WO2015044266A1 - Innengehäusenabe für eine gasturbine - Google Patents

Innengehäusenabe für eine gasturbine Download PDF

Info

Publication number
WO2015044266A1
WO2015044266A1 PCT/EP2014/070483 EP2014070483W WO2015044266A1 WO 2015044266 A1 WO2015044266 A1 WO 2015044266A1 EP 2014070483 W EP2014070483 W EP 2014070483W WO 2015044266 A1 WO2015044266 A1 WO 2015044266A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner housing
housing hub
gas turbine
web
hub
Prior art date
Application number
PCT/EP2014/070483
Other languages
English (en)
French (fr)
Inventor
Andreas Böttcher
Torsten JOKISCH
Tobias Krieger
Patrick Lapp
Dirk Mertens
Julia MÜHL
Michael Neubauer
Alexander Nordalm
Vasileios PAPADOPOULOS
Michael Winterstein
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP14780800.0A priority Critical patent/EP3008293B1/de
Priority to US15/023,395 priority patent/US20160208628A1/en
Priority to CN201480052858.0A priority patent/CN105579669B/zh
Publication of WO2015044266A1 publication Critical patent/WO2015044266A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor

Definitions

  • the invention relates to an inner housing hub for a gas turbine.
  • the inner housing hub can be arranged in the gas turbine to ei ⁇ ne gas turbine shaft and serves as an inventory ⁇ part of an inner housing together with the inner housing the deflecting exiting combustion chambers hot gases on egg nen in the direction of the gas turbine shaft arranged in the turbine inlet area.
  • the inner housing hub is thus flown on its side facing away from the gas turbine shaft side of the hot gases to be deflected.
  • the inner housing hub comprises at least one substantially cylindrical jacket-shaped fastening portion with a cylinder jacket-shaped base body, on which the
  • Inner housing hub is attached to a suitably formed fastening ⁇ tion component of the gas turbine.
  • the term "cylinder jacket" is not to be understood in a strictly mathematical sense.
  • the attachment portion or the base ⁇ body are formed as a tubular wall.
  • the term zy ⁇ lindermantelförmig thus refers only to the circumferential shape of the wall and not on the thickness of the wall.
  • the fastening component can be, for example, a component which is fastened indirectly to an outer housing of the gas turbine.
  • the base body of the inner housing hub has a hot side facing a hot gas path and a cold gas side facing away from the hot gas path. The cold side is thus facing the gas turbine shaft.
  • At least one web-shaped projection is arranged on the cylinder jacket-shaped base body, which projection extends along the cold side and is arranged on the cold side.
  • the web-shaped projection is part of a tongue and groove connection between the cylinder jacket-shaped base body and the fastening component.
  • the ridge-shaped protrusion may for example form the spring and are arranged for mounting in a ⁇ extending on the fastener component groove.
  • the web-shaped projection could also form the groove of the tongue and groove connection by a groove extending in its upper side, which corresponds to a correspondingly formed spring of the fastening component ⁇ .
  • the heat protection can be, for example, a thermal barrier coating, in particular a ceramic protective coating. This leads in particular in the region of the attachment portion to a high wear of the inner housing hub due to start-stop-driven fatigue cracks with subsequent crack growth and flaking of the heat protection from the hot side of the body.
  • the invention is based on the object
  • the object is achieved in an inner housing hub of the type mentioned above in that the web-shaped projection consists of a first material and the base body of a second material, wherein the first material has a larger thermal expansion coefficient than the second material, so that in at least one operating condition the gas turbine, the thermally induced stresses in the region of the fastening portion relative to an integral of the second material integral formation of the base body and the web-shaped projection are reduced.
  • the heat protection on the hot side is thus not improved to reduce the wear, but the formation of the base body is improved to reduce thermal stresses. This is inventively no longer integral with the projection.
  • the projection and the base are made of different materials. For example, the two can be made separately and joined together by welding or soldering.
  • the protruding from the cylinder shell-shaped base body web-shaped projection, which is thus colder than the rest of the base body is made of a material with a higher coefficient of thermal expansion than the warmer base ⁇ body. Due to the larger coefficient of thermal expansion of the main body pulls the body or not so much together. However, the coefficient of thermal expansion should not be so great that the colder projection expands much more in operation despite lower temperature difference in the region of the projection than the main body.
  • the first material and the second material is selected such that they meet the require ⁇ approximations to the inner housing hub and the attachment and according to the invention the different istausdehnungsko ⁇ efficient are such that the thermally induced stresses in the area of the attachment portion from a second of the material existing one-piece design of the body and the web-shaped projection are reduced.
  • the base body may comprise one or more web-shaped projections designed according to the invention.
  • the inner housing hub is exposed between the hot and cold side of the body high temperature differences, so that the inventive design of Befest Trentsab ⁇ section of the inner housing hub allows a substantial extension of the life of the inner housing hub.
  • Inner housing hub for its attachment in the gas turbine der- is attachable to a fastening component, that the web-shaped projection can be arranged in a groove encompassed by the fastening component.
  • the web-shaped projection thus forms the tongue of the tongue and groove joint.
  • the base body may comprise one or more web-shaped projections designed according to the invention. These may be arranged and a common, divided web form which can be arranged in a groove on the mounting component along its longitudinal extent lined up on the cold side at ⁇ play.
  • the fastening section is in to a central axis is arranged ⁇ housing wall, which is flowed around by the hot gas path such that the hot side of the base body facing away from the central axis ⁇ .
  • a trained as a housing wall mounting portion is due to its small extent perpendicular to the wall particularly susceptible torecigeru ⁇ fenes by thermal stresses fenes bending. The wear of such Gasturbinenkompo ⁇ nents can be reduced particularly strong with the invention.
  • a further advantageous embodiment of the invention can provide that the inner housing hub is formed at least in the region of the attachment portion substantially cylinder jacket-shaped and the at least one web-shaped projection along a circular peripheral line is arranged on the base body, so that a continuous or segmentally divided or interrupted annular web on the cold side is arranged.
  • Inner housing hub with an end face in a turbine inlet can be arranged access area, wherein the attachment portion is arranged in the region of the end face.
  • Another object of the invention is to provide an inner housing of the type mentioned with an inner housing hub suits ⁇ ben, which is subject to reduced wear.
  • the inner housing hub is formed according to one of claims 1 to 5.
  • Another object of the invention is to provide a gas turbine subject to reduced wear.
  • the gas turbine comprises at least one inner housing according to claim 6.
  • FIG. 2 schematically shows an inner housing hub according to an embodiment of the invention in a perspective view
  • FIG 3 shows a section of the inner housing hub shown in Figure 2 in a longitudinal section
  • Figure 4 shows a schematic section of the inner housing hub shown in Figure 2 with arranged on the projection fastening component in a longitudinal section
  • 5 shows schematically an inner casing of a gas turbine with
  • Inner housing hub which is formed according to Figure 2 in egg ⁇ ner perspective view.
  • 1 shows a schematic sectional view of a gas turbine 1 ⁇ according to the prior art.
  • the gas turbine 1 has inside a rotatably mounted about a rotation axis 2 rotor 3 with a shaft 4, which is also referred to as a turbine runner.
  • a turbine runner Along the rotor 3 follow one another an intake housing 6, a compressor 8, a combustion system 9 with at least one combustion chamber 10, a turbine 14 and an exhaust housing 15.
  • the one or more combustion chambers 10 each comprise a burner assembly 11 and a housing 12 which is for protection before hot gases with a heat shield 20 is lined.
  • the at least one combustion chamber 10 may be ei ⁇ ne ring combustion chamber.
  • the gas turbine may alternatively also comprise one or more tube combustion chambers or silo separation chambers.
  • the combustion system 9 communicates with a beispielswei ⁇ ring hot gas channel.
  • Each Turbi ⁇ nencut is formed of blade rings. Viewed in the flow direction of a working medium follows in the hot runner formed by a number 17 vanes row formed from blades 18 row.
  • the guide vanes 17 are secured to an inner housing of a stator 19 while the rotor blades 18 ⁇ a number, for example, by means of a Turbi ⁇ nenrace on the rotor 3 are attached.
  • Coupled to the rotor 3 is, for example, a generator (not shown).
  • the inner housing hub 24 is cylindrical jacket-shaped with a central axis 26.
  • the ei ⁇ ne end portion of the inner housing hub forms a fastening ⁇ supply section 28 from.
  • the cylinder jacket-shaped fastening ⁇ tion section 28 includes a cylinder shell-shaped base body 30, which comprises a hot gas path (which is schematically illustrated by the arrow 32) facing the hot side 34 and the hot gas path remote from the cold side 36.
  • the hot side 34 may be coated with a heat shield (not shown).
  • a web-shaped projection 38 is arranged for fastening the inner housing hub 24.
  • the web-shaped projection 38 extends along a circular peripheral line along the cold side 36 of the
  • the base body and is arranged on the cold side of the zylindermantelför ⁇ -shaped base body 30 so that it is arranged as a umlau ⁇ fender annular ridge on the cold side 36th
  • the annular projection 38 is arranged in an annular groove (not shown) running in the fastening component.
  • the inner housing hub 24 can be constructed from two half-shells, which are first brought into abutment separately on the fastening component (not shown) and then joined together. In this case, the circumferential ridge-shaped projection 38 is divided into segments.
  • its mountings ⁇ constriction portion 28 is such that the hot side 34 faces away about a center axis 26 is arrange ⁇ te housing wall 40, which flows around the hot gas path 32 from the central axis 26th
  • the entire inner housing hub 24 may, except for the web-shaped projection, the structure of the mounting portion, so that the subdivision of the inner housing hub in a mounting portion to the line 42 in the vorlie ⁇ ing embodiment can be chosen freely in a certain way.
  • FIG. 3 shows a detail of the dargestell ⁇ th in Figure 2 the inner housing hub in a longitudinal section in the region of the fixing portion 28.
  • the designed in the form of a housing wall 40 mounting portion 28 includes a cylindrical jacket-shaped body 30 having a hot side 34 and ei ⁇ ner cold side 36th The hot side is coated with a heat shield 44.
  • On the cold side 36 is web-like pre ⁇ jump arranged a 38 whose cross-section 46 can be seen in the figure.
  • ⁇ DERS specifics about the transition region of the base body and stegförmigem projection 38 around generated in the operation of the one-piece, known from the prior art configuration of the fixing section, high thermal stresses.
  • FIG. 4 shows a detail of the inner housing hub 24 shown in FIG. 2 in the region of the fastening section 28 in a longitudinal section. It is the simplicity illustrated only the main body 30 with the ridge-shaped projection 38 ⁇ half of mounting portion 28th (The on the hot side 34 arranged heat shield 44 was omitted in the figure). Opposite the hot side 34 extends the cold side 36 of the main body 30, wherein in the region of the end face 50 of the main body 30 of the web-shaped projection 38 is disposed on the cold side 36.
  • FIG. 5 shows an inner housing 56 of a gas turbine with an inner housing hub 58 according to the invention arranged centrally in the inner housing.
  • the inner housing hub 58 encloses a gas turbine shaft (not shown) extending along the central axis 26.
  • the inner housing 56 has two inputs 60 and 62 and an annular output 64. At the back 66, the inner housing is closed.
  • the inputs 60 and 62 can each be arranged on a combustion chamber outlet of a combustion chamber (not shown).
  • the output 64 is at a turbine inlet area (not shown)
  • the inner housing 56 serves to deflect the hot gases emerging from the two combustion chambers along the hot gas path 32, which is illustrated schematically by an arrow.
  • the hot gases inter alia, flow through this. along the heat-insulated 44 sheathed inner housing hub 58 through the inner housing back through.
  • Inner housing hub 58 in the region of its end face 50 by means of the web-shaped, on the cold side 36 circumferentially arranged projection 38 attached to a surrounding of the hub mounting ⁇ component (not shown).
  • the inner housing hub 58 according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Innengehäusenabe (24, 58) für eine Gasturbine (1), wobei die Innengehäusenabe (58) in der Gasturbine (1) um eine Gasturbinenwelle herum anordenbar ist und als Bestandteil eines Innengehäuses (56) ausgebildet ist, wobei die Innengehäusenabe zusammen mit dem Innengehäuse (56) dem Umlenken von aus Brennkammern austretenden Heißgasen auf einen in Richtung der Gasturbinenwelle angeordneten Turbineneintrittsbereich (54) dient. Die Innengehäusenabe umfasst mindestens einen im Wesentlichen zylindermantelförmigen Befestigungsabschnitt (28) mit einem zylindermantelförmigen Grundkörper (30), der eine einem Heißgaspfad (32) zugewandten Heißseite (34) und eine dem Heißgaspfad abgewandten Kaltseite (36) umfasst, wobei an dem Grundkörper (30) zur Befestigung der Innengehäusenabe (24, 58) mindestens ein stegförmiger Vorsprung (38) sich entlang der Kaltseite (36) erstreckt und an der Kaltseite angeordnet ist. Die erfindungsgemäße Innengehäusenabe unterliegt einem reduzierten Verschleiß. Hierzu besteht der stegförmige Vorsprung (38) aus einem ersten Material und der Grundkörper (30) aus einem zweiten Material, wobei das erste Material einen größeren Wärmeausdehnungskoeffizienten aufweist als das zweite Material, so dass in mindestens einem Betriebszustand der Gasturbine (24) die thermisch induzierten Spannungen im Bereich des Befestigungsabschnitts (28) gegenüber einer aus dem zweiten Material bestehenden einstückigen Ausbildung des Grundkörpers und des stegförmigen Vorsprungs reduziert sind.

