WO2015043243A1 - 一种频谱聚合的数据发送方法及装置 - Google Patents

一种频谱聚合的数据发送方法及装置 Download PDF

Info

Publication number
WO2015043243A1
WO2015043243A1 PCT/CN2014/080124 CN2014080124W WO2015043243A1 WO 2015043243 A1 WO2015043243 A1 WO 2015043243A1 CN 2014080124 W CN2014080124 W CN 2014080124W WO 2015043243 A1 WO2015043243 A1 WO 2015043243A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
downlink
subframe
downlink configuration
cell
Prior art date
Application number
PCT/CN2014/080124
Other languages
English (en)
French (fr)
Inventor
夏树强
戴博
梁春丽
杨维维
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2016003862A priority Critical patent/MX357985B/es
Priority to US14/914,970 priority patent/US9888494B2/en
Priority to EP14849120.2A priority patent/EP3032773A4/en
Priority to MYPI2016700883A priority patent/MY187122A/en
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020167009101A priority patent/KR101774183B1/ko
Priority to KR1020177023534A priority patent/KR101945658B1/ko
Priority to RU2016113687A priority patent/RU2644417C2/ru
Priority to BR112016006277-9A priority patent/BR112016006277B1/pt
Priority to JP2016515392A priority patent/JP6312817B2/ja
Priority to CA2922769A priority patent/CA2922769C/en
Priority to AU2014328266A priority patent/AU2014328266B2/en
Publication of WO2015043243A1 publication Critical patent/WO2015043243A1/zh
Priority to HK16107674.0A priority patent/HK1219821A1/zh
Priority to US15/427,354 priority patent/US10244553B2/en
Priority to AU2017239575A priority patent/AU2017239575B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a data transmission method and apparatus for spectrum aggregation. Background technique
  • the radio frame in the Long Term Evolution (LTE) system and the Advanced Long Term Research (LTE-A, LTE-Advanced) system includes a Frequency Division Duplex (FDD) mode and a time division duplex ( TDD, Time Division Duplex )
  • the frame structure of the pattern. 1 is a schematic diagram of a frame structure in an existing LTE/LTE-A FDD system. As shown in FIG. 1, a 10 sec (ms) radio frame consists of twenty slots with a length of 0.5 ms and numbers 0 to 19 ( The slot 2i and 2i+1 form a sub-frame i of length lms.
  • FIG. 2 is a schematic diagram of a frame structure in an existing LTE/LTE-A TDD system.
  • a 10 ms radio frame is composed of two half frames of 5 ms length, and one field includes five subframes of length lms.
  • the subframe i is defined as two slots 2 ⁇ and 2i+1 that are 0.5 ms long.
  • Table 1 The supported upstream and downstream configurations are shown in Table 1:
  • D denotes a subframe dedicated to downlink transmission
  • U denotes a subframe dedicated for uplink transmission
  • S denotes a special subframe, which includes downlink pilot
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpP Pilot Time Slot UpP Pilot Time Slot
  • the -slots contain a symbol of length 66.7 microseconds (us), where the CP length of the first symbol is 5.21us, and the remaining 6
  • the CP length of the symbols is 4.69 us
  • the extended cyclic prefix Extended Cyclic Prefix
  • one slot contains 6 symbols, and the CP length of all symbols is 16.67 us.
  • the hybrid automatic repeat request (HQQ) process is: when the base station or the terminal has data to transmit, the base station sends data required for transmission and transmission through downlink signaling, such as resources. Assign information and more.
  • the sender sends data according to the information, and saves the data in its own buffer for retransmission.
  • the receiver receives the data, it detects it. If the data is received correctly, it sends an acknowledgment (ACK, Acknowledged) to the sender. End, after receiving the ACK, the sender clears the buffer memory used for this transmission and ends the transmission.
  • ACK acknowledgment
  • the non-acknowledged (NACK, Non-acknowledged) is sent to the sender, and the packet that is not correctly received is stored in the buffer memory of the receiving end, and the transmission is delayed from the self after receiving the NACK information.
  • Data is presented in the flush memory and retransmitted using a particular packet format in the corresponding subframe and corresponding frequency domain locations.
  • the receiving end merges with the MG that was not correctly received before, performs detection again, and then repeats the above process until the data is correctly received or The number of transmissions exceeds the maximum transmission threshold.
  • the scheduling timing of the Physical Downlink Share Channel (PDSCH) in the downlink HARQ has the following provisions:
  • the scheduling of the downlink HARQ is as follows:
  • the UE detects the physical downlink control channel on the subframe n. (PDCCH, Physical Downlink Control Channel), and receives and detects the PDSCH of the current subframe according to the information of the PDCCH.
  • PDCCH Physical Downlink Control Channel
  • the HARQ-ACK for transmitting the PDSCH in the downlink HARQ that is, the timing relationship for the downlink HARQ is as follows:
  • the UE detects the PDSCH transmission on the subframe n or indicates the downlink semi-static persistent scheduling release (SPS)
  • the PDCCH of release transmits the corresponding HARQ-ACK response on subframe n+4.
  • the timing of the downlink HARQ is as follows:
  • the UE detects the PDSCH transmission or the PDCCH indicating the downlink SPS release on the subframe nk, and transmits the corresponding HARQ-ACK response on the uplink subframe n.
  • k is K
  • the values of K in different uplink and downlink configurations are as shown in Table 2:
  • the HARQ timing of the Uplink Share Channel is as follows: Let the UE detect the HARQ information on the downlink subframe n, and the information corresponds to the PUSCH sent by the UE in the uplink subframe n-4.
  • the HARQ timing of the PUSCH is defined as follows:
  • the information is corresponding to the PUSCH sent by the UE in the uplink subframe nk.
  • the values of k in different uplink and downlink configurations are as follows:
  • the UE since the uplink and downlink subframes are-corresponding, when the PDSCH includes only one transport block, the UE should feed back 1-bit ACK/NACK response information, when the PDSCH includes two transport blocks.
  • the UE needs to feed back 2-bit ACK/NACK response information, and the UE transmits 1/2-bit ACK/NACK response information using PUCCH formatla/lb.
  • the ACK/NACK response information corresponding to the multiple downlink subframes needs to be sent on the PUCCH channel of one uplink subframe, and the downlink subframe corresponding to the uplink subframe, The set of frames makes up the "bundling window".
  • the core idea of the method is to ACK/NACK the transmission block corresponding to each downlink subframe that needs to be fed back in the uplink subframe. The information is logically ANDed. If a downlink subframe has 2 transport blocks, the UE should feed back 2-bit ACK/NACK response information.
  • the UE should feed back 1-bit ACK/NACK response information.
  • the UE uses the PUCCH format la/lb to transmit the 1 or 2 bit ACK/NACK response message; the other is the multiplexing (using channel selection) method, the core idea of which is to utilize different PUCCH channels and the Different modulation symbols on the channel to indicate downlink subframes that need to be fed back in the uplink subframe
  • Different feedback states if there are multiple transport blocks on the downlink subframe, the ACK/NACK fed back by the multiple transport blocks of the downlink subframe is logically and spatially selected, and the UE adopts format lb with Channel selection (format lb joint channel selection) to send an ACK/NACK response message.
  • the LTE-A system introduces a carrier aggregation technique, that is, aggregates the bandwidth of the LTE system to obtain a larger bandwidth.
  • a carrier that is aggregated is called a component carrier (CC), which is also called a cell.
  • CC component carrier
  • PCC/PCell Primary Component Carrier/Cell
  • SCC/SCell Secondary Component Carrier/Cell
  • PUCCH format lb joint channel selection Form lb with channel selection
  • PUCCH format 3 PUCCH format 3 for configuration
  • a UE of a plurality of serving cells if the UE can only support a maximum of two serving cells, when the UE configures multiple serving cells, the UE sends a HARQ-ACK in a PUCCH format lb joint channel selection manner; If the UE is capable of supporting aggregation of more than two serving cells, when the UE configures multiple serving cells, the base station further configures whether the UE adopts PUCCH format lb joint channel selection by using higher layer signaling or adopts PUCCH format 3 sends HARQ-ACK response information.
  • the existing carrier aggregation technology is only applied to an FDD cell or a TDD cell.
  • operators usually have both FDD spectrum and TDD spectrum. Therefore, it is very important to support FDD cell and TDD cell aggregation to achieve higher spectrum utilization and user experience.
  • the PDSCH/PUSCH of each cell should be What kind of HARQ timing transmission is used is of great significance for effectively implementing FDD cell and TDD cell aggregation.
  • a common scheme in the prior art can be called a "dual mode" scheme: that is, the PDSCH/PUSCH of the TDD cell is in accordance with the existing HARQ timing processing of LTE/LTE-A TDD, FDD cell PDSCH/PUSCH is processed according to HARQ timing of existing LTE/LTE-A FDD.
  • this kind of scheme has many shortcomings, which are as follows:
  • the solution requires the UE to perform HARQ feedback simultaneously on the two cells, which reduces the efficiency of the UE. And uplink coverage, but also increase the implementation cost of the UE.
  • the advantages of the cross-carrier scheduling cannot be fully supported and utilized, for example, the PDSCH/PUSCH cannot be supported in the FDD cell, and the corresponding PDCCH is in the case of the TDD cell, and the resources of the two types of cells after the FDD cell and the TDD cell are fully utilized are fully utilized. Very disadvantageous, thereby further limiting the performance improvement of FDD cell and TDD cell aggregation.
  • the embodiments of the present invention are directed to providing a data aggregation method and apparatus for spectrum aggregation, which can transmit data in a TDD and FDD aggregation manner, and can fully and effectively utilize TDD and FDD resources, and is beneficial to existing base stations and The implementation of the terminal.
  • a spectrum aggregation data transmission method configured to configure a plurality of cells for a user equipment UE, where multiple small cells include at least one time division duplex TDD cell and at least one frequency division duplex FDD cell;
  • the method includes:
  • the downlink hybrid automatic request retransmission HARQ information of the multiple cells is concentrated in an uplink subframe corresponding to one TDD cell of the multiple cells;
  • the TDD cell is a primary cell, and the other The cell is a secondary cell, and the uplink-downlink configuration of the primary cell is configured as X, X € ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ ;
  • a downlink subframe is configured for the UE on each FDD cell, and the network is agreed.
  • the physical downlink control channel PDCCH/physical downlink shared channel (PDSCH) for the UE can be sent only in the configured downlink subframe, and the UE detects and receives the PDCCH/PDSCH on the configured downlink subframe; or, the network
  • the UE and the UE agree that the UE does not consider that one or more downlink subframes are not sent to its own PDCCH/PDSCH, and the subframes other than the downlink subframes may have a PDCCH/PDSCH transmitted to itself.
  • the method further includes: for one of the plurality of cells, the HARQ timing of the PDSCH sent to the UE in the downlink subframe, and the network and the UE agree to adopt an uplink-downlink configuration YG ⁇ 0,1, HARQ timing of PDSCH in 2, 3, 4, 5, 6 ⁇ .
  • the network and the UE agree to adopt the HARQ timing of the PDSCH in the uplink-downlink configuration Y e ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ , which specifically includes:
  • the network sends, according to the timing of the uplink-downlink configuration Y, the downlink grant and the PDSCH for scheduling the PDSCH in the downlink subframe, and the timing corresponding to the primary cell according to the timing of the uplink-downlink configuration Y.
  • the UE On the UE side, the UE receives the downlink grant and the PDSCH of the PDSCH in the corresponding downlink subframe according to the timing of the uplink-downlink configuration Y, and transmits the uplink subframe corresponding to the primary cell according to the timing of the uplink-downlink configuration Y.
  • the HARQ information of the PDSCH of the FDD cell is not limited to the HARQ information of the PDSCH of the FDD cell.
  • the Y is determined by any one of the following methods:
  • the method further includes: when there are multiple Y values, the network side device can agree with the UE to adopt one Y value;
  • the manner of selecting the Y includes: adopting an uplink-downlink configuration index with a minimum Y value among a plurality of Y values, or a maximum Y value among a plurality of Y values, or a minimum corresponding HARQ delay;
  • the manner of selecting the Y includes: dynamically changing according to the agreed conditions, and adopting different uplink-downlink configuration indexes at different times.
  • the notification manner that the network and the UE agree to adopt the HARQ timing of the PDSCH in the uplink-downlink configuration Y e ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ includes any one of the following:
  • the network layer notifies the UE by means of explicit signaling:
  • the network side notifies the UE by implicit means.
  • a spectrum aggregation data transmission method configured to configure a plurality of cells for a user equipment UE, where multiple small cells include at least one time division duplex TDD cell and at least one frequency division duplex FDD cell;
  • the method includes:
  • An uplink subframe is configured for the UE on each FDD cell, and the UE is configured to send the physical uplink shared channel PUSCH only in the configured uplink subframe, and the network sends the PUSCH to the UE. Sending an uplink grant of the PUSCH in the uplink subframe;
  • the network and the UE agree that the UE considers that one or more downlink subframes are not sent to its own uplink grant, and the subframes other than the downlink subframe may have an uplink grant sent to itself.
  • the method further includes: for one of the plurality of cells, for the UE to transmit the HARQ timing of the PUSCH in the uplink subframe, the network and the UE agree to adopt an uplink-downlink configuration P ⁇ 0, 1, 2, 3 , HARQ timing of PUSCH in 4, 5, 6 ⁇ .
  • the network sends an uplink grant for scheduling the PUSCH in the uplink subframe according to the timing of the uplink-downlink configuration P.
  • the UE needs to detect the corresponding downlink subframe according to the timing of the uplink-downlink configuration P.
  • the method further includes: the uplink grant is sent through the physical downlink control channel PDCCH, or the physical hybrid automatic retransmission indication channel PHICH send.
  • the P is specifically determined by any one of the following methods:
  • Manner 2 When the UE works in the cross-carrier scheduling mode, for one of the plurality of cells, for the PUSCH transmitted in the uplink subframe, the PDCCH or the PHICH corresponding to the PUSCH is scheduled to be on the one TDD cell.
  • the configuration is required to be an uplink-downlink configuration Y, Y ⁇ 0, 1, 2, 3 in the uplink subframe of one radio frame. , a subset of the uplink subframes in 4, 5, 6 ⁇ ;
  • the method further includes: when a plurality of thresholds can be selected, the network side device can agree with the UE to adopt one of the threshold values;
  • the method for selecting the ⁇ includes: arranging an uplink-downlink configuration index with a minimum ⁇ value among a plurality of ⁇ values, or a maximum ⁇ value among a plurality of ⁇ values, or a minimum corresponding HARQ delay;
  • the manner of selecting the ⁇ includes: dynamically changing according to the agreed condition, and adopting HARQ timing of the PUSCH in different uplink-downlink configurations at different times.
  • the method further includes: when there are multiple P values, the P value that the network side device can agree with the UE, and the uplink and downlink configuration P downlink subframes are uplink and downlink configuration configurations a subset of frames;
  • the network side device can agree with the UE to adopt one P value
  • the manner of selecting the P includes: adopting an uplink-downlink configuration index with a minimum P value among multiple P values, or a P value having the largest P value among multiple P values, or a minimum corresponding HARQ delay;
  • the manner of selecting the P further includes: dynamically changing according to the agreed conditions, and adopting different uplink-downlink configuration indexes at different times.
  • the notification manner of the HARQ timing of the PUSCH in the uplink-downlink configuration P e ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ includes the following ones:
  • the network layer notifies the UE by means of explicit signaling:
  • a spectrum aggregation data transmitting device the device comprising a configuration unit, being a user equipment
  • the UE configures multiple cells, and the multiple cells include at least one time division duplex TDD cell and at least one frequency division duplex FDD cell;
  • the device When the downlink aggregation is performed on multiple different types of cells, the device further includes:
  • the first processing unit is configured to send the downlink hybrid automatic request retransmission HARQ information of the multiple cells to an uplink subframe corresponding to one TDD cell of the multiple cells;
  • the TDD cell is a primary cell, and other cells are
  • the secondary cell the uplink-downlink configuration of the primary cell is configured as X, ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ ;
  • the second processing unit is configured to configure a downlink subframe for the UE on each FDD cell, and the network is configured to send the physical downlink control channel PDCCH/physical downlink shared channel PDSCH for the UE only in the configured downlink subframe.
  • the UE detects and receives the PDCCH/PDSCH on the configured downlink subframe; or the network and the UE agree that the UE considers that one or more downlink subframes are not sent to its own PDCCH/PDSCH, and the downlink sub Subframes outside the frame may have PDCCH/PDSCH sent to themselves.
  • the second processing unit further includes: a first timing agreement module
  • the first timing agreement module is configured to: for one of the plurality of cells, the HARQ timing of the PDSCH sent to the UE in the downlink subframe, and the network and the UE agree to adopt an uplink-downlink configuration Y e ⁇ 0, HARQ timing of PDSCH in 1, 2, 3, 4, 5, 6 ⁇ .
  • the first timing agreement module is further configured to: schedule, according to the timing of the uplink-downlink configuration Y, to send, in the corresponding downlink subframe, a downlink grant and a PDSCH for scheduling the PDSCH in the downlink subframe, according to the uplink-downlink
  • the timing of the Y is received in the uplink subframe corresponding to the primary cell, and the HARQ information of the PDSCH of the FDD cell is received.
  • the UE is configured to receive the downlink grant and the PDSCH of the PDSCH in the corresponding downlink subframe according to the timing of the uplink-downlink configuration Y.
  • the HARQ information of the FDD cell PDSCH is transmitted in an uplink subframe corresponding to the primary cell according to the timing of the uplink-downlink configuration Y.
  • the uplink subframe of the ⁇ is a subset of the uplink subframe of the uplink-downlink configuration Z
  • the uplink subframe of the uplink-downlink configuration M is also a subset of the uplink subframe of the uplink-downlink configuration X.
  • the first processing unit, the second processing unit, and the first timing agreement module may use a central processing unit (CPU) and a digital signal processor (DSP, Digital Singnal Processor) when performing processing. Or programmable logic array (FPGA, Field - Programmable Gate Array) to buy cash.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA Field - Programmable Gate Array
  • a spectrum aggregation data transmitting apparatus comprising: a configuration unit, configured to configure, by the user equipment UE, a plurality of cells, where the multiple cells include at least one time division multiplexed TDD cell and at least one frequency division duplex FDD cell;
  • the device further includes:
  • a third processing unit configured to configure an uplink subframe for the UE on each FDD cell
  • the UE can send the physical uplink shared channel PUSCH only in the configured uplink subframe, and the network sends the uplink grant for transmitting the PUSCH in the uplink subframe for the UE; or, the network and the UE agree that the UE considers that One or more downlink subframes are not sent to their own uplink grants, and subframes other than the downlink subframes may have uplink grants sent to themselves.
  • the third processing unit further includes a second timing agreement unit configured to transmit, for one of the multiple FDD cells, a HARQ timing of the PUSCH sent by the UE in the uplink subframe, and the network and the UE agree to adopt an uplink.
  • a second timing agreement unit configured to transmit, for one of the multiple FDD cells, a HARQ timing of the PUSCH sent by the UE in the uplink subframe, and the network and the UE agree to adopt an uplink.
  • the HARQ timing of the PUSCH in P e ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ is configured in the downlink.
  • the second timing agreement unit is further configured to: schedule the network to send an uplink grant for scheduling the PUSCH in the uplink subframe according to the timing of the uplink-downlink configuration P; The timing of configuring the P is detected on the corresponding downlink subframe, and the uplink grant for transmitting the PUSCH in the uplink subframe is detected.
  • Manner 2 When the UE works in the cross-carrier scheduling mode, configure the uplink-downlink of one FDD cell in multiple cells to be configured as X, X e ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ , for multiple One of the FDD cells in the cell, for the PUSCH transmitted in the uplink subframe, the corresponding PDCCH or PHICH for scheduling the PUSCH is on the one TDD cell, and the uplink-downlink configuration of the TDD cell is configured as X.
  • the third processing unit and the second timing convention unit may use a central processing unit (CPU), a digital signal processor (DSP, a digital Singnal Processor), or a programmable array ( FPGA, Field - Programmable Gate Array) implementation.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA Field - Programmable Gate Array
  • the method of the embodiment of the present invention includes: configuring a plurality of cells for the user equipment UE, where the multiple cells include at least one time division duplex TDD cell and at least one frequency division duplex FDD cell, and each cell satisfies a time synchronization relationship in time;
  • the downlink hybrid automatic request retransmission HARQ information of the multiple cells is concentrated in an uplink subframe corresponding to one TDD cell of the multiple cells;
  • the TDD cell is a primary cell, and other cells are The secondary cell
  • the uplink-downlink configuration of the primary cell is configured as X, X € ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ ;
  • the downlink subframe is configured for the UE on each FDD cell, so that the network only
  • the configured downlink sub-frame can send the physical downlink control channel PDCCH/physical downlink shared channel (PDSCH) for the UE, and the UE detects and receives the PDCCH/PDSCH on the configured downlink subframe.
  • the TDD and FDD resources can be fully and effectively utilized, and the implementation of the existing base station and the terminal is facilitated.
  • FIG. 1 is a schematic diagram of a frame structure in a prior art FDD system
  • FIG. 2 is a schematic diagram of a frame structure in a prior art TDD system
  • FIG. 3 is a schematic diagram of downlink spectrum aggregation transmission according to the present invention.
  • FIG. 4 is a schematic diagram of uplink spectrum aggregation transmission according to the present invention
  • 5 is a schematic diagram of data transmission of an aggregated TDD system and an FDD system according to an embodiment of the present invention
  • FIG. 6 is another schematic diagram of data transmission aggregated by a TDD system and an FDD system according to an embodiment of the present invention
  • FIG. 7 is another schematic diagram of data transmission aggregated by a TDD system and an FDD system according to an embodiment of the present invention.
  • FIG. 8 is another schematic diagram of data transmission aggregated by the TDD system and the FDD system according to an embodiment of the present invention. detailed description
  • the following embodiments of the present invention are exemplified by the LTE/LTE-A TDD and the LTE/LTE-A FDD system.
  • the uplink-downlink configuration involved in the embodiment of the present invention is LTE/LTE-A TDD.
  • the seven uplink-downlink configurations supported by the system are 0, 1, 2 - , and 6.
  • the uplink-downlink configuration of the primary cell is also one of the seven configurations described above, that is, the text relates to "the uplink-downlink configuration of the primary cell is configured as X", actually The uplink-downlink configuration of the primary cell is the uplink-downlink configuration X, X 6 ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ of the LTE/LTE-A TDD system. 2)
  • the multiple cells involved in the embodiment of the present invention are cells supported by the LTE/LTE-A TDD system, that is, the text refers to "a plurality of cells including at least one TDD cell and at least one FDD cell", which actually refers to multiple cells.
  • the cells include at least one LTE/LTE-A TDD cell and at least one LTE/LTE-A FDD cell.
  • the parameters X, ⁇ , ⁇ , ⁇ in this paper refer to the uplink-downlink configuration index supported by the LTE/LTE-A TDD system, and can also be the agreed information X, ⁇ , ⁇ , ⁇ .
  • this document does not limit the LTE/LTE-A TDD system, and other communication systems are also applicable. This is only an example.
  • the data transmission method for spectrum aggregation in the embodiment of the present invention is a data transmission scheme for frequency aggregation of a TDD system and an FDD system, and mainly includes the following contents:
  • the method includes:
  • Step 101 Configure a TDD cell and an FDD cell for the UE.
  • the network configures at least one TDD cell and at least one FDD cell for the UE, and each cell satisfies the time synchronization relationship in time.
  • Step 102 The downlink HARQ information of the multiple cells is concentrated in an uplink subframe corresponding to one of the TDD cells.
  • the TDD cell is referred to as a primary cell, and the other cells are referred to as secondary cells, and the uplink-downlink configuration of the primary cell is configured as ⁇ , ⁇ ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ ;
  • Step 103 Configure a downlink subframe for the UE on each FDD cell, so that the network can only send the PDCCH/PDSCH for the UE in the configured downlink subframe, and the UE detects the configured downlink subframe. And receiving the PDCCH/PDSCH. Or equivalent, network and UE agreement: The UE may consider that one or more downlink subframes are not sent to its own PDCCH/PDSCH. Outside the above subframe, there may be a PDCCH/PDSCH sent to itself.
  • the meaning of configuring some downlink subframes for the UE is:
  • the network can only transmit the PDCCH/PDSCH for the UE in these subframes, and the UE detects and receives the PDCCH/PDSCH on the configured subframes.
  • the network and the UE agree to adopt an uplink-downlink configuration Y e ⁇ 0, 1 , 2, 3, 4, 5 In the 6 ⁇ , the HARQ timing of the PDSCH, that is, on the network side, the network transmits the downlink grant and the PDSCH for scheduling the PDSCH in the downlink subframe according to the uplink-downlink configuration Y, according to the uplink-downlink.
  • the timing of configuring Y is on the corresponding subframe of the primary cell.
  • the UE receives the downlink grant and the PDSCH in the corresponding downlink subframe according to the timing of the uplink-downlink configuration Y, and according to the timing of the uplink-downlink configuration Y, the corresponding sub-cell in the primary cell
  • the HARQ information of the FDD cell PDSCH is transmitted on the frame.
  • the downlink subframe of the radio frame is a superset of the downlink subframe included in the uplink-downlink configuration X
  • the downlink subframe is required to be in a downlink subframe of one radio frame.
  • Configuring a subset of the downlink subframes included in the uplink-downlink configuration ze
  • the downlink subframe of the downlink subframe is not a superset of the downlink subframe included in the uplink-downlink configuration X, nor is the downlink subframe included in the uplink-downlink configuration X.
  • the uplink-downlink configuration M is required, and the uplink subframe of ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ is a subset of the uplink subframe of the uplink-downlink configuration Z, and the uplink of the uplink-downlink configuration M is required.
  • the subframe is also a subset of the uplink subframe of the uplink-downlink configuration X.
  • the network side device and the UE may agree to adopt one of the Y values, for example, it may be agreed to adopt the smallest Y value among the plurality of Y values, or the Y value of the plurality of Y values is the largest, or The uplink-downlink configuration index corresponding to the minimum HARQ delay, or the corresponding uplink-downlink configuration index with the largest number of subframes that can be scheduled in the foregoing configuration subframe, or may dynamically change according to the agreed conditions, and adopt different uplinks at different times. Downstream configuration index, etc.
  • the network and UE agree to adopt PDSCH in the uplink-downlink configuration ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇
  • timing the HARQ There are various methods for timing the HARQ.
  • the UE is notified by means of high-level signaling, physical layer signaling, and the like, and the UE may be notified in an implicit manner.
  • the UE in the subframe configuration and the adopted HARQ timing.
  • a certain mapping relationship is established between the network and the UE.
  • the UE and the UE agree to adopt the same mapping relationship, so that the UE obtains the HARQ timing information that should be adopted after obtaining the subframe configuration information.
  • the HARQ timing of the PDSCH transmitted to the UE in the downlink subframe adopts the timing of the LTE/LTE-Advanced TDD system, and details are not described herein.
  • a plurality of cells are aggregated in the uplink.
  • the HARQ information is actually sent on the PDCCH or the PHICH, and the timing relationship and the cell in which the cell is located are below. The description is specifically described in the description.
  • the method includes:
  • Step 201 Configure a TDD cell and an FDD cell for the UE.
  • the network configures at least one TDD cell and at least one FDD cell for the UE, and each cell satisfies the time synchronization relationship in time.
  • Step 202 Configure some uplink subframes for the UE on each FDD cell, so that the UE can send the physical uplink shared channel PUSCH only in the configured uplink subframe, where the network is here, and configure some uplink subframes for the UE.
  • the meaning of the frame is: The UE can only send the PUSCH in the above subframe, and accordingly, the network can only send the uplink grant for transmitting the PUSCH in the subframe in the subframe.
  • network and UE agreement Network and UE agreement: The UE may consider that one or more downlink subframes are not sent to its own uplink grant. Outside of the above sub-frames, there may be an uplink grant sent to itself.
  • the UE After detecting the uplink grant outside the subframe, the UE should send the PUSCH in the uplink subframe corresponding to the uplink grant, and the network receives the PUSCH in the uplink subframe. Further, for the foregoing one FDD cell, for the HARQ timing of the UE transmitting the PUSCH in the foregoing subframe, the network and the UE agree to adopt an uplink-downlink configuration P € ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇
  • the HARQ timing of the medium PUSCH that is, on the network side, the network transmits the uplink grant for scheduling the PUSCH in the uplink subframe in the corresponding downlink subframe according to the timing of the uplink-downlink configuration P. On the UE side, the UE follows the uplink-downlink. The timing of configuring the P is detected on the corresponding downlink subframe, and the uplink grant that needs to send the PUSCH in the foregoing subframe is detected.
  • the above uplink grant may be sent through the PDCCH or through the PHICH.
  • the above agreement information P can be determined by the following means:
  • the UE When the UE is operating in the cross-carrier scheduling mode, that is, for the PUSCH transmitted in the uplink subframe, the corresponding PDCCH or PHICH of the PUSCH is scheduled to be on the one TDD cell, and the uplink-downlink configuration of the TDD cell is Configure ⁇ , ⁇ 6 ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ .
  • the uplink subframe configured in one radio frame is a subset of the uplink subframe included in the uplink-downlink configuration X
  • the subframe is required to be in one radio frame.
  • the uplink subframe is an uplink-downlink configuration ⁇ , ⁇ e
  • the network side device can agree with the UE to adopt one of the threshold values.
  • the uplink/downlink configuration index with the smallest ⁇ value among the multiple ⁇ values, or the largest ⁇ value among multiple ⁇ values, or the minimum HARQ delay corresponding, or the configurable subframe in the foregoing configuration subframe may be used.
  • the uplink-downlink configuration indexes may be used at different times.
  • the network-side device can agree with the UE to adopt the threshold, and the uplink-downlink configuration is required.
  • the downlink subframe is a subset of the downlink subframe in the uplink-downlink configuration configuration. If there are still multiple thresholds at this time, the above method can be used, such as "proximating the HARQ timing of the PUSCH in the uplink-downlink configuration corresponding to the minimum of the multiple intermediate values".
  • the network and the UE have agreed to adopt the uplink-downlink configuration method of the HARQ timing of the PUSCH in the ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ , for example, through high-level signaling, physical layer signaling, etc.
  • the UE may be notified in an implicit manner. For example, a certain mapping relationship is established between the foregoing subframe configuration and the adopted HARQ timing, and the network and the UE agree to adopt the same mapping relationship, so that the UE obtains After the above subframe configuration information, the HARQ timing information that should be used is also obtained at the same time.
  • the HARQ timing of the PUSCH transmitted by the UE in the uplink subframe adopts the HARQ timing of the LTE/LTE-Advanced TDD system, and details are not described herein.
  • the foregoing subframe configuration (including the downlink subframe configuration and the uplink subframe configuration) may be the same or different in each radio frame.
  • the data transmission scheme of the TDD system and the FDD system spectrum aggregation of the present invention can effectively implement the aggregation of the FDD cell and the TDD cell, fully support and utilize the cross-carrier scheduling, and maintain the advantages of the existing LTE-Advanced FDD or TDD cell aggregation. At the same time, it has the advantages of simple implementation and reduced network and terminal implementation costs. It should be noted here that, in the present invention, The subframe configuration of different UEs may be different, and the timing of the uplink-downlink configuration followed by the uplink and downlink may also be different, which further improves the flexibility of aggregation of the FDD cell and the TDD cell, and provides more effective and effective use of TDD and FDD resources. It is possible.
  • the network aggregates two cells in the downlink for the UE, one is a TDD cell, and the other is an FDD celL.
  • the uplink-downlink configuration of the TDD cell is configuration 2
  • the TDD cell is configured as the primary cell
  • the FDD cell is the secondary cell.
  • the downlink HARQ information of the two cells is concentrated in the uplink subframe corresponding to the primary cell.
  • the network configures some downlink subframes of the FDD cell to be subframes that may send the PDSCH to the UE, for example, configure the downlink sub-frame of each radio frame.
  • the frame 0, the downlink subframe 1, the downlink subframe 4, the downlink subframe 5, the downlink subframe 6, and the downlink subframe 9 are subframes that may be used to transmit the PDSCH to the UE. It can be found that the downlink subframe of the downlink subframe is a subset of the downlink subframes included in the uplink-downlink configuration 2 in the downlink subframe of one radio frame.
  • the network description configuration information notifies the UE to adopt the HARQ timing of the PDSCH in the uplink-downlink configuration 1.
  • the downlink subframe is uplink in the downlink subframe of one radio frame.
  • the network determines, according to the HARQ timing of the PDSCH in the uplink-downlink configuration 2, the downlink subframe 0, the downlink subframe 1, the downlink subframe 4, the downlink subframe 5, and the downlink Subframe 6, HARQ timing of downlink subframe 9.
  • the FDD cell be synchronized with the primary cell frame.
  • the network When the network sends the PDSCH in the downlink subframe 0 of the FDD cell, the network should receive the HARQ information of the PDSCH in the subframe 7 of the radio frame in the primary cell;
  • the network When the network sends the PDSCH in the downlink subframe 1 of the FDD cell, the network should receive the HARQ information of the PDSCH in the subframe of the radio frame of the primary cell;
  • the network When the network sends the PDSCH in the downlink subframe 4 of the FDD cell, the network should be in the primary cell.
  • the subframe 2 of the next radio frame receives the HARQ information of the PDSCH;
  • the network When the network sends the PDSCH in the downlink subframe 5 of the FDD cell, the network should receive the HARQ information of the PDSCH in the subframe 2 of the next radio frame of the primary cell;
  • the network When the network sends the PDSCH in the downlink subframe 6 of the FDD cell, the network should receive the HARQ information of the PDSCH in the subframe 2 of the next radio frame of the primary cell;
  • the network When the network sends the PDSCH in the FDD cell downlink subframe 9, the network should receive the HARQ information of the PDSCH in the subframe 7 of the next radio frame of the primary cell.
  • the UE after receiving the configuration information sent by the network correctly, the UE should respond to the root, for example,
  • the UE should perform HARQ information feedback on the PDSCH of the subframe 4, the subframe 5, and the subframe 6 of the previous radio frame in the subframe 2 of the current radio frame.
  • the UE should perform HARQ information feedback in the subframe 7 of the current radio frame, the subframe 9 of the previous radio frame, the subframe 0 of the current radio frame, and the PDSCH of the subframe 1.
  • FIG. 4 is a schematic diagram showing the HARQ timing of the PDSCH transmitted in the downlink subframe of the FDD cell and the HARQ information sent by the UE in the uplink of the TDD cell by using the PDSCH according to the embodiment of the present invention.
  • the downlink subframe 0, the downlink subframe 1, the downlink subframe 4, the downlink subframe 5, the downlink subframe 6, and the downlink subframe 9 of a certain radio frame are configured to transmit the PDSCH.
  • the downlink subframe 0, the downlink subframe 1, the downlink subframe 4, the downlink subframe 5, the downlink subframe 6, and the downlink subframe 9 of multiple radio frames may be configured as possible.
  • the subframes in which the PDSCH is sent to the UE are further configured.
  • the subframe configurations of the different radio frames may be the same or different. For example, the downlink subframe 0, the downlink subframe 1, and the downlink subframe of the first radio frame of the FDD cell are configured.
  • the frame 4, the downlink subframe 5, the downlink subframe 6, and the downlink subframe 9 are subframes that may send the PDSCH to the UE, and the downlink subframe 4, the downlink subframe 5, and the downlink subframe 6 of the ninth radio frame.
  • the downlink subframe 7, the downlink subframe 8, and the downlink subframe 9 are subframes that may be used to send the PDSCH to the UE, and
  • the network and the UE may agree that the first radio frame adopts the HARQ timing of the PDSCH in the uplink-downlink configuration 2
  • the ninth radio frame adopts the HARQ timing of the PDSCH in the uplink-downlink configuration 4, which is not described herein.
  • the HARQ timing of the PDSCH transmitted to the UE in the downlink subframe may adopt the timing of the existing LTE/LTE-Advanced TDD system, which is not described herein.
  • the network aggregates 5 cells in the downlink, the two are TDD cells, and the three are FDD celL.
  • One of the TDD cells is the primary cell, and the uplink-downlink configuration is configured as 1 and the other 4 cells are secondary cells.
  • the downlink HARQ information of the five cells is concentrated in the uplink subframe corresponding to the primary cell.
  • the HARQ timing of the PDSCH transmitted to the UE in the downlink subframe may adopt the timing of the existing LTE/LTE-Advanced TDD system, and details are not described herein.
  • the network For the first FDD cell, let the network configure the downlink subframe 0 of each radio frame as the subframe that may send the PDSCH to the UE.
  • the downlink subframe 0 the downlink subframe 1
  • the downlink subframe 3 the downlink subframe 4
  • the downlink subframe 5 the downlink subframe 6
  • the downlink subframe 8 the downlink subframe of each radio frame 9 is a subframe that may be a PDSCH for the UE.
  • the downlink subframe 0, the downlink subframe 1 and the downlink subframe 8 of each radio frame are subframes that may be the PDSCH to be sent to the UE.
  • the subframe configured by the network may be a subset of the downlink subframe in the uplink-downlink configuration (configuration 1) of the primary cell, and therefore, sent to the UE in the downlink subframe of the cell.
  • the PDSCH can be processed in the manner of Embodiment 1 and will not be described here.
  • the network configuration sub-frame can be found as a superset of the downlink sub-frame in the uplink-downlink configuration (configuration 1) of the primary cell, and the configuration can be found as the uplink-downlink configuration 2 A subset of the downlink subframes.
  • the network notifies the UE of the configuration information at the transmitting end, and agrees to adopt the HARQ timing of the PDSCH in the uplink-downlink configuration 2.
  • the downlink subframe of the downlink subframe is a subset of the downlink subframes included in the uplink-downlink configuration 2, and the network determines the downlink subframe according to the HARQ timing of the PDSCH in the uplink-downlink configuration 2.
  • HARQ timing of frame 0, downlink subframe 1, downlink subframe 3, downlink subframe 4, downlink subframe 5, downlink subframe 6, downlink subframe 8, and downlink subframe 9.
  • the network When the network sends the PDSCH in the downlink subframe 0 of the second FDD cell, the network should receive the HARQ information of the PDSCH in the subframe 7 of the radio frame of the primary cell;
  • the network When the network sends the PDSCH in the second FDD cell downlink subframe 1, the network should receive the HARQ information of the PDSCH in the subframe of the radio frame of the primary cell;
  • the network When the network sends the PDSCH in the second FDD cell downlink subframe 3, the network should receive the HARQ information of the PDSCH in the subframe of the radio frame of the primary cell;
  • the network When the network sends the PDSCH in the second FDD cell downlink subframe 4, the network should receive the HARQ information of the PDSCH in the subframe 2 of the next radio frame of the primary cell;
  • the network When the network sends the PDSCH in the second FDD cell downlink subframe 5, the network should receive the HARQ information of the PDSCH in the subframe 2 of the next radio frame of the primary cell;
  • the network When the network sends the PDSCH in the second FDD cell downlink subframe 6, the network should receive the HARQ information of the PDSCH in the subframe 2 of the next radio frame of the primary cell;
  • the network When the network sends the PDSCH in the second FDD cell downlink subframe 8, the network should receive the HARQ information of the PDSCH in the subframe 2 of the next radio frame of the primary cell;
  • the network When the network transmits the PDSCH in the second FDD cell downlink subframe 9, the network should receive the HARQ information of the PDSCH in the subframe 7 of the next radio frame of the primary cell. Correspondingly, after receiving the configuration information sent by the network, the UE should perform HARQ information feedback on the subframe according to the HARQ timing of the PDSCH in the uplink-downlink configuration 2, for example,
  • the UE should perform the HARQ information inverse on the PDSCH of the subframe 4, the subframe 5, the subframe 6, and the subframe 8 of the previous radio frame of the second FDD cell in the subframe 2 of the current radio frame of the primary cell.
  • the UE should perform HARQ information on the subframe 9 of the current radio frame of the primary cell, the subframe 9 of the previous radio frame of the second FDD cell, the subframe 0 of the current radio frame, and the PDSCH of the subframe 3 in the subframe 7 of the current radio frame of the primary cell. Feedback.
  • FIG. 5 is a schematic diagram of HARQ timing for transmitting a downlink subframe subframe of the second FDD cell and transmitting HARQ information of the UE in the uplink of the TDD cell by using the PDSCH of the present invention.
  • the subframe configured by the network may be a subset of the downlink subframes in the uplink-downlink configuration. Therefore, the network and the UE may also perform the HARQ timing of the PDSCH in the uplink-downlink configuration.
  • the HARQ timing of the downlink subframe 0, the downlink subframe 1, the downlink subframe 3, the downlink subframe 4, the downlink subframe 5, the downlink subframe 6, the downlink subframe 8, and the downlink subframe 9 is determined.
  • the network and the UE agree to adopt one of them, for example, the timing in which the uplink-downlink configuration index is small.
  • the subframe configured by the network is not a subset of the downlink subframe in the uplink-downlink configuration (configuration 1) of the primary cell, and is not the uplink-downlink configuration of the primary cell (configuration 1).
  • the network and the UE may agree to determine the HARQ timing of the downlink subframe 0, the downlink subframe 1, and the downlink subframe 8 according to the HARQ timing of the PDSCH in the uplink-downlink configuration 2 or 4 or 5.
  • the HARQ timing of the PDSCH in the uplink-downlink configuration 3 should not be agreed to determine the HARQ timing of the downlink subframe. Because the uplink subframe of the uplink-downlink configuration 3 is not a subset of the uplink-downlink configuration 1.
  • the network aggregates three cells in the uplink, one is a TDD cell, two are FDD cells, and the UE works in a non-cross-carrier scheduling mode.
  • the network is configured to configure the uplink subframe of each radio frame for the UE 2.
  • the uplink subframe 3 and the uplink subframe 7 are subframes in which the UE may send the PUSCH.
  • the network is configured to configure the uplink subframe of each radio frame for the UE, and the uplink subframe 3 is a subframe in which the UE may send the PUSCH.
  • the uplink subframe is a subset of the uplink subframes included in the uplink-downlink configuration 1.
  • the HARQ timing, the network, and the UE may be It is agreed to adopt the HARQ timing of the PUSCH in the uplink-downlink configuration 1.
  • the network On the network side, if the network detects the PUSCH sent by the UE in the uplink subframe 2, the network should send the HARQ information of the PUSCH in the downlink subframe 6 of the same radio frame of the cell; on the network side, the network is in the uplink subframe. 3, detecting the PUSCH sent by the UE, the network should send the HARQ information of the PUSCH in the downlink subframe 9 of the same radio frame of the cell; on the network side, if the network detects the PUSCH sent by the UE in the uplink subframe 7, the network should The HARQ information of the PUSCH is transmitted in the downlink subframe 1 of the next radio frame of the cell.
  • the UE If the UE detects the uplink grant information sent by the network in the downlink subframe 1, the UE should send the corresponding PUSCH in the uplink subframe 7 of the radio frame.
  • the UE If the UE detects the uplink grant information sent by the network in the downlink subframe 6, the UE should send the corresponding PUSCH in the uplink subframe 2 of the next radio frame of the radio frame;
  • Figure 6 shows the adoption A schematic diagram of HARQ timing of a PUSCH of the above-described first FDD cell according to the present invention.
  • the uplink subframe is also a subset of the uplink subframes included in the uplink-downlink configuration 0 and 6. Therefore, both the network and the UE can agree to adopt the HARQ timing of the PUSCH in the uplink-downlink configuration 0 or 6.
  • the network and the UE can adopt the uplink-downlink configuration 0 or 6 or the PUQ HARQ timing of the PUSCH.
  • the UE is notified by means of high-level signaling, physical layer signaling, etc., and may also be implicit.
  • the mode notifies the UE, for example, that a certain mapping relationship is established between the foregoing subframe configuration and the adopted HARQ timing, and the network and the UE agree to adopt the same mapping relationship, so that after obtaining the subframe configuration information, the UE also obtains the response.
  • the HARQ timing information used.
  • the network side device and the UE may agree to adopt one of the multiple, and the HARQ of the PUSCH in the uplink-downlink configuration corresponding to the minimum of the P values may be agreed upon.
  • the timing, or the HARQ timing of the PUSCH in the uplink-downlink configuration corresponding to the maximum P value, or the HARQ timing relationship of the PUSCH in the uplink-downlink configuration corresponding to the minimum HARQ delay may also be dynamically changed according to the agreed conditions, and different at different times.
  • HARQ timing of the PUSCH in the uplink-downlink configuration may be selected.
  • the uplink subframe is a subset of the uplink subframes included in the uplink-downlink configuration 0, 1, 3, 4, and 6. Therefore, the network and the UE may agree to adopt uplink-downlink.
  • the HARQ timing of the PUSCH in the 0 or 1 or 3 or 4 or 6 is configured. The method is similar to the foregoing for the first FDD cell, and is not described here.
  • the HARQ timing of the PUSCH transmitted by the UE in the uplink subframe may be the HARQ timing of the existing LTE/LTE-Advanced TDD system, which is not in Embodiment 4:
  • the network aggregates 5 cells for the UE, 2 are TDD cells, and 3 are FDD. Cell, and the UE works in a cross-carrier scheduling mode.
  • the uplink grant (PDCCH or PHICH) for scheduling the PUSCH on the cells is sent on the first TDD cell, and the PUSCH on the cells is scheduled for the third FDD cell.
  • the uplink grant (PDCCH or PHICH) is sent on the second TDD cell.
  • the uplink-downlink configurations of the first and second TDD cells are uplink-downlink configuration 6 and configuration 1, respectively.
  • the network is configured to configure the uplink subframe 2 of each radio frame for the UE to be a subframe in which the UE may send the PUSCH.
  • the network is configured to configure the uplink subframe of each radio frame for the UE.
  • the subframe 3 and the subframe 4 are subframes in which the UE may send the PUSCH.
  • the network is configured to configure an uplink subframe of each radio frame for the UE, and the subframe 8 is a subframe in which the UE may send the PUSCH.
  • the uplink subframe configured by the network is a subset of the uplink-downlink configuration 5, and then the uplink grant (PDCCH or PHICH) of the PUSCH on the cells is scheduled to be in the first TDD cell.
  • the uplink grant (PDCCH or PHICH) of the PUSCH on the cells is scheduled to be in the first TDD cell.
  • - Downlink configuration 6 Uplink, the RTT of the PUSCH of the uplink-downlink configuration 6 is not 10 ms.
  • the network and the UE may agree to adopt the HARQ timing of the PUSCH in the uplink-downlink configuration 1.
  • the foregoing uplink subframe of the network configuration is also a subset of the uplink subframes included in other uplink-downlink configurations.
  • the network and the UE can also agree to adopt the HARQ timing of the PUSCH in other uplink-downlink configurations.
  • the network can also select the optimal one by some simple principles. For example, according to the principle that the number of subframes that can be scheduled is the largest, we can find: network and UE agreement The HARQ timing of the PUSCH in the uplink-downlink configuration 0, 1, and 6. The HARQ timing of the subframe configured as above is the same, but if the network and the UE agree to adopt the PUSCH in the uplink-downlink configuration 3, 4, and 5.
  • the subframe may be an uplink subframe in the first TDD cell, that is, the network cannot schedule the uplink subframe of the FDD cell, but the "can be scheduled”
  • the maximum number of frames this principle, can easily rule out these not very good HARQ timing.
  • these poor HARQ timings can also be easily excluded, and are not described herein.
  • the uplink subframe configured by the network is a subset of the uplink-downlink configuration 0, and then the uplink grant (PDCCH or PHICH) of the PUSCH on the cells is scheduled to be in the first TDD cell.
  • the uplink grant (PDCCH or PHICH) of the PUSCH on the cells is scheduled to be in the first TDD cell.
  • - Downlink configuration 6 Uplink, the RTT of the PUSCH of the uplink-downlink configuration 6 is not 10 ms.
  • the network and the UE may agree to adopt the HARQ timing of the PUSCH in the uplink-downlink configuration 0.
  • the PUSCH is scheduled by the second TDD cell according to the cross-carrier scheduling (uplink-downlink configuration 1), and it is considered that the uplink subframe configured by the network in the third FDD cell is uplink-downlink.
  • a subset of configuration 1 is configured, and the RTT of the PUSCH in the uplink-downlink configuration 1 is 10 ms.
  • the network and the UE can agree to adopt the HARQ timing of the PUSCH in the uplink-downlink configuration 1.
  • Fig. 7 is a diagram showing the HARQ timing of the PUSCH of the above-mentioned third FDD cell to which the present invention is applied.
  • the HARQ timing of the PUSCH transmitted by the UE in the uplink subframe may be the HARQ timing of the existing LTE/LTE-Advanced TDD system, which is not described herein.
  • the integrated modules described in the embodiments of the present invention may also be stored in a computer readable storage medium if they are implemented in the form of software functional modules and sold or used as separate products. Based on such understanding, the technical solution of the embodiments of the present invention is made substantially or prior to the prior art.
  • the contributed portion may be embodied in the form of a software product stored in a storage medium, including thousands of instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the present invention. All or part of the methods described in the various examples.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk, and the like, which can store program code.
  • the embodiment of the present invention further provides a computer storage medium, wherein a computer program is stored, and the computer program is used to execute the data transmission method of spectrum aggregation in the embodiment of the present invention.
  • the method of the embodiment of the present invention includes: configuring a plurality of cells for the user equipment UE, where the multiple cells include at least one time division duplex TDD cell and at least one frequency division duplex FDD cell, and each cell satisfies a time synchronization relationship in time;
  • the downlink hybrid automatic request retransmission HARQ information of the multiple cells is concentrated in an uplink subframe corresponding to one TDD cell of the multiple cells;
  • the TDD cell is a primary cell, and other cells are The secondary cell
  • the uplink-downlink configuration of the primary cell is configured as X, X € ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ ;
  • the downlink subframe is configured for the UE on each FDD cell, so that the network only
  • the configured downlink sub-frame can send the physical downlink control channel PDCCH/physical downlink shared channel (PDSCH) for the UE, and the UE detects and receives the PDCCH/PDSCH on the configured downlink subframe.

Abstract

本发明公开了一种频谱聚合的数据发送方法及装置,下行聚合多个不同类型小区时,该方法包括:将所述多个小区的下行混合自动请求重传 HARQ信息集中在多个小区中的一个TDD小区对应的上行子帧发送;所述 TDD小区为主小区,其它小区为辅小区,设主小区的上行-下行配置为配置 X,X∈{0,1,2,3,4,5,6};在每个FDD小区上为UE配置下行子帧,使网络只在所配置的下行子帧,才能发送针对所述UE的物理下行控制信道PDCCH/物理下行共享信道PDSCH,UE则在所配置的下行子帧上检测及接收所述PDCCH/PDSCH。

Description

一种频谱聚合的数据发送方法及装置 技术领域
本发明涉及无线通信技术, 尤其涉及一种频谱聚合的数据发送方法及 装置。 背景技术
长期演进(LTE, Long Term Evolution ) 系统与高级长期研究( LTE-A, LTE- Advanced ) 系统中的无线帧 (radio frame ) 包括频分双工 (FDD, Frequency Division Duplex )模式和时分双工 ( TDD, Time Division Duplex ) 模式的帧结构。 图 1为现有 LTE/LTE-A FDD系统中帧结构示意图, 如图 1 所示, 一个 10亳秒(ms )的无线帧由二十个长度为 0.5ms , 编号 0〜19的时 隙 ( slot )组成, 时隙 2i和 2i+l组成长度为 lms的子帧 ( sub frame ) i。
图 2为现有 LTE/LTE-A TDD系统中帧结构示意图, 一个 10ms的无线 帧由两个长为 5ms的半帧( half frame )组成,一个半帧包括 5个长度为 lms 的子帧, 子帧 i定义为 2个长为 0.5ms的时隙 2ι和 2i+l。 其支持的上下行 配置如表 1所示:
Figure imgf000003_0001
4 10 ms D S u u D D D D D D
5 10 ms D S u D D D D D D D
6 5 ms D s u u U D S U U D 表 1
其中, 对一个无线帧中的每个子帧, "D"表示专用于下行传输的子帧, "U" 表示专用于上行传输的子帧, "S" 表示特殊子帧, 它包含下行导频 时隙 (DwPTS , Downlink Pilot Time Slot ), 保护间隔 (GP, Guard Period ) 和上行导频时隙 ( UpPTS, Uplink Pilot Time Slot ) 三部分。
在上述两种帧结构里, 对于标准循环前缀(Normal Cyclic Prefix ), — 个时隙包含 Ί个长度为 66.7微秒(us )的符号, 其中第一个符号的 CP长度 为 5.21us,其余 6个符号的 CP长度为 4.69 us;对于扩展循环前缀( Extended CP, Extended Cyclic Prefix ), 一个时隙包含 6个符号, 所有符号的 CP长度 均为 16.67 us。
LTE/LTE系统中, 混合自动重传请求 ( HARQ , Hybrid Automatic Repeat Request )过程是指: 当基站或者终端有数据需要传输时, 基站通过下行信 令发送数据分配传输时所需的信息, 如资源分配信息等等。 发送端根据这 些信息发送数据, 同时将数据保存在自己的緩存器中, 以便进行重传, 当 接收端接受到数据之后进行检测,如果数据被正确接收,则发送确认( ACK, Acknowledged )给发送端 , 发送端接收到 ACK之后清空这次传输所使用的 緩冲存储器, 结束本次传输。 如果数据没有被正确接收, 则发送未确认 ( NACK, Non-acknowledged )给发送端, 并将没有正确接收的分组保存在 接收端的緩冲存储器中, 发送在接收到 NACK信息之后, 从自己的緩冲存 储器中提出数据, 并在相应的子帧及相应的频域位置上使用特定的分组格 式进行重传。 接收端在接收到重传分组之后, 与前面没有正确接收的分子 进行合并, 再一次进行检测, 然后重复上述过程, 直到数据被正确接收或 传输次数超过最大传输次数门限。
LTE /LTE-A系统中, 关于下行 HARQ中物理下行共享信道 ( PDSCH, Physical Downlink Share Channel )调度定时有如下规定即对下行 HARQ的 调度有如下规定: UE在子帧 n上检测物理下行控制信道(PDCCH , Physical Downlink Control Channel ), 并根据 PDCCH的信息接收和检测当前子帧的 PDSCH。
LTE/LTE-A FDD 系统中, 关于下行 HARQ 中发送 PDSCH 的 HARQ-ACK, 即对下行 HARQ的定时关系有如下规定: UE在子帧 n上检 测 PDSCH传输或者指示下行半静态持续调度释放( SPS release )的 PDCCH, 在子帧 n+4上传输对应的 HARQ-ACK响应。 LTE/LTE-A TDD 系统中, 对 下行 HARQ的定时关系有如下规定: UE在子帧 n-k上检测 PDSCH传输或 者指示下行 SPS release的 PDCCH,在上行子帧 n上传输对应的 HARQ-ACK 响应, 其中 k属于 K, 不同上下行配置中 K的取值如表 2所示:
Figure imgf000005_0002
Figure imgf000005_0001
LTE/LTE-A FDD 系统中, 关于物理上行共享信道( PUSCH, Physical
Uplink Share Channel )的 HARQ定时规定如下: 设 UE在下行子帧 n上检 测到 HARQ信息, 则该信息对应该 UE在上行子帧 n-4上发送的 PUSCH。
LTE/LTE-A TDD系统中, 关于 PUSCH的 HARQ定时规定如下: 设 UE在下行子帧 n上检测到 HARQ信息, 该信息可以通过 PDCCH 或者物理混合自动重传指示信道 ( PHICH , Physical hybrid-ARQ indicator channel )发送, 对于上行-下行配置 1〜6及配置 0 ( I_PHICH参数 =0 )情况 下, 该信息对应该 UE在上行子帧 n-k上发送的 PUSCH, 对于不同的上行- 下行配置及子帧索引, 不同上下行配置中 k的取值如下表 3所示:
Figure imgf000006_0002
Figure imgf000006_0001
对于上行-下行配置 0 ( I— PHICH参数 =1 )情况下, 设 UE在下行子帧 n 上检测到 HARQ 信息, 则该信息对应该 UE 在上行子帧 n-6 上发送的 PUSCH。 LTE/LTE- A FDD系统中, 由于上下行子帧是——对应的 , 所以当 PDSCH只包含一个传输块时 , UE要反馈 1比特的 ACK/NACK应答信息, 当 PDSCH包含两个传输块时, UE要反馈 2比特的 ACK/NACK应答信息, UE使用 PUCCH formatla/lb发送 1/2比特的 ACK/NACK应答信息。 TDD 中, 由于上下行子帧的不是——对应的, 也就是说多个下行子帧对应的 ACK/NACK应答信息需要在一个上行子帧的 PUCCH信道上发送, 其中上 行子帧对应的下行子帧集合组成了 "bundling window"。 ACK/NACK应答 信息的发送方法有两种: 一种是绑定方法 (bundling ), 该方法的核心思想 是把需要在该上行子帧反馈的各个下行子帧对应的传输块的 ACK/NACK 应答信息进行逻辑与运算, 如果一个下行子帧有 2个传输块, UE要反馈 2 比特的 ACK/NACK应答信息, 如果各个子帧只有一个传输块, UE要反馈 1比特的 ACK/NACK应答信息, UE采用 PUCCH format la/lb来发送这 1 或 2比特的 ACK/NACK应答消息;另一种是 multiplexing( multiplexing with channel selection,信道选择)方法,该方法的核心思想是利用不同的 PUCCH 信道和该信道上不同的调制符号来表示需要在该上行子帧反馈的下行子帧 的不同反馈状态, 如果下行子帧上有多个传输块, 那么先将下行子帧的多 个传输块反馈的 ACK/NACK进行逻辑与 ( spatial bundling )后再进行信道 选择, UE采用 format lb with channel selection (格式 lb联合信道选择 )来 发送 ACK/NACK应答消息。
LTE-A系统相对于 LTE系统最为显著的特征是, LTE-A系统引入载波 聚合技术, 也就是将 LTE系统的带宽进行聚合以获得更大的带宽。 在引入 载波聚合的系统中, 进行聚合的载波称为分量载波 ( CC , Component Carrier ) , 也称为一个小区 ( Cell )。 同时, 还提出了主分量载波 /小区 ( PCC/PCell , Primary Component Carrier/Cell ) 和辅分量载波 /小区 ( SCC/SCell, Secondary Component Carrier/Cell )的概念。 在进行了载波聚 合的系统中, 至少包含一个主小区和辅小区, 其中主小区一直处于激活状 态, 并且规定下行 HARQ信息仅在 Pcdl上传输。
LTE-A载波聚合系统下, 当 HARQ-ACK应答消息在 PUCCH发送时, 定义了两种发送方式:采用 PUCCH format lb联合信道选择( Format lb with channel selection ) 以及 PUCCH格式 3 ( PUCCH format 3 对于配置多个 服务小区的 UE, 如果 UE最多只能支持聚合 2个服务小区的话, 则当所述 UE配置多个服务小区时, 所述 UE将采用 PUCCH format lb联合信道选择 的方式发送 HARQ-ACK;如果所述 UE能够支持超过 2个服务小区的聚合, 则当所述 UE配置多个服务小区时,基站将进一步的通过高层信令配置所述 UE是采用 PUCCH format lb联合信道选择的方式还是采用 PUCCH format 3 来发送 HARQ-ACK应答信息。
现有的载波聚合技术只应用于 FDD小区或者 TDD小区。 但是在实际 应用中, 运营商通常同时具有 FDD频谱和 TDD频谱, 因此, 支持 FDD小 区和 TDD小区聚合以实现更高的频谱利用率和用户体验是非常重要的。 这 其中, 当 FDD小区和 TDD小区聚合后, 每个 cell的 PDSCH/PUSCH应该 采用什么样的 HARQ定时发送, 对有效的实现 FDD小区和 TDD小区聚合 具有关键性意义,现有技术中一个常用方案可以称为 "双模"方案: 即 TDD cell的 PDSCH/PUSCH按照现有的 LTE/LTE-A TDD的 HARQ定时处理, FDD cell PDSCH/PUSCH按照现有的 LTE/LTE-A FDD的 HARQ定时处理。 但是这种方案有很大的缺陷, 具体说明如下:
1. 当网络为 UE下行聚合多个小区(包括至少 1个 TDD小区和至少 1 个 FDD小区)时, 该方案要求 UE在两个 cell上同时进行 HARQ反馈的能 力, 这降低了 UE的功放效率和上行覆盖, 同时也加大了 UE的实现成本。
2. 无法充分支持和利用跨载波调度的优点, 比如无法支持 PDSCH/PUSCH在 FDD cell,其对应的 PDCCH在 TDD cell的情况, 而这对 充分利用 FDD小区和 TDD小区聚合后两类型小区的资源非常不利, 从而 进一步限制了 FDD小区和 TDD小区聚合的性能提高。
因此, 给出一个方法, 有效的实现 FDD小区和 TDD小区聚合, 可以有效 的解决上述问题, 即能充分有效的利用 TDD和 FDD资源, 又有利于现有 基站和终端的实现是非常必要的。 发明内容
有鉴于此, 本发明实施例希望提供一种频谱聚合的数据发送方法及装 置, 在 TDD和 FDD—起聚合时发送数据, 既能充分有效的利用 TDD和 FDD资源, 又有利于现有基站和终端的实现。
本发明实施例的技术方案是这样实现的:
一种频谱聚合的数据发送方法, 为用户设备 UE配置多个小区, 多个小 区至少包括一个时分双工 TDD小区和至少一个频分双工 FDD小区;
下行聚合多个不同类型小区时, 该方法包括:
将所述多个小区的下行混合自动请求重传 HARQ信息集中在多个小区 中的一个 TDD小区对应的上行子帧发送; 所述 TDD小区为主小区, 其它 小区为辅小区, 设主小区的上行-下行配置为配置 X, X€ {0,1 ,2,3,4,5,6} ; 在每个 FDD 小区上为 UE配置下行子帧, 约定网络只在所配置的下行 子帧,才能发送针对所述 UE的物理下行控制信道 PDCCH/物理下行共享信 道 PDSCH, UE则在所配置的下行子帧上检测及接收所述 PDCCH/PDSCH; 或者, 网络和 UE约定: UE认为在一或多个下行子帧没有发送给自己 的 PDCCH/ PDSCH, 而所述下行子帧之外的子帧则可能有发送给自己的 PDCCH/ PDSCH。
其中, 该方法还包括: 对于多个小区中的一个 FDD小区, 在所述下行 子帧上发送给所述 UE的 PDSCH的 HARQ定时,网絡和 UE约定采用上行 -下行配置 Y G {0,1,2,3,4,5,6}中 PDSCH的 HARQ定时。
其中, 所述网絡和 UE 约定采用上行-下行配置 Y e {0,1 ,2,3,4,5,6}中 PDSCH的 HARQ定时, 具体包括:
在网络侧, 网络按照上行-下行配置 Y的定时, 在相应下行子帧上发送 调度在所述下行子帧发送 PDSCH的下行授权及 PDSCH, 按照上行-下行配 置 Y的定时在与主小区对应的上行子帧上接收所述 FDD小区 PDSCH的 HARQ信息;
在 UE侧, UE按照上行-下行配置 Y的定时在相应下行子帧上接收所 述 PDSCH的下行授权及 PDSCH,按照上行-下行配置 Y的定时, 在与主小 区对应的上行子帧上发送所述 FDD小区 PDSCH的 HARQ信息。
其中, 所述 Y具体通过下述任一种方式确定:
方式一: 对于所述 FDD小区, 当所述下行子帧在一个无线帧的下行子 帧为上行-下行配置 X所包含的下行子帧的一个子集时, Y=X;
方式二: 对于所述 FDD小区, 当所述下行子帧在一个无线帧的下行子 帧是上行-下行配置 X所包含的下行子帧的一个超集时, 要求所述下行子帧 在一个无线帧的下行子帧为上行-下行配置 Z 所包含的下行子帧的一个子 集, Z 6 {0, 1,2,3,4,5,6} , 此时, Y=Z;
方式三: 对于所述 FDD小区, 当上述下行子帧在一个无线帧的下行子 帧不是上行-下行配置 X所包含的下行子帧的一个超集,也不是上行-下行配 置 X所包含的下行子帧的一个子集时, 要求上述下行子帧在一个无线帧的 下行子帧是为上行-下行配置 z 所包含的下行子帧的一个子集, z e
{0, 1 ,2,3,4,5,6} , 此时, Y=M。
其中, 该方法还包括: 在所述方式三的场景下, Y=M 时, 要求上行- 下行配置 M, M {0,1,2,3,4,5,6}的上行子帧是上行-下行配置 Z的上行子帧 的子集, 同时要求上行-下行配置 M的上行子帧也是上行-下行配置 X的上 行子帧的子集。
其中, 该方法还包括: 当有多个 Y值能选择时, 网絡侧设备能与 UE 约定采用其中一个 Y值;
选择所述 Y的方式包括: 约定采用多个 Y值中 Y值最小的, 或者多个 Y值中 Y值最大的, 或者 HARQ延时最小对应的上行-下行配置索引;
或者, 选择所述 Y的方式包括: 根据约定条件动态变化, 在不同时刻 采用不同的上行-下行配置索引。
其中, 所述网络和 UE 约定采用上行-下行配置 Y e {0,1,2,3,4,5,6}中 PDSCH的 HARQ定时的通知方式包括以下任意一种:
网络层通过显式信令的方式通知 UE:
网络侧通过隐含的方式通知 UE。
一种频谱聚合的数据发送方法, 为用户设备 UE配置多个小区, 多个小 区至少包括一个时分双工 TDD小区和至少一个频分双工 FDD小区;
上行聚合多个不同类型小区时, 该方法包括:
在每个 FDD小区上为 UE配置上行子帧, 约定所述 UE只在所配置的 上行子帧, 才能发送物理上行共享信道 PUSCH, 网络则在为所述 UE发送 在所述上行子帧发送 PUSCH的上行授权;
或者, 网络和 UE约定: UE认为在一或多个下行子帧没有发送给自己 的上行授权, 而所述下行子帧之外的子帧则可能有发送给自己的上行授权。
其中, 该方法还包括: 对于多个小区中的一个 FDD小区, 对于 UE在 所述上行子帧上发送 PUSCH的 HARQ定时, 网络和 UE约定采用上行-下 行配置 P {0,1,2,3,4,5,6}中 PUSCH的 HARQ定时。
其中, 所述网络和 UE 约定采用上行-下行配置 P€ {0,1,2,3,4,5,6}中 PUSCH的 HARQ定时, 具体包括:
在网络侧, 网络按照上行-下行配置 P的定时, 在相应下行子帧上发送 调度在所述上行子帧发送 PUSCH的上行授权;
在 UE侧, UE按照上行-下行配置 P的定时在相应下行子帧上检测需要 其中,该方法还包括: 所述上行授权通过物理下行控制信道 PDCCH发 送、 或者通过物理混合自动重传指示信道 PHICH发送。
其中, 所述 P具体通过下述任一种方式确定:
方式一: 当 UE工作在非跨载波调度模式,对于多个小区中的一个 FDD 小区, 当所述上行子帧在一个无线帧的上行子帧为上行-下行配置 Y, Y (≡ {0,1,2,3,4,5,6}所包含的上行子帧的一个子集时, Ρ=Υ;
方式二: 当 UE工作在跨载波调度模式, 对于多个小区中的一个 FDD 小区, 对于在上述上行子帧发送的 PUSCH, 其对应的调度所述 PUSCH的 PDCCH或 PHICH在上述的一个 TDD小区上, 设所述 TDD小区的上行-下 行配置为配置 X, X e {0,1,2,3,4,5,6} ; 当所述配置在一个无线帧的上行子帧 是上行-下行配置 X所包含的上行子帧的一个子集, 并且上行-下行配置 X 的 PUSCH的往返时间 RTT是 10ms时, P=X;
当所述配置在一个无线帧的上行子帧不是上行-下行配置 X所包含的上 行子帧的一个子集,或者上行-下行配置 X的 PUSCH的 RTT不是 10ms时, 要求所述配置在一个无线帧的上行子帧为上行-下行配置 Y , Y {0,1,2,3,4,5,6}中上行子帧的一个子集; 其中,
当 X=0, Y=2或 4或 5时, Ρ=0;
当 Χ=6, Υ=2或 5时, P=l;
除去所述 Χ=0, Υ=2或 4或 5或 Χ=6, Υ=2或 5时的其它情况时, Ρ=Υ。 其中, 该方法还包括: 当有多个 Ρ值能选择时, 网络侧设备能与 UE 约定采用其中一个 Ρ值;
选择所述 Ρ的方式包括: 约定采用多个 Ρ值中 Ρ值最小的, 或者多个 Ρ值中 Ρ值最大的, 或者 HARQ延时最小对应的上行-下行配置索引;
或者, 选择所述 Ρ的方式包括: 根据约定条件动态变化, 在不同时刻 采用不同的上行 -下行配置中 PUSCH的 HARQ定时。
其中, 该方法还包括: 当有多个 P值能选择时, 对于网络侧设备能与 UE约定采用的 P值, 要求上行-下行配置 P中下行子帧是上行 -下行配置配 置 X中下行子帧的子集;
若采用此时仍然有多个 P值, 在有多个 P值能选择时, 网络侧设备能 与 UE约定采用其中一个 P值;
选择所述 P的方式包括: 约定采用多个 P值中 P值最小的, 或者多个 P值中 P值最大的, 或者 HARQ延时最小对应的上行-下行配置索引;
选择所述 P的方式还包括: 根据约定条件动态变化, 在不同时刻采用 不同的上行-下行配置索引。
其中, 所述网络和 UE 约定采用上行-下行配置 P e {0,1,2,3,4,5,6}中 PUSCH的 HARQ定时的通知方式包括以下任意一种:
网络层通过显式信令的方式通知 UE:
网络侧通过隠含的方式通知 UE。 一种频谱聚合的数据发送装置, 所述装置包括配置单元, 为用户设备
UE配置多个小区, 多个小区至少包括一个时分双工 TDD小区和至少一个 频分双工 FDD小区;
下行聚合多个不同类型小区时, 所述装置还包括:
第一处理单元, 配置为将所述多个小区的下行混合自动请求重传 HARQ信息集中在多个小区中的一个 TDD小区对应的上行子帧发送;所述 TDD小区为主小区, 其它小区为辅小区, 设主小区的上行-下行配置为配置 X, {0, 1,2,3,4,5,6} ;
第二处理单元, 配置为在每个 FDD 小区上为 UE配置下行子帧, 约定 网络只在所配置的下行子帧,才能发送针对所述 UE 的物理下行控制信道 PDCCH/物理下行共享信道 PDSCH, UE则在所配置的下行子帧上检测及接 收所述 PDCCH/PDSCH; 或者, 网络和 UE约定: UE认为在一或多个下行 子帧没有发送给自己的 PDCCH/ PDSCH, 而所述下行子帧之外的子帧则可 能有发送给自己的 PDCCH/ PDSCH。
其中, 所述第二处理单元, 还包括: 第一定时约定模块;
第一定时约定模块, 配置为对于多个小区中的一个 FDD小区, 在所述 下行子帧上发送给所述 UE的 PDSCH的 HARQ定时,网络和 UE约定采用 上行-下行配置 Y e {0, 1,2,3,4,5,6}中 PDSCH的 HARQ定时。
其中, 所述第一定时约定模块, 还配置为约定网络按照上行-下行配置 Y的定时,在相应下行子帧上发送调度在所述下行子帧发送 PDSCH的下行 授权及 PDSCH, 按照上行-下行配置 Y的定时在与主小区对应的上行子帧 上接收所述 FDD小区 PDSCH的 HARQ信息;约定 UE按照上行-下行配置 Y的定时在相应下行子帧上接收所述 PDSCH的下行授权及 PDSCH, 按照 上行-下行配置 Y的定时, 在与主小区对应的上行子帧上发送所述 FDD小 区 PDSCH的 HARQ信息。 其中, 所述第一定时约定模块, 还配置为以任一种方式确定所述 Y: 方式一: 对于所述 FDD小区, 当所述下行子帧在一个无线帧的下行子 帧为上行-下行配置 X所包含的下行子帧的一个子集时, Y=X;
方式二: 对于所述 FDD小区, 当所述下行子帧在一个无线帧的下行子 帧是上行-下行配置 X所包含的下行子帧的一个超集时, 要求所述下行子帧 在一个无线帧的下行子帧为上行-下行配置 Z 所包含的下行子帧的一个子 集, Z G {0, 1 ,2,3,4,5,6} , 此时, Y=Z;
方式三: 对于所述 FDD小区, 当上述下行子帧在一个无线帧的下行子 帧不是上行-下行配置 X所包含的下行子帧的一个超集,也不是上行-下行配 置 X所包含的下行子帧的一个子集时, 要求上述下行子帧在一个无线帧的 下行子帧是为上行-下行配置 Z 所包含的下行子帧的一个子集, z e {0, 1 ,2,3,4,5,6} , 此时, Y=M。
其中,所述第一定时约定模块,还配置为在所述方式三的场景下, Y=M 时, 要求上行-下行配置 M, M e {0, 1 ,2,3,4,5,6}的上行子帧是上行-下行配置 Z的上行子帧的子集, 同时要求上行-下行配置 M的上行子帧也是上行-下 行配置 X的上行子帧的子集。
所述第一处理单元、 所述第二处理单元、 所述第一定时约定模块在执 行处理时, 可以采用中央处理器(CPU, Central Processing Unit )、 数字信 号处理器( DSP, Digital Singnal Processor )或可编程逻辑阵列( FPGA, Field - Programmable Gate Array ) 买现。
一种频谱聚合的数据发送装置, 所述装置包括配置单元, 为用户设备 UE配置多个小区, 多个小区至少包括一个时分默工 TDD小区和至少一个 频分双工 FDD小区;
上行聚合多个不同类型小区时, 所述装置还包括:
第三处理单元, 配置为在每个 FDD小区上为 UE配置上行子帧, 约定 所述 UE只在所配置的上行子帧, 才能发送物理上行共享信道 PUSCH, 网 络则在为所述 UE发送在所述上行子帧发送 PUSCH的上行授权; 或者, 网 络和 UE约定: UE认为在一或多个下行子帧没有发送给自己的上行授权, 而所述下行子帧之外的子帧则可能有发送给自己的上行授权。
其中, 所述第三处理单元, 还包括第二定时约定单元, 配置为对于多 个小区中的一个 FDD 小区, 对于 UE在所述上行子帧上发送 PUSCH 的 HARQ定时,网络和 UE约定采用上行-下行配置 P e {0,1,2,3,4,5,6}中 PUSCH 的 HARQ定时。
其中, 所述第二定时约定单元, 还配置为约定网络按照上行-下行配置 P的定时, 在相应下行子帧上发送调度在所述上行子帧发送 PUSCH的上行 授权; 约定 UE按照上行-下行配置 P的定时在相应下行子帧上检测需要在 所述上行子帧发送 PUSCH的上行授权。
其中, 所述第二定时约定单元, 还配置为以任一种方式确定所述 P: 方式一: 当 UE工作在非跨载波调度模式,对于多个小区中的一个 FDD 小区, 当所述上行子帧在一个无线帧的上行子帧为上行-下行配置 Y, Y {0,1,2,3,4,5,6}所包含的上行子帧的一个子集时, P=Y;
方式二: 当 UE工作在跨载波调度模式, 将多个小区中的一个 FDD小 区的上行-下行配置为配置 X, X e {0,1,2,3,4,5,6} , 对于多个小区中的一个 FDD小区,对于在上述上行子帧发送的 PUSCH,其对应的调度所述 PUSCH 的 PDCCH或 PHICH在上述的一个 TDD小区上, 设所述 TDD小区的上行 -下行配置为配置 X, X e {0,1,2,3,4,5,6} ; 当所述配置在一个无线帧的上行 子帧是上行-下行配置 X所包含的上行子帧的一个子集,并且上行-下行配置 X的 PUSCH的往返时间 RTT是 10ms时, P=X;
当所述配置在一个无线帧的上行子帧不是上行-下行配置 X所包含的上 行子帧的一个子集、或者上行-下行配置 X的 PUSCH的 RTT不是 10ms时, 要求所述配置在一个无线帧的上行子帧为上行-下行配置 Υ , Y€ {0, 1,2,3,4,5,6}中上行子帧的一个子集; 其中,
当 X=0, Y=2或 4或 5时, Ρ=0;
当 Χ=6, Υ=2或 5时, P=l ;
除去所述 Χ=0, Υ=2或 4或 5或 Χ=6, Υ=2或 5时的其它情况时, Ρ=Υ。 所述第三处理单元、 所述第二定时约定单元在执行处理时, 可以采用 中央处理器(CPU, Central Processing Unit ),数字信号处理器(DSP, Digital Singnal Processor )或可编程還辑阵列 ( FPGA, Field - Programmable Gate Array ) 实现。
本发明实施例的方法包括: 为用户设备 UE配置多个小区, 多个小区至 少包括一个时分双工 TDD小区和至少一个频分双工 FDD小区, 各个小区 在时间上满足时间同步关系; 下行聚合多个不同类型小区时, 将所述多个 小区的下行混合自动请求重传 HARQ信息集中在多个小区中的一个 TDD 小区对应的上行子帧发送; 所述 TDD小区为主小区, 其它小区为辅小区, 设主小区的上行-下行配置为配置 X, X€ {0, 1,2,3,4,5,6} ; 在每个 FDD 小区 上为 UE配置下行子帧, 使网络只在所配置的下行子帧,才能发送针对所述 UE的物理下行控制信道 PDCCH/物理下行共享信道 PDSCH, UE则在所配 置的下行子帧上检测及接收所述 PDCCH/PDSCH。 采用本发明, 通过对子 帧的配置,在 TDD和 FDD—起聚合时发送数据,既能充分有效的利用 TDD 和 FDD资源, 又有利于现有基站和终端的实现。 附图说明
图 1为现有技术 FDD系统中帧结构示意图;
图 2为现有技术 TDD系统中帧结构示意图;
图 3为本发明下行频谱聚合发送的示意图;
图 4为本发明上行频谱聚合发送的示意图; 图 5为本发明实施例的 TDD系统和 FDD系统聚合的数据发送示意图; 图 6为本发明实施例的 TDD系统和 FDD系统聚合的数据发送的另一 示意图;
图 7为本发明实施例的 TDD系统和 FDD系统聚合的数据发送的另一 示意图;
图 8为本发明实施例的 TDD系统和 FDD系统聚合的数据发送的另一 示意图。 具体实施方式
下面结合附图对技术方案的实施作进一步的详细描述。
本发明以下实施例以 LTE/LTE-A TDD和 LTE/LTE-A FDD系统进行举 例阐述, 在此需要说明的是: 1 )本发明实施例涉及的上行 -下行配置为 LTE/LTE-A TDD系统所支持的 7种上行 -下行配置,这 7种配置索引为 0, 1, 2 - , 6。 具体的, 本发明实施例中, 主小区的上行-下行配置也是上面所述 的 7种配置中的 1个, 也就是说, 文中涉及 "主小区的上行-下行配置为配 置 X" , 实际上指主小区的上行 -下行配置为 LTE/LTE-A TDD 系统的上行- 下行配置 X , X 6 {0,1,2,3,4,5,6}。 2 ) 本发明实施例涉及的多个小区为 LTE/LTE-A TDD系统所支持的小区, 也就是说, 文中涉及 "多个小区至少 包括一个 TDD小区和至少一个 FDD小区", 实际上指多个小区至少包括一 个 LTE/LTE-A TDD小区和至少一个 LTE/LTE-A FDD小区。
另, 本文涉及到的参数 X、 Υ、 Ρ、 Ζ, 都是指 LTE/LTE-A TDD系统所 支持的上行-下行配置索引, 也可以成为约定信息 X、 Υ、 Ρ、 Ζ。 但是, 本 文并不限定 LTE/LTE-A TDD系统, 其他通信系统也适用, 此处仅为举例描 述。
本发明实施例的频谱聚合的数据发送方法是一种 TDD系统和 FDD系 统频 聚合的数据发送方案, 主要包括以下内容: 在下行聚合多个小区(包括至少 1个 TDD小区和至少 1个 FDD小区) 的场景, 如图 3所示, 该方法包括:
步骤 101、 为 UE配置 TDD小区和 FDD小区。
这里, 为实现本发明目的, 不失一般性, 这里设网络为 UE配置了至少 一个 TDD小区和至少一个 FDD小区, 各个小区在时间上满足时间同步关 系。
步骤 102、将上述多个小区的下行 HARQ信息集中在其中一个 TDD小 区对应的上行子帧发送。
这里, 该 TDD小区称为主小区, 其它小区则称为辅小区, 设主小区的 上行-下行配置为配置 Χ,Χ€ {0,1,2,3,4,5,6} ;
步骤 103、 在每个 FDD 小区上为 UE配置一些下行子帧, 使网絡只在 所配置的下行子帧, 才能发送针对所述 UE的 PDCCH/ PDSCH, UE则在所 配置的下行子帧上检测及接收所述 PDCCH/PDSCH。 或者等价的, 网络和 UE 约定: UE 可以认为在一或多个下行子帧没有发送给自己的 PDCCH/ PDSCH。 而上述子帧外则可能有发送给自己的 PDCCH/ PDSCH
这里, 为 UE配置一些下行子帧的含义是: 网络只在这些子帧, 才可能 发送针对该 UE的 PDCCH/PDSCH, UE则在这些配置的子帧上检测和接收 上述的 PDCCH/PDSCH。
这里, 需要指出的是, 上述步骤 102和步骤 103并没有必然的前后关 系, 二者可以任意互换组合。
更进一步, 对于上述的某一个 FDD小区, 对于在上述子帧上发送给该 UE的 PDSCH 的 HARQ定时, 网络和 UE约定采用上行-下行配置 Y e {0, 1 ,2,3,4,5,6}中 PDSCH的 HARQ定时 , 即: 在网络侧, 网络按照上行-下 行配置 Y的定时,在相应下行子帧上发送调度在上述下行子帧发送 PDSCH 的下行授权及 PDSCH, 按照上行-下行配置 Y的定时在主小区相应子帧上 接收上述 FDD小区 PDSCH的 HARQ信息; 在 UE侧, UE按照上行 -下行 配置 Y的定时在相应下行子帧上接收上述的下行授权及 PDSCH,按照上行 -下行配置 Y的定时,在主小区相应子帧上发送 FDD小区 PDSCH的 HARQ 信息。
上述约定信息 Y可以通过下述方式确定:
对于上述的 FDD小区, 当上述下行子帧在一个无线帧的下行子帧为上 行-下行配置 X所包含的下行子帧的一个子集时, Y=X;
对于上述的 FDD小区, 当上述下行子帧在一个无线帧的下行子帧是上 行-下行配置 X所包含的下行子帧的一个超集时, 要求上述下行子帧在一个 无线帧的下行子帧为上行-下行配置 z所包含的下行子帧的一个子集, z e
{0,1,2,3,4,5,6} , jt匕时, Y=Z;
对于上述的 FDD小区, 当上述下行子帧在一个无线帧的下行子帧不是 上行-下行配置 X所包含的下行子帧的一个超集, 也不是上行-下行配置 X 所包含的下行子帧的一个子集时, 要求上述下行子帧在一个无线帧的下行 子帧是为上行-下行配置 Z 所包含的下行子帧的一个子集, {0,1,2,3,4,5,6} , jt匕时, Y=M;
这里要求上行-下行配置 M, {0,1,2,3,4,5,6}的上行子帧是上行 -下行 配置 Z的上行子帧的子集,同时要求上行-下行配置 M的上行子帧也是上行 -下行配置 X的上行子帧的子集。
当有多个 γ值可以选择时, 网络侧设备和 UE可以约定采用其中一个 Y值, 比如可以约定采用这多个 Y值中 Y值最小的,或者多个 Y值中 Y值 最大的, 或者 HARQ延时最小对应的上行-下行配置索引, 或者上述配置子 帧中可被调度子帧数目最多的对应的上行-下行配置索引, 或者可以根据约 定条件动态变化, 在不同时刻采用不同的上行-下行配置索引等。
网络和 UE 约定采用上行-下行配置 {0,1,2,3,4,5,6}中 PDSCH 的 HARQ 定时的方法有多种, 比如通过高层信令、 物理层信令等显示信令的 方式通知 UE, 也可以通过隐含的方式通知 UE, 比如, 在上述子帧配置与 采用的 HARQ定时之间建立某种映射关系, 网络和 UE约定采用相同的映 射关系, 这样 UE 在获得上述子帧配置信息后, 也同时获得其应采用的 HARQ定时信息。
对于上述的 TDD小区,对于在下行子帧上发送给该 UE的 PDSCH,其 HARQ定时采用 LTE/LTE- Advanced TDD系统的定时, 这里不在赘述。
在上行聚合多个小区(包括至少 1个 TDD小区和至少 1个 FDD小区), 对于上行聚合情况, HARQ信息实际上是在 PDCCH或者 PHICH上发送的 , 其发送所在的定时关系及所在小区在下面的描述中进行具体说明。
如图 4所示, 该方法包括:
步骤 201、 为 UE配置 TDD小区和 FDD小区。
这里, 为实现本发明目的, 不失一般性, 这里设网络为 UE配置了至少 一个 TDD小区和至少一个 FDD小区, 各个小区在时间上满足时间同步关 系。
步骤 202、 在每个 FDD 小区上为 UE配置一些上行子帧, 使所述 UE 只在所配置的上行子帧, 才能发送物理上行共享信道 PUSCH, 网络则在为 这里, 为 UE配置一些上行子帧的含义是: 只能在上述子帧, UE才可 能发送 PUSCH, 相应地, 网络只能为该 UE发送在上述子帧发送 PUSCH 的上行授权)。 或者等价的, 网络和 UE约定: 网络和 UE约定: UE可以认 为在一或多个下行子帧没有发送给自己的上行授权。 而上述子帧外则可能 有发送给自己的上行授权。 当 UE在上述子帧外检测到上行授权后,应该在 上行授权对应的上行子帧发送 PUSCH , 网络则在上述上行子帧接收 PUSCH。 更进一步, 对于上述的某一个 FDD小区, 对于 UE在上述子帧上发送 PUSCH的 HARQ定时,网络和 UE约定采用上行-下行配置 P€ {0,1 ,2,3,4,5,6} 中 PUSCH的 HARQ定时, 即: 在网絡侧, 网络按照上行-下行配置 P的定 时, 在相应下行子帧上发送调度在上述上行子帧发送 PUSCH的上行授权; 在 UE侧, UE按照上行-下行配置 P的定时在相应下行子帧上检测可能的需 要在上述子帧发送 PUSCH的上行授权。
上述上行授权可以通过 PDCCH发送, 也可以通过 PHICH发送。
上述约定信息 P可以通过下述方式确定:
当 UE工作在非跨载波调度模式, 即上述子帧对应的 PUSCH及调度该 PUSCH的 PDCCH或 PHICH(Physical hybrid- ARQ indicator channel)在同一 个 cell时, 对于上述的某一个 FDD小区, 当上述上行子帧在一个无线帧的 上行子帧为上行-下行配置 Y, Y e {0,1,2,3,4,5,6}所包含的上行子帧的一个 子集时, P=Y;
当 UE 工作在跨载波调度模式, 即: 即对于在上述上行子帧发送的 PUSCH, 其对应的调度该 PUSCH的 PDCCH或 PHICH在上述的一个 TDD cell上,设该 TDD小区的上行-下行配置为配置 Χ,Χ 6 {0, 1,2,3,4,5,6}。此时: 当上述配置在一个无线帧的上行子帧为上行-下行配置 X所包含的上行 子帧的一个子集, 并且上行-下行配置 X 的 PUSCH 的往返时间 (RTT, round-trip time )是 10ms时, P=X;
当上述子帧在一个无线帧的上行子帧不是上行-下行配置 X所包含的上 行子帧的一个子集或者上行-下行配置 X的 PUSCH的 RTT不是 10ms时, 要求上述子帧在一个无线帧的上行子帧为上行-下行配置 γ, γ e
{0, 1 ,2,3,4,5,6}中上行子帧的一个子集, 此时:
P=0, 当 X=0, Y=2或 4或 5时;
P=l, 当 Χ=6, Υ=2或 5时; P=Y, 其它情况。
网絡侧设备可以和 UE约定采用其中一个 Ρ值。比如可以约定采用这多 个 Ρ值中 Ρ值最小的, 或者多个 Ρ值中 Ρ值最大的, 或者 HARQ延时最小 对应的上行-下行配置索引, 或者上述配置子帧中可被调度子帧数目最多的 对应的上行-下行配置索引。
或者, 也可以根据约定条件动态变化, 在不同时刻采用不同的上行-下 行配置索引。
当有多个 Ρ值能选择时, 对于网络侧设备可以和 UE约定采用的 Ρ值, 要求上行-下行配置 Ρ中下行子帧是上行-下行配置配置 X中下行子帧的子 集。 如果此时仍然有多个 Ρ值, 可以采用上述方法如 "约定采用这多个中 Ρ 值最小对应的上行 -下行配置中 PUSCH的 HARQ定时" 处理。
网络和 UE 约定采用上行-下行配置 Ρ€ {0, 1 ,2,3,4,5,6}中 PUSCH 的 HARQ 定时的方法有多种, 比如通过高层信令、 物理层信令等显示信令的 方式通知 UE, 也可以通过隐含的方式通知 UE, 比如, 在上述子帧配置与 采用的 HARQ定时之间建立某种映射关系, 网络和 UE约定采用相同的映 射关系, 这样 UE 在获得上述子帧配置信息后, 也同时获得其应采用的 HARQ定时信息。
对于上述的 TDD小区,对于 UE在上行子帧上发送的 PUSCH,其 HARQ 定时采用 LTE/LTE-Advanced TDD系统的 HARQ定时, 这里不在赘述。
上述子帧配置(包括下行子帧配置和上行子帧配置), 在每个无线帧可 以相同, 也可以不同。
采用本发明的 TDD系统和 FDD系统频谱聚合的数据发送方案, 可以 有效的实现 FDD小区和 TDD小区聚合, 充分支持和利用跨载波调度, 在 保持了现有 LTE- Advanced FDD或 TDD小区聚合优点的同时, 还具有实现 简单, 降低网絡和终端实现成本的优点。 这里需要指出的是, 在本发明中, 不同 UE的子帧配置可以不同, 上下行所遵循的上行-下行配置的定时也可 以不同, 这也进一步提高了 FDD小区和 TDD小区聚合的灵活性, 为更加 充分有效的利用 TDD和 FDD资源提供了可能。
以下对本发明进行具体举例描述。
实族例 1 :
对于某 UE, 网络为 UE下行聚合两个 cell, —个为 TDD cell, —个为 FDD celL 该 TDD cell的上行-下行配置为配置 2, 网络配置 TDD cell 为主 小区, FDD cell为辅小区, 上述两个小区的下行 HARQ信息集中在主小区 对应的上行子帧发送。 为提高 UE的下行数据速率, 同时也为了降低 UE检 测 FDD cell的复杂度, 网络配置 FDD cell的一些下行子帧为可能为发送 PDSCH给该 UE的子帧, 比如配置每个无线帧的下行子帧 0、 下行子帧 1、 下行子帧 4、 下行子帧 5、 下行子帧 6、 下行子帧 9为可能为发送 PDSCH 给该 UE的子帧。可以发现,上述下行子帧在一个无线帧的下行子帧为上行 -下行配置 2所包含的下行子帧的一个子集。
对于上述的 FDD 小区, 在发射端, 网络 述配置信息通知 UE约定 采用上行-下行配置 1中 PDSCH的 HARQ定时, 根据本发明实施例, 上述 下行子帧在一个无线帧的下行子帧为上行-下行配置 2所包含的下行子帧的 一个子集, 网络根据上行-下行配置 2中 PDSCH的 HARQ定时来确定上述 下行子帧 0、 下行子帧 1、 下行子帧 4、 下行子帧 5、 下行子帧 6、 下行子帧 9的 HARQ定时。 比如, 设上述 FDD cell与主小区帧同步,
当网络在上述 FDD cell的下行子帧 0发送 PDSCH时, 网络应在主小 区该无线帧的子帧 7接收该 PDSCH的 HARQ信息;
当网络在上述 FDD cell下行子帧 1发送 PDSCH时, 网络应在主小区 该无线帧的子帧,接收该 PDSCH的 HARQ信息;
当网络在上述 FDD cell下行子帧 4发送 PDSCH时, 网絡应在主小区 下一个无线帧的子帧 2接收该 PDSCH的 HARQ信息;
当网络在上述 FDD cell下行子帧 5发送 PDSCH时, 网絡应在主小区 下一个无线帧的子帧 2接收该 PDSCH的 HARQ信息;
当网络在上述 FDD cell下行子帧 6发送 PDSCH时, 网络应在主小区 下一个无线帧的子帧 2接收该 PDSCH的 HARQ信息;
当网络在上述 FDD cell下行子帧 9发送 PDSCH时, 网络应在主小区 下一个无线帧的子帧 7接收该 PDSCH的 HARQ信息。
相应的, 在接收端, UE正确接收网络发送的上述配置信息后, 其应根 反馈, 比如,
UE应该在当前无线帧的子帧 2对上一个无线帧的子帧 4、 子帧 5、 子 帧 6的 PDSCH进行 HARQ信息反馈。
UE应该在当前无线帧的子帧 7对上一个无线帧的子帧 9、 当前无线帧 的子帧 0、 子帧 1的 PDSCH进行 HARQ信息反馈。
图 4给出了采用本发明实施例的 PDSCH在上述 FDD cell的下行子帧 子帧发送及 UE在 TDD cell的上行发送 HARQ信息的 HARQ定时示意图。
在上述配置子帧中, 是配置某 1个无线帧的下行子帧 0、 下行子帧 1、 下行子帧 4、 下行子帧 5、 下行子帧 6、 下行子帧 9为可能为发送 PDSCH 给该 UE的子帧, 在实际中, 也可以配置多个无线帧的下行子帧 0、 下行子 帧 1、下行子帧 4、下行子帧 5、下行子帧 6、下行子帧 9为可能为发送 PDSCH 给该 UE的子帧,更进一步,不同无线帧的子帧配置可以相同,也可以不同, 比如配置上述 FDD cell的第 1个无线帧的下行子帧 0、 下行子帧 1、 下行子 帧 4、 下行子帧 5、 下行子帧 6、 下行子帧 9为可能为发送 PDSCH给该 UE 的子帧, 第 9个无线帧的下行子帧 4、 下行子帧 5、 下行子帧 6、 下行子帧 7、 下行子帧 8、 下行子帧 9为可能为发送 PDSCH给该 UE的子帧, 采用本 发明所述方法, 网络和 UE可以约定第 1个无线帧采用上行-下行配置 2中 PDSCH的 HARQ定时, 约定第 9个无线帧采用上行-下行配置 4中 PDSCH 的 HARQ定时, 这处不在赘述。
对于上述的 TDD小区,对于在下行子帧上发送给该 UE的 PDSCH,其 HARQ定时可以采用现有 LTE/LTE-Advanced TDD系统的定时, 这里不在 赘述。
实旅例 2:
对于某 UE, 网络为 UE下行聚合 5个 cell,两个为 TDD cell,3个为 FDD celL 其中一个 TDD cell 为主小区, 设其上行-下行配置为配置 1 , 其它 4 个 cell为辅小区。 这 5个小区的下行 HARQ信息集中在主小区对应的上行 子帧发送。
对于对于上述的 TDD小区 ,对于在下行子帧上发送给该 UE的 PDSCH, 其 HARQ定时可以采用现有 LTE/LTE-Advanced TDD系统的定时, 这里不 在赘述。
对于第 1个 FDD小区, 设网络配置每个无线帧的下行子帧 0为可能为 发送 PDSCH给该 UE的子帧。
对于第 2个 FDD小区, 每个无线帧的下行子帧 0、 下行子帧 1、 下行 子帧 3、 下行子帧 4、 下行子帧 5、 下行子帧 6、 下行子帧 8、 下行子帧 9为 可能为发送 PDSCH给该 UE的子帧。
对于第 3个 FDD小区, 每个无线帧的下行子帧 0、 下行子帧 1、 下行 子帧 8为可能为发送 PDSCH给该 UE的子帧。
对于上述第 1个 FDD小区, 可以发现网络配置的子帧为主小区的上行 -下行配置 (配置 1 ) 中下行子帧的一个子集, 因此, 对于在该 cell下行子 帧上发送给该 UE的 PDSCH,其 HARQ定时可以采用实施例 1的方式处理, 这里不再赘述。 对于上述的第 2个 FDD小区, 可以发现网络配置的子帧为主小区的上 行-下行配置 (配置 1)中下行子帧的一个超集, 同时可以发现, 该配置为上行 -下行配置 2中下行子帧的一个子集, 因此, 对于上述的第 2个 FDD小区, 在发射端, 网络把上述配置信息通知 UE, 约定采用上行-下行配置 2 中 PDSCH的 HARQ定时。根据本发明, 上述下行子帧在一个无线帧的下行子 帧为上行-下行配置 2所包含的下行子帧的一个子集, 网络根据上行-下行配 置 2中 PDSCH的 HARQ定时来确定上述下行子帧 0、 下行子帧 1、 下行子 帧 3、 下行子帧 4、 下行子帧 5、 下行子帧 6、 下行子帧 8、 下行子帧 9的 HARQ定时。
当网络在上述的第 2个 FDD cell的下行子帧 0发送 PDSCH时, 网络 应在主小区该无线帧的子帧 7接收该 PDSCH的 HARQ信息;
当网络在上述的第 2个 FDD cell下行子帧 1发送 PDSCH时, 网络应 在主小区该无线帧的子帧 Ί接收该 PDSCH的 HARQ信息;
当网络在上述的第 2个 FDD cell下行子帧 3发送 PDSCH时, 网络应 在主小区该无线帧的子帧 Ί接收该 PDSCH的 HARQ信息;
当网络在上述的第 2个 FDD cell下行子帧 4发送 PDSCH时 , 网络应 在主小区下一个无线帧的子帧 2接收该 PDSCH的 HARQ信息;
当网络在上述的第 2个 FDD cell下行子帧 5发送 PDSCH时, 网络应 在主小区下一个无线帧的子帧 2接收该 PDSCH的 HARQ信息;
当网络在上述的第 2个 FDD cell下行子帧 6发送 PDSCH时, 网络应 在主小区下一个无线帧的子帧 2接收该 PDSCH的 HARQ信息;
当网络在上述的第 2个 FDD cell下行子帧 8发送 PDSCH时, 网络应 在主小区下一个无线帧的子帧 2接收该 PDSCH的 HARQ信息;
当网络在上述的第 2个 FDD cell下行子帧 9发送 PDSCH时, 网络应 在主小区下一个无线帧的子帧 7接收该 PDSCH的 HARQ信息。 相应的, 在接收端, UE正确接收网络发送的上述配置信息后, 其应根 据上行-下行配置 2中 PDSCH的 HARQ定时对上述子帧进行 HARQ信息的 反馈, 比如,
UE应该在主小区当前无线帧的子帧 2对上述的第 2个 FDD cell的上一 个无线帧的子帧 4、 子帧 5、 子帧 6、 子帧 8的 PDSCH进行 HARQ信息反
UE应该在主小区当前无线帧的子帧 7对上述的第 2个 FDD cell的上一 个无线帧的子帧 9、 当前无线帧的子帧 0、 子帧 1、 子帧 3的 PDSCH进行 HARQ信息反馈。
图 5给出了采用本发明的 PDSCH在上述的第 2个 FDD cell的下行子 帧子帧发送及 UE在 TDD cell的上行发送 HARQ信息的 HARQ定时示意图。
对于上述的第 2个 FDD小区,还可以发现网络配置的子帧为上行 -下行 配置 5中下行子帧的一个子集, 因此, 网络和 UE还可以根据上行-下行配 置 5中 PDSCH的 HARQ定时来确定上述下行子帧 0、 下行子帧 1、 下行子 帧 3、 下行子帧 4、 下行子帧 5、 下行子帧 6、 下行子帧 8、 下行子帧 9的 HARQ定时。
对于有多个 HARQ定时可以选^ ί舉的情况, 网络和 UE双方约定采用其 中一个, 比如都采用上行 -下行配置索引较小的那个定时等。
对于上述的第 3个 FDD小区, 可以发现网络配置的子帧不是主小区的 上行-下行配置(配置 1 ) 中下行子帧的一个子集, 也不是主小区的上行-下 行配置(配置 1 ) 中下行子帧的一个超集, 但是该配置是上行-下行配置 2、 3、 4、 5中下行子帧的一个子集。 根据本发明所述方法, 网络和 UE可以约 定根据上行-下行配置 2或 4或 5中 PDSCH的 HARQ定时来确定上述下行 子帧 0、 下行子帧 1、 下行子帧 8的 HARQ定时。 但是不应约定采用上行- 下行配置 3中 PDSCH的 HARQ定时来确定上述下行子帧的 HARQ定时, 因为上行-下行配置 3的上行子帧不是上行-下行配置 1的子集。 实施例 3:
对于某 UE, 网络为 UE上行聚合 3个 cell,l个为 TDD cell,2个为 FDD cell, 并且 UE工作在非跨载波调度模式。
对于上述的对于第 1个 FDD小区, 设网络为 UE配置每个无线帧的上 行子帧 2、 上行子帧 3、 上行子帧 7为 UE可能发送 PUSCH的子帧。
对于上述的对于第 2个 FDD小区, 设网络为 UE配置每个无线帧的上 行子帧 2、 上行子帧 3为 UE可能发送 PUSCH的子帧。
对于上述的第 1个 FDD小区,上述上行子帧为上行-下行配置 1所包含 的上行子帧的一个子集, 对于 UE在上述子帧上发送的 PUSCH, 其 HARQ 定时, 网络和 UE都可以约定采用上行-下行配置 1中 PUSCH的 HARQ定 时。 比 口,
在网络侧, 网络如在上行子帧 2检测到 UE发送的 PUSCH, 网络应该 在该 cell的同一个无线帧的下行子帧 6发送该 PUSCH的 HARQ信息; 在网络侧, 网络如在上行子帧 3检测到 UE发送的 PUSCH, 网络应该 在该 cell的同一个无线帧的下行子帧 9发送该 PUSCH的 HARQ信息; 在网絡侧, 网络如在上行子帧 7检测到 UE发送的 PUSCH, 网络应该 在该 cell的下一个无线帧的下行子帧 1发送该 PUSCH的 HARQ信息。
在 UE侧:
UE如在下行子帧 1检测到网络发送的上行授权信息, 则 UE应该在该 无线帧的上行子帧 7发送相应的 PUSCH;
UE如在下行子帧 6检测到网络发送的上行授权信息, 则 UE应该在该 无线帧的下一个无线帧的上行子帧 2发送相应的 PUSCH;
UE如在下行子帧 9检测到网络发送的上行授权信息, 则 UE应该在该 无线帧的下一个无线帧的上行子帧 3发送相应的 PUSCH。 图 6给出了采用 本发明的上述的第 1个 FDD小区的 PUSCH的 HARQ定时示意图。
另外,上述上行子帧还是上行-下行配置 0、 6所包含的上行子帧的一个 子集, 因此, 网絡和 UE都可以约定采用上行-下行配置 0或者 6中 PUSCH 的 HARQ定时。
网络和 UE约定采用上行-下行配置 0或者 6或者 1中 PUSCH的 HARQ 定时的方法有多种, 比如通过高层信令、 物理层信令等显示信令的方式通 知 UE, 也可以通过隐含的方式通知 UE, 比如, 在上述子帧配置与采用的 HARQ定时之间建立某种映射关系, 网络和 UE约定采用相同的映射关系, 这样 UE在获得上述子帧配置信息后, 也同时获得其应采用的 HARQ定时 信息。
当有多个上行 -下行配置中 PUSCH的 HARQ定时关系可以选择时, 网 络侧设备和 UE可以约定采用其中一个,比如可以约定采用这多个中 P值最 小对应的上行 -下行配置中 PUSCH的 HARQ定时, 或者 P值最大对应的上 行 -下行配置中 PUSCH的 HARQ定时, 或者 HARQ延时最小对应的上行- 下行配置中 PUSCH的 HARQ定时关系, 也可以根据约定条件动态变化, 在不同时刻采用不同的上行 -下行配置中 PUSCH的 HARQ定时。
对于上述的对于第 2个 FDD小区, 上述上行子帧为上行-下行配置 0、 1、 3、 4、 6所包含的上行子帧的一个子集, 因此, 网络和 UE可以约定采 用上行-下行配置 0或者 1或者 3或者 4或者 6中 PUSCH的 HARQ定时, 方法与上述的对于第 1个 FDD小区类似, 此处不在赘述。
对于上述的 TDD小区,对于 UE在上行子帧上发送的 PUSCH,其 HARQ 定时可以采用现有 LTE/LTE-Advanced TDD系统的 HARQ定时, 这里不在 实施例 4:
对于某 UE, 网络为 UE上行聚合 5个 cell,2个为 TDD cell,3个为 FDD cell,并且 UE工作在跨载波调度模式。对于上述的第 1个和第 2个 FDD cell, 调度这些 cell上 PUSCH的上行授权( PDCCH或者 PHICH )在上述第 1个 TDD cell上发送,对于上述的第 3个 FDD cell,调度这些 cell上 PUSCH的上 行授权( PDCCH或者 PHICH )在上述第 2个 TDD cell上发送。 上述第 1、 2个 TDD cell的上行 -下行配置分别为上行-下行配置 6、 配置 1。
对于上述的第 1个 FDD小区, 设网络为 UE配置每个无线帧的上行子 帧 2为 UE可能发送 PUSCH的子帧。
对于上述的第 2个 FDD小区, 设网絡为 UE配置每个无线帧的上行子 帧 2、 子帧 3、 子帧 4为 UE可能发送 PUSCH的子帧。
对于上述的第 3个 FDD小区, 设网络为 UE配置每个无线帧的上行子 帧 2、 子帧 8为 UE可能发送 PUSCH的子帧。
对于上述的第 1个 FDD小区, 网络配置的上行子帧为上行-下行配置 5 的子集,再考虑到调度这些 cell上 PUSCH的上行授权( PDCCH或者 PHICH ) 在上述第 1 个 TDD cell (上行-下行配置 6 )上发送, 上行-下行配置 6的 PUSCH的 RTT不是 10ms, 根据本发明, 网络和 UE可以约定采用上行-下 行配置 1中 PUSCH的 HARQ定时。 我们还可以发现, 网络配置的上述上 行子帧还为其它上行-下行配置所包含的上行子帧的一个子集, 因此, 网絡 和 UE还可以约定采用其它上行 -下行配置中 PUSCH的 HARQ定时。 对于 有多个上行 -下行配置中 PUSCH的 HARQ定时可以选择的情况, 网络还可 以通过一些简单原则选择最优的, 比如根据可被调度子帧数目最多这个原 则, 我们可以发现: 网络和 UE约定采用上行-下行配置 0、 1、 6中 PUSCH 的 HARQ定时, 对于上述配置的子帧来说, 其 HARQ定时是一样的, 但是 如果网络和 UE约定采用上行-下行配置 3、 4、 5中 PUSCH的 HARQ定时, 考虑到这些配置中调度上述子帧在上述第 1个 TDD cell中可能是上行子帧, 也就是说网絡无法调度上述 FDD cell的上行子帧, 但是通过 "可被调度子 帧数目最多,, 这个原则, 可以轻易排除这些不太好的 HARQ定时。 当然, 通过 "要求该配置的下行子帧也是上述第 1个 TDD cell的上行 -下行配置中 下行子帧的子集",也可以轻易排除这些不太好的 HARQ定时,此处不在赘 述。
对于上述的第 2个 FDD小区, 网络配置的上行子帧为上行-下行配置 0 的子集,再考虑到调度这些 cell上 PUSCH的上行授权( PDCCH或者 PHICH ) 在上述第 1 个 TDD cell (上行-下行配置 6 )上发送, 上行-下行配置 6的 PUSCH的 RTT不是 10ms, 根据本发明, 网络和 UE可以约定采用上行-下 行配置 0中 PUSCH的 HARQ定时。
对于上述的第 3个 FDD小区,其 PUSCH由上述的第 2个 TDD小区跨 载波调度(上行-下行配置 1 ), 考虑到网络在上述的第 3个 FDD小区配置 的上行子帧是上行-下行配置 1的子集, 并且上行-下行配置 1中 PUSCH的 RTT是 10ms, 根据本发明, 网络和 UE可以约定采用上行-下行配置 1 中 PUSCH的 HARQ定时。 图 7给出了采用本发明的上述第 3个 FDD小区的 PUSCH的 HARQ定时示意图。
对于上述的 TDD小区,对于 UE在上行子帧上发送的 PUSCH,其 HARQ 定时可以采用现有 LTE/LTE-Advanced TDD系统的 HARQ定时, 这里不在 贅述。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权 利要求范围之内。 如本发明所应用的系统不局限于 LTE系统。
本发明实施例所述集成的模块如果以软件功能模块的形式实现并作为 独立的产品销售或使用时, 也可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明实施例的技术方案本质上或者说对现有技术做出 贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一 个存储介质中, 包括若千指令用以使得一台计算机设备(可以是个人计算 机、 服务器、 或者网络设备等)执行本发明各个实施例所述方法的全部或 部分。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory )、 随 存取存储器( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。 这样, 本发明实施例不限 制于任何特定的硬件和软件结合。
相应的, 本发明实施例还提供一种计算机存储介质, 其中存储有计算 机程序, 该计算机程序用于执行本发明实施例的频谱聚合的数据发送方法。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性
本发明实施例的方法包括: 为用户设备 UE配置多个小区, 多个小区至 少包括一个时分双工 TDD小区和至少一个频分双工 FDD小区, 各个小区在 时间上满足时间同步关系; 下行聚合多个不同类型小区时, 将所述多个小 区的下行混合自动请求重传 HARQ信息集中在多个小区中的一个 TDD小区 对应的上行子帧发送; 所述 TDD小区为主小区, 其它小区为辅小区, 设主 小区的上行-下行配置为配置 X, X€ {0,1,2,3,4,5,6} ; 在每个 FDD 小区上为 UE配置下行子帧, 使网络只在所配置的下行子帧,才能发送针对所述 UE的 物理下行控制信道 PDCCH/物理下行共享信道 PDSCH, UE则在所配置的下 行子帧上检测及接收所述 PDCCH/PDSCH。采用本发明,通过对子帧的配置, 在 TDD和 FDD—起聚合时发送数据, 既能充分有效的利用 TDD和 FDD资源, 又有利于现有基站和终端的实现。

Claims

权利要求书
1、 一种频谱聚合的数据发送方法, 为用户设备 UE配置多个小区, 多 个小区至少包括一个时分双工 TDD小区和至少一个频分默工 FDD小区; 下行聚合多个不同类型小区时, 该方法包括:
将所述多个小区的下行混合自动请求重传 HARQ信息集中在多个小区 中的一个 TDD小区对应的上行子帧发送; 所述 TDD小区为主小区, 其它 小区为辅小区, 设主小区的上行-下行配置为配置 X, X€ {0,1,2,3,4,5,6}; 在每个 FDD 小区上为 UE配置下行子帧, 约定网络只在所配置的下行 子帧,才能发送针对所述 UE的物理下行控制信道 PDCCH/物理下行共享信 道 PDSCH, UE则在所配置的下行子帧上检测及接收所述 PDCCH/PDSCH; 或者, 网络和 UE约定: UE认为在一或多个下行子帧没有发送给自己 的 PDCCH/ PDSCH, 而所述下行子帧之外的子帧则可能有发送给自己的 PDCCH/ PDSCH。
2、 根据权利要求 1所述的方法, 其中, 该方法还包括: 对于多个小区 中的一个 FDD小区,在所述下行子帧上发送给所述 UE的 PDSCH的 HARQ 定时, 网络和 UE约定采用上行-下行配置 {0,1,2,3,4,5,6}中 PDSCH的 HARQ定时。
3、 根据权利要求 2所述的方法, 其中, 所述网络和 UE约定采用上行- 下行配置 Y {0,1,2,3,4,5,6}中 PDSCH的 HARQ定时, 具体包括:
在网络侧, 网络按照上行-下行配置 Y的定时, 在相应下行子帧上发送 置 Y的定时在与主小区对应的上行子帧上接收所述 FDD小区 PDSCH的 HARQ信息;
在 UE侧, UE按照上行-下行配置 Y的定时在相应下行子帧上接收所 述 PDSCH的下行授权及 PDSCH,按照上行-下行配置 Y的定时,在与主小 区对应的上行子帧上发送所述 FDD小区 PDSCH的 HARQ信息。
4、 根据权利要求 2或 3所述的方法, 其中, 所述 Y具体通过下述任一 种方式确定:
方式一: 对于所述 FDD小区, 当所述下行子帧在一个无线帧的下行子 帧为上行-下行配置 X所包含的下行子帧的一个子集时, Y=X;
方式二: 对于所述 FDD小区, 当所述下行子帧在一个无线帧的下行子 帧是上行-下行配置 X所包含的下行子帧的一个超集时, 要求所述下行子帧 在一个无线帧的下行子帧为上行-下行配置 Z 所包含的下行子帧的一个子 集, Z {0, 1,2,3,4,5,6} , 此时, Y=Z;
方式三: 对于所述 FDD小区, 当上述下行子帧在一个无线帧的下行子 帧不是上行-下行配置 X所包含的下行子帧的一个超集,也不是上行-下行配 置 X所包含的下行子帧的一个子集时, 要求上述下行子帧在一个无线帧的 下行子帧是为上行-下行配置 z 所包含的下行子帧的一个子集, z e
{0, 1 ,2,3,4,5,6} , 此时, Y=M。
5、 根据权利要求 4所述的方法, 其中, 该方法还包括: 在所述方式三 的场景下, Y=M时, 要求上行-下行配置 M, {0, 1,2,3,4,5,6}的上行子帧 是上行-下行配置 Z的上行子帧的子集, 同时要求上行-下行配置 M的上行 子帧也是上行-下行配置 X的上行子帧的子集。
6、 根据权利要求 3所述的方法, 其中, 该方法还包括: 当有多个 Y值 能选择时, 网络侧设备能与 UE约定采用其中一个 Y值;
选择所述 Y的方式包括: 约定采用多个 Y值中 Y值最小的, 或者多个 Y值中 Y值最大的, 或者 HARQ延时最小对应的上行-下行配置索引;
或者, 选择所述 Y的方式包括: 根据约定条件动态变化, 在不同时刻 采用不同的上行-下行配置索引。
7、 根据权利要求 2所述的方法, 其中, 所述网络和 UE约定采用上行- 下行配置 Y e {0,1,2,3,4,5,6}中 PDSCH的 HARQ定时的通知方式包括以下 任意一种:
网络层通过显式信令的方式通知 UE:
网络侧通过隐含的方式通知 UE。
8、 一种频谱聚合的数据发送方法, 为用户设备 UE配置多个小区, 多 个小区至少包括一个时分双工 TDD小区和至少一个频分双工 FDD小区; 上行聚合多个不同类型小区时, 该方法包括:
在每个 FDD小区上为 UE配置上行子帧, 约定所述 UE只在所配置的 上行子帧, 才能发送物理上行共享信道 PUSCH, 网络则在为所述 UE发送 在所述上行子帧发送 PUSCH的上行授权;
或者, 网络和 UE约定: UE认为在一或多个下行子帧没有发送给自己 的上行授权, 而所述下行子帧之外的子帧则可能有发送给自己的上行授权。
9、 根据权利要求 8所述的方法, 其中, 该方法还包括: 对于多个小区 时, 网络和 UE 约定采用上行-下行配置 Ρ€ {0,1,2,3,4,5,6}中 PUSCH 的 HARQ定时。
10、根据权利要求 9所述的方法, 其中, 所述网络和 UE约定采用上行 -下行配置 P e {0,1,2,3,4,5,6}中 PUSCH的 HARQ定时, 具体包括:
在网络侧, 网络按照上行-下行配置 P的定时, 在相应下行子帧上发送 调度在所述上行子帧发送 PUSCH的上行授权;
在 UE侧, UE按照上行-下行配置 P的定时在相应下行子帧上检测需要 在所述上行子帧发送 PUSCH的上行授权。
11、 根据权利要求 10所述的方法, 其中, 该方法还包括: 所述上行授 权通过物理下行控制信道 PDCCH发送、或者通过物理混合自动重传指示信 道 PHICH发送。
12、 根据权利要求 9或 10所述的方法, 其中, 所述 P具体通过下述任 一种方式确定:
方式一: 当 UE工作在非跨载波调度模式,对于多个小区中的一个 FDD 小区, 当所述上行子帧在一个无线帧的上行子帧为上行-下行配置 Y, Y {0,1,2,3,4,5,6}所包含的上行子帧的一个子集时, P=Y;
方式二: 当 UE工作在跨载波调度模式, 对于多个小区中的一个 FDD 小区, 对于在上述上行子帧发送的 PUSCH, 其对应的调度所述 PUSCH的 PDCCH或 PHICH在上述的一个 TDD小区上, 设所述 TDD小区的上行-下 行配置为配置 X, {0,1,2,3,4,5,6}; 当所述配置在一个无线帧的上行子帧 是上行-下行配置 X所包含的上行子帧的一个子集, 并且上行-下行配置 X 的 PUSCH的往返时间 RTT是 10ms时, P=X;
当所述配置在一个无线帧的上行子帧不是上行-下行配置 X所包含的上 行子帧的一个子集,或者上行-下行配置 X的 PUSCH的 RTT不是 10ms时, 要求所述配置在一个无线帧的上行子帧为上行-下行配置 Y , Y {0,1,2,3,4,5,6}中上行子帧的一个子集; 其中,
当 X=0, Y=2或 4或 5时, Ρ=0;
当 Χ=6, Υ=2或 5时, P=l;
除去所述 Χ=0, Υ=2或 4或 5或 Χ=6, Υ=2或 5时的其它情况时, Ρ=Υ。
13、 根据权利要求 10所述的方法, 其中, 该方法还包括: 当有多个 Ρ 值能选择时, 网络侧设备能与 UE约定采用其中一个 Ρ值;
选择所述 Ρ的方式包括: 约定采用多个 Ρ值中 Ρ值最小的, 或者多个 Ρ值中 Ρ值最大的, 或者 HARQ延时最小对应的上行-下行配置索引;
或者, 选择所述 Ρ的方式包括: 根据约定条件动态变化, 在不同时刻 采用不同的上行 -下行配置中 PUSCH的 HARQ定时。
14、 根据权利要求 10所述的方法, 其中, 该方法还包括: 当有多个 P 值能选择时, 对于网络侧设备能与 UE约定采用的 P值, 要求上行-下行配 置 P中下行子帧是上行-下行配置配置 X中下行子帧的子集;
若采用此时仍然有多个 P值, 在有多个 P值能选择时, 网络侧设备能 与 UE约定采用其中一个 P值;
选择所述 P的方式包括: 约定采用多个 P值中 P值最小的, 或者多个 P值中 P值最大的, 或者 HARQ延时最小对应的上行-下行配置索引; 选择所述 P的方式还包括: 根据约定条件动态变化, 在不同时刻采用 不同的上行-下行配置索引。
15、根据权利要求 9所述的方法, 其中, 所述网络和 UE约定采用上行 -下行配置 P e {0, 1,2,3,4,5,6}中 PUSCH的 HARQ定时的通知方式包括以下 任意一种:
网络层通过显式信令的方式通知 UE:
网络侧通过隐含的方式通知 UE。
16、 一种频谱聚合的数据发送装置, 所述装置包括配置单元, 为用户 设备 UE配置多个小区, 多个小区至少包括一个时分双工 TDD小区和至少 一个频分双工 FDD小区;
下行聚合多个不同类型小区时, 所述装置还包括:
第一处理单元, 配置为将所述多个小区的下行混合自动请求重传 HARQ信息集中在多个小区中的一个 TDD小区对应的上行子帧发送;所述 TDD小区为主小区, 其它小区为辅小区, 设主小区的上行-下行配置为配置 X, X e {0, 1 ,2,3,4,5,6} ;
第二处理单元, 配置为在每个 FDD 小区上为 UE配置下行子帧, 约定 网络只在所配置的下行子帧,才能发送针对所述 UE 的物理下行控制信道 PDCCH/物理下行共享信道 PDSCH, UE则在所配置的下行子帧上检测及接 收所述 PDCCH/PDSCH; 或者, 网絡和 UE约定: UE认为在一或多个下行 子帧没有发送给自己的 PDCCH/ PDSCH, 而所述下行子帧之外的子帧则可 能有发送给自己的 PDCCH/ PDSCH。
17、根据权利要求 16所述的装置, 其中, 所述第二处理单元, 还包括: 第一定时约定模块;
第一定时约定模块, 配置为对于多个小区中的一个 FDD小区, 在所述 下行子帧上发送给所述 UE的 PDSCH的 HARQ定时,网络和 UE约定采用 上行-下行配置 Υ ί {0,1,2,3,4,5,6}中 PDSCH的 HARQ定时。
18、 根据权利要求 17所述的装置, 其中, 所述第一定时约定模块, 还 配置为约定网络按照上行-下行配置 Y的定时, 在相应下行子帧上发送调度 在所述下行子帧发送 PDSCH的下行授权及 PDSCH, 按照上行-下行配置 Y 的定时在与主小区对应的上行子帧上接收所述 FDD小区 PDSCH的 HARQ 信息; 约定 UE按照上行-下行配置 Y 的定时在相应下行子帧上接收所述 PDSCH的下行授权及 PDSCH, 按照上行-下行配置 Y的定时, 在与主小区 对应的上行子帧上发送所述 FDD小区 PDSCH的 HARQ信息。
19、 根据权利要求 17或 18所述的装置, 其中, 所述第一定时约定模 块, 还配置为以任一种方式确定所述 Y:
方式一: 对于所述 FDD小区, 当所述下行子帧在一个无线帧的下行子 帧为上行 -下行配置 X所包含的下行子帧的一个子集时, Y=X;
方式二: 对于所述 FDD小区, 当所述下行子帧在一个无线帧的下行子 帧是上行-下行配置 X所包含的下行子帧的一个超集时, 要求所述下行子帧 在一个无线帧的下行子帧为上行-下行配置 Z 所包含的下行子帧的一个子 集, Z€ {0,1,2,3,4,5,6} , 此时, Y=Z;
方式三: 对于所述 FDD小区, 当上述下行子帧在一个无线帧的下行子 帧不是上行-下行配置 X所包含的下行子帧的一个超集,也不是上行-下行配 置 X所包含的下行子帧的一个子集时, 要求上述下行子帧在一个无线帧的 下行子帧是为上行-下行配置 z 所包含的下行子帧的一个子集, z e
{0, 1,2,3,4,5,6} , jt匕时, Y=M。
20、 根据权利要求 19所述的装置, 其中, 所述第一定时约定模块, 还 配置为在所述方式三的场景下, Y=M 时, 要求上行-下行配置 M, M {0, 1 ,2,3,4,5,6}的上行子帧是上行-下行配置 Z的上行子帧的子集, 同时要求 上行-下行配置 M的上行子帧也是上行-下行配置 X的上行子帧的子集。
21、 一种频谱聚合的数据发送装置, 所述装置包括配置单元, 为用户 设备 UE配置多个小区, 多个小区至少包括一个时分双工 TDD小区和至少 一个频分双工 FDD小区;
上行聚合多个不同类型小区时, 所述装置还包括:
第三处理单元, 配置为在每个 FDD小区上为 UE配置上行子帧, 约定 所述 UE只在所配置的上行子帧, 才能发送物理上行共享信道 PUSCH, 网 络和 UE约定: UE认为在一或多个下行子帧没有发送给自己的上行授权, 而所述下行子帧之外的子帧则可能有发送给自己的上行授权。
22、 根据权利要求 21所述的装置, 其中, 所述第三处理单元, 还包括 第二定时约定单元, 配置为对于多个小区中的一个 FDD小区, 对于 UE在 所述上行子帧上发送 PUSCH的 HARQ定时, 网絡和 UE约定采用上行-下 行配置 P 6 {0,1,2,3,4,5,6}中 PUSCH的 HARQ定时。
23、 根据权利要求 22所述的装置, 其中, 所述第二定时约定单元, 还 配置为约定网络按照上行-下行配置 P的定时, 在相应下行子帧上发送调度 在所述上行子帧发送 PUSCH的上行授权; 约定 UE按照上行-下行配置 P 的定时在相应下行子帧上检测需要在所述上行子帧发送 PUSCH 的上行授 权。
24、 根据权利要求 23所述的装置, 其中, 所述第二定时约定单元, 还 配置为以任一种方式确定所述 P:
方式一: 当 UE工作在非跨载波调度模式,对于多个小区中的一个 FDD 小区, 当所述上行子帧在一个无线帧的上行子帧为上行-下行配置 Y, Y (≡ {0,1,2,3,4,5,6}所包含的上行子帧的一个子集时, Ρ=Υ;
方式二: 当 UE工作在跨载波调度模式, 将多个小区中的一个 FDD小 区的上行-下行配置为配置 X, X {0,1,2,3,4,5,6} , 对于多个小区中的一个 FDD小区 ,对于在上述上行子帧发送的 PUSCH,其对应的调度所述 PUSCH 的 PDCCH或 PHICH在上述的一个 TDD小区上, 设所述 TDD小区的上行 -下行配置为配置 X, X {0,1,2,3,4,5,6}; 当所述配置在一个无线帧的上行 子帧是上行-下行配置 X所包含的上行子帧的一个子集,并且上行-下行配置 X的 PUSCH的往返时间 RTT是 10ms时, P=X;
当所述配置在一个无线帧的上行子帧不是上行-下行配置 X所包含的上 行子帧的一个子集、或者上行-下行配置 X的 PUSCH的 RTT不是 10ms时, 要求所述配置在一个无线帧的上行子帧为上行-下行配置 γ , γ
{0,1,2,3,4,5,6}中上行子帧的一个子集; 其中,
当 X=0, Y=2或 4或 5时, Ρ=0;
当 Χ=6, Υ=2或 5时, P=l;
除去所述 Χ=0, Υ=2或 4或 5或 Χ=6, Υ=2或 5时的其它情况时, Ρ=Υ。
PCT/CN2014/080124 2013-09-27 2014-06-17 一种频谱聚合的数据发送方法及装置 WO2015043243A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
KR1020177023534A KR101945658B1 (ko) 2013-09-27 2014-06-17 스펙트럼 통합의 데이터 발송 방법 및 장치
EP14849120.2A EP3032773A4 (en) 2013-09-27 2014-06-17 Data sending method and apparatus in spectrum aggregation
MYPI2016700883A MY187122A (en) 2013-09-27 2014-06-17 Data sending method and device in spectrum aggregation
BR112016006277-9A BR112016006277B1 (pt) 2013-09-27 2014-06-17 Métodos de envio de dados em agregação de espectro, e dispositivos de envio de dados em agregação de espectro
KR1020167009101A KR101774183B1 (ko) 2013-09-27 2014-06-17 스펙트럼 통합의 데이터 발송 방법 및 장치
US14/914,970 US9888494B2 (en) 2013-09-27 2014-06-17 Data sending method and device in spectrum aggregation
RU2016113687A RU2644417C2 (ru) 2013-09-27 2014-06-17 Способ и устройство для передачи данных при агрегации спектра
MX2016003862A MX357985B (es) 2013-09-27 2014-06-17 Metodo y dispositivo de envio de datos en agregacion del espectro.
JP2016515392A JP6312817B2 (ja) 2013-09-27 2014-06-17 スペクトルアグリゲーションのデータ送信方法および装置
CA2922769A CA2922769C (en) 2013-09-27 2014-06-17 Data sending method and device in spectrum aggregation
AU2014328266A AU2014328266B2 (en) 2013-09-27 2014-06-17 Data sending method and apparatus in spectrum aggregation
HK16107674.0A HK1219821A1 (zh) 2013-09-27 2016-07-01 種頻譜聚合的數據發送方法及裝置
US15/427,354 US10244553B2 (en) 2013-09-27 2017-02-08 Data sending method and device in spectrum aggregation
AU2017239575A AU2017239575B2 (en) 2013-09-27 2017-10-05 Data sending method and apparatus in spectrum aggregation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310452502.3 2013-09-27
CN201310452502.3A CN104518859B (zh) 2013-09-27 2013-09-27 一种频谱聚合的数据发送方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/914,970 A-371-Of-International US9888494B2 (en) 2013-09-27 2014-06-17 Data sending method and device in spectrum aggregation
US15/427,354 Division US10244553B2 (en) 2013-09-27 2017-02-08 Data sending method and device in spectrum aggregation

Publications (1)

Publication Number Publication Date
WO2015043243A1 true WO2015043243A1 (zh) 2015-04-02

Family

ID=52741970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080124 WO2015043243A1 (zh) 2013-09-27 2014-06-17 一种频谱聚合的数据发送方法及装置

Country Status (14)

Country Link
US (2) US9888494B2 (zh)
EP (1) EP3032773A4 (zh)
JP (1) JP6312817B2 (zh)
KR (2) KR101774183B1 (zh)
CN (2) CN110176979B (zh)
AU (2) AU2014328266B2 (zh)
BR (1) BR112016006277B1 (zh)
CA (1) CA2922769C (zh)
CL (1) CL2016000703A1 (zh)
HK (1) HK1219821A1 (zh)
MX (1) MX357985B (zh)
MY (1) MY187122A (zh)
RU (1) RU2644417C2 (zh)
WO (1) WO2015043243A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061774A (ja) * 2019-12-27 2020-04-16 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. アンライセンス搬送波でアップリンク情報を伝送するための方法及び装置
US11228916B2 (en) 2016-02-04 2022-01-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting uplink information on unlicensed carrier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176979B (zh) * 2013-09-27 2020-10-27 中兴通讯股份有限公司 一种频谱聚合的数据发送方法及装置
US10158473B2 (en) * 2014-10-03 2018-12-18 Intel IP Corporation Methods, apparatuses, and systems for transmitting hybrid automatic repeat request transmissions using channels in an unlicensed shared medium
WO2017031620A1 (zh) * 2015-08-21 2017-03-02 华为技术有限公司 无线通信的方法、网络设备、用户设备和系统
US10819475B2 (en) * 2016-08-12 2020-10-27 Qualcomm Incorporated Uplink semi-persistent scheduling for low latency communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045862A (zh) * 2009-10-22 2011-05-04 中国移动通信集团公司 一种载波聚合实现方法、装置与系统
CN102291227A (zh) * 2011-06-30 2011-12-21 电信科学技术研究院 一种发送和接收反馈信息的方法、系统及装置
CN102299765A (zh) * 2011-07-18 2011-12-28 中兴通讯股份有限公司 一种传输控制方法和用户设备
WO2012142123A2 (en) * 2011-04-11 2012-10-18 Qualcomm Incorporated Transmission of control information for fdd-tdd carrier aggregation

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2407201C2 (ru) * 2006-06-21 2010-12-20 Квэлкомм Инкорпорейтед Способы и устройство для распределения беспроводных ресурсов
ES2450758T3 (es) 2008-08-12 2014-03-25 Telefonaktiebolaget L M Ericsson (Publ) Método y disposición en un sistema de comunicación
US20100272091A1 (en) * 2009-04-27 2010-10-28 Motorola, Inc. Uplink Scheduling Supoort in Multi-Carrier Wireless Communication Systems
CN101594209A (zh) * 2009-06-18 2009-12-02 中兴通讯股份有限公司 反馈状态的发送方法及终端
CN101594211B (zh) * 2009-06-19 2013-12-18 中兴通讯股份有限公司南京分公司 大带宽的多载波系统中发送正确/错误应答消息的方法
EP3499772A1 (en) * 2009-10-19 2019-06-19 Samsung Electronics Co., Ltd. Transmission diversity and multiplexing for harq-ack signals in communication systems
ES2622283T3 (es) * 2010-11-02 2017-07-06 Qualcomm Incorporated Transmisión de retroalimentación de solicitud de repetición automática híbrida en un sistema de comunicación de múltiples portadoras de componentes usando recursos de solicitud de planificación
KR101738529B1 (ko) 2011-02-07 2017-05-23 인터디지탈 패튼 홀딩스, 인크 허가 면제 스펙트럼에서 보충 셀을 동작시키는 방법 및 장치
CN104883243B (zh) 2011-02-24 2018-06-05 华为技术有限公司 用于载波聚合系统的通信方法和装置
US9155079B2 (en) 2011-03-25 2015-10-06 Lg Electronics Inc. Communication method and device in a wireless communication system
US9019850B2 (en) * 2011-04-11 2015-04-28 Qualcomm Incorporated CSI reporting for multiple carriers with different system configurations
US20120264468A1 (en) * 2011-04-12 2012-10-18 Renesas Mobile Corporation Sensing configuration in carrier aggregation scenarios
RU2461982C1 (ru) 2011-04-29 2012-09-20 Общество С Ограниченной Ответственностью "Аилайн Кэмьюникейшнс Снг" Способ агрегации мобильных услуг и система для его осуществления
EP2721759B1 (en) * 2011-06-14 2018-04-25 Interdigital Patent Holdings, Inc. Methods, systems and apparatus for defining and using phich resources for carrier aggregation
CN102255718B (zh) 2011-07-11 2013-09-11 电信科学技术研究院 一种载波聚合系统中的数据传输方法及装置
US9160513B2 (en) 2011-07-28 2015-10-13 Qualcomm Incorporated Method and apparatus for signaling control data of aggregated carriers
CN102263627B (zh) * 2011-08-11 2017-12-19 中兴通讯股份有限公司 一种载波聚合配置方法及装置
KR102004832B1 (ko) * 2012-02-09 2019-07-29 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
CN103326806B (zh) * 2012-03-19 2016-08-03 电信科学技术研究院 一种下行控制信令的传输方法及装置
US8811332B2 (en) * 2012-10-31 2014-08-19 Sharp Laboratories Of America, Inc. Systems and methods for carrier aggregation
JP2016519483A (ja) * 2013-03-28 2016-06-30 日本電気株式会社 通信システムにおけるharqタイミングの決定方法及び装置
CN110176979B (zh) * 2013-09-27 2020-10-27 中兴通讯股份有限公司 一种频谱聚合的数据发送方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045862A (zh) * 2009-10-22 2011-05-04 中国移动通信集团公司 一种载波聚合实现方法、装置与系统
WO2012142123A2 (en) * 2011-04-11 2012-10-18 Qualcomm Incorporated Transmission of control information for fdd-tdd carrier aggregation
CN102291227A (zh) * 2011-06-30 2011-12-21 电信科学技术研究院 一种发送和接收反馈信息的方法、系统及装置
CN102299765A (zh) * 2011-07-18 2011-12-28 中兴通讯股份有限公司 一种传输控制方法和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3032773A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228916B2 (en) 2016-02-04 2022-01-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting uplink information on unlicensed carrier
JP2020061774A (ja) * 2019-12-27 2020-04-16 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. アンライセンス搬送波でアップリンク情報を伝送するための方法及び装置

Also Published As

Publication number Publication date
AU2014328266B2 (en) 2017-07-13
CL2016000703A1 (es) 2016-12-16
MX357985B (es) 2018-07-31
BR112016006277B1 (pt) 2023-04-11
KR20170100676A (ko) 2017-09-04
CN104518859A (zh) 2015-04-15
MY187122A (en) 2021-09-02
AU2017239575A1 (en) 2017-10-26
EP3032773A1 (en) 2016-06-15
AU2014328266A1 (en) 2016-04-14
KR101774183B1 (ko) 2017-09-01
US20160212762A1 (en) 2016-07-21
JP2016536816A (ja) 2016-11-24
CN110176979B (zh) 2020-10-27
KR101945658B1 (ko) 2019-02-07
EP3032773A4 (en) 2017-01-18
US10244553B2 (en) 2019-03-26
CA2922769A1 (en) 2015-04-02
HK1219821A1 (zh) 2017-04-13
US9888494B2 (en) 2018-02-06
JP6312817B2 (ja) 2018-04-18
CN104518859B (zh) 2019-06-14
US20170150518A1 (en) 2017-05-25
CA2922769C (en) 2018-10-23
RU2016113687A (ru) 2017-10-30
KR20160054545A (ko) 2016-05-16
CN110176979A (zh) 2019-08-27
BR112016006277A2 (pt) 2017-08-01
RU2644417C2 (ru) 2018-02-12
MX2016003862A (es) 2016-08-04
AU2017239575B2 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
US10609709B2 (en) Method and apparatus of uplink scheduling and HARQ timing
US10595166B2 (en) Systems and methods for processing time reduction signaling
US20170026164A1 (en) Data transmission in carrier aggregation with different carrier configurations
TW202301823A (zh) 在無線通訊系統中用於傳送和接收無線電訊號的方法、設備、媒體、裝置、及基地臺
US20180048447A1 (en) User equipments, base stations and methods
RU2625319C9 (ru) Способ отправки восходящей управляющей информации, пользовательское оборудование и базовая станция
WO2012155513A1 (zh) 一种物理上行控制信道的发送方法和用户设备
WO2013131435A1 (zh) 一种harq反馈的实现方法及装置
WO2012129952A1 (zh) 一种时分双工系统中应答消息的发送方法及系统
US10178655B2 (en) Method and device for transmitting uplink control information
WO2015106554A1 (zh) 资源管理方法、装置及计算机存储介质
WO2015196628A1 (zh) 通信系统的载波聚合方法及装置
WO2013143373A1 (zh) 一种应答信息的传输方法、系统以及装置
US20170353275A1 (en) Method and apparatus of controlling for uplink scheduling and harq timing
WO2015043243A1 (zh) 一种频谱聚合的数据发送方法及装置
WO2013113272A1 (zh) 一种发送和接收反馈信息的方法、系统及装置
WO2013189252A1 (zh) 一种ack/nack反馈比特数确定方法及装置
WO2014059910A1 (zh) 一种应答信息的发送方法及装置
WO2014101796A1 (zh) 应答反馈信息的发送和接收方法及设备
WO2013135144A1 (zh) 时分双工自适应帧结构的重传方法、网络及终端侧设备
US10321322B2 (en) Method and device for processing information
WO2012106975A1 (zh) 一种正确/错误应答消息的发送方法及实现终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14914970

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2922769

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014849120

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016515392

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/003862

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016006277

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167009101

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014328266

Country of ref document: AU

Date of ref document: 20140617

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016113687

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A20160084

Country of ref document: BY

ENP Entry into the national phase

Ref document number: 112016006277

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160322