JPS6123369A - Solar battery power supply - Google Patents

Solar battery power supply

Info

Publication number
JPS6123369A
JPS6123369A JP59145162A JP14516284A JPS6123369A JP S6123369 A JPS6123369 A JP S6123369A JP 59145162 A JP59145162 A JP 59145162A JP 14516284 A JP14516284 A JP 14516284A JP S6123369 A JPS6123369 A JP S6123369A
Authority
JP
Japan
Prior art keywords
solar battery
heat
water tank
heat pipe
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59145162A
Other languages
Japanese (ja)
Inventor
Ken Haniyuda
羽生田 謙
Michimasa Ohara
尾原 通正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59145162A priority Critical patent/JPS6123369A/en
Publication of JPS6123369A publication Critical patent/JPS6123369A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0043Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material specially adapted for long-term heat storage; Underground tanks; Floating reservoirs; Pools; Ponds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To realize installation of solar battery even in the very cold and heavy snowfall districts through reduction of surface temperature difference of solar battery by providing an underground water tank for the solar battery installation area and connecting such underground water tank and solar battery with a heat pipe. CONSTITUTION:A water tank 2 is buried under the ground surface 4 of the area on which a solar battery 1 is installed and a heat pipe 5 providing the heat collecting and radiating plate 6 is provided to said water tank 2. Thereafter, water 3 is supplied to the tank 2. The other end of heat pipe 5 is connected to the solar battery 1 and the exposed heat pipe 5 within the water tank 2 is covered with a heat insulating material 7. The water 3 which is almost constant in temperature through four seasons is always supplied through the heat pipe 5 to the solar battery surface which is quite different in temperature through four seasons. Thereby, the heat at the surface of solar battery 1 is sent to the water tank 2 in order to cool the surface of solar battery 1 during the summer, while the heat of water 3 is sent to the surface of solar battery 1 to heat its surface during the winter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、商用電源の供給が不可能な山間僻地に設置さ
れた装置の電源キして用いる太陽電池の電源装置に係り
、とくに温度制御を行なうようにした太陽電池電源装置
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a solar battery power supply device used as a power source for equipment installed in remote mountainous areas where commercial power supply is impossible, and in particular for temperature control. The present invention relates to a solar cell power supply device that performs the following steps.

無線通信における中継装置あるいはTVのサテライト等
は、一般に見通しのよい山上環に設置されることが多い
、ところが山上環の僻地には商用電源の供給が殆ど不可
能である。したがってこれら中継装置あるいはTVのサ
テライトおよび光通信設備等の電源として、太陽電池に
よる電源装置あるいは風力発電等自然現象による電源供
給が行なわれているが、中でも太陽電池は太陽光により
発電することは説明するまでもないが、四季の気象状況
により効率に変動がある。たとえば冬期には太陽電池面
に積雪して凍結すると、殆ど太陽電池面に太陽光が当た
らなくなるので太陽電池の役目を果たさないことになる
。そこで四季を通じて太陽電池の表面温度を一定に保ち
、発電効率の変化しない太陽電池電源を開発する必要が
ある。
Relay devices for wireless communications, TV satellites, and the like are generally installed in mountainous areas with good visibility, but it is almost impossible to supply commercial power to remote areas of mountainous areas. Therefore, as a power source for these relay devices, TV satellites, optical communication equipment, etc., power is supplied by solar cell power devices or natural phenomena such as wind power generation, but it is explained that solar cells generate electricity from sunlight. Needless to say, the efficiency varies depending on the weather conditions of the four seasons. For example, in winter, if snow accumulates and freezes on the surface of a solar cell, most of the sunlight will not reach the surface of the solar cell, so the solar cell will no longer function as a solar cell. Therefore, it is necessary to develop a solar cell power source that maintains the surface temperature of the solar cell at a constant level throughout the seasons and whose power generation efficiency does not change.

〔従来の技術〕[Conventional technology]

従来の太陽電池は、山上環の障害物が少なく日射時間の
多い所に設置されているが、夏季と冬季とでは太陽電池
の表面温度差が大きく、とくに冬季積雪地帯においては
太陽電池の表面に積雪して凍結するので、太陽電池の表
面温度は一10°Cとなり、夏季においては60°Cと
いう温度となる。
Conventional solar cells are installed in areas on the mountain where there are few obstacles and many hours of sunlight, but there is a large difference in the surface temperature of the solar cells between summer and winter, especially in snowy areas in winter. As snow accumulates and freezes, the surface temperature of the solar cell is -10°C, and in summer it reaches 60°C.

したがって冬季の積雪時においては、発電効率は0に近
く、夏季は太陽電池の表面温度が上昇して発電効率が2
0〜30%減少するので、太陽電池の容量を太き(した
り、他の季節において発電した電力を蓄積する蓄電器の
容量を真人なものにしなければならず、不経済である。
Therefore, in the winter when there is snow, the power generation efficiency is close to 0, and in the summer, the surface temperature of the solar cells increases and the power generation efficiency decreases to 2.
Since it decreases by 0 to 30%, it is necessary to increase the capacity of solar cells or increase the capacity of power storage devices that store power generated in other seasons, which is uneconomical.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような構成の太陽電池は、設置場所の気象状況に
よって真人な容量の蓄電器を必要とし、しかも蓄電器の
収納庫もおおきなものを設置しなければならない等不経
済であり、また極寒地で雨雪に曝らされ凍結すると破損
等の障害を発生する等それぞれの問題点があった。
Solar cells with the above configuration require a capacitor with a certain capacity depending on the weather conditions of the installation location, and are uneconomical as they require a large storage compartment for the capacitor. Each had their own problems, such as damage and other problems when exposed to snow and freezing.

