WO2015041483A1 - Rotor for switched reluctance motor - Google Patents

Rotor for switched reluctance motor Download PDF

Info

Publication number
WO2015041483A1
WO2015041483A1 PCT/KR2014/008748 KR2014008748W WO2015041483A1 WO 2015041483 A1 WO2015041483 A1 WO 2015041483A1 KR 2014008748 W KR2014008748 W KR 2014008748W WO 2015041483 A1 WO2015041483 A1 WO 2015041483A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
pole
switching
motor
reluctance motor
Prior art date
Application number
PCT/KR2014/008748
Other languages
French (fr)
Korean (ko)
Inventor
정영춘
임인철
Original Assignee
(주)에스엔이노베이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스엔이노베이션 filed Critical (주)에스엔이노베이션
Publication of WO2015041483A1 publication Critical patent/WO2015041483A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • H02K1/246Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a rotor for a switching reluctance motor, and more particularly, a band-type magnetic split electrode capable of minimizing the self-mechanical switching vibration acoustic noise of the switching reluctance motor and improving torque generation performance. It relates to a rotor for a switching reluctance motor that forms a structure, which can accumulate rotational force through its own flywheel and smooth it with mechanical kinetic energy to reduce torque ripple.
  • the switching reluctance motor which has a long history in electric motor technology or in a device that converts electrical energy into rotating mechanical energy, has protrusions on the stator and the rotor, respectively.
  • the coil is wound around the salient pole of the stator, but the rotor is characterized in that no coil or magnet.
  • switching reluctance motors are simpler in structure than conventional induction motors and synchronous motors, and can be produced at a lower price. They are also mechanically fast and are not affected by the limited magnetic energy of permanent magnets. Good speed-output control characteristics. There are many advantages, such as providing very high durability even in high temperature environments.
  • the switching reluctance motor When the protruding pole of the winding armature is excited, the switching reluctance motor is aligned with the armature when the protruding poles of the unwinding rotor are not coincident with each other. It is an electro-mechanical energy converter that obtains rotational force by using the torque (Dwe lled torque).
  • Inner Rotor 2-phase motors are usually composed of a 4-pole armature and a 2-pole rotor.
  • Three-phase motors consist of a six-pole armature and a four-pole rotor.
  • Four-phase motors consist of an eight-pole armature and a six-pole rotor.
  • a five-phase motor consists of a ten-pole armature and an eight-pole rotor. It consists of an array. 9 Meanwhile.
  • the outer ring type switching reluctance motor has a stator projecting pole divided into eight pole pitches and six stator poles by replacing the armature and the rotor of the inner rotor type switching reluctance motor in US Patent Application No. 2011 / 0284300A1.
  • a four-phase switching reluctance motor has been proposed, which consists of an outer ring rotor forming a salient pole with pole pitch.
  • FIG. 1 is a cross-sectional view of the outer ring type switching reluctance motor according to the prior art, the outer winding-free rotor (1). It consists of a winding (5) stator (3) fixed to the inner centric shaft (6).
  • the protrusion pole rotor has a problem of increasing windage (Ai r l oss) due to a lot of air resistance.
  • switching reluctance motors have problems of full-scale commercialization due to noise, torque ripple, and start instability, and in order to solve these problems, control devices or motor structures are complicated, or high accuracy of design and processing assembly is required. .
  • the present invention forms a band-shaped magnetic split pole structure that can minimize the self-mechanical switching vibration acoustic noise of the switching reluctance motor and improve the torque generating performance, and the rotational force through its own flywheel It is an object of the present invention to provide a rotor for a switching reluctance motor, which can accumulate and smooth out mechanical kinetic energy to reduce torque ripple.
  • the present invention provides a rotor for a switching reluctance motor.
  • Ring-shaped rotor body portion a rotor pole formed at equal intervals inside the rotor body portion; And a plurality of opening holes drilled at equal intervals on the rotor poles.
  • the rotor pole is a rotor convex pole protruding a predetermined length radially inward from the inner surface of the rotor body portion with a step on the center. Characterized in that the rotor concave pole accommodated a predetermined length in the radially outer side of the rotor body portion.
  • the rotor body portion according to the present invention to form a certain thickness around the outer periphery to form a magnetic passage, further comprising a flywheel core portion to increase the weight of the rotor body portion to increase the moment of inertia It features.
  • the rotor body portion according to the invention is characterized in that it further comprises a position encoder for distinguishing the rotor convex pole and the rotor concave pole.
  • the position encoder according to the present invention is characterized in that the entire position detecting cylinder is installed on the rotor convex pole.
  • the energizing unit according to the present invention aluminum, iron. It is characterized by consisting of any one of plastic, permanent magnet.
  • the rotor pole and the opening hole according to the invention is in the rotor body portion
  • the step D1 of the rotor convex pole and the rotor concave pole according to the present invention is characterized by having a length of 1 to 5 times the gap formed between the vortex pole and the rotor convex pole of the former reporter.
  • the opening hole according to the present invention is characterized in that the opening is formed at a predetermined interval between the rotor convex pole and the rotor concave pole, the interval has the same value as the step.
  • the opening hole according to the invention is characterized in that it is made of any one of the shape of a circle, oval, polygon.
  • the rotor body portion according to the present invention is characterized in that the ferromagnetic material is laminated and assembled at least one or more.
  • the rotor body portion according to the invention pure iron. It is characterized in that the metal material containing one element or alloy of the silicon steel sheet.
  • the present invention provides a switching reluctance motor having a high power density from small output to large output according to the size of the rotor because high torque can be generated in a band-shaped outer ring rotor with a large positive torque generation area by switching the armature. There is an advantage to this.
  • the present invention does not have a protruding pole in which the rotor stands on the armature.
  • An inclined step is formed between each of the rotor convex and rotor concave poles separated by the openings, thereby reducing windage caused by the air resistance of the rotor, thereby reducing the magnetic-mechanical vibration and the resonance noise.
  • the present invention has the advantage that it is possible to provide a rotor having a mechanical high torque characteristics by reducing torque ripple by accumulating rotational energy by the self flywheel effect.
  • 1 is a cross-sectional view showing a ring-type switching reluctance motor according to the prior art.
  • 2 is a cross-sectional view showing a rotor according to the prior art.
  • FIG. 3 is a perspective view showing a rotor for a switching reluctance motor according to the present invention.
  • 4 is a plan view showing a rotor for the switching reluctance motor according to FIG. 3;
  • 5 is an exemplary view showing the aperture shape of the rotor for the switching reluctance motor according to FIG. 3.
  • FIG. 6 is a waveform diagram showing a torque generation principle of a rotor for a switching reluctance motor according to the present invention
  • FIG. 7 is a waveform diagram illustrating a torque generation process of a rotor for a switching reluctance motor according to the present invention.
  • FIG. 8 is a plan view showing another embodiment of a rotor for a switching reluctance motor according to the present invention.
  • FIG. 9 is a plan view showing another embodiment of a rotor for a switching reluctance motor according to the present invention.
  • FIG. 10 is a perspective view showing a motor using a rotor for a switching reluctance motor according to the present invention
  • FIG. 11 is a cross-sectional view showing a motor using the rotor for the switching reluctance motor according to FIG. 10;
  • FIG. 12 is an electric circuit diagram showing a control circuit of a motor using the rotor for the switching reluctance motor according to FIG. 10;
  • FIG. 3 is a perspective view illustrating a rotor for a switching reluctance motor according to the present invention
  • FIG. 4 is a plan view illustrating a rotor for a switching reluctance motor according to FIG. 3
  • FIG. 5 is a diagram for a switching reluctance motor according to FIG. 3.
  • Illustrated diagram showing the opening hole shape of the rotor 6 is a waveform diagram showing a torque generation principle of a rotor for a switching reluctance motor according to the present invention.
  • 7 is a waveform diagram illustrating a torque generation process of a rotor for a switching reluctance motor according to the present invention.
  • the rotor 100 for the switching reluctance motor forms a band-shaped magnetic split electrode structure that can minimize the self-mechanical switching vibration acoustic noise of the switching reluctance motor and improve torque generation performance.
