WO2015043249A1 - 一种非接触变压器的调节方法及系统 - Google Patents

一种非接触变压器的调节方法及系统 Download PDF

Info

Publication number
WO2015043249A1
WO2015043249A1 PCT/CN2014/080223 CN2014080223W WO2015043249A1 WO 2015043249 A1 WO2015043249 A1 WO 2015043249A1 CN 2014080223 W CN2014080223 W CN 2014080223W WO 2015043249 A1 WO2015043249 A1 WO 2015043249A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving end
parameter information
power transmission
transmission parameter
transmitting
Prior art date
Application number
PCT/CN2014/080223
Other languages
English (en)
French (fr)
Inventor
王静
高摇光
范杰
罗勇
周建平
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2016516961A priority Critical patent/JP2016535563A/ja
Priority to KR1020167007869A priority patent/KR20160046891A/ko
Priority to US15/024,364 priority patent/US10236729B2/en
Priority to EP14850051.5A priority patent/EP3046222B1/en
Publication of WO2015043249A1 publication Critical patent/WO2015043249A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to the field of non-contact transformers, and more particularly to a method and system for adjusting a non-contact transformer.
  • the traditional way of transferring power is to transmit power through an electrical connector such as a plug-and-socket.
  • This transmission method is simple and convenient, but it is only suitable for small current transmission applications.
  • it is necessary to use the arc extinguishing method, and the conductor is exposed outside and is not safe. Multiple insertions and removals cause mechanical wear and loose contact, which cannot effectively transfer electrical energy.
  • the non-contact type transformer separates the primary side and the secondary side by a certain distance, and realizes power transmission by magnetic coupling.
  • the wireless charging system technology utilizes the advantage of a non-contact transformer to solve the defect that the conventional wire is directly in contact with the power supply.
  • the air gap between the primary and secondary sides of the ordinary transformer is close to zero, and the energy transmitted from the primary side to the secondary side can be calculated by the ratio of the primary and secondary turns.
  • the air gap has a great influence on the parameters of the non-contact transformer, especially for the leakage inductance and coupling system of the non-contact transformer. Power transmission of contact transformers. Different air gaps, non-contact transformers require different parameter settings.
  • a technical problem to be solved by embodiments of the present invention is to provide an adjustment method and system for a non-contact transformer that can optimize power transmission.
  • an embodiment of the present invention provides a method for adjusting a non-contact type transformer.
  • the utility model is applied to an adjustment system comprising a non-contact transformer and a detecting device, the non-contact transformer comprising a transmitting end having a transmitting coil, a power transmitting end circuit and a transmitting end controller, and having a receiving coil, a power receiving end circuit and a receiving end control Receiving end, the method comprising: detecting, by the detecting device, power transmission parameter information between the transmitting coil and the receiving coil of the contactless transformer, the power transmission parameter information including the transmitting An air gap and/or misalignment information between the coil and the receiving coil; and the transmitting end controller adjusting an operating parameter of the power transmitting end circuit according to the power transmission parameter information; and/or, The receiving end controller adjusts the working parameters of the power receiving end circuit according to the power transmission parameter information.
  • the detecting device includes a signal transmitting end mounted at a transmitting end of the non-contact type transformer, and a signal receiving end mounted at a receiving end of the non-contact type transformer Or the signal transmitting end is installed at the receiving end of the non-contacting transformer, and the signal receiving end is installed at the transmitting end of the non-contacting transformer; the method further includes: the signal receiving end is according to the The signal transmitted by the signal transmitting end detects the power transmission parameter information.
  • the signal receiving end when the signal receiving end is installed at the receiving end of the contactless transformer, the signal receiving end sends the detected power transmission parameter information to the receiving end controller, and then Transmitting, by the receiving end controller, the power transmission parameter information to the transmitting end controller; or when the signal receiving end is installed at a transmitting end of the non-contacting transformer, the signal receiving end detects the obtained The power transmission parameter information is sent to the transmitting end controller, and the power transmitting parameter information is forwarded by the transmitting end controller to the receiving end controller.
  • the step of the transmitting end controller adjusting the working parameters of the power transmitting end circuit according to the power transmission parameter information includes: the transmitting end controller is configured to the power transmitting end circuit according to the power transmission parameter information Frequency parameters and/or phase angle parameters are adjusted; and/or
  • the step of the receiving end controller adjusting the working parameters of the power receiving end circuit according to the power transmission parameter information includes: the receiving end controller is configured to the power receiving end circuit according to the power transmission parameter information The frequency parameters and/or phase angle parameters are adjusted.
  • the power transmission parameter information is power transmission parameter information between the transmitting coil and the receiving coil of the contactless transformer in an operating state.