〔問題点を解決刷るための手段〕[Means for solving problems]

本発明は、上記問題点を解決して四季を通じ発電量をほ
ぼ平均成らしめるようにした太陽電池電源を提供するも
ので、その手段は、太陽電池の電源装置において、前記
太陽電池の設置場所に地下水槽を設け、該地下水槽と前
記太陽電池間をヒートパイプで連結したことによってな
される。
The present invention provides a solar cell power source that solves the above problems and makes the amount of power generation approximately average throughout the four seasons. This is achieved by providing an underground water tank and connecting the underground water tank and the solar cell with a heat pipe.

〔作用〕[Effect]

本発明の太陽電池電源装置は、太陽電池表面の温度を四
季を通じて、その温度差を最小とするために地下水槽の
水温が四季を通じて変化が少ないことに着目して、冬季
は水槽内の水が発熱源で太陽電池が放熱部となり、夏季
は水槽内の水が放熱部で太陽電池が発熱部となる。そこ
で太陽電池と地下水槽間をヒートパイプで結び、発電量
の効率が向上し経済的である。
The solar cell power supply device of the present invention focuses on the fact that the water temperature in the underground aquarium does not change much throughout the four seasons in order to minimize the temperature difference between the solar cell surface and the water in the aquarium in winter. The solar cells are the heat source and the heat radiator, and in the summer, the water in the aquarium is the heat radiator and the solar cells are the heat generator. Therefore, connecting the solar cells and the underground water tank with a heat pipe improves the efficiency of power generation and is economical.

〔実施例〕〔Example〕

以下図面を参照しながら本発明に係る太陽電池電源装置
の実施例について詳細に説明する。
Embodiments of the solar battery power supply device according to the present invention will be described in detail below with reference to the drawings.

第1図は、本発明に係る太陽電池電源装置の一実施例を
説明するための模式的構成図である。
FIG. 1 is a schematic configuration diagram for explaining one embodiment of a solar cell power supply device according to the present invention.

太陽電池1を設置した場所の地面4の下に水槽2を埋歿
し、該水槽2内に集・放熱板6を敷設したヒートパイプ
5を取着したるのち、水槽2内に水3を注入する。そし
てヒートパイプ5の他の端部を太陽電池1に連結して、
水槽2内の露出したヒートパイプ5には断熱材7で被覆
した構造である。
A water tank 2 is buried under the ground 4 where the solar cell 1 is installed, and a heat pipe 5 with a heat collecting/dissipating plate 6 laid inside the water tank 2 is installed, and then water 3 is poured into the water tank 2. inject. Then, connect the other end of the heat pipe 5 to the solar cell 1,
The heat pipe 5 exposed in the water tank 2 is covered with a heat insulating material 7.

ここでヒートパイプ5は、金属パイプの中に所定の温度
で気化する液体を適量封入し、パイプ内壁に設けたウィ
ックと称する金属メツシュ、焼結金属層、あるいは縦方
向に付けた多数の条溝の毛細管現象によって、パイプ両
端の温度差に基づく内部の気相と液相のバランスを保た
せたもので、気化と凝縮における熱の授受を利用して、
高温部から低温部へ熱を輸送するものである。
Here, the heat pipe 5 is a metal pipe in which an appropriate amount of liquid that vaporizes at a predetermined temperature is sealed, and a metal mesh called a wick provided on the inner wall of the pipe, a sintered metal layer, or a large number of vertical grooves. The capillary phenomenon maintains the balance between the internal gas phase and liquid phase based on the temperature difference between both ends of the pipe, and uses the exchange of heat during vaporization and condensation.
It transports heat from a high temperature area to a low temperature area.

このヒートパイプの熱の輸送に着目して、四季にわたり
温度差の変化の少ない水3と、四季の温度差の激しい太
陽電池表面どをヒートパイプ5で連結して、夏季は太陽
電池1の表面の熱を水槽2内に輸送して太陽電池1の表
面を冷し、冬季は水3の熱を太陽電池1の表面へ輸送し
て、太陽電池lの表面を温めるようにしたものである。
Focusing on the transport of heat through heat pipes, a heat pipe 5 is used to connect water 3, which has a small temperature difference over the four seasons, with the surface of the solar cell 1, which has a large temperature difference between the four seasons. The heat from the water 3 is transported into the water tank 2 to cool the surface of the solar cell 1, and in winter, the heat from the water 3 is transported to the surface of the solar cell 1 to warm the surface of the solar cell 1.

このヒートパイプ5を用いない場合の各部の温度は次の
通りである。
The temperatures of each part when this heat pipe 5 is not used are as follows.

□ 外  気    30”C−10@C 太賜電池表面 60°C−10〜0°C地   中  
  201 C20° C−ヒートパイプ5を用いた場
合の太陽電池1の表面の計算値による温度は次の通りで
ある。
□ Outside air 30”C-10@C Taishi battery surface 60°C-10~0°C Underground
201C20°C - The calculated temperature of the surface of the solar cell 1 when using the heat pipe 5 is as follows.

なお、本実施例では水槽2への給水パイプおよび水面検
知器は図示していないが設ける必要がある。地下水を用
いる場合は必要はない。
In this embodiment, a water supply pipe to the water tank 2 and a water surface detector are not shown but need to be provided. It is not necessary if groundwater is used.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る太陽電池
電源装置によれば、太陽電池の表面温度差゛が小さくな
゛るので、寒冷地、豪雪地域等への設置が可能となり、
太陽電池および蓄電器の小形軽量が期待でき、経済的効
果は極めて大である。
As is clear from the above description, according to the solar cell power supply device according to the present invention, the surface temperature difference of the solar cells is reduced, so it can be installed in cold regions, areas with heavy snowfall, etc.
It is expected that solar cells and power storage devices will be smaller and lighter, and the economic effects will be extremely large.

【図面の簡単な説明】 第1図は、本発明に係る太陽電池電源装置の一実施例を
説明するための模式的構成図である。 図中、1ば太陽電池、2は水槽、3は水、4は地面、5
はヒートパイプ、6は集・放熱板、7は断熱材、をそれ
ぞれ示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram for explaining one embodiment of a solar cell power supply device according to the present invention. In the figure, 1 is a solar cell, 2 is an aquarium, 3 is water, 4 is the ground, and 5
indicates a heat pipe, 6 indicates a heat collecting/radiating plate, and 7 indicates a heat insulating material.

Claims (1)

【特許請求の範囲】[Claims]  太陽電池の電源装置において、前記太陽電池の設置場
所に地下水槽を設け、該地下水槽と前記太陽電池間をヒ
ートパイプで連結したことを特徴とする太陽電池電源装
置。
A solar cell power supply device, characterized in that an underground water tank is provided at the installation location of the solar cell, and the underground water tank and the solar cell are connected by a heat pipe.
JP59145162A 1984-07-11 1984-07-11 Solar battery power supply Pending JPS6123369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59145162A JPS6123369A (en) 1984-07-11 1984-07-11 Solar battery power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59145162A JPS6123369A (en) 1984-07-11 1984-07-11 Solar battery power supply

Publications (1)

Publication Number Publication Date
JPS6123369A true JPS6123369A (en) 1986-01-31

Family

ID=15378858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59145162A Pending JPS6123369A (en) 1984-07-11 1984-07-11 Solar battery power supply

Country Status (1)

Country Link
JP (1) JPS6123369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709375A (en) * 2012-06-27 2012-10-03 重庆理工大学 Passive cooling system of solar battery board
WO2015046231A1 (en) * 2013-09-27 2015-04-02 会川鉄工株式会社 Solar photovoltaic generation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709375A (en) * 2012-06-27 2012-10-03 重庆理工大学 Passive cooling system of solar battery board
WO2015046231A1 (en) * 2013-09-27 2015-04-02 会川鉄工株式会社 Solar photovoltaic generation device

Similar Documents

Publication Publication Date Title
JP4214881B2 (en) Bubble pump type heat transport equipment
US20130299123A1 (en) Geothermal System
US20180112930A1 (en) Energy Store, Power Plant having an Energy Store, and Method for Operating the Energy Store
US11549725B2 (en) System for storing and retrieving thermal energy
US3683152A (en) Means for preventing the formation of ice, particularly on roads
US20190162451A1 (en) Thermal And Moisture Enhanced Gradient Strata For Heat Exchangers
JP2007333295A (en) Heat storage system
CN110295626B (en) Anti-freezing device of water supply and drainage pipeline and construction method thereof
JPH11325649A (en) Soil heat source ice heat accumulating heat pump
Karagusov Functioning of the radiation life-support system in the spring period
JPS6123369A (en) Solar battery power supply
JP4428453B2 (en) Bubble pump type heat transport equipment
CN207570051U (en) Solar cogeneration ground source hot pump cold-warm system
WO2015094102A1 (en) Construction comprising a building structure and a ground-based heat storage
CN105040744B (en) The attemperator and its construction method of ground under the conditions of a kind of plateau permafrost
CN210007672U (en) photovoltaic road blocks
Saitoh et al. An energy-independent house combining solar thermal and sky radiation energies
JPH04189906A (en) Snow melting device of solar heat storage type for road surface
CN110800523A (en) Passive solar heat-preservation and temperature-increasing device for buried sewage treatment facility
JPS59131854A (en) Heat exchanger
JPS61207754A (en) Snow melting apparatus
GB2552325A (en) Thermal store arrangement
McKay et al. Use of a water plenum and thermosiphon to control peak temperature in outdoor cabinets
Nicholls Analysis of thermal well storage for solar collector—heat pump systems
JPS61207755A (en) Snow melting apparatus