  • Rotor body 110, rotor pole 120, aperture hole 130, and position encoder 321 are configured to reduce torque ripple by smoothing mechanical kinetic energy through the flywheel. .
  • the rotor body part 110 is a ring-shaped metal member, and is a ferromagnetic material assembled by stacking at least one or more sheets of electrical steel, and the rotor body part 110 is an element or alloy of pure iron or silicon steel. Is done.
  • the rotor body portion 110 forms a predetermined thickness around the outer circumference to form a magnetic field passage.
  • a flywheel core portion 112 is formed on the outer surface of the rotor body portion 110 around the magnetic path boundary line 111 to increase the weight of the rotor body portion 110 to increase the moment of inertia.
  • the flywheel core portion 112 serves as a magnetic field passage (Df), and increases the weight of the rotating body portion 110 to perform a flywheel function to accumulate the rotational energy of the rotating body portion 110 Try to do it.
  • Df magnetic field passage
  • the magnetic path boundary line 111 is a center line where the length of the magnetic field path Df and the length Di of the rotor concave electrode 122 are the same.
  • the rotor poles 120 are six split poles in which 2n + 2 (where n is self-numbered water) are formed at equal intervals on the inside of the rotor body part 110 to form a six-pole rotor structure.
  • the rotor pole 120 forms a step D1 that forms an inclination angle (for example, 45 ° ) in the center between pole pitches, and radially from an inner surface of the rotor body part 110.
  • a rotor convex electrode 121 protruding a predetermined length inwardly and a rotor concave electrode 122 accommodated a predetermined length radially outward of the rotor body part 110 are formed.
  • the length of the rotor voltok pole 121 and the rotor concave electrode 122 is, for example. It is formed at equidistant distances R3 and R4 between the opening hole l 130a and the opening hole 2 130b.
  • step D1 of the rotor convex pole 121 and the rotor concave pole 122 is 1 to 5 times the length of the gap formed between the convex pole 312 of the armature and the rotor convex pole 121. It is desirable to have a value in the range.
  • the opening hole 130 is a rotor convex pole 121 and a rotor concave pole of the rotor pole 120 2 n + 2 pieces (where ⁇ is a natural number) are spaced at equal intervals between the 122 portions, and the opening hole 130 is shown in Fig. 5 (a).
  • a circular shape As shown in Fig. 5 (b) and Fig. 5 (c), a circular shape. An oval or polygonal shape is formed, and an opening 131 of a predetermined distance D2 is formed between the rotor convex pole 121 and the rotor concave pole 122.
  • the opening 131 has an opening l 131a formed in the rotor convex electrode 121, and an opening 2 131b formed in the rotor concave electrode 122, so that a difference in length by the step D1 occurs.
  • the opening 131 is formed to the size of the interval D2 having the same value as the step D1.
  • the interval D2 may be smaller or larger than a step D1 in a predetermined range.
  • the opening hole 130 forms a 60 ° dividing angle R1 based on the center line of the opening 131 when the 6-pole rotor is formed, and 57.5 ° dividing angle R2 from the opening boundary line of each pole. It is formed to have.
  • the opening 130 is formed in the body body 110 so as not to cross the magnetic field path boundary line 111.
  • the position encoder 321 is configured to provide the position information of the rotor 100, preferably to distinguish the position of the rotor convex pole 121 and the rotor concave pole 122, the rotor body It is installed on the upper or lower surface of the unit (110).
  • the position encoder 321 has a position detecting energizer 322 installed on the rotor convex pole 121 to detect the position of the rotor convex pole 121, and is installed in the armature 310 to be described later. In response to the sensor 320, the position sensor 320 can detect the position of the rotor ball roll electrode 121.
  • the conducting unit 322 is aluminum, iron. It is made of one of the permanent magnets, and reacted with the position sensor 320 so that the position sensor 320 can detect a signal.
  • the rotor 100 according to the present embodiment will be described using a six-pole rotor having six split poles for convenience of description, but is not limited thereto.
  • the rotor body 110 ′ as shown in FIG. 8.
  • Rotor pole 120 'and 4 opening holes 130' which form the rotor convex pole 12 ⁇ and the rotor concave pole 122 ', to have four split poles with a pitch angle of 90 ° ).
  • An opening 13 ⁇ may be formed to form a rotor 100 'having a constant torque angle of 45 ° of the rotor convex pole 12 ⁇ , and a pitch angle of the rotor body 110 " 45 ° is to have eight split pole rotor boltok pole (121 ") and the rotor recesses pole (122"), and rotor poles formed ol (120 ") and 8 opening hole (130”) and the opening (131 " ) May be configured to constitute a rotor 100 "having a constant torque angle of 22.5 ° of the rotor convex pole 121".
  • positive torque 210 is generated in the inductance rising period Qs—Q1, as shown in FIG. 6 (b), and negative torque is generated in the falling period Q2-Q3.
  • a switching control is performed to excite the pole only in the constant torque section (Qs-Ql) and cut off the exciting current in the negative torque section (Q2-Q3).
  • Rotor 100 is as shown in FIG.
  • the pitch of the pole (Qs-Q3) is 57.5 °
  • the pitch of the rotor pole 120 is divided into the rotor convex pole 121 and the rotor concave pole 122 of the rotor convex pole 121
  • the positive torque generating section (Qs-Ql) is about half (28.75 ° ) of the rotor pole 120
  • the negative torque 22 generating section is the rotor concave electrode 122 which receives negative torque force from the magnetic field of the armature.
  • Step D1 is formed so that there is a rotor angle that is more than twice as large as the conventional rotational torque, and the inductance value is also increased proportionally.
  • the rotor 100 generates the positive torque 210 in the interval of 28.75 ° , which is half of 57.5 ° , according to the inductance waveform 200 of each pole (A, ⁇ , C) in one rotation period (2 ⁇ ). do.
  • the rotor 100 is given sufficient mass of the rotor through the width and laminated thickness of the flywheel core portion 112. It has a flywheel effect proportional to twice the mass of the rotor and the radius of the rotor.
  • the rotation torque energy for smoothing the torque ripple in the section of the rotor concave pole 122 except for the acceleration section of the constant torque 210 can be accumulated.
  • FIG. 10 is a perspective view showing a motor using a rotor for a switching reluctance motor according to the present invention.
  • FIG. 11 is a cross-sectional view of a motor using the rotor for the switching reluctance motor according to FIG. 10.
  • 12 is an electrical circuit diagram illustrating a control circuit of a motor using the rotor for the switching reluctance motor according to FIG. 10. As shown in FIGS. 10-12.
  • the rotor 100 is installed in the housing 300 free of rotation, and a straight armature 310 having a single-phase coil 330 wound around the rotor 100 is installed through the fixed shaft 340. .
  • an armature concave pole 311 and an armature convex pole 312 having a pitch of the same width as the rotor convex pole 121 and the rotor concave pole 122 of the rotor pole are provided. and forming, on the i pitch center of the armature pole concave 311 and the convex pole armature 312 is formed in a step 313.
  • Position sensors 320 are installed at both ends of the armature 310 to detect the energization part 322 of the rotor 100.
  • the position sensor 320 is an optical sensor. It consists of either a magnetic hall sensor or a proximity sensor and reacts with the energization unit 322 to output a position signal.
  • the position sensor 320 is rotated.
  • the energization unit 322 of the position encoder 321 providing the position information of 100 is sensed.
  • the on / off control unit 400 operates to turn on / off the switching device (S / W) of the power switching circuit of the direct current power source to energize the coil 330.
  • the armature 310 is excited.
  • the negative torque (211, see Fig. 7 (b)) is entered into the section where the position sensor 320 of the armature 310 is the position encoder 321
  • the position sensor 320 of the armature 310 is turned out of the energizing portion 322 of the armature 310 to turn off the switching device (S / W) in the negative torque (211) section.
  • the armature 310 is no longer excited and the rotor 100 freed from the magnetic force is driven by the flywheel energy of the flywheel core portion 112 (see FIG. 3) accelerated in the constant torque section.
  • the rotor 100 enters the positive torque (220, 230, FIG. 7 (b)) section of the pole B and the pole C again, the rotor 100 generates rotation torque by the excitation of the armature 310, and at the same time the flywheel core
  • the flywheel energy accumulated by the unit 112 is accumulated to have a continuous rotational force even in the sub-torques 221 and 231 of the B and C poles (see FIG. 7B).
  • the rotor 100 is to generate a rotation torque in one direction.
  • the direction of rotation is changed in accordance with the change of positions of the armature concave pole 311 and the armature convex pole 312 of the rotor pole 120 and the armature 310.
  • the rotor 100 can form any output and torque-speed characteristics according to the outer diameter and the laminated thickness of the rotor body, thereby providing various outer ring rotor type switching reluctance motors. .
  • Magnetic field path boundary line 112 Flywheel core part
  • housing 310 armature : Armature concave pole 312 : Armature convex pole : Position sensor 321 : Position encoder : Current-carrying part 330 : Coil : Fixed shaft 350 : Magnetic circuit passage : On / off control

Abstract

The present invention relates to a rotor for a switched reluctance motor which has a band-type magnetic split pole structure that minimises vibration noise of the switched reluctance motor due to magnetic-mechanical switching and that improves the torque generation performance; stores rotational energy using a self flywheel; and decreases torque ripple by smoothing using mechanical kinetic energy.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
스위칭 릴럭턴스 모터용 회전자  Rotor for switching reluctance motor
【기술분야】 Technical Field
본 발명은 스위칭 릴럭턴스 모터용 회전자에 관한 발명으로서 , 더욱 상세하 게는 스위칭 릴릭턴스 모터의 자기-기구적 스위칭 진동 음향 소음을 최소화하고 토 크 발생 퍼포먼스를 향상시킬 수 있는 밴드형 자기 분할극 구조를 형성하며 , 자체 플라이휠을 통해 회전력을 축적하고, 기계적 운동 에너지로 평활시켜 토크 리플을 감소시킬 수 있는 스위칭 릴력턴스 모터용 회전자에 관한 것이다.  The present invention relates to a rotor for a switching reluctance motor, and more particularly, a band-type magnetic split electrode capable of minimizing the self-mechanical switching vibration acoustic noise of the switching reluctance motor and improving torque generation performance. It relates to a rotor for a switching reluctance motor that forms a structure, which can accumulate rotational force through its own flywheel and smooth it with mechanical kinetic energy to reduce torque ripple.
【배경기술】 Background Art
전기에너지를 회전 기계 에너지로 전환시키는 장치나 전기모터 기술분야에서 꽤 오랜 역사를 갖고 있는 스위칭 릴럭턴스 모터 ( Swi t ching Rel uctance Motor , SRM)는 고정자와 회전자에 각각 돌극이 돌출 형성되어 있고 , 상기 고정자의 돌극에 코일이 권선되는 반면 회전자에는 코일 또는 자석이 없는 것이 특징이다.  The switching reluctance motor (SRM), which has a long history in electric motor technology or in a device that converts electrical energy into rotating mechanical energy, has protrusions on the stator and the rotor, respectively. The coil is wound around the salient pole of the stator, but the rotor is characterized in that no coil or magnet.
또한, 스위칭 릴릭턴스 모터는 기존의 유도모터나 동기모터보다 구조가 간단 하고, 저렴한 가격으로 생산할 수 있고, 기구적으로도 른른하며 영구자석의 제한된 자기에너지에 영향받지 않으므로 단위 체적당 토오크 및 효율이 좋아서 속도 -출력 제어 특성이 뛰어나고. 고온 환경에서도 매우 높은 내구성을 제공하는 등 많은 장 점이 있다.  In addition, switching reluctance motors are simpler in structure than conventional induction motors and synchronous motors, and can be produced at a lower price. They are also mechanically fast and are not affected by the limited magnetic energy of permanent magnets. Good speed-output control characteristics. There are many advantages, such as providing very high durability even in high temperature environments.
이러한 스위칭 릴력턴스 모터는 권선이 되어 있는 전기자의 돌출극이 여자되 면 , 권선이 되어 있지 않은 회전자의 돌출극이 상호 일치되어 있지 않은 상태 (Una l i nged)에서 전기자와 일치된 상태 (Al igned)로 움직이는 힘의 토크 (Dwe l l ed torque )를 이용하여 회전력을 얻는 전기 -기계 에너지 변환 장치이다.  When the protruding pole of the winding armature is excited, the switching reluctance motor is aligned with the armature when the protruding poles of the unwinding rotor are not coincident with each other. It is an electro-mechanical energy converter that obtains rotational force by using the torque (Dwe lled torque).
즉 돌출극이 상호 일치되어 있지 않은 가장 높은 릴럭턴스 상태에서 일치되 어 가장 낮은 릴력턴스로 움직이려는 자기회로의 힘을 이용한 것으로서 전기자와 회전자의 돌출극이 상호 연속적으로 릴럭턴스 토크 작용이 일어나도록 구성되어 있 으며, 일반적으로 내륜 회전자 ( Inner Rotor ) 2상 모터의 경우 4극 전기자와 2극 회 전자로 구성되고. 3상 모터의 경우 6극 전기자와 4극 회전자로 구성되며 , 4상 모터 의 경우 8극 전기자와 6극 회전자로 구성되고, 5상 모터의 경우 10극 전기자와 8극 회전자 돌출극의 배열로 구성된다. 9 한편. 외륜형 스위칭 릴럭턴스 모터는 미국 공개특허번호 제 2011/0284300A1 호에 내륜 회전자 타입의 스위칭 릴력턴스 모터의 전기자와 회전자를 바꿔 배치하 여 8개의 극 피치로 분할된 고정자 돌출극과, 6개의 극피치를 갖는 돌출극을 형성 한 외륜 회전자로 구성된 4상 스위칭 릴럭턴스 모터가 제안되었다. That is, it uses the force of the magnetic circuit to move in the highest reluctance state where the projecting poles are not coincident with each other and move to the lowest reluctance. Inner Rotor 2-phase motors are usually composed of a 4-pole armature and a 2-pole rotor. Three-phase motors consist of a six-pole armature and a four-pole rotor. Four-phase motors consist of an eight-pole armature and a six-pole rotor. A five-phase motor consists of a ten-pole armature and an eight-pole rotor. It consists of an array. 9 Meanwhile. The outer ring type switching reluctance motor has a stator projecting pole divided into eight pole pitches and six stator poles by replacing the armature and the rotor of the inner rotor type switching reluctance motor in US Patent Application No. 2011 / 0284300A1. A four-phase switching reluctance motor has been proposed, which consists of an outer ring rotor forming a salient pole with pole pitch.
도 1은 종래 기술에 따른 외륜형 스위칭 릴럭턴스 모터를 나타낸 단면도로 서 , 외측 무 권선 회전자 ( 1)와. 내측 증심축 (6)에 고정된 권선 ( 5) 고정자 (3)로 구 성된다.  1 is a cross-sectional view of the outer ring type switching reluctance motor according to the prior art, the outer winding-free rotor (1). It consists of a winding (5) stator (3) fixed to the inner centric shaft (6).
이러한 구성은 회전자와 고정자 모두 돌출국 (2 , 4) 구조를 형성하여 스위칭 릴력턴스 모터의 운전시 많은 코깅 소음을 발생시키는데, 이러한 코깅 소음은 회전 자 ( 1 )의 돌출극 ( 2)이 자기력의 스위칭에 도 2와 같이 전후방향 (21 )과, 좌우방향 (22)으로 쉽게 기계적 진동과 공진을 발생시키기 때문이다.  This configuration results in a large number of cogging noises during the operation of the switching reluctance motor, in which both the rotor and the stator form a protruding station (2, 4) structure. This is because the mechanical vibration and resonance are easily generated in the front-rear direction 21 and the left-right direction 22 as shown in FIG. 2.
또한. 이러한 돌출극 회전자 형태는 공기저항을 많이 받아 풍손 (Ai r l oss )을 증가시키는 문제점이 있다.  Also. The protrusion pole rotor has a problem of increasing windage (Ai r l oss) due to a lot of air resistance.
또한, 스위칭 릴릭턴스 모터는 소음과 토크 리플, 기동 불안정 때문에 본격 적인 상용화의 문제점이 있고, 이러한 문제점을 해결하기 위해 제어장치나 모터구 조가 복잡해지거나 설계 및 가공 조립의 정밀 고도화가 요구되는 문제점이 있다.  In addition, switching reluctance motors have problems of full-scale commercialization due to noise, torque ripple, and start instability, and in order to solve these problems, control devices or motor structures are complicated, or high accuracy of design and processing assembly is required. .
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
이러한 문제점을 해결하기 위하여 , 본 발명은 스위칭 릴력턴스 모터의 자기- 기구적 스위칭 진동 음향 소음을 최소화하고 토크 발생 퍼포먼스를 향상시킬 수 있 는 밴드형 자기 분할극 구조를 형성하며 , 자체 플라이휠을 통해 회전력을 축적하 고, 기계적 운동 에너지로 평활시켜 토크 리플을 감소시킬 수 있는 스위칭 릴럭턴 스 모터용 회전자를 제공하는 것을 목적으로 한다.  In order to solve this problem, the present invention forms a band-shaped magnetic split pole structure that can minimize the self-mechanical switching vibration acoustic noise of the switching reluctance motor and improve the torque generating performance, and the rotational force through its own flywheel It is an object of the present invention to provide a rotor for a switching reluctance motor, which can accumulate and smooth out mechanical kinetic energy to reduce torque ripple.
【기술적 해결방법】 Technical Solution
상기한 목적을 달성하기 위하여 본 발명은 스위칭 릴럭턴스 모터용 회전자로 서 . 링 형상의 회전자 몸체부: 상기 회전자 몸체부의 내측에 등간격으로 형성한 회 전자 극; 및 상기 회전자 극에 등간격으로 천공한 다수의 개구공을 포함하고. 상기 회전자 극은 증앙에 단차를 두고 상기 회전자 몸체부의 내부면에서 반경방향 내측 으로 일정 길이 돌출된 회전자 볼록극과. 상기 회전자 몸체부의 반경방향 외측으로 일정 길이 수용된 회전자 오목극을 형성한 것을 특징으로 한다. 또한, 본 발명에 따른 상기 회전자 몸체부는 외부 둘레에 일정 두께를 형성 하여 자계 통로가 형성되도톡 하고, 상기 회전자 몸체부의 중량을 증가시켜 관성 모멘트가 증가되도록 하는 플라이훨 코어부를 더 포함하는 것을 특징으로 한다. 또한, 본 발명에 따른 상기 회전자 몸체부는 상기 회전자 볼록극과 회전자 오목극을 구별하는 위치 인코더를 더 포함하는 것을 특징으로 한다. In order to achieve the above object, the present invention provides a rotor for a switching reluctance motor. Ring-shaped rotor body portion: a rotor pole formed at equal intervals inside the rotor body portion; And a plurality of opening holes drilled at equal intervals on the rotor poles. The rotor pole is a rotor convex pole protruding a predetermined length radially inward from the inner surface of the rotor body portion with a step on the center. Characterized in that the rotor concave pole accommodated a predetermined length in the radially outer side of the rotor body portion. In addition, the rotor body portion according to the present invention to form a certain thickness around the outer periphery to form a magnetic passage, further comprising a flywheel core portion to increase the weight of the rotor body portion to increase the moment of inertia It features. In addition, the rotor body portion according to the invention is characterized in that it further comprises a position encoder for distinguishing the rotor convex pole and the rotor concave pole.
또한, 본 발명에 따른 상기 위치 인코더는 회전자 볼록극에 위치 검출용 통 전부를 설치한 것을 특징으로 한다.  In addition, the position encoder according to the present invention is characterized in that the entire position detecting cylinder is installed on the rotor convex pole.
또한, 본 발명에 따른 상기 통전부는 알루미늄, 철. 플라스틱, 영구자석 중 어느 하나로 이루어진 것을 특징으로 한다.  In addition, the energizing unit according to the present invention, aluminum, iron. It is characterized by consisting of any one of plastic, permanent magnet.
또한, 본 발명에 따른 상기 회전자 극과 개구공은 상기 회전자 몸체부에 In addition, the rotor pole and the opening hole according to the invention is in the rotor body portion
2n+2개 형성되고, 여기서, n = 자연수인 것을 특징으로 한다. 2n + 2 pieces are formed and it is characterized by n = natural number.
또한. 본 발명에 따른 상기 회전자 볼록극과 회전자 오목극의 단차 (D1)는 전 기자의 볼톡극과 회전자 볼록극 사이에 형성되는 공극의 1 ~ 5배 길이를 갖는 것을 특징으로 한다.  Also. The step D1 of the rotor convex pole and the rotor concave pole according to the present invention is characterized by having a length of 1 to 5 times the gap formed between the vortex pole and the rotor convex pole of the former reporter.
또한. 본 발명에 따른 상기 개구공은 회전자 볼록극과 회전자 오목극 사이에 일정 간격의 개구부를 형성하고, 상기 간격은 상기 단차와 동일한 값을 갖는 것을 특징으로 한다.  Also. The opening hole according to the present invention is characterized in that the opening is formed at a predetermined interval between the rotor convex pole and the rotor concave pole, the interval has the same value as the step.
또한, 본 발명에 따른 상기 개구공은 원형, 타원형, 다각형 중 어느 하나의 형상으로 이루어지는 것을 특징으로 한다.  In addition, the opening hole according to the invention is characterized in that it is made of any one of the shape of a circle, oval, polygon.
또한. 본 발명에 따른 상기 회전자 몸체부는 적어도 한 장 이상 적층하여 조 립한 강자성체인 것을 특징으로 한다.  Also. The rotor body portion according to the present invention is characterized in that the ferromagnetic material is laminated and assembled at least one or more.
또한, 본 발명에 따른 상기 회전자 몸체부는 순철. 규소강판 중 하나의 원소 또는 합금을 포함하는 금속재인 것을 특징으로 한다.  In addition, the rotor body portion according to the invention pure iron. It is characterized in that the metal material containing one element or alloy of the silicon steel sheet.
【유리한 효과】 Advantageous Effects
본 발명은 전기자의 스위칭 교번에 의해 정 토크 발생 면적이 큰 밴드형 외 륜 회전자에 고 토크를 발생시킬 수 있으므로 회전자의 크기에 따라서 소출력에서 대출력까지 파워 밀도가 높은 스위칭 릴럭턴스 모터를 제공할 수 있는 장점이 있 다.  The present invention provides a switching reluctance motor having a high power density from small output to large output according to the size of the rotor because high torque can be generated in a band-shaped outer ring rotor with a large positive torque generation area by switching the armature. There is an advantage to this.
또한, 본 발명은 회전자에 전기자에 상웅하는 돌출극이 없고. 개구공으로 구 분되는 각각의 회전자 볼록극과 회전자 오목극 사이에 경사진 단차를 형성하여 회 전시 공기저항에 의한 풍손을 감소시켜 자기-기계적 진동과 공진 소음을 감소시킬 수 있는 장점이 있다. In addition, the present invention does not have a protruding pole in which the rotor stands on the armature. An inclined step is formed between each of the rotor convex and rotor concave poles separated by the openings, thereby reducing windage caused by the air resistance of the rotor, thereby reducing the magnetic-mechanical vibration and the resonance noise. There are advantages to it.
또한, 본 발명은 자가 플라이휠 효과로 회전 에너지를 축적함으로써 토크 리 플을 감소시켜 기계적 고 토크 특성을 갖는 회전자를 제공할 수 있는 장점이 있다.  In addition, the present invention has the advantage that it is possible to provide a rotor having a mechanical high torque characteristics by reducing torque ripple by accumulating rotational energy by the self flywheel effect.
【도면의 간단한 설명] [Brief Description of Drawings]
도 1 은 종래 기술에 따른 외륜형 스위칭 릴릭턴스 모터를 나타낸 단면도. 도 2 는 종래 기술에 따른 회전자를 나타낸 단면도.  1 is a cross-sectional view showing a ring-type switching reluctance motor according to the prior art. 2 is a cross-sectional view showing a rotor according to the prior art.
도 3 은 본 발명에 따른 스위칭 릴럭턴스 모터용 회전자를 나타낸 사시도. 도 4 는 도 3에 따른 스위칭 릴럭턴스 모터용 회전자를 나타낸 평면도. 도 5 는 도 3에 따른 스위칭 릴럭턴스 모터용 회전자의 개구공 형상을 나타 낸 예시도.  3 is a perspective view showing a rotor for a switching reluctance motor according to the present invention. 4 is a plan view showing a rotor for the switching reluctance motor according to FIG. 3; 5 is an exemplary view showing the aperture shape of the rotor for the switching reluctance motor according to FIG. 3.
도 6 은 본 발명에 따른 스위칭 릴럭턴스 모터용 회전자의 토크 발생 원리를 나타낸 파형도.  6 is a waveform diagram showing a torque generation principle of a rotor for a switching reluctance motor according to the present invention;
도 7 은 본 발명에 따른 스위칭 릴럭턴스 모터용 회전자의 토크 발생 과정을 나타낸 파형도.  7 is a waveform diagram illustrating a torque generation process of a rotor for a switching reluctance motor according to the present invention;
도 8 은 본 발명에 따른 스위칭 릴력턴스 모터용 회전자의 다른 실시예를 나 타낸 평면도.  8 is a plan view showing another embodiment of a rotor for a switching reluctance motor according to the present invention.
도 9 는 본 발명에 따른 스위칭 릴럭턴스 모터용 회전자의 또 다른 실시예를 나타낸 평면도.  9 is a plan view showing another embodiment of a rotor for a switching reluctance motor according to the present invention;
도 10 은 본 발명에 따른 스위칭 릴럭턴스 모터용 회전자를 이용한 모터를 나타낸 사시도.  10 is a perspective view showing a motor using a rotor for a switching reluctance motor according to the present invention;
도 11 은 도 10에 따른 스위칭 릴릭턴스 모터용 회전자를 이용한 모터를 나 타낸 단면도.  11 is a cross-sectional view showing a motor using the rotor for the switching reluctance motor according to FIG. 10;
도 12 는 도 10에 따른 스위칭 릴릭턴스 모터용 회전자를 이용한 모터의 제 어회로를 나타낸 전기 회로도.  12 is an electric circuit diagram showing a control circuit of a motor using the rotor for the switching reluctance motor according to FIG. 10;
【발명의 실시를 위한 형태】 [Form for implementation of invention]
이하, 첨부된 도면을 참조하여 본 발명에 따른 스위칭 릴럭턴스 모터용 회전 자의 바람직한 실.시예를 상세하게 설명한다.  Hereinafter, exemplary embodiments of a rotor for a switching reluctance motor according to the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명에 따른 스위칭 릴력턴스 모터용 회전자를 나타낸 사시도이 고, 도 4는 도 3에 따른 스위칭 릴럭턴스 모터용 회전자를 나타낸 평면도이며 , 도 5는 도 3에 따른 스위칭 릴럭턴스 모터용 회전자의 개구공 형상을 나타낸 예시도이 고, 도 6은 본 발명에 따른 스위칭 릴럭턴스 모터용 회전자의 토크 발생 원리를 나 타낸 파형도이며. 도 7 은 본 발명에 따른 스위칭 릴럭턴스 모터용 회전자의 토크 발생 과정을 나타낸 파형도이다. 3 is a perspective view illustrating a rotor for a switching reluctance motor according to the present invention, FIG. 4 is a plan view illustrating a rotor for a switching reluctance motor according to FIG. 3, and FIG. 5 is a diagram for a switching reluctance motor according to FIG. 3. Illustrated diagram showing the opening hole shape of the rotor 6 is a waveform diagram showing a torque generation principle of a rotor for a switching reluctance motor according to the present invention. 7 is a waveform diagram illustrating a torque generation process of a rotor for a switching reluctance motor according to the present invention.
본 발명에 따른 스위칭 릴력턴스 모터용 회전자 (100)는 스위칭 릴럭턴스 모 터의 자기-기구적 스위칭 진동 음향 소음을 최소화하고 토크 발생 퍼포먼스를 향상 시킬 수 있는 밴드형 자기 분할극 구조를 형성하며, 플라이휠을 통해 기계적 운동 에너지로 평활시켜 토크 리플을 감소시킬 수 있도록 회전자 몸체부 (110)와, 회전자 극 (120)과, 개구공 (130)과, 위치 인코더 (321)를 포함하여 구성된다.  The rotor 100 for the switching reluctance motor according to the present invention forms a band-shaped magnetic split electrode structure that can minimize the self-mechanical switching vibration acoustic noise of the switching reluctance motor and improve torque generation performance. Rotor body 110, rotor pole 120, aperture hole 130, and position encoder 321 are configured to reduce torque ripple by smoothing mechanical kinetic energy through the flywheel. .
상기 회전자 몸체부 (110)는 링 형상의 금속 부재로서, 적어도 한 장 이상의 전기 강판을 적층하여 조립한 강자성체이고, 상기 회전자 몸체부 (110)는 순철, 규 소강판 중 하나의 원소 또는 합금으로 이루어진다.  The rotor body part 110 is a ring-shaped metal member, and is a ferromagnetic material assembled by stacking at least one or more sheets of electrical steel, and the rotor body part 110 is an element or alloy of pure iron or silicon steel. Is done.
또한, 상기 회전자 몸체부 (110)는 외부 둘레에 일정 두께를 형성하여 자계 통로가 형성되도록 하고. 상기 회전자 몸체부 (110)의 중량을 증가시켜 관성 모멘트 가 증가되도록 하는 플라이휠 코어부 (112)가 자계 통로 경계선 (111)을 중심으로 회 전자 몸체부 (110)의 외부면에 형성된다.  In addition, the rotor body portion 110 forms a predetermined thickness around the outer circumference to form a magnetic field passage. A flywheel core portion 112 is formed on the outer surface of the rotor body portion 110 around the magnetic path boundary line 111 to increase the weight of the rotor body portion 110 to increase the moment of inertia.
또한, 상기 플라이휠 코어부 (112)는 자계 통로 (Df)로 기능되도록 하고, 회전 체 몸체부 (110)의 중량을 증가시켜 상기 회전체 몸체부 (110)의 회전 에너지를 축적 하는 플라이휠 기능을 수행할 수 있도톡 한다.  In addition, the flywheel core portion 112 serves as a magnetic field passage (Df), and increases the weight of the rotating body portion 110 to perform a flywheel function to accumulate the rotational energy of the rotating body portion 110 Try to do it.
상기 자계 통로 경계선 (111)은 자계 통로 (Df)의 길이와 회전자 오목극 (122) 의 길이 (Di)가 같은 중심선이다.  The magnetic path boundary line 111 is a center line where the length of the magnetic field path Df and the length Di of the rotor concave electrode 122 are the same.
상기 회전자 극 (120)은 회전자 몸체부 (110)의 내측에 2n+2개 (여기서 n은 자 연수)가 등간격으로 형성된 6개의 분할 극으로서, 6극 회전자 구조를 형성한다. 상기 회전자 극 (120)은 극 피치 (Pole Pitch) 간의 중앙에 경사각 (예를 들면, 45° )을 형성한 단차 (D1)를 형성하고, 회전자 몸체부 (110)의 내부면에서 반경방향 내측으로 일정 길이 돌출된 회전자 볼톡극 (121)과, 상기 회전자 몸체부 (110)의 반 경방향 외측으로 일정 길이 수용된 회전자 오목극 (122)을 형성한다. The rotor poles 120 are six split poles in which 2n + 2 (where n is self-numbered water) are formed at equal intervals on the inside of the rotor body part 110 to form a six-pole rotor structure. The rotor pole 120 forms a step D1 that forms an inclination angle (for example, 45 ° ) in the center between pole pitches, and radially from an inner surface of the rotor body part 110. A rotor convex electrode 121 protruding a predetermined length inwardly and a rotor concave electrode 122 accommodated a predetermined length radially outward of the rotor body part 110 are formed.
상기 회전자 볼톡극 (121)과 회전자 오목극 (122)의 길이는 예를 들면. 개구공 l(130a)과 개구공 2(130b) 사이에 등거리 (R3, R4)로 형성된다.  The length of the rotor voltok pole 121 and the rotor concave electrode 122 is, for example. It is formed at equidistant distances R3 and R4 between the opening hole l 130a and the opening hole 2 130b.
또한, 상기 회전자 볼록극 (121)과 회전자 오목극 (122)의 단차 (D1)는 전기자 의 볼록극 (312)과 회전자 볼록극 (121) 사이에 형성되는 공극의 1 ~ 5배 길이 범위 의 값을 갖는 것이 바람직하다. In addition, the step D1 of the rotor convex pole 121 and the rotor concave pole 122 is 1 to 5 times the length of the gap formed between the convex pole 312 of the armature and the rotor convex pole 121. It is desirable to have a value in the range.
상기 개구공 (130)은 회전자 극 (120)의 회전자 볼록극 (121)과 회전자 오목극 (122) 사이에 2n+2개 (여기서 η은 자연수)개가 등간격으로 천공되고, 상기 개구공 (130)은 도 5(a). 도 5(b), 도 5(c)에 나타낸 바와 같이, 원형. 타원형, 다각형 중 어느 하나의 형상으로 이루어지며, 상기 회전자 볼록극 (121)과 회전자 오목극 (122) 사이에 일정 간격 (D2)의 개구부 (131)가 형성된다. The opening hole 130 is a rotor convex pole 121 and a rotor concave pole of the rotor pole 120 2 n + 2 pieces (where η is a natural number) are spaced at equal intervals between the 122 portions, and the opening hole 130 is shown in Fig. 5 (a). As shown in Fig. 5 (b) and Fig. 5 (c), a circular shape. An oval or polygonal shape is formed, and an opening 131 of a predetermined distance D2 is formed between the rotor convex pole 121 and the rotor concave pole 122.
상기 개구부 (131)는 회전자 볼록극 (121)에 개구부 l(131a)이 형성되고, 회전 자 오목극 (122)에 개구부 2(131b)가 형성되어 단차 (D1) 만큼의 길이 차이가 발생하 고, 상기 개구부 (131)는 상기 단차 (D1)와 동일한 값을 갖는 간격 (D2)의 크기로 형 성하는 것이 바람직하며 . 상기 간격 (D2)은 단차 (D1)보다 일정 범위에서 작거나 크 게 형성할 수도 있다.  The opening 131 has an opening l 131a formed in the rotor convex electrode 121, and an opening 2 131b formed in the rotor concave electrode 122, so that a difference in length by the step D1 occurs. Preferably, the opening 131 is formed to the size of the interval D2 having the same value as the step D1. The interval D2 may be smaller or larger than a step D1 in a predetermined range.
또한, 상기 개구공 (130)은 6극 회전자인 경우 개구부 (131)의 중심선을 기준 으로 60° 의 분할 각 (R1)을 형성하고, 각 극의 개구부 경계선으로부터는 57.5° 의 분할 각 (R2)을 갖도록 형성된다. In addition, the opening hole 130 forms a 60 ° dividing angle R1 based on the center line of the opening 131 when the 6-pole rotor is formed, and 57.5 ° dividing angle R2 from the opening boundary line of each pole. It is formed to have.
또한. 상기 개구공 (130)은 자계 통로 경계선 (111)을 넘지 않도록 회전체 몸 체부 (110)에 형성된다.  Also. The opening 130 is formed in the body body 110 so as not to cross the magnetic field path boundary line 111.
상기 위치 인코더 (321)는 회전자 (100)의 위치 정보를 제공하는 구성으로서, 바람직하게는 회전자 볼록극 (121)과 회전자 오목극 (122)의 위치가 구별되도록 하 고, 회전자 몸체부 (110)의 상면 또는 하면에 설치된다.  The position encoder 321 is configured to provide the position information of the rotor 100, preferably to distinguish the position of the rotor convex pole 121 and the rotor concave pole 122, the rotor body It is installed on the upper or lower surface of the unit (110).
또한. 상기 위치 인코더 (321)는 회전자 볼록극 (121)의 위치를 검출하기 위해 상기 회전자 볼록극 (121)에 위치 검출용 통전부 (322)가 설치되며, 후술되는 전기자 (310)에 설치된 위치 센서 (320)와 반웅하여 상기 위치 센서 (320)가 회전자 볼롤극 (121)의 위치를 검출할 수 있도록 한다.  Also. The position encoder 321 has a position detecting energizer 322 installed on the rotor convex pole 121 to detect the position of the rotor convex pole 121, and is installed in the armature 310 to be described later. In response to the sensor 320, the position sensor 320 can detect the position of the rotor ball roll electrode 121.