Description

Beschreibung
Innengehäusenabe für eine Gasturbine Die Erfindung bezieht sich auf eine Innengehäusenabe für eine Gasturbine. Die Innengehäusenabe ist in der Gasturbine um ei¬ ne Gasturbinenwelle herum anordenbar und dient als Bestand¬ teil eines Innengehäuses zusammen mit dem Innengehäuse dem Umlenken von aus Brennkammern austretenden Heißgasen auf ei- nen in Richtung der Gasturbinenwelle angeordneten Turbineneintrittsbereich. Die Innengehäusenabe wird somit auf ihrer von der Gasturbinenwelle abgewandten Seite von den umzulenkenden Heißgasen angeströmt. Die Innengehäusenabe umfasst mindestens einen im Wesentlichen zylindermantelförmigen Befestigungsabschnitt mit einem zylindermantelförmigen Grundkörper, an welchem die
Innengehäusenabe an einer geeignet ausgebildeten Befesti¬ gungskomponente der Gasturbine befestigt ist. Der Begriff zy- lindermantelförmig ist hierbei nicht im streng mathematischen Sinne zu verstehen. Der Befestigungsabschnitt bzw. der Grund¬ körper sind als rohrförmige Wand ausgebildet. Der Begriff zy¬ lindermantelförmig bezieht sich somit nur auf die umlaufende Form der Wand und nicht auf die Dicke der Wand. Die Befesti- gungskomponente kann beispielsweise ein indirekt an einem Außengehäuse der Gasturbine befestigtes Bauteil sein. Der Grundkörper der Innengehäusenabe weist eine einem Heißgaspfad zugewandten Heißseite und eine dem Heißgaspfad abgewandten Kaltseite auf. Die Kaltseite ist somit der Gasturbinenwelle zugewandt. Zur Befestigung der Innengehäusenabe ist an dem zylindermantelförmigen Grundkörper mindestens ein stegförmi- ger Vorsprung angeordnet, der sich entlang der Kaltseite erstreckt und an der Kaltseite angeordnet ist. Derartige Befestigungen sind insbesondere bei Komponenten des Brennkammergehäuses oder des Innengehäuses von Gasturbinen mit Silobrennkammern üblich. Der stegförmige Vorsprung ist hierbei Teil einer Nut-Feder- Verbindung zwischen dem zylindermantelförmigen Grundkörper und der Befestigungskomponente. Der stegförmige Vorsprung kann beispielsweise die Feder ausbilden und zur Befestigung in einer an der Befestigungskomponente verlaufenden Nut ange¬ ordnet werden. Der stegförmige Vorsprung könnte aber auch die Nut der Nut-Feder-Verbindung ausbilden, indem eine Nut in seiner Oberseite verläuft, die mit einer entsprechend ausge¬ bildeten Feder der Befestigungskomponente korrespondiert.
Aufgrund der betriebsgemäßen Temperaturunterschiede zwischen der Heißseite und der Kaltseite unterliegt die gattungsgemäße Innengehäusenabe, insbesondere im Bereich des Befestigungsab¬ schnitts, hohen thermischen Spannungen. Diese thermischen Spannungen können sich vom Grundkörper auf einen auf der Heißseite angeordneten Hitzeschutz übertragen. Bei dem Hitzeschutz kann es sich beispielsweise um eine Wärmedämmschicht, insbesondere um eine keramische Schutzschicht handeln. Dies führt insbesondere im Bereich des Befestigungsabschnitts zu einem hohen Verschleiß der Innengehäusenabe aufgrund von Start-Stop-getriebenen Ermüdungsrissen mit anschließendem Risswachstum und Abplatzen des Hitzeschutzs von der Heißseite des Grundkörpers.
Der Erfindung liegt die Aufgabe zugrunde, eine
Innengehäusenabe der eingangs genannten Art anzugeben, welche einem reduzierten Verschleiß unterliegt.
Die Aufgabe wird erfindungsgemäß bei einer Innengehäusenabe der eingangs genannten Art dadurch gelöst, dass der stegförmige Vorsprung aus einem ersten Material und der Grundkörper aus einem zweiten Material besteht, wobei das erste Material einen größeren Wärmeausdehnungskoeffizienten aufweist als das zweite Material, so dass in mindestens einem Betriebszustand der Gasturbine die thermisch induzierten Spannungen im Bereich des Befestigungsabschnitts gegenüber einer aus dem zweiten Material bestehenden einstückigen Ausbildung des Grundkörpers und des stegförmigen Vorsprungs reduziert sind. Erfindungsgemäß wird somit zur Reduzierung des Verschleiß nicht der Wärmeschutz auf der Heißseite verbessert, sondern zur Reduzierung thermischer Spannungen die Ausbildung des Grundkörpers verbessert. Dieser ist erfindungsgemäß nicht mehr einstückig mit dem Vorsprung ausgebildet. Vorsprung und Grundkörper werden aus unterschiedlichen Materialien hergestellt. Beispielsweise können die beiden getrennt hergestellt werden und durch Schweißen oder