  • An embodiment of the present invention further provides an adjustment system for a contactless transformer, including a contactless transformer, the non-contact transformer including a transmitting end having a transmitting coil, a power transmitting end circuit, and a transmitting end controller, and having a receiving coil, a receiving end of the power receiving end circuit and the receiving end controller, wherein the adjusting system further comprises detecting means, wherein: the detecting means is configured to: detect the transmitting coil of the non-contacting transformer and the Receiving power transmission parameter information between the coils, the power transmission parameter information including air gap and/or misalignment information between the transmitting coil and the receiving coil; the transmitting end controller is configured to: according to the power Transmitting parameter information to adjust an operating parameter of the power transmitting end circuit; and the receiving end controller is configured to: adjust an operating parameter of the power receiving end circuit according to the power transmission parameter information.
  • the detecting device includes a signal transmitting end mounted at a transmitting end of the non-contact type transformer, and a signal receiving end mounted at a receiving end of the non-contact type transformer Or the signal transmitting end is mounted at a receiving end of the contactless transformer, the signal receiving end is mounted at a transmitting end of the contactless transformer; and the signal receiving end is configured to: according to the signal transmitting end The transmitted signal detects the power transmission parameter information.
  • the signal receiving end is further configured to: when the signal receiving end is installed at the receiving end of the non-contacting transformer, the signal receiving end sends the detected power transmission parameter information to the receiving end to control And then forwarded by the receiving end controller to the transmitting end controller; or when the signal receiving end is installed at the transmitting end of the non-contacting transformer, the signal receiving end will detect the obtained The power transmission parameter information is sent to the transmitting end controller, and then forwarded by the transmitting end controller to the receiving end controller.
  • the transmitting end controller is configured to adjust the working parameter according to the power transmission parameter information by: according to the power transmission parameter information
  • the receiving end controller is configured to adjust an operating parameter of the power receiving end circuit according to the power transmission parameter information according to: a frequency parameter of the power receiving end circuit according to the power transmission parameter information / or phase angle parameters are adjusted.
  • the power transmission parameter information is power transmission parameter information between the transmitting coil and the receiving coil of the contactless transformer in an operating state.
  • the above scheme adjusts the operating parameter setting of the power circuit according to the air gap parameter and the misalignment parameter detected in the working state of the non-contact transformer, so that the control system works in a better parameter interval, and effectively improves the transmission efficiency.
  • FIG. 3 is a schematic diagram of air gap and misalignment information according to an embodiment of the present invention
  • FIG. 4 is a flowchart of an adjustment method according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an adjustment system according to Embodiment 2 of the present invention.
  • the present embodiment provides a method of adjusting a non-contact type transformer, which is applied to an adjustment system including a non-contact type transformer and a detecting device 2.
  • the adjustment system of this embodiment includes: a non-contact transformer: comprising a transmitting end 11 and a receiving end 12, the transmitting end 11 comprises a transmitting coil 111, a power transmitting end circuit 112 and a transmitting end controller 113, and a receiving end 12 includes a receiving coil 121, a power receiving end circuit 122 and a receiving end controller 123; wherein the transmitting end controller 113 is configured to perform operating parameters such as frequency parameters and/or phase angle parameters of the power transmitting end circuit 112 according to the power transmission parameter information.
  • the receiving end controller 123 is configured to adjust the operating parameters of the power receiving end circuit 122, such as the frequency parameter and/or the phase angle parameter, according to the power transmission parameter information.
  • the detecting device 2 includes a signal transmitting end 21 and a signal receiving end 22, and the signal transmitting end 21 is mounted at the transmitting end 11 or the receiving end 12 of the non-contacting transformer, and the signal receiving end 22 is mounted at the other end of the non-contacting transformer.
  • the signal receiving terminal 22 detects the power transmission parameter information between the transmitting coil 111 and the receiving coil 121 of the non-contacting transformer based on the signal transmitted from the signal transmitting terminal 11.
  • the signal receiving end 22 sends the detected power transmission parameter information to the receiving end controller 123, and then the receiving end controller 123 forwards the information to the transmitting end controller 113.
  • the power transmission parameter information includes air gap and/or misalignment information between the transmitting coil 111 and the receiving coil 121.
  • the signal transmitting end of the detecting device is installed at the transmitting end of the non-contact type transformer, and the signal receiving end is installed at the receiving end of the non-contact type transformer.
  • the adjustment method of the non-contact type transformer of this embodiment includes:
  • Step S101 When the non-contact type transformer is in an operating state, the signal transmitting end of the detecting device sends a signal to the signal receiving end;
  • the signal transmitting end can send a signal to the signal receiving end through infrared rays or electromagnetic waves.
  • S102 The signal receiving end receives the signal sent by the signal sending end, detects the power transmission parameter information according to the signal, and sends the detected power transmission parameter information to the receiving end controller; wherein the power transmission parameter information is a non-contact type transformer In the working state, the power transmission parameter information between the transmitting coil and the receiving coil. However, in other embodiments, the detection may also be performed in a non-operating state.
  • the power transfer parameter information includes air gap and/or misalignment information between the transmit coil and the receive coil.
  • the air gap parameter can be the air gap size of the non-contact transformer, as shown in c in Figure 3.
  • the misalignment information includes the axial misalignment size and the amplitude misalignment, as shown in Figure 3, a, b.
  • Step S103 After receiving the power transmission parameter information, the receiving end controller forwards the power transmission parameter information to the transmitting end controller.
  • Step S104 The receiving end controller adjusts the working parameters of the power receiving end circuit according to the power transmission parameter information, where the working parameters include frequency parameters and/or phase angle parameters.
  • Step S105 The transmitting end controller adjusts the working parameters of the power transmitting end circuit according to the power transmission parameter information, and the working parameters include frequency parameters and/or phase angle parameters.
  • steps S103, S104 and S105 in the above adjustment method may be different.
  • the signal transmitting end of the detecting device is mounted at the receiving end of the non-contact type transformer, and the signal receiving end is mounted at the transmitting end of the non-contact type transformer.
  • the method for adjusting the non-contact transformer in the second embodiment includes:
  • Step S201 When the non-contact type transformer is in an operating state, the signal transmitting end of the detecting device sends a signal to the signal receiving end;
  • the signal receiving end receives the signal sent by the signal sending end, detects the power transmission parameter information according to the signal, and sends the detected power transmission parameter information to the transmitting end controller; wherein the power transmission parameter information is a non-contact type transformer In the working state, the power transmission parameter information between the transmitting coil and the receiving coil, the power transmission parameter information includes the transmitting coil and the receiving Air gap and / or misalignment information between the coils.
  • Step S203 After receiving the power transmission parameter information, the transmitting end controller forwards the power transmission parameter information to the receiving end controller.
  • Step S204 The receiving end controller adjusts an operating parameter of the power receiving end circuit according to the power transmission parameter information, where the working parameter includes a frequency parameter and/or a phase angle parameter;
  • Step S205 The transmitting end controller adjusts the working parameters of the power transmitting end circuit according to the power transmission parameter information, and the working parameters include frequency parameters and/or phase angle parameters.
  • steps S203, S204, and S205 in the above adjustment method may be different.
  • the second embodiment provides an adjustment system for a non-contact type transformer, including a non-contact type transformer and a detecting device 2, wherein the non-contact type transformer includes a transmitting end 11 and a receiving end 12, and the transmitting end 11 includes a transmitting coil 111, a power transmitting end circuit 112, and a transmitting end controller 113.
  • the receiving end 12 includes a receiving coil 121, a power receiving end circuit 122, and a receiving end controller 123. .
  • the detecting device 2 provided in the second embodiment comprises: a signal transmitting end 21: the signal transmitting end 21 is mounted on the receiving end 12 of the contactless transformer, and the signal receiving end 22: the signal receiving end 22 is mounted in the non-contact type The transmitting end of the transformer 11.
  • the signal receiving end 22 detects the power transmission parameter information according to the signal transmitted by the signal transmitting end 21, and the signal receiving end 22 transmits the detected power transmission parameter information to the transmitting end controller 113, and then the transmitting end controller 113 forwards the receiving to the receiving end. End controller 123.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may use software functions.
  • the form of the module is implemented. The invention is not limited to any specific form of combination of hardware and software.
  • the above scheme adjusts the operating parameter setting of the power circuit according to the air gap parameter and the misalignment parameter detected in the working state of the non-contact transformer, so that the control system works in the optional parameter interval, and effectively improves the transmission efficiency. Therefore, it has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种非接触式变压器的调节方法及系统,应用于包括非接触式变压器和检测装置(2)的调节系统,非接触式变压器发射端(11)和接收端(12),所述方法包括:利用检测装置(2)检测非接触式变压器的发射线圈(111)和接收线圈(121)之间的功率传输参数信息,发射端控制器(113)根据功率传输参数信息对功率发射端电路(112)的工作参数进行调节;接收端控制器(123)根据功率传输参数信息对功率接收端电路(122)的工作参数进行调节。通过非接触式变压器工作状态下检测到的气隙参数和错位参数,调节功率电路的工作参数设置,从而控制系统工作在较佳参数区间,有效地提高传输效率。

Description

一种非接触变压器的调节方法及系统
技术领域
本发明涉及非接触变压器领域, 尤其涉及非接触式变压器的调节方法及 系统。
背景技术
传统的电能传输方式是通过插头 -插座等电连接器实现电能传输。 这种传 输方式简单、 方便, 但只适用于小电流传输场合。 在大电流传输场合需要结 合灭弧方法使用,而且导体棵露在外面,不安全。多次插拔引起机械磨损, 接 触松动, 不能有效传输电能。 非接触式变压器是将其原边和副边分开一定的 距离, 通过磁耦合实现电能传输。 无线充电系统技术利用非接触式变压器这 一优点, 解决了传统导线直接接触供电的缺陷。
普通的变压器原副边之间的气隙接近为零, 原边传送至副边的能量可通 过原副边匝数比计算得到。而非接触式变压器原副边之间存在有较大的气隙, 气隙对非接触式变压器的参数影响较大, 尤其对非接触式变压器的漏感和耦 合系统影响最为明显, 进而影响非接触式变压器的功率传输。 不同的气隙大 小, 非接触式变压器需要釆用不同的参数设置。
同样, 在无线充电系统中, 当非接触式变压器的原副边线圈不能完全对 齐, 即存在一定的错位时, 同样会影响系统的传输效率。 不同的错位大小, 非接触式变压器也需要釆用不同的参数设置。
因此, 为了提高非接触式变压器进行功率传输的效率, 或者进行自适应 最优化功率传输, 需要对原副边之间的气隙和错位大小进行检测。
发明内容 本发明实施例所要解决的技术问题是提供一种可以优化功率传输的非接 触变压器的调节方法和系统。
为了解决上述问题, 本发明实施例提一种非接触式变压器的调节方法, 应用于包括非接触式变压器和检测装置的调节系统, 所述非接触式变压器包 括具有发射线圈、功率发射端电路和发射端控制器的发射端及具有接收线圈、 功率接收端电路和接收端控制器的接收端, 所述方法包括: 利用所述检测装置检测所述非接触式变压器的所述发射线圈和所述接收 线圈之间的功率传输参数信息, 所述功率传输参数信息包括所述发射线圈和 所述接收线圈之间的气隙和 /或错位信息; 以及 所述发射端控制器根据所述功率传输参数信息对所述功率发射端电路的 工作参数进行调节; 和 /或, 所述接收端控制器根据所述功率传输参数信息对 所述功率接收端电路的工作参数进行调节。 可选地, 所述检测装置包括信号发射端和信号接收端, 所述信号发射端安装在所 述非接触式变压器的发射端, 所述信号接收端安装在所述非接触式变压器的 接收端; 或者, 所述信号发射端安装在所述非接触式变压器的接收端, 所述 信号接收端安装在所述非接触式变压器的发射端; 所述方法还包括: 所述信号接收端根据所述信号发射端发射的信号, 检 测得到所述功率传输参数信息。
可选地 , 当所述信号接收端安装在所述非接触式变压器的接收端时, 所述信号接 收端将检测得到的所述功率传输参数信息发送给所述接收端控制器, 再由所 述接收端控制器将所述功率传输参数信息转发给所述发射端控制器; 或者 当所述信号接收端安装在所述非接触式变压器的发射端时, 所述信号接 收端将检测得到的所述功率传输参数信息发送给所述发射端控制器, 再由所 述发射端控制器将所述功率传输参数信息转发给所述接收端控制器。
可选地 ,
所述发射端控制器根据所述功率传输参数信息对所述功率发射端电路的 工作参数进行调节的步骤包括: 所述发射端控制器根据所述功率传输参数信息对所述功率发射端电路的 频率参数和 /或相角参数进行调节; 和 /或 所述接收端控制器根据所述功率传输参数信息对所述功率接收端电路的 工作参数进行调节的步骤包括: 所述接收端控制器根据所述功率传输参数信息对所述功率接收端电路的 频率参数和 /或相角参数进行调节。
可选地 , 所述功率传输参数信息是所述非接触式变压器在工作状态下的发射线圈 和接收线圈之间的功率传输参数信息。
本发明实施例还提供一种非接触式变压器的调节系统, 包括非接触式变 压器, 所述非接触式变压器包括具有发射线圈、 功率发射端电路和发射端控 制器的发射端及具有接收线圈、 功率接收端电路和接收端控制器的接收端, 其特征在于, 所述调节系统还包括检测装置, 其中: 所述检测装置设置成: 检测所述非接触式变压器的所述发射线圈和所述 接收线圈之间的功率传输参数信息, 所述功率传输参数信息包括所述发射线 圈和所述接收线圈之间的气隙和 /或错位信息; 所述发射端控制器设置成: 根据所述功率传输参数信息对所述功率发射 端电路的工作参数进行调节; 以及 所述接收端控制器设置成: 根据所述功率传输参数信息对所述功率接收 端电路的工作参数进行调节。 可选地, 所述检测装置包括信号发射端和信号接收端, 所述信号发射端安装在所 述非接触式变压器的发射端, 所述信号接收端安装在所述非接触式变压器的 接收端或所述信号发射端安装在所述非接触式变压器的接收端, 所述信号接 收端安装在所述非接触式变压器的发射端; 以及 所述信号接收端设置成: 根据所述信号发射端发射的信号, 检测得到所 述功率传输参数信息。
可选地 , 所述信号接收端还设置成: 当所述信号接收端安装在所述非接触式变压器的接收端时, 所述信号接 收端将检测得到的所述功率传输参数信息发送给所述接收端控制器, 再由所 述接收端控制器转发给所述发射端控制器; 或者 当所述信号接收端安装在所述非接触式变压器的发射端时, 所述信号接 收端将检测得到的所述功率传输参数信息发送给所述发射端控制器, 再由所 述发射端控制器转发给所述接收端控制器。 可选地 , 所述发射端控制器是设置成通过如下方式根据所述功率传输参数信息对 工作参数进行调节: 根据所述功率传输参数信息对所
Figure imgf000006_0001
所述接收端控制器是设置成通过如下方式根据所述功率传输参数信息对 所述功率接收端电路的工作参数进行调节: 根据所述功率传输参数信息对所 述功率接收端电路的频率参数和 /或相角参数进行调节。 可选地 , 所述功率传输参数信息是所述非接触式变压器在工作状态下的发射线圈 和接收线圈之间的功率传输参数信息。
上述方案根据非接触式变压器工作状态下检测到的气隙参数和错位参 数, 调节功率电路的工作参数设置, 从而控制系统工作在较佳参数区间, 有 效地提高传输效率。
附图概述 图 1是本发明
Figure imgf000006_0002
图 2是本发明实施例 调节方法的流程图;
图 3是本发明实施例 气隙和错位信息的示意图; 图 4是本发明实施例 调节方法的流程图; 图 5是本发明实施例二调节系统的结构示意图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
实施例一
本实施例提供一种非接触式变压器的调节方法, 应用于包括非接触式变 压器和检测装置 2的调节系统。 如图 1所示, 本实施例的调节系统包括: 非接触式变压器: 包括发射端 11和接收端 12, 发射端 11包括发射线圈 111、功率发射端电路 112和发射端控制器 113 ,接收端 12包括接收线圈 121、 功率接收端电路 122和接收端控制器 123; 其中发射端控制器 113用于根据 功率传输参数信息对功率发射端电路 112的工作参数如频率参数和 /或相角参 数进行调节, 接收端控制器 123用于根据功率传输参数信息对功率接收端电 路 122的工作参数如频率参数和 /或相角参数进行调节。
检测装置 2: 包括信号发射端 21和信号接收端 22, 信号发射端 21安装 在非接触式变压器的发射端 11或接收端 12, 信号接收端 22安装在所述非接 触式变压器的另一端。 信号接收端 22根据信号发射端 11发射的信号, 检测 得到非接触式变压器的发射线圈 111和接收线圈 121之间的功率传输参数信 息。信号接收端 22将检测得到的功率传输参数信息发送给接收端控制器 123 , 再由接收端控制器 123转发给发射端控制器 113。 其中功率传输参数信息包 括发射线圈 111和接收线圈 121之间的气隙和 /或错位信息。
图 1 , 检测装置的信号发射端安装在非接触式变压器的发射端, 信号接 收端安装在所述非接触式变压器的接收端。
如图 2所示, 本实施例非接触式变压器的调节方法包括:
步骤 S101 : 当非接触式变压器处于工作状态下时, 检测装置的信号发射 端向信号接收端发送信号;
信号发射端可以通过红外线或者电磁波向信号接收端发送信号。 S102: 信号接收端接收信号发送端发送的信号, 根据该信号检测得出功 率传输参数信息 , 并将检测得到的功率传输参数信息发送给接收端控制器; 其中功率传输参数信息是非接触式变压器在工作状态下时, 发射线圈和 接收线圈之间的功率传输参数信息。 但在其他实施例中, 也可以是非工作状 态下进行检测。
功率传输参数信息包括发射线圈和接收线圈之间的气隙和 /或错位信息。 气隙参数可以是非接触式变压器的气隙大小,如图 3中的 c。错位信息包括轴 向错位大小和幅向错位大小, 如图 3中的 a,b。
步骤 S103 : 接收端控制器接收到功率传输参数信息后, 将该功率传输参 数信息转发给发射端控制器;
步骤 S104: 接收端控制器根据功率传输参数信息对功率接收端电路的工 作参数进行调节, 其中工作参数包括频率参数和 /或相角参数。
步骤 S105: 发射端控制器根据功率传输参数信息对功率发射端电路的工 作参数进行调节, 工作参数包括频率参数和 /或相角参数。
需要说明的是, 上述调节方法中步骤 S103、 S104和 S105的顺序可以不 同。
实施例二
在本实施例中,检测装置的信号发射端安装在非接触式变压器的接收端, 信号接收端安装在非接触式变压器的发送端。
如图 4所示, 本实施二中的非接触式变压器的调节方法包括:
步骤 S201 : 当非接触式变压器处于工作状态下时, 检测装置的信号发射 端向信号接收端发送信号;
S202: 信号接收端接收信号发送端发送的信号, 根据该信号检测得出功 率传输参数信息 , 并将检测得到的功率传输参数信息发送给发射端控制器; 其中功率传输参数信息是非接触式变压器在工作状态下时, 发射线圈和 接收线圈之间的功率传输参数信息, 功率传输参数信息包括发射线圈和接收 线圈之间的气隙和 /或错位信息。
步骤 S203: 发射端控制器接收到功率传输参数信息后, 将该功率传输参 数信息转发给接收端控制器;
步骤 S204: 接收端控制器根据功率传输参数信息对功率接收端电路的工 作参数进行调节, 其中工作参数包括频率参数和 /或相角参数;
步骤 S205: 发射端控制器根据功率传输参数信息对功率发射端电路的工 作参数进行调节, 工作参数包括频率参数和 /或相角参数。
同样, 上述调节方法中步骤 S203、 S204和 S205的顺序可以不同。
相应的, 如图 5所示, 本实施例二提供一种非接触式变压器的调节系统, 包括非接触式变压器和检测装置 2, 其中非接触式变压器包括发射端 11和接 收端 12, 发射端 11包括发射线圈 111、 功率发射端电路 112和发射端控制器 113 ,接收端 12包括接收线圈 121、功率接收端电路 122和接收端控制器 123。。
可选地, 本实施例二中提供的检测装置 2包括: 信号发射端 21 : 信号发射端 21安装在非接触式变压器的接收端 12, 信号接收端 22: 信号接收端 22安装在非接触式变压器的发射端 11。 信号接收端 22根据信号发射端发射 21的信号, 检测得到功率传输参数 信息, 信号接收端 22 将检测得到的功率传输参数信息发送给发射端控制器 113 , 再由发射端控制器 113转发给接收端控制器 123。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现, 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的可选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
工业实用性
上述方案根据非接触式变压器工作状态下检测到的气隙参数和错位参 数, 调节功率电路的工作参数设置, 从而控制系统工作在可选参数区间, 有 效地提高传输效率。 因此具有较强的工业实用性。

Claims

权 利 要 求 书
1、一种非接触式变压器的调节方法, 应用于包括非接触式变压器和检测 装置的调节系统, 所述非接触式变压器包括具有发射线圈、 功率发射端电路 和发射端控制器的发射端及具有接收线圈、 功率接收端电路和接收端控制器 的接收端, 所述方法包括: 所述检测装置检测所述非接触式变压器的所述发射线圈和所述接收线圈 之间的功率传输参数信息, 所述功率传输参数信息包括所述发射线圈和所述 接收线圈之间的气隙和 /或错位信息; 以及 所述发射端控制器根据所述功率传输参数信息对所述功率发射端电路的 工作参数进行调节; 和 /或, 所述接收端控制器根据所述功率传输参数信息对 所述功率接收端电路的工作参数进行调节。
2、 如权利要求 1所述的调节方法, 其中: 所述检测装置包括信号发射端和信号接收端, 所述信号发射端安装在所 述非接触式变压器的发射端, 所述信号接收端安装在所述非接触式变压器的 接收端; 或者, 所述信号发射端安装在所述非接触式变压器的接收端, 所述 信号接收端安装在所述非接触式变压器的发射端; 所述方法还包括: 所述信号接收端根据所述信号发射端发射的信号, 检 测得到所述功率传输参数信息。
3、 如权利要求 2所述的调节方法, 所述方法还包括: 当所述信号接收端安装在所述非接触式变压器的接收端时, 所述信号接 收端将检测得到的所述功率传输参数信息发送给所述接收端控制器, 再由所 述接收端控制器将所述功率传输参数信息转发给所述发射端控制器; 或者 当所述信号接收端安装在所述非接触式变压器的发射端时, 所述信号接 收端将检测得到的所述功率传输参数信息发送给所述发射端控制器, 再由所 述发射端控制器所述功率传输参数信息转发给所述接收端控制器。
4、 如权利要求 1或 2或 3所述的调节方法, 其中: 所述发射端控制器根据所述功率传输参数信息对所述功率发射端电路的 工作参数进行调节的步骤包括:
所述发射端控制器根据所述功率传输参数信息对所述功率发射端电路的 频率参数和 /或相角参数进行调节; 和 /或
所述接收端控制器根据所述功率传输参数信息对所述功率接收端电路的 工作参数进行调节的步骤包括:
所述接收端控制器根据所述功率传输参数信息对所述功率接收端电路的 频率参数和 /或相角参数进行调节。
5、 如权利要求 1或 2或 3所述的调节方法, 其中: 所述功率传输参数信息是所述非接触式变压器在工作状态下的发射线圈 和接收线圈之间的功率传输参数信息。
6、 一种非接触式变压器的调节系统, 包括: 非接触式变压器, 所述非接 触式变压器包括具有发射线圈、 功率发射端电路和发射端控制器的发射端及 具有接收线圈、 功率接收端电路和接收端控制器的接收端, 所述调节系统还 包括检测装置, 其中:
所述检测装置设置成: 检测所述非接触式变压器的所述发射线圈和所述 接收线圈之间的功率传输参数信息, 所述功率传输参数信息包括所述发射线 圈和所述接收线圈之间的气隙和 /或错位信息; 所述发射端控制器设置成: 根据所述功率传输参数信息对所述功率发射 端电路的工作参数进行调节; 和 /或 所述接收端控制器设置成: 根据所述功率传输参数信息对所述功率接收 端电路的工作参数进行调节。
7、 如权利要求 6所述的调节系统, 其中:
所述检测装置包括信号发射端和信号接收端, 所述信号发射端安装在所 述非接触式变压器的发射端, 所述信号接收端安装在所述非接触式变压器的 接收端或所述信号发射端安装在所述非接触式变压器的接收端, 所述信号接 收端安装在所述非接触式变压器的发射端; 以及 所述信号接收端设置成: 根据所述信号发射端发射的信号, 检测得到所 述功率传输参数信息。
8、 如权利要求 7所述的调节系统, 其中: 所述信号接收端还设置成: 当所述信号接收端安装在所述非接触式变压器的接收端时, 所述信号接 收端将检测得到的所述功率传输参数信息发送给所述接收端控制器, 再由所 述接收端控制器转发给所述发射端控制器; 或者 当所述信号接收端安装在所述非接触式变压器的发射端时, 所述信号接 收端将检测得到的所述功率传输参数信息发送给所述发射端控制器, 再由所 述发射端控制器转发给所述接收端控制器。
9、 如权利要求 6或 7或 8所述的调节系统, 其中: 所述发射端控制器是设置成通过如下方式根据所述功率传输参数信息对 所述功率发射端电路的工作参数进行调节: 根据所述功率传输参数信息对所
所述接收端控制器是设置成通过如下方式根据所述功率传输参数信息对 所述功率接收端电路的工作参数进行调节: 根据所述功率传输参数信息对所 述功率接收端电路的频率参数和 /或相角参数进行调节。
10、 如权利要求 6或 7或 8所述的调节系统, 其中: 所述功率传输参数信息是所述非接触式变压器在工作状态下的发射线圈 和接收线圈之间的功率传输参数信息。
PCT/CN2014/080223 2013-09-27 2014-06-18 一种非接触变压器的调节方法及系统 WO2015043249A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016516961A JP2016535563A (ja) 2013-09-27 2014-06-18 非接触変圧器の調整方法及びシステム
KR1020167007869A KR20160046891A (ko) 2013-09-27 2014-06-18 비접촉식 변압기의 조절 방법 및 시스템
US15/024,364 US10236729B2 (en) 2013-09-27 2014-06-18 Method and system for regulating contactless transformer
EP14850051.5A EP3046222B1 (en) 2013-09-27 2014-06-18 Method and system for regulating contactless transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310451294.5 2013-09-27
CN201310451294.5A CN104518674A (zh) 2013-09-27 2013-09-27 一种非接触变压器的调节方法及系统

Publications (1)

Publication Number Publication Date
WO2015043249A1 true WO2015043249A1 (zh) 2015-04-02

Family

ID=52741976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080223 WO2015043249A1 (zh) 2013-09-27 2014-06-18 一种非接触变压器的调节方法及系统

Country Status (6)

Country Link
US (1) US10236729B2 (zh)
EP (1) EP3046222B1 (zh)
JP (1) JP2016535563A (zh)
KR (1) KR20160046891A (zh)
CN (1) CN104518674A (zh)
WO (1) WO2015043249A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110728891B (zh) * 2019-12-02 2022-02-15 浙江升豪机械有限公司 一种小型化电磁共振耦合器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334638A (zh) * 2000-07-25 2002-02-06 松下电工株式会社 非接触充电用变压器及充电式电动器具装置的制造方法
CN2713659Y (zh) * 2004-07-21 2005-07-27 昆盈企业股份有限公司 变频式感应充电装置
CN101814749A (zh) * 2009-02-20 2010-08-25 鸿富锦精密工业(深圳)有限公司 充电装置
WO2012090612A1 (ja) * 2010-12-27 2012-07-05 日産自動車株式会社 非接触充電装置
WO2012165243A1 (ja) * 2011-05-27 2012-12-06 日産自動車株式会社 非接触給電装置、車両及び非接触給電システム
WO2013062253A1 (ko) * 2011-10-25 2013-05-02 Kim Seon Seob 무접점충전시스템 및 무접점충전방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427100B2 (en) * 2009-02-06 2013-04-23 Broadcom Corporation Increasing efficiency of wireless power transfer
JP5559665B2 (ja) * 2010-11-30 2014-07-23 株式会社日立製作所 非接触給電装置のインピーダンス整合方法とそれを用いた非接触給電装置
EP2677627B1 (en) * 2011-02-15 2018-04-25 Toyota Jidosha Kabushiki Kaisha Non-contact power receiving apparatus, vehicle having the non-contact power receiving apparatus mounted therein and non-contact power supply equipment
US8798537B2 (en) * 2011-06-27 2014-08-05 Lg Electronics Inc. Two-way communication in wireless power transfer
KR20130007173A (ko) 2011-06-29 2013-01-18 엘지이노텍 주식회사 무선 전력 송신 장치 및 그의 무선 전력 송신 방법
EP2735083A4 (en) 2011-07-21 2015-10-07 Ut Battelle Llc INSTALLATION AND TOOL FOR VALIDATING ELECTRIC VEHICLE POWER SUPPLY EQUIPMENT WITH WIRELESS POWER TRANSFER
JP5010061B1 (ja) * 2011-09-21 2012-08-29 パイオニア株式会社 非接触電力送電装置、非接触電力受電装置、及び非接触給電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1334638A (zh) * 2000-07-25 2002-02-06 松下电工株式会社 非接触充电用变压器及充电式电动器具装置的制造方法
CN2713659Y (zh) * 2004-07-21 2005-07-27 昆盈企业股份有限公司 变频式感应充电装置
CN101814749A (zh) * 2009-02-20 2010-08-25 鸿富锦精密工业(深圳)有限公司 充电装置
WO2012090612A1 (ja) * 2010-12-27 2012-07-05 日産自動車株式会社 非接触充電装置
WO2012165243A1 (ja) * 2011-05-27 2012-12-06 日産自動車株式会社 非接触給電装置、車両及び非接触給電システム
WO2013062253A1 (ko) * 2011-10-25 2013-05-02 Kim Seon Seob 무접점충전시스템 및 무접점충전방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046222A4 *

Also Published As

Publication number Publication date
EP3046222A1 (en) 2016-07-20
US20160226318A1 (en) 2016-08-04
US10236729B2 (en) 2019-03-19
KR20160046891A (ko) 2016-04-29
CN104518674A (zh) 2015-04-15
EP3046222A4 (en) 2016-10-12
JP2016535563A (ja) 2016-11-10
EP3046222B1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP5804052B2 (ja) ワイヤレス給受電装置およびワイヤレス電力伝送システム
KR101831993B1 (ko) 무선 전력 수신기의 충전 전류를 제어하기 위한 장치 및 방법
TWI506913B (zh) 無線電能傳輸的方法、裝置和系統
JP2011142748A (ja) ワイヤレス給電システム
US9153969B2 (en) Power feeding device, power receiving device and wireless power feeding system
JP2011142559A (ja) 給電装置、受電装置、およびワイヤレス給電システム
KR102649618B1 (ko) 차량용 무선전력 전송장치 및 무선 충전 방법
WO2013093922A3 (en) System and method for providing wireless power transfer functionality to an electrical device
TW201010236A (en) Reverse link signaling via receive antenna impedance modulation
RU2014134198A (ru) Устройство бесконтактной передачи мощности, устройство бесконтактного приема мощности и система бесконтактной передачи мощности
JP2016111792A (ja) 受電装置、受電装置の制御方法、プログラム
EP2882063A1 (en) Non-contact type power supplying apparatus and non-contact type power supplying method
US20200204003A1 (en) Power relay device and system
CN112655134A (zh) 用于无线功率传输的设备和方法
CN115136448A (zh) 用于动态调谐无线电力传送系统的系统及方法
JP2011142763A (ja) 無線電力伝送装置
US9787128B2 (en) Wireless charger and wireless charging method
WO2015043249A1 (zh) 一种非接触变压器的调节方法及系统
CN104300699A (zh) 磁耦合谐振式无线电能传输自适应阻抗匹配系统
KR20140112780A (ko) 무선 전력 송신 장치 및 방법, 그를 이용한 무선 전력 전송 시스템
WO2018166426A1 (zh) 使用非谐振电能接收器的无线电能传输系统和方法
KR20150057951A (ko) 비접촉 방식 전력 공급 장치 및 비접촉 방식 전력 공급 방법
KR102193642B1 (ko) 공명 전력 신호 및 유도 전력 신호를 전송할 수 있는 하이브리드 무선 전력 전송 장치 및 이를 포함하는 하이브리드 무선 전력 전송 시스템
CN104518531A (zh) 基于磁三轴匹配的水下无线充电系统
KR102297354B1 (ko) 유도 전력 신호 및 공명 전력 신호를 송수신할 수 있는 무선 전력 전송 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850051

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014850051

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014850051

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016516961

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20167007869

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15024364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE