WO2015045190A1 - Photovoltaic power generation device, and snow-melting method and cooling method therefor - Google Patents

Photovoltaic power generation device, and snow-melting method and cooling method therefor Download PDF

Info

Publication number
WO2015045190A1
WO2015045190A1 PCT/JP2013/080496 JP2013080496W WO2015045190A1 WO 2015045190 A1 WO2015045190 A1 WO 2015045190A1 JP 2013080496 W JP2013080496 W JP 2013080496W WO 2015045190 A1 WO2015045190 A1 WO 2015045190A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
power generation
generation device
solar
pipe
Prior art date
Application number
PCT/JP2013/080496
Other languages
French (fr)
Japanese (ja)
Inventor
耕祐 伊藤
信博 高橋
Original Assignee
会川鉄工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 会川鉄工株式会社 filed Critical 会川鉄工株式会社
Publication of WO2015045190A1 publication Critical patent/WO2015045190A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar power generation device, a snow melting method and a cooling method for the solar power generation device, and more particularly to a solar power generation device equipped with a heat exchange system using underground heat.
  • a solar power generation system has been put to practical use as renewable energy. Converts light energy from the sun into electrical energy.
  • a cell (element) that performs photoelectric conversion is made of, for example, a material such as single crystal silicon, polycrystalline silicon, amorphous silicon, or a conductive polymer.
  • a module or array in which a plurality of cells are connected in series has a surface covered with, for example, resin or glass, the periphery is held by a metal frame, and the cells are protected from moisture, dirt, and the like. Such a module is sometimes called a solar panel.
  • FIG. 1 shows an example of a conventional solar power generation module used in a solar power generation device.
  • the solar module 10 terminals of a plurality of sheet-shaped power generation cells 12 are connected in series by wiring 14, and the surface of the power generation cell 12 is covered with a protective material 16 such as resin or glass.
  • the outer periphery of the solar module 100 is fixed by a fixed frame 18.
  • Patent Document 1 Since the power generation efficiency or output of the solar power generation device depends on the incident angle of sunlight, a device equipped with a device for driving the module to track the sunlight (Patent Document 1) or the installation location can be moved. And what can change the attitude
  • the conventional solar power generation system has the following two problems.
  • the first point is measures against snow in winter in snowy countries. If snow accumulates on the glass or the like on the surface of the solar module, not only during snowfall, but also on a clear day after snowfall, light is blocked by the snow on the glass surface and power generation is reduced.
  • the installation gradient is made steep to prevent snow accretion, but the incident angle to the glass surface of the solar module also becomes steep by making the installation gradient steep. For this reason, the reflection on the glass surface increases and the amount of power generation decreases.
  • the second point is a decrease in power generation efficiency as the temperature rises due to solar radiation.
  • Crystalline silicon solar cells are highly temperature dependent, and the output decreases by 4-5% each time the surface temperature of the solar module increases by 10 ° C. In the summer, the amount of solar radiation increases, but the surface temperature of the solar module may rise to 70 ° C. or higher, resulting in a decrease in power generation efficiency.
  • the present invention solves such a conventional problem, and in order to promote the utilization of solar power generation, an underground heat collection system and an electroless snow melting system using a heat pipe, and an underground using a steel pipe pile.
  • An object is to provide a hybrid energy system composed of a cold and hot water tank and a watering system.
  • a photovoltaic power generation apparatus includes a solar module that contains a plurality of cells that convert light energy into electrical energy, a heat pipe that uses underground water in the ground as a heat source, and at least an upper end portion of the solar module.
  • the heat conducting member is formed with a recess capable of accommodating at least a part of the heat pipe.
  • a portion of the heat pipe protruding from the recess of the heat conducting member is covered with a metal covering member.
  • the covering member includes a recess corresponding to the outer shape of the heat pipe, and a flat portion connected to the recess, and the flat portion is in contact with the heat conducting member.
  • the covering member includes fixing means for fixing the heat pipe to the heat conducting member.
  • the heat pipe is thermally coupled to ground water in a pile constructed in the ground.
  • a rainwater reservoir is formed below the pile.
  • the heat pipe forms the heat collecting part and the heat radiating part in a closed system.
  • the solar power generation apparatus further includes a cooling pipe coupled to the heat conducting member, and the cooling pipe cools the solar module using the groundwater.
  • the heat pipe is attached to an upper surface of the heat conducting member, and the cooling pipe is attached to a side surface of the heat conducting member.
  • a concave portion for accommodating the cooling pipe is formed on the side surface.
  • the solar power generation device further includes a direct current pump operable by using electric power generated by the solar power module, and the direct current pump pumps ground water into the cooling pipe.
  • the solar power generation device further includes a temperature detection sensor that detects an ambient temperature of the solar module, and includes a control unit that operates the DC pump when the temperature of the solar module becomes equal to or higher than a threshold value.
  • the solar power generation device further includes an installation member capable of installing one or a plurality of solar modules at a certain inclination angle.
  • the present invention it is possible to prevent snow from accumulating on the surface of the solar panel and to suppress a decrease in the amount of power generation in winter. Furthermore, according to this invention, a solar panel can be cooled and the fall of the power generation efficiency in summer can be prevented.
  • FIG. 3A is a cross-sectional view of the solar module shown in FIG. 2 taken along line AA
  • FIG. 3B is an enlarged top view
  • FIG. 3C is a diagram showing another example of heat pipe attachment.
  • FIG. 8A is a cross-sectional view of the solar module shown in FIG. 7 taken along line BB
  • FIG. 8B is an enlarged top view
  • FIG. 8C is a perspective view of the heat pipe.
  • the photovoltaic power generation apparatus 100 of the present embodiment includes a solar module 10, a pile 110 constructed in the ground, a heat pipe 120 that enables heat exchange using underground heat, and a heat pipe 120 that is solar A heat conductive member 130 that is attached to the optical module 10 and thermally coupled to the solar module 10 is provided.
  • the solar module 10 includes a plurality of cells 12, a wiring 14 that connects the cells 12 in series, a glass or resin protective material 16 that protects the surfaces of the plurality of cells 12, and cells. 12 and a fixing frame 18 for fixing the outer periphery of the protective material 16 and the like, and has a substantially rectangular shape.
  • a configuration is a typical configuration of a solar module, and the solar module is not necessarily limited to such a configuration.
  • the pile 110 is preferably a cylindrical metal steel pipe and is constructed in the ground.
  • the pile 110 for example, a blade pie or a convex pile made by a living environment design room can be used.
  • the depth D of the pile 110 is preferably 5 to 10 m from the ground surface, and at a depth of several meters underground, a constant temperature close to the annual average temperature can be expected.
  • groundwater Q is stored in the buried pile 110. Groundwater is one that has been infiltrated from the ground surface due to rain, etc., one that has been stored naturally, or one that has been supplied from the outside.
  • the temperature of the groundwater Q depends on the depth D of the pile 110, and the temperature of the groundwater rises as the depth D of the pile 110 increases.
  • the heat pipe 120 is a superconducting conductor, and a working fluid is sealed inside the heat pipe 120, and a large amount of heat can be transported with a slight temperature difference due to the latent heat of the working fluid and the movement of steam. is there.
  • one end 120 ⁇ / b> A and the other end 120 ⁇ / b> B of the heat pipe 120 are arranged in the groundwater Q of the pile 110.
  • groundwater is used as the working fluid.
  • one end portion 120A and the other end portion 120B of the heat pipe 120 form a heat collecting portion that is thermally coupled to the groundwater.
  • the heat pipe 120 extending from one end portion 120 ⁇ / b> A extends through substantially the entire upper end portion 10 ⁇ / b> B of the solar module 10 through the side portion 10 ⁇ / b> A of the solar module 10.
  • the heat pipe 120 is further folded back at the edge of the upper end portion 10B, and attached to the other end portion 10B again via the upper end portion 10B and the side portion 10A.
  • positioned at the upper end part 10B of the heat pipe 120 is a heat radiating part, and when the ground water is circulated through the heat radiating part, heat is radiated from the heat pipe 120 to the solar module 10.
  • FIG. 3 is a cross-sectional view of the solar module of FIG. 2 along the line AA.
  • a heat conduction plate 130 made of a metal material having a high thermal conductivity is attached to the side portion 10A and the upper end portion 10B of the fixed frame 18 of the solar module 10.
  • the heat conductive plate 130 is preferably made of, for example, aluminum or copper.
  • the heat conductive plate 130 has a constant thickness, for example, a width equal to the width of the fixed frame 18. However, the width of the heat conductive plate 130 may be larger or smaller than the width of the fixed frame 18.
  • the heat conductive plate 130 extends on the fixed frame 18 along the upper end 10B from the side portion 10A, and the flat bottom surface of the heat conductive plate 130 is in close contact with the flat surface of the metal fixed frame 18. Both are well thermally bonded.
  • the fixing method of the heat conductive plate 130 is arbitrary, but can be fixed to the fixing frame 18 with screws or the like, for example.
  • a mode in which the heat conductive plate 130 is bonded to the fixed frame 18 using an adhesive having high heat conductivity may be used.
  • each recess 132 has a diameter equal to or somewhat larger than the diameter of the heat pipe 120, and approximately half of the heat pipe 120 is accommodated in the recess 132.
  • an adhesive having a high thermal conductivity may be filled between the heat pipe 120 and the recess 132.
  • a fixture 150 for fixing the heat pipe 120 to the heat conduction plate 130 may be used.
  • the fixture 150 is made of a material having high thermal conductivity, and is made of a metal such as aluminum, copper, or iron, for example.
  • the fixture 150 includes two recesses 152 substantially the same as the outer diameter of the heat pipe 120 and a flat portion 154 connected to the recesses 152, and the heat projecting from the heat conducting plate 130 into the two recesses 152.
  • the upper half of the pipe 120 is held and the flat portion 154 is joined to the heat conducting plate 130.
  • the heat pipe 120 is fixed to the heat conduction plate 130 by the fixing bracket 150, and further, the upper half of the heat pipe 120 is covered by the fixing bracket 150, thereby suppressing heat dissipation from the heat pipe 150 to the outside air.
  • the thermal coupling between the heat pipe 120 and the heat conducting plate 130 is improved through the fixing metal 150.
  • the fixing metal 150 has a bent portion 156 in which both ends are bent at substantially right angles.
  • the bent portion 156 covers a part of the side surface of the heat conductive plate 130 to facilitate positioning of the fixing metal 150 and improve the thermal coupling between the heat conductive plate 130 and the heat pipe 120 or the fixing metal 150.
  • the width W of the fixing bracket 150 is larger than the gap S of the fixing bracket 150.
  • FIG. 3C shows another example of attachment.
