通る空気が上記空気通路(37)を流れるから、その空気通路(37)に配置されている放熱フィン(32)の放熱性能が高められる。また、インバータボックス(15)の放熱が促進されて、インバータ基板に搭載する電子部品に熱の影響が生じにくくなるので、耐熱性の高い部品が必要でなくなり、インバータボックス(15)の低コスト化が可能になる。さらに、放熱性能が高くなる結果、放熱フィン(32)をインバータボックス(15)の全体に設けなくてもよくなるので、インバータボックス(15)の軽量化やコンパクト化を実現できる。
According to the present invention, since the air that is blown by the external fan (25) and passes through the condenser (21) flows through the air passage (37), the heat dissipating fins (32 ) Heat dissipation performance is improved. In addition, heat dissipation from the inverter box (15) is promoted, making it difficult for the electronic components mounted on the inverter board to be affected by heat, eliminating the need for highly heat-resistant components and reducing the cost of the inverter box (15). Is possible. Furthermore, as a result of the high heat dissipation performance, it is not necessary to provide the heat dissipating fins (32) in the entire inverter box (15), so that the inverter box (15) can be reduced in weight and size.
上記第2の発明によれば、空気通路(37)を、ケーシング(13)の構成部材(13c)とインバータボックス(15)の構成部材(31a,31d)とにより区画形成しているので、ダクトなどの部品を別途設ける必要がなく、装置の構成を簡素化できる。
According to the second aspect of the invention, the air passage (37) is defined by the component member (13c) of the casing (13) and the component member (31a, 31d) of the inverter box (15). It is not necessary to separately provide such parts as the apparatus, and the configuration of the apparatus can be simplified.
上記第3の発明によれば、外面(側面や上面)に支持部(34)を有するインバータボックス(15)を庫外収納空間(S1)の設置面(13a)に設置することにより、該設置面(13a)とインバータボックス(15)の外面との間に導入路(37a)(空間)を形成しているので、庫外ファン(25)により形成される庫外空気の流れが、この導入路(37a)から空気通路(37)に入って放熱フィン(32)の周囲を流れやすくなる効果が得られる。そして、庫外空気が放熱フィン(32)の周囲を流れやすくなるので、放熱性能も高められる。
According to the third aspect of the invention, the inverter box (15) having the support (34) on the outer surface (side surface or upper surface) is installed on the installation surface (13a) of the external storage space (S1). Since the introduction path (37a) (space) is formed between the surface (13a) and the outer surface of the inverter box (15), the flow of outside air formed by the outside fan (25) An effect is obtained in which the air passage (37) enters the air passage (37) from the passage (37a) and easily flows around the heat dissipating fin (32). And since the air outside a store | warehouse | chamber becomes easy to flow around the radiation fin (32), heat dissipation performance is also improved.
上記第4の発明によれば、下面に支持脚(34)を有するインバータボックス(15)を庫外収納空間(S1)の設置面(底面)(13a)に設置することにより、該設置面(13a)とインバータボックス(15)の下面との間に導入路(37a)(空間)を形成しているので、庫外ファン(25)により形成される庫外空気の流れが、この導入路(37a)から空気通路(37)に入って放熱フィン(32)の周囲を流れやすくなる効果が得られる。そして、庫外空気が放熱フィン(32)の周囲を流れやすくなるので、放熱性能も高められる。
According to the fourth aspect of the invention, by installing the inverter box (15) having the support leg (34) on the lower surface on the installation surface (bottom surface) (13a) of the external storage space (S1), the installation surface ( 13a) and the lower surface of the inverter box (15) form an introduction path (37a) (space), so the flow of outside air formed by the outside fan (25) 37a) can enter the air passage (37) and easily flow around the radiating fin (32). And since the air outside a store | warehouse | chamber becomes easy to flow around the radiation fin (32), heat dissipation performance is also improved.
上記第5の発明によれば、補助支持脚(34a)でインバータボックス(15)を支える構成にしたので、インバータボックス(15)の安定性が高くなり、かつ一対の支持脚(34)だけだと衝撃・輸送振動がかかって中央部がたわむような状態でも、強度も向上するのでたわみが生じるような問題を防止できる。また、補助支持脚(34a)を放熱フィン(32)に連続する部材として構成することにより、放熱性を高めることも可能になる。
According to the fifth aspect of the invention, since the inverter box (15) is supported by the auxiliary support legs (34a), the stability of the inverter box (15) is improved and only the pair of support legs (34) is provided. Even in the state where the center part is bent due to shock and transportation vibration, the strength is improved, so that the problem of bending can be prevented. In addition, by configuring the auxiliary support leg (34a) as a member that is continuous with the heat dissipating fin (32), it is possible to improve heat dissipation.
上記第6の発明によれば、コンテナ用冷凍装置において庫外ファン(25)が空気を背面側(奥側)から吸い込む構成で凝縮器(21)を庫外ファン(25)の下方に配置する場合に最も風速が速くなる庫外ファン(25)の背面側の下方にインバータボックス(15)の放熱フィン(32)を配置しているので、庫外空気の風速を上げることにより、高い放熱性能を得ることができる。
According to the sixth aspect of the present invention, the condenser (21) is arranged below the outdoor fan (25) in such a configuration that the outdoor fan (25) sucks air from the back side (back side) in the container refrigeration apparatus. Since the heat dissipating fins (32) of the inverter box (15) are located below the rear side of the fan (25) outside the box where the wind speed is the fastest in the case, high heat dissipation performance is achieved by increasing the air speed of the outside air Can be obtained.
上記第7の発明によれば、インバータボックス(15)の放熱フィン(32)と上記凝縮器(21)との間にダクト部材(38)を設け、そのダクト部材(38)を庫外空気が流れるので、インバータボックス(15)の放熱フィン(32)と上記凝縮器(21)との間で空気が漏れて損失が生じるのを防止できる。
According to the seventh aspect of the invention, the duct member (38) is provided between the heat dissipating fin (32) of the inverter box (15) and the condenser (21), and the outside air is connected to the duct member (38). Since it flows, it is possible to prevent air from leaking between the heat dissipating fin (32) of the inverter box (15) and the condenser (21).
上記第8の発明によれば、発熱部品であるACリアクタ(45)をインバータボックス(15)の上部に設けて、その熱が下降するのを抑えたことにより、インバータボックス(15)内のACリアクタ(45)の下方に耐熱性の低い部品を配置することを可能にしている。このように耐熱性の低い部品を用いることができるので、インバータボックス(15)の低コスト化が可能となる。
According to the eighth aspect of the present invention, the AC reactor (45), which is a heat generating component, is provided on the top of the inverter box (15) to suppress the heat from falling, so that the AC in the inverter box (15) is reduced. This makes it possible to place components with low heat resistance below the reactor (45). Since parts having low heat resistance can be used in this way, the cost of the inverter box (15) can be reduced.
上記第9の発明によれば、インバータボックス(15)内のACリアクタ(45)を仕切板(39)の上方に配置して、ACリアクタの熱の下降がより生じにくくなるようにしているので、インバータボックス(15)内のACリアクタ(45)の下方に配置する部品への熱の影響をより確実に抑えられる。このため、インバータボックス(15)内のACリアクタ(45)の下方に耐熱性の低い部品を配置しやすくなり、インバータボックス(15)の低コスト化が容易になる。
According to the ninth aspect of the present invention, the AC reactor (45) in the inverter box (15) is arranged above the partition plate (39) so that the heat of the AC reactor is less likely to decrease. In addition, the influence of heat on the parts disposed below the AC reactor (45) in the inverter box (15) can be more reliably suppressed. For this reason, it becomes easy to arrange | position components with low heat resistance under the AC reactor (45) in an inverter box (15), and cost reduction of an inverter box (15) becomes easy.
以下、本発明の実施形態を図面に基づいて詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は、本発明の実施形態に係るコンテナ用冷凍装置及びコンテナ本体の縦断面概略図、図2は、図1のコンテナ用冷凍装置を外側から見た概略斜視図である。このコンテナ用冷凍装置(10)は、海上輸送等に用いられるコンテナの庫内を冷却するものである。上記コンテナ用冷凍装置(10)は、圧縮機(20)と凝縮器(21)と膨張弁(図示せず)と蒸発器(23)とを有して冷凍サイクル動作を行う冷媒回路(図示せず)を備えている。また、コンテナ用冷凍装置(10)は、コンテナ本体(1)の端部に装着されて該端部の開口面を閉塞する蓋体を兼ねている。
FIG. 1 is a schematic vertical sectional view of a container refrigeration apparatus and a container main body according to an embodiment of the present invention, and FIG. 2 is a schematic perspective view of the container refrigeration apparatus shown in FIG. This container refrigeration apparatus (10) cools the inside of a container used for maritime transportation or the like. The container refrigeration apparatus (10) includes a compressor (20), a condenser (21), an expansion valve (not shown), and an evaporator (23), and performs a refrigeration cycle operation (not shown). )). The container refrigeration apparatus (10) also serves as a lid that is attached to the end of the container body (1) and closes the opening surface of the end.
上記コンテナ用冷凍装置(10)のケーシング(13)は、コンテナ外である庫外側とコンテナ内である庫内側とを仕切るケーシング本体(11)、及びケーシング(13)の背面(庫内側)に設けられる仕切り板(14)等を備えている。
The casing (13) of the container refrigeration apparatus (10) is provided on the casing body (11) that partitions the outside of the container that is outside the container and the inside of the container that is inside the container, and the back surface (inside of the container) of the casing (13). Provided with a partition plate (14) and the like.
上記ケーシング本体(11)は、アルミニウム製の庫内ケーシング(11a)とFRP(繊維強化プラスチック)製の庫外ケーシング(11b)との二重構造に形成されている。そして、上記庫内ケーシング(11a)と庫外ケーシング(11b)との間に発泡剤よりなる断熱層(11c)が形成されている。
The casing main body (11) is formed in a double structure of an inner casing (11a) made of aluminum and an outer casing (11b) made of FRP (fiber reinforced plastic). And the heat insulation layer (11c) which consists of a foaming agent is formed between the said inner casing (11a) and the outer casing (11b).
さらに、上記ケーシング本体(11)の下部には、庫内側に膨出した膨出部(12)が形成されている。そして、上記膨出部(12)の内部空間(庫外側の空間)が庫外収納空間(S1)として構成される一方、上記ケーシング(13)の背面の上部には、膨出部(12)の上方に位置する庫内収納空間(S2)が形成されている。
Furthermore, a bulging portion (12) bulging to the inside of the cabinet is formed at the lower part of the casing body (11). And while the internal space (space outside the warehouse) of the bulging part (12) is configured as an external storage space (S1), the bulging part (12) An internal storage space (S2) located above is formed.
上記庫外収納空間(S1)には、圧縮機(20)、凝縮器(21)及び庫外ファン(25)が収納されると共に、インバータボックス(電装品ボックス)(15)及びコントロールボックス(16)が収納されている。凝縮器(21)は、庫外収納空間(S1)の底面(13a)より上方に配置されている。庫外ファン(25)は、凝縮器(21)を通過する空気流れを形成するものである。凝縮器(21)は庫外ファン(25)の下方に配置されている。圧縮機(20)は、凝縮器(21)へ冷媒を送り出すものであって庫外収納空間(S1)の設置面(本実施形態では庫外収納空間(S1)の底面)(13a)に設置されている。
The external storage space (S1) stores a compressor (20), a condenser (21), and an external fan (25), as well as an inverter box (electric component box) (15) and a control box (16 ) Is stored. The condenser (21) is disposed above the bottom surface (13a) of the external storage space (S1). The outside fan (25) forms an air flow passing through the condenser (21). The condenser (21) is disposed below the external fan (25). The compressor (20) sends out refrigerant to the condenser (21) and is installed on the installation surface of the external storage space (S1) (in this embodiment, the bottom surface of the external storage space (S1)) (13a) Has been.
一方、庫内収納空間(S2)には、蒸発器(23)及び庫内ファン(26)が取り付けられている。庫内ファン(26)は蒸発器(23)へ庫内空気を供給し、蒸発器(23)は伝熱管を流れる冷媒が庫内空気から熱を奪って庫内空気を冷却する。また、上記膨出部(12)と仕切り板(14)との間は、庫内空気が流れる庫内空気流路(S3)になっている。該庫内空気流路(S3)の上端は、庫内収納空間(S2)に連通する一方、下端が庫内に連通している。
On the other hand, the evaporator (23) and the internal fan (26) are attached to the internal storage space (S2). The internal fan (26) supplies the internal air to the evaporator (23), and the evaporator (23) cools the internal air by the refrigerant flowing through the heat transfer tubes taking heat from the internal air. Moreover, between the said bulging part (12) and a partition plate (14) is the internal air flow path (S3) through which internal air flows. The upper end of the internal air flow path (S3) communicates with the internal storage space (S2), while the lower end communicates with the internal storage space.
上記圧縮機(20)は、圧縮機構を駆動するモータ(図示省略)を有している。この圧縮機(20)のモータの回転数は、インバータによって多段階に制御される。つまり、圧縮機(20)は、運転回転数が可変に構成された可変容量圧縮機である。この圧縮機(20)に接続されて該圧縮機を可変容量制御する上記インバータ回路の基板(46)等(図7等参照)は、上記インバータボックス(15)に収納されている。
The compressor (20) has a motor (not shown) that drives the compression mechanism. The rotation speed of the motor of the compressor (20) is controlled in multiple stages by an inverter. That is, the compressor (20) is a variable capacity compressor that is configured to have a variable operating rotational speed. The inverter circuit board (46) and the like (see FIG. 7, etc.) connected to the compressor (20) to control the variable capacity of the compressor are accommodated in the inverter box (15).
次に、インバータボックス(15)について、図3から図8を参照して説明する。図3はインバータボックス(15)を正面から視た斜視図、図4は背面から視た斜視図、図5はコンテナ用冷凍装置の要部拡大断面図、図6はダクト部材の斜視図、図7はインバータボックスをフロントカバーを外した状態で示す斜視図、図8はコンテナ用冷凍装置にインバータボックスを設置した状態での内部構造を省略した横断面概略図である。
Next, the inverter box (15) will be described with reference to FIGS. 3 is a perspective view of the inverter box (15) seen from the front, FIG. 4 is a perspective view seen from the back, FIG. 5 is an enlarged cross-sectional view of the main part of the container refrigeration apparatus, and FIG. 6 is a perspective view of the duct member. 7 is a perspective view showing the inverter box with the front cover removed, and FIG. 8 is a schematic cross-sectional view of the container refrigeration apparatus with the internal structure omitted with the inverter box installed.
インバータボックス(15)は、ボックスケース(31)とフロントカバー(41)とを有している。ボックスケース(31)は、アルミダイカスト製の部品であり、図5に示すように、ほぼ長方形の背板(31a)と、背板(31a)の4辺に連接した天板(31b)と底板(31c)と左右の側板(31d)とを有し、これらが一体形成されている。
The inverter box (15) has a box case (31) and a front cover (41). The box case (31) is a die-cast aluminum part, and as shown in FIG. 5, a substantially rectangular back plate (31a), a top plate (31b) connected to the four sides of the back plate (31a), and a bottom plate (31c) and left and right side plates (31d), which are integrally formed.
また、ボックスケース(31)の背板(31a)と天板(31b)には、外面に放熱フィン(32,33)が一体に形成されている。上記背板(31a)の放熱フィン(背板側放熱フィン)(32)は、ボックスケース(31)の上下方向へ延在し、上記天板(31b)の放熱フィン(天板側放熱フィン)(33)は、ボックスケース(31)の前後方向へ延在している。なお、図8に示すように、背板側放熱フィン(32)の後縁と左右の側板(31d,31d)の後縁は、互いの位置がほぼ一致していて、ケーシング(13)の奥行き面(13a)とほぼ接している。また、図8は、背面側放熱フィン(32)の枚数を実際より少なくして示した簡略図である。
Also, the back plate (31a) and the top plate (31b) of the box case (31) are integrally formed with heat radiation fins (32, 33) on the outer surface. The radiating fin (back plate side radiating fin) (32) of the back plate (31a) extends in the vertical direction of the box case (31), and the radiating fin (top plate side radiating fin) of the top plate (31b). (33) extends in the front-rear direction of the box case (31). In addition, as shown in FIG. 8, the rear edge of the back plate side radiating fin (32) and the rear edge of the left and right side plates (31d, 31d) are substantially aligned with each other, and the depth of the casing (13) It is almost in contact with the surface (13a). FIG. 8 is a simplified diagram showing the number of the rear side heat radiation fins (32) smaller than the actual number.
上記インバータボックス(15)の下部には、該インバータボックス(15)の下面から下方へ突出する一対の支持脚(支持部)(34)が形成されている。また、インバータボックス(15)の両側板(31d)の上部には、インバータボックス(15)をケーシング(13)の膨出部(12)に取り付けるための取付部(35)が設けられている。インバータボックス(15)は、これらの支持脚(34)と取付部(35)に通したボルトにより、コンテナ用冷凍装置のケーシング(13)に形成されている庫外収納空間(S1)の底面(設置面)(13a)に固定され、凝縮器(21)の下方(凝縮器(21)に対して空気流れの上流側)に位置するようになっている。
A pair of support legs (support portions) (34) projecting downward from the lower surface of the inverter box (15) is formed in the lower portion of the inverter box (15). Moreover, the attachment part (35) for attaching an inverter box (15) to the bulging part (12) of a casing (13) is provided in the upper part of the both-sides board (31d) of an inverter box (15). The inverter box (15) is a bottom surface (S1) of the external storage space (S1) formed in the casing (13) of the container refrigeration system by the bolts that pass through these support legs (34) and the mounting portion (35). It is fixed to the installation surface (13a) and is located below the condenser (21) (on the upstream side of the air flow with respect to the condenser (21)).
また、インバータボックス(15)には、左右の側板(31d)の取付部(35)の上側に、インバータボックス(15)の背面側へ突出する突出片(36)が形成されている。この突出片(36)は、上記コンテナ用冷凍装置のケーシング(13)に形成されている凹部(13b)に沿うように形成されている。
In the inverter box (15), a protruding piece (36) is formed on the upper side of the mounting portion (35) of the left and right side plates (31d) so as to protrude to the back side of the inverter box (15). The protruding piece (36) is formed along the recess (13b) formed in the casing (13) of the container refrigeration apparatus.
上記インバータボックス(15)は、図8の左右両端に位置する側板(31d)の後縁が上記ケーシング(13)の庫外収納空間(S1)の奥行き面(13c)に接し、かつ両側板(31d)の間に位置する背板側放熱フィン(32)が上記庫外収納空間(S1)の奥行き面(13c)を向くように配置されている。上記庫外ファン(25)は、インバータボックス(15)の上方に位置しており、逆に言うと、インバータボックス(15)の背板側放熱フィン(32)が該庫外ファン(25)の空気吸込側のほぼまっすぐ下方に位置するように配置されている。
In the inverter box (15), the rear edges of the side plates (31d) located at the left and right ends in FIG. 8 are in contact with the depth surface (13c) of the external storage space (S1) of the casing (13), and both side plates ( 31d) is disposed so that the back plate side radiation fin (32) located between the outer storage spaces (S1) faces the depth surface (13c). The outside fan (25) is located above the inverter box (15). Conversely, the back plate side heat radiation fin (32) of the inverter box (15) is connected to the outside fan (25). It arrange | positions so that it may be located in the air suction side substantially straight downward.
そして、上記の構成において、図5及び図8に示すように、インバータボックス(15)の背面側には、凝縮器(21)を通過する空気が流れる空気通路(37)が、上記ケーシング(13)の構成部材(13c)とインバータボックス(15)の構成部材(31a,31d)とにより区画形成されている。具体的には、空気通路(37)は、インバータボックス(15)の背板(31a)と両側板(31d)とケーシング(13)の奥行き面(13c)によって区画形成されており、上記背板側放熱フィン(32)は、その空気通路(37)内で両側板(31d)の間に平行に位置している。また、インバータボックス(15)の底板(31c)には支持脚(34)が形成されているので、上記庫外収納空間(S1)の底面(設置面)(13a)とインバータボックス(15)の下面である底板(31c)との間に空間が形成されている。この空間は、上記空気通路(37)内に配置された背板側放熱フィン(32)への空気の導入路(37a)になっている。
In the above configuration, as shown in FIGS. 5 and 8, an air passage (37) through which air passing through the condenser (21) flows is provided on the back side of the inverter box (15). ) And the component members (31a, 31d) of the inverter box (15). Specifically, the air passage (37) is defined by the back plate (31a), both side plates (31d) of the inverter box (15), and the depth surface (13c) of the casing (13). The side heat dissipating fins (32) are positioned in parallel between the side plates (31d) in the air passage (37). In addition, since the support plate (34) is formed on the bottom plate (31c) of the inverter box (15), the bottom surface (installation surface) (13a) of the external storage space (S1) and the inverter box (15) A space is formed between the bottom plate (31c) as the lower surface. This space serves as an air introduction path (37a) to the back plate side radiation fin (32) disposed in the air passage (37).
上記インバータボックス(15)の下面(底板(31c))には、上記一対の支持脚(34)の間で上記庫外収納空間(S1)の設置面(13a)に当接する補助支持脚(34a)が形成されている。補助支持脚(34a)は、インバータボックス(15)を庫外収納空間(S1)に設置する際に、インバータボックス(15)を自立させる支えとなるように形成されている。また、この補助支持脚(34a)を設けることにより、インバータボックス(15)の衝撃・輸送振動に対する強度を向上させるようになっている。
On the lower surface (bottom plate (31c)) of the inverter box (15), there is an auxiliary support leg (34a) that contacts the installation surface (13a) of the external storage space (S1) between the pair of support legs (34). ) Is formed. The auxiliary support legs (34a) are formed so as to support the inverter box (15) when the inverter box (15) is installed in the external storage space (S1). Further, by providing this auxiliary support leg (34a), the strength of the inverter box (15) with respect to impact / transport vibration is improved.
インバータボックス(15)の上面(天板(31b))は凝縮器(21)の下面よりも下方に位置している。インバータボックス(15)の背板側放熱フィン(32)の上端面と凝縮器(21)の下面との間には、庫外収納空間(S1)の底面(13a)と凝縮器(21)の下面との間に形成されている上記空気通路(37)に連接するダクト部材(38)が配置されている。このダクト部材(38)は、図6に示すように平面視「コ」の字形の部材であって、開放側が庫外収納空間(S1)の奥行き面(13c)に面してケーシング(13)に固定されている。
The upper surface (top plate (31b)) of the inverter box (15) is located below the lower surface of the condenser (21). Between the top surface of the back plate-side radiating fin (32) of the inverter box (15) and the bottom surface of the condenser (21), the bottom surface (13a) of the external storage space (S1) and the condenser (21) A duct member (38) connected to the air passage (37) formed between the lower surface and the lower surface is disposed. This duct member (38) is a U-shaped member in plan view as shown in FIG. 6, and has a casing (13) whose open side faces the depth surface (13c) of the external storage space (S1). It is fixed to.
ダクト部材(38)は、板金部品であるダクト部材本体(38a)と、ダクト部材本体(38a)の上端に一体的に設けられた緩衝部材(38b)とを有している。緩衝部材(38b)は、ゴムなどの弾性部材や蛇腹部材などで形成されている。コンテナの輸送振動や衝撃に対して凝縮器(21)を保護するためである。そして、ダクト部材本体(38a)の下端がインバータボックス(15)の両側板(31d)の突出片(36)に接してその平面上に位置する一方、緩衝部材(38b)の上端が凝縮器(21)の下面に接している。このことにより、ダクト部材(38)は、上記空気通路(37)を構成している側板(31d)と凝縮器(21)との間の隙間を塞いでいる。
The duct member (38) has a duct member main body (38a) which is a sheet metal part, and a buffer member (38b) integrally provided at the upper end of the duct member main body (38a). The buffer member (38b) is formed of an elastic member such as rubber or a bellows member. This is to protect the condenser (21) against the transportation vibration and impact of the container. The lower end of the duct member main body (38a) is located on the plane in contact with the protruding pieces (36) of the both side plates (31d) of the inverter box (15), while the upper end of the buffer member (38b) is the condenser ( 21) is in contact with the bottom surface. Thus, the duct member (38) closes the gap between the side plate (31d) and the condenser (21) constituting the air passage (37).
図7は、インバータボックス(15)のボックスケース(31)からフロントカバー(41)を外した状態の斜視図である。図示するように、インバータボックス(15)には、その内部空間の上部に、上記インバータ回路に接続されているACリアクタ(45)が配置されている。また、インバータボックス(15)は、内部空間を上下に区画する仕切板(39)を備えている。そして、この仕切板(39)の上方に上記ACリアクタ(45)が配置されている。また、この仕切板(39)の下方には、インバータ基板(46)やノイズフィルター基板(47)が設置されている。仕切板(39)とインバータ基板(46)の間には、インバータボックス(15)内の熱を吸収してボックスケース(31)の外部に伝達するための伝熱フィン(40)が設けられている。このように、インバータボックス(15)の内部空間には、最も発熱する部品であるACリアクタ(45)が上端部に配置され、仕切板(39)を介してその下方には発熱度合いが小さいインバータ基板(46)やノイズフィルター基板(47)が設けられている。そして、仕切板(39)を設けることにより、ACリアクタ(45)の周囲温度が上昇するのを抑え、インバータ基板(46)やノイズフィルター基板(47)の周囲が高温になるのを抑えるようにしている。
FIG. 7 is a perspective view of the inverter box (15) with the front cover (41) removed from the box case (31). As shown in the figure, an AC reactor (45) connected to the inverter circuit is disposed in the inverter box (15) above the internal space. The inverter box (15) includes a partition plate (39) that divides the internal space vertically. The AC reactor (45) is disposed above the partition plate (39). An inverter substrate (46) and a noise filter substrate (47) are installed below the partition plate (39). Between the partition plate (39) and the inverter board (46), heat transfer fins (40) are provided for absorbing heat in the inverter box (15) and transferring it to the outside of the box case (31). Yes. Thus, in the internal space of the inverter box (15), the AC reactor (45), which is the most heat generating component, is arranged at the upper end portion, and the inverter with a small degree of heat generation is provided below the partition plate (39). A substrate (46) and a noise filter substrate (47) are provided. By providing the partition plate (39), it is possible to prevent the ambient temperature of the AC reactor (45) from rising, and to suppress the ambient temperature of the inverter board (46) and the noise filter board (47) from becoming high. ing.
フロントカバー(41)は板金部品で構成されている。上記ボックスケース(31)には、フロントカバー(41)を留めるための係止突部(42)が形成されている。板金部品であるフロントカバー(41)には上端部に折り曲げ部(44)が形成され、この折り曲げ部(44)には、係止突部(42)に対応する位置に、係止突部(42)に引っ掛けるための係止凹部(43)が形成されている。さらに、フロントカバー(41)は、両縁部(41a,41a)がビス(48)とビス孔(48a)によりボックスケース(31)に固定されるようになっている。
The front cover (41) is made of sheet metal parts. The box case (31) is formed with a locking projection (42) for fastening the front cover (41). The front cover (41), which is a sheet metal part, has a bent portion (44) formed at the upper end, and the bent portion (44) has a locking protrusion (42) at a position corresponding to the locking protrusion (42). 42) A locking recess (43) for hooking onto 42) is formed. Furthermore, the front cover (41) has both edge portions (41a, 41a) fixed to the box case (31) by screws (48) and screw holes (48a).
上記係止突部(42)と係止凹部(43)は、インバータボックス(15)の上面側にだけ設けられている。このため、フロントカバー(41)の上下が反転した状態では、係止突部(42)と係止凹部(43)がかみ合わない。また、フロントカバー(41)をボックスケース(31)に取り付けるビス(48)とビス孔(48a)も、フロントカバー(41)の上下が反転すると位置が合わなくなるように設計されている。このことにより、フロントカバー(41)の向きを誤ってボックスケース(31)に取り付けるのを防止するようにしている。
The locking protrusion (42) and the locking recess (43) are provided only on the upper surface side of the inverter box (15). For this reason, when the front cover (41) is turned upside down, the locking projection (42) and the locking recess (43) do not engage with each other. The screws (48) and screw holes (48a) for attaching the front cover (41) to the box case (31) are also designed so that their positions are not aligned when the front cover (41) is turned upside down. This prevents the front cover (41) from being attached to the box case (31) by mistake.
図5に示すように、ボックスケース(31)とフロントカバー(41)の接触面には、パッキン(49)が設けられている。そして、ボックスケース(31)にフロントカバー(41)を装着することで、このパッキン(49)によりインバータボックス(15)が密閉されるようになっている。
As shown in FIG. 5, packing (49) is provided on the contact surface between the box case (31) and the front cover (41). The inverter box (15) is hermetically sealed by the packing (49) by attaching the front cover (41) to the box case (31).
また、図7におけるフロントカバー(41)の左側端部には、アース線(図示せず)の一端が固定されており、このアース線の他端はコンテナ用冷凍装置(10)のケーシング(13)に取り付けられている。このことにより、フロントカバー(41)をボックスケース(31)から取り外したときの紛失防止を図るようにしている。
Further, one end of a ground wire (not shown) is fixed to the left end portion of the front cover (41) in FIG. 7, and the other end of this ground wire is the casing (13) of the container refrigeration apparatus (10). ). This prevents loss when the front cover (41) is removed from the box case (31).
一方、インバータボックス(15)内が高温になると内部空間の圧力が上昇する。インバータボックス(15)が密閉構造であるため、内部の圧力が上昇すると上記パッキン(49)に圧力がかかり、インバータボックス(15)のパッキン(49)の部分に隙間が生じることがある。その隙間に水が存在していると、圧力が下がったときにインバータボックス(15)内に水が浸入してしまう。そこで、本実施形態では、圧力上昇に対する対策として、図2,図4に示すように、インバータボックス(15)とコントロールボックス(16)とを接続するケーブル(50)が設けられる接続部(51)に均圧チューブ(52)を通してインバータボックス(15)とコントロールボックス(16)の内部空間を連通させ、インバータボックス(15)の圧力が上昇すると、その圧力をコントロールボックス(16)へ逃がすようにしている。このようにすることにより、インバータボックス(15)の圧力が上昇してもインバータボックス(15)のパッキン(49)の部分に隙間が生じなくなるので、インバータボックス(15)への水の浸入を防止できる。
On the other hand, when the temperature inside the inverter box (15) becomes high, the pressure in the internal space increases. Since the inverter box (15) has a sealed structure, when the internal pressure increases, pressure is applied to the packing (49), and a gap may be generated in the packing (49) portion of the inverter box (15). If water is present in the gap, water will enter the inverter box (15) when the pressure drops. Therefore, in the present embodiment, as a countermeasure against the pressure increase, as shown in FIGS. 2 and 4, the connection portion (51) provided with the cable (50) for connecting the inverter box (15) and the control box (16). Connect the internal space of the inverter box (15) and control box (16) through the pressure equalizing tube (52) to increase the pressure in the inverter box (15) so that the pressure is released to the control box (16). Yes. In this way, even if the pressure in the inverter box (15) rises, there is no gap in the packing (49) part of the inverter box (15), preventing water from entering the inverter box (15). it can.
-運転動作-
このコンテナ用冷凍装置(10)では、圧縮機(20)、庫外ファン(25)及び庫内ファン(26)を起動することによって、運転が開始される。コンテナ用冷凍装置(10)の冷媒回路では、圧縮機(20)の吐出冷媒が凝縮器(21)へ送られる。この凝縮器(21)では、内部を流通する冷媒が庫外ファン(25)によって送られてくる庫外空気と熱交換する。その結果、冷媒が庫外空気に放熱して凝縮する。 -Driving operation-
In the container refrigeration apparatus (10), the operation is started by starting the compressor (20), the external fan (25), and the internal fan (26). In the refrigerant circuit of the container refrigeration apparatus (10), the refrigerant discharged from the compressor (20) is sent to the condenser (21). In the condenser (21), the refrigerant circulating inside exchanges heat with the outside air sent by the outside fan (25). As a result, the refrigerant dissipates heat to the outside air and condenses.
このコンテナ用冷凍装置(10)では、圧縮機(20)、庫外ファン(25)及び庫内ファン(26)を起動することによって、運転が開始される。コンテナ用冷凍装置(10)の冷媒回路では、圧縮機(20)の吐出冷媒が凝縮器(21)へ送られる。この凝縮器(21)では、内部を流通する冷媒が庫外ファン(25)によって送られてくる庫外空気と熱交換する。その結果、冷媒が庫外空気に放熱して凝縮する。 -Driving operation-
In the container refrigeration apparatus (10), the operation is started by starting the compressor (20), the external fan (25), and the internal fan (26). In the refrigerant circuit of the container refrigeration apparatus (10), the refrigerant discharged from the compressor (20) is sent to the condenser (21). In the condenser (21), the refrigerant circulating inside exchanges heat with the outside air sent by the outside fan (25). As a result, the refrigerant dissipates heat to the outside air and condenses.
凝縮器(21)で凝縮した冷媒は、膨張弁で減圧された後、蒸発器(23)へ送られる。この蒸発器(23)では、内部を流通する冷媒が庫内ファン(26)によって送られてくる庫内空気と熱交換する。その結果、冷媒は庫内空気から吸熱して蒸発し、庫内空気が冷却される。なお、庫内空気は、図1に示すように、仕切板(14)の上側から庫内収納空間(S2)に流入して蒸発器(23)を通過する。そして、蒸発器(23)で冷却された後に仕切板(14)の下側から庫内へ戻っていく。蒸発器(23)で蒸発した冷媒は、圧縮機(20)に吸入されて再び圧縮される。
The refrigerant condensed in the condenser (21) is depressurized by the expansion valve and then sent to the evaporator (23). In the evaporator (23), the refrigerant circulating inside exchanges heat with the internal air sent by the internal fan (26). As a result, the refrigerant absorbs heat from the internal air and evaporates, and the internal air is cooled. As shown in FIG. 1, the internal air flows into the internal storage space (S2) from the upper side of the partition plate (14) and passes through the evaporator (23). And after cooling with an evaporator (23), it returns to the inside from the lower side of a partition plate (14). The refrigerant evaporated in the evaporator (23) is sucked into the compressor (20) and compressed again.
庫外収納空間(S1)では、庫外ファン(25)により吸い込まれて凝縮器(21)を通る庫外空気の一部は、インバータボックス(15)の下面と庫外収納空間(S1)の底面(13a)の間に形成されている導入路(37a)を通って空気通路(37)内を流れた後に凝縮器(21)を通過する。上記空気通路(37)内にはインバータボックス(15)の背板側放熱フィン(32)が位置しているので、インバータ回路で発生した熱が背板側放熱フィン(32)から庫外空気に放出される。このことにより、インバータ回路に接続されているACリアクタなどの発熱部品が冷却され、インバータの安定した動作が行われる。
In the external storage space (S1), a part of the external air that is sucked by the external fan (25) and passes through the condenser (21) is part of the lower surface of the inverter box (15) and the external storage space (S1). After flowing through the air passage (37) through the introduction passage (37a) formed between the bottom surfaces (13a), it passes through the condenser (21). Since the back plate side radiating fin (32) of the inverter box (15) is located in the air passage (37), the heat generated in the inverter circuit is transferred from the back plate radiating fin (32) to the outside air. Released. As a result, a heat generating component such as an AC reactor connected to the inverter circuit is cooled, and a stable operation of the inverter is performed.
また、上記空気通路(37)が庫外収納空間(S1)において庫外ファン(25)に対して下方かつ奥側に位置している。コンテナ用冷凍装置(10)では庫外ファン(25)のプロペラの背面側で下方の位置が風速が最も速くなるので、この実施形態において空気通路(37)を通る空気の風速は速い。したがって、インバータボックス(15)の熱が効率よく放出される。
In addition, the air passage (37) is located below and on the back side of the external fan (25) in the external storage space (S1). In the container refrigeration apparatus (10), the wind speed is the fastest at the lower position on the back side of the propeller of the external fan (25), and thus the wind speed of the air passing through the air passage (37) is fast in this embodiment. Therefore, the heat of the inverter box (15) is efficiently released.
-実施形態の効果-
本実施形態によれば、庫外ファン(25)により送風されて凝縮器(21)を通る空気が、上記空気通路(37)を流れるようにしているから、この空気通路(37)内に配置されている放熱フィン(32)の放熱性能が高められる。また、インバータボックス(15)の放熱が促進されて、インバータ基板(46)に搭載するコンデンサ等の電子部品に熱の影響が生じにくくなるので、耐熱性の高い部品が必要でなくなり、インバータボックス(15)の低コスト化が可能になる。さらに、放熱性能が高くなる結果、放熱フィン(32)をインバータボックス(15)の全体に設けなくてもよくなるので、インバータボックス(15)の軽量化やコンパクト化を実現できる。 -Effects of the embodiment-
According to the present embodiment, the air that is blown by the external fan (25) and passes through the condenser (21) flows through the air passage (37), and therefore is disposed in the air passage (37). The heat dissipating performance of the heat dissipating fin (32) is improved. In addition, the heat dissipation of the inverter box (15) is promoted, and it is difficult for the electronic components such as capacitors mounted on the inverter board (46) to be affected by heat. 15) Cost reduction is possible. Furthermore, as a result of the high heat dissipation performance, it is not necessary to provide the heat dissipating fins (32) in the entire inverter box (15), so that the inverter box (15) can be reduced in weight and size.
本実施形態によれば、庫外ファン(25)により送風されて凝縮器(21)を通る空気が、上記空気通路(37)を流れるようにしているから、この空気通路(37)内に配置されている放熱フィン(32)の放熱性能が高められる。また、インバータボックス(15)の放熱が促進されて、インバータ基板(46)に搭載するコンデンサ等の電子部品に熱の影響が生じにくくなるので、耐熱性の高い部品が必要でなくなり、インバータボックス(15)の低コスト化が可能になる。さらに、放熱性能が高くなる結果、放熱フィン(32)をインバータボックス(15)の全体に設けなくてもよくなるので、インバータボックス(15)の軽量化やコンパクト化を実現できる。 -Effects of the embodiment-
According to the present embodiment, the air that is blown by the external fan (25) and passes through the condenser (21) flows through the air passage (37), and therefore is disposed in the air passage (37). The heat dissipating performance of the heat dissipating fin (32) is improved. In addition, the heat dissipation of the inverter box (15) is promoted, and it is difficult for the electronic components such as capacitors mounted on the inverter board (46) to be affected by heat. 15) Cost reduction is possible. Furthermore, as a result of the high heat dissipation performance, it is not necessary to provide the heat dissipating fins (32) in the entire inverter box (15), so that the inverter box (15) can be reduced in weight and size.
特に、インバータボックス(15)をアルミダイカストにしてボックスケース(31)に対する放熱フィン(32)の溶接構造を廃止しているので、溶接構造を採用する場合に比較して、インバータボックス(15)の軽量化やコンパクト化が可能となる。
In particular, the inverter box (15) is made of aluminum die casting and the welding structure of the heat dissipating fins (32) to the box case (31) is abolished. Lightweight and compact.
また、本実施形態では、空気通路(37)を、ケーシング(13)の構成部材である奥行き面(13c)とインバータボックス(15)の構成部材である背板(31a)と両側板(31d)とにより区画形成しているので、ダクトなどの部品を別途設ける必要がなく、装置の構成を簡素化できる。
In the present embodiment, the air passage (37) includes the depth surface (13c) that is a component of the casing (13), the back plate (31a) that is a component of the inverter box (15), and both side plates (31d). Therefore, there is no need to separately provide parts such as a duct, and the configuration of the apparatus can be simplified.
また、本実施形態では、下面に支持脚(34)を有するインバータボックス(15)を庫外収納空間(S1)の設置面(底面)(13a)に設置することにより、該設置面(13a)とインバータボックス(15)の下面との間に導入路(37a)(空間)を形成しているので、庫外ファン(25)により形成される庫外空気の流れが、この導入路(37a)から空気通路(37)に入って放熱フィン(32)の周囲を流れやすくなる。このように、庫外空気が放熱フィン(32)の周囲を流れやすくなるので、そのことによっても放熱性能が高められる。
In the present embodiment, the installation surface (13a) is provided by installing the inverter box (15) having the support legs (34) on the lower surface on the installation surface (bottom surface) (13a) of the external storage space (S1). Since the introduction path (37a) (space) is formed between the inverter box (15) and the lower surface of the inverter box (15), the flow of outside air formed by the outside fan (25) is the introduction path (37a). Easily enters the air passage (37) and flows around the radiation fin (32). As described above, the outside air easily flows around the heat dissipating fins (32), so that the heat dissipating performance is also improved.
また、本実施形態によれば、補助支持脚(34a)でインバータボックス(15)を支える構成にしたので、インバータボックス(15)の安定性が高くなる。また、インバータボックス(15)に一対の支持脚(34)だけしか設けていない場合は、衝撃・輸送振動がかかって底板(31c)の中央部がたわむおそれがあるが、本実施形態の構成であれば強度が向上するのでたわみを防止できる。また、補助支持脚(34a)は放熱フィン(32)に連続する部材であるから、放熱性を高める効果も得られる。
Moreover, according to this embodiment, since the inverter box (15) is supported by the auxiliary support legs (34a), the stability of the inverter box (15) is increased. In addition, when the inverter box (15) has only a pair of support legs (34), there is a risk that the center portion of the bottom plate (31c) will bend due to impact / transport vibration. If so, the strength is improved, so that deflection can be prevented. In addition, since the auxiliary support leg (34a) is a member that is continuous with the heat dissipating fin (32), an effect of improving heat dissipation can also be obtained.
さらに、コンテナ用冷凍装置(10)では、庫外ファン(25)が空気を背面側から吸い込む構成において、その背面側の下方が最も風速が速いので、本実施形態では、庫外ファン(25)の背面側の下方にインバータボックス(15)の放熱フィン(32)を配置するようにしている。したがって、この実施形態では、庫外空気の風速を上げることにより、放熱効果をより高めることが可能になる。
Further, in the container refrigeration apparatus (10), in the configuration in which the outside fan (25) sucks air from the back side, the lower part of the back side has the fastest wind speed. Therefore, in this embodiment, the outside fan (25) The heat dissipating fins (32) of the inverter box (15) are arranged below the rear side of the inverter. Therefore, in this embodiment, it is possible to further increase the heat dissipation effect by increasing the wind speed of the outside air.
また、この実施形態によれば、インバータボックス(15)の放熱フィン(32)の上面と上記凝縮器(21)の下面との間にダクト部材(38)を設け、そのダクト部材(38)を庫外空気が流れるようにしているので、インバータボックス(15)の放熱フィン(32)の上面と上記凝縮器(21)の下面との間で空気がもれるのを防止できる。
Further, according to this embodiment, the duct member (38) is provided between the upper surface of the radiating fin (32) of the inverter box (15) and the lower surface of the condenser (21), and the duct member (38) is provided. Since the outside air flows, it is possible to prevent the air from leaking between the upper surface of the radiating fin (32) of the inverter box (15) and the lower surface of the condenser (21).
さらに、本実施形態によれば、発熱部品であるACリアクタ(45)をインバータボックス(15)の上部に設けているから、その熱が下降するのを抑えられる。したがって、インバータボックス(15)内のACリアクタ(45)の下方に耐熱性の低い部品を配置することが可能になる。そして、耐熱性の低い部品をインバータボックス(15)内に用いることができるので、インバータボックス(15)の低コスト化が可能となる。
Furthermore, according to this embodiment, since the AC reactor (45), which is a heat generating component, is provided on the upper portion of the inverter box (15), it is possible to prevent the heat from falling. Therefore, it becomes possible to arrange components having low heat resistance below the AC reactor (45) in the inverter box (15). And since components with low heat resistance can be used in the inverter box (15), the cost of the inverter box (15) can be reduced.
さらに、本実施形態によれば、インバータボックス(15)内のACリアクタ(45)を仕切板(39)の上方に配置しているから、ACリアクタの熱の下降がより生じにくくなる。そのため、インバータボックス(15)内でACリアクタ(45)の下方に配置する部品への熱の影響をより確実に抑えられる。よって、インバータボックス(15)内のACリアクタ(45)の下方に耐熱性の低い部品を配置しやすくなるから、インバータボックス(15)の低コスト化をより確実にすることができる。
Furthermore, according to the present embodiment, since the AC reactor (45) in the inverter box (15) is arranged above the partition plate (39), it is more difficult for the AC reactor to drop in heat. Therefore, it is possible to more reliably suppress the influence of heat on the components arranged below the AC reactor (45) in the inverter box (15). Therefore, since it becomes easy to arrange | position components with low heat resistance under the AC reactor (45) in an inverter box (15), the cost reduction of an inverter box (15) can be made more reliable.
また、インバータボックス(15)のフロントカバー(41)をアース線でコンテナ用冷凍装置(10)のケーシング(13)に接続しているので、メンテナンス時などにフロントカバー(41)を外したときに、フロントカバー(41)の紛失を防止できる。また、フロントカバー(41)をボックスケース(31)に取り付ける方向性を定めているので、誤取付を防止できるとともに、取付時の作業性も向上する。
Also, since the front cover (41) of the inverter box (15) is connected to the casing (13) of the container refrigeration system (10) with a ground wire, when the front cover (41) is removed during maintenance, etc. The front cover (41) can be prevented from being lost. Moreover, since the directionality which attaches a front cover (41) to a box case (31) is defined, incorrect attachment can be prevented and workability at the time of attachment is also improved.
さらに、インバータボックス(15)とコントロールボックス(16)を均圧チューブ(52)で連通させるようにしているので、インバータボックス(15)の内部空間の圧力が上昇してもインバータボックス(15)のパッキン(49)の部分に隙間が生じるのを防止できるから、インバータボックス(15)内への水の侵入を防止でき、インバータボックス(15)の信頼性を高めることができる。
Furthermore, since the inverter box (15) and the control box (16) are connected with the pressure equalizing tube (52), the inverter box (15) can be connected even if the internal space pressure rises. Since it is possible to prevent a gap from occurring in the packing (49), water can be prevented from entering the inverter box (15), and the reliability of the inverter box (15) can be improved.
-実施形態の変形例-
上記実施形態では、凝縮器(21)を庫外ファン(25)の下方に配置し、さらにその下方にインバータボックス(15)を配置しているが、この配置を変更してもよい。例えば、図9に示すように、互いに屈曲した位置関係にある3つの熱交換面(21a,21b,21c)を有する形状の凝縮器(21)を用い、この凝縮器(21)を、各熱交換面(21a,21b,21c)が図9において庫外ファン(25)の右側方と上方と下方に位置するように配置してもよい。 -Modification of the embodiment-
In the said embodiment, although the condenser (21) is arrange | positioned under the fan outside a store | warehouse | chamber (25) and the inverter box (15) is arrange | positioned further under that, you may change this arrangement | positioning. For example, as shown in FIG. 9, a condenser (21) having a shape having three heat exchange surfaces (21a, 21b, 21c) in a bent relationship with each other is used. The replacement surfaces (21a, 21b, 21c) may be arranged so as to be located on the right side, above and below the outside fan (25) in FIG.
上記実施形態では、凝縮器(21)を庫外ファン(25)の下方に配置し、さらにその下方にインバータボックス(15)を配置しているが、この配置を変更してもよい。例えば、図9に示すように、互いに屈曲した位置関係にある3つの熱交換面(21a,21b,21c)を有する形状の凝縮器(21)を用い、この凝縮器(21)を、各熱交換面(21a,21b,21c)が図9において庫外ファン(25)の右側方と上方と下方に位置するように配置してもよい。 -Modification of the embodiment-
In the said embodiment, although the condenser (21) is arrange | positioned under the fan outside a store | warehouse | chamber (25) and the inverter box (15) is arrange | positioned further under that, you may change this arrangement | positioning. For example, as shown in FIG. 9, a condenser (21) having a shape having three heat exchange surfaces (21a, 21b, 21c) in a bent relationship with each other is used. The replacement surfaces (21a, 21b, 21c) may be arranged so as to be located on the right side, above and below the outside fan (25) in FIG.
この図9の例では、インバータボックス(15)は、図9において凝縮器(21)の熱交換部(21a)の右側方に配置されている。また、この構成においては、インバータボックス(15)の外面(右側面)に、インバータボックス(15)の外面(右側面)から外方(右方向)へ突出する一対の支持部(図3,4の支持脚(34)に相当)(34)が形成されている。庫内ケーシング(11a)の右側の側面を設置面(13a)として支持部(34)を固定することにより、インバータボックス(15)が庫外収納空間(S1)の設置面(13a)に設置されている。
In the example of FIG. 9, the inverter box (15) is arranged on the right side of the heat exchange part (21a) of the condenser (21) in FIG. Further, in this configuration, a pair of support portions (FIGS. 3 and 4) projecting outward (right direction) from the outer surface (right side surface) of the inverter box (15) on the outer surface (right side surface) of the inverter box (15). (Corresponding to the support leg (34))) (34). By fixing the support (34) with the right side of the inner casing (11a) as the installation surface (13a), the inverter box (15) is installed on the installation surface (13a) of the external storage space (S1) ing.
この構成においても、インバータボックス(15)の背面側、具体的には、インバータボックス(15)の背板(31a)とケーシング(13)の奥行き面(13c)によって空気通路(37)が区画形成されている。また、インバータボックス(15)の背面には、図9では示していないが背板側放熱フィン(32)が上記実施形態と同様に形成されており、この背板側放熱フィン(32)が上記空気通路(37)内に位置している。
Even in this configuration, the air passage (37) is partitioned by the back side of the inverter box (15), specifically, the back plate (31a) of the inverter box (15) and the depth surface (13c) of the casing (13). Has been. Further, although not shown in FIG. 9, the back plate side radiating fin (32) is formed on the back surface of the inverter box (15) in the same manner as the above embodiment, and the back plate side radiating fin (32) Located in the air passage (37).
そして、上記設置面(13a)であるケーシング(13)の右側面とインバータボックス(15)の外面(右側面)との間の空間が、上記実施形態と同様にして構成されている空気通路(37)内に配置された放熱フィン(32)への空気の導入路(37a)になっている。
The space between the right side surface of the casing (13), which is the installation surface (13a), and the outer surface (right side surface) of the inverter box (15) is configured in the same manner as in the above embodiment ( 37) This is an air introduction path (37a) to the heat dissipating fins (32) arranged in the interior.
このように構成しても、上記実施形態と同様の効果を得ることができる。
Even with this configuration, it is possible to obtain the same effect as the above embodiment.
《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。 << Other Embodiments >>
About the said embodiment, it is good also as the following structures.
上記実施形態については、以下のような構成としてもよい。 << Other Embodiments >>
About the said embodiment, it is good also as the following structures.
例えば、上記実施形態では、インバータボックス(15)の下面に支持脚(34)を設けてインバータボックス(15)の底面を庫外収納空間(S1)の底面(設置面)(13a)から浮かすようにしているが、支持脚(34)を設けずにボックスケース(31)をケーシング(13)の奥行き面(13c)に固定して、導入路(37a)を形成するようにしてもよい。
For example, in the above embodiment, the support leg (34) is provided on the lower surface of the inverter box (15) so that the bottom surface of the inverter box (15) floats from the bottom surface (installation surface) (13a) of the external storage space (S1). However, the introduction case (37a) may be formed by fixing the box case (31) to the depth surface (13c) of the casing (13) without providing the support legs (34).
また、補助支持脚(34a)も必ずしも設けなくてもよい。
Further, the auxiliary support leg (34a) is not necessarily provided.
また、放熱フィン(32)が配置される空気通路(37)の位置やインバータボックス(15)の向きは、コンテナ用冷凍装置(10)の装置構成に応じて適宜定めればよく、上記実施形態の配置等に限定する必要はない。
In addition, the position of the air passage (37) in which the radiating fin (32) is arranged and the direction of the inverter box (15) may be appropriately determined according to the device configuration of the container refrigeration apparatus (10). It is not necessary to limit the arrangement to the above.
また、上記放熱フィン(32)は、必ずしもインバータボックス(15)に一体形成しなくてもよい。
Also, the radiating fin (32) does not necessarily have to be formed integrally with the inverter box (15).
また、図9は、凝縮器(21)が庫外ファン(25)を3方向から包囲する形状に形成した例を示しているが、上記凝縮器(21)は、庫外ファン(25)の全周を包囲する形状(角環形や円環形)に形成したものを用いてもよい。その場合、インバータボックス(15)は、熱交換器(21)の下方や側方に限らず、熱交換器(21)へ向かう空気通路(37)が形成される位置であれば、上方にスペースを形成してそのスペースに配置してもよい。
FIG. 9 shows an example in which the condenser (21) is formed in a shape that surrounds the external fan (25) from three directions, but the condenser (21) is formed of the external fan (25). You may use what was formed in the shape (angular ring shape or annular shape) surrounding the perimeter. In that case, the inverter box (15) is not limited to the lower side or the side of the heat exchanger (21), but is located above the space if the air passage (37) toward the heat exchanger (21) is formed. May be formed and placed in the space.
要するに、本発明は、放熱フィン(32)を、庫外空気が流れる空気通路(37)に配置する構成にしていれば、熱交換器(21)やインバータボックス(15)の配置など、他の構成は適宜変更してもよい。
In short, in the present invention, if the radiating fin (32) is arranged in the air passage (37) through which the outside air flows, other arrangements such as the arrangement of the heat exchanger (21) and the inverter box (15) are provided. The configuration may be changed as appropriate.
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
In addition, the above embodiment is an essentially preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
以上説明したように、本発明は、コンテナ用冷凍装置において圧縮機を可変容量制御するために設けられるインバータボックスの放熱構造について有用である。
As described above, the present invention is useful for a heat dissipation structure of an inverter box provided for variable capacity control of a compressor in a container refrigeration apparatus.
1 コンテナ本体
10 コンテナ用冷凍装置
13 ケーシング
13a 底面(設置面)
13c 奥行き面
15 インバータボックス
20 可変容量圧縮機
21 凝縮器
25 庫外ファン
31 ボックスケース
32 背板側放熱フィン(放熱フィン)
34 支持脚(支持部)
34a 補助支持脚
37 空気通路
37a 導入路
38 ダクト部材
39 仕切板
45 ACリアクタ
46 インバータ回路
S1 庫外収納空間 1Container body 10 Container refrigeration equipment 13 Casing 13a Bottom (installation surface)
13c Depth surface 15 Inverter box 20 Variable capacity compressor 21 Condenser 25 Fan outside the box 31 Box case 32 Back plate side radiating fin (radiating fin)
34 Support leg (support part)
34aAuxiliary support leg 37 Air passage 37a Introduction path 38 Duct member 39 Partition plate 45 AC reactor 46 Inverter circuit S1 Storage space outside the cabinet
10 コンテナ用冷凍装置
13 ケーシング
13a 底面(設置面)
13c 奥行き面
15 インバータボックス
20 可変容量圧縮機
21 凝縮器
25 庫外ファン
31 ボックスケース
32 背板側放熱フィン(放熱フィン)
34 支持脚(支持部)
34a 補助支持脚
37 空気通路
37a 導入路
38 ダクト部材
39 仕切板
45 ACリアクタ
46 インバータ回路
S1 庫外収納空間 1
34 Support leg (support part)
34a
Claims (9)
- コンテナ本体(1)に装着されるケーシング(13)と、該ケーシング(13)の庫外側に形成された庫外収納空間(S1)を備え、
上記庫外収納空間(S1)に、該庫外収納空間(S1)の底面より上方に位置する凝縮器(21)と、該凝縮器(21)を通過する空気流れを形成する庫外ファン(25)と、上記凝縮器(21)へ冷媒を送り出す可変容量圧縮機(20)と、該可変容量圧縮機(20)を制御するインバータ回路(46)を収納したインバータボックス(15)とが配置されたコンテナ用冷凍装置であって、
上記インバータボックス(15)は、ボックスケース(31)の外面に形成された放熱フィン(32)を有し、
該放熱フィン(32)は、上記凝縮器(21)を通過する空気が流れるように形成された空気通路(37)内に配置されていることを特徴とするコンテナ用冷凍装置。 A casing (13) mounted on the container body (1), and an external storage space (S1) formed outside the casing (13);
In the external storage space (S1), a condenser (21) positioned above the bottom surface of the external storage space (S1) and an external fan that forms an air flow passing through the condenser (21) ( 25), a variable capacity compressor (20) for sending refrigerant to the condenser (21), and an inverter box (15) containing an inverter circuit (46) for controlling the variable capacity compressor (20). Container refrigeration equipment,
The inverter box (15) has heat radiation fins (32) formed on the outer surface of the box case (31),
The container refrigeration apparatus, wherein the radiating fin (32) is disposed in an air passage (37) formed so that air passing through the condenser (21) flows. - 請求項1において、
上記空気通路(37)は、上記ケーシング(13)の構成部材(13c)とインバータボックス(15)の構成部材(31a,31d)とにより区画形成されていることを特徴とするコンテナ用冷凍装置。 In claim 1,
The container refrigeration apparatus, wherein the air passage (37) is defined by a component (13c) of the casing (13) and a component (31a, 31d) of the inverter box (15). - 請求項1または2において、
上記インバータボックス(15)の外面には該インバータボックス(15)の外面から外方へ突出する一対の支持部(34)が形成されるとともに、該インバータボックス(15)が庫外収納空間(S1)の設置面(13a)に設置され、
上記設置面(13a)とインバータボックス(15)の外面との間の空間が、上記空気通路(37)内に配置された放熱フィン(32)への空気の導入路(37a)を構成していることを特徴とするコンテナ用冷凍装置。 In claim 1 or 2,
A pair of support portions (34) projecting outward from the outer surface of the inverter box (15) are formed on the outer surface of the inverter box (15), and the inverter box (15) is disposed in the outside storage space (S1 ) On the installation surface (13a)
The space between the installation surface (13a) and the outer surface of the inverter box (15) constitutes an air introduction path (37a) to the radiation fin (32) disposed in the air passage (37). A container refrigeration apparatus characterized by comprising: - 請求項1または2において、
上記インバータボックス(15)の下部には該インバータボックス(15)の下面から下方へ突出する一対の支持脚(34)が形成されるとともに、該インバータボックス(15)が庫外収納空間(S1)の設置面(13a)に設置され、
上記設置面(13a)とインバータボックス(15)の下面との間の空間が、上記空気通路(37)内に配置された放熱フィン(32)への空気の導入路(37a)を構成していることを特徴とするコンテナ用冷凍装置。 In claim 1 or 2,
A pair of support legs (34) projecting downward from the lower surface of the inverter box (15) are formed at the lower portion of the inverter box (15), and the inverter box (15) is disposed outside the storage space (S1). Installed on the installation surface (13a)
The space between the installation surface (13a) and the lower surface of the inverter box (15) constitutes an air introduction path (37a) to the radiation fin (32) disposed in the air passage (37). A container refrigeration apparatus characterized by comprising: - 請求項4において、
上記インバータボックス(15)の下面には、上記一対の支持脚(34)の間で上記庫外収納空間(S1)の設置面(13a)に当接する補助支持脚(34a)が形成されていることを特徴とするコンテナ用冷凍装置。 In claim 4,
On the lower surface of the inverter box (15), auxiliary support legs (34a) are formed between the pair of support legs (34) so as to contact the installation surface (13a) of the external storage space (S1). A container refrigeration apparatus characterized by the above. - 請求項1から5の何れか1つにおいて、
上記凝縮器(21)が庫外ファン(25)の下方に配置され、
上記インバータボックス(15)は、放熱フィン(32)が上記庫外収納空間(S1)の奥行き面(13c)を向いて配置されるとともに、上記放熱フィン(32)が庫外ファン(25)の奥側の空気吸込側かつ庫外ファン(25)の下方に位置するように配置されていることを特徴とするコンテナ用冷凍装置。 In any one of claims 1 to 5,
The condenser (21) is disposed below the external fan (25),
In the inverter box (15), the radiating fin (32) is arranged facing the depth surface (13c) of the external storage space (S1), and the radiating fin (32) is connected to the external fan (25). A container refrigeration apparatus, wherein the container refrigeration apparatus is disposed so as to be positioned on an inner air suction side and below an external fan (25). - 請求項1から6の何れか1つにおいて、
上記インバータボックス(15)が上記凝縮器(21)に対して空気流れの上流側に配置され、
上記インバータボックス(15)の放熱フィン(32)と上記凝縮器(21)との間に、上記空気通路(37)に連接するダクト部材(38)が配置されていることを特徴とするコンテナ用冷凍装置。 In any one of Claims 1-6,
The inverter box (15) is arranged upstream of the air flow with respect to the condenser (21);
For a container, wherein a duct member (38) connected to the air passage (37) is disposed between the heat dissipating fin (32) of the inverter box (15) and the condenser (21). Refrigeration equipment. - 請求項1から7の何れか1つにおいて、
上記インバータボックス(15)には、内部空間の上部に、上記インバータ回路(46)に接続されるACリアクタ(45)が配置されていることを特徴とするコンテナ用冷凍装置。 In any one of Claims 1-7,
In the inverter box (15), an AC reactor (45) connected to the inverter circuit (46) is disposed in an upper portion of an internal space. - 請求項8において、
上記インバータボックス(15)は、内部空間を上下に区画する仕切板(39)を備え、該仕切板(39)の上方に上記ACリアクタ(45)が配置されていることを特徴とするコンテナ用冷凍装置。 In claim 8,
The inverter box (15) includes a partition plate (39) that divides an internal space vertically, and the AC reactor (45) is disposed above the partition plate (39). Refrigeration equipment.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-203324 | 2013-09-30 | ||
JP2013203324 | 2013-09-30 | ||
JP2013-246920 | 2013-11-29 | ||
JP2013246920 | 2013-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015045252A1 true WO2015045252A1 (en) | 2015-04-02 |
Family
ID=52742432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004052 WO2015045252A1 (en) | 2013-09-30 | 2014-08-01 | Refrigeration device for container |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015127630A (en) |
WO (1) | WO2015045252A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016211788A (en) * | 2015-05-11 | 2016-12-15 | 三菱重工業株式会社 | Refrigerating machine for transportation and trailer |
EP3415844A4 (en) * | 2016-06-20 | 2019-05-01 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Refrigerating unit for transportation |
CN111615611A (en) * | 2018-01-18 | 2020-09-01 | 株式会社电装 | Refrigerating device |
US20220357094A1 (en) * | 2020-03-06 | 2022-11-10 | Daikin Industries, Ltd. | Refrigeration apparatus for transport and transport container |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7001939B2 (en) * | 2020-03-06 | 2022-01-20 | ダイキン工業株式会社 | Transport refrigeration equipment and transport containers |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0723829B2 (en) * | 1989-11-15 | 1995-03-15 | 三洋電機株式会社 | Controller box |
JPH089587Y2 (en) * | 1989-07-01 | 1996-03-21 | ホシザキ電機株式会社 | Machine room structure such as refrigerator |
JP2003097881A (en) * | 2001-09-20 | 2003-04-03 | Mitsubishi Heavy Ind Ltd | Refrigeration unit for container |
JP2011257087A (en) * | 2010-06-10 | 2011-12-22 | Denso Corp | Refrigerating device for freezer |
JP2012164878A (en) * | 2011-02-08 | 2012-08-30 | Sanyo Electric Co Ltd | Power conditioner |
JP2013122328A (en) * | 2011-12-09 | 2013-06-20 | Daikin Industries Ltd | Refrigeration device for container |
-
2014
- 2014-08-01 WO PCT/JP2014/004052 patent/WO2015045252A1/en active Application Filing
- 2014-08-01 JP JP2014158091A patent/JP2015127630A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH089587Y2 (en) * | 1989-07-01 | 1996-03-21 | ホシザキ電機株式会社 | Machine room structure such as refrigerator |
JPH0723829B2 (en) * | 1989-11-15 | 1995-03-15 | 三洋電機株式会社 | Controller box |
JP2003097881A (en) * | 2001-09-20 | 2003-04-03 | Mitsubishi Heavy Ind Ltd | Refrigeration unit for container |
JP2011257087A (en) * | 2010-06-10 | 2011-12-22 | Denso Corp | Refrigerating device for freezer |
JP2012164878A (en) * | 2011-02-08 | 2012-08-30 | Sanyo Electric Co Ltd | Power conditioner |
JP2013122328A (en) * | 2011-12-09 | 2013-06-20 | Daikin Industries Ltd | Refrigeration device for container |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016211788A (en) * | 2015-05-11 | 2016-12-15 | 三菱重工業株式会社 | Refrigerating machine for transportation and trailer |
EP3415844A4 (en) * | 2016-06-20 | 2019-05-01 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Refrigerating unit for transportation |
CN111615611A (en) * | 2018-01-18 | 2020-09-01 | 株式会社电装 | Refrigerating device |
US20220357094A1 (en) * | 2020-03-06 | 2022-11-10 | Daikin Industries, Ltd. | Refrigeration apparatus for transport and transport container |
EP4095461A4 (en) * | 2020-03-06 | 2023-07-12 | Daikin Industries, Ltd. | Refrigerator used in transportation and transportation container |
Also Published As
Publication number | Publication date |
---|---|
JP2015127630A (en) | 2015-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015045252A1 (en) | Refrigeration device for container | |
JP3821153B2 (en) | Air conditioner outdoor unit | |
KR100941604B1 (en) | Outdoor unit of air conditioner | |
EP2827691B1 (en) | Cabinet for power electronic apparatus | |
JP6594428B2 (en) | Air conditioner outdoor unit and air conditioner | |
JP5729325B2 (en) | Refrigeration unit heat source unit and manufacturing method thereof | |
JP2011208909A (en) | Cooling device | |
CN110785613A (en) | Outdoor unit of refrigerator | |
JP2006214633A (en) | Outdoor unit of air conditioner | |
JP2017048960A (en) | Outdoor unit of air conditioner and air conditioner | |
JP5583449B2 (en) | Cooling storage | |
JP5891348B2 (en) | refrigerator | |
JPWO2010143390A1 (en) | Trailer refrigeration equipment | |
JP5476805B2 (en) | Trailer refrigeration equipment | |
JP5259271B2 (en) | Cooling unit | |
JP2013011420A (en) | Refrigerating apparatus for container | |
JP2011257087A (en) | Refrigerating device for freezer | |
JP2010153715A (en) | Cooling device | |
JP5523893B2 (en) | Compressor mounting device | |
JP5521410B2 (en) | Trailer refrigeration equipment | |
JP7510069B2 (en) | Transport refrigeration units and transport containers | |
JP5476813B2 (en) | Trailer refrigeration equipment | |
JP7001939B2 (en) | Transport refrigeration equipment and transport containers | |
JP6480814B2 (en) | Refrigeration equipment | |
JP6385893B2 (en) | Refrigeration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14847357 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14847357 Country of ref document: EP Kind code of ref document: A1 |