상기 통전부 (322)는 알루미늄, 철. 영구자석 중 어느 하나로 이루어지고, 위 치 센서 (320)와 반웅하여 상기 위치 센서 (320)가 신호를 검출할 수 있도록 한다. 한편, 본 실시예에 따른 회전자 (100)는 설명의 편의를 위해 6개의 분할 극을 갖는 6극 회전자를 이용하여 설명하지만 이에 한정되는 것은 아니며, 도 8과 같이 회전자 몸체부 (110')에 피치각이 90° 인 4개의 분할 극을 갖도록 회전자 볼록극 (12Γ)과 회전자 오목극 (122')을 형성한 회전자 극 (120')과 4개의 개구공 (130')과 개구부 (13Γ)를 형성하여 회전자 볼록극 (12Γ)의 정토크 각이 45° 인 회전자 (100') 를 구성할 수도 있고, 도 9와 같이 회전자 몸체부 (110")에 피치각이 45° 인 8개의 분할 극을 갖도록 회전자 볼톡극 (121")과 회전자 오목극 (122")올 형성한 회전자 극 (120")과 8개의 개구공 (130")과 개구부 (131")를 형성하여 회전자 볼록극 (121")의 정토크 각이 22.5° 인 회전자 (100")를 구성할 수도 있다. 다시 도 3 내지 도 7을 참조하여 회전자 (100)의 동작을 설명하면, 회전자 극 (120)의 극 피치와 전"기자의 극피치에는 도 6(a)의 인^턴스 파형 (200)과 같이 인 덕턴스 (Lu— ) 최소점 (O-Qs)과 상승구간 (Qs-Ql) 그리고 구속구간 (Q1-Q2)이 있으며. 다시 인덕턴스가 감소하는 구간 (Q2-Q3)이 있고. 회전자 각 (Θ)의 위치에 따라 토크 힘의 방향이 바뀐다. The conducting unit 322 is aluminum, iron. It is made of one of the permanent magnets, and reacted with the position sensor 320 so that the position sensor 320 can detect a signal. Meanwhile, the rotor 100 according to the present embodiment will be described using a six-pole rotor having six split poles for convenience of description, but is not limited thereto. The rotor body 110 ′ as shown in FIG. 8. Rotor pole 120 'and 4 opening holes 130', which form the rotor convex pole 12Γ and the rotor concave pole 122 ', to have four split poles with a pitch angle of 90 ° ). An opening 13Γ may be formed to form a rotor 100 'having a constant torque angle of 45 ° of the rotor convex pole 12Γ, and a pitch angle of the rotor body 110 " 45 ° is to have eight split pole rotor boltok pole (121 ") and the rotor recesses pole (122"), and rotor poles formed ol (120 ") and 8 opening hole (130") and the opening (131 " ) May be configured to constitute a rotor 100 "having a constant torque angle of 22.5 ° of the rotor convex pole 121". Back 3 to when describing the operation of with reference to Fig rotor 100, once the ^ capacitance waveform 200 of the electronic pole pole pitch and around the 6-pole pitch is of the "press of the (120) (a) There is an inductance (Lu—) minimum point (O-Qs), a rising section (Qs-Ql) and a restraining section (Q1-Q2), and again there is a section (Q2-Q3) where the inductance decreases. The direction of the torque force changes according to the position of the electron angle (Θ).
즉 인덕턴스 상승 구간 (Qs— Q1)에서는 도 6(b)와 같이 정토크 (Positive torque, 210)가 발생하고, 하강구간 (Q2-Q3)에서는 부토크 (Negat i ve torque)가 발생 한다.  That is, positive torque 210 is generated in the inductance rising period Qs—Q1, as shown in FIG. 6 (b), and negative torque is generated in the falling period Q2-Q3.
따라서 한 극의 피치에서 절반정도가 회전 토크 발생에 기여하고. 이에 따라 스위칭 릴릭턴스 모터의 원활한 회전 토크를 발생시키기 위해서 정토크 구간 (Qs- Ql)에서만 극을 여자시키고, 부토크 구간 (Q2-Q3)에서는 여자 전류를 차단하는 스위 칭 제어를 하게 된다.  Thus, about half of the pitch on one pole contributes to the generation of rotational torque. Accordingly, in order to generate a smooth rotational torque of the switching reluctance motor, a switching control is performed to excite the pole only in the constant torque section (Qs-Ql) and cut off the exciting current in the negative torque section (Q2-Q3).
또한. 회전자 (100)는 도 7과 같이. 극의 피치 (Qs-Q3)는 57.5° 이고, 회전자 극 (120)의 피치는 회전자 볼록극 (121)과 회전자 오목극 (122)으로 구분되어 있는데 상기 회전자 볼록극 (121)의 정토크 발생 구간 (Qs-Ql)은 회전자 극 (120)의 절반 (28.75° )정도이고, 부토크 (22) 발생구간은 회전자 오목극 (122)으로 전기자의 자계 로부터 부 토크 힘을 받지 않도록 단차 (D1)가 형성되어 있어 종래의 회전 토크보다 2배 이상 큰 회전자 각이 존재하며ᅳ 인덕턴스 값도 비례하여 증가하게 된다. Also. Rotor 100 is as shown in FIG. The pitch of the pole (Qs-Q3) is 57.5 ° , the pitch of the rotor pole 120 is divided into the rotor convex pole 121 and the rotor concave pole 122 of the rotor convex pole 121 The positive torque generating section (Qs-Ql) is about half (28.75 ° ) of the rotor pole 120, and the negative torque 22 generating section is the rotor concave electrode 122 which receives negative torque force from the magnetic field of the armature. Step D1 is formed so that there is a rotor angle that is more than twice as large as the conventional rotational torque, and the inductance value is also increased proportionally.
따라서 회전자 (100)는 1회전 구간 (2π )에서 각 극 (A, Β, C)의 인덕턴스 파형 (200)에 따라 개별적으로 57.5° 의 절반인 28.75° 의 구간에서 정토크 (210)가 발생 한다. Accordingly, the rotor 100 generates the positive torque 210 in the interval of 28.75 ° , which is half of 57.5 ° , according to the inductance waveform 200 of each pole (A, Β, C) in one rotation period (2π). do.
또한. 회전자 (100)는 플라이휠 코어부 (112)의 폭과 적층 두께를 통해 회전체 의 질량을 충분히 부여함으로써. 회전체 질량과 회전체 반경의 2배에 비례하는 플 라이휠 효과를 갖게 하고. 정토크 (210)의 가속구간을 제외한 회전자 오목극 (122) 구간에서의 토크 리플을 평활시키는 회전 토크 에너지를 축적시킬 수 있다. 본 발명에 따른 회전자 (100)가 단상 스위칭 릴럭턴스 모터로 구동되는 실시 예를 설명한다 .  Also. The rotor 100 is given sufficient mass of the rotor through the width and laminated thickness of the flywheel core portion 112. It has a flywheel effect proportional to twice the mass of the rotor and the radius of the rotor. The rotation torque energy for smoothing the torque ripple in the section of the rotor concave pole 122 except for the acceleration section of the constant torque 210 can be accumulated. An embodiment in which the rotor 100 according to the present invention is driven by a single phase switching reluctance motor will be described.
도 10은 본 발명에 따른 스위칭 릴럭턴스 모터용 회전자를 이용한 모터를 나 타낸 사시도이고. 도 11은 도 10에 따른 스위칭 릴럭턴스 모터용 회전자를 이용한 모터를 나타낸 단면도이며. 도 12는 도 10에 따른 스위칭 릴럭턴스 모터용 회전자 를 이용한 모터의 제어회로를 나타낸 전기 회로도이다. 도 10 내지 도 12에 나타낸 바와 같이 . 회전자 (100)는 회전이 자유로운 하우 징 (300)에 설치되고, 회전자 (100)의 내측에는 단상 코일 (330)이 권선된 일자형의 전기자 (310)가 고정축 (340)을 통해 설치된다. 10 is a perspective view showing a motor using a rotor for a switching reluctance motor according to the present invention. FIG. 11 is a cross-sectional view of a motor using the rotor for the switching reluctance motor according to FIG. 10. 12 is an electrical circuit diagram illustrating a control circuit of a motor using the rotor for the switching reluctance motor according to FIG. 10. As shown in FIGS. 10-12. The rotor 100 is installed in the housing 300 free of rotation, and a straight armature 310 having a single-phase coil 330 wound around the rotor 100 is installed through the fixed shaft 340. .
상기 전기자 (310)의 양측 단부에는 회전자 극의 회전자 볼록극 (121)과 회전 자 오목극 (122)과 같은 폭의 피치를 형성한 전기자 오목극 (311)과 전기자 볼록극 (312)이 형성되고, 상기 전기자 오목극 (311)과 전기자 볼록극 (312)의 피치 중심에 는 단차 (313)가 형성된다. At both ends of the armature 310, an armature concave pole 311 and an armature convex pole 312 having a pitch of the same width as the rotor convex pole 121 and the rotor concave pole 122 of the rotor pole are provided. and forming, on the i pitch center of the armature pole concave 311 and the convex pole armature 312 is formed in a step 313. the
또한. 상기 전기자 (310)의 양측 단부에는 위치 센서 (320)가 설치되어 회전자 (100)의 통전부 (322)를 검출한다.  Also. Position sensors 320 are installed at both ends of the armature 310 to detect the energization part 322 of the rotor 100.
상기 위치 센서 (320)는 광 센서 . 자기 홀 센서 또는 근접 센서 중 어느 하나 로 이루어져 통전부 (322)와 반웅하여 위치 신호를 출력한다.  The position sensor 320 is an optical sensor. It consists of either a magnetic hall sensor or a proximity sensor and reacts with the energization unit 322 to output a position signal.
한편, 회전자 극 (120) A의 회전자 볼톡극 (121)이 항상 전기자 볼록극 (312)과 불일치한 위치 (Unaligned position) 즉 시작점 (Qs)에 있게 하면, 위치 센서 (320)가 회전자 (100)의 위치 정보를 제공하는 위치 인코더 (321)의 통전부 (322)를 감지한다. 상기 위치 센서 (320)가 신호를 검출하면 온 /오프 제어부 (400)가 동작하여 직 류 전원의 파워 스위칭 회로의 스위칭 디바이스 (S/W)를 온 (ON)시켜 코일 (330)을 통 전시켜 전기자 (310)가 여자된다.  On the other hand, if the rotor vortex electrode 121 of the rotor pole 120 A is always in an unaligned position, that is, the starting point Qs, with the armature convex pole 312, then the position sensor 320 is rotated. The energization unit 322 of the position encoder 321 providing the position information of 100 is sensed. When the position sensor 320 detects a signal, the on / off control unit 400 operates to turn on / off the switching device (S / W) of the power switching circuit of the direct current power source to energize the coil 330. The armature 310 is excited.
상기 위치에서 전기자 (310)가 여자되면, 에어 갭과 회전자 (100)를 통과한 자 기 회로 통로 (350)가 형성되어 자기 리액턴스가 가장 작은 위치 (Aligned position) 방향 (또는 인덕턴스가 가장 큰 방향)으로 회전자 (100)가 힘을 받게 되므로 정토크 (210, 도 7(b) 참조)가 발생하여 CCW 방향으로 회전하게 된다.  When the armature 310 is excited in this position, a magnetic circuit passage 350 through the air gap and the rotor 100 is formed so that the magnetic reactance has the smallest (Aligned position) direction (or the direction with the largest inductance). Since the rotor 100 is subjected to the force, positive torque 210 (see FIG. 7 (b)) is generated to rotate in the CCW direction.
계속해서, 회전자 극 (120)의 A극 정토크 구간을 지나면 부토크 (211, 도 7(b) 참조) 구간에 진입하게 되는데 전기자 (310)의 위치 센서 (320)가 위치 인코더 (321) 의 통전부 (322)를 벗어나게 되어 전기자 (310)의 위치 센서 (320)는 상기 부토크 (211) 구간에서 스위칭 디바이스 (S/W)를 오프 (OFF)시킨다.  Subsequently, after passing the positive pole torque section of the rotor pole 120, the negative torque (211, see Fig. 7 (b)) is entered into the section where the position sensor 320 of the armature 310 is the position encoder 321 The position sensor 320 of the armature 310 is turned out of the energizing portion 322 of the armature 310 to turn off the switching device (S / W) in the negative torque (211) section.
따라서 전기자 (310)는 더 이상 여자되지 않게 되고, 자기력으로부터 자유로 워진 회전자 (100)는 정토크 구간에서 가속된 플라이휠 코어부 (112, 도 3 참조)의 플라위휠 에너지에 의해 다음 극 (B)의 시작점 (Qs)까지 관성 회전 (240)하게 되고. 다시 B극과 C극의 정토크 (220, 230, 도 7(b) 참조) 구간에 접어들면, 회전자 (100) 는 전기자 (310)의 여자에 의해 회전 토크를 발생하게 되며 , 동시에 플라이휠 코어 부 (112)에 의한 플라이휠 에너지를 축적하여 B극과 C극의 부토크 (221, 231, 도 7(b) 참조) 구간에서도 연속적인 회전력을 갖게 된다. 한편, 상기 회전자 (100)는 한 방향으로 회전 토크를 발생하게 되고. 회전자 극 (120)과 전기자 (310)의 전기자 오목극 (311)과 전기자 볼록극 (312)의 위치 변경에 따라 회전 방향은 변경된다. Therefore, the armature 310 is no longer excited and the rotor 100 freed from the magnetic force is driven by the flywheel energy of the flywheel core portion 112 (see FIG. 3) accelerated in the constant torque section. Rotational inertia (240) to the starting point (Qs). When the rotor 100 enters the positive torque (220, 230, FIG. 7 (b)) section of the pole B and the pole C again, the rotor 100 generates rotation torque by the excitation of the armature 310, and at the same time the flywheel core The flywheel energy accumulated by the unit 112 is accumulated to have a continuous rotational force even in the sub-torques 221 and 231 of the B and C poles (see FIG. 7B). On the other hand, the rotor 100 is to generate a rotation torque in one direction. The direction of rotation is changed in accordance with the change of positions of the armature concave pole 311 and the armature convex pole 312 of the rotor pole 120 and the armature 310.
또한, 상기 회전자 (100)는 회전자 몸체부의 외경과 적층된 두께에 따라 임의 의 출력과 토크 -속도 특성을 형성할 수 있게 되어 다양한 외륜 회전자 타입의 스위 칭 릴럭턴스 모터를 제공할 수 있다.  In addition, the rotor 100 can form any output and torque-speed characteristics according to the outer diameter and the laminated thickness of the rotor body, thereby providing various outer ring rotor type switching reluctance motors. .
따라서 스위칭 릴럭턴스 모터의 운전시 발생하는 자기 기구적 진동 음향 소 음과 풍손을 최소화하고. 전기자의 인덕턴스를 최대화하며 , 회전자의 원주면 내측 의 분할 극 수 대비 정 토크 발생 면적을 최대화시킨 자기 기구적 분할 극 피치 형 상과 구조를 형성하여 자기회로 릴럭턴스의 감소와 토크 발생 퍼포먼스를 향상시킬 수 있고, 토크 리플을 감소할 수 있게 된다. 상기와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기 술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영 역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시 ¾ 수 있음을 이해할 수 있을 것이다.  Therefore, it minimizes the magnetic mechanical vibration sound noise and wind loss generated during the operation of the switching reluctance motor. Maximizes the inductance of the armature and forms a magnetic mechanical split pole pitch shape and structure that maximizes the area of positive torque relative to the number of split poles inside the circumferential surface of the rotor, reducing magnetic circuit reluctance and improving torque generation performance. It is possible to reduce the torque ripple. As described above, it has been described with reference to the preferred embodiment of the present invention, but those skilled in the art will be variously modified within the scope of the present invention without departing from the spirit and scope of the present invention described in the claims below. It will be appreciated that changes may be made to and from other sources.
또한, 본 발명의 실시예를 설명하는 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있으며. 상술된 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자. 운용자의 의도 또는 관례에 따라 달라질 수 있으므로, 이러한 용어들에 대한 정의 는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.  In addition, in the process of describing an embodiment of the present invention, the thickness of the lines or the size of the components shown in the drawings may be exaggerated for clarity and convenience of description. The above terms are terms defined in consideration of the functions in the present invention, which are used by the user. Definitions of these terms should be based on the contents throughout this specification as they may vary depending on the intention or custom of the operator.
* 부호의 설명 * * Explanation of Codes *
100, 100' , 100" : 회전자 110. 110' , 110" : 회전자 몸체부 100, 100 ', 100 ": Rotor 110. 110', 110" : Rotor body
111 : 자계 통로 경계선 112 : 플라이휠 코어부 111 : Magnetic field path boundary line 112 : Flywheel core part
120, 120', 120" : 회전자 극 121. 121' . 122" : 회전자 볼록극 120, 120 ', 120 ": Rotor pole 121. 121'. 122" : Rotor convex pole
122, 122' , 122" : 회전자 오목극 130, 130' . 130" : 개구공 122, 122 ', 122 ": rotor concave pole 130, 130'. 130": opening hole
130a : 개구공 1 130b : 개구공 2  130a: opening hole 1 130b: opening hole 2
131. 131' , 131" : 개구부 131a : 개구부 1  131. 131 ', 131 ": opening 131a: opening 1
131b : 개구부 2 200 : 인덕턴스 파형  131b: opening 2 200: inductance waveform
210. 220, 230, 240 : 정 토크 211, 221, 231 : 부 토크  210. 220, 230, 240: Positive torque 211, 221, 231: Negative torque
300 : 하우징 310 : 전기자 : 전기자 오목극 312 : 전기자 볼록극 : 위치 센서 321 : 위치 인코더 : 통전부 330 : 코일 : 고정축 350 : 자기회로 통로 : 온 /오프 제어부 300: housing 310: armature : Armature concave pole 312 : Armature convex pole : Position sensor 321 : Position encoder : Current-carrying part 330 : Coil : Fixed shaft 350 : Magnetic circuit passage : On / off control

Claims

【청구의 범위】 【Scope of Claim】
【청구항 11 【Claim 11
스위칭 릴럭턴스 모터용 회전자 (100)로서 . As a rotor (100) for a switching reluctance motor.
링 형상의 회전자 몸체부 (110); Ring-shaped rotor body portion 110;
상기 회전자 몸체부 (110)의 내측에 등간격으로 형성한 회전자 극 (120): 및 상기 회전자 극 (120)에 등간격으로 천공한 다수의 개구공 (130)을 포함하고, 상기 회전자 극 (120)은 중앙에 단차 (D1)를 두고 상기 회전자 몸체부 (110.)의 내부면에서 반경방향 내측으로 일정 길이 돌출된 회전자 볼록극 (121)과, 상기 회전 자 몸체부 (110)의 반경방향 외측으로 일정 길이 수용된 회전자 오목극 (122)을 형성 한 것을 특징으로 하는 스위칭 릴릭턴스 모터용 회전자. A rotor pole (120) formed at equal intervals inside the rotor body (110): and a plurality of openings (130) formed at equal intervals in the rotor pole (120), The electromagnetic pole 120 includes a rotor convex pole 121 that protrudes radially inward for a certain length from the inner surface of the rotor body 110 with a step D1 at the center, and the rotor body ( A rotor for a switching relictance motor, characterized in that the rotor concave pole (122) is accommodated for a certain length on the radial outer side of (110).
【청구항 2] [Claim 2]
제 1 항에 있어서. According to clause 1.
상기 회전자 몸체부 (110)는 외부 둘레에 일정 두께를 형성하여 자계 통로가 형성되도록 하고, 상기 회전자 몸체부 (110)의 중량을 증가시켜 관성 모멘트가 증가 되도록 하는 플라이휠 코어부 (112)를 더 포함하는 것을 특징으로 하는 스위칭 릴력 턴스 모터용 회전자. The rotor body portion 110 has a certain thickness around the outer circumference to form a magnetic field path, and a flywheel core portion 112 that increases the moment of inertia by increasing the weight of the rotor body portion 110. A rotor for a switching reel turn motor further comprising:
【청구항 3] [Claim 3]
제 2 항에 있어서. According to paragraph 2.
상기 회전자 몸체부 (110)는 상기 회전자 볼록극 (121)과 회전자 오목극 (122) 을 구별하는 위치 인코더 (321)를 더 포함하는 것을 특징으로 하는 스위칭 릴컥턴스 모터용 회전자 . The rotor body portion (110) further includes a position encoder (321) that distinguishes the rotor convex pole (121) and the rotor concave pole (122).
【청구항 4】 【Claim 4】
제 3 항에 있어서. According to clause 3.
상기 위치 인코더 (321)는 회전자 볼록극 (121)에 위치 검출용 통전부 (322)를 설치한 것을 특징으로 하는 스위칭 릴럭턴스 모터용 회전자. The position encoder (321) is a rotor for a switching reluctance motor, characterized in that an energizing part (322) for position detection is installed on the rotor convex pole (121).
【청구항 5】 【Claim 5】
제 4 항에 있어서. According to clause 4.
상기 통전부 (322)는 알루미늄, 철. 플락스틱, 영구자석 중 어느 하나로 이루 어진 것을 특징으로 하는 스위칭 릴럭턴스 모터용 회전자. The current conducting part 322 is made of aluminum or iron. Made of either plastic or permanent magnets A rotor for a switching reluctance motor, characterized in that:
【청구항 6】 【Claim 6】
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 5,
상기 회전자 극 (120)과 개구공 (130)은 상기 회전자 몸체부 (110)에 2n+2개 형 성되고. The rotor pole 120 and the opening hole 130 are formed in the number of 2n+2 in the rotor body portion 110.
여기서 , n = 자연수인 것을 특징으로 하는 스위칭 릴력턴스 모터용 회전자. Here, n = a natural number. A rotor for a switching retraction motor.
【청구항 7】 【Claim 7】
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 5,
상기 회전자 볼록극 (121)과 회전자 오목극 (122)의 단차 (D1)는 전기자의 볼록 극 (312)과 회전자 볼록극 (121) 사이에 형성되는 공극의 1 ~ 5배 길이를 갖는 것을 특징으로 하는 스위칭 릴럭턱스 모터용 회전자. The step D1 between the rotor convex pole 121 and the rotor concave pole 122 has a length of 1 to 5 times the gap formed between the armature convex pole 312 and the rotor convex pole 121. A rotor for a switching reluctux motor, characterized in that.
【청구항 8】 【Claim 8】
제 1 항 내지 제 5 항 증 어느 한 항에 있어서. According to any one of claims 1 to 5.
상기 개구공 (130)은 회전자 볼록극 (121)과 회전자 오목극 (122) 사이에 일정 간격 (D2)의 개구부 (131)를 형성하고, The opening 130 forms an opening 131 at a constant distance D2 between the rotor convex pole 121 and the rotor concave pole 122,
상기 간격 (D2)은 상기 단차 (D1)와 동일한 값을 갖는 것을 특징으로 하는 스 위칭 릴릭턴스 모터용 회전자. The rotor for a switching relictance motor, characterized in that the gap (D2) has the same value as the step (D1).
【청구항 9】 【Claim 9】
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 5,
상기 개구공 (130)은 원형 타원형. 다각형 중 어느 하나의 형상으로 이루어 지는 것을 특징으로 하는 스위칭 릴릭턴스 모터용 회전자. The opening 130 has a circular oval shape. A rotor for a switching relictance motor, characterized in that it has one of the shapes of a polygon.
【청구항 10】 【Claim 10】
제 1 항 내지 제 5 항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 5,
상기 회전자 몸체부 (110)는 적어도 한 장 이상 적층하여 조립한 강자성체인 것을 특징으로 하는 스위칭 릴릭턴스 모터용 회전자. A rotor for a switching relictance motor, wherein the rotor body portion 110 is a ferromagnetic material assembled by stacking at least one sheet or more.
【청구항 11】 제 10 항에 있어서, 【Claim 11】 According to claim 10,
상기 회전자 몸체부 ( 110)는 순철, 규소강판 중 하나의 원소 또는 합금을 함하는 금속재인 것을 특징으로 하는 스위칭 릴릭턴스 모터용 회전자. The rotor body portion (110) is a rotor for a switching relictance motor, characterized in that it is a metal material containing one element or alloy of pure iron and silicon steel plate.
PCT/KR2014/008748 2013-09-23 2014-09-19 Rotor for switched reluctance motor WO2015041483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0112470 2013-09-23
KR1020130112470A KR101558156B1 (en) 2013-09-23 2013-09-23 Outer rotor for switching reluctance motor

Publications (1)

Publication Number Publication Date
WO2015041483A1 true WO2015041483A1 (en) 2015-03-26

Family

ID=52689084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008748 WO2015041483A1 (en) 2013-09-23 2014-09-19 Rotor for switched reluctance motor

Country Status (2)

Country Link
KR (1) KR101558156B1 (en)
WO (1) WO2015041483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2583721A (en) * 2019-05-02 2020-11-11 Ricardo Uk Ltd Electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154467A (en) * 1984-12-12 1986-07-14 Secoh Giken Inc 1-phase reluctance type motor
JPH059177U (en) * 1991-07-08 1993-02-05 アスモ株式会社 Rotating electric machine
WO2002097954A1 (en) * 2001-05-31 2002-12-05 Robert Bosch Gmbh Two-phase, switched reluctance motor
US20100109451A1 (en) * 2007-04-12 2010-05-06 Compact Dynamics Gmbh Energy accumulator comprising a switched reluctance machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154467A (en) * 1984-12-12 1986-07-14 Secoh Giken Inc 1-phase reluctance type motor
JPH059177U (en) * 1991-07-08 1993-02-05 アスモ株式会社 Rotating electric machine
WO2002097954A1 (en) * 2001-05-31 2002-12-05 Robert Bosch Gmbh Two-phase, switched reluctance motor
US20100109451A1 (en) * 2007-04-12 2010-05-06 Compact Dynamics Gmbh Energy accumulator comprising a switched reluctance machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2583721A (en) * 2019-05-02 2020-11-11 Ricardo Uk Ltd Electric machine
GB2583721B (en) * 2019-05-02 2021-11-03 Ricardo Uk Ltd Electric machine
US11827109B2 (en) 2019-05-02 2023-11-28 Ricardo Uk Limited System for delivering and storing energy

Also Published As

Publication number Publication date
KR101558156B1 (en) 2015-10-12
KR20150033766A (en) 2015-04-02

Similar Documents

Publication Publication Date Title
KR101869094B1 (en) Brushless motor
US6975049B2 (en) Electrical machine and method of manufacturing the same
US6703744B2 (en) Generator-motor for vehicle
EP2109212B1 (en) Direct flux regulated permanent magnet brushless motor utilizing sensorless control
KR100565220B1 (en) Reluctance motor
US9236784B2 (en) Flux-switching electric machine
JP2008043124A (en) Magnet generator
KR20130029659A (en) Switched reluctance motor
US20160344242A1 (en) Variable magnetic flux motor having rotor in which two different kinds of magnets are embedded
WO2017031178A1 (en) Low profile axial flux permanent magnet synchronous motor
WO2006019058A1 (en) Variable magnetoresistive generator
JP2013059178A (en) Magnetic gear
WO2015041483A1 (en) Rotor for switched reluctance motor
US20210111601A1 (en) Rotor for a Brushless Direct-Current Motor, Particularly for an Electric Motor of the Inner Rotor Type, and Electric Motor Comprising Such a Rotor
JP2002374642A (en) Brushless motor
CN104718688A (en) Two-phase rotating electrical machine
JP2006025486A (en) Electric electric machine
JPH07222385A (en) Reverse salient cylindrical magnet synchronous motor
JP2006149167A (en) Magnet-embedded motor
EP4329153A1 (en) Permanent magnet rotor with reduced torque ripple
CN214480207U (en) Disc type motor
WO2023139818A1 (en) Power generation device and power generation system
JPH11234989A (en) Smooth core armature type three-phase brushless motor
JPH0670480U (en) Stator structure of brushless motor
KR100359566B1 (en) The fabrication of the rotor yoke for the single phase driving type BLDC Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.07.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14845787

Country of ref document: EP

Kind code of ref document: A1