  • the fixture 150 may be fixed to the heat conducting plate 130 with screws 160.
  • the flat portion 154 of the fixing bracket 150 and the heat conducting plate 130 are fixed by the screw 160.
  • the heat pipe 120 is firmly fixed to the heat conducting plate 130, and the thermal coupling is reliably ensured.
  • the heat conductive board 130 showed the example formed in the side part 10A and the upper end part 10B of a solar cell module, the heat conductive board 130 should just be formed in the upper end part 10B at least. .
  • the heat pipe 120 is laid so as to surround the outer periphery of the solar module 10. That is, it starts from one end 120A in the pile 110, and passes from there to one side 10A, the upper end 10B, the other side 10C, and the lower end 10D of the solar module 10, and at the other end 120B. Terminate.
  • the heat conducting plate 130 is formed with one recess 132 for accommodating one heat pipe 120.
  • the heat conductor 130 may be formed only on the upper end portion 10B of the solar module 10, or is formed on one side portion 10A, the upper end portion 10B, the other side portion 10C, and the lower end portion 10D. There may be.
  • the heat pipe 120 contains the working fluid in a completely closed system.
  • the hydraulic fluid of the heat pipe 120 is not necessarily limited to groundwater, and other media can be used.
  • the fluid is excellent in heat exchange efficiency, but for example, antifreeze or refrigerant gas can also be used.
  • a rainwater reservoir 200 is embedded under the pile 110. It is possible to form a completely closed space by the pile 110 and accommodate the groundwater Q therein, but in order to facilitate the driving of the pile 110, a through hole may be formed at the tip of the pile 110. is there. In this case, since a completely closed space is not formed by the pile 110, the water level of the groundwater Q in the pile 110 may fluctuate, and heat conduction by the heat pipe 120 may not be sufficiently performed.
  • a rainwater reservoir 200 which is a container having a certain depth D1, a certain width W1, and a certain length, is buried below the pile 110, and the groundwater Q1 is stored in the rainwater reservoir 200.
  • the groundwater Q is stably stored in 110.
  • the operation of this embodiment will be described.
  • the temperature of the solar module 10 exposed to the outside air decreases in winter or the like
  • the temperature of the heat pipe 120 installed at the upper end portion 10B of the solar module 10 also decreases.
  • the temperature of the groundwater Q in which the pile 110 is buried is not fluctuated and is stable, and is higher than the temperature of the heat pipe 120 near the solar module. Due to this temperature difference, the groundwater Q, which is the working fluid, is automatically pumped up and reaches the upper end portion 10B of the solar module 10.
  • the pumped hydraulic fluid can supply a heat source to the solar module 10 through the heat conducting plate 130 and can increase the temperature of the solar module 10.
  • the heat-exchanged hydraulic fluid is circulated in the pile 110 again.
  • FIG. 7 shows a schematic configuration of the photovoltaic power generation apparatus 200 according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the solar power generation device of the second embodiment further includes a function of cooling the solar module.
  • the photovoltaic power generation apparatus 200 includes a cooling pipe 210 for cooling the solar module 10 and a DC pump 220 for pumping up the groundwater Q.
  • One end 210 ⁇ / b> A of the cooling pipe 210 is disposed in the ground water Q of the pile 110, and is attached to the upper end 10 ⁇ / b> B via the DC pump 220 and the side 10 ⁇ / b> A of the solar module 10.
  • the other end 210B of the cooling pipe 210 may be open or closed.
  • the cooling pipe 210 may be made of the same material as the heat pipe 120 or may be made of another metal material.
  • FIG. 8 is a diagram for explaining the mounting of the cooling pipe.
  • an L-shaped heat conduction plate 130A is fixed to at least the upper end portion 10B of the solar module 10, and a heat pipe is formed in the recess formed on the upper surface of the heat conduction plate 130A. 120 is housed.
  • a recess 132A is formed on the side surface 131 (the light receiving surface side of the solar module) of the heat conducting plate 130A, and a part (for example, almost the lower half) of the cooling pipe 210 is accommodated in the recess 132A and fixed thereto. Is done.
  • the cooling pipe 210 can be fixed to the heat transfer plate 130A using a member such as the fixing bracket 150 shown in FIG.
  • the orthogonal L-shaped bottom surface of the heat conduction plate 130A is fixed so as to be in close contact with the orthogonal upper surface and side surfaces of the fixed frame 18, and the side surface 131 of the heat conduction plate 130A is received by the solar module. It is aligned with the length of the side surface of the fixed frame 18 so as not to cover the surface.
  • the part in which the part which attaches the heat pipe 120 and the part which attaches the cooling pipe 210 are integrally formed is used for 130 A of heat conductive plates, it is not restricted to this, Both parts may be separate bodies.
  • the cooling pipe 210 has a through hole 212 that penetrates the side wall, and a plurality of through holes 212 are formed in the axial direction of the cooling pipe 210.
  • the cooling pipe is designed so that the plurality of through holes 212 are positioned at equal intervals in the upper end portion 10 ⁇ / b> B of the solar module 10, and the direction of the through holes 212 is set to the angle ⁇ from the side surface 131.
  • the groundwater Q is pumped up and supplied from the through hole 212 of the cooling pipe 210 toward the light receiving surface of the solar module 10.
  • the through-hole 212 is preferably supplied with groundwater Q in the form of a spray, and a diameter required for this purpose is selected. Furthermore, a nozzle or the like for spraying the groundwater Q into the through hole 212 is attached.
  • the DC pump 220 is operated by the DC voltage generated by the solar module 10 or by the DC voltage from the battery that stores the electric power generated by the solar module 10. As shown in FIG. 7, the DC pump 220 pumps the groundwater Q in the pile 110 from one end 210 ⁇ / b> A of the cooling pipe 210, and supplies this to the cooling pipe 210 located at the upper end 10 ⁇ / b> B of the solar module 10. .
  • the groundwater Q pumped up is sprayed from the through hole 212 and supplied to the entire surface of the protective material 16 of the solar module 10.
  • the groundwater Q has a constant temperature, and can cool this when the temperature of the solar module 10 rises.
  • the sprayed groundwater Q ishes away dust and dirt adhering to the protective material 16 of the solar module 10 (for example, a light receiving surface such as glass or plastic).
  • the groundwater Q used for cooling may be returned to the pile 110 from the ground again.
  • the cooling pipe is integrally attached using the heat conductive plate 130A for fixing the heat pipe 120, the groundwater Q sprayed from the cooling pipe is discharged from the upper end portion 10B of the solar module 10. Can be dropped. Further, by using the heat conductive plate 130A, a dedicated attachment member for the cooling pipe is not required, so that an increase in the number of parts can be suppressed, and cost reduction and space saving can be achieved. Furthermore, since the cooling water used for the cooling pipe 210 is groundwater Q like the working fluid of the heat pipe 120, it is possible to embed the heat pipe and the cooling pipe together in one pile 110, and the installation work And the construction period can be shortened.
  • FIG. 9 is a block diagram illustrating an electrical configuration of the photovoltaic power generation apparatus according to the present embodiment.
  • a temperature sensor 300 that detects the temperature of the solar module 10
  • a timer 310 that measures time
  • a memory 320 that stores programs, data, and the like
  • a controller 330 that controls each unit, and electric power generated by the solar module 10
  • the battery 340 for storing the power
  • the power supply unit 350 for supplying a constant DC voltage to the DC pump 220 using the power from the battery 340 or the solar module 10.
  • the controller 330 can control each unit by executing a program stored in the memory 320. This program can be changed by the user.
  • FIG. 10 is a flowchart showing a first operation example of this embodiment.
  • the temperature sensor 300 detects the ambient temperature of the solar module 10 and is installed, for example, on the fixed frame 18 of the solar module 10.
  • the detection result is provided to the controller 330.
  • the controller 330 determines whether or not the detected temperature of the solar module 10 is equal to or higher than a threshold value (S102).
  • the threshold value can be arbitrarily set, and is stored in the memory 320, for example.
  • the threshold value is a temperature at which the solar module 10 needs to be cooled, in other words, a temperature at which a decrease in conversion efficiency of the solar module cannot be tolerated.
  • the controller 330 determines that the detected temperature is equal to or higher than the threshold value, the controller 330 causes the power supply unit 350 to supply power to the DC pump 220, and the DC pump 220 is activated (S104).
  • the DC pump 220 is operated, as described above, the groundwater Q in the pile 110 is pumped into the cooling pipe 210, and the relatively cool groundwater Q is sprayed from the upper end portion 10B of the solar module 10, and the solar module 10 is cooled.
  • FIG. 11 is a flowchart showing a second operation example of this embodiment.
  • a time schedule for cooling the solar module 10 is stored in the memory 320 in advance.
  • the controller 330 reads the time schedule from the memory 320 (S200), and then the controller 330 determines whether or not the current time matches the time schedule (S202). If the time scale coincides, the controller 330 operates the DC pump 220 via the power supply unit 350 (S204). At the same time, the timer 310 is activated (S206). It is monitored by the timer 310 whether or not a predetermined time has passed (S208), and during that time, the DC pump 220 is operated and the solar module 10 is cooled. When the predetermined time is measured by the timer 310, the controller 330 stops the DC pump 220 (S210).
  • FIG. 12 is a diagram illustrating a configuration example when the photovoltaic power generation apparatus includes a plurality of photovoltaic modules.
  • the photovoltaic power generation apparatus includes four solar modules 10, and two piles 110 are constructed in the ground, and the heat pipe 120 is fixed on the heat conduction plate 130 from the two piles 110. ing.
  • the heat conductive plate 130 is indicated by hatching for easy understanding.
  • the heat conductive plate 130 extends so as to be continuous with the upper end portions 10B of the four solar modules 10, and is thermally coupled to the fixed frames 18 of the four solar modules.
  • the heat pipe 120 extends to the second solar module, and is folded back from there to be returned to the original pile 110.
  • the number of piles to be constructed is arbitrary, and four piles may be constructed for the four solar modules, and heat pipes using the groundwater of each pile as a heat source may be attached to each solar module. .
  • one pile may be constructed for four solar modules, and heat pipes may be arranged from one pile to four solar modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Problem] In order to promote the utilization of photovoltaic power generation, this invention provides a hybrid energy system comprising: an unpowered snow-melting system that uses a geothermal heat collection system and a heat pipe; and a water-sprinkling system and a groundwater storage tank using a steel pipe pile. [Solution] This photovoltaic power generation device comprises a photovoltaic module (10), a heat pipe (120) that uses groundwater (Q) inside a pile embedded in the ground as a heat source, and a heat-conducting plate (130) affixed to at least the top end (10B) of the photovoltaic module (10). The heat pipe (120) has a heat-collecting section coupled to the groundwater (Q) heat source, and a heat-releasing section that releases heat. A heat medium inside the heat pipe (120) is circulated between the heat-collecting section and the heat-releasing section, and the heat-releasing section is thermally coupled to the heat-conducting plate (130).

Description

太陽光発電装置、太陽光発電装置の融雪方法および冷却方法Photovoltaic power generation device, snow melting method and cooling method for solar power generation device
 本発明は、太陽光発電装置、太陽光発電装置の融雪方法および冷却方法に関し、特に、地中熱を利用した熱交換システムを搭載した太陽光発電装置に関する。 The present invention relates to a solar power generation device, a snow melting method and a cooling method for the solar power generation device, and more particularly to a solar power generation device equipped with a heat exchange system using underground heat.
 再生可能エネルギーとして、太陽光を利用した発電システムが実用化されている。太陽からの光エネルギーを電気エネルギーに変換する。光電変換を行うセル(素子)は、例えば、単結晶シリコン、多結晶シリコン、アモルファスシリコン、導電性ポリマー等の材料によって行われる。複数のセルを直列に接続したモジュールまたはアレイは、例えば、樹脂またはガラスによって表面が覆われ、周囲が金属枠によって保持され、セルが湿気、汚れ等から保護されている。このようなモジュールは、太陽光パネルと呼ばれることもある。モジュールまたはパネルを複数組み合わせることで、受光面積の大きな大出力の太陽光発電装置を構成することができる。 A solar power generation system has been put to practical use as renewable energy. Converts light energy from the sun into electrical energy. A cell (element) that performs photoelectric conversion is made of, for example, a material such as single crystal silicon, polycrystalline silicon, amorphous silicon, or a conductive polymer. A module or array in which a plurality of cells are connected in series has a surface covered with, for example, resin or glass, the periphery is held by a metal frame, and the cells are protected from moisture, dirt, and the like. Such a module is sometimes called a solar panel. By combining a plurality of modules or panels, a large-output solar power generation device having a large light receiving area can be configured.
 図1に、太陽光発電装置で用いられる従来の太陽光発電モジュールの一例を示す。太陽光モジュール10は、複数のシート状の発電セル12の端子間を配線14によって直列接続し、発電セル12の表面を樹脂やガラスなどの保護材16で覆っている。そして、太陽光モジュール100の外周は、固定枠18によって固定されている。 FIG. 1 shows an example of a conventional solar power generation module used in a solar power generation device. In the solar module 10, terminals of a plurality of sheet-shaped power generation cells 12 are connected in series by wiring 14, and the surface of the power generation cell 12 is covered with a protective material 16 such as resin or glass. The outer periphery of the solar module 100 is fixed by a fixed frame 18.
 太陽光発電装置の発電効率または出力は、太陽光の入射角度によって左右されので、太陽光を追尾するようにモジュールを駆動させる装置を備えたもの(特許文献1)、あるいは設置場所の移動が可能であって、太陽の向きに対応して太陽光発電パネルの姿勢を変更することができるもの(特許文献2)が提案されている。また、図1に示すような保護材16の表面が砂で荒らされて、磨りガラス状になると、光透過率が劣化してしまうので、保護材16の代わりに交換可能な透明カバーを用いるモジュールが提案されている(特許文献3)。さらに、太陽光発電パネルが高温になると、発電能力が低下することから、パネル表面に散水して温度上昇を防止することが提案されている(特許文献4)。 Since the power generation efficiency or output of the solar power generation device depends on the incident angle of sunlight, a device equipped with a device for driving the module to track the sunlight (Patent Document 1) or the installation location can be moved. And what can change the attitude | position of a photovoltaic power generation panel corresponding to the direction of the sun (patent document 2) is proposed. Further, when the surface of the protective material 16 as shown in FIG. 1 is roughened with sand and becomes polished glass, the light transmittance is deteriorated. Therefore, a module using a replaceable transparent cover instead of the protective material 16 Has been proposed (Patent Document 3). Furthermore, since a power generation capability will fall when a solar power generation panel becomes high temperature, it is proposed to sprinkle on the panel surface and prevent a temperature rise (patent document 4).
特開2013-157595号公報JP 2013-157595 A 特開2013-105955号公報JP 2013-105955 A 特開2013-122960号公報JP 2013-122960 A 特開2010-129677号公報JP 2010-129677 A
 従来の太陽光発電システムには、次のような2つの課題がある。第1点は、雪国における冬季の雪対策である。太陽光モジュール表面のガラス等に積雪してしまうと、降雪時だけでなく、降雪後の快晴の日にもガラス表面の冠雪によって遮光され発電量が低下してしまう。また、従来の太陽光モジュールでは、設置勾配を急にすることで、着雪防止を図っていたが、設置勾配が急になることで、太陽光モジュールのガラス面への入射角度も急になるため、ガラス面での反射が大きくなり発電量が低下してしまう。 The conventional solar power generation system has the following two problems. The first point is measures against snow in winter in snowy countries. If snow accumulates on the glass or the like on the surface of the solar module, not only during snowfall, but also on a clear day after snowfall, light is blocked by the snow on the glass surface and power generation is reduced. In addition, in the conventional solar module, the installation gradient is made steep to prevent snow accretion, but the incident angle to the glass surface of the solar module also becomes steep by making the installation gradient steep. For this reason, the reflection on the glass surface increases and the amount of power generation decreases.
 第2点は、日射による温度上昇に伴い発電効率の低下である。結晶シリコン系の太陽電池は、温度依存性が高く、太陽光モジュールの表面温度が10℃上昇するごとに出力が4~5%減少する。夏季になると日射量は多くなるが、太陽光モジュールの表面温度は70℃以上にまで上昇することがあるため、発電効率が低下してしまう。 The second point is a decrease in power generation efficiency as the temperature rises due to solar radiation. Crystalline silicon solar cells are highly temperature dependent, and the output decreases by 4-5% each time the surface temperature of the solar module increases by 10 ° C. In the summer, the amount of solar radiation increases, but the surface temperature of the solar module may rise to 70 ° C. or higher, resulting in a decrease in power generation efficiency.
 本発明は、このような従来の課題を解決するものであり、太陽光発電の活用を促進するため地中熱採熱システムとヒートパイプを利用した無電融雪システム、ならびに鋼管杭を利用した地中冷温貯水槽と散水システムで構成されるハイブリッドエネルギーシステムを提供することを目的とする。 The present invention solves such a conventional problem, and in order to promote the utilization of solar power generation, an underground heat collection system and an electroless snow melting system using a heat pipe, and an underground using a steel pipe pile. An object is to provide a hybrid energy system composed of a cold and hot water tank and a watering system.
 本発明に係る太陽光発電装置は、光エネルギーを電気エネルギーに変換するセルを複数収容した太陽光モジュールと、地中内の地下水を熱源に利用したヒートパイプと、前記太陽光モジュールの少なくとも上端部に固定され、前記太陽光モジュールと熱的に結合された熱伝導部材とを有し、前記ヒートパイプは、地下水の熱源に結合された集熱部と熱を放熱する放熱部とを有し、前記ヒートパイプ内の熱媒体が前記集熱部と放熱部との間で循環され、前記放熱部が前記熱伝導部材に熱的に結合される。 A photovoltaic power generation apparatus according to the present invention includes a solar module that contains a plurality of cells that convert light energy into electrical energy, a heat pipe that uses underground water in the ground as a heat source, and at least an upper end portion of the solar module. A heat conduction member fixed to the solar module and thermally coupled to the solar module, and the heat pipe has a heat collecting part coupled to a heat source of groundwater and a heat radiating part for radiating heat, The heat medium in the heat pipe is circulated between the heat collecting part and the heat radiating part, and the heat radiating part is thermally coupled to the heat conducting member.
 好ましくは熱伝導部材には、前記ヒートパイプの少なくとも一部を収容可能な凹部が形成される。好ましくは前記熱伝導部材の凹部から突出されたヒートパイプの部分が金属製の被覆部材によって被覆される。好ましくは前記被覆部材は、ヒートパイプの外形に応じた窪みと、当該窪みに接続された平坦な部分とを含み、前記平坦な部分が前記熱伝導部材に接触される。好ましくは前記被覆部材は、前記ヒートパイプを前記熱伝導部材に固定する固定手段を含む。好ましくは前記ヒートパイプは、地中に施工された杭内の地下水に熱的に結合される。好ましくは前記杭の下方に雨水溜めが形成される。好ましくは前記ヒートパイプは、閉じた系内に前記集熱部および前記放熱部を形成する。 Preferably, the heat conducting member is formed with a recess capable of accommodating at least a part of the heat pipe. Preferably, a portion of the heat pipe protruding from the recess of the heat conducting member is covered with a metal covering member. Preferably, the covering member includes a recess corresponding to the outer shape of the heat pipe, and a flat portion connected to the recess, and the flat portion is in contact with the heat conducting member. Preferably, the covering member includes fixing means for fixing the heat pipe to the heat conducting member. Preferably, the heat pipe is thermally coupled to ground water in a pile constructed in the ground. Preferably, a rainwater reservoir is formed below the pile. Preferably, the heat pipe forms the heat collecting part and the heat radiating part in a closed system.
 好ましくは太陽光発電装置はさらに、前記熱伝導部材に結合された冷却パイプを有し、前記冷却パイプは、前記地下水を利用して太陽光モジュールを冷却する。好ましくは前記熱伝導製部材の上面には前記ヒートパイプが取付けられ、前記熱伝導製部材の側面には前記冷却パイプが取付けられる。好ましくは前記側面には、冷却パイプを収容する凹部が形成される。好ましくは太陽光発電装置はさらに、太陽光モジュールで発電された電力を利用して動作可能な直流ポンプを含み、前記直流ポンプは、前記冷却パイプ内に地下水を汲み上げる。好ましくは太陽光発電装置はさらに、太陽光モジュールの周囲温度を検出する温度検出センサーを含み、太陽光モジュールの温度がしきい値以上になったとき、前記直流ポンプを作動させる制御手段を含む。好ましくは太陽光発電装置はさらに、1つまたは複数の太陽光モジュールを一定の傾斜角で設置可能な設置部材を含む。 Preferably, the solar power generation apparatus further includes a cooling pipe coupled to the heat conducting member, and the cooling pipe cools the solar module using the groundwater. Preferably, the heat pipe is attached to an upper surface of the heat conducting member, and the cooling pipe is attached to a side surface of the heat conducting member. Preferably, a concave portion for accommodating the cooling pipe is formed on the side surface. Preferably, the solar power generation device further includes a direct current pump operable by using electric power generated by the solar power module, and the direct current pump pumps ground water into the cooling pipe. Preferably, the solar power generation device further includes a temperature detection sensor that detects an ambient temperature of the solar module, and includes a control unit that operates the DC pump when the temperature of the solar module becomes equal to or higher than a threshold value. Preferably, the solar power generation device further includes an installation member capable of installing one or a plurality of solar modules at a certain inclination angle.
 本発明によれば、太陽光パネルの表面に雪が堆積することを防止し、冬場の発電量の低下を抑制することができる。さらに本発明によれば、太陽光パネルを冷却することができ、夏場の発電効率の低下を防止することができる。 According to the present invention, it is possible to prevent snow from accumulating on the surface of the solar panel and to suppress a decrease in the amount of power generation in winter. Furthermore, according to this invention, a solar panel can be cooled and the fall of the power generation efficiency in summer can be prevented.
従来の太陽光モジュールの概略断面図である。It is a schematic sectional drawing of the conventional solar module. 本発明の第1の実施例に係る太陽光発電装置の概要を説明する図である。It is a figure explaining the outline | summary of the solar power generation device which concerns on the 1st Example of this invention. 図3(A)は図2に示す太陽光モジュールのA-A線断面図、図3(B)は上部拡大図、図3(C)は、ヒートパイプ取付けの他の例を示す図である。3A is a cross-sectional view of the solar module shown in FIG. 2 taken along line AA, FIG. 3B is an enlarged top view, and FIG. 3C is a diagram showing another example of heat pipe attachment. . 本発明の第1の実施例に係る太陽光発電装置の変形例を示す図である。It is a figure which shows the modification of the solar power generation device which concerns on 1st Example of this invention. 本発明の第1の実施例に係る太陽光発電装置の変形例を示す図である。It is a figure which shows the modification of the solar power generation device which concerns on 1st Example of this invention. 本発明の第1の実施例に係る太陽光発電装置の変形例を示す図である。It is a figure which shows the modification of the solar power generation device which concerns on 1st Example of this invention. 本発明の第2の実施例に係る太陽光発電装置の概要を説明する図である。It is a figure explaining the outline | summary of the solar power generation device which concerns on the 2nd Example of this invention. 図8(A)は図7に示す太陽光モジュールのB-B線断面図、図8(B)は上部拡大図、図8(C)はヒートパイプの斜視図である。8A is a cross-sectional view of the solar module shown in FIG. 7 taken along line BB, FIG. 8B is an enlarged top view, and FIG. 8C is a perspective view of the heat pipe. 本発明の第2の実施例に係る太陽光発電装置の電気的な構成を示すブロック図である。It is a block diagram which shows the electric constitution of the solar power generation device which concerns on the 2nd Example of this invention. 本発明の第2の実施例に係る太陽光発電装置の第1の動作例を説明するフローチャートである。It is a flowchart explaining the 1st operation example of the solar power generation device concerning the 2nd Example of this invention. 本発明の第2の実施例に係る太陽光発電装置の第1の動作例を説明するフローチャートである。It is a flowchart explaining the 1st operation example of the solar power generation device concerning the 2nd Example of this invention. 本発明の実施例に係る太陽光発電装置が複数の太陽光モジュールを含むときの例を示す図である。It is a figure which shows an example when the solar power generation device which concerns on the Example of this invention contains a several solar module.
 次に、本発明の実施の形態について図面を参照して詳細に説明する。なお、図面のスケールは、発明の特徴を分かり易くするために強調しており、必ずしも実際のデバイスのスケールと同一ではないことに留意すべきである。 Next, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the scale of the drawings is emphasized for easy understanding of the features of the invention and is not necessarily the same as the scale of an actual device.
 本発明の第1の実施例に係る太陽光発電装置の概要を図2を参照して説明する。本実施例の太陽光発電装置100は、太陽光モジュール10と、地中に施工される杭110と、地中熱を利用して熱交換を可能にするヒートパイプ120と、ヒートパイプ120を太陽光モジュール10に取り付けるとともに太陽光モジュール10との熱的結合を行う熱導電性部材130とを備えて構成される。 The outline of the photovoltaic power generation apparatus according to the first embodiment of the present invention will be described with reference to FIG. The photovoltaic power generation apparatus 100 of the present embodiment includes a solar module 10, a pile 110 constructed in the ground, a heat pipe 120 that enables heat exchange using underground heat, and a heat pipe 120 that is solar A heat conductive member 130 that is attached to the optical module 10 and thermally coupled to the solar module 10 is provided.
 太陽光モジュール10は、図1に示したように、複数のセル12と、各セル12を直列接続する配線14と、複数のセル12の表面を保護するガラスまたは樹脂の保護材16と、セル12や保護材16の外周を固定する固定枠18等を有し、概ね矩形状を有する。但し、このような構成は、太陽光モジュールの典型的な構成であり、太陽光モジュールは必ずしもこのような構成に限定されない。 As illustrated in FIG. 1, the solar module 10 includes a plurality of cells 12, a wiring 14 that connects the cells 12 in series, a glass or resin protective material 16 that protects the surfaces of the plurality of cells 12, and cells. 12 and a fixing frame 18 for fixing the outer periphery of the protective material 16 and the like, and has a substantially rectangular shape. However, such a configuration is a typical configuration of a solar module, and the solar module is not necessarily limited to such a configuration.
 杭110は、好ましくは円筒状の金属鋼管であり、地中内に施工される。杭110は、例えば、有限会社住環境設計室製のブレードパイスまたはコンベックスパイルを用いることができる。杭110の深さDは、好ましくは地表面から5~10mであり、地中数メートルの深さでは、年間平均気温にほぼ近い一定の温度が期待することができる。1つの好ましい態様では、埋設された杭110内には、地下水Qが貯蔵される。地下水は、雨などによって地表面から滲入したもの、あるいは自然に貯蔵されたもの、外部から供給されたものなどである。地下水Qの温度は、杭110の深さDに依存し、杭110の深さDが大きくなるにつれ地下水の温度は上昇する。 The pile 110 is preferably a cylindrical metal steel pipe and is constructed in the ground. As the pile 110, for example, a blade pie or a convex pile made by a living environment design room can be used. The depth D of the pile 110 is preferably 5 to 10 m from the ground surface, and at a depth of several meters underground, a constant temperature close to the annual average temperature can be expected. In one preferred embodiment, groundwater Q is stored in the buried pile 110. Groundwater is one that has been infiltrated from the ground surface due to rain, etc., one that has been stored naturally, or one that has been supplied from the outside. The temperature of the groundwater Q depends on the depth D of the pile 110, and the temperature of the groundwater rises as the depth D of the pile 110 increases.
 ヒートパイプ120は、超電導伝導体であり、ヒートパイプ120の内部には作動液が封入され、この作動液の潜熱と蒸気の移動により、わずかの温度差で大量の熱を輸送することが可能である。図2に示す例では、ヒートパイプ120の一方の端部120Aと他方の端部120Bとが杭110の地下水Q内に配置される。この場合には、作動液として地下水が用いられる。従って、ヒートパイプ120の一方の端部120A、他方の端部120Bが地下水に熱的に結合された集熱部を形成する。一方の端部120Aから延びたヒートパイプ120は、太陽光モジュール10の側部10Aを介して太陽光モジュール10の上端部10Bのほぼ全域を延在される。ヒートパイプ120はさらに、上端部10Bの縁で折り返され、再び上端部10B、側部10Aを介して他方の端部10Bになるように取付けられる。ヒートパイプ120の上端部10Bに配置された部分は放熱部であり、地下水が放熱部に循環されたとき、ヒートパイプ120から太陽光モジュール10に放熱される。 The heat pipe 120 is a superconducting conductor, and a working fluid is sealed inside the heat pipe 120, and a large amount of heat can be transported with a slight temperature difference due to the latent heat of the working fluid and the movement of steam. is there. In the example shown in FIG. 2, one end 120 </ b> A and the other end 120 </ b> B of the heat pipe 120 are arranged in the groundwater Q of the pile 110. In this case, groundwater is used as the working fluid. Accordingly, one end portion 120A and the other end portion 120B of the heat pipe 120 form a heat collecting portion that is thermally coupled to the groundwater. The heat pipe 120 extending from one end portion 120 </ b> A extends through substantially the entire upper end portion 10 </ b> B of the solar module 10 through the side portion 10 </ b> A of the solar module 10. The heat pipe 120 is further folded back at the edge of the upper end portion 10B, and attached to the other end portion 10B again via the upper end portion 10B and the side portion 10A. The part arrange | positioned at the upper end part 10B of the heat pipe 120 is a heat radiating part, and when the ground water is circulated through the heat radiating part, heat is radiated from the heat pipe 120 to the solar module 10.
 図3は、図2の太陽光モジュールのA-A線断面図である。同図に示すように、太陽光モジュール10の固定枠18の側部10Aおよび上端部10Bには、熱伝導率の高い金属製の材料から構成された熱伝導板130が取り付けられる。熱伝導板130は、例えば、アルミニウム、銅などから構成されるのが好ましい。熱伝導板130は一定の厚さを有し、例えば固定枠18の幅と等しい幅を有する。但し、熱伝導板130の幅は、固定枠18の幅よりも大きくても良いし、小さくても良い。熱伝導板130は、側部10Aから上端部10Bに沿うように固定枠18上を延在し、熱伝導板130の平坦な底面が金属製の固定枠18の平坦な表面に緊密に接触し、両者は良好に熱的に結合される。熱伝導板130の固定方法は任意であるが、例えばネジ等によって固定枠18に固定することができる。それ以外にも、熱伝導率の高い接着剤を用いて熱伝導板130を固定枠18に接合する態様を用いても良い。 FIG. 3 is a cross-sectional view of the solar module of FIG. 2 along the line AA. As shown in the figure, a heat conduction plate 130 made of a metal material having a high thermal conductivity is attached to the side portion 10A and the upper end portion 10B of the fixed frame 18 of the solar module 10. The heat conductive plate 130 is preferably made of, for example, aluminum or copper. The heat conductive plate 130 has a constant thickness, for example, a width equal to the width of the fixed frame 18. However, the width of the heat conductive plate 130 may be larger or smaller than the width of the fixed frame 18. The heat conductive plate 130 extends on the fixed frame 18 along the upper end 10B from the side portion 10A, and the flat bottom surface of the heat conductive plate 130 is in close contact with the flat surface of the metal fixed frame 18. Both are well thermally bonded. The fixing method of the heat conductive plate 130 is arbitrary, but can be fixed to the fixing frame 18 with screws or the like, for example. In addition, a mode in which the heat conductive plate 130 is bonded to the fixed frame 18 using an adhesive having high heat conductivity may be used.
 好ましい態様では、図3(B)に示すように、熱伝導板130の表面には、ヒートパイプ120を埋設または敷設するための2つの凹部132が平行に形成される。各凹部132は、ヒートパイプ120の径と等しいかそれより幾分大きな径を有し、ヒートパイプ120のほぼ半分が凹部132内に収容される。これにより、ヒートパイプ120と熱伝導板130との接触面積が増加し、ヒートパイプ120が熱伝導板130に効果的に熱結合される。さらに熱結合を増加させるため、ヒートパイプ120と凹部132との間に熱伝導率の高い接着剤を充填するようにしてもよい。 In a preferred embodiment, as shown in FIG. 3B, two concave portions 132 for embedding or laying the heat pipe 120 are formed in parallel on the surface of the heat conducting plate 130. Each recess 132 has a diameter equal to or somewhat larger than the diameter of the heat pipe 120, and approximately half of the heat pipe 120 is accommodated in the recess 132. As a result, the contact area between the heat pipe 120 and the heat conduction plate 130 increases, and the heat pipe 120 is effectively thermally coupled to the heat conduction plate 130. In order to further increase the thermal coupling, an adhesive having a high thermal conductivity may be filled between the heat pipe 120 and the recess 132.
 さらに好ましい態様では、図3(B)に示すように、ヒートパイプ120を熱伝導板130に固定するための固定金具150を用いるようにしてもよい。固定金具150は、熱伝導性の高い材料から構成され、例えば、アルミニウム、銅、鉄のような金属から構成される。固定金具150は、ヒートパイプ120の外径とほぼ同様の2つの窪み152と、窪み152に接続された平坦な部分154を含み、2つの窪み152内に、熱伝導板130から突出されたヒートパイプ120の上半分が保持され、平坦な部分154が熱伝導板130に接合される。こうして、ヒートパイプ120が固定金具150によって熱伝導板130に固定されるが、さらにヒートパイプ120の上半分が固定金具150によって覆われることで、ヒートパイプ150から外気への熱放散が抑制され、同時に固定金具150を介してヒートパイプ120と熱伝導板130との熱的結合が向上される。 In a further preferred embodiment, as shown in FIG. 3 (B), a fixture 150 for fixing the heat pipe 120 to the heat conduction plate 130 may be used. The fixture 150 is made of a material having high thermal conductivity, and is made of a metal such as aluminum, copper, or iron, for example. The fixture 150 includes two recesses 152 substantially the same as the outer diameter of the heat pipe 120 and a flat portion 154 connected to the recesses 152, and the heat projecting from the heat conducting plate 130 into the two recesses 152. The upper half of the pipe 120 is held and the flat portion 154 is joined to the heat conducting plate 130. In this way, the heat pipe 120 is fixed to the heat conduction plate 130 by the fixing bracket 150, and further, the upper half of the heat pipe 120 is covered by the fixing bracket 150, thereby suppressing heat dissipation from the heat pipe 150 to the outside air. At the same time, the thermal coupling between the heat pipe 120 and the heat conducting plate 130 is improved through the fixing metal 150.
 さらに好ましい態様では、固定金具150は、両端をほぼ直角に折り曲げた折り曲げ部156を有する。折り曲げ部156は、熱伝導板130の側面の一部を覆うことで、固定金具150の位置決めを容易にし、かつ熱伝導板130とヒートパイプ120ないし固定金具150の熱結合を向上させる。 In a further preferred embodiment, the fixing metal 150 has a bent portion 156 in which both ends are bent at substantially right angles. The bent portion 156 covers a part of the side surface of the heat conductive plate 130 to facilitate positioning of the fixing metal 150 and improve the thermal coupling between the heat conductive plate 130 and the heat pipe 120 or the fixing metal 150.
 さらに好ましい態様では、固定金具150の幅Wは、固定金具150の間隙Sよりも大きい。ヒートパイプ120の露出される表面積を小さくすることで、ヒートパイプ120と熱伝導体板130との熱的結合がさらに向上される。 In a further preferred aspect, the width W of the fixing bracket 150 is larger than the gap S of the fixing bracket 150. By reducing the exposed surface area of the heat pipe 120, the thermal coupling between the heat pipe 120 and the heat conductor plate 130 is further improved.
 図3(C)は、他の取り付け例を示す図である。同図に示すように、固定金具150は、ネジ160により熱伝導板130に固定されるようにしてもよい。この場合、固定金具150の平坦な部分154と熱伝導板130との間がネジ160によって固定される。これにより、ヒートパイプ120が強固に熱伝導板130に固定され、かつ熱的結合が確実に保証される。また、上記実施例では、熱伝導板130が太陽光モジュールの側部10Aと上端部10Bに形成される例を示したが、熱伝導板130は、少なくとも上端部10Bに形成されていればよい。 FIG. 3C shows another example of attachment. As shown in the figure, the fixture 150 may be fixed to the heat conducting plate 130 with screws 160. In this case, the flat portion 154 of the fixing bracket 150 and the heat conducting plate 130 are fixed by the screw 160. Thereby, the heat pipe 120 is firmly fixed to the heat conducting plate 130, and the thermal coupling is reliably ensured. Moreover, in the said Example, although the heat conductive board 130 showed the example formed in the side part 10A and the upper end part 10B of a solar cell module, the heat conductive board 130 should just be formed in the upper end part 10B at least. .
 次に、本実施例の他の変形例を図4に示す。ここに例示する太陽光発電装置100Aでは、ヒートパイプ120は、太陽光モジュール10の外周を取り巻くように敷設される。すなわち、杭110内の一方の端部120Aからスタートし、そこから太陽光モジュール10の一方の側部10A、上端部10B、他方の側部10C、下端部10Dを通り、他方の端部120Bで終端する。この場合、熱伝導板130には、1つのヒートパイプ120を収容するための1つの凹部132が形成される。また、熱伝導体130は、太陽光モジュール10の上端部10Bにのみ形成されてもよいし、一方の側部10A、上端部10B、他方の側部10C、下端部10Dに形成されるものであってもよい。 Next, another modification of the present embodiment is shown in FIG. In the solar power generation device 100 </ b> A exemplified here, the heat pipe 120 is laid so as to surround the outer periphery of the solar module 10. That is, it starts from one end 120A in the pile 110, and passes from there to one side 10A, the upper end 10B, the other side 10C, and the lower end 10D of the solar module 10, and at the other end 120B. Terminate. In this case, the heat conducting plate 130 is formed with one recess 132 for accommodating one heat pipe 120. Moreover, the heat conductor 130 may be formed only on the upper end portion 10B of the solar module 10, or is formed on one side portion 10A, the upper end portion 10B, the other side portion 10C, and the lower end portion 10D. There may be.
 次に、本実施例の他の変形例を図5に示す。ここに例示する太陽光発電装置100Bでは、ヒートパイプ120の一方の端部120Aと他方の端部120Bとが連結部120Cを介して連結され、連結部120Cが地下水Q内に配置される。すなわち、ヒートパイプ120は、完全な閉じた系内に作動液を収容する。本例の場合、ヒートパイプ120の作動液は、必ずしも地下水に限らず、他の媒体を利用することができる。好ましくは熱交換効率が優れた流体であるが、例えば、不凍液や冷媒用のガスも用いることができる。ヒートパイプ120を完全に閉じた系にすることで、ヒートパイプ120による熱伝導効率がさらに向上され、その結果、太陽光モジュールと地下水との熱交換効率が向上される。 Next, another modification of this embodiment is shown in FIG. In the solar power generation device 100B illustrated here, one end 120A and the other end 120B of the heat pipe 120 are connected via a connecting part 120C, and the connecting part 120C is arranged in the groundwater Q. That is, the heat pipe 120 contains the working fluid in a completely closed system. In the case of this example, the hydraulic fluid of the heat pipe 120 is not necessarily limited to groundwater, and other media can be used. Preferably, the fluid is excellent in heat exchange efficiency, but for example, antifreeze or refrigerant gas can also be used. By making the heat pipe 120 a completely closed system, the heat conduction efficiency by the heat pipe 120 is further improved, and as a result, the heat exchange efficiency between the solar module and the groundwater is improved.
 次に、本実施例の他の変形例を図6に示す。ここに例示する太陽光発電装置100Cでは、杭110の下部に、雨水溜め200を埋設する。杭110によって完全に閉じた空間を形成し、そこに地下水Qを収容することも可能であるが、杭110の打ち込みを容易にするために杭110の先端部に貫通孔が形成されることがある。この場合、杭110によって完全に閉じた空間が形成されないので、杭110内の地下水Qの水位が変動し、ヒートパイプ120による熱伝導を十分に働かすことができないおそれがある。そこで、本例では、杭110の下方に、一定の深さD1、一定の幅W1、一定の長さを有する容器である雨水溜め200を埋設し、雨水溜め200に地下水Q1を貯蔵し、杭110内に地下水Qが安定的に貯蔵されるようにする。 Next, another modification of this embodiment is shown in FIG. In the solar power generation device 100 </ b> C exemplified here, a rainwater reservoir 200 is embedded under the pile 110. It is possible to form a completely closed space by the pile 110 and accommodate the groundwater Q therein, but in order to facilitate the driving of the pile 110, a through hole may be formed at the tip of the pile 110. is there. In this case, since a completely closed space is not formed by the pile 110, the water level of the groundwater Q in the pile 110 may fluctuate, and heat conduction by the heat pipe 120 may not be sufficiently performed. Therefore, in this example, a rainwater reservoir 200, which is a container having a certain depth D1, a certain width W1, and a certain length, is buried below the pile 110, and the groundwater Q1 is stored in the rainwater reservoir 200. The groundwater Q is stably stored in 110.
 次に、本実施例の動作について説明する。冬場などにおいて、外気に露出された太陽光モジュール10の温度が低下すると、太陽光モジュール10の上端部10B等に設置されたヒートパイプ120の温度も低下する。他方、杭110が埋設された地下水Qの温度は、あまり変動せず安定しおり、太陽光モジュール近傍のヒートパイプ120の温度よりも高い。この温度差によって、作動液である地下水Qが自動的に汲み上げられ、太陽光モジュール10の上端部10Bへ到達する。汲み上げられた作動液は、熱伝導板130を介して太陽光モジュール10に熱源を供給し、太陽光モジュール10の温度を上昇させることができる。熱交換された作動液は、再び、杭110内に循環される。それ故、太陽光モジュール10の受光面である保護材16の表面に降雪または冠雪があっても、それらの降雪または冠雪を溶かすことで着雪が防止される。その結果、太陽光モジュールへの着雪による発電量の低下を防止することができる。さらに、着雪を防止するために太陽光モジュールの設置を急勾配にする必要がなくなるので、太陽光のガラス表面での反射を小さくすることができ、発電量の低下を抑制することができる。 Next, the operation of this embodiment will be described. When the temperature of the solar module 10 exposed to the outside air decreases in winter or the like, the temperature of the heat pipe 120 installed at the upper end portion 10B of the solar module 10 also decreases. On the other hand, the temperature of the groundwater Q in which the pile 110 is buried is not fluctuated and is stable, and is higher than the temperature of the heat pipe 120 near the solar module. Due to this temperature difference, the groundwater Q, which is the working fluid, is automatically pumped up and reaches the upper end portion 10B of the solar module 10. The pumped hydraulic fluid can supply a heat source to the solar module 10 through the heat conducting plate 130 and can increase the temperature of the solar module 10. The heat-exchanged hydraulic fluid is circulated in the pile 110 again. Therefore, even if there is snowfall or snowfall on the surface of the protective material 16 that is the light receiving surface of the solar module 10, snowfall is prevented by melting the snowfall or snowfall. As a result, it is possible to prevent a decrease in power generation amount due to snow on the solar module. Furthermore, since it is not necessary to install the solar module at a steep slope in order to prevent snow accretion, the reflection of sunlight on the glass surface can be reduced, and a decrease in the amount of power generation can be suppressed.
 次に、本発明の第2の実施例について説明する。図7は、第2の実施例に係る太陽光発電装置200の概略構成を示すものであり、第1の実施例と同一構成については同一参照番号を付し重複した説明を省略する。第2の実施例の太陽光発電装置はさらに、太陽光モジュールを冷却する機能を含むものである。 Next, a second embodiment of the present invention will be described. FIG. 7 shows a schematic configuration of the photovoltaic power generation apparatus 200 according to the second embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. The solar power generation device of the second embodiment further includes a function of cooling the solar module.
 第2の実施例に係る太陽光発電装置200は、太陽光モジュール10を冷却するための冷却パイプ210と、地下水Qを汲み上げるための直流ポンプ220とを含んで構成される。冷却パイプ210の一方の端部210Aは、杭110の地下水Qの中に配置され、そこから直流ポンプ220を経由して、太陽光モジュール10の側部10Aを介して上端部10Bに取付けられる。冷却パイプ210の他方の端部210Bは、開放されたものであってもよいし、閉じられていてもよい。冷却パイプ210は、例えば、ヒートパイプ120と同様の材料で構成されてもよいし、他の金属材料から構成されてもよい。 The photovoltaic power generation apparatus 200 according to the second embodiment includes a cooling pipe 210 for cooling the solar module 10 and a DC pump 220 for pumping up the groundwater Q. One end 210 </ b> A of the cooling pipe 210 is disposed in the ground water Q of the pile 110, and is attached to the upper end 10 </ b> B via the DC pump 220 and the side 10 </ b> A of the solar module 10. The other end 210B of the cooling pipe 210 may be open or closed. For example, the cooling pipe 210 may be made of the same material as the heat pipe 120 or may be made of another metal material.
 図8は、冷却パイプの取り付けを説明する図である。第1の実施例のときと同様に、太陽光モジュール10の少なくとも上端部10Bには、L字形状の熱伝導板130Aが固定され、熱伝導板130Aの上面に形成された凹部にはヒートパイプ120が収容されている。また、熱伝導板130Aの側面131(太陽光モジュールの受光面側)に凹部132Aが形成され、当該凹部132A内に冷却パイプ210の一部(例えば、ほぼ下半分)が収容され、そこに固定される。冷却パイプ210は、例えば図3に示した固定金具150のような部材を用いて熱伝道板130Aに固定することができる。好ましい態様では、熱伝導板130Aの直交するL字型の底面は、固定枠18の直交する上面および側面に緊密に接触するように固定され、熱伝導板130Aの側面131が太陽光モジュールの受光面を覆わないように固定枠18の側面の長さに整合される。なお、熱導電板130Aは、ヒートパイプ120を取り付ける部分と、冷却パイプ210を取り付ける部分とが一体に形成されたものを用いるが、これに限らず、両部分は別体であってもよい。 FIG. 8 is a diagram for explaining the mounting of the cooling pipe. As in the first embodiment, an L-shaped heat conduction plate 130A is fixed to at least the upper end portion 10B of the solar module 10, and a heat pipe is formed in the recess formed on the upper surface of the heat conduction plate 130A. 120 is housed. Further, a recess 132A is formed on the side surface 131 (the light receiving surface side of the solar module) of the heat conducting plate 130A, and a part (for example, almost the lower half) of the cooling pipe 210 is accommodated in the recess 132A and fixed thereto. Is done. The cooling pipe 210 can be fixed to the heat transfer plate 130A using a member such as the fixing bracket 150 shown in FIG. In a preferred embodiment, the orthogonal L-shaped bottom surface of the heat conduction plate 130A is fixed so as to be in close contact with the orthogonal upper surface and side surfaces of the fixed frame 18, and the side surface 131 of the heat conduction plate 130A is received by the solar module. It is aligned with the length of the side surface of the fixed frame 18 so as not to cover the surface. In addition, although the part in which the part which attaches the heat pipe 120 and the part which attaches the cooling pipe 210 are integrally formed is used for 130 A of heat conductive plates, it is not restricted to this, Both parts may be separate bodies.
 冷却パイプ210には、図8(C)に示すように、側壁を貫通する貫通孔212が形成され、貫通孔212は、冷却パイプ210の軸方向に複数形成されている。好ましい態様では、太陽光モジュール10の上端部10Bに複数の貫通孔212が等間隔で位置するように冷却パイプが設計され、さらに貫通孔212の向きは、側面131から角度θに設定される。後述するように、直流ポンプ220が作動されたとき、地下水Qが汲み上げられ、冷却パイプ210の貫通孔212から太陽光モジュール10の受光面に向けて供給される。貫通孔212は、地下水Qを噴霧状に供給することが好ましく、そのために必要な径が選択される。さらには、貫通孔212内に、地下水Qを噴霧状にするためのノズル等が取付けられる。 As shown in FIG. 8C, the cooling pipe 210 has a through hole 212 that penetrates the side wall, and a plurality of through holes 212 are formed in the axial direction of the cooling pipe 210. In a preferred embodiment, the cooling pipe is designed so that the plurality of through holes 212 are positioned at equal intervals in the upper end portion 10 </ b> B of the solar module 10, and the direction of the through holes 212 is set to the angle θ from the side surface 131. As will be described later, when the DC pump 220 is operated, the groundwater Q is pumped up and supplied from the through hole 212 of the cooling pipe 210 toward the light receiving surface of the solar module 10. The through-hole 212 is preferably supplied with groundwater Q in the form of a spray, and a diameter required for this purpose is selected. Furthermore, a nozzle or the like for spraying the groundwater Q into the through hole 212 is attached.
 直流ポンプ220は、太陽光モジュール10で発電された直流電圧によって、あるいは太陽光モジュール10で発電された電力を蓄積したバッテリーからの直流電圧によって動作される。直流ポンプ220は、図7に示すように、杭110内の地下水Qを冷却パイプ210の一方の端部210Aから汲み上げ、これを太陽光モジュール10の上端部10Bに位置する冷却パイプ210へ供給する。汲み上げられた地下水Qは、貫通孔212から噴霧され、太陽光モジュール10の保護材16の表面の全域に供給される。地下水Qは、一定温度を有しており、太陽光モジュール10の温度が上昇したときにこれを冷却することができる。同時に、噴霧された地下水Qは、太陽光モジュール10の保護材16(例えば、ガラスやプラスチック等の受光面)に付着したゴミや塵などを洗い流す。冷却に使用された地下水Qは、再び地中から杭110内に戻されようにしてもよい。こうして、夏場等に太陽光モジュール10の温度が上昇したとき、これを冷却することで、太陽光モジュールの変換効率の低下を防止することができる。 The DC pump 220 is operated by the DC voltage generated by the solar module 10 or by the DC voltage from the battery that stores the electric power generated by the solar module 10. As shown in FIG. 7, the DC pump 220 pumps the groundwater Q in the pile 110 from one end 210 </ b> A of the cooling pipe 210, and supplies this to the cooling pipe 210 located at the upper end 10 </ b> B of the solar module 10. . The groundwater Q pumped up is sprayed from the through hole 212 and supplied to the entire surface of the protective material 16 of the solar module 10. The groundwater Q has a constant temperature, and can cool this when the temperature of the solar module 10 rises. At the same time, the sprayed groundwater Q ishes away dust and dirt adhering to the protective material 16 of the solar module 10 (for example, a light receiving surface such as glass or plastic). The groundwater Q used for cooling may be returned to the pile 110 from the ground again. Thus, when the temperature of the solar module 10 rises in summer or the like, the conversion efficiency of the solar module can be prevented from being lowered by cooling it.
 さらに本実施例では、ヒートパイプ120を固定する熱伝導版板130Aを利用して一体的に冷却パイプを取り付ける構造としたため、冷却パイプから噴霧される地下水Qを太陽光モジュール10の上端部10Bから落下させることができる。さらに熱伝導板130Aを利用することで、冷却パイプの専用の取り付け部材が不要となるので、部品点数の増加が抑えられ、コスト低減および省スペース化を図ることができる。さらに、冷却パイプ210に用いる冷却水は、ヒートパイプ120の作動液と同様に地下水Qであるため、1つの杭110内にヒートパイプと冷却パイプとを一緒に埋設することが可能となり、設置工事を容易にし、工期期間を短縮することができる。 Further, in this embodiment, since the cooling pipe is integrally attached using the heat conductive plate 130A for fixing the heat pipe 120, the groundwater Q sprayed from the cooling pipe is discharged from the upper end portion 10B of the solar module 10. Can be dropped. Further, by using the heat conductive plate 130A, a dedicated attachment member for the cooling pipe is not required, so that an increase in the number of parts can be suppressed, and cost reduction and space saving can be achieved. Furthermore, since the cooling water used for the cooling pipe 210 is groundwater Q like the working fluid of the heat pipe 120, it is possible to embed the heat pipe and the cooling pipe together in one pile 110, and the installation work And the construction period can be shortened.
 次に、本実施例の他の変形例について説明する。図9は、本実施例の太陽光発電装置の電気的な構成を示すブロック図である。本例では、太陽光モジュール10の温度を検出する温度センサー300、時間を計測するタイマー310、プログラムやデータ等を記憶するメモリ320、各部を制御するコントローラ330、太陽光モジュール10で発電された電力を蓄電するバッテリー340、バッテリー340または太陽光モジュール10からの電力を利用して直流ポンプ220に一定の直流電圧を供給する電力供給部350を含んで構成される。好ましい態様では、コントローラ330は、メモリ320に格納されたプログラムを実行することで、各部を制御することができる。このプログラムは、ユーザーによって変更することが可能である。 Next, another modification of the present embodiment will be described. FIG. 9 is a block diagram illustrating an electrical configuration of the photovoltaic power generation apparatus according to the present embodiment. In this example, a temperature sensor 300 that detects the temperature of the solar module 10, a timer 310 that measures time, a memory 320 that stores programs, data, and the like, a controller 330 that controls each unit, and electric power generated by the solar module 10 The battery 340 for storing the power, the power supply unit 350 for supplying a constant DC voltage to the DC pump 220 using the power from the battery 340 or the solar module 10. In a preferred embodiment, the controller 330 can control each unit by executing a program stored in the memory 320. This program can be changed by the user.
 図10は、本実施例の第1の動作例を示すフローチャートである。温度センサー300は、太陽光モジュール10の周辺温度を検出するものであり、例えば太陽光モジュール10の固定枠18などに設置される。温度センサー300によって太陽光モジュール10の周辺温度が検出されると(S100)、その検出結果がコントローラ330へ提供される。コントローラ330は、検出された太陽光モジュール10の温度がしきい値以上であるか否かを判定する(S102)。しきい値は、任意に設定することができ、例えばメモリ320に格納される。しきい値は、太陽光モジュール10の冷却が必要とされる温度、言い換えれば、太陽光モジュールの変換効率の低下を容認することができない温度である。 FIG. 10 is a flowchart showing a first operation example of this embodiment. The temperature sensor 300 detects the ambient temperature of the solar module 10 and is installed, for example, on the fixed frame 18 of the solar module 10. When the ambient temperature of the solar module 10 is detected by the temperature sensor 300 (S100), the detection result is provided to the controller 330. The controller 330 determines whether or not the detected temperature of the solar module 10 is equal to or higher than a threshold value (S102). The threshold value can be arbitrarily set, and is stored in the memory 320, for example. The threshold value is a temperature at which the solar module 10 needs to be cooled, in other words, a temperature at which a decrease in conversion efficiency of the solar module cannot be tolerated.
 コントローラ330は、検出された温度がしきい値以上であると判定したとき、電力供給部350に直流ポンプ220へ電力を供給させ、直流ポンプ220が作動される(S104)。直流ポンプ220が作動されると、上記したように、杭110内の地下水Qが冷却パイプ210内に汲み上げられ、太陽光モジュール10の上端部10Bから比較的冷たい地下水Qが噴霧され、太陽光モジュール10が冷却される。 When the controller 330 determines that the detected temperature is equal to or higher than the threshold value, the controller 330 causes the power supply unit 350 to supply power to the DC pump 220, and the DC pump 220 is activated (S104). When the DC pump 220 is operated, as described above, the groundwater Q in the pile 110 is pumped into the cooling pipe 210, and the relatively cool groundwater Q is sprayed from the upper end portion 10B of the solar module 10, and the solar module 10 is cooled.
 図11は、本実施例の第2の動作例を示すフローチャートである。太陽光モジュール10を冷却するための時間スケジュールが予めメモリ320に記憶されている。コントローラ330は、メモリ320から時間スケジュールを読出し(S200)、次に、コントローラ330は、現在時刻が時間スケジュールに一致するか否か判定する(S202)。時間スケールに一致した場合、コントローラ330は、電力供給部350を介して直流ポンプ220を作動させる(S204)。同時に、タイマー310を作動させる(S206)。タイマー310によって一定時間が経過するか否かが監視され(S208)、その間、直流ポンプ220が作動され、太陽光モジュール10が冷却される。タイマー310によって一定時間が計測されると、コントローラ330は、直流ポンプ220を停止させる(S210)。 FIG. 11 is a flowchart showing a second operation example of this embodiment. A time schedule for cooling the solar module 10 is stored in the memory 320 in advance. The controller 330 reads the time schedule from the memory 320 (S200), and then the controller 330 determines whether or not the current time matches the time schedule (S202). If the time scale coincides, the controller 330 operates the DC pump 220 via the power supply unit 350 (S204). At the same time, the timer 310 is activated (S206). It is monitored by the timer 310 whether or not a predetermined time has passed (S208), and during that time, the DC pump 220 is operated and the solar module 10 is cooled. When the predetermined time is measured by the timer 310, the controller 330 stops the DC pump 220 (S210).
 図12は、太陽光発電装置が複数の太陽光モジュールを含むときの構成例を示す図である。図の例では、太陽光発電装置は、4つの太陽光モジュール10を含み、さらに地中には2つの杭110が施工され、2つの杭110からヒートパイプ120が熱伝導板130上に固定されている。熱伝導板130は、分かり易くするためにハッチングで表示している。熱伝導板130は、4つの太陽光モジュール10の上端部10Bを連続するように延在され、4つの太陽光モジュールの固定枠18に熱的に結合されている。ヒートパイプ120は、図2、図5に示すように、2つ目の太陽光モジュールまで延在し、そこから折り返されて元の杭110に戻されるように構成される。なお、施工される杭の数は任意であり、4つの太陽光モジュールに対して4つの杭を施工し、各杭の地下水を熱源とするヒートパイプを各太陽光モジュールに取り付けるようにしてもよい。あるいは、4つの太陽光モジュールに対して1つの杭を施工し、1つの杭から4つの太陽光モジュールにヒートパイプを配置させるようにしてもよい。 FIG. 12 is a diagram illustrating a configuration example when the photovoltaic power generation apparatus includes a plurality of photovoltaic modules. In the example of the figure, the photovoltaic power generation apparatus includes four solar modules 10, and two piles 110 are constructed in the ground, and the heat pipe 120 is fixed on the heat conduction plate 130 from the two piles 110. ing. The heat conductive plate 130 is indicated by hatching for easy understanding. The heat conductive plate 130 extends so as to be continuous with the upper end portions 10B of the four solar modules 10, and is thermally coupled to the fixed frames 18 of the four solar modules. As shown in FIGS. 2 and 5, the heat pipe 120 extends to the second solar module, and is folded back from there to be returned to the original pile 110. The number of piles to be constructed is arbitrary, and four piles may be constructed for the four solar modules, and heat pipes using the groundwater of each pile as a heat source may be attached to each solar module. . Alternatively, one pile may be constructed for four solar modules, and heat pipes may be arranged from one pile to four solar modules.
 以上、本発明の好ましい実施の形態について詳述したが、本発明は、特定の実施例に限定されるものではないし、第1または第2の実施例が単独で実施されるものであってもよいし、第1および第2の実施例が組み合わされて実施されるものであっても良い。本発明は、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to specific examples, and the first or second example may be implemented alone. Alternatively, the first and second embodiments may be implemented in combination. The present invention can be variously modified and changed within the scope of the gist of the present invention described in the claims.
10:太陽光モジュール         10A、10C:側部
10B:上端部             16:保護材
18:固定枠              100、200:太陽光発電装置
110:杭               120:ヒートパイプ
130:熱伝導板            132:凹部
150:固定金具            152:窪み
154:平坦な部分           160:ネジ
170:雨水溜め            210:冷却パイプ
220:直流ポンプ
 
DESCRIPTION OF SYMBOLS 10: Solar module 10A, 10C: Side part 10B: Upper end part 16: Protective material 18: Fixed frame 100, 200: Solar power generation device 110: Pile 120: Heat pipe 130: Heat conduction board 132: Recessed part 150: Fixing metal fitting 152: Depression 154: Flat part 160: Screw 170: Rain water reservoir 210: Cooling pipe 220: DC pump

Claims (16)

  1. 光エネルギーを電気エネルギーに変換するセルを複数収容した太陽光モジュールと、
     地中内の地下水を熱源に利用したヒートパイプと、
     前記太陽光モジュールの少なくとも上端部に固定され、前記太陽光モジュールと熱的に結合された熱伝導部材とを有し、
     前記ヒートパイプは、地下水の熱源に結合された集熱部と熱を放熱する放熱部とを有し、前記ヒートパイプ内の熱媒体が前記集熱部と放熱部との間で循環され、前記放熱部が前記熱伝導部材に熱的に結合される、太陽光発電装置。
    A solar module containing a plurality of cells that convert light energy into electrical energy;
    A heat pipe that uses underground groundwater as a heat source;
    A heat conducting member fixed to at least the upper end of the solar module and thermally coupled to the solar module;
    The heat pipe has a heat collecting part coupled to a heat source of groundwater and a heat radiating part that radiates heat, and a heat medium in the heat pipe is circulated between the heat collecting part and the heat radiating part, A solar power generation apparatus, wherein a heat dissipating part is thermally coupled to the heat conducting member.
  2. 前記熱伝導部材には、前記ヒートパイプの少なくとも一部を収容可能な凹部が形成される、請求項1に記載の太陽光発電装置。 The solar power generation device according to claim 1, wherein the heat conducting member is formed with a recess capable of accommodating at least a part of the heat pipe.
  3. 前記熱伝導部材の凹部から突出されたヒートパイプの部分が金属製の被覆部材によって被覆される、請求項2に記載の太陽光発電装置。 The solar power generation device according to claim 2, wherein a portion of the heat pipe protruding from the concave portion of the heat conducting member is covered with a metal covering member.
  4. 前記被覆部材は、ヒートパイプの外形に応じた窪みと、当該窪みに接続された平坦な部分とを含み、前記平坦な部分が前記熱伝導部材に接触される、請求項3に記載の太陽光発電装置。 The sunlight according to claim 3, wherein the covering member includes a depression corresponding to an outer shape of a heat pipe and a flat portion connected to the depression, and the flat portion is in contact with the heat conducting member. Power generation device.
  5. 前記被覆部材は、前記ヒートパイプを前記熱伝導部材に固定する固定手段を含む、請求項4または5に記載の太陽光発電装置。 The solar power generation device according to claim 4 or 5, wherein the covering member includes a fixing unit that fixes the heat pipe to the heat conducting member.
  6. 前記ヒートパイプは、地中に施工された杭内の地下水に熱的に結合される、請求項1ないし5いずれか1つに記載の太陽光発電装置。 The said heat pipe is a solar power generation device as described in any one of Claim 1 thru | or 5 thermally couple | bonded with the groundwater in the pile constructed in the ground.
  7. 前記杭の下方に雨水溜めが形成される、請求項6に記載の太陽光発電装置。 The solar power generation device according to claim 6, wherein a rainwater reservoir is formed below the pile.
  8. 前記ヒートパイプは、閉じた系内に前記集熱部および前記放熱部を形成する、請求項1ないし7いずれか1つに記載の太陽光発電装置。 The said heat pipe is a solar power generation device as described in any one of Claim 1 thru | or 7 which forms the said heat collection part and the said thermal radiation part in the closed system.
  9. 太陽光発電装置はさらに、前記熱伝導部材に結合された冷却パイプを有し、前記冷却パイプは、前記地下水を利用して太陽光モジュールを冷却する、請求項1ないし8いずれか1つに記載の太陽光発電装置。 The photovoltaic power generation apparatus further includes a cooling pipe coupled to the heat conducting member, and the cooling pipe cools the solar module using the groundwater. Solar power generator.
  10. 前記熱伝導製部材の上面には前記ヒートパイプが取付けられ、前記熱伝導製部材の側面には前記冷却パイプが取付けられる、請求項9に記載の太陽光発電装置。 The solar power generation device according to claim 9, wherein the heat pipe is attached to an upper surface of the heat conduction member, and the cooling pipe is attached to a side surface of the heat conduction member.
  11. 前記側面には、冷却パイプを収容する凹部が形成される、請求項10に記載の太陽光発電装置。 The solar power generation device according to claim 10, wherein a concave portion that accommodates the cooling pipe is formed on the side surface.
  12. 太陽光発電装置はさらに、太陽光モジュールで発電された電力を利用して動作可能な直流ポンプを含み、前記直流ポンプは、前記冷却パイプ内に地下水を汲み上げる、請求項9ないし11いずれか1つに記載の太陽光発電装置。 The solar power generation apparatus further includes a direct current pump operable by using electric power generated by the solar power module, and the direct current pump pumps ground water into the cooling pipe. The solar power generation device described in 1.
  13. 太陽光発電装置はさらに、太陽光モジュールの周囲温度を検出する温度検出センサーを含み、太陽光モジュールの温度がしきい値以上になったとき、前記直流ポンプを作動させる制御手段を含む、請求項12に記載の太陽光発電装置。 The solar power generation device further includes a temperature detection sensor that detects an ambient temperature of the solar module, and further includes a control unit that operates the DC pump when the temperature of the solar module becomes equal to or higher than a threshold value. 12. The solar power generation device according to 12.
  14. 太陽光発電装置はさらに、1つまたは複数の太陽光モジュールを一定の傾斜角で設置可能な設置部材を含む、請求項1ないし13いずれか1つに記載の太陽光発電装置。 The solar power generation device according to any one of claims 1 to 13, further comprising an installation member capable of installing one or a plurality of solar modules at a constant inclination angle.
  15. 請求項1ないし14いずれか1つに記載の太陽光発電装置の融雪方法であって、
     前記ピートパイプの集熱部から太陽光モジュールの上端部の放熱部に熱媒体が汲み上げられ、前記太陽光モジュールの温度を上昇させることで表面の雪を融かす、融雪方法。
    A method for melting snow in a solar power generation device according to any one of claims 1 to 14,
    A snow melting method in which a heat medium is pumped from a heat collecting part of the peat pipe to a heat radiating part at an upper end of the solar module, and the snow on the surface is melted by increasing the temperature of the solar module.
  16. 請求項1ないし14いずれか1つに記載の太陽光発電装置の冷却方法であって、
     前記直流ポンプによって前記冷却パイプ内に熱媒体を汲み上げ、太陽光モジュールの上端部から熱媒体を噴霧状に供給することで太陽光モジュールを冷却する、冷却方法。
     
    A method for cooling a solar power generation device according to any one of claims 1 to 14,
    A cooling method in which the solar module is cooled by pumping a heat medium into the cooling pipe by the DC pump and supplying the heat medium in a spray form from the upper end of the solar module.
PCT/JP2013/080496 2013-09-27 2013-11-12 Photovoltaic power generation device, and snow-melting method and cooling method therefor WO2015045190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-200715 2013-09-27
JP2013200715A JP2017041461A (en) 2013-09-27 2013-09-27 Photovoltaic power generation device

Publications (1)

Publication Number Publication Date
WO2015045190A1 true WO2015045190A1 (en) 2015-04-02

Family

ID=52742382

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/080496 WO2015045190A1 (en) 2013-09-27 2013-11-12 Photovoltaic power generation device, and snow-melting method and cooling method therefor
PCT/JP2014/075250 WO2015046231A1 (en) 2013-09-27 2014-09-24 Solar photovoltaic generation device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075250 WO2015046231A1 (en) 2013-09-27 2014-09-24 Solar photovoltaic generation device

Country Status (2)

Country Link
JP (2) JP2017041461A (en)
WO (2) WO2015045190A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359850A (en) * 2017-07-14 2017-11-17 江门市卡迪光电科技有限公司 A kind of lighting system system
KR102168899B1 (en) * 2018-07-24 2020-10-22 포스코에너지 주식회사 Cooling system of energy storage system
US11205896B2 (en) 2018-11-21 2021-12-21 Black & Decker Inc. Solar power system
CN110158997B (en) * 2019-06-15 2024-07-02 沈阳建筑大学 Semi-automatic energy control Wen Shikang house
CN113131862B (en) * 2021-03-10 2022-11-18 嵊州市光宇实业有限公司 A light energy utilization rate hoisting device for solar cell panel
KR102295782B1 (en) * 2021-03-11 2021-08-31 청정테크주식회사 Apparatus for preventing snow piling on solar panel generating power for managing water storage tank
FI130797B1 (en) * 2022-09-22 2024-03-25 Ff Future Oy Solar panel system and fixing arrangement in a solar panel system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992866A (en) * 1995-09-26 1997-04-04 Sharp Corp Solar cell module having water spray function
JPH118401A (en) * 1997-06-16 1999-01-12 Toyota Motor Corp Solar battery device
JPH11274543A (en) * 1998-03-19 1999-10-08 Solar System Kk Method and apparatus for solar generation, heat collection and melting snow
JP2000356416A (en) * 1999-06-17 2000-12-26 Kobe Steel Ltd Module for supplying solar heat and electric heat in parallel
JP2005039025A (en) * 2003-07-14 2005-02-10 Kanaya Kensetsu Kk Solarlight power generator
JP2008016595A (en) * 2006-07-05 2008-01-24 Nikkeikin Aluminium Core Technology Co Ltd Solar power generation apparatus
JP2009103397A (en) * 2007-10-25 2009-05-14 Kenji Umetsu Solar cogeneration device
JP2010123907A (en) * 2008-11-23 2010-06-03 Hiroya Sekiguchi Solar cell
JP2011077379A (en) * 2009-09-30 2011-04-14 Just Thokai:Kk Heat absorption and radiation system for solar cell panel
JP2011230078A (en) * 2010-04-28 2011-11-17 Jfe Steel Corp Rainwater receiving and vaporizing panel and rainwater treating device using the same
JP2012177541A (en) * 2012-06-05 2012-09-13 Kenji Umetsu Solar light cogeneration system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123369A (en) * 1984-07-11 1986-01-31 Fujitsu Ltd Solar battery power supply
JP5445316B2 (en) * 2010-05-10 2014-03-19 Jfeスチール株式会社 Sprinkler for solar cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992866A (en) * 1995-09-26 1997-04-04 Sharp Corp Solar cell module having water spray function
JPH118401A (en) * 1997-06-16 1999-01-12 Toyota Motor Corp Solar battery device
JPH11274543A (en) * 1998-03-19 1999-10-08 Solar System Kk Method and apparatus for solar generation, heat collection and melting snow
JP2000356416A (en) * 1999-06-17 2000-12-26 Kobe Steel Ltd Module for supplying solar heat and electric heat in parallel
JP2005039025A (en) * 2003-07-14 2005-02-10 Kanaya Kensetsu Kk Solarlight power generator
JP2008016595A (en) * 2006-07-05 2008-01-24 Nikkeikin Aluminium Core Technology Co Ltd Solar power generation apparatus
JP2009103397A (en) * 2007-10-25 2009-05-14 Kenji Umetsu Solar cogeneration device
JP2010123907A (en) * 2008-11-23 2010-06-03 Hiroya Sekiguchi Solar cell
JP2011077379A (en) * 2009-09-30 2011-04-14 Just Thokai:Kk Heat absorption and radiation system for solar cell panel
JP2011230078A (en) * 2010-04-28 2011-11-17 Jfe Steel Corp Rainwater receiving and vaporizing panel and rainwater treating device using the same
JP2012177541A (en) * 2012-06-05 2012-09-13 Kenji Umetsu Solar light cogeneration system

Also Published As

Publication number Publication date
JP2017041461A (en) 2017-02-23
JPWO2015046231A1 (en) 2017-04-06
WO2015046231A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2015045190A1 (en) Photovoltaic power generation device, and snow-melting method and cooling method therefor
KR100867655B1 (en) Solar cell module for roof panel and apparatus for collecting solar energy using the same
US8455755B2 (en) Concentrated photovoltaic and thermal solar energy collector
US9240510B2 (en) Concentrated photovoltaic and thermal solar energy collector
JP5589201B2 (en) Solar cogeneration module with heat sink
TW201610378A (en) Synergistic solar powered water heater
JP2011140827A (en) Underground heat-storing house
JP2010258031A (en) Power generation system
BG4256U1 (en) Device for waste heat management of solar photovoltaic panels
AU2010365050B2 (en) Concentrated photovoltaic and thermal solar energy collector
JP4148325B1 (en) Solar cogeneration system
JP2011077379A (en) Heat absorption and radiation system for solar cell panel
Kadhim et al. Experimental evaluation of evaporative cooling for enhancing photovoltaic panels efficiency using underground water
KR101628668B1 (en) Apparatus for controlling temperature of photovoltaic panel
JP2006278758A (en) Solar battery module and solar battery array
WO2016124338A1 (en) Solar module arrangement and a method retrofitting a solar module element
CN210007672U (en) photovoltaic road blocks
WO2009114905A1 (en) Tile unit
KR101009688B1 (en) Hybrid module for solar energy
JP2010126926A (en) Photovoltaic generation system which increases efficiency of electric power generation by watering
ES2656552T3 (en) Combined solar module
CN206782492U (en) A kind of number suitable for Permafrost Area adopts instrument power supply, incubator
JP2009105364A (en) Sunlight cogeneration
JP2006278739A (en) Solar power generation apparatus
CN215330193U (en) Desert water storage and taking ecological device based on Peltier effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894273

Country of ref document: EP

Kind code of ref document: A1