Löten aneinandergefügt werden. Der von dem zylindermantelförmigen Grundkörper abstehende stegförmige Vorsprung, der somit kälter als der restliche Grundkörper ist, wird dabei aus einem Material mit höherem Wärmeausdehnungskoeffizient gefertigt als der wärmere Grund¬ körper. Aufgrund des größeren Wärmeausdehnungskoeffizienten zieht der Vorsprung den Grundkörper nicht mehr oder nicht mehr so stark zusammen. Allerdings sollte der Wärmeausdehnungskoeffizient auch nicht so groß gewählt werden, dass der kältere Vorsprung sich im Betrieb trotz geringerer Temperaturdifferenz im Bereich des Vorsprungs wesentlich stärker ausdehnt als der Grundkörper. Deshalb wird das erste Material und das zweite Material derart gewählt, dass sie die Anforde¬ rungen an die Innengehäusenabe und die Befestigung erfüllen und erfindungsgemäß die unterschiedlichen Wärmeausdehnungsko¬ effizienten derart sind, dass die thermisch induzierten Spannungen im Bereich des Befestigungsabschnitts gegenüber einer aus dem zweiten Material bestehenden einstückigen Ausbildung des Grundkörpers und des stegförmigen Vorsprungs reduziert sind. Der Grundkörper kann einen oder mehrere erfindungsgemäß ausgebildete stegförmige Vorsprünge umfassen.
Die Innengehäusenabe ist zwischen Heiß- und Kaltseite des Grundkörpers hohen Temperaturunterschieden ausgesetzt, so dass die erfindungsgemäße Ausbildung des Befestigungsab¬ schnitts der Innengehäusenabe eine wesentliche Verlängerung der Lebensdauer der Innengehäusenabe ermöglicht.
Vorteilhafterweise kann vorgesehen sein, dass die
Innengehäusenabe zu ihrer Befestigung in der Gasturbine der- art an einer Befestigungskomponente befestigbar ist, dass der stegförmige Vorsprung in einer von der Befestigungskomponente umfassten Nut anordenbar ist. Der stegförmige Vorsprung bildet somit die Feder der Nut- Feder-Verbindung aus .
Der Grundkörper kann einen oder mehrere erfindungsgemäß ausgebildete stegförmige Vorsprünge umfassen. Diese können bei¬ spielsweise entlang ihrer Längserstreckung aneinandergereiht an der Kaltseite angeordnet sein und einen gemeinsamen, unterteilten Steg ausbilden, der in einer Nut an der Befestigungskomponente angeordnet werden kann.
Es kann auch als vorteilhaft angesehen werden, dass
der Befestigungsabschnitt ein um eine Mittelachse herum ange¬ ordnete Gehäusewand ist, welche von dem Heißgaspfad umströmt wird, so dass die Heißseite des Grundkörpers von der Mittel¬ achse abgewandt ist. Ein als Gehäusewand ausgebildeter Befestigungsabschnitt ist aufgrund seiner geringen Ausdehnung senkrecht zur Wand besonders anfällig für ein durch thermische Spannungen hervorgeru¬ fenes Verbiegen. Der Verschleiß derartiger Gasturbinenkompo¬ nenten kann mit der Erfindung besonders stark reduziert wer- den.
Eine weitere vorteilhafte Ausgestaltung der Erfindung kann vorsehen, dass die Innengehäusenabe mindestens im Bereich des Befestigungsabschnitts im Wesentlichen Zylindermantelförmig ausgebildet ist und der mindestens eine stegförmige Vorsprung entlang einer kreisförmigen Umfangslinie an dem Grundkörper angeordnet ist, so dass ein durchgehender oder segmentförmig unterteilter oder unterbrochener ringförmiger Steg an der Kaltseite angeordnet ist.
Es kann auch als vorteilhaft angesehen sein, dass die
Innengehäusenabe mit einer Stirnseite in einem Turbinenein- trittsbereich anordenbar ist, wobei der Befestigungsabschnitt im Bereich der Stirnseite angeordnet ist.
Eine weitere Aufgabe der Erfindung ist es, ein Innengehäuse der eingangs genannten Art mit einer Innengehäusenabe anzuge¬ ben, welches einem reduzierten Verschleiß unterliegt.
Hierzu ist die Innengehäusenabe nach einem der Ansprüche 1 bis 5 ausgebildet.
Eine weitere Aufgabe der Erfindung ist es, eine Gasturbine anzugeben, welche einem reduzierten Verschleiß unterliegt.
Hierzu umfasst die Gasturbine mindestens ein Innengehäuse nach Anspruch 6.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfin¬ dung sind Gegenstand der Beschreibung von Ausführungsbei- spielsen der Erfindung unter Bezug auf die Figur der Zeich- nung, wobei gleiche Bezugszeichen auf gleich wirkende Bautei¬ le verweisen.
Dabei zeigt die Fig. 1 schematisch einen Längsschnitt durch eine Gasturbi¬ ne nach dem Stand der Technik,
Fig. 2 schematisch eine Innengehäusenabe gemäß einem Aus¬ führungsbeispiel der Erfindung in einer perspektivischen An- sieht,
Fig.3 schematisch einen Ausschnitt der in Figur 2 dargestellten Innengehäusenabe in einem Längsschnitt, Fig.4 schematisch einen Ausschnitt der in Figur 2 dargestellten Innengehäusenabe mit am Vorsprung angeordneter Befestigungskomponente in einem Längsschnitt, und Fig.5 schematisch ein Innengehäuse einer Gasturbine mit
Innengehäusenabe, welche gemäß Figur 2 ausgebildet ist in ei¬ ner perspektivischen Ansicht. Die Figur 1 zeigt eine schematische Schnittansicht einer Gas¬ turbine 1 nach dem Stand der Technik. Die Gasturbine 1 weist im Inneren einen um eine Rotationsachse 2 drehgelagerten Rotor 3 mit einer Welle 4 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 3 folgen aufeinander ein Ansauggehäuse 6, ein Verdichter 8, ein Verbrennungssystem 9 mit mindestens einer Brennkammer 10, eine Turbine 14 und ein Abgasgehäuse 15. Die eine oder mehreren Brennkammern 10 umfassen jeweils eine Brenneranordnung 11 und ein Gehäuse 12, welches zum Schutz vor Heißgasen mit einem Hitzeschild 20 ausgekleidet ist. Die mindestens eine Brennkammer 10 kann ei¬ ne Ringbrennkammer sein. Die Gasturbine kann alternativ auch eine oder mehrere Rohrbrennkammern oder Silobrennkammern umfassen . Das Verbrennungssystem 9 kommuniziert mit einem beispielswei¬ se ringförmigen Heißgaskanal. Dort bilden mehrere hinterei¬ nander geschaltete Turbinenstufen die Turbine 14. Jede Turbi¬ nenstufe ist aus Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums gesehen folgt im Heißkanal einer aus Leitschaufeln 17 gebildeten Reihe eine aus Laufschaufeln 18 gebildete Reihe. Die Leitschaufeln 17 sind dabei an einem Innengehäuse eines Stators 19 befestigt, wohingegen die Lauf¬ schaufeln 18 einer Reihe beispielsweise mittels einer Turbi¬ nenscheibe am Rotor 3 angebracht sind. An dem Rotor 3 ange- koppelt ist beispielsweise ein Generator (nicht dargestellt) .
Während des Betriebes der Gasturbine wird vom Verdichter 8 durch das Ansauggehäuse 6 Luft angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 8 bereitgestellte verdichtete Luft wird zu dem Verbrennungssystem 9 geführt und dort im Bereich der Brenneranordnung 11 mit einem Brennstoff vermischt. Das Gemisch wird dann mit Hilfe der Brenneranord¬ nung 11 unter Bildung eines Arbeitsgasstromes im Verbren- nungssystem 9 verbrannt. Von dort strömt der Arbeitsgasstrom entlang des Heißgaskanals an den Leitschaufeln 17 und den Laufschaufeln 18 vorbei. An den Laufschaufeln 18 entspannt sich der Arbeitsgasstrom impulsübertragend, so dass die Lauf- schaufeln 18 den Rotor 3 antreiben und dieser den an ihn angekoppelten Generator (nicht dargestellt) .
Die Figur 2 zeigt eine erfindungsgemäße Innengehäusenabe 24 für eine Gasturbine gemäß einem Ausführungsbeispiel in einer perspektivischen Ansicht. Die Innengehäusenabe 24 ist zylin- dermantelförmig ausgebildet mit einer Mittelachse 26. Der ei¬ ne Endbereich der Innengehäusenabe bildet einen Befesti¬ gungsabschnitt 28 aus. Der zylindermantelförmige Befesti¬ gungsabschnitt 28 umfasst einen zylindermantelförmigen Grund- körper 30, der eine einem Heißgaspfad (der schematisch mit dem Pfeil 32 verdeutlicht ist) zugewandte Heißseite 34 und eine dem Heißgaspfad abgewandte Kaltseite 36 umfasst. Die Heißseite 34 kann mit einem Wärmeschutz beschichtet sein (nicht dargestellt) . An dem Grundkörper 30 ist zur Befesti- gung der Innengehäusenabe 24 ein stegförmiger Vorsprung 38 angeordnet .
Der stegförmige Vorsprung 38 erstreckt sich entlang einer kreisförmigen Umfangslinie entlang der Kaltseite 36 des
Grundkörpers und ist an der Kaltseite des zylindermantelför¬ migen Grundkörpers 30 angeordnet, so dass er als ein umlau¬ fender ringförmiger Steg an der Kaltseite 36 angeordnet ist. Zur Befestigung der Innengehäusenabe 24 an einer Befestigungskomponente (nicht dargestellt) wird der ringförmige Vor- sprung 38 in einer in der Befestigungskomponente verlaufenden ringförmigen Nut (nicht dargestellt) angeordnet. Hierzu kann die Innengehäusenabe 24 aus zwei Halbschalen aufgebaut sein, die zunächst getrennt an der Befestigungskomponente (nicht dargestellt) zur Anlage gebracht und dann zusammengefügt wer- den. In diesem Fall ist der umlaufende stegförmige Vorsprung 38 segmentförmig unterteilt. Bei dem dargestellten Ausführungsbeispiel ist der Befesti¬ gungsabschnitt 28 ein um eine Mittelachse 26 herum angeordne¬ te Gehäusewand 40, welche von dem Heißgaspfad 32 umströmt wird, so dass die Heißseite 34 von der Mittelachse 26 abge- wandt ist. Die gesamte Innengehäusenabe 24 kann, bis auf den stegförmigen Vorsprung, dem Aufbau des Befestigungsabschnitts entsprechen, so dass die Unterteilung der Innengehäusenabe in einen Befestigungsabschnitt bis zur Linie 42 bei dem vorlie¬ genden Ausführungsbeispiel in gewisser Weise frei gewählt werden kann.
Die Figur 3 zeigt einen Ausschnitt der in Figur 2 dargestell¬ ten Innengehäusenabe in einem Längsschnitt im Bereich des Befestigungsabschnitts 28. Der in Form einer Gehäusewand 40 ausgebildete Befestigungsabschnitt 28 umfasst einen zylinder- mantelförmigen Grundkörper 30 mit einer Heißseite 34 und ei¬ ner Kaltseite 36. Die Heißseite ist mit einem Hitzeschutz 44 beschichtet. An der Kaltseite 36 ist ein stegförmiger Vor¬ sprung 38 angeordnet, dessen Querschnitt 46 in der Figur zu erkennen ist. Erfindungsgemäß besteht der stegförmige Vor¬ sprung 38 aus einem ersten Material und der Grundkörper 30 aus einem zweiten Material, wobei das erste Material einen größeren Wärmeausdehnungskoeffizienten aufweist als das zweite Material, so dass in mindestens einem Betriebszustand der Gasturbine die thermisch induzierten Spannungen im Bereich des Befestigungsabschnitts 28 gegenüber einer aus dem zweiten Material bestehenden einstückigen Ausbildung des Grundkörpers 30 und des stegförmigen Vorsprungs 38 reduziert sind. Beson¬ ders um den Übergangsbereich von Grundkörper und stegförmigem Vorsprung 38 herum werden im Betrieb der einstückigen, aus dem Stand der Technik bekannten Ausbildung des Befestigungsabschnitts, hohe thermische Spannungen erzeugt.
Die Figur 4 zeigt einen Ausschnitt der in Figur 2 dargestell- ten Innengehäusenabe 24 im Bereich des Befestigungsabschnitts 28 in einem Längsschnitt. Es ist der Einfachheit halber vom Befestigungsabschnitt 28 nur der Grundkörper 30 mit dem steg¬ förmigen Vorsprung 38 dargestellt. (Der auf der Heißseite 34 angeordnete Hitzeschutz 44 wurde in der Figur weggelassen) . Gegenüberliegend der Heißseite 34 verläuft die Kaltseite 36 des Grundkörpers 30, wobei im Bereich der Stirnseite 50 des Grundkörpers 30 der stegförmige Vorsprung 38 an der Kaltseite 36 angeordnet ist. Zur Befestigung des Befestigungsabschnitts 28 an einer Befestigungskomponente 48 ist der stegförmige Vorsprung 38 in einer in der Befestigungskomponente 48 ver¬ laufenden Nut 52 angeordnet. Die Nut 52 und der stegförmige Vorsprung 38 bilden eine Nut-Feder-Verbindung aus, die die Lage des Befestigungsabschnitts 28 und damit die Lage der Innengehäusenabe 24 in einem Turbineneintrittsbereichs 54 fixiert, so dass die Innengehäusenabe 24 mit einer Stirnseite 50 in einem Turbineneintrittsbereich 54 angeordnet ist. Die Figur 5 zeigt ein Innengehäuse 56 einer Gasturbine mit einer zentral im Innengehäuse angeordneten erfindungsgemäßen Innengehäusenabe 58. Die Innengehäusenabe 58 umschließt eine sich entlang der Mittelachse 26 erstreckende Gasturbinenwelle (nicht dargestellt) . Das Innengehäuse 56 weist zwei Eingänge 60 und 62 und einen ringförmigen Ausgang 64 auf. An der Rückseite 66 ist das Innengehäuse geschlossen. Die Eingänge 60 und 62 sind jeweils an einen Brennkammerausgang einer Brennkammer (nicht dargestellt) anordenbar. Der Ausgang 64 ist an einem Turbineneintrittsbereich (nicht dargestellt)
angordenbar. Das Innengehäuse 56 dient dem Umlenken der aus den beiden Brennkammern austretenden Heißgase entlang des mit einem Pfeil schematisch verdeutlichen Heißgaspfads 32. Dabei strömen die Heißgase u.a. entlang der mit einem Hitzeschutz 44 ummantelte Innengehäusenabe 58 durch das Innengehäuse hin- durch. Zur Befestigung des Innengehäuses ist u.a. die
Innengehäusenabe 58 im Bereich ihrer Stirnseite 50 mittels des stegförmigen, an der Kaltseite 36 umlaufend angeordneten Vorsprungs 38 an einer von der Nabe umgebenden Befestigungs¬ komponente (nicht dargestellt) befestigt. Damit der kalte Vorsprung 38 die Innengehäusenabe im Betrieb nicht zusammen¬ zieht, ist die Innengehäusenabe 58 erfindungsgemäß ausgebil¬ det. Dies schützt insbesondere den Hitzeschutz 44 vor einem Abplatzen und somit den darunter angeordneten Grundkörper des Befestigungsabschnitts vor einem vorzeitigen Verschleiß.

