WO2015043058A1 - 一种非调质钢的生产工艺 - Google Patents

一种非调质钢的生产工艺 Download PDF

Info

Publication number
WO2015043058A1
WO2015043058A1 PCT/CN2013/088378 CN2013088378W WO2015043058A1 WO 2015043058 A1 WO2015043058 A1 WO 2015043058A1 CN 2013088378 W CN2013088378 W CN 2013088378W WO 2015043058 A1 WO2015043058 A1 WO 2015043058A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
steel
quenched
temperature
controlled
Prior art date
Application number
PCT/CN2013/088378
Other languages
English (en)
French (fr)
Inventor
甄玉
徐益峰
李浩情
宋群生
Original Assignee
北大方正集团有限公司
苏州苏信特钢有限公司
江苏苏钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北大方正集团有限公司, 苏州苏信特钢有限公司, 江苏苏钢集团有限公司 filed Critical 北大方正集团有限公司
Priority to EP13894277.6A priority Critical patent/EP3050992A4/en
Priority to JP2016516515A priority patent/JP2016540108A/ja
Priority to US15/023,523 priority patent/US20160208357A1/en
Publication of WO2015043058A1 publication Critical patent/WO2015043058A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the invention relates to a production process of non-quenched and tempered steel, belonging to the technical field of steel metallurgy. Background technique
  • Non-tempered steel refers to mechanical structural steel that can meet performance requirements without quenching and tempering. The use of such steel to manufacture parts can eliminate the quenching and tempering heat treatment process, and has the advantages of energy saving, materials, and simple process, which can reduce the environment. Pollution, avoid oxidation, decarburization, deformation, cracking.
  • non-tempering non-tempered steel The traditional domestic production of non-tempering non-tempered steel is: electric furnace smelting - refining - die casting - controlled rolling and controlled cooling.
  • the difficulty in the production of this process is: the control of the low-fold structure of the slab.
  • Most domestic and foreign manufacturers have improved the control of low-strength slabs by improving the chemical composition of non-tempered steel.
  • studies have shown that it is difficult to achieve performance requirements for non-tempered steels simply by component design.
  • Shougang Corporation has proposed a new non-quenched and tempered steel production process, which mainly includes: converter smelting, slag tapping, ladle deoxidation alloying, LF ladle refining, feeding S line, ladle bottom blowing hydrogen protection
  • the steps of casting, casting temperature control, controlled cooling, and rolling wherein, in the rolling step, the heating temperature is 1100-1180.
  • C the rolling temperature is 1020-1100.
  • C the final rolling temperature is 850-920 e C
  • the relative deformation is 15-35%, and after cooling, it is cooled to 600 ⁇ and then cooled to room temperature.
  • the non-quenched and tempered steel produced by the above process is difficult to ensure the temperature of the core and the surface of the steel tend to be consistent in a short time by the slow 11 cooling method, and the steel sheet is easily caused in a short time.
  • the strength and toughness of the surface and the core fluctuate greatly, and the mechanical properties are seriously uneven.
  • the above process is used to produce large-size non-quenched and tempered steel (for example, ⁇ 70- ⁇ 145 mm bar), the mechanical properties of the bar surface and the core of the bar are not The phenomenon of uniformity is more obvious. Summary of the invention
  • the technical problem to be solved by the present invention is to overcome the defects of the surface mechanical properties and the uneven core force performance of the steel produced by the existing non-tempered steel production process, thereby providing a non-quenched and tempered steel production process to ensure The surface mechanical properties of the finished product and the uniformity of the mechanical properties of the core.
  • the present invention provides a production process for non-quenched and tempered steel, comprising a cooling step performed at least after the finishing rolling step, in which the steel material is subjected to at least two stages by alternating strong and weak cooling.
  • the water is cooled so that the core temperature of the steel tends to coincide with the surface temperature for a certain period of time.
  • the steel material in the cooling step, is cooled by three stages of water passage, wherein the first stage of water cooling is strongly cooled, and the second stage of water cooling is weak. Cold, the third section of the water is cooled by strong cooling.
  • the production process of the non-quenched and tempered steel provided by the present invention controls the strength of the cooling by controlling the degree of opening of the valve of the water-passing cooling device in the cooling step.
  • the steel material is lowered by 100 e C to 400 in 4-7 seconds after being cooled by water penetration.
  • C After the steel is warmed up, cool down again by 50. C ⁇ 200.
  • the production process of the non-quenched and tempered steel provided by the invention controls the opening degree of the first stage valve to be 30% to 40%, the opening degree of the second stage valve is 20%, and the opening degree of the third stage valve is 30% - 40% to ensure that the steel surface temperature is lowered by 100 in 4-7 seconds.
  • the steel material is cooled and cooled by means of spray cooling.
  • the production process of the non-quenched and tempered steel provided by the present invention after the cooling and cooling, the steel material is dispersed and placed on a cold bed for air cooling for 10-12 minutes.
  • the steel materials are stacked and then subjected to leather cooling.
  • the production process of the non-quenched and tempered steel provided by the present invention further comprises a finishing step before the cooling step, in which the temperature at which the steel material enters the finishing rolling step is controlled to be ⁇ 950.
  • C at steel temperature is 780.
  • Low temperature rolling is carried out under C conditions.
  • the production process of the non-quenched and tempered steel provided by the present invention further includes a smelting step before the finishing rolling step, the smelting step comprising an electric furnace smelting step, a ladle furnace smelting step and a refining step which are sequentially performed.
  • the production process of the non-quenched and tempered steel provided by the invention adopts full iron smelting in the electric furnace smelting, the end phosphorus content is ⁇ 0.015%, the end carbon content is 0.03% ⁇ 0.10%, and the end temperature is 1620°C - 1700 e C.
  • the production process of the non-quenched and tempered steel provided by the present invention is deoxidized by using silicon carbide or ferrosilicon powder in the ladle furnace smelting step and/or the refining step.
  • the production process of the non-quenched and tempered steel provided by the present invention ensures that the refining time is not less than 45 minutes in the refining step, and the hydrogen content is controlled to be less than 1.5 ppm.
  • the production process of the non-quenched and tempered steel provided by the present invention further includes a continuous casting step after the refining step, in which the superheat degree is controlled at 20 to 35'C, and the pulling speed is controlled at 0.5 m/ Min ⁇ 0.6m/min.
  • the production process of the non-quenched and tempered steel provided by the present invention further includes a heating step after the continuous casting step, in which the steel material is placed in a heating furnace for heating, wherein the temperature of the preheating section is controlled at 850 ⁇ 30 .
  • the heating section temperature is controlled at 1100 ⁇ 30.
  • the temperature of the soaking section is controlled at 1130 ⁇ 30 e C, and the total time of the soaking section is not less than 2 hours.
  • the present invention provides a process for producing non-quenched and tempered steel, The process in turn includes the following steps:
  • Electric furnace smelting step providing an iron raw material having a desired steel composition, using total iron smelting in the electric furnace smelting, the end phosphorus content is ⁇ 0.015%, the end carbon content is 0.03% - 0.10%, and the end temperature is 1620 - 1700. C ;
  • Refining step wherein degassing treatment is carried out to ensure that the refining time is not less than 45 minutes, thereby controlling the hydrogen content to be less than 1.5 ppm;
  • Heating step the slab produced by the continuous casting step is placed in a heating furnace for heating, wherein the temperature of the preheating section is controlled at 850 ⁇ 30. C, the heating section temperature is controlled at 1100 ⁇ 30. C, the temperature of the soaking section is controlled at 1130 ⁇ 30 e C, and the total time of the soaking section is not less than 2 hours;
  • Cooling step In the cooling step, the steel material is cooled by at least two stages of water passage in a manner of alternating strong and weak cooling so that the core temperature of the steel material tends to coincide with the surface temperature during cooling.
  • the production process of the non-quenched and tempered steel changes the manner of cooling before the finish rolling in the production of the non-tempered steel in the past, at least after the finishing rolling step, and the cooling method is changed in the prior art.
  • the cooling method with single water cooling or air cooling and strong consistency is used to alternate between strong cooling and weak cooling.
  • the strong cooling can ensure the rapid reduction of the surface temperature of the steel.
  • the weak cooling can gradually spread the temperature of the core of the steel to the surface, and then strengthen it.
  • the combination of strong and weak cold water cooling method makes the temperature of the steel core and the surface temperature in a short time Convergence, ensuring uniformity of mechanical properties of steel and improving Production efficiency.
  • the steel material is subjected to three-stage water-cooling, wherein the first stage of water-cooling is cooled by strong cooling, and the second section is cooled by water. Weak cooling is used, and the third section is cooled by water. After the finish rolling, the temperature of the steel is higher.
  • the first stage is cooled by water
  • the surface temperature of the steel is rapidly lowered. Due to the heat transfer, the heat of the core is gradually transferred to the surface after the surface temperature is lowered.
  • a weak cooling method is adopted.
  • the heat transfer causes the surface temperature to rise, and the surface is cooled again by the strong cooling method. Thereby, the surface heat is quickly taken away, and at this time, the heat transfer causes the surface temperature and the core temperature to converge, thereby ensuring uniformity of mechanical properties.
  • the production process of the non-quenched and tempered steel provided by the present invention, in the cooling step, controlling the strength of the cooling by controlling the degree of opening of the valve of the water-passing cooling device, specifically, controlling the opening degree of the first stage valve to be 30% ⁇ 40%, the second stage valve opening is 20%, the third stage valve opening is 30% - 40%, to ensure that the steel surface temperature is reduced by 100 in 4-7 seconds.
  • C - 400 e C by controlling the opening degree of the valve, the water flow can be controlled, and then the degree of water-cooling cooling can be controlled. This kind of control method is very simple. After the valve is opened for a certain length, the steel is penetrated into the water for water treatment. During the water penetration process, the surface of the steel is cooled in all directions, ensuring uniformity of surface cooling.
  • the production process of the non-quenched and tempered steel provided by the present invention after the cooling and cooling, the steel material is dispersed and placed on a cold bed for air cooling for 10-12 minutes. After the spray is cooled, the steel is dispersed and placed on a cold bed for air cooling, which can further supplement the spray cooling, so that the surface heat is further lost. 6.
  • the production process of the non-quenched and tempered steel provided by the present invention after the air cooling, the steel materials are stacked and then subjected to leather cooling.
  • Leather cooling is a way of slow cooling.
  • the steel is stacked and then subjected to leather cooling, after cooling by water cooling, spray cooling and air cooling. After the method, the surface temperature of the steel has reached the same level as the core temperature. At this time, the cooling rate is lowered by the method of leather cooling, which is beneficial to improve the microstructure of the steel.
  • the production process of the non-quenched and tempered steel ensures that the refining time is not less than 45 minutes in the refining step, and the hydrogen content is controlled to be less than 1.5 ppm, and the refining process effectively controls the hydrogen content, which may be more Good to solve the risk of hydrogen cracking in the subsequent steel; more time to make the composition more uniform; give the inclusions more full floating time, effectively solve the problem of inclusion control, making the finished product more pure.
  • the superheat degree is strictly controlled at 20 ⁇ 35 e C
  • the pulling speed is controlled at 0.5 m / min ⁇ 0.6 m / min
  • the low superheat of continuous casting ensures the quality of the slab.
  • the core of the present invention is to improve the quality of the steel by substantially controlling the properties of the steel surface and the core by controlling the rolling and controlling the cooling step after rolling.
  • Specific cooling controls include:
  • the steel material is cooled by at least two stages of water passage in a manner of alternating strong and weak cooling, so that the core temperature of the steel material tends to coincide with the surface temperature in a specific time, specifically, after the finish rolling
  • the steel material is cooled by three stages of water passage, wherein the first section of the water is cooled by strong cooling, the second section is cooled by water, and the third section is cooled by water, and the concrete is cooled by water.
  • Control the strength of the cooling by controlling the degree of opening of the valve through the water cooling device.
  • the strong cold generally refers to a cooling rate of ⁇ 7 / S.
  • the weak cooling refers to cooling with a cooling rate of 2-4 e C/S.
  • the cooling control is performed by the above method (especially, water-cooling) to change the manner of cooling before the finish rolling in the production of the conventional non-quenched and tempered steel, at least after the finishing rolling step, and the cooling method is changed.
  • a single water-cooling or air-cooling method with uniform strength is used to alternate between strong cooling and weak cooling, and strong cooling can ensure that the surface temperature of the steel is rapidly reduced, and the weak cooling can gradually spread the temperature of the steel core to the surface. Then, the strong cooling is carried out, so that the heat is quickly dissipated. According to the actual needs, the strong cooling and the weak cooling can be alternated several times.
  • the combination of strong and weak cooling combined with the water cooling method makes the temperature of the steel core in a short time and The temperature of the surface tends to be uniform, thereby ensuring the uniformity of the mechanical properties of the steel and improving the production efficiency.
  • the subsequent joint control of spray cooling, air cooling and leather cooling causes the core temperature to continuously scatter to the surface, and the surface temperature is continuously taken away, and the combination of the above cooling methods makes the cooling rate comparison. It is suitable to use leather cold after air cooling, so that the surface temperature of the steel is consistent with the core temperature, the cooling rate is not too fast, and the comprehensive mechanical properties are improved.
  • Fig. 1 is a metallographic picture of a non-tempered steel which is produced by the production method of the present invention in place of ordinary quenched and tempered 45 steel at a magnification of 500 times;
  • Figure 2 is a photograph reflecting the grain size of a non-quenched and tempered steel produced by the production method of the present invention instead of the ordinary quenched and tempered 45 steel;
  • Figure 3 is a photograph showing the inclusion of non-tempered steel instead of ordinary quenched and tempered 45 steel produced by the production method of the present invention;
  • Figure 4 is a metallographic picture of a non-tempered steel instead of quenched and tempered 42CrMo steel produced by the production method of the present invention at a magnification of 500 times;
  • Figure 5 is a photograph reflecting the grain size of a non-quenched and tempered steel instead of quenched and tempered 42CrMo steel produced by the production method of the present invention
  • Fig. 6 is a view showing the inclusion of non-heat treated steel instead of quenched and tempered 42CrMo steel produced by the production method of the present invention. detailed description
  • control rolling, controlled cooling, smelting and continuous casting steps of the present invention are described in detail below in connection with the production processes of several specific non-quenched and tempered steels.
  • the embodiment provides a production method for replacing the non-quenched and tempered steel for direct-cut 45 steel direct cutting, which comprises a finishing rolling step and a cooling step after finishing rolling, wherein in the finishing rolling step, the control bar enters
  • the temperature at the finish rolling step is ⁇ 950.
  • C, at bar temperature is 780.
  • the water flow rate is controlled by controlling the degree of opening of the valve of the water-passing cooling device, thereby controlling the cooling strength.
  • the first section of the valve opening is 30% ⁇ 40%
  • the second section of the valve opening is 20%
  • the third section of the valve opening is 30% ⁇ 40%, to ensure that the bar surface temperature is reduced within 5s 100'C ⁇ 400.
  • C after the bar is returned to temperature, the temperature of the bar is lowered by 50'C ⁇ 200'C by spray cooling, so that the heat is quickly dissipated, and then the bar is opened and placed on a cold bed and cooled by air cooling for 10 minutes.
  • the bottom bed will cool the bar.
  • the production method of the non-quenched and tempered steel for direct cutting of the ordinary 45 steel is replaced, and the rod is cooled by three stages of water passage, wherein the first section is cooled by water and the second section is watered.
  • the cooling is weakly cooled, and the third section is cooled by water.
  • the bar temperature is higher, and the first section is cooled by water, so that the surface temperature of the bar is rapidly lowered. Due to the heat transfer, the core heat is gradually turned to the surface after the surface temperature is lowered.
  • the weak cooling method in order to transfer the heat of the core to the surface as much as possible, the weak cooling method is adopted in the second stage of water-cooling, so that more time is reserved for heat transfer to the core during the cooling process, after weak cooling, The heat transfer causes the surface temperature to rise, and the surface is quickly cooled by the strong cooling method, so that the surface heat is quickly taken away. At this time, the heat transfer causes the surface temperature and the core temperature to converge, thereby ensuring the mechanical properties. Uniformity.
  • the embodiment provides a production method for replacing the non-quenched and tempered steel for direct-cut 45 steel direct cutting, which is a further improvement based on the embodiment 1, and further includes the step of finishing the rolling in comparison with the embodiment 1.
  • the smelting step includes an electric furnace smelting step, a ladle furnace smelting step, and a refining step which are sequentially performed.
  • deoxidation is carried out using silicon carbide and ferrosilicon powder, and white slag is added by adding lime.
  • the white slag is kept for not less than 20 minutes, so that the white slag can completely remove the inclusions.
  • degassing is carried out to ensure that the hydrogen content is controlled below 1.5 ppm, and the refining time is not less than 45 minutes.
  • the present embodiment provides a production method for replacing non-heat treated steel for direct cutting of normal 45 steel, which is a further improvement based on Embodiment 1 or 2.
  • the continuous casting step and the heating step For improvement, both the continuous casting step and the heating step are located after the refining step and before the rolling step and the water-through cooling step.
  • the molten iron in the tundish is introduced into the crystallizer through the intrusive nozzle, thereby avoiding the problem of easy introduction of air when introduced through the conventional nozzle, and argon gas is blown at the joint of the immersion nozzle and the tundish to avoid
  • the air enters the tundish the superheat is strictly controlled at 20 ⁇ 35, and the pulling speed is controlled at 0.5m/min - 0.6m/min.
  • the low superheat and continuous pulling speed of continuous casting ensure the quality of the slab.
  • the temperature at which the cut is made during continuous casting is controlled to be ⁇ 820. C. After cutting, the surface of the slab should be inspected manually to ensure that there are no obvious defects.
  • the slab is taken at a low magnification to ensure that the slab has no cracks, no shrinkage holes, and the center looseness is no more than 3 grades. This requirement is to ensure subsequent rolling out.
  • the preheating section is 850 ⁇ 30 e C
  • the heating section is 1100 ⁇ 30 e C
  • the soaking section is 1130 ⁇ 30'C.
  • the total temperature of the soaking section is not less than 2 hours.
  • the metallographic structure of the non-quenched and tempered steel for direct cutting of ordinary tempered 45 steel which is produced by the production method provided in this embodiment is ferrite and pearlite (as shown in Fig. 1), and the actual crystal is obtained.
  • the embodiment provides a production method for replacing non-quenched and tempered steel for direct cutting of tempered 42CrMo steel, which comprises a finishing rolling step and a cooling step after finish rolling, wherein In the rolling step, the temperature at which the control bar enters the finishing rolling step is ⁇ 900. C, at bar temperature is at 800. C ⁇ 900. Low-temperature rolling under C conditions; after rolling, the steel is subjected to three-stage water-cooling through a professionally controllable water-cooling equipment. The first stage of water-cooling uses strong cooling, and the second stage of water-cooling uses weak cooling. Three sections of water cooling are strongly cooled.
  • the water flow rate is controlled by controlling the degree of opening of the valve of the water-passing cooling device, thereby controlling the cooling strength.
  • the first section of the valve opening is 30% ⁇ 40%
  • the second section of the valve opening is 30%
  • the third section of the valve opening is 30% ⁇ 40%, to ensure that the bar surface temperature is reduced within 5s Reduce the temperature from 150 °C to 400 °C, then reduce the temperature of the bar by 80 e C ⁇ 200 e C after the bar is returned to the temperature, then spread the heat quickly, then spread the bar to place it.
  • the cold bed is cooled by air cooling for 10 minutes, and finally the cold bed is used to cool the bar.
  • the method for producing non-quenched and tempered steel for direct cutting steel is subjected to three-stage water-cooling, wherein the first section of the water-cooling adopts strong cooling, and the second The section water cooling uses weak cooling, and the third stage water cooling uses strong cooling.
  • the bar temperature is higher, and the first section is cooled by water, so that the surface temperature of the bar is rapidly lowered. Due to the heat transfer, the core heat is gradually turned to the surface after the surface temperature is lowered.
  • the weak cooling method in order to transfer the heat of the core to the surface as much as possible, the weak cooling method is adopted in the second stage of water-cooling, so that more time is reserved for heat transfer to the core during the cooling process, after weak cooling, The heat transfer causes the surface temperature to rise, and the surface is quickly cooled by the strong cooling method, so that the surface heat is quickly taken away. At this time, the heat transfer causes the surface temperature and the core temperature to converge, thereby ensuring the mechanical properties. Uniformity.
  • the present embodiment provides a production method for replacing non-quenched and tempered steel for direct cutting of quenched and tempered 42CrMo steel, which is a further improvement based on the embodiment 1, and further includes, prior to the finish rolling step, with respect to the embodiment 1 Smelting step, the smelting step includes sequentially The electric furnace smelting step, the ladle furnace smelting step and the refining step.
  • the whole iron smelting is adopted, and the phosphorus content before tapping is strictly controlled.
  • deoxidation is carried out using silicon carbide and ferrosilicon powder, and white slag is added by adding lime.
  • the white slag is kept for not less than 20 minutes, so that the white slag can completely remove the inclusions.
  • degassing is carried out to ensure that the hydrogen content is controlled below 1.5 ppm, and the refining time is not less than 45 minutes.
  • the present embodiment provides a production method for replacing non-quenched and tempered steel for direct cutting of quenched and tempered 42CrMo steel, which is a further improvement based on Embodiment 1 or 2.
  • the continuous casting step and the heating step are performed.
  • the improvement, the continuous casting step and the heating step are both after the refining step and before the rolling step and the water-through cooling step.
  • the molten iron in the tundish is introduced into the crystallizer through the intrusive nozzle, thereby avoiding the problem of easy introduction of air when introduced through the conventional nozzle, and argon gas is blown at the joint of the immersion nozzle and the tundish to avoid
  • the air enters the tundish the superheat is strictly controlled at 23 ⁇ 35, and the pulling speed is controlled at 0.5m/min - 0.6m/min.
  • the low superheat and continuous drawing speed of continuous casting ensure the quality of the slab.
  • the temperature at which the cut is made during continuous casting is controlled to be ⁇ 820. C. After cutting, the surface of the slab should be inspected manually to ensure that there are no obvious defects.
  • the slab is taken at a low magnification to ensure that the slab has no cracks, no shrinkage holes, and the center looseness is no more than 3 grades. This requirement is to ensure subsequent rolling out.
  • the preheating section is 850 ⁇ 30 e C
  • the heating section is 1100 ⁇ 30 e C
  • the soaking section is 1130 ⁇ 30'C. Ensure that the total heating period is not less than 2 hours.
  • the metallographic structure of the non-quenched and tempered steel for direct cutting of the quenched and tempered 42CrMo steel produced by the production method provided by the present embodiment is ferrite and pearlite (shown in FIG. 3), and the actual grain size is obtained.
  • This embodiment provides a versatile non-modulated steel production process which begins with a smelting step comprising an electric furnace smelting step, a ladle furnace smelting step, and a refining step which are sequentially performed.
  • a smelting step comprising an electric furnace smelting step, a ladle furnace smelting step, and a refining step which are sequentially performed.
  • the electric furnace smelting step the whole iron smelting is adopted, and the phosphorus content before the steel is strictly controlled ⁇ 0.015%, the end carbon content is 0.03% - 0.10%, and the end temperature is 1620.
  • C - 1700 ⁇ electric furnace smelting can better control the slag operation than traditional converter smelting.
  • the smelting step of the ladle furnace silicon carbide and ferrosilicon powder are used for deoxidation, lime is added to make white slag, and the white slag is kept for not less than 20 minutes, so that the white slag can thoroughly remove inclusions.
  • the refining furnace (VD furnace) smelting step degassing is carried out to ensure that the hydrogen content is controlled below 1.5 ppm, and the refining time is not less than 45 minutes.
  • a continuous casting step is carried out after the refining step, in which the molten iron in the tundish is introduced into the crystallizer through the intrusive nozzle, thereby avoiding the introduction through the conventional nozzle
  • the problem of introducing air, in addition, argon gas is blown at the joint of the immersion nozzle and the tundish to prevent air from entering the tundish, and the superheat is strictly controlled at 20 to 35.
  • the pulling speed is controlled from 0.5m/min to 0.6m/min.
  • the low superheat and continuous drawing speed of continuous casting ensure the quality of the slab.
  • the temperature at which the cut is made during continuous casting is controlled to be ⁇ 820.
  • the slab is taken at a low magnification to ensure that the slab has no cracks, no shrinkage holes, and the center looseness is no more than 3 grades. This requirement is to ensure subsequent rolling out.
  • the slab is sent to the heating furnace for heating, and the preheating section is 850 ⁇ 30. C, heating section 1100 ⁇ 30. C, the soaking section is 1130 ⁇ 30. C, to ensure that the total heating period is not less than 2 hours.
  • a finishing rolling step and a cooling step are performed after the heating step; in the finishing rolling step, the temperature at which the rod is controlled to enter the finishing rolling step is ⁇ 950.
  • C, at the bar temperature is 780.
  • the water flow rate is controlled by controlling the degree of opening of the valve of the water-passing cooling device, thereby controlling the cooling strength.
  • the opening degree of the first stage valve is 30% - 40%
  • the second stage The valve opening is 20%
  • the third valve opening is 30% ⁇ 40%, which can reduce the surface temperature of the bar by 100% within 5s.
  • C after the bar is returned to temperature, the temperature of the bar is reduced by 50 by means of spray cooling.
  • C ⁇ 200. C the heat is quickly dissipated, and then the bar is dispersed and placed on a cold bed to be cooled by air cooling for 10 minutes, and finally the lower bed is cooled by the superimposed bar.
  • the rod is subjected to three-stage water-cooling, wherein the first section of the water is cooled by strong cooling, the second section is cooled by water, and the third section is cooled by water. Strong cold.
  • the bar temperature is higher, and the first section is cooled by water, so that the surface temperature of the bar is rapidly lowered. Due to the heat transfer, the core heat is gradually turned to the surface after the surface temperature is lowered. Transfer, in order to transfer the core heat to the surface as much as possible, in the second stage of water cooling, use weak cooling to make cooling During the process, more time is reserved for the heat transfer of the core.
  • the heat transfer causes the surface temperature to rise, and the surface is quickly cooled by the strong cooling method, so that the surface heat is quickly taken away.
  • the heat transfer aligns the surface temperature and the core temperature to ensure uniformity of mechanical properties.

Abstract

一种非调质钢的生产工艺,包括至少在精轧步骤后设置冷却步骤,在所述冷却步骤中采用强弱冷却交替的方式使所述钢材至少经过两段穿水冷却,以使得在特定时间内钢材的芯部温度与表面温度趋于一致,从而确保了钢材力学性能的均匀性,且提高了生产效率。

Description

一种非调质钢的生产工艺 技术领域
本发明涉及一种非调质钢的生产工艺, 属于钢铁冶金技术领域。 背景技术
目前, 国内机械加工行业切削用棒材多数使用 45、 40Cr 及 42CrMo等普通调质钢, 这些棒材在作为机加工切削用原料时需进行 调质热处理,调质成本高,而且由于调质过程会增加能耗并污染环境, 同时还有一些废品损耗, 不符合现今的节能环保要求。 因此, 不需要 调质处理的可直接切削用非调质钢必将逐步代替普通调质钢, 成为未 来发展趋势。 非调质钢是指不经过调质处理就可以达到性能要求的机 械结构钢, 采用此类钢制造零件, 可省去调质热处理工序, 具有节省 能源、材料、工艺简单等优点,可以减少环境污染、避免氧化、脱碳、 变形、 开裂。
国内生产易切削非调质钢传统工艺为:电炉冶炼 -精炼 -模铸 -控轧 控冷。 该种工艺在生产中的难点为: 铸坯低倍組织的控制。 现有国内 外生产厂家大多通过改善非调质钢的化学成分来达到对铸坯低倍組 织的控制, 然而, 研究证明, 单纯通过成分设计很难使得非调质钢达 到性能上的要求。
为此, 首钢总公司提出了一种新的非调质钢的生产工艺, 主要包 括: 转炉冶炼、挡渣出钢、钢包脱氧合金化、 LF钢包精炼、喂 S线、 钢包底吹氢全保护浇铸、 铸坯控温、 控冷以及轧制等步骤, 其中, 在 轧制步骤中, 加热温度 1100-1180。C, 开轧温度 1020-1100。C, 终轧温 度 850-920 eC, 相对变形量为 15-35%, 轧后控冷到 600Ό后緩' 11冷却 到室温。 上述工艺生产的非调质钢, 通过緩 11冷却方式在短时间内 艮 难保证钢材芯部和表面的温度趋于一致, 短时间内很容易导致钢材表 面和芯部的强度、 韧性波动很大, 力学性能严重不均匀, 采用上述工 艺生产大尺寸非调质钢时(例如 φ70-φ145 mm棒材),棒材表面和棒 材芯部力学性能不均匀的现象更加明显。 发明内容
因此, 本发明要解决的技术问题在于克服现有非调质钢生产工艺 生产出的钢材的表面力学性能和芯部力性能不均匀的缺陷, 从而提供 一种非调质钢的生产工艺, 确保成品的表面力学性能和芯部力学性能 的均匀性。
为此, 本发明提供一种非调质钢的生产工艺, 包括至少在精轧步 骤后进行的冷却步骤, 在所述冷却步骤中, 采用强弱冷却交替的方式 使所述钢材至少经过两段穿水冷却, 以使得在特定时间内钢材的芯部 温度与表面温度趋于一致。
本发明提供的非调质钢的生产工艺, 在所述冷却步骤中, 使所述 钢材经过三段穿水冷却, 其中, 第一段穿水冷却采用强冷, 第二段穿 水冷却采用弱冷, 第三段穿水冷却采用强冷。
本发明提供的非调质钢的生产工艺, 在所述冷却步骤中, 通过控 制穿水冷却装置的阀门开启程度控制冷却的强弱。
本发明提供的非调质钢的生产工艺, 在所述冷却步骤中, 所述钢 材经过穿水冷却后, 在 4-7秒内降低 100eC ~ 400。C, 待钢材回温后再 次降温 50。C ~ 200。 ( 。
本发明提供的非调质钢的生产工艺, 在所述冷却步骤中, 控制第 一段阀门开度为 30% ~ 40%,第二段阀门开度为 20%,第三段阀门开 度为 30% - 40%, 以确保在 4-7秒使所述钢材表面温度降低 100。C - 400 eC。
本发明提供的非调质钢的生产工艺, 在所述冷却步骤中, 待钢材 回温后采用喷雾冷却的方式对所述钢材进行降温冷却。 本发明提供的非调质钢的生产工艺, 在所述降温冷却后, 将所述 钢材分散放置到冷床上进行 10-12分钟的空冷。
本发明提供的非调质钢的生产工艺, 在所述空冷后, 将所述钢材 叠放后进行革冷。
本发明提供的非调质钢的生产工艺, 还包括位于冷却步骤前的精 轧步骤, 在所述精轧步骤中, 控制所述钢材进入精轧步骤时的温度 ≤950。C, 在钢材温度处于 780。C - 900。C条件下进行低温轧制。
本发明提供的非调质钢的生产工艺, 还包括位于精轧步骤之前的 冶炼步骤, 所述冶炼步骤包括依次进行的电炉冶炼步骤、 钢包炉冶炼 步骤以及精炼步骤。
本发明提供的非调质钢的生产工艺, 在所述电炉冶炼中采用全铁 水冶炼, 终点磷含量≤0.015%, 终点碳含量 0.03% ~ 0.10%, 终点温 度 1620°C - 1700eC。
本发明提供的非调质钢的生产工艺, 在所述钢包炉冶炼步骤和 / 或所述精炼步骤中采用碳化硅、 硅铁粉脱氧。
本发明提供的非调质钢的生产工艺, 在所述钢包炉冶炼步骤和 / 或所述精炼步骤中, 造白渣, 并使得白渣保持时间不少于 20分钟。
本发明提供的非调质钢的生产工艺, 在精炼步骤中, 确保精炼时 间不少于 45分钟, 将含氢量控制在 1.5ppm以下。
本发明提供的非调质钢的生产工艺, 还包括位于所述精炼步骤之 后的连铸步骤, 在所述连铸步骤中, 过热度控制在 20 ~ 35'C, 拉速控 制在 0.5m/min ~ 0.6m/min。
本发明提供的非调质钢的生产工艺, 还包括连铸步骤之后的加热 步骤, 在所述加热步骤中, 将钢材放入加热炉中进行加热, 其中, 预 热段温度控制在 850±30。C, 加热段温度控制在 1100±30。C, 均热段温 度控制在 1130±30eC, 均热段总时间不少于 2小时。
在一种优选实施方案中, 本发明提供了一种非调质钢的生产工艺, 该工艺依次包括如下步骤:
( 1 ) 电炉冶炼步骤: 提供具有期望的钢組成的铁原料, 在所述 电炉冶炼中采用全铁水冶炼, 终点磷含量≤0.015%, 终点碳含量 0.03% - 0.10%, 终点温度 1620 - 1700。C ;
( 2 )钢包炉冶炼步骤: 其中采用碳化硅和 /或硅铁粉脱氧, 并加 入石灰造白渣, 并使得白渣保持时间不少于 20分钟;
( 3 )精炼步骤: 其中进行脱气处理, 确保精炼时间不少于 45分 钟, 从而将含氢量控制在 1.5ppm以下;
( 4 )连铸步骤: 对精炼步骤得到的钢熔体进行连铸, 钢熔体的 过热度控制在 20 - 35。C, 拉速控制在 0.5m/min - 0.6m/min;
( 5 )加热步骤:将连铸步骤产生的钢坯放入加热炉中进行加热, 其中, 预热段温度控制在 850±30。C, 加热段温度控制在 1100±30。C, 均热段温度控制在 1130±30eC, 均热段总时间不少于 2小时;
( 6 )精轧步骤:其中控制所述钢材进入精轧步骤时的温度≤950。C, 在钢材温度处于 780。C - 900。C条件下进行低温轧制; 和
( 7 )冷却步骤: 在所述冷却步骤中, 采用强弱冷却交替的方式 使所述钢材至少经过两段穿水冷却, 以便在冷却过程中钢材的芯部温 度与表面温度趋于一致。
本发明提供的非调质钢的生产工艺具有以下优点:
1.本发明提供的非调质钢的生产工艺, 改变以往非调质钢生产中 在精轧之前进行冷却的方式, 至少在精轧步骤后设置冷却步骤, 并且 冷却方式一改现有技术中采用单一水冷或者空冷且强弱一致的冷却 方式,将强冷和弱冷交替进行,强冷可以保证钢材表面温度迅速减低, 弱冷可以使得钢材芯部的温度逐渐扩散到表面, 随后再进行强冷, 使 得热量快速散出, 根据实际需要, 强冷和弱冷可以交替进行多次, 强 弱冷相结合的穿水冷却方式使得在较短的时间内钢材芯部的温度和 表面的温度即趋于一致, 从而确保了钢材力学性能的均匀性, 且提高 了生产效率。
2.本发明提供的非调质钢的生产工艺, 在所述冷却步骤中, 使所 述钢材经过三段穿水冷却, 其中, 第一段穿水冷却采用强冷, 第二段 穿水冷却采用弱冷, 第三段穿水冷却采用强冷。 精轧之后的钢材温度 较高, 在第一段穿水冷却时采用强冷的方式, 使得钢材的表面温度迅 速降低, 由于热量的传递作用, 表面温度降低之后, 芯部热量逐渐向 表面传递, 为了使得芯部热量尽可能多的传递到表面, 在第二段穿水 冷却中采用弱冷的方式, 弱冷之后, 热传递使得表面温度有所升高, 再次通过强冷方式快速冷却表面, 从而使得表面热量被迅速带走, 此 时, 热传递使得表面温度和芯部温度趋于一致, 从而确保了力学性能 的均匀性。
3.本发明提供的非调质钢的生产工艺, 在所述冷却步骤中, 通过 控制穿水冷却装置的阀门开启程度控制冷却的强弱, 具体地, 控制第 一段阀门开度为 30% ~ 40%,第二段阀门开度为 20%,第三段阀门开 度为 30% - 40%, 以确保在 4-7秒使所述钢材表面温度降低 100。C - 400eC,通过控制阀门开启程度可以控制水流量,进而控制穿水冷却的 强弱程度, 该种控制方式非常简便, 在阀门开启一定长度后, 将钢材 穿入水中进行穿水处理, 钢材在穿水过程中, 其表面被全方位冷却, 确保了表面冷却的均匀性。
4.本发明提供的非调质钢的生产工艺, 在所述冷却步骤中, 待钢 材回温后采用喷雾冷却的方式对所述钢材进行降温冷却。 喷雾冷却的 方式是对穿水冷却的有利补充, 通过喷雾冷却可以使得芯部的热量进 一步扩散到表面, 更加确保了芯部与表面温度的一致性。
5.本发明提供的非调质钢的生产工艺, 在所述降温冷却后, 将所 述钢材分散放置到冷床上进行 10-12分钟的空冷。 在喷雾冷却后, 将 钢材分散放置到冷床上进行空冷, 可以进一步补充喷雾冷却, 使得表 面热量进一步散失。 6.本发明提供的非调质钢的生产工艺, 在所述空冷后, 将所述钢 材叠放后进行革冷。 革冷是緩慢冷却的一种方式, 为了避免上述冷却 过程过快而对钢材組织性能造成的不利影响, 将所述钢材叠放后进行 革冷, 在经过穿水冷却、 喷雾冷却以及空冷等冷却方式后, 钢材表面 温度与芯部温度已经达到一致, 此时, 采用革冷的方式, 将冷却速度 降下来, 有利于改善钢材的組织性能。
7.本发明提供的非调质钢的生产工艺,在所述钢包炉冶炼步骤中, 造白渣,并使得白渣保持时间不少于 20分钟,严格控制白渣保持时间, 使得白渣的脱氧、 脱硫以及去除夹杂物的作用更加明显, 有利于提高 钢的纯净度。
8.本发明提供的非调质钢的生产工艺, 在精炼步骤中, 确保精炼 时间不少于 45分钟, 将含氢量控制在 1.5ppm以下, 该精炼工艺有效 的控制了氢含量, 可以更好的解决后续钢材氢致裂紋的风险; 有更充 分的时间使得成分更均匀; 给予夹杂物更充分的上浮时间, 有效的解 决夹杂物控制的问题, 使得成品更加纯净。
9.本发明提供的非调质钢的生产工艺, 连铸步骤中, 过热度严格 控制在 20 ~ 35eC, 拉速控制在 0.5m/min ~ 0.6m/min, 连铸的低过热 度、 低拉速保证了铸坯的质量。
本发明的核心在于通过控制轧制和控制轧制后的冷却步骤使得 钢材表面和芯部的性能大体一致, 从而提高了钢材的品质。 具体的冷 却控制包括:
1 )在精轧之后采用强弱冷却交替的方式使所述钢材至少经过两 段穿水冷却, 以使得在特定时间内钢材的芯部温度与表面温度趋于一 致, 具体地, 在精轧之后使所述钢材经过三段穿水冷却, 其中, 第一 段穿水冷却采用强冷, 第二段穿水冷却采用弱冷, 第三段穿水冷却采 用强冷, 在具体的穿水冷却中, 通过控制穿水冷却装置的阀门开启程 度控制冷却的强弱。在本发明中,所述强冷通常指冷却速度≥7 /S的冷 却;而所述弱冷是指冷却速度为 2-4eC/S的冷却。
2 )穿水冷却后,待钢材回温后采用喷雾冷却的方式对所述钢材进 行降温冷却;
3 )在所述降温冷却后, 将所述钢材分散放置到冷床上进行 10-12 分钟的空冷;
4 )在所述空冷后, 将所述钢材叠放后进行革冷。
在精轧之后通过上述方式(尤其是穿水冷却)进行冷却控制, 改 变以往非调质钢生产中在精軋之前进行冷却的方式, 至少在精轧步骤 后设置冷却步骤, 并且冷却方式一改现有技术中采用单一水冷或者空 冷且强弱一致的冷却方式, 将强冷和弱冷交替进行, 强冷可以保证钢 材表面温度迅速减低, 弱冷可以使得钢材芯部的温度逐渐扩散到表面, 随后再进行强冷, 使得热量快速散出, 根据实际需要, 强冷和弱冷可 以交替进行多次, 强弱冷相结合的穿水冷却方式使得在较短的时间内 钢材芯部的温度和表面的温度即趋于一致, 从而确保了钢材力学性能 的均匀性, 且提高了生产效率。 在此基础之上, 后续的喷雾冷却、 空 冷以及革冷方式的联合控制, 使得芯部温度不断的散向表面, 而表面 温度不断的被带走, 并且, 上述冷却方式的结合使得冷却速度比较适 宜, 在空冷之后采用革冷, 使得钢材表面温度与芯部温度一致的情况 下, 冷却速度不至于过快, 提高了综合力学性能。 附图说明
为了使本发明的内容更容易被清楚的理解, 下面根据本发明的具 体实施例并结合附图, 对本发明作进一步详细的说明, 其中
图 1是采用本发明的生产方法生产的代替普通调质 45钢的非调质 钢在放大 500倍下的金相图片;
图 2是反映采用本发明的生产方法生产的代替普通调质 45钢的非 调质钢的晶粒度的图片; 图 3是反映采用本发明的生产方法生产的代替普通调质 45钢的非 调质钢的夹杂物情况的图片;
图 4是采用本发明的生产方法生产的代替调质 42CrMo钢的非调 质钢在放大 500倍下的金相图片;
图 5是反映采用本发明的生产方法生产的代替调质 42CrMo钢的 非调质钢的晶粒度的图片;
图 6是反映采用本发明的生产方法生产的代替调质 42CrMo钢的 非调质钢的夹杂物情况的图片。 具体实施方式
下面结合几种具体非调质钢的生产工艺, 对本发明的控制轧制、 控制冷却、 冶炼以及连铸步骤进行详细的说明。
实施例 1
本实施例提供一种代替普通调质 45钢直接切削用非调质钢的生 产方法, 包括精轧步骤以及在精轧之后的冷却步骤, 其中, 在所述精 轧步骤中, 控制棒材进入精轧步骤时的温度≤950。C, 在棒材温度处于 780。C ~ 900。C条件下进行低温轧制; 轧制后通过专业可控的穿水冷却 设备对钢材进行三段穿水冷却, 第一段穿水冷却采用强冷, 第二段穿 水冷却采用弱冷, 第三段穿水冷却采用强冷。
在此, 需要说明的是, 控制穿水冷却强弱的方式有 4艮多, 在本实 施例中, 通过控制穿水冷却装置的阀门开启程度来控制水流量, 以此 来控制冷却强弱的目的, 具体地, 第一段阀门开度为 30% ~ 40%, 第 二段阀门开度为 20%, 第三段阀门开度为 30% ~ 40%, 可确保 5s内 降低棒材表面温度 100'C ~ 400。C,之后待棒材回温后采用喷雾冷却的 方式将棒材温度降低 50'C ~ 200'C, 使其热量快速散出, 然后将棒材 开来放置到冷床上采用空冷方式冷却 10分钟, 最后下冷床将棒 材叠加革冷。 本实施例的代替调质普通 45钢直接切削用非调质钢的生产方法, 使所述棒材经过三段穿水冷却, 其中, 第一段穿水冷却采用强冷, 第 二段穿水冷却采用弱冷, 第三段穿水冷却采用强冷。 精轧之后的棒材 温度较高, 在第一段穿水冷却时采用强冷的方式, 使得棒材的表面温 度迅速降低, 由于热量的传递作用, 表面温度降低之后, 芯部热量逐 渐向表面传递, 为了使得芯部热量尽可能多的传递到表面, 在第二段 穿水冷却中采用弱冷方式, 以使得冷却过程中预留较多的时间给芯部 进行热传递, 弱冷之后, 热传递使得表面温度有所升高, 再次通过强 冷方式快速冷却表面, 从而使得表面热量被迅速带走, 此时, 热传递 使得表面温度和芯部温度趋于一致, 从而确保了力学性能的均匀性。
实施例 2
本实施例提供一种代替普通调质 45钢直接切削用非调质钢的生 产方法, 其是在实施例 1基础之上的进一步改进, 相对于实施例 1来 说, 还包括位于精轧步骤之前的冶炼步骤, 所述冶炼步骤包括依次进 行的电炉冶炼步骤、 钢包炉冶炼步骤以及精炼步骤。
在电炉冶炼步骤中, 采用全铁水冶炼, 严格控制出钢前磷含量 <0.015%, 终点碳含量 0.03% - 0.10%, 终点温度 1620。C ~ 1700。C, 电炉冶炼较传统的转炉冶炼可以更好的控制下渣操作。
在钢包炉 (LF 炉)冶炼步骤中, 使用碳化硅、 硅铁粉脱氧, 加 入石灰造白渣, 白渣保持时间不少于 20分钟, 以使得白渣能够较为 彻底的清除夹杂物。
在精炼炉 (VD 炉)冶炼步骤中, 进行脱气处理, 确保含氢量控 制在 1.5ppm以下, 确保精炼时间不少于 45分钟。
用 LF炉 +VD炉精炼的优点:相对于传统的仅用 LF炉精炼来说, 该精炼工艺有效的控制了氢含量, 可以更好的解决后续棒材氢至裂紋 的风险; 有更充分的时间使得成分更均匀; 给予夹杂物有更充分的上 浮时间, 有效的解决夹杂物控制的问题。 实施例 3
本实施例提供一种代替调质普通 45钢直接切削用非调质钢的生 产方法, 其是在实施例 1或 2基础上的进一步改进, 在本实施例中, 对连铸步骤以及加热步骤进行改进, 连铸步骤和加热步骤均位于精炼 步骤之后, 而又位于轧制步骤和穿水冷却步骤之前。
连铸步骤中, 通过侵入式水口将中间包中的铁水引入结晶器, 避 免了通过传统水口引入时易于引入空气的问题, 另外, 在浸入式水口 与中间包的结合部位吹氩气, 以避免空气进入中间包, 过热度严格控 制在 20 ~ 35 ,拉速控制在 0.5m/min - 0.6m/min,连铸的低过热度、 低拉速保证了铸坯的质量。 连铸后切割时据切处的温度控制在≤820。C, 切割后, 需人工检查铸坯表面, 确保无明显缺陷, 取铸坯低倍样, 确 保铸坯无裂紋, 无缩孔, 中心疏松不大于 3级, 该要求是为了保证后 续轧制出的棒材表面与低倍的质量, 铸坯检查合格后, 送往加热炉进 行加热, 预热段 850±30eC, 加热段 1100±30eC, 均热段 1130±30'C, 确保均热段总时间不少于 2小时。
采用本实施例提供的生产方法生产出的代替普通调质 45钢直接 切削用非调质钢的放大 500倍下的金相組织为铁素体和珠光体(如图 1所示 ), 实际晶粒度( 100倍),按 GB/T6394评级为 10 ~ 11级(如 图 2所示) , 晶粒细小, 均匀, 从芯部到边缘级差不大于 1.5级, 钢 材表面和芯部的力学性能均匀,由芯部到边缘的强度、韧性波动很小, 可以有效避免一般材料在表面加工量较大后, 力学性能达不到使用要 求的缺点, 由芯部到边缘硬度差小于 30HB, 可以有效的避免硬度变 化大时对刀具、 加工产生的不利影响, 并且夹杂物含量低, 纯净度较 高 (如图 3所示)。
实施例 4
本实施例提供一种代替调质 42CrMo钢直接切削用非调质钢的生 产方法, 包括精轧步骤以及在精轧之后的冷却步骤, 其中, 在所述精 轧步骤中, 控制棒材进入精轧步骤时的温度≤900。C, 在棒材温度处于 800。C ~ 900。C条件下进行低温轧制; 轧制后通过专业可控的穿水冷却 设备对钢材进行三段穿水冷却, 第一段穿水冷却采用强冷, 第二段穿 水冷却采用弱冷, 第三段穿水冷却采用强冷。
在此, 需要说明的是, 控制穿水冷却强弱的方式有 4艮多, 在本实 施例中, 通过控制穿水冷却装置的阀门开启程度来控制水流量, 以此 来控制冷却强弱的目的, 具体地, 第一段阀门开度为 30% ~ 40%, 第 二段阀门开度为 30%, 第三段阀门开度为 30% ~ 40%, 可确保 5s内 降低棒材表面温度降低 150°C ~ 400°C ,之后待棒材回温后采用喷雾冷 却的方式将棒材温度降低 80eC ~ 200eC , 使其热量快速散出, 然后将 棒材分散开来放置到冷床上采用空冷方式冷却 10分钟, 最后下冷床 将棒材叠加革冷。
本实施例的代替调质 42CrMo钢直接切削用钢直接切削用非调质 钢的生产方法, 使所述棒材经过三段穿水冷却, 其中, 第一段穿水冷 却采用强冷, 第二段穿水冷却采用弱冷, 第三段穿水冷却采用强冷。 精轧之后的棒材温度较高, 在第一段穿水冷却时采用强冷的方式, 使 得棒材的表面温度迅速降低, 由于热量的传递作用, 表面温度降低之 后, 芯部热量逐渐向表面传递, 为了使得芯部热量尽可能多的传递到 表面, 在第二段穿水冷却中采用弱冷方式, 以使得冷却过程中预留较 多的时间给芯部进行热传递, 弱冷之后, 热传递使得表面温度有所升 高,再次通过强冷方式快速冷却表面,从而使得表面热量被迅速带走, 此时, 热传递使得表面温度和芯部温度趋于一致, 从而确保了力学性 能的均匀性。
实施例 5
本实施例提供一种代替调质 42CrMo钢直接切削用非调质钢的生 产方法, 其是在实施例 1基础之上的进一步改进, 相对于实施例 1来 说, 还包括位于精轧步骤之前的冶炼步骤, 所述冶炼步骤包括依次进 行的电炉冶炼步骤、 钢包炉冶炼步骤以及精炼步骤。
在电炉冶炼步骤中, 采用全铁水冶炼, 严格控制出钢前磷含量
<0.015%, 终点碳含量 0.03% - 0.10%, 终点温度 1670。C ~ 1700。C, 电炉冶炼较传统的转炉冶炼可以更好的控制下渣操作。
在钢包炉 (LF 炉)冶炼步骤中, 使用碳化硅、 硅铁粉脱氧, 加 入石灰造白渣, 白渣保持时间不少于 20分钟, 以使得白渣能够较为 彻底的清除夹杂物。
在精炼炉 (VD 炉)冶炼步骤中, 进行脱气处理, 确保含氢量控 制在 1.5ppm以下, 确保精炼时间不少于 45分钟。
用 LF炉 +VD炉精炼的优点:相对于传统的仅用 LF炉精炼来说, 该精炼工艺有效的控制了氢含量, 可以更好的解决后续棒材氢至裂紋 的风险; 有更充分的时间使得成分更均匀; 给予夹杂物有更充分的上 浮时间, 有效的解决夹杂物控制的问题。
实施例 6
本实施例提供一种代替调质 42CrMo钢直接切削用非调质钢的生 产方法, 其是在实施例 1或 2基础上的进一步改进, 在本实施例中, 对连铸步骤以及加热步骤进行改进, 连铸步骤和加热步骤均位于精炼 步骤之后, 而又位于轧制步骤和穿水冷却步骤之前。
连铸步骤中, 通过侵入式水口将中间包中的铁水引入结晶器, 避 免了通过传统水口引入时易于引入空气的问题, 另外, 在浸入式水口 与中间包的结合部位吹氩气, 以避免空气进入中间包, 过热度严格控 制在 23 ~ 35 ,拉速控制在 0.5m/min - 0.6m/min,连铸的低过热度、 低拉速保证了铸坯的质量。 连铸后切割时据切处的温度控制在≤820。C, 切割后, 需人工检查铸坯表面, 确保无明显缺陷, 取铸坯低倍样, 确 保铸坯无裂紋, 无缩孔, 中心疏松不大于 3级, 该要求是为了保证后 续轧制出的棒材表面与低倍的质量, 铸坯检查合格后, 送往加热炉进 行加热, 预热段 850±30eC, 加热段 1100±30eC, 均热段 1130±30'C, 确保均热段总时间不少于 2小时。
采用本实施例提供的生产方法生产出的代替调质 42CrMo钢直接 切削用非调质钢的放大 500倍下的金相組织为铁素体和珠光体 (图 3所 示), 实际晶粒度( 100倍) , 按 GB/T6394评级为 10级左右(图 4 所示) , 晶粒细小, 均匀, 从芯部到边缘级差不大于 1.5级, 钢材表 面和芯部的力学性能均匀, 由芯部到边缘的强度、 韧性波动很小, 可 以有效避免一般材料在表面加工量较大后, 力学性能达不到使用要求 的缺点, 由芯部到边缘硬度差小于 30HB, 可以有效的避免硬度变化 大时对刀具、 加工产生的不利影响, 并且夹杂物含量低, 纯净度较高 (图 6所示)。 实施例 7
本实施例提供一种通用性的非调制钢生产方法, 该方法以冶炼步 骤开始, 所述冶炼步骤包括依次进行的电炉冶炼步骤、 钢包炉冶炼步 骤以及精炼步骤。 在电炉冶炼步骤中, 采用全铁水冶炼, 严格控制出 钢前磷含量≤0.015%,终点碳含量 0.03% - 0.10%,终点温度 1620。C - 1700Ό , 电炉冶炼较传统的转炉冶炼可以更好的控制下渣操作。 在钢 包炉 (LF 炉)冶炼步骤中, 使用碳化硅、 硅铁粉脱氧, 加入石灰造 白渣, 白渣保持时间不少于 20分钟, 以使得白渣能够较为彻底的清 除夹杂物。 在精炼炉 (VD 炉)冶炼步骤中, 进行脱气处理, 确保含 氢量控制在 1.5ppm以下, 确保精炼时间不少于 45分钟。
用 LF炉 +VD炉精炼的优点:相对于传统的仅用 LF炉精炼来说, 该精炼工艺有效的控制了氢含量, 可以更好的解决后续棒材氢至裂紋 的风险; 有更充分的时间使得成分更均勾; 给予夹杂物有更充分的上 浮时间, 有效的解决夹杂物控制的问题。
在精炼步骤之后进行连铸步骤, 在所述连铸步骤中, 通过侵入式 水口将中间包中的铁水引入结晶器, 避免了通过传统水口引入时易于 引入空气的问题, 另外, 在浸入式水口与中间包的结合部位吹氩气, 以避免空气进入中间包, 过热度严格控制在 20 ~ 35。C, 拉速控制在 0.5m/min ~ 0.6m/min, 连铸的低过热度、 低拉速保证了铸坯的质量。 连铸后切割时据切处的温度控制在≤820。C, 切割后, 需人工检查铸坯 表面, 确保无明显缺陷, 取铸坯低倍样, 确保铸坯无裂紋, 无缩孔, 中心疏松不大于 3级, 该要求是为了保证后续轧制出的棒材表面与低 倍的质量,铸坯检查合格后,送往加热炉进行加热,预热段 850±30。C, 加热段 1100±30。C, 均热段 1130±30。C, 确保均热段总时间不少于 2 小时。
在加热步骤之后进行精轧步骤和冷却步骤; 在所述精轧步骤中, 控制棒材进入精轧步骤时的温度≤950。C,在棒材温度处于 780。C ~ 900。C 条件下进行低温轧制; 轧制后通过专业可控的穿水冷却设备对钢材进 行三段穿水冷却, 第一段穿水冷却采用强冷, 第二段穿水冷却采用弱 冷, 第三段穿水冷却采用强冷。
在本实施例中, 通过控制穿水冷却装置的阀门开启程度来控制水 流量,以此来控制冷却强弱的目的,具体地,第一段阀门开度为 30% - 40%, 第二段阀门开度为 20%, 第三段阀门开度为 30% ~ 40%, 可确 保 5s内降低棒材表面温度 100。C ~ 400。C, 之后待棒材回温后采用喷 雾冷却的方式将棒材温度降低 50。C ~ 200。C, 使其热量快速散出, 然 后将棒材分散开来放置到冷床上采用空冷方式冷却 10分钟, 最后下 冷床将棒材叠加革冷。
在本实施例的生产方法中,使所述棒材经过三段穿水冷却,其中, 第一段穿水冷却采用强冷, 第二段穿水冷却采用弱冷, 第三段穿水冷 却采用强冷。 精轧之后的棒材温度较高, 在第一段穿水冷却时采用强 冷的方式, 使得棒材的表面温度迅速降低, 由于热量的传递作用, 表 面温度降低之后, 芯部热量逐渐向表面传递, 为了使得芯部热量尽可 能多的传递到表面, 在第二段穿水冷却中采用弱冷方式, 以使得冷却 过程中预留较多的时间给芯部进行热传递, 弱冷之后, 热传递使得表 面温度有所升高, 再次通过强冷方式快速冷却表面, 从而使得表面热 量被迅速带走, 此时, 热传递使得表面温度和芯部温度趋于一致, 从 而确保了力学性能的均匀性。 显然, 上述实施例仅是为清楚地说明所作的举例, 而并非对实施 方式的限定。 对于所属领域的普通技术人员来说, 在上述说明的基础 上还可以做出其它不同形式的变化或变动。 这里无需也无法对所有的 实施方式予以穷举。 而由此所引伸出的显而易见的变化或变动仍处于 本发明创造的保护范围之中。

Claims

1. 一种非调质钢的生产工艺, 包括至少在精轧步骤后进行的冷却 步骤, 其特征在于: 在所述冷却步骤中, 采用强弱冷却交替的方式使 所述钢材至少经过两段穿水冷却, 以使得在特定时间内钢材的芯部温 度与表面温度趋于一致。
2. 根据权利要求 1所述的非调质钢的生产工艺, 其特征在于: 在 所述冷却步骤中, 使所述钢材经过三段穿水冷却, 其中, 第一段穿水 冷却采用强冷,第二段穿水冷却采用弱冷,第三段穿水冷却采用强冷。
3. 根据权利要求 1或 2所述的非调质钢的生产工艺,其特征在于: 在所述冷却步骤中, 通过控制穿水冷却装置的阀门开启程度控制冷却 的强弱。
4. 根据权利要求 1-3中任一项所述的非调质钢的生产工艺, 其特 征在于: 在所述冷却步骤中, 所述钢材经过穿水冷却后, 在 4-7秒内 降低 100。C - 400。C, 待钢材回温后再次降温 50。C - 200。 ( 。
5. 根据权利要求 4所述的非调质钢的生产工艺, 其特征在于: 在 所述冷却步骤中, 控制第一段阀门开度为 30% ~ 40%, 第二段阀门开 度为 20%, 第三段阀门开度为 30% ~ 40%, 以确保在 4-7秒使所述钢 材表面温度降低 100'C ~ 400eC。
6. 根据权利要求 3-5中任一项所述的非调质钢的生产工艺, 其特 征在于: 在所述冷却步骤中, 待钢材回温后采用喷雾冷却的方式对所 述钢材进行降温冷却。
7. 根据权利要求 3-6中任一项所述的非调质钢的生产工艺, 其特 征在于:在所述降温冷却后,将所述钢材分散放置到冷床上进行 10-12 分钟的空冷。
8. 根据权利要求 7所述的非调质钢的生产工艺, 其特征在于: 在 所述空冷后, 将所述钢材叠放后进行革冷。
9. 根据权利要求 1-8中任一项所述的非调质钢的生产工艺, 其特 征在于: 还包括位于冷却步骤前的精轧步骤, 在所述精轧步骤中, 控 制所述钢材进入精轧步骤时的温度≤950 , 在钢材温度处于 780。C ~ 900Ό条件下进行低温轧制。
10. 根据权利要求 6-9 中任一项所述的非调质钢的生产工艺, 其特 征在于: 还包括位于精轧步骤之前的冶炼步骤, 所述冶炼步骤包括依 次进行的电炉冶炼步骤、 钢包炉冶炼步骤以及精炼步骤。
11. 根据权利要求 10所述的非调质钢的生产工艺,其特征在于: 在 所述电炉冶炼中采用全铁水冶炼, 终点磷含量≤0.015%, 终点碳含量 0.03% - 0.10%, 终点温度 1620 - 1700。 ( 。
12. 根据权利要求 10或 11所述的非调质钢的生产工艺, 其特征在 于: 在所述钢包炉冶炼步骤和 /或所述精炼步骤中采用碳化硅、硅铁粉 脱氧。
13. 根据权利要求 10-12 中任一项所述的非调质钢的生产工艺, 其 特征在于: 在所述钢包炉冶炼步骤中, 造白渣, 并使得白渣保持时间 不少于 20分钟。
14. 根据权利要求 13所述的非调质钢的生产工艺,其特征在于: 在 精炼步骤中, 确保精炼时间不少于 45分钟, 将含氢量控制在 1.5ppm 以下。
15. 根据权利要求 14所述的非调质钢的生产工艺,其特征在于: 还 包括位于所述精炼步骤之后的连铸步骤, 在所述连铸步骤中, 过热度 控制在 20 ~ 35 °C, 拉速控制在 0.5m/min ~ 0.6m/min。
16. 根据权利要求 15所述的非调质钢的生产工艺,其特征在于: 还 包括连铸步骤之后的加热步骤, 在所述加热步骤中, 将钢坯放入加热 炉中进行加热, 其中, 预热段温度控制在 850±30。C, 加热段温度控制 在 1100±30。C, 均热段温度控制在 1130±30。C, 均热段总时间不少于 2 小时。
17. 一种非调质钢的生产工艺, 该工艺依次包括如下步骤:(1) 电 炉冶炼步骤: 提供具有期望的钢組成的铁原料, 在所述电炉冶炼中采 用全铁水冶炼, 终点磷含量≤0.015%, 终点碳含量 0.03% ~ 0.10%, 终点温度 1620Ό - 1700Ό;
(2)钢包炉冶炼步骤: 其中采用碳化硅和 /或硅铁粉脱氧, 并加 入石灰造白渣, 并使得白渣保持时间不少于 20分钟;
(3)精炼步骤: 其中进行脱气处理, 确保精炼时间不少于 45分 钟, 从而将含氢量控制在 1.5ppm以下;
(4)连铸步骤: 对精炼步骤得到的钢熔体进行连铸, 钢熔体的 过热度控制在 20 - 35。C, 拉速控制在 0.5m/min - 0.6m/min;
(5)加热步骤:将连铸步骤产生的钢坯放入加热炉中进行加热, 其中, 预热段温度控制在 850±30。C, 加热段温度控制在 1100±30。C, 均热段温度控制在 1130±30eC, 均热段总时间不少于 2小时;
( 6)精轧步骤:其中控制所述钢材进入精轧步骤时的温度≤950。C, 在钢材温度处于 780。C - 900。C条件下进行低温轧制; 和
(7)冷却步骤: 在所述冷却步骤中, 采用强弱冷却交替的方式 使所述钢材至少经过两段穿水冷却, 以便在冷却过程中钢材的芯部温 度与表面温度趋于一致。
PCT/CN2013/088378 2013-09-26 2013-12-03 一种非调质钢的生产工艺 WO2015043058A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13894277.6A EP3050992A4 (en) 2013-09-26 2013-12-03 Production process for non-quenched and tempered steel
JP2016516515A JP2016540108A (ja) 2013-09-26 2013-12-03 非調質鋼の製造方法
US15/023,523 US20160208357A1 (en) 2013-09-26 2013-12-03 Process for producing non quenched and tempered steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310443693.7 2013-09-26
CN201310443693.7A CN104043660B (zh) 2013-09-26 2013-09-26 一种非调质钢的生产工艺

Publications (1)

Publication Number Publication Date
WO2015043058A1 true WO2015043058A1 (zh) 2015-04-02

Family

ID=51497334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088378 WO2015043058A1 (zh) 2013-09-26 2013-12-03 一种非调质钢的生产工艺

Country Status (5)

Country Link
US (1) US20160208357A1 (zh)
EP (1) EP3050992A4 (zh)
JP (1) JP2016540108A (zh)
CN (1) CN104043660B (zh)
WO (1) WO2015043058A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855299B (zh) * 2014-12-22 2019-03-15 苏州苏信特钢有限公司 一种钢的轧制方法及使用该方法获得的钢
CN105463318B (zh) * 2015-11-27 2017-11-03 苏州苏信特钢有限公司 非调质钢、其生产方法及利用其制造的涨断连杆
CZ201786A3 (cs) * 2017-02-15 2019-01-30 Západočeská Univerzita V Plzni Způsob výroby součástí z ocelí
CN109234627B (zh) * 2018-10-17 2020-12-18 南京钢铁股份有限公司 一种高强高韧性非调质圆钢及制备方法
CZ308471B6 (cs) * 2019-08-19 2020-09-02 Západočeská Univerzita V Plzni Způsob výroby ocelových dílů z AHS oceli řízeným lokálním ochlazováním médiem, využívající tvorbu vícefázové struktury s přerušovaným chlazením na požadované teplotě
CN110669991B (zh) * 2019-10-09 2022-01-21 石家庄钢铁有限责任公司 一种液压活塞杆用20MnV6钢及其制备方法
CN113976646B (zh) * 2021-10-25 2023-01-10 钢铁研究总院 一种热轧特厚板的超快冷方法
CN114934151A (zh) * 2022-06-24 2022-08-23 山东工业职业学院 一种降低lf精炼电耗集成操作的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287720A (ja) * 1990-04-02 1991-12-18 Sumitomo Metal Ind Ltd ストリップの熱間仕上圧延温度の制御方法
EP1153673A1 (en) * 1999-11-18 2001-11-14 Nippon Steel Corporation Metal plate flatness controlling method and device
WO2004076085A2 (de) * 2003-02-25 2004-09-10 Siemens Aktiengesellschaft Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer kühlstrecke
CN1857810A (zh) * 2005-05-20 2006-11-08 鞍钢新轧钢股份有限公司 一种冷轧带钢冷却液流量控制方法
CN101619420A (zh) * 2009-07-29 2010-01-06 马鞍山钢铁股份有限公司 10.9级含铬非调质冷镦钢及其热轧盘条的轧制方法
CN102220546A (zh) * 2011-06-30 2011-10-19 首钢总公司 一种含b中碳非调质钢及生产方法
CN102321845A (zh) * 2011-09-21 2012-01-18 首钢总公司 一种高强度热轧双相钢及其制造方法
CN103266287A (zh) * 2013-05-14 2013-08-28 莱芜钢铁集团有限公司 一种中碳铁素体-珠光体型非调质钢及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL170159C (nl) * 1973-06-04 1982-10-01 Estel Hoogovens Bv Werkwijze voor het vervaardigen van lasbaar staafmateriaal uit laag koolstofstaal door gecontroleerde koeling.
DE10327383C5 (de) * 2003-06-18 2013-10-17 Aceria Compacta De Bizkaia S.A. Anlage zur Herstellung von Warmband mit Dualphasengefüge
CN101613831B (zh) * 2008-06-27 2011-05-11 宝山钢铁股份有限公司 非调质高硬度热轧钢及其制造方法和应用
CN100580102C (zh) * 2008-09-11 2010-01-13 南京钢铁股份有限公司 炉卷轧机在线淬火生产高强度调质钢的工艺
TWI379010B (en) * 2009-12-16 2012-12-11 Nippon Steel Corp A method of cooling hot-rolled steel sheet
CN102071368A (zh) * 2011-01-30 2011-05-25 钢铁研究总院 低成本锻造用中碳非调质钢
US10287658B2 (en) * 2011-08-26 2019-05-14 Nippon Steel and Sumitomo Metal Corporation Wire material for non-heat treated component, steel wire for non-heat treated component, and non-heat treated component and manufacturing method thereof
CA2880617C (en) * 2012-08-21 2017-04-04 Nippon Steel & Sumitomo Metal Corporation Steel material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287720A (ja) * 1990-04-02 1991-12-18 Sumitomo Metal Ind Ltd ストリップの熱間仕上圧延温度の制御方法
EP1153673A1 (en) * 1999-11-18 2001-11-14 Nippon Steel Corporation Metal plate flatness controlling method and device
WO2004076085A2 (de) * 2003-02-25 2004-09-10 Siemens Aktiengesellschaft Verfahren zur regelung der temperatur eines metallbandes, insbesondere in einer kühlstrecke
CN1857810A (zh) * 2005-05-20 2006-11-08 鞍钢新轧钢股份有限公司 一种冷轧带钢冷却液流量控制方法
CN101619420A (zh) * 2009-07-29 2010-01-06 马鞍山钢铁股份有限公司 10.9级含铬非调质冷镦钢及其热轧盘条的轧制方法
CN102220546A (zh) * 2011-06-30 2011-10-19 首钢总公司 一种含b中碳非调质钢及生产方法
CN102321845A (zh) * 2011-09-21 2012-01-18 首钢总公司 一种高强度热轧双相钢及其制造方法
CN103266287A (zh) * 2013-05-14 2013-08-28 莱芜钢铁集团有限公司 一种中碳铁素体-珠光体型非调质钢及其制造方法

Also Published As

Publication number Publication date
EP3050992A1 (en) 2016-08-03
CN104043660B (zh) 2015-09-30
US20160208357A1 (en) 2016-07-21
JP2016540108A (ja) 2016-12-22
CN104043660A (zh) 2014-09-17
EP3050992A4 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2015043061A1 (zh) 一种非调质钢及其生产工艺
WO2015043060A1 (zh) 一种非调质钢及其生产工艺
WO2015043058A1 (zh) 一种非调质钢的生产工艺
WO2015043059A1 (zh) 一种非调质钢及其生产工艺
CN101514423B (zh) 一种含铝低碳冷镦盘条钢及其生产方法
CN110004376A (zh) 一种免退火拉拔的中碳CrMo钢盘条的制造方法
CN104911321B (zh) 一种塑料模具钢的特厚板生产工艺
WO2015043057A1 (zh) 一种非调质钢及其生产工艺
CN104988434B (zh) 一种含硫塑料模具钢厚板的生产工艺
CN109609840B (zh) 一种180~200mm厚度合金结构钢27SiMn及其生产工艺
CN105369150A (zh) 一种超高强度装甲钢板及其制造方法
JP2018503741A (ja) リーン二相系ステンレス鋼及びその製造方法
CN105648344B (zh) 一种轴承钢的冶炼工艺、生产方法以及轴承钢
CN107974615A (zh) 厚度小于12mm的Q460E高强钢板及其生产方法
CN105132616B (zh) 一种避免法兰用钢表面产生裂纹的方法
CN103667731B (zh) 一种高塑性高速钢的生产方法
CN108070792A (zh) 一种200-350mm厚高探伤要求中碳合金模具钢板及其制造方法
CN103160751B (zh) 一种屈服强度为590MPa级球扁钢及其生产方法
CN103276289A (zh) 一种07MnNiVDR钢板生产工艺
CN103643127B (zh) 500MPa级临氢设备用厚钢板的生产方法
KR101024358B1 (ko) 구상 흑연 주철의 연속 주철 주조 방법
CN108687317B (zh) 大方坯连铸生产42CrMoH钢的方法
CN117604366A (zh) 一种钢板铸坯的制备方法
CN115679222A (zh) 一种制钉用冷镦钢盘条的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516515

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013894277

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15023523

Country of ref document: US

Ref document number: 2013894277

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE