KR100359566B1 - The fabrication of the rotor yoke for the single phase driving type BLDC Motor - Google Patents

The fabrication of the rotor yoke for the single phase driving type BLDC Motor Download PDF

Info

Publication number
KR100359566B1
KR100359566B1 KR1020000000895A KR20000000895A KR100359566B1 KR 100359566 B1 KR100359566 B1 KR 100359566B1 KR 1020000000895 A KR1020000000895 A KR 1020000000895A KR 20000000895 A KR20000000895 A KR 20000000895A KR 100359566 B1 KR100359566 B1 KR 100359566B1
Authority
KR
South Korea
Prior art keywords
rotor
bldc motor
magnet
dead point
phase driving
Prior art date
Application number
KR1020000000895A
Other languages
Korean (ko)
Other versions
KR20010068788A (en
Inventor
허인용
Original Assignee
주식회사 성신
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 성신 filed Critical 주식회사 성신
Priority to KR1020000000895A priority Critical patent/KR100359566B1/en
Publication of KR20010068788A publication Critical patent/KR20010068788A/en
Application granted granted Critical
Publication of KR100359566B1 publication Critical patent/KR100359566B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit

Abstract

본 발명은 단상 구동 방식 BLDC 모터의 회전자 착자구조에 관한 것으로, 단상 구동 방식의 경우에 스위칭(Switching)시 특히, 초기 기동시 자극검출소자(Hall Sensor)에 의한 자극감지와 힘의 불균형이 있어야 회전자가 어느곳에 위치하더라도 사점(Dead Point)없이 구동된다는 점에 착안하여 고정자에 형성되는 회전자(Rotor) 착자(Yoke)의 사점(Dead Point) 발생 위치에 극분리홈을 형성시켜 표면자속밀도가 비대칭되도록 구성하므로써 사점(Dead Point)을 제거할 수 있어 3상 구동 방식 모터와 동일한 특성을 가지는 동시에 종래보다 저렴한 비용으로 단상 구동 방식의 BLDC 모터의 기동특성을 극대화할 수 있는 효과를 가진다.The present invention relates to a rotor magnetization structure of a single-phase drive type BLDC motor, and in the case of the single-phase drive type, there must be an imbalance between the magnetic pole detection and the force caused by a Hall sensor during switching, in particular, at initial startup. In consideration of the fact that the rotor is driven without dead point wherever the rotor is located, the surface magnetic flux density is increased by forming a pole separation groove at the dead point of the rotor magnet which is formed in the stator. Since the dead point can be removed by the asymmetrical configuration, it has the same characteristics as the three-phase driving type motor and at the same time has the effect of maximizing the starting characteristics of the single-phase driving type BLDC motor.

Description

단상 구동 방식 BLDC 모터의 회전자 착자구조{The fabrication of the rotor yoke for the single phase driving type BLDC Motor}Rotor magnetization structure of single phase drive type DC motor {The fabrication of the rotor yoke for the single phase driving type MSC motor}

본 발명은 단상 구동 방식 BLDC 모터의 회전자 착자구조에 관한 것으로, 단상 구동 방식을 갖는 BLDC 모터에서 구조적으로 발생할 수 있는 사점(Dead Point) 발생을 억제하기 위하여 회전자(Rotor) 착자(Yoke)구조를 표면자속밀도가 비대칭되도록 구성한 단상 구동 방식 BLDC 모터의 회전자 착자구조에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor magnetization structure of a single-phase drive type BLDC motor, and a rotor magnetization structure in order to suppress dead point generation that may occur structurally in a BLDC motor having a single phase drive type. The rotor magnetizing structure of a single-phase drive type BLDC motor configured to have an asymmetric surface magnetic flux density.

사점(Dead Point)이란 모터(Motor)의 회전자(Rotor)가 회전시 정상적인 스위칭(Switching) 동작을 하지 못하는 어느 한점 또는 여러지점을 나타내는 것으로서, 정지상태에서 회전자(Rotor)가 사점(Dead Point) 위치에 존재한다면 전원이 온(ON)되어도 모터(Motor)가 기동되지 않는 특성을 가진다.Dead point refers to any one or several points at which the rotor of the motor does not perform normal switching operation when the rotor rotates. ) Motor, the motor is not started even if the power is on.

종래의 BLDC 모터의 회전자(Rotor) 착자(Yoke)구조는 도 1 및 도 2 에 도시한 바와 같으며, 회전자(1)의 표면에 부착된 자석(2)의 회전면 외주와 대응하는 부분이 이 자석(2)의 최외각 외경보다 큰 구경을 가지는 동시에 자석(2)의 외주와 등간격을 가지되, 회전자(1)의 회전중심을 지나는 하나의 가상선을 대칭선으로 하여 서로 대칭되도록 분리 형성된 2 슬롯(Slot) 형태의 착자(3) 구조를 가지고 있다.The rotor yoke structure of the conventional BLDC motor is as shown in FIGS. 1 and 2, and a portion corresponding to the outer circumference of the rotating surface of the magnet 2 attached to the surface of the rotor 1 is provided. It has a larger diameter than the outermost outer diameter of the magnet 2 and is equally spaced from the outer periphery of the magnet 2, so that one imaginary line passing through the center of rotation of the rotor 1 is symmetrical to each other. It has a structure of a magnet (3) in the form of two slots separated.

도 1 의 구성은 회전자(1)의 표면 전체에 자석(2)이 원통형으로 형성되어 있는 단상 구동 방식으로, 표면자속밀도가 대칭이 되는 구조이다.1 is a single-phase driving system in which the magnet 2 is formed in a cylindrical shape on the entire surface of the rotor 1, and the surface magnetic flux density is symmetrical.

이에 비하여 도 2 의 구성은 회전자(1)의 표면에 자석(2)이 120°의 대칭각을 가지고 3개 형성되어 있는 3상 구동 방식으로, 3개의 자석(2) 이음접착부에서의부분적인 자속감소로 인해 표면자속밀도가 비대칭이 되는 구조이다.On the contrary, the configuration of FIG. 2 is a three-phase driving method in which three magnets 2 are formed on the surface of the rotor 1 with a symmetrical angle of 120 °, and a partial magnetic flux at the joints of three magnets 2 is shown. Due to the reduction, the surface magnetic flux density becomes asymmetrical.

도 2 에 도시한 3상 구동 방식의 경우에는 자석(2)의 위치가 어느위치에 있어도 자극검출소자(도면도시 생략)가 N, S극 중 어느 한극을 감지하여 출력신호를 발생시켜 회전자(1)를 회전시키게 된다.In the three-phase driving method shown in FIG. 2, the magnetic pole detecting element (not shown) detects any one of the N and S poles and generates an output signal regardless of the position of the magnet 2. Rotate 1).

그러나, 이러한 3상 구동 방식의 경우 회전자(1)에 자석(2) 3개를 부착한 후 2 슬롯(Slot) 착자(3)를 부착함에 따라 가격상승, 전착에 따른 신뢰성 저하 및 작업공정 증가 등 여러가지 문제점이 있어왔다.However, in the three-phase driving method, three magnets (2) are attached to the rotor (1) and then two slot (3) magnets (3) are attached, thereby increasing the price, decreasing reliability due to electrodeposition, and increasing work processes. There have been various problems.

한편, 도 1 에 도시한 단상 구동 방식의 경우에는 도 2 에 도시한 3상 구동 방식에 비해 비용이 적게 들고 작업공정도 적어 경제적으로 매우 유용하나, 구조적으로 고정자에 형성된 회전자 착자(3)와 회전자(1)간의 간격이 등간격이므로 N, S극 구성이 등배비율로 되어 반드시 하나 이상의 사점(Dead Point)을 가진다.On the other hand, in the case of the single-phase drive system shown in Figure 1 is less economical than the three-phase drive system shown in FIG. Since the intervals between the rotors 1 are equally spaced, the N and S-pole configurations are equally multiplied and necessarily have one or more dead points.

즉, 자석(2)의 N, S극 분리점이 자극검출소자(도면도시 생략)의 정중앙에 위치하여 자극검출소자가 N, S극 양쪽을 동시에 감지할 경우 출력신호를 보내지 못해 회전자(1)를 회전시키지 못하는 문제점이 있었다.That is, when the N and S pole separation points of the magnet 2 are located at the center of the magnetic pole detection element (not shown) and the magnetic pole detection element simultaneously detects both the N and S poles, the output signal cannot be sent to the rotor 1. There was a problem that does not rotate.

본 발명은 상기와 같은 종래의 제반 문제점을 해결하기 위해 창출된 것으로, 단상 구동 방식의 경우에 스위칭(Switching)시 특히, 초기 기동시 자극검출 소자 (Hall Sensor)에 의한 자극감지와 힘의 불균형이 있어야 회전자가 어느곳에 위치하더라도 사점(Dead Point)없이 구동된다는 점에 착안하여 고정자에 형성되는 회전자(Rotor) 착자(Yoke)구조를 표면자속밀도가 비대칭되도록 구성하므로써 사점 (Dead Point)을 없애 종래보다 저렴한 비용으로 단상 구동 방식의 BLDC 모터의 기동특성을 극대화할 수 있는 단상 구동 방식 BLDC 모터의 회전자 착자구조를 제공함을 그 목적으로 한다.The present invention has been made to solve the above-mentioned conventional problems, and in the case of the single-phase driving method, the stimulus detection and the power imbalance by the stimulus detection element (Hall Sensor) at the time of switching, in particular, the initial start-up, In view of the fact that the rotor can be driven without any dead point, the rotor yoke structure formed on the stator is designed so that the surface magnetic flux density is asymmetric, thereby eliminating the dead point. It is an object of the present invention to provide a rotor magnetizing structure of a single phase drive BLDC motor capable of maximizing the starting characteristics of a single phase drive BLDC motor at a lower cost.

도 1 은 종래의 단상 구동 방식 BLDC 모터의 착자구조의 단면도.1 is a cross-sectional view of a magnetizing structure of a conventional single phase drive BLDC motor;

도 2 는 종래의 3상 구동 방식 BLDC 모터의 착자구조의 단면도.2 is a cross-sectional view of a magnetizing structure of a conventional three-phase drive type BLDC motor.

도 3 은 본 발명 착자구조의 단면도Figure 3 is a cross-sectional view of the magnetizing structure of the present invention

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 회전자 2 : 자석1: rotor 2: magnet

3 : 착자 4 : 극분리홈3: magnetization 4: pole separation groove

이하, 첨부도면을 참조하여 본 발명의 구성 및 동작 효과를 보다 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in more detail the configuration and operation of the present invention.

도 3 은 본 발명 착자구조의 단면도로, 본 발명에서 제시한 단상 구동형 BLDC 모터의 회전자(Rotor) 착자(Yoke) 구조는 회전자(1)에 부착된 자석(2)의 회전면 외주와 대응하는 부분이 이 자석(2)의 최외각 외경보다 큰 구경을 가지는 동시에 자석(2)의 외주와 등간격을 가지되 회전자(1)의 회전중심을 지나는 하나의 가상선을 대칭선으로 하여 서로 대칭되도록 분리 형성된 2 슬롯(Slot) 형태의 착자(3)구조에서의 사점(Dead Point) 발생 위치에 극분리홈(4)을 형성하여 표면자속밀도가 비대칭되도록 구성한 것이다.3 is a cross-sectional view of the magnetizing structure of the present invention, in which a rotor yoke structure of the single-phase drive type BLDC motor according to the present invention corresponds to the outer circumference of the rotating surface of the magnet 2 attached to the rotor 1. The part having a larger diameter than the outermost outer diameter of the magnet 2 and at the same distance from the outer periphery of the magnet 2, but having one imaginary line passing through the center of rotation of the rotor 1 as a symmetry line The polarization groove 4 is formed at a dead point occurrence position in the two-slot magnetized structure 3 formed so as to be symmetrical so that the surface magnetic flux density is asymmetric.

이 때, 착자(3)에서 자극의 방향을 결정하는 코일의 권선방향은 분리된 2 슬롯(Slot) 고정자 각각에 대해 동일 방향으로 권선하여 각각의 고정자내의 착자(3)에 형성되는 자극은 동일하도록 한다.At this time, the winding direction of the coil that determines the direction of the magnetic poles in the magnetizer 3 is wound in the same direction for each of the two slot stators separated so that the magnetic poles formed on the magnets 3 in each stator are the same. do.

상기와 같이 구성하므로써 극분리홈(4)이 형성된 부분에서는 표면자속밀도가 낮아지게되어 비대칭 구조를 이루게 되며, 슬롯(Slot)수를 N, 착자(Yoke)극수를 P라고 할 때, 종래의 단상 구동 방식 BLDC 모터의 경우에는 N=P임에 비해 본 발명의 경우에는 N=2P이 되므로 착자극수가 슬롯수의 2배가 되는 2극구조 특성을 가진다.By the configuration as described above, the surface magnetic flux density is lowered at the portion where the polar separation grooves 4 are formed to form an asymmetric structure. When the number of slots is N and the number of magnet poles is P, the conventional single phase In the case of the drive type BLDC motor, N = P, whereas in the present invention, N = 2P, so that the number of magnetized poles is twice the number of slots.

따라서, 사점(Dead Point)이 제거되므로써 모터의 초기 기동시 및 운전시 자극검출소자(Hall Sensor, 도면도시 생략)에 의한 회전자 N, S극 감지 후 스위칭 트랜지스터로의 신호전달이 원활하게 이루어져 모터의 기동특성을 향상시키게 된다.Therefore, the dead point is eliminated so that the signal is smoothly transferred to the switching transistor after the rotor N and S poles are detected by the magnetic sensor (Hall Sensor, not shown) during initial start-up and operation of the motor. Improve the maneuverability of

이상에서 설명한 바와 같은 구성 및 동작특성을 가지는 본 발명에 의해 얻을 수 있는 효과는 3상 구동 방식과 동일한 특성 효과를 얻는 동시에 3상 구동 방식에 비해 비용이 적게 들고, 공정수가 단축되므로 경제적으로 유용할 뿐 만 아니라 생산성 및 신뢰성을 향상시킬 수 있는 등의 효과가 있다.The effect obtained by the present invention having the configuration and operation characteristics as described above can be economically useful because it obtains the same characteristic effects as the three-phase driving method and at the same time has a lower cost and shorter process compared to the three-phase driving method. In addition, the productivity and reliability can be improved.

Claims (1)

회전자(1)에 부착된 자석(2)의 회전면 외주와 대응하는 부분이 자석(2)의 최외각 외경보다 큰 구경을 가지는 동시에 자석(2)의 외주와 등간격을 가지되 회전자(1)의 회전중심을 지나는 하나의 가상선을 대칭선으로 하여 서로 대칭되도록 분리 형성된 2슬롯(Slot) 형태의 착자(3)구조에서 사점(Dead Point)의 발생위치에 극분리홈(4)을 형성하여 표면 자속밀도가 비대칭 되도록 구성한 것을 특징으로 하는 단상 구동방식 BLDC 모터의 회전자 착자구조.The part corresponding to the outer circumference of the rotating surface of the magnet 2 attached to the rotor 1 has a larger diameter than the outermost outer diameter of the magnet 2 and at the same interval as the outer circumference of the magnet 2, but the rotor 1 Polar separation groove 4 is formed at the position of dead point in the two-slot magnetized structure 3 formed so as to be symmetrical with one imaginary line passing through the center of rotation as a symmetry line. Rotor magnet structure of a single-phase drive type BLDC motor, characterized in that the surface magnetic flux density is asymmetrical.
KR1020000000895A 2000-01-10 2000-01-10 The fabrication of the rotor yoke for the single phase driving type BLDC Motor KR100359566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000000895A KR100359566B1 (en) 2000-01-10 2000-01-10 The fabrication of the rotor yoke for the single phase driving type BLDC Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000000895A KR100359566B1 (en) 2000-01-10 2000-01-10 The fabrication of the rotor yoke for the single phase driving type BLDC Motor

Publications (2)

Publication Number Publication Date
KR20010068788A KR20010068788A (en) 2001-07-23
KR100359566B1 true KR100359566B1 (en) 2002-11-07

Family

ID=19637367

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000000895A KR100359566B1 (en) 2000-01-10 2000-01-10 The fabrication of the rotor yoke for the single phase driving type BLDC Motor

Country Status (1)

Country Link
KR (1) KR100359566B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447603B1 (en) * 2002-10-09 2004-09-04 삼성전기주식회사 Single-phase direct current brushless motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016483U (en) * 1999-02-02 2000-09-25 이해종 The structure of an installation part of a hall IC and the structure of the core with seperated pole-hall for a two phased BLDC MOTOR

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016483U (en) * 1999-02-02 2000-09-25 이해종 The structure of an installation part of a hall IC and the structure of the core with seperated pole-hall for a two phased BLDC MOTOR

Also Published As

Publication number Publication date
KR20010068788A (en) 2001-07-23

Similar Documents

Publication Publication Date Title
JP3076006B2 (en) Permanent magnet synchronous motor
WO1999013556A1 (en) Permanent magnet synchronous motor
KR20160137436A (en) Single phase brushless motor and electric apparatus
JP2001037186A (en) Permanent magnet motor
US20210135554A1 (en) Novel double-stator combined electric machine suitable for achieving sensorless control of absolute position of rotor
KR200462692Y1 (en) Spoke type motor
KR100359566B1 (en) The fabrication of the rotor yoke for the single phase driving type BLDC Motor
JP4823425B2 (en) DC motor
JPH07222385A (en) Reverse salient cylindrical magnet synchronous motor
JP3050851B2 (en) Synchronous motor
JP2005094959A (en) Permanent magnet rotary electric machine
JP2003102156A (en) Dc motor
JPH048154A (en) Single-phase cored brushless motor
JPH079584Y2 (en) Brushless motor
JPH1198737A (en) Permanent magnet motor
JP3633965B2 (en) Brushless motor
KR100479080B1 (en) Line-Started Permanent Magnet Motor
KR100548765B1 (en) Permanent magnet rotor
JP2010093879A (en) Rotary electric machine
US20170229948A1 (en) Single phase brushless direct current motor
JPH0417557A (en) Single-phase brushless motor having iron core
JP2008141869A (en) Rotary electric machine
JPH062466Y2 (en) One-phase disc type brushless motor with one position sensing element
KR920000510B1 (en) 2-phase dc brushless motor
WO2015041483A1 (en) Rotor for switched reluctance motor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121121

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131016

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141022

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151021

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee