WO2015041285A1 - 液晶表示素子及びその製造方法 - Google Patents

液晶表示素子及びその製造方法 Download PDF

Info

Publication number
WO2015041285A1
WO2015041285A1 PCT/JP2014/074670 JP2014074670W WO2015041285A1 WO 2015041285 A1 WO2015041285 A1 WO 2015041285A1 JP 2014074670 W JP2014074670 W JP 2014074670W WO 2015041285 A1 WO2015041285 A1 WO 2015041285A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
crystal display
general formula
Prior art date
Application number
PCT/JP2014/074670
Other languages
English (en)
French (fr)
Inventor
小川 真治
芳典 岩下
栗山 毅
孝福 車
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US15/023,149 priority Critical patent/US10119075B2/en
Priority to KR1020167006919A priority patent/KR101643209B1/ko
Priority to JP2015508348A priority patent/JP5822097B2/ja
Priority to CN201480051208.4A priority patent/CN105556380B/zh
Publication of WO2015041285A1 publication Critical patent/WO2015041285A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K19/2014Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups containing additionally a linking group other than -COO- or -OCO-, e.g. -CH2-CH2-, -CH=CH-, -C=C-; containing at least one additional carbon atom in the chain containing -COO- or -OCO- groups, e.g. -(CH2)m-COO-(CH2)n-
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process

Definitions

  • the present invention relates to a liquid crystal display element useful as a constituent member for a liquid crystal TV or the like and a method for manufacturing the same.
  • Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, watches, advertisement display boards, etc., including clocks and calculators.
  • Typical liquid crystal display methods include TN (twisted nematic) type, STN (super twisted nematic) type, vertical alignment type (vertical alignment; VA) using TFT (thin film transistor), and IPS. (In-plane switching) type.
  • the liquid crystal composition used in these liquid crystal display elements is stable against external factors such as moisture, air, heat, and light, and exhibits a liquid crystal phase in the widest possible temperature range centering on room temperature. It is required to be viscous and have a low driving voltage.
  • the liquid crystal composition is composed of several to several tens of kinds of compounds in order to optimize dielectric anisotropy ( ⁇ ), refractive index anisotropy ( ⁇ n), etc. for each liquid crystal display element. It is composed of
  • a liquid crystal composition having a negative ⁇ is used, which is widely used for liquid crystal TVs and the like.
  • low voltage driving, high-speed response, and a wide operating temperature range are required. That is, the absolute value of ⁇ is large, the viscosity ( ⁇ ) is small, and a high nematic phase-isotropic liquid phase transition temperature (T ni ) is required.
  • T ni nematic phase-isotropic liquid phase transition temperature
  • T ni nematic phase-isotropic liquid phase transition temperature
  • ⁇ n ⁇ d which is the product of ⁇ n and the cell gap (d)
  • it is necessary to adjust ⁇ n of the liquid crystal composition to an appropriate range according to the cell gap when applying a liquid crystal display element to a television or the like, since high-speed response is important, a liquid crystal composition having a low rotational viscosity ( ⁇ 1 ) is required.
  • an MVA (multi-domain vertical alignment) type that divides the alignment direction of liquid crystal molecules in a pixel into a plurality of parts by providing a protrusion structure on the substrate.
  • Liquid crystal display elements have been widely used.
  • the MVA type liquid crystal display element is excellent in view angle characteristics, the response speed of liquid crystal molecules is different between the vicinity of the protrusion structure on the substrate and the part away from the protrusion structure, and the liquid crystal having a slow response speed away from the protrusion structure.
  • the response speed as a whole is insufficient due to the influence of molecules, and there is a problem of a decrease in transmittance due to the protruding structure.
  • PSA is a method for providing a uniform pretilt angle in a divided pixel without providing a non-transparent protrusion structure in a cell, unlike a normal MVA liquid crystal display element.
  • Liquid crystal display elements including polymer sustained alignment: polymer sustaining alignment and PS liquid crystal display elements (polymer stabilized) have been developed.
  • a PSA liquid crystal display element is obtained by adding a small amount of a reactive monomer to a liquid crystal composition, introducing the liquid crystal composition into a liquid crystal cell, and then irradiating active energy rays while applying a voltage between the electrodes. It is produced by polymerizing the reactive monomer.
  • a reactive monomer is mixed into the alignment film material. Then, after introducing the liquid crystal composition into the liquid crystal cell, a method of polymerizing the reactive monomer in the alignment film by applying active energy rays while applying a voltage between the electrodes has been developed (for example, Patent Document 2, 3 and 4).
  • the manufacturing method of the liquid crystal display element has also undergone great changes. That is, in the conventional vacuum injection method, when a large panel is manufactured, the manufacturing process takes a lot of time. Therefore, in the manufacture of a large panel, a manufacturing method using an ODF (one-drop-fill) method is mainly used. (For example, see Patent Document 5). Since this method can shorten the injection time compared with the vacuum injection method, it has become the mainstream method for manufacturing liquid crystal display elements. However, a phenomenon in which a drop mark in which a liquid crystal composition is dropped remains in the liquid crystal display element in a dropped shape after the liquid crystal display element is produced has become a new problem.
  • ODF one-drop-fill
  • a dripping mark is defined as a phenomenon in which a mark in which a liquid crystal composition is dripped appears white when displaying black.
  • the reactive monomer that is a foreign substance is present in the alignment film when the liquid crystal composition is dropped onto the substrate. Therefore, the problem of dripping marks is likely to occur.
  • the occurrence of dripping marks is often caused by the selection of a liquid crystal material, and the cause is not clear.
  • the polymerizable compound mixed in the liquid crystal composition is polymerized to form a polymer layer in the liquid crystal composition layer, thereby suppressing the drop mark generated in relation to the alignment control film.
  • the polymerizable compound mixed in the liquid crystal composition is polymerized to form a polymer layer in the liquid crystal composition layer, thereby suppressing the drop mark generated in relation to the alignment control film.
  • Patent Document 6 discloses (see, for example, Patent Document 6).
  • this method like the PSA method, there is a problem of display burn-in caused by the reactive monomer added to the liquid crystal composition, and the effect of suppressing dripping marks is insufficient.
  • the present invention has been made in view of the above circumstances, and has various characteristics as a liquid crystal display device such as dielectric anisotropy, viscosity, nematic phase upper limit temperature, rotational viscosity ( ⁇ 1 ), and image sticking of the liquid crystal display device. It is an object of the present invention to provide a liquid crystal display element that does not easily cause dripping marks during production and a method for producing the same without deteriorating characteristics.
  • the present inventors have studied a combination of various liquid crystal compositions and a method for imparting a pretilt angle in a liquid crystal display element.
  • a reactive monomer is contained in the vertical alignment film, and the liquid crystal
  • the above-mentioned problem is achieved by combining specific liquid crystal compositions. It was found that the problem can be solved, and the present invention has been completed.
  • the present invention includes a first substrate having a common electrode, a second substrate having a pixel electrode, and a liquid crystal composition layer sandwiched between the first substrate and the second substrate.
  • a liquid crystal display element that controls liquid crystal molecules in the liquid crystal composition layer by applying an electric charge between the common electrode and the pixel electrode substantially perpendicularly to the first substrate and the second substrate.
  • the orientation direction of the liquid crystal molecules in the liquid crystal composition layer is adjacent to at least one of the first substrate and the second substrate with respect to the liquid crystal composition layer in the first substrate and the second substrate.
  • a vertical alignment film that is controlled substantially perpendicular to the surface including a polymer of a polymerizable compound having a monofunctional reactive group and a polymerizable compound having a polyfunctional reactive group
  • the present invention also provides a polymerizable compound having a monofunctional reactive group and a polymerizable compound having a polyfunctional reactive group on at least one of a first substrate having a common electrode and a second substrate having a pixel electrode.
  • a polymerizable compound having a monofunctional reactive group is represented by the following general formula (VI):
  • X 3 represents a hydrogen atom or a methyl group
  • Sp 3 represents a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) t — (wherein t is 2 to And an oxygen atom is bonded to an aromatic ring.
  • V represents a linear or branched polyvalent alkylene group having 2 to 20 carbon atoms or a polyvalent cyclic group having 5 to 30 carbon atoms.
  • the alkylene group in the polyvalent alkylene group may be substituted with an oxygen atom in the range where the oxygen atom is not adjacent to each other, and the alkyl group having 5 to 20 carbon atoms (the alkylene group in the group is an oxygen atom) May be substituted with an oxygen atom in a range not adjacent to each other)) or may be substituted with a cyclic substituent, and W represents a hydrogen atom, a halogen atom or an alkylene group having 1 to 8 carbon atoms).
  • the polymerizable compound having a polyfunctional reactive group is represented by the following general formula (V):
  • X 1 and X 2 each independently represent a hydrogen atom or a methyl group
  • Sp 1 and Sp 2 each independently represent a single bond
  • U is a linear or branched chain having 2 to 20 carbon atoms
  • the high-speed response as a liquid crystal display element is excellent, the occurrence of image sticking is small, and the occurrence of dripping marks during the production thereof is small.
  • Embodiments of the liquid crystal display element and the manufacturing method thereof according to the present invention will be described.
  • the liquid crystal display element of the present invention is a liquid crystal display element having a liquid crystal composition layer sandwiched between a pair of substrates, and a voltage is applied to the liquid crystal composition layer to displace the liquid crystal molecules in the liquid crystal composition layer. This is based on the principle of acting as an optical switch by transferring, and a well-known and conventional technique can be used in this respect.
  • a method of applying a charge vertically between the two substrates is generally employed.
  • one electrode is a common electrode and the other electrode is a pixel electrode. The most typical embodiment of this scheme is shown below.
  • FIG. 1 is a schematic perspective view showing an embodiment of the liquid crystal display element of the present invention.
  • the liquid crystal display element 10 of this embodiment includes a first substrate 11, a second substrate 12, a liquid crystal composition layer 13 sandwiched between the first substrate 11 and the second substrate 12, and a first The common electrode 14 provided on the surface of the substrate 11 facing the liquid crystal composition layer 13, the pixel electrode 15 provided on the surface of the second substrate 12 facing the liquid crystal composition layer 13, and the common electrode 14, a vertical alignment film 16 provided on the surface facing the liquid crystal composition layer 13, a vertical alignment film 17 provided on the surface of the pixel electrode 15 facing the liquid crystal composition layer 13, and the first substrate 11 and a color filter 18 provided between the common electrode 14.
  • a glass substrate or a plastic substrate is used as the first substrate 11 and the second substrate 12.
  • a plastic substrate a substrate made of a resin such as acrylic resin, methacrylic resin, polyethylene terephthalate, polycarbonate, or cyclic olefin resin is used.
  • the common electrode 14 is usually made of a transparent material such as indium-added tin oxide (ITO).
  • ITO indium-added tin oxide
  • the pixel electrode 15 is usually made of a transparent material such as indium-added tin oxide (ITO).
  • ITO indium-added tin oxide
  • the pixel electrodes 15 are arranged in a matrix on the second substrate 12.
  • the pixel electrode 15 is controlled by a drain electrode of an active element typified by a TFT switching element, and the TFT switching element has a gate line as an address signal line and a source line as a data line in a matrix.
  • the configuration of the TFT switching element is not shown.
  • slits having striped or V-shaped patterns are formed in each pixel.
  • a pixel electrode having a portion that is not provided) may be provided.
  • FIG. 2 is a schematic plan view showing a typical form of a slit electrode (comb electrode) when the inside of a pixel is divided into four regions.
  • the slit electrode has comb-like slits in four directions from the center of the pixel, so that the liquid crystal molecules in each pixel that are substantially perpendicularly aligned with respect to the substrate when no voltage is applied are applied with voltage application.
  • the liquid crystal molecules are directed in four different directions, approaching horizontal alignment.
  • the orientation direction of the liquid crystal in the pixel can be divided into a plurality of parts, so that the viewing angle characteristic is extremely wide.
  • a method for dividing the pixel in addition to a method of providing a slit in the pixel electrode, a method of providing a structure such as a linear protrusion in the pixel, a method of providing an electrode other than the pixel electrode and the common electrode, and the like are used. .
  • a configuration using a slit electrode is preferable from the viewpoint of transmittance and ease of production. Since the pixel electrode provided with the slit does not have a driving force for the liquid crystal molecules when no voltage is applied, the pretilt angle cannot be given to the liquid crystal molecules. However, when the alignment film material used in the present invention is used in combination, a pretilt angle can be given, and a wide viewing angle by pixel division can be achieved by combining with a slit electrode obtained by pixel division.
  • having a pretilt angle means that the liquid crystal molecules are perpendicular to the substrate surface (the surface adjacent to the liquid crystal composition layer 13 in the first substrate 11 and the second substrate 12) in the state where no voltage is applied.
  • the director is slightly different.
  • the liquid crystal display element of the present invention is a vertical alignment (VA) type liquid crystal display element
  • the director of the liquid crystal molecules is aligned substantially perpendicular to the substrate surface when no voltage is applied.
  • a vertical alignment film is generally used.
  • a material for forming the vertical alignment film (vertical alignment film material)
  • polyimide polyamide, polysiloxane, or the like is used.
  • polyimide is preferable.
  • the vertical alignment film material may contain a mesogenic site, but unlike a polymerizable compound described later, it is preferable that the material does not contain a mesogenic site.
  • the vertical alignment film material includes a mesogenic part, image sticking or the like due to disorder of the molecular arrangement may occur due to repeated application of voltage.
  • the vertical alignment film is made of polyimide
  • the polyimide in the polyimide solution is used.
  • the content of is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 5% by mass or less.
  • the polysiloxane-based vertical alignment film when a polysiloxane-based vertical alignment film is used, the polysiloxane produced by mixing and heating an alkoxy group-containing silicon compound, an alcohol derivative, and an oxalic acid derivative at a predetermined blending ratio was dissolved.
  • a polysiloxane solution can be used.
  • the vertical alignment film formed of polyimide or the like includes a polymer formed by polymerization of a polymerizable compound having a reactive group.
  • This polymerizable compound imparts a function of fixing the pretilt angle of the liquid crystal molecules. That is, it is possible to tilt the director of the liquid crystal molecules in the pixel in different directions when a voltage is applied, using a slit electrode or the like. However, even in the configuration using the slit electrode, the liquid crystal molecules are aligned almost perpendicularly to the substrate surface when no voltage is applied, and no pretilt angle is generated.
  • an appropriate pretilt angle is obtained by applying a voltage between the electrodes and irradiating ultraviolet rays or the like in a state where the liquid crystal molecules are slightly tilted to polymerize the reactive monomer in the liquid crystal composition. Is granted.
  • the liquid crystal display element of the present invention as in the PSA method, a voltage is applied between the electrodes and the liquid crystal molecules are slightly tilted to irradiate ultraviolet rays or the like to give a pretilt angle.
  • the liquid crystal composition does not contain a polymerizable compound.
  • the polymerizable compound having a reactive group is previously contained in the vertical alignment film material such as polyimide, and after sandwiching the liquid crystal composition between the substrates, the polymerizable compound is added while applying a voltage. Curing imparts a pretilt angle, which is essentially different from the PSA method in that it does not utilize phase separation of the polymerizable compound.
  • the term “substantially vertical” means a state in which the directors of vertically aligned liquid crystal molecules are slightly tilted from the vertical direction to give a pretilt angle.
  • the substantially vertical is preferably 89 to 85 °, preferably 89 to 87 °. It is more preferable that
  • the vertical alignment film containing a polymer of a polymerizable compound having a reactive group is formed by the effect of the polymerizable compound mixed in the vertical alignment film material. Therefore, it is presumed that the vertical alignment film and the polymerizable compound are intertwined in a complicated manner to form a kind of polymer alloy, but the exact structure cannot be shown.
  • the polymerizable compound having a reactive group includes both a monofunctional polymerizable compound having one reactive group and a polyfunctional polymerizable compound having two or more reactive groups such as bifunctional or trifunctional. Containing.
  • the polymerizable compound having a reactive group may or may not contain a mesogenic moiety.
  • the reactive group is preferably a substituent having photopolymerizability.
  • the reaction of the polymerizable compound having a reactive group can be suppressed during the thermal polymerization of the vertical alignment film material. Substituents are particularly preferred.
  • polymerizable compound having a monofunctional reactive group among the polymerizable compounds having a reactive group include the following general formula (VI)
  • X 3 represents a hydrogen atom or a methyl group
  • Sp 3 represents a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) t — (wherein t is 2 to And an oxygen atom is bonded to an aromatic ring.
  • V represents a linear or branched polyvalent alkylene group having 2 to 20 carbon atoms or a polyvalent cyclic group having 5 to 30 carbon atoms.
  • the alkylene group in the polyvalent alkylene group may be substituted with an oxygen atom in the range where the oxygen atom is not adjacent to each other, and the alkyl group having 5 to 20 carbon atoms (the alkylene group in the group is an oxygen atom) May be substituted with an oxygen atom in a range not adjacent to each other)) or may be substituted with a cyclic substituent, and W represents a hydrogen atom, a halogen atom or an alkylene group having 1 to 8 carbon atoms).
  • the polymerizable compound represented is preferred.
  • X 3 represents a hydrogen atom or a methyl group.
  • a hydrogen atom is preferred, and when importance is placed on reducing the residual amount of reaction, a methyl group is preferred. preferable.
  • Sp 3 represents a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) t — (wherein t represents an integer of 2 to 7, Represents a bond to an aromatic ring, but the carbon chain is preferably not so long, a single bond or an alkylene group having 1 to 5 carbon atoms is preferable, and a single bond or 1 to 3 carbon atoms is preferable.
  • An alkylene group is more preferred.
  • Sp 3 represents —O— (CH 2 ) t —
  • t is preferably 1 to 5, and more preferably 1 to 3.
  • V represents a linear or branched polyvalent alkylene group having 2 to 20 carbon atoms or a polyvalent cyclic substituent having 5 to 30 carbon atoms, and an alkylene group in the polyvalent alkylene group. May be substituted with an oxygen atom in the range where the oxygen atom is not adjacent, and an alkyl group having 5 to 20 carbon atoms (the alkylene group in the group may be substituted with an oxygen atom within the range where the oxygen atom is not adjacent) .) Or may be substituted with a cyclic substituent, and is preferably substituted with two or more cyclic substituents.
  • polymerizable compound represented by the general formula (VI) is represented by the general formula (X1a).
  • a 1 represents a hydrogen atom or a methyl group
  • a 2 represents a single bond or an alkylene group having 1 to 8 carbon atoms (one or two or more methylene groups in the alkylene group are each independently an oxygen atom, assuming that oxygen atoms are not directly bonded to each other, -CO-, -COO- or -OCO- may be substituted, and one or more hydrogen atoms in the alkylene group are each independently substituted with a fluorine atom, a methyl group or an ethyl group.
  • a 3 and A 6 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 10 carbon atoms (one or two or more methylene groups in the alkyl group are such that oxygen atoms are not directly bonded to each other) And each independently may be substituted with an oxygen atom, —CO—, —COO— or —OCO—, and one or more hydrogen atoms in the alkyl group are each independently a halogen atom. Which may be substituted with an atom or an alkyl group having 1 to 17 carbon atoms).
  • a 4 and A 7 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 10 carbon atoms (one or two or more methylene groups in the alkyl group are such that oxygen atoms are not directly bonded to each other) And each independently may be substituted with an oxygen atom, —CO—, —COO— or —OCO—, and one or more hydrogen atoms in the alkyl group are each independently a halogen atom. Which may be substituted with an atom or an alkyl group having 1 to 9 carbon atoms).
  • B 1 , B 2 and B 3 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms (one or two or more methylene groups in the alkyl group are
  • each may be independently substituted with an oxygen atom, —CO—, —COO— or —OCO—, and one or more of the alkyl groups may be substituted.
  • each of the hydrogen atoms may be independently substituted with a halogen atom or a trialkoxysilyl group having 3 to 6 carbon atoms.
  • polymerizable compound represented by the general formula (VI) is specifically the general formula (X1b).
  • T 1 , T 2 and T 3 are each independently
  • polymerizable compound represented by the general formula (VI) is specifically the general formula (X1c).
  • R 70 represents a hydrogen atom or a methyl group
  • R 71 represents a hydrocarbon group having a condensed ring
  • the polymerizable compound having a polyfunctional reactive group is represented by the following general formula (V).
  • X 1 and X 2 each independently represent a hydrogen atom or a methyl group
  • Sp 1 and Sp 2 each independently represent a single bond
  • U is a linear or branched chain having 2 to 20 carbon atoms
  • X 1 and X 2 each independently represent a hydrogen atom or a methyl group. However, when importance is attached to the reaction rate, a hydrogen atom is preferable, and importance is placed on reducing the amount of residual reaction. In this case, a methyl group is preferred.
  • Sp 1 and Sp 2 are each independently a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s — (wherein s is 2 to 7 Wherein the oxygen atom is bonded to the aromatic ring), the carbon chain is preferably not so long, a single bond or an alkylene group having 1 to 5 carbon atoms is preferable, and a single bond or An alkylene group having 1 to 3 carbon atoms is more preferred.
  • Sp 1 and Sp 2 represent —O— (CH 2 ) s —
  • s is preferably 1 to 5, more preferably 1 to 3, and at least one of Sp 1 and Sp 2 is a single bond. More preferably, it is particularly preferable that both are single bonds.
  • U represents a linear or branched polyvalent alkylene group having 2 to 20 carbon atoms or a polyvalent cyclic substituent having 5 to 30 carbon atoms
  • an alkylene group in the polyvalent alkylene group May be substituted with an oxygen atom in the range where the oxygen atom is not adjacent, and an alkyl group having 5 to 20 carbon atoms (the alkylene group in the group may be substituted with an oxygen atom within the range where the oxygen atom is not adjacent)
  • May be substituted with a cyclic substituent and is preferably substituted with two or more cyclic substituents.
  • U specifically preferably represents the following formula (Va-1) to formula (Va-5), and the formula (Va-1) to formula (Va-3) It is more preferable to represent, and it is particularly preferable to represent the formula (Va-1).
  • both ends shall be bonded to Sp 1 or Sp 2.
  • at least one of the Sp 1 and Sp 2 preferably represents a single bond, and it is also preferable that both are single bonds.
  • k represents an integer of 1 to 5, but k is preferably a bifunctional compound of 1 or k is a trifunctional compound of 2, more preferably a bifunctional compound. .
  • the compound represented by the general formula (V) is preferably a compound represented by the following general formula (Vb).
  • X 1 and X 2 each independently represent a hydrogen atom or a methyl group
  • Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s —
  • Z 1 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—
  • a compound in which one represents a hydrogen atom and the other represents a methyl group is also preferable.
  • diacrylate derivatives are the fastest, dimethacrylate derivatives are slow, asymmetric compounds are in the middle, and a preferred embodiment can be used depending on the application.
  • a dimethacrylate derivative is particularly preferable.
  • Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s—.
  • Is preferably a compound in which at least one is a single bond, and both represent a single bond or one represents a single bond and the other represents an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s—.
  • an alkylene group having 1 to 4 carbon atoms is preferable, and s is preferably 1 to 4.
  • Z 1 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, — CF 2 CF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO— CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 —, —OCO—CH 2 —, —CH 2 —COO—, —CH 2 —OCO—, —CY 1 ⁇ CY 2 — (wherein Y 1 and Y 2 each independently represents hydrogen or fluorine), —C ⁇ C— or a single bond, —OCH 2 —, —CH 2 O—, —CH
  • C represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond in which any hydrogen atom may be substituted with a fluorine atom.
  • -A phenylene group or a single bond is preferred.
  • Z 1 is preferably a linking group other than a single bond.
  • Z 1 is preferably a single bond.
  • C represents a single bond and the ring structure is formed of two rings.
  • Specific examples of the polymerizable compound having a ring structure include the following general formula: Compounds represented by (V-1) to (V-6) are preferred, compounds represented by general formulas (V-1) to (V-4) are particularly preferred, and compounds represented by general formula (V-2) Most preferred are the compounds
  • the compound represented by the general formula (V) is also preferably a compound represented by the following general formula (Vc).
  • X 1 , X 2 and X 3 each independently represent a hydrogen atom or a methyl group
  • Sp 1 , Sp 2 and Sp 3 each independently represents a single bond having 1 to 8 carbon atoms.
  • An alkylene group or —O— (CH 2 ) s — (wherein s represents an integer of 2 to 7 and an oxygen atom is bonded to an aromatic ring), and Z 11 and Z 12 are each independently —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 -COO -, - CH 2 CH 2
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 2 carbon atoms
  • 8 represents an alkenyloxy group
  • A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • l represents 1 or 2, but when l is 2, two A's are the same. Or different.
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or carbon.
  • Represents an alkenyloxy group having 2 to 8 atoms It preferably represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms, More preferably, it represents an alkyl group having 2 to 5 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms or an alkenyloxy group having 2 to 4 carbon atoms, It is particularly preferable to represent an alkyl group having 2 to 5 carbon atoms and an alkenyl group having 2 to 4 carbon atoms.
  • R 1 represents an alkyl group
  • an alkyl group having 1, 3 or 5 carbon atoms is particularly preferred.
  • R 1 represents an alkenyl group the following structures are preferred.
  • R 1 and R 2 may be the same or different, but are preferably different. When R 1 and R 2 are both alkyl groups, they are different from each other. Particularly preferred are alkyl groups of 1, 3 or 5 carbon atoms.
  • the content of the compound represented by the above general formula (I) in which at least one substituent of R 1 and R 2 is an alkyl group having 3 to 5 carbon atoms is represented by the above general formula (I). It is preferably 50% by mass or more in the compound, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the content of the compound represented by the general formula (I) in which at least one substituent of R 1 and R 2 is an alkyl group having 3 carbon atoms is represented by the general formula (I). It is preferably 50% by mass or more in the compound, more preferably 70% by mass or more, further preferably 80% by mass or more, and most preferably 100%.
  • A represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group, but preferably represents a trans-1,4-cyclohexylene group.
  • the content of the compound represented by the above general formula (I) in which A represents a trans-1,4-cyclohexylene group is 50% by mass or more in the compound represented by the above general formula (I). Preferably, it is 70% by mass or more, and more preferably 80% by mass or more.
  • the compound represented by the general formula (I) is preferably a compound represented by the following general formula (Ia) to general formula (Ik).
  • R 1 and R 2 each independently represents an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and R 1 and R 2 in the general formula (I)) Similar embodiments are preferred.
  • general formula (Ia) to general formula (Ik) general formula (Ia), general formula (Ib) and general formula (Ig) are preferable, general formula (Ia) and general formula (Ig) are more preferable, and response
  • the general formula (Ia) is particularly preferable in order to improve the balance of speed, seizure characteristics reduction, and drop mark suppression, but the general formula (Ib) is also preferable when the response speed is important.
  • the content of the compound represented by the general formula (Ia) and the general formula (Ig) is 50% by mass or more in the compound represented by the general formula (I). More preferably, it is 70 mass% or more, More preferably, it is 80 mass% or more, Most preferably, it is 100 mass%. Moreover, it is preferable that content of the compound represented by the said general formula (Ia) is 50 mass% or more in the compound represented by the said general formula (I), and it is more preferable that it is 70 mass% or more. Preferably, it is 80 mass% or more.
  • R 3 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
  • R 4 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms
  • B and D are Each independently represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group
  • Z 2 represents a single bond, —OCH 2 —, —OCO—, —CH 2 O— or —COO—.
  • M represents 0, 1 or 2, but when m is 2, the two Bs may be the same or different.
  • m is preferably 1 or 2.
  • R 3 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
  • R 4 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms.
  • R 3 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms.
  • an alkenyloxy group having 2 to 8 carbon atoms preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and an alkyl group having 2 to 5 carbon atoms or More preferably, it represents an alkenyl group having 2 to 4 carbon atoms, more preferably represents an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 carbon atoms, and represents an alkyl group having 3 carbon atoms. Is particularly preferred.
  • R 4 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms.
  • an alkenyloxy group having 3 to 8 carbon atoms preferably an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and an alkyl group having 1 to 3 carbon atoms or More preferably, it represents an alkoxy group having 1 to 3 carbon atoms, more preferably represents an alkyl group having 3 carbon atoms or an alkoxy group having 2 carbon atoms, and particularly represents an alkoxy group having 2 carbon atoms. preferable.
  • the compounds represented by the general formula (II-1) and the general formula (II-2) are specifically compounds represented by the following general formula (II-1a) and general formula (II-1b) Is preferred.
  • R 4a represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R 4a represents an alkyl group having 1 to 5 carbon atoms.
  • R 4a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably an alkyl group having 2 carbon atoms.
  • R 4a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 3 carbon atoms, and particularly preferably an alkyl group having 3 carbon atoms.
  • the general formula (II-1a) is preferable in order to increase the absolute value of the dielectric anisotropy.
  • R 4a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably an alkyl group having 2 carbon atoms.
  • R 4a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 3 carbon atoms, and particularly preferably an alkyl group having 3 carbon atoms.
  • the general formula (II-2a) is preferable in order to increase the absolute value of the dielectric anisotropy.
  • the compound represented by the general formulas (II-1) and (II-2) is preferably contained in an amount of 5 to 30% by mass, more preferably 10 to 25% by mass.
  • the content is preferably 12 to 20% by mass.
  • R 5 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms
  • R 6 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms or an alkenyloxy group having 3 to 8 carbon atoms
  • Z 2 represents a single bond, —OCH 2 —, —OCO—, —CH 2 O— or —COO—.
  • R 5 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 2 to
  • alkenyloxy group preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, preferably an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 4 carbon atoms It is more preferably a group, more preferably an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 carbon atoms, and particularly preferably an alkyl group having 3 carbon atoms.
  • R 6 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 3 to 8 carbon atoms.
  • An alkenyloxy group preferably an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms It is more preferable to represent a group, more preferably an alkyl group having 3 carbon atoms or an alkoxy group having 2 carbon atoms, and particularly preferably an alkoxy group having 2 carbon atoms.
  • B represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group, which may be fluorine-substituted, but an unsubstituted 1,4-phenylene group or A trans-1,4-cyclohexylene group is preferred, and a trans-1,4-cyclohexylene group is more preferred.
  • Z 2 represents a single bond, —OCH 2 —, —OCO—, —CH 2 O— or —COO—, but may represent a single bond or —CH 2 O—. Preferably, it represents a single bond.
  • the compound represented by the general formula (II-3) is preferably a compound represented by the following general formula (II-3a) to general formula (II-3f).
  • R 5 represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R 6a represents an alkyl group having 1 to 5 carbon atoms. Preferred is the same embodiment as R 5 and R 6 in 3).
  • R 5 is preferably the same embodiment as in the general formula (II-3).
  • R 6a is preferably an alkyl group having 1 to 3 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and 2 carbon atoms. Are particularly preferred.
  • general formula (II-3a) to (II-3f) in order to increase the absolute value of the dielectric anisotropy, the general formula (II-3a) or the general formula (II-3e) is In the composition having a large ⁇ n, general formula (II-3b) is preferable.
  • the compound represented by the general formula (II-3) is preferably contained in an amount of 20 to 45% by mass, more preferably 25 to 40% by mass, and more preferably 28 to 38% by mass. More preferably.
  • liquid crystal composition of the present invention a compound represented by the following general formula (III) can also be contained as the third component.
  • R 7 and R 8 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 represents an alkenyloxy group
  • Y 1 and Y 2 each independently represent a hydrogen atom or a fluorine atom
  • E, F and G each independently represent a 1,4-phenylene group or trans-1,4 -Represents cyclohexylene
  • Z 3 represents a single bond, —OCH 2 —, —OCO—, —CH 2 O— or —COO—
  • n represents 0 or 1.
  • R 7 represents an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy having 2 to 8 carbon atoms.
  • E represents trans-1,4-cyclohexylene
  • it preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and an alkyl group or carbon having 2 to 5 carbon atoms
  • It preferably represents an alkenyl group having 2 to 4 atoms, more preferably represents an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 carbon atoms, and represents an alkyl group having 3 carbon atoms.
  • E represents a 1,4-phenylene group which may be substituted with fluorine
  • it preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 4 or 5 carbon atoms, More preferably, it represents a 5 alkyl group or an alkenyl group having 4 carbon atoms, and more preferably represents an alkyl group having 2 to 4 carbon atoms.
  • R 8 is an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 4 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkenyloxy having 3 to 8 carbon atoms.
  • G represents trans-1,4-cyclohexylene
  • G preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and an alkyl group or carbon having 2 to 5 carbon atoms
  • It preferably represents an alkenyl group having 2 to 4 atoms, more preferably represents an alkyl group having 3 to 5 carbon atoms or an alkenyl group having 2 carbon atoms, and represents an alkyl group having 3 carbon atoms.
  • G represents a 1,4-phenylene group optionally substituted with fluorine
  • it preferably represents an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 4 or 5 carbon atoms, More preferably, it represents a 5 alkyl group or an alkenyl group having 4 carbon atoms, and more preferably represents an alkyl group having 2 to 4 carbon atoms.
  • R 7 and R 8 represent an alkenyl group, and F or G to be bonded represents a 1,4-phenylene group which may be fluorine-substituted, it has 4 or 5 carbon atoms
  • F or G to be bonded represents a 1,4-phenylene group which may be fluorine-substituted, it has 4 or 5 carbon atoms
  • alkenyl group a structure represented by the following formula is preferable.
  • Y 1 and Y 2 each independently represent a hydrogen atom or a fluorine atom, and any one of Y 1 and Y 2 preferably represents a fluorine atom, and has an anisotropic dielectric constant. When importance is attached to the absolute value of sex, it is preferable that both Y 1 and Y 2 represent a fluorine atom.
  • E, F and G each independently represent a fluorine-substituted 1,4-phenylene group or trans-1,4-cyclohexylene. , 4-phenylene group or trans-1,4-cyclohexylene is preferred.
  • Z 2 is a single bond, -OCH 2 -, - OCO - , - CH 2 O- or represents a -COO-, represents a single bond, -CH 2 O-or -COO- It is preferable that it represents a single bond.
  • n represents 0 or 1, but preferably represents 0 when Z 3 represents a substituent other than a single bond.
  • the compound represented by the general formula (III) is specifically preferably a compound represented by the following general formula (III-1a) to general formula (III-1h).
  • R 7 and R 8 each independently represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms
  • n represents 1
  • the compound represented by the general formula (III) is specifically preferably a compound represented by the following general formula (III-2a) to general formula (III-2i).
  • the liquid crystal composition of the present invention preferably contains 5 to 20% by mass of the compound represented by the general formula (III), more preferably 8 to 15% by mass, and 10 to 13% by mass. Is more preferable.
  • the liquid crystal composition in the present invention is composed of a combination of compounds represented by the above general formulas (I) to (III), and the following contents are preferable as these combinations.
  • the compounds represented by the above general formula (II-1), general formula (II-2) and general formula (II-1 ′) all have negative dielectric anisotropy, and their absolute values are relatively although it is a large compound, the total content of these compounds in the liquid crystal composition is preferably 30 to 65% by mass, more preferably 40 to 55% by mass, and particularly preferably 43 to 50% by mass.
  • the compound represented by the general formula (III) includes both a positive compound and a negative compound with respect to dielectric anisotropy, but the dielectric anisotropy is negative and the absolute value thereof is 0.
  • the compounds represented by formula (II-1), formula (II-2), formula (II-1 ′) and formula (III) in the liquid crystal composition The total content is preferably 35 to 70% by mass, more preferably 45 to 65% by mass, and particularly preferably 50 to 60% by mass.
  • the liquid crystal composition in the present invention preferably contains 30 to 50% by mass of the compound represented by the above general formula (I), and includes the general formula (II-1), the general formula (II-2), and the general formula It is preferable to contain 35 to 70% by mass of the compound represented by the formula (II-1 ′) and the general formula (III), More preferably, the compound represented by the general formula (I) is contained in an amount of 35 to 45% by mass.
  • the general formula (II-1), the general formula (II-2), the general formula (II-1 ′) and the general formula It is particularly preferable to contain 50 to 60% by mass of the compound represented by the formula (III). Further, the total content of the compounds represented by the general formula (II-1), the general formula (II-2), the general formula (II-1 ′) and the general formula (III) is based on the whole liquid crystal composition. 80 to 100% by mass is preferable, 90 to 100% by mass is more preferable, and 95 to 100% by mass is particularly preferable.
  • the liquid crystal composition of the present invention can use a nematic phase-isotropic liquid phase transition temperature (Tni) in a wide range, but the nematic phase-isotropic liquid phase transition temperature (Tni) is 60. It is preferably from ⁇ 120 ° C., more preferably from 70 to 100 ° C., particularly preferably from 70 to 85 ° C.
  • the dielectric anisotropy of the liquid crystal composition in the present invention is preferably ⁇ 2.0 to ⁇ 6.0 at 25 ° C., more preferably ⁇ 2.5 to ⁇ 5.0, Particularly preferred is 2.5 to -3.5.
  • the refractive index anisotropy of the liquid crystal composition in the present invention is preferably 0.08 to 0.13 at 25 ° C., more preferably 0.09 to 0.12. More specifically, when dealing with a thin cell gap, the refractive index anisotropy of the liquid crystal composition in the present invention is preferably 0.10 to 0.12 at 25 ° C., and corresponds to a thick cell gap. In this case, the refractive index anisotropy of the liquid crystal composition in the present invention is preferably 0.08 to 0.10 at 25 ° C. [Method of manufacturing liquid crystal display element] Next, with reference to FIG. 1, the manufacturing method of the liquid crystal display element of this invention is demonstrated.
  • An alignment material containing a polymerizable compound having a reactive group and a vertical alignment material is applied to the surface of the first substrate 11 on which the common electrode 14 is formed and the surface of the second substrate 12 on which the pixel electrode 15 is formed. Then, the vertical alignment films 16 and 17 are formed by heating.
  • a polymer compound precursor (polymerizable compound) to be the first polymer compound a polymerizable compound of the compounds represented by the above general formula (VI) and general formula (V), and further necessary
  • an alignment material containing a compound having photopolymerizability and photocrosslinkability is prepared.
  • examples of the polymer compound precursor include a mixture of tetracarboxylic dianhydride and diisocyanate, polyamic acid, and a polyimide solution in which polyimide is dissolved or dispersed in a solvent. Etc.
  • the polyimide content in the polyimide solution is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 5% by mass or less.
  • examples of the polymer compound precursor include a silicon compound having an alkoxy group, a silicon compound having a halogenated alkoxy group, alcohol, and oxalic acid.
  • examples thereof include a polysiloxane solution prepared by synthesizing polysiloxane by mixing at a quantitative ratio and heating, and dissolving it in a solvent.
  • the alignment material is applied or printed on each of the first substrate 11 and the second substrate 12 so as to cover the common electrode 14 and the pixel electrode 15 and the slit portion (not shown). Then, heat treatment is performed. As a result, the polymer compound precursor contained in the applied or printed alignment material is polymerized and cured to become the first polymer compound, and the first alignment compound and the polymerizable compound are mixed. 16, 17 are formed.
  • the temperature is preferably 80 ° C. or higher, and more preferably 150 to 200 ° C.
  • orientation control unit including the first polymer compound is formed at this stage. Thereafter, a process such as rubbing may be performed as necessary.
  • the first substrate 11 and the second substrate 12 are overlapped, and the liquid crystal composition layer 13 containing liquid crystal molecules is sealed between them.
  • the seal portion is printed using an epoxy adhesive or the like by a screen printing method.
  • first substrate 11 and the second substrate 12 are bonded together through spacer protrusions and a seal portion so that the vertical alignment films 16 and 17 are opposed to each other, and a liquid crystal composition containing liquid crystal molecules is injected. To do.
  • liquid crystal composition is sealed between the first substrate 11 and the second substrate 12 by curing the seal portion by heating or the like.
  • a voltage is applied between the common electrode 14 and the pixel electrode 15 using voltage applying means.
  • the voltage is applied with a magnitude of 5 to 30 (V), for example.
  • V voltage
  • the surface adjacent to the liquid crystal composition layer 13 in the first substrate 11 (surface facing the liquid crystal composition layer 13) and the surface adjacent to the liquid crystal composition layer 13 in the second substrate 12 (liquid crystal An electric field in a direction forming a predetermined angle with respect to the surface facing the composition layer 13 is generated, and the liquid crystal molecules 19 are oriented in a predetermined direction with respect to the normal direction of the first substrate 11 and the second substrate 12. Will be.
  • the tilt angle of the liquid crystal molecules 19 is approximately equal to the pretilt ⁇ given to the liquid crystal molecules 19 in a process described later. Therefore, the magnitude of the pretilt ⁇ of the liquid crystal molecules 19 can be controlled by appropriately adjusting the magnitude of the voltage (see FIG. 3).
  • the polymerizable compound in the vertical alignment films 16 and 17 is polymerized by irradiating the liquid crystal composition layer 13 with, for example, ultraviolet light UV from the outside of the first substrate 11 with the voltage applied. To produce a second polymer compound.
  • the intensity of the ultraviolet light UV to be irradiated may or may not be constant, and the irradiation time at each intensity when the irradiation intensity is changed is arbitrary, but two or more stages of irradiation processes are performed.
  • the average irradiation light intensity in the first half of the entire irradiation process time is stronger than the average irradiation intensity in the second half, and the intensity immediately after the start of irradiation is the strongest. More desirably, it is further preferable that the irradiation intensity always decreases to a certain value as the irradiation time elapses.
  • the ultraviolet UV intensity is preferably 2 mW / cm ⁇ 2 to 100 mW / cm ⁇ 2 , but the first stage in the case of multi-stage irradiation or the entire irradiation process in the case of changing the irradiation intensity discontinuously.
  • the maximum irradiation intensity is 10 mW / cm ⁇ 2 to 100 mW / cm ⁇ 2
  • the minimum irradiation intensity is 2 mW / cm ⁇ after the second stage in the case of multistage irradiation or when the irradiation intensity is changed discontinuously. More preferably, it is 2 to 50 mW / cm ⁇ 2 .
  • the total irradiation energy is preferably 10 J to 300 J, more preferably 50 J to 250 J, and even more preferably 100 J to 250 J.
  • the applied voltage may be alternating current or direct current.
  • an alignment regulating portion (not shown) including the second polymer compound fixed to the alignment control portions of the vertical alignment films 16 and 17 is formed.
  • This alignment regulating part has a function of imparting a pretilt ⁇ to the liquid crystal molecules 19 located in the vicinity of the interface between the liquid crystal composition layer 13 and the vertical alignment films 16 and 17 in the non-driven state.
  • the ultraviolet light UV is irradiated from the outside of the first substrate 11, it may be irradiated from the outside of the second substrate 12, and both the first substrate 11 and the second substrate 12 may be irradiated. You may irradiate from the outer side of a board
  • the liquid crystal molecules 19 in the liquid crystal composition layer 13 have a predetermined pretilt ⁇ .
  • the pretilt ⁇ is preferably 89 to 89.9 degrees, and more preferably 89.5 to 89.9 degrees.
  • the state in which the liquid crystal molecules are pretilted from the vertical in addition to the vertical state is collectively referred to as a “substantially vertical” state.
  • the polymer compound precursor constituting the vertical alignment films 16 and 17 is preferably a non-photosensitive polyimide precursor.
  • the total content of the polymerizable compounds, particularly the compounds represented by the general formula (VI) and the general formula (V) in the polymer compound precursor is preferably 0.5 to 4% by mass. It is more preferably 1 to 2% by mass.
  • Tni, ⁇ n, ⁇ , ⁇ , ⁇ 1 respectively are defined as follows.
  • T ni Nematic phase-isotropic liquid phase transition temperature (° C.) ⁇ n: refractive index anisotropy at 25 ° C. ⁇ : dielectric anisotropy at 25 ° C. ⁇ : viscosity at 20 ° C. (mPa ⁇ s) ⁇ 1 : rotational viscosity at 25 ° C. (mPa ⁇ s)
  • image sticking and dripping marks of liquid crystal display elements were evaluated by the following methods.
  • the burn-in evaluation of the liquid crystal display element is based on the following four-level evaluation of the afterimage level of the fixed pattern when the predetermined fixed pattern is displayed in the display area for 1000 hours and then the entire screen is uniformly displayed. went. ⁇ : No afterimage ⁇ : Level of afterimage is slightly acceptable but acceptable ⁇ : Level of afterimage is unacceptable ⁇ : Image retention is quite poor (drop mark) Evaluation of the drop marks of the liquid crystal display device was performed by the following four-stage evaluation of the drop marks that appeared white when the entire surface was displayed in black.
  • Example 1 A first substrate (common electrode substrate) having a transparent electrode layer and a color filter layer made of a transparent common electrode, and a second substrate (pixel) having a pixel electrode layer having a transparent pixel electrode driven by an active element Electrode substrate).
  • each pixel electrode was obtained by etching ITO so that a slit having no electrode was present in the pixel electrode in order to divide the orientation of liquid crystal molecules.
  • a vertical alignment film material containing a polyimide precursor and a polymerizable compound having a reactive group is applied to each of the common electrode substrate and the pixel electrode substrate by a spin coating method, and the coating film is heated at 200 ° C.
  • the polyimide precursor in the alignment film material was cured to form a 100 nm vertical alignment film on the surface of each substrate.
  • the polymerizable compound having a reactive group is not cured in the vertical alignment film.
  • a polymer having a reactive group represented by the following formula (V-2) in a polyimide solution containing 3% of a polyimide precursor (trade name: JALS2131-R6, manufactured by JSR)
  • a solution containing 2% of the active compound and 1% of the polymerizable compound having a reactive group represented by the formula (VI-1) was used.
  • a liquid crystal composition containing a compound represented by the following chemical formula was sandwiched between the common electrode substrate and the pixel electrode substrate on which the vertical alignment film was formed, and then the sealing material was cured to form a liquid crystal composition layer. At this time, using a spacer having a thickness of 4 ⁇ m, the thickness of the liquid crystal composition layer was set to 4 ⁇ m.
  • the compound belonging to the group (I) is a compound represented by the general formula (I), and the compound belonging to the group (II) is represented by the general formula (II). It is a compound.
  • the obtained liquid crystal display element was irradiated with ultraviolet rays in a state where a rectangular alternating electric field was applied to cure the polymerizable compound having the reactive group.
  • the liquid crystal display element of Example 1 was irradiated with UV light at 20 mW for 10 minutes using USH-250BY manufactured by USHIO ELECTRIC CO., LTD. Got.
  • a vertical alignment film containing a polymer of a polymerizable compound having a reactive group is formed, and a pretilt angle is imparted to the liquid crystal molecules in the liquid crystal composition layer.
  • the pretilt angle is defined as shown in FIG. In the case of complete vertical alignment, the pretilt angle ( ⁇ ) is 90 °, and when the pretilt angle is given, the pretilt angle ( ⁇ ) is smaller than 90 °.
  • the liquid crystal display element of Example 1 has pretilt angles in different directions in the four sections according to the slits of the pixel electrode as shown in FIG. 2, and the AC electric field is turned off after the polymerizable compound is cured.
  • the pretilt angle was maintained.
  • the pretilt angle maintained was 87 °.
  • the liquid crystal display element of Example 1 obtained in this way showed excellent response speed, hardly caused drop marks, and was also excellent in terms of image sticking.
  • Comparative Example 1 A liquid crystal composition containing a compound represented by the chemical formula shown below was prepared, and a liquid crystal display device of Comparative Example 1 was obtained in the same manner as in Example 1 except that the liquid crystal composition was used.
  • the liquid crystal composition prepared in Comparative Example 1 showed inferior results compared to the liquid crystal composition prepared in Example 1. Moreover, the liquid crystal composition prepared in Comparative Example 1 was inferior in response speed as compared with the liquid crystal composition prepared in Example 1.
  • Comparative Example 2 A liquid crystal composition having the composition shown in Table 3 was prepared, and a liquid crystal display device of Comparative Example 2 was obtained in the same manner as in Example 1 except that the liquid crystal composition was used.
  • Example 3 A liquid crystal composition having the composition shown in Table 4 was prepared, and a liquid crystal display element of Comparative Example 3 was obtained in the same manner as in Example 1 except that the liquid crystal composition was used.
  • Comparative Example 3 showed inferior results compared to the liquid crystal composition prepared in Example 1. Moreover, the liquid crystal composition prepared in Comparative Example 3 was inferior in response speed as compared with the liquid crystal composition prepared in Example 1.
  • Comparative Example 4 A liquid crystal composition having the composition shown in Table 5 was prepared, and a liquid crystal display device of Comparative Example 4 was obtained in the same manner as in Example 1 except that the liquid crystal composition was used.
  • the liquid crystal composition prepared in Comparative Example 4 showed inferior results compared to the liquid crystal composition prepared in Example 1. Moreover, the liquid crystal composition prepared in Comparative Example 4 was inferior in response speed as compared with the liquid crystal composition prepared in Example 1.
  • Comparative Example 5 A liquid crystal composition having the composition shown in Table 6 was prepared, and a liquid crystal display device of Comparative Example 5 was obtained in the same manner as in Example 1 except that the liquid crystal composition was used.
  • the liquid crystal composition prepared in Comparative Example 5 showed inferior results compared to the liquid crystal composition prepared in Example 1. Further, the liquid crystal composition prepared in Comparative Example 5 was inferior in response speed as compared with the liquid crystal composition prepared in Example 1.
  • Comparative Example 6 A liquid crystal composition having the composition shown in Table 7 was prepared, and a liquid crystal display