Claims

Patentansprüche
1. Innengehäusenabe (24,58) für eine Gasturbine (1), wobei die Innengehäusenabe (58) in der Gasturbine (1) um eine Gas- turbinenwelle herum anordenbar ist und als Bestandteil eines Innengehäuses (56) ausgebildet ist, wobei die
Innengehäusenabe zusammen mit dem Innengehäuse (56) dem Um¬ lenken von aus Brennkammern austretenden Heißgasen auf einen in Richtung der Gasturbinenwelle angeordneten Turbinenein- trittsbereich (54) dient,
mit mindestens einem im Wesentlichen zylindermantelförmigen Befestigungsabschnitt (28) mit einem zylindermantelförmigen Grundkörper (30), der eine einem Heißgaspfad (32) zugewandten Heißseite (34) und eine dem Heißgaspfad abgewandten Kaltseite (36) umfasst, wobei an dem Grundkörper (30) zur Befestigung der Innengehäusenabe (24, 58) mindestens ein stegförmiger Vorsprung (38) sich entlang der Kaltseite (36) erstreckt und an der Kaltseite angeordnet ist,
d a d u r c h g e k e n n z e i c h n e t , d a s s der stegförmige Vorsprung (38) aus einem ersten Material und der Grundkörper (30) aus einem zweiten Material besteht, wo¬ bei das erste Material einen größeren Wärmeausdehnungskoeffi¬ zienten aufweist als das zweite Material, so dass in mindes¬ tens einem Betriebszustand der Gasturbine die thermisch indu- zierten Spannungen im Bereich des Befestigungsabschnitts (28) gegenüber einer aus dem zweiten Material bestehenden
einstückigen Ausbildung des Grundkörpers und des stegförmigen Vorsprungs reduziert sind.
2. Innengehäusenabe (24, 58) nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t , d a s s die Innengehäusenabe (24, 58) zu ihrer Befestigung in der Gasturbine derart an einer Befestigungskomponente (48) befestigbar ist, dass der stegförmige Vorsprung (38) in einer von der Befestigungskomponente umfassten Nut (52) anordenbar ist .
3. Innengehäusenabe (24, 58) nach einem der Ansprüche 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t , d a s s der Befestigungsabschnitt (28) ein um eine Mittelachse (26) herum angeordnete Gehäusewand (40) ist, welche von dem Hei߬ gaspfad (32) umströmt wird, so dass die Heißseite (34) von der Mittelachse (26) abgewandt ist.
4. Innengehäusenabe (24, 58) nach einem der Ansprüche 1 bis 3,
d a d u r c h g e k e n n z e i c h n e t , d a s s die Innengehäusenabe mindestens im Bereich des Befestigungs¬ abschnitts (28) im Wesentlichen Zylindermantelförmig ausgebildet ist und der mindestens eine stegförmige Vorsprung (38) entlang einer kreisförmigen Umfangslinie an dem Grundkörper angeordnet ist, so dass ein durchgehender oder segmentförmig unterteilter oder unterbrochener ringförmiger Steg an der Kaltseite angeordnet ist.
5. Innengehäusenabe (24, 58) nach einem der Ansprüche 1 bis 4,
d a d u r c h g e k e n n z e i c h n e t , d a s s die Innengehäusenabe (24, 58) mit einer Stirnseite (50) in einem Turbineneintrittsbereich (54) anordenbar ist, wobei der Befestigungsabschnitt (28) im Bereich der Stirnseite (50) an¬ geordnet ist.
6. Innengehäuse (56) mit einer Innengehäusenabe (24, 58), d a d u r c h g e k e n n z e i c h n e t , d a s s die Innengehäusenabe (24, 58) nach einem der Ansprüche 1 bis 5 ausgebildet ist.
7. Gasturbine (1),
d a d u r c h g e k e n n z e i c h n e t , d a s s sie ein Innengehäuse (56) nach Anspruch 6 umfasst.
PCT/EP2014/070483 2013-09-27 2014-09-25 Innengehäusenabe für eine gasturbine WO2015044266A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14780800.0A EP3008293B1 (de) 2013-09-27 2014-09-25 Innengehäusenabe für eine gasturbine
US15/023,395 US20160208628A1 (en) 2013-09-27 2014-09-25 Inner housing hub for a gas turbine
CN201480052858.0A CN105579669B (zh) 2013-09-27 2014-09-25 用于燃气涡轮的内壳体毂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013219612 2013-09-27
DE102013219612.1 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015044266A1 true WO2015044266A1 (de) 2015-04-02

Family

ID=51660455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/070483 WO2015044266A1 (de) 2013-09-27 2014-09-25 Innengehäusenabe für eine gasturbine

Country Status (4)

Country Link
US (1) US20160208628A1 (de)
EP (1) EP3008293B1 (de)
CN (1) CN105579669B (de)
WO (1) WO2015044266A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000406B2 (en) * 2003-12-03 2006-02-21 Pratt & Whitney Canada Corp. Gas turbine combustor sliding joint
EP1744016A1 (de) * 2005-07-11 2007-01-17 Siemens Aktiengesellschaft Heissgasführendes Gehäuseelement, Wellenschutzmantel und Gasturbinenanlage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118806A1 (de) * 2000-01-20 2001-07-25 Siemens Aktiengesellschaft Thermisch belastbare Wand und Verfahren zur Abdichtung eines Spaltes in einer thermisch belasteten Wand
EP1249577B1 (de) * 2001-04-12 2007-06-06 Siemens Aktiengesellschaft Gasturbine mit axial verschiebbaren Gehäuseteilen
US6910853B2 (en) * 2002-11-27 2005-06-28 General Electric Company Structures for attaching or sealing a space between components having different coefficients or rates of thermal expansion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000406B2 (en) * 2003-12-03 2006-02-21 Pratt & Whitney Canada Corp. Gas turbine combustor sliding joint
EP1744016A1 (de) * 2005-07-11 2007-01-17 Siemens Aktiengesellschaft Heissgasführendes Gehäuseelement, Wellenschutzmantel und Gasturbinenanlage

Also Published As

Publication number Publication date
US20160208628A1 (en) 2016-07-21
EP3008293A1 (de) 2016-04-20
CN105579669B (zh) 2017-07-07
CN105579669A (zh) 2016-05-11
EP3008293B1 (de) 2017-11-29

Similar Documents

Publication Publication Date Title
DE60318508T2 (de) Halterung für ein Dichtband bei einem Gasturbinenleitapparat
EP2918913B1 (de) Brennkammer einer Gasturbine mit äusserer und innerer Brennkammerwand
EP1636526A1 (de) Brennkammer
EP2093487B1 (de) Anordnung mit einer ringförmigen Gasturbinenbrennkammer mit keramischem Flammenrohr für ein Triebwerk
EP2728122B1 (de) Dichtungsträgerfixierung für eine Strömungsmaschine
EP2084368B1 (de) Turbinenschaufel
EP2184445A1 (de) Axial segmentierter Leitschaufelträger für einen Gasturbine
EP2918914A1 (de) Brennkammer einer Gasturbine
EP2342425A1 (de) Gasturbine mit sicherungsplatte zwischen schaufelfuss und scheibe
EP2383515B1 (de) Brennersystem zur Dämpfung eines solchen Brennersystems
WO2016087214A1 (de) Turbinenlaufschaufel, zugehöriger rotor und strömungsmaschine
WO2009109430A1 (de) Dichtungsanordnung und gasturbine
EP1731715A1 (de) Übergangsbereich zwischen einer Brennkammer und einer Turbineneinheit
WO2017025284A1 (de) Brennkammer für eine gasturbine und hitzeschildelement zum auskleiden einer derartigen brennkammer
EP3260664A1 (de) Verdickter radial äusserer ringbereich eines dichtfins
EP2725203A1 (de) Kühlluftführung in einer Gehäusestruktur einer Strömungsmaschine
EP1783325B1 (de) Befestigungsanordnung eines Rohres an einer Umfangsfläche
EP3017147B1 (de) Rotor für eine turbine
EP3008293A1 (de) Innengehäusenabe für eine gasturbine
WO2004031656A1 (de) Gasturbine
EP1429077B1 (de) Gasturbine
EP2271876B1 (de) Brenneranordnung für fluidische brennstoffe und verfahren zum herstellen einer brenneranordnung
EP3004741B1 (de) Rohrbrennkammer mit einem flammrohr-endbereich und gasturbine
EP1422479B1 (de) Brennkammer zur Verbrennung eines brennbaren Fluidgemisches
DE102006010863B4 (de) Turbomaschine, insbesondere Verdichter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052858.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14780800

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014780800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014780800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15023395

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE