WO2015043167A1 - 锂离子电池及锂金属合金的制备方法 - Google Patents

锂离子电池及锂金属合金的制备方法 Download PDF

Info

Publication number
WO2015043167A1
WO2015043167A1 PCT/CN2014/075700 CN2014075700W WO2015043167A1 WO 2015043167 A1 WO2015043167 A1 WO 2015043167A1 CN 2014075700 W CN2014075700 W CN 2014075700W WO 2015043167 A1 WO2015043167 A1 WO 2015043167A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
negative electrode
liquid
ion battery
Prior art date
Application number
PCT/CN2014/075700
Other languages
English (en)
French (fr)
Inventor
杨俊�
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015043167A1 publication Critical patent/WO2015043167A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of battery energy, and in particular to a method for preparing a lithium ion battery and a lithium metal alloy. Background technique
  • a conventional lithium ion battery is a rechargeable battery that operates by moving lithium ions between positive and negative electrodes, and the electrolyte does not flow and is sealed inside the unit cell.
  • traditional lithium-ion batteries have high voltage, high specific energy, long cycle life, no memory, low pollution, and high operating temperature range, the cost and safety of large-capacity lithium-ion batteries have always been a prominent problem, hindering their performance. Large-scale application of grid energy storage systems.
  • the existing sodium-sulfur battery is a novel device for directly converting chemical energy into electrical energy, and is a secondary battery in which sodium metal is used as a negative electrode, sulfur is a positive electrode, and alumina ceramic is used as an electrolyte and a separator. It has the characteristics of large raw material reserves, high energy and power density, close to 100% charge and discharge efficiency, no restrictions on production areas, and convenient maintenance.
  • the sodium-sulfur battery must be made into a molten state at a high temperature of 300 ° C to 350 ° C to work. Therefore, it is necessary to add a heating device of 300 ° C to 350 ° C in the sodium-sulfur battery, not only the structure.
  • the existing all-vanadium flow battery realizes the storage and release of electric energy through the valence state change of the active vanadium ions in the positive and negative solution.
  • the active substance solution is divided into a positive storage tank and a negative storage tank. Under the push of the liquid pump, the solution flows through the reactor through the infusion tube, and oxidation and reduction reactions respectively occur on the electrodes on both sides of the proton exchange membrane. Therefore, the output power and energy storage capacity of the all-vanadium flow battery can be designed independently. This is the unique difference between the flow battery and other chemical batteries, and it is also the biggest technical advantage that it can be applied to large-scale energy storage. However, the electrolyte of the all-vanadium redox flow battery will be produced during the manufacturing process.
  • the invention provides a lithium ion battery, which has the advantages of simple structure, high safety, high reliability and low pollution.
  • a lithium ion battery comprising a reactor, a microporous separator, a positive electrode storage tank, a positive electrode reaction liquid, a positive electrode liquid pump, a negative electrode storage tank, a negative electrode reaction liquid, and a negative electrode liquid pump;
  • the reactor is a closed inner cavity, the microporous separator partitions the reactor into a positive electrode chamber and a negative electrode chamber;
  • the positive electrode storage tank, the positive electrode liquid pump and the positive electrode chamber are connected by an infusion tube Forming a positive electrode circuit, the positive electrode reaction liquid flowing in the positive electrode circuit;
  • the negative electrode storage tank, the negative electrode liquid pump and the negative electrode chamber being connected via the infusion tube to form a negative electrode circuit, wherein the negative electrode reaction solution is Flowing in the negative electrode circuit; the positive electrode reaction liquid and the negative electrode reaction liquid are used to participate in a reaction to generate electric energy, and the negative electrode reaction liquid includes a liquid lithium metal alloy.
  • the liquid lithium metal alloy comprises metallic lithium, and at least one metal having a melting point of less than 30 °C.
  • the metal having a melting point below 30 ° C includes any one of mercury, lanthanum, cerium, and lanthanum.
  • the metal having a melting point lower than 30 ° C has a mass percentage of 0.1% to 50%.
  • the material of the positive electrode reaction solution includes an electrolyte and a positive electrode active material uniformly dispersed in the electrolyte; the positive electrode active material includes lithium iron phosphate, lithium manganese phosphate, and vanadium phosphate.
  • the liquid is a solution in which a lithium salt is dissolved in an organic solvent, and the lithium salt includes lithium hexafluorophosphate lithium tetrafluoroborate, lithium perchlorate, lithium bis(trifluorodecylsulfonyl)imide, lithium dioxalate borate, LiBFSi, LiPF 3 .
  • the material of the positive electrode reaction solution includes the electrolyte and a positive electrode active material uniformly dispersed in the electrolyte; the positive electrode active material includes elemental sulfur, molybdenum disulfide, and One or more of sillicinated silicon, sillicinated lithium, sillicinated ferrous, sillimanite and sulphuric vanadium, or organic disulfide, polyorganodisulfide, polyorganic One or more of a sulfide, a carbon-sulfur polymer; the electrolyte is ethylene glycol dimethyl ether of bis(trifluorofluorenyl)-cross-acid imide and a 1, 3-dioxo ring-forming solution.
  • the microporous separator is an electronic insulating material, including a microporous alumina ceramic material, a microporous silica ceramic material, a microporous titanium oxide ceramic material, and a microporous zirconia ceramic material. Any one.
  • the method for preparing the lithium metal alloy comprises: disposing lithium under an inert gas protection The metal and the low melting point metal are heated and melted, and the mixture is uniformly cooled to room temperature to prepare a liquid lithium metal alloy.
  • the inert gas comprises any one of helium and argon, and the heating and melting temperature is from 180 ° C to 300 ° C, and the heating and melting time is from 0.1 to 24 hours.
  • the lithium ion battery uses a liquid lithium metal alloy as a negative electrode reaction solution, and a positive electrode active material is dispersed in the electrolyte as a positive electrode reaction liquid and a ceramic microporous separator as a separator. It combines the advantages of a sodium-sulfur battery.
  • the lithium metal alloy is liquid at normal temperature, which avoids heating the battery system, improves safety, reduces cost, and circumvents the carbon material for the negative electrode of the conventional lithium ion flow battery.
  • the disadvantage of the organic solvent suspension is that the high specific energy lithium metal alloy is directly used as the negative electrode reaction solution, which significantly increases the energy density.
  • the lithium ion battery provided by the present invention has the characteristics of high energy density, high power density, and low cost in addition to the all-vanadium flow battery, and has the characteristics of low pollution.
  • FIG. 1 is a schematic structural view of a lithium ion battery according to an embodiment of the present invention. detailed description
  • the lithium ion battery includes a reactor 3, a microporous separator 9, a positive electrode storage tank 1, a positive electrode reaction liquid, a positive electrode liquid pump 4, a negative electrode storage tank 2, a negative electrode reaction liquid, a negative electrode liquid pump 12, a positive electrode current collector 6, and a negative electrode current collector.
  • the positive electrode storage tank 1, the positive electrode liquid pump 4 and the positive electrode chamber 10 are connected via an infusion tube to form a positive electrode circuit, and the positive electrode reaction liquid flows in the positive electrode circuit.
  • the negative electrode storage tank 2, the negative liquid pump 12 and the negative electrode chamber 11 are connected via an infusion tube to form a negative electrode circuit, and the negative electrode reaction liquid flows in the negative electrode circuit.
  • the positive electrode reaction solution and the negative electrode reaction solution are used to participate in the reaction to generate electric energy.
  • the reactor 3 is a closed inner chamber, and the microporous separator 9 partitions the reactor 3 into two parts, a positive electrode chamber 10 and a negative electrode chamber 11.
  • the microporous separator 9 allows only the separation of ions between the positive electrode chamber 10 and the negative electrode chamber 11 to flow.
  • the lithium ion battery provided by the embodiment of the invention further comprises an insulating housing 7, and the insulating housing 7 is sleeved outside the reactor 3.
  • the positive electrode storage tank 1, the positive electrode liquid pump 4 and the positive electrode chamber 10 are connected via the infusion tube 5 to form a positive electrode circuit, and the positive electrode reaction liquid flows in the positive electrode circuit.
  • the negative electrode storage tank 2, the negative electrode liquid pump 12 and the negative electrode chamber 11 are connected via the infusion tube 5 to form a negative electrode circuit, and the negative electrode reaction liquid flows in the negative electrode circuit.
  • the negative electrode reaction solution includes a liquid lithium metal alloy.
  • the liquid lithium metal alloy is a metal lithium and an alloy formed by melting at least one metal having a melting point of less than 30 °C.
  • Metals having a melting point below 30 °C include any of mercury, ruthenium, osmium and iridium.
  • the mass percentage of metals having a melting point range below 30 °C is 0.1% to 50%.
  • the material of the positive electrode reaction solution includes an electrolyte solution and a positive electrode active material uniformly dispersed in the electrolyte.
  • the positive active material includes lithium iron phosphate, lithium manganese phosphate, lithium vanadium phosphate, lithium iron silicate, lithium cobaltate, nickel cobalt manganese ternary material, nickel manganese/cobalt manganese/nickel cobalt raw material, lithium manganate, lithium rich layer At least one of lithium nickel manganatekind.
  • the electrolyte is a solution in which a lithium salt is dissolved in an organic solvent, and the lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiC10 4 ), bis(trifluorodecylsulfonyl) At least one of lithium amine (LiTFSi), lithium oxalate borate (LiBOB), LiBFSi, LiPF 3 (CF 2 CF 3 ) 3 , or LiCF 3 S0 3 .
  • the organic solvent includes at least one of dinonyl carbonate (DMC), diethyl carbonate (DEC), ethylene carbonate (EC), and propylene carbonate (PC).
  • the positive electrode filler may also be inorganic sulfur, and preferably, elemental sulfur, molybdenum disulfide (MoS 2 ), silicon disulfide (SiS 2 ), lithium sulfide (Li 2 S), and ferrous sulfide (FeS 2 ) At least one of titanium disulfide (TiS 2 ) and vanadium sulfide (V 2 S 2 ).
  • the positive electrode filler may also be organic sulfur, preferably at least one of an organic disulfide, a polyorganodisulfide, a polyorganopolysulfide, and a carbon sulfur polymer.
  • the electrolyte was ethylene glycol dinonyl ether of bis(trifluorofluorenyl)-cross-acid imide lithium and a solution of 1, 3-dioxolane.
  • the microporous separator 9 is an electronic insulating material including any of a microporous alumina ceramic material, a microporous silica ceramic material, a microporous titanium oxide ceramic material, and a microporous zirconia ceramic material.
  • the present invention provides the following two examples.
  • the preparation method of the negative electrode reaction liquid lithium and ruthenium (Rb) are put into a container with a mass ratio of 6:1, and high-purity argon gas is introduced as a shielding gas to prevent metal from coming into contact with oxygen, nitrogen or moisture in the air, and Seal the container.
  • the vessel was heated and maintained at a temperature of 190 ° C for 4 hours. After the lithium and ruthenium inside the vessel were completely melted and uniformly fused, the temperature was lowered for use. The lithium metal alloy at this time is already in a liquid state at normal temperature.
  • the lithium metal alloy anode is poured into the anode storage tank 2, and sealed immediately. During the process, it is necessary to ensure that there are inert gases in the anode tank 2 and the infusion tube 5 to avoid the occurrence of the liquid lithium metal alloy. The reaction affects the safety of the battery system.
  • Method for preparing a positive electrode reaction solution Dissolving lithium hexafluorophosphate in an organic solvent, wherein the composition of the organic solvent is a ratio by volume of ethylene carbonate (EC), mercaptoethyl carbonate (EMC), and diethyl carbonate (DEC). A mixture of 1:1:1 ratios. Thus, an electrolyte having a lithium hexafluorophosphate concentration of 1 mol/L was prepared.
  • EC ethylene carbonate
  • EMC mercaptoethyl carbonate
  • DEC diethyl carbonate
  • the positive active material lithium cobalt oxide (LiCo0 3 ) powder is put into the electrolyte, the mass ratio of the lithium cobaltate powder to the electrolyte is 2:3, and the lithium cobalt oxide powder is dispersed in the electrolyte to prepare the positive electrode.
  • the positive electrode reaction solution was poured into the positive electrode storage tank 1 and sealed.
  • the positive electrode liquid pump 4 and the negative electrode liquid pump 12 are turned on to introduce the positive electrode reaction liquid and the negative electrode reaction liquid into the reactor 3 via the infusion tube 5.
  • the positive electrode reaction solution is filled in the positive electrode chamber 10, the negative electrode reaction liquid is filled in the negative electrode chamber 11, and the positive electrode in the positive electrode reaction liquid connects the positive electrode current collector 6 and the negative electrode current collector 8 to an external circuit, and the lithium ion battery can be externally jobs.
  • the preparation method of the second embodiment is basically the same as that of the first embodiment, except that the preparation method of the negative electrode reaction solution is as follows: lithium, ruthenium (Rb) and ruthenium (Cs) are put into the container at a mass ratio of 8:1:1. High purity argon is used as a shielding gas to prevent metal from coming into contact with oxygen, nitrogen or moisture in the air, and to seal the container. Heat the container and maintain the temperature at 200 °C for 6 hours. After the lithium, cesium and strontium inside the container are completely melted and fused, cool down and set aside. The lithium metal alloy at this time is already in a liquid state at normal temperature.
  • the lithium metal alloy anode is poured into the anode storage tank 2, and sealed immediately. During the process, it is necessary to ensure that there are inert gases in the anode tank 2 and the infusion tube 5 to avoid the occurrence of the liquid lithium metal alloy. The reaction affects the safety of the battery system.
  • the preparation method of the positive electrode reaction solution dissolving lithium hexafluorophosphate in an organic solvent, wherein the components of the organic solvent are ethylene carbonate (EC), mercaptoethyl carbonate (EMC), and diethyl carbonate (DEC) by volume ratio. Mixture of 1: 1: 1 ratio mixture. Thus, an electrolyte having a lithium hexafluorophosphate concentration of 1 mol/L was prepared.
  • EC ethylene carbonate
  • EMC mercaptoethyl carbonate
  • DEC diethyl carbonate
  • the elemental sulfur and carbon powder are put into a high-energy ball mill at a ratio of 5:1, and ball-milled at a speed of 350 rpm for 6 hours. In the process, an argon atmosphere is required to protect against high temperature oxidation. After cooling, it is taken out and ground into In the form of a fine powder, a positive electrode active material of a carbon sulfur compound is prepared. Among them, carbon powder is used to connect macromolecular sulfur to form a network to enhance electrical conductivity.
  • the positive electrode active material of the carbon sulfur compound is introduced into the electrolytic solution, and the mass ratio of the positive electrode active material to the electrolytic solution is 1:4, and the positive electrode active material of the carbon sulfur compound is uniformly dispersed in the electrolytic solution to prepare a positive electrode reaction liquid.
  • the lithium ion battery provided by the present invention has a structure in which a liquid lithium metal alloy is used as a negative electrode reaction liquid, a positive electrode active material is dispersed in an electrolytic solution to serve as a positive electrode reaction liquid, and a ceramic microporous separator 9 is used as a separator.
  • the reaction mechanism is no different from the traditional lithium ion battery. It combines the advantages of a sodium-sulfur battery.
  • the lithium metal alloy is liquid at normal temperature, which avoids heating the battery system, improves safety, reduces cost, and circumvents the carbon material for the negative electrode of the conventional lithium ion flow battery.
  • the disadvantage of the organic solvent suspension is that the high specific energy lithium metal alloy is directly used as the negative electrode reaction solution, which significantly increases the energy density. Also combined with some advantages of the flow battery, both the positive electrode reaction solution and the negative electrode reaction solution flow, and the reaction is carried out in the reactor 3, the larger the microporous separator 9 of the lithium ion battery, the larger the reaction contact surface, and the higher the power density high. The larger the volume of the positive electrode storage tank 1 and the negative electrode storage tank 2, the more the active material, the higher the energy density. Compared with the conventional lithium ion battery, the battery regeneration can be completed only by replacing the materials in the positive electrode storage tank 1 and the negative electrode storage tank 2, and it is not necessary to replace the whole, thereby saving cost.
  • the lithium ion battery provided by the embodiment of the present invention is less polluted than the existing all vanadium redox flow battery. Therefore, the lithium ion battery provided by the embodiment has the characteristics of high energy density, high power density, and low cost, and has the characteristics of low pollution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种锂离子电池和一种锂金属合金的制备方法,所述锂离子电池包括反应器(3)、微孔隔板(9)、正极储罐(1)、正极反应液、正极液体泵(4)、负极储罐(2)、负极反应液、负极液体泵(12);所述反应器(3)为一封闭内腔,所述微孔隔板(9)分隔所述反应器(3)成正极腔室(10)和负极腔室(11);正极储罐(1)、正极液体泵(4)和正极腔室(10)经输液管连接构成正极回路,正极反应液在正极回路内流动;负极储罐(2)、负极液体泵(12)和负极腔室(11)经输液管连接构成负极回路,负极反应液在负极回路内流动;正极反应液和负极反应液用于参加反应产生能量,负极反应液包括液态锂金属合金。该锂离子电池避免了钠硫电池对电池体系加热,提升了安全性,降低了成本;还具有液流电池能量密度高、功率密度高、成本低、且污染小的特点。

Description

锂离子电池及锂金属合金的制备方法
本申请要求于 2013 年 9 月 24 日提交中国专利局、 申请号为 201310440096.9, 发明名称为 "锂离子电池及锂金属合金的制备方法" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及电池能源领域,尤其涉及一种锂离子电池及锂金属合金的制备 方法。 背景技术
传统锂离子电池是一种通过锂离子在正、负极之间移动来工作的可充电电 池,其电解液不流动且密封于单体电池内部。传统锂离子电池虽然具有高电压、 比能量大、 循环寿命长、 无记忆、 污染小、 工作温度范围高等特点, 但是大容 量锂离子电池的成本和使用安全性一直是突出问题,阻碍了其作为电网储能系 统的大规模应用。
现有钠硫电池是将化学能直接转化为电能的新型装置, 是以金属钠为负 极, 硫为正极, 氧化铝陶瓷兼做电解质及隔膜的二次电池。 其具有原材料储量 大, 能量和功率密度大、 充放电效率接近 100%、 不受产地限制、 维护方便的 特点。 但是, 钠硫电池必须在 300 °C ~350°C的高温下使得金属钠和硫成为熔融 态才能工作, 因而还需在钠硫电池中加入 300°C ~350°C的加热装置, 不仅结构 复杂, 可靠性和安全性降低, 还缩短了钠硫电池的工作寿命。 另外, 一旦加热 装置较长时间停止加热,钠硫电池内的电极物质转换为固态, 开启该钠硫电池 使其重新工作较困难。
现有的全钒液流电池通过正、 负极溶液中的活性钒离子的价态变化, 来实 现电能的储存与释放。其活性物质溶液分装在正极存储罐和负极存储罐中,在 液泵的推动下, 溶液通过输液管流经反应器,在质子交换膜两侧的电极上分别 发生氧化和还原反应。因此,全钒液流电池的输出功率和储能容量可独立设计, 这是液流电池显著区别与其他化学电池的独特之处,同时也是其有可能应用于 大规模储能的最大技术优势。但是,全钒液流电池的电解液在制造过程中会产 生粉尘、废气和废水, 尤其是含钒的硫酸废液处理不当可能会污染河水或者地 下水, 形成环境污染。 另外, 钒电池的其他报废材料, 尤其是塑料或石墨复合 导电板, 很难通过循环再生的方式进入再生环节。 发明内容
本发明提供一种锂离子电池,所述锂离子电池的结构较简单、安全性较高、 可靠性较高、 且污染小。
一方面,提供了一种锂离子电池,所述锂离子电池包括反应器、微孔隔板、 正极储罐、 正极反应液、 正极液体泵、 负极储罐、 负极反应液、 负极液体泵; 所述反应器为一封闭内腔,所述微孔隔板分隔所述反应器成正极腔室和负极腔 室; 所述正极储罐、所述正极液体泵和所述正极腔室经输液管连接构成正极回 路, 所述正极反应液在所述正极回路内流动; 所述负极储罐、 所述负极液体泵 和所述负极腔室经所述输液管连接构成负极回路,所述负极反应液在所述负极 回路内流动; 所述正极反应液和所述负极反应液用于参加反应产生电能, 所述 负极反应液包括液态锂金属合金。
在第一种可能的实现方式中, 所述液态锂金属合金包括金属锂,和至少一 种熔点低于 30°C的金属。
结合第一种可能的实现方式,在第二种可能的实现方式中, 所述熔点低于 30°C的金属包括汞、 铷、 铯和钫中的任意一种。
结合第一种可能的实现方式,在第三种可能的实现方式中, 所述熔点低于 30°C的金属的质量百分含量为 0.1%~50%。
在第四种可能的实现方式中,所述正极反应液的材质包括电解液和均匀分 散于所述电解液中的正极活性材料; 所述正极活性材料包括磷酸铁锂、磷酸锰 锂、 磷酸钒锂、 硅酸铁锂、 钴酸锂、 镍钴锰三元材料、 镍锰 /钴锰 /镍钴二原材 料、 锰酸锂、 富锂层状镍锰酸锂中的至少一种; 所述电解液为锂盐溶解于有机 溶剂形成的溶液, 所述锂盐包括六氟磷酸锂四氟硼酸锂、 高氯酸锂、 二 (三氟 曱基磺酰)亚胺锂、 二草酸硼酸锂、 LiBFSi、 LiPF3(CF2CF3)3、 或 LiCF3S03中 的至少一种, 所述有机溶剂包括碳酸二曱酯、 碳酸二乙酯、 碳酸乙烯酯、 碳酸 丙烯酯的至少一种。 在第五种可能的实现方式中,所述正极反应液的材质包括所述电解液和均 匀分散于所述电解液中的正极活性材料; 所述正极活性材料包括单质硫、二硫 化钼、 二石克化硅、 石克化锂、 二石克化亚铁、 二石克化钛和石克化钒中的一种或多种, 或有机二硫化物、 聚有机二硫化物、 聚有机多硫化物、碳硫聚合物中的一种或 多种; 所述电解液为双三氟曱基横酸酰亚胺锂的乙二醇二曱醚和 1, 3- 二氧 成环溶液。
在第六种可能的实现方式中, 述微孔隔板为电子绝缘材料, 包括微孔氧化 铝陶瓷材料、微孔二氧化硅陶瓷材料、微孔氧化钛陶瓷材料和微孔氧化锆陶瓷 材料的任一种。
另一方面,提供了锂金属合金的制备方法, 所述锂金属合金用于上述任一 项所述的锂离子电池中,所述锂金属合金的制备方法包括:在惰性气体保护下, 将锂金属和所述低熔点金属加热熔融,待分散均匀冷却至室温, 制备得到液体 的所述锂金属合金。
在第一种可能的实现方式中, 所述惰性气体包括氦气和氩气中的任一种, 加热熔融温度为 180°C ~300°C, 加热熔融时间为 0.1~24h。
综上, 本发明提供的锂离子电池, 釆用了将液态锂金属合金作为负极反应 液,正极活性材料均勾分散于电解液以作为正极反应液, 陶瓷微孔隔板作为隔 膜的结构。 它结合了钠硫电池的优点, 锂金属合金在常温下即为液态, 避免了 对电池体系加热, 提升了安全性, 降低了成本, 还规避了传统锂离子液流电池 的负极釆用碳材料有机溶剂悬浊液的劣势,直接将高比能的锂金属合金作为负 极反应液, 明显提升了能量密度。 还结合了液流电池的部分优点, 正极反应液 和负极反应液均流动, 且在反应器内进行反应。 因而, 本发明提供的锂离子电 池除了兼具有全钒液流电池能量密度高、 功率密度高、 和成本低的特点外, 还 具有污染小的特点。 附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的 附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的一些实施 方式, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1是本发明实施例提供的锂离子电池的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
参见图 1, 为本发明实施例提供的锂离子电池的结构示意图。 锂离子电池 包括反应器 3、 微孔隔板 9、 正极储罐 1、 正极反应液、 正极液体泵 4、 负极储 罐 2、 负极反应液、 负极液体泵 12、 正极集流体 6及负极集流体 8。 正极储罐 1、正极液体泵 4和正极腔室 10经输液管连接构成正极回路,正极反应液在正 极回路内流动。 负极储罐 2、 负极液体泵 12和负极腔室 11经输液管连接构成 负极回路, 负极反应液在负极回路内流动。正极反应液和负极反应液用于参加 反应产生电能。
反应器 3为一封闭内腔, 微孔隔板 9分隔反应器 3成正极腔室 10和负极 腔室 11两部分。 微孔隔板 9仅允许分隔的正极腔室 10、 负极腔室 11间的离 子流动。 为了增加反应器 3的封闭性, 本发明实施例提供的锂离子电池还包括 一绝缘壳体 7, 绝缘壳体 7套设于反应器 3外。
正极储罐 1、 正极液体泵 4和正极腔室 10经输液管 5连接构成正极回路, 正极反应液在正极回路内流动。 负极储罐 2、 负极液体泵 12和负极腔室 11经 输液管 5连接构成负极回路, 负极反应液在负极回路内流动。 负极反应液包括 液态锂金属合金。
液态锂金属合金为金属锂, 和至少一种熔点低于 30 °C的金属熔融后形成 的合金。 熔点低于 30 °C的金属包括汞、 铷、 铯和钫中的任一种。 熔点范围低 于 30 °C的金属的质量百分含量为 0.1%~50%。
正极反应液的材质包括电解液和均勾分散于电解液中的正极活性材料。正 极活性材料包括磷酸铁锂、 磷酸锰锂、 磷酸钒锂、 硅酸铁锂、 钴酸锂、 镍钴锰 三元材料、 镍锰 /钴锰 /镍钴二原材料、 锰酸锂、 富锂层状镍锰酸锂中的至少一 种。 电解液为锂盐溶解于有机溶剂形成的溶液,锂盐包括六氟磷酸锂(LiPF6 )、 四氟硼酸锂 ( LiBF4 )、 高氯酸锂 ( LiC104 )、二 (三氟曱基磺酰)亚胺锂( LiTFSi )、 二草酸硼酸锂(LiBOB )、 LiBFSi、 LiPF3(CF2CF3)3、 或 LiCF3S03中的至少一 种。 有机溶剂包括碳酸二曱酯 (DMC)、碳酸二乙酯 (DEC)、碳酸乙烯酯 (EC) 和碳酸丙烯酯 (PC) 的至少一种。
另外,正极填充材料也可以为无机硫,优选的有,单质硫、二硫化钼( MoS2)、 二硫化硅是( SiS2)、硫化锂( Li2S)、二硫化亚铁( FeS2)、二硫化钛( TiS2)和硫 化钒( V2S2)中的至少一种。 正极填充材料还可以为有机硫, 优选的有, 有机 二硫化物、 聚有机二硫化物、 聚有机多硫化物、 碳硫聚合物中的至少一种。 电 解液为双三氟曱基横酸酰亚胺锂的乙二醇二曱醚和 1, 3-二氧戊环溶液。
微孔隔板 9为电子绝缘材料, 包括微孔氧化铝陶瓷材料、微孔二氧化硅陶 瓷材料、 微孔氧化钛陶瓷材料和微孔氧化锆陶瓷材料的任一种。
为了具体说明负极反应液和正极反应液的材料和制备方法,本发明提供以 下两个实施例。
实施例一
负极反应液的制备方法:将锂和铷(Rb )按照质量比为 6:1的投入容器中, 通入高纯氩气作为保护气, 防止金属与空气中的氧气、 氮气或者水分接触, 并 密封容器。 对容器进行加热, 维持 190°C的温度 4个小时, 待容器内部的锂和 铷完全融化并均匀融合后,降温备用。此时的锂金属合金在常温下已经呈液态。
在氩气的保护下将锂金属合金负极倒入负极储罐 2中, 并立即密封, 过程 中需保证负极储罐 2和输液管 5中均有惰性气体,以避免液态锂金属合金发生 的副反应影响电池体系安全。
正极反应液的制备方法: 将六氟磷酸锂溶于有机溶剂中, 其中有机溶剂的 组分为由碳酸乙烯酯 (EC )、 曱基乙基碳酸酯(EMC)、 碳酸二乙酯 (DEC)按 体积比为 1: 1: 1的比例混合而成的混合液。从而配成六氟磷酸锂浓度为 lmol/L 的电解液。
将正极活性材料钴酸锂 ( LiCo03 )粉末投入到电解液中, 钴酸锂粉末与电 解液的质量比为 2:3, 钴酸锂粉末均勾分散于该电解液中, 制备得到该正极反 应液。 将正极反应液倒入正极储罐 1中, 并密封。开启正极液体泵 4和负极液体 泵 12, 以将正极反应液和负极反应液经输液管 5进入反应器 3。正极反应液填 充于正极腔室 10中, 负极反应液填充于负极腔室 11中, 正极反应液中的正极 将正极集流体 6和负极集流体 8与外电路连接,该锂离子电池即可对外工 作。
实施例二
实施例二与实施例一的制备方法基本相同, 其不同之处在于, 负极反应液 的制备方法为: 将锂、 铷(Rb )、 铯(Cs )按照质量比 8: 1:1投入容器中, 通 入高纯氩气作为保护气, 防止金属与空气中的氧气、 氮气或者水分接触, 并对 容器进行密封。 对容器进行加热, 维持 200 °C的温度 6个小时, 待容器内部的 锂、 铷、 铯完全融化并均勾融合后, 降温备用。 此时的锂金属合金在常温下已 经呈液态。
在氩气的保护下将锂金属合金负极倒入负极储罐 2中, 并立即密封, 过程 中需保证负极储罐 2和输液管 5中均有惰性气体,以避免液态锂金属合金发生 的副反应影响电池体系安全。
正极反应液的制备方法: 将六氟磷酸锂溶于有机溶剂中, 其中有机溶剂的 组分为碳酸乙烯酯(EC )、 曱基乙基碳酸酯(EMC)、 碳酸二乙酯(DEC)按体 积比为 1: 1: 1的比例混合而成的混合液。从而配成六氟磷酸锂浓度为 lmol/L 的电解液。
将单质硫和碳粉末以 5:1的比例投入高能球磨机中, 以每分钟 350转的转 速球磨 6小时, 过程中需通入氩气气氛保护以防止高温氧化, 降温后取出, 并 研磨成细粉末状, 制备得到碳硫化合物的正极活性材料。 其中, 碳粉末用于连 接大分子硫单质, 以形成网络提升导电性能。
将碳硫化合物的正极活性材料投入到电解液中,正极活性材料与电解液的 质量比为 1:4, 碳硫化合物的正极活性材料均匀分散于电解液中, 制备得到正 极反应液。
后续步骤与实施例一中的步骤相同。 综上,本发明提供的锂离子电池, 釆用了将液态锂金属合金作为负极反应 液,正极活性材料均勾分散于电解液以作为正极反应液, 陶瓷微孔隔板 9作为 隔膜的结构。其反应机理与传统锂离子电池无任何区别。 它结合了钠硫电池的 优点,锂金属合金在常温下即为液态,避免了对电池体系加热,提升了安全性, 降低了成本,还规避了传统锂离子液流电池的负极釆用碳材料有机溶剂悬浊液 的劣势, 直接将高比能的锂金属合金作为负极反应液, 明显提升了能量密度。 还结合了液流电池的部分优点,正极反应液和负极反应液均流动,且在反应器 3内进行反应, 锂离子电池的微孔隔板 9越大, 反应接触面越大, 功率密度越 高。 正极储罐 1和负极储罐 2的体积越大, 活性物质越多, 能量密度越高。 相 对于常规锂离子电池,仅需更换正极储罐 1和负极储罐 2内的材料即可完成电 池再生, 不必整体更换, 节约成本。 另外, 本发明实施例提供的锂离子电池的 污染比现有的全钒液流电池小。 因而, 本实施例提供的锂离子电池除了兼具有 全钒液流电池能量密度高、 功率密度高、 和成本低的特点外, 还具有污染小的 特点。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1. 一种锂离子电池, 其特征在于, 所述锂离子电池包括反应器、 微孔隔 板、 正极储罐、 正极反应液、 正极液体泵、 负极储罐、 负极反应液、 负极液体 泵; 所述反应器为一封闭内腔, 所述微孔隔板分隔所述反应器成正极腔室和负 极腔室; 所述正极储罐、所述正极液体泵和所述正极腔室经输液管连接构成正 极回路, 所述正极反应液在所述正极回路内流动; 所述负极储罐、 所述负极液 体泵和所述负极腔室经所述输液管连接构成负极回路,所述负极反应液在所述 负极回路内流动; 所述正极反应液和所述负极反应液用于参加反应产生电能, 所述负极反应液包括液态锂金属合金。
2. 如权利要求 1 所述的锂离子电池, 其特征在于, 所述液态锂金属合金 包括金属锂, 和至少一种熔点低于 30°C的金属。
3. 如权利要求 2所述的锂离子电池, 其特征在于, 所述熔点低于 30°C的 金属包括汞、 铷、 铯和钫中的任意一种。
4. 如权利要求 2所述的锂离子电池, 其特征在于, 所述熔点低于 30°C的 金属的质量百分含量为 0.1%~50%。
5. 如权利要求 1 所述的锂离子电池, 其特征在于, 所述正极反应液的材 质包括电解液和均匀分散于所述电解液中的正极活性材料;所述正极活性材料 包括磷酸铁锂、 磷酸锰锂、 磷酸钒锂、 硅酸铁锂、 钴酸锂、 镍钴锰三元材料、 镍锰 /钴锰 /镍钴二原材料、 锰酸锂、 富锂层状镍锰酸锂中的至少一种; 所述电 解液为锂盐溶解于有机溶剂形成的溶液, 所述锂盐包括六氟磷酸锂、 四氟硼酸 锂、 高氯酸锂、 二(三氟曱基横酰)亚胺锂、 二草酸硼酸锂、 LiBFSi、 LiPF3(CF2CF3)3、 或 LiCF3S03中的至少一种, 所述有机溶剂包括碳酸二曱酯、 碳酸二乙酯、 碳酸乙烯酯、 碳酸丙烯酯的至少一种。
6. 如权利要求 1 所述的锂离子电池, 其特征在于, 所述正极反应液的材 质包括所述电解液和均匀分散于所述电解液中的正极活性材料;所述正极活性 材料包括单质疏、 二疏化钼、 二疏化娃、 疏化锂、 二疏化亚铁、 二疏化钬和石克 化钒中的至少一种, 或有机二硫化物、 聚有机二硫化物、 聚有机多硫化物、 碳 聚合物中的至少一种;所述电解液为双三氟曱基横酸酰亚胺锂的乙二醇二曱 醚和 1, 3-二氧戊环溶液。
7. 如权利要求 1 所述的锂离子电池, 其特征在于, 所述微孔隔板为电子 绝缘材料, 包括微孔氧化铝陶瓷材料、 微孔二氧化硅陶瓷材料、微孔氧化钛陶 瓷材料和微孔氧化锆陶瓷材料的任一种。
8. 一种锂金属合金的制备方法, 其特征在于, 所述锂金属合金用于权利 要求 1~7任一项所述的锂离子电池中, 所述锂金属合金的制备方法包括: 在惰 性气体保护下,将锂金属和所述低熔点金属加热熔融,待分散均勾冷却至室温, 制备得到液体的所述锂金属合金。
9. 如权利要求 8所述的锂金属合金的制备方法, 其特征在于, 所述惰性 气体包括氦气和氩气中的任一种, 加热熔融温度为 180°C ~300°C, 加热熔融时 间为 0.1~24h。
PCT/CN2014/075700 2013-09-24 2014-04-18 锂离子电池及锂金属合金的制备方法 WO2015043167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310440096.9 2013-09-24
CN201310440096.9A CN104466232A (zh) 2013-09-24 2013-09-24 锂离子电池及锂金属合金的制备方法

Publications (1)

Publication Number Publication Date
WO2015043167A1 true WO2015043167A1 (zh) 2015-04-02

Family

ID=52741940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075700 WO2015043167A1 (zh) 2013-09-24 2014-04-18 锂离子电池及锂金属合金的制备方法

Country Status (2)

Country Link
CN (1) CN104466232A (zh)
WO (1) WO2015043167A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107492658A (zh) * 2017-07-31 2017-12-19 安阳工学院 一种二硫化钛纳米片及其制备方法
CN110120502B (zh) * 2018-02-05 2022-02-18 中国科学院物理研究所 一种锂金属合金负极材料及其制备方法和应用
CN111200158B (zh) 2018-11-19 2021-12-31 财团法人工业技术研究院 电池
CN110729470B (zh) * 2019-10-22 2021-06-01 北京科技大学 一种液态或半液态金属电池的正极材料及制备方法和应用
CN111001211A (zh) * 2019-12-20 2020-04-14 北京京能清洁能源电力股份有限公司北京分公司 晶体硅电池碎片化学处理设备
CN115498265A (zh) * 2022-10-10 2022-12-20 惠州亿纬动力电池有限公司 一种电解液及其制备方法和含有其的锂离子电池
CN116936876B (zh) * 2023-09-18 2024-01-05 艾博特瑞能源科技(苏州)有限公司 一种液流电池储能系统及其运行方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1739214A (zh) * 2003-01-22 2006-02-22 威伦斯技术公司 一种用在基于磷酸盐的锂离子/聚合物电池中的电解质
CN101188287A (zh) * 2006-11-22 2008-05-28 三星Sdi株式会社 锂电池用负极活性材料、其制备方法及包括其的锂电池
CN101353734A (zh) * 2008-09-01 2009-01-28 北京有色金属研究总院 真空熔炼制备Li-B合金的方法及装置
CN102315473A (zh) * 2011-06-28 2012-01-11 北京好风光储能技术有限公司 一种锂离子液流电池
CN102347482A (zh) * 2011-09-28 2012-02-08 李桂云 静止型半液流锂硫电池
CN102623676A (zh) * 2012-03-29 2012-08-01 江西苏克尔新材料有限公司 一种锂硫电池正极用复合材料以及由其制成的正极和电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2356712A4 (en) * 2008-11-04 2016-12-14 California Inst Of Techn HYBRID ELECTROCHEMICAL GENERATOR WITH A SOLUBLE ANODE
CN102005618A (zh) * 2010-11-12 2011-04-06 刘维奇 常温钠硫蓄电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1739214A (zh) * 2003-01-22 2006-02-22 威伦斯技术公司 一种用在基于磷酸盐的锂离子/聚合物电池中的电解质
CN101188287A (zh) * 2006-11-22 2008-05-28 三星Sdi株式会社 锂电池用负极活性材料、其制备方法及包括其的锂电池
CN101353734A (zh) * 2008-09-01 2009-01-28 北京有色金属研究总院 真空熔炼制备Li-B合金的方法及装置
CN102315473A (zh) * 2011-06-28 2012-01-11 北京好风光储能技术有限公司 一种锂离子液流电池
CN102347482A (zh) * 2011-09-28 2012-02-08 李桂云 静止型半液流锂硫电池
CN102623676A (zh) * 2012-03-29 2012-08-01 江西苏克尔新材料有限公司 一种锂硫电池正极用复合材料以及由其制成的正极和电池

Also Published As

Publication number Publication date
CN104466232A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
Fan et al. Prospects of electrode materials and electrolytes for practical potassium‐based batteries
Liu et al. Revisiting scientific issues for industrial applications of lithium–sulfur batteries
Wang et al. Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries
Xu et al. Recent progress in the design of advanced cathode materials and battery models for high‐performance lithium‐X (X= O2, S, Se, Te, I2, Br2) batteries
Manthiram et al. Lithium battery chemistries enabled by solid-state electrolytes
WO2015043167A1 (zh) 锂离子电池及锂金属合金的制备方法
Azhari et al. Recycling for all solid-state lithium-ion batteries
Cai et al. Progress and future perspectives on Li (Na)–CO2 batteries
CN106298250B (zh) 一种固态锂离子-超级电容混合电池
CN103956458B (zh) 一种锂离子电池复合正极及其制备方法与在全固态电池中的应用
Li et al. Developments of electrolyte systems for lithium–sulfur batteries: A review
CN101572305B (zh) 一种具备高倍率性能的LiFePO4/C正极材料的制备方法
CN102569769B (zh) 一种钛酸锂与石墨烯复合电极材料的制备方法
CN101562244A (zh) 锂二次电池用单质硫复合材料的制备方法
CN105762331A (zh) 一种三维硫掺杂石墨烯/硫复合材料电极片的制备方法
YANG et al. Next-generation energy storage technologies and their key electrode materials
CN104157909B (zh) 一种锂硫电池膜电极的制备方法
CN108306059A (zh) 绿色环保高功率水系锌离子电池的制备方法
CN113871588A (zh) 一种锂电池核壳正极材料、含锂电池核壳正极材料的锂电池及其制备方法
CN106920930A (zh) 一种用于锂硫电池正极的复合材料及其制备方法和应用
CN103515595A (zh) 硫/聚吡咯-石墨烯复合材料、其制备方法、电池正极以及锂硫电池
CN103346292B (zh) 一种锂离子电池复合正极及其制备方法和应用
CN105304877A (zh) 硫系正极材料及其制备方法以及一种电池
CN101488568A (zh) 一种用于锂二次电池正极活性材料的表面修饰方法
CN105449139A (zh) 一种解决钛酸锂负极锂离子电池高温胀气的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847428

Country of ref document: EP

Kind code of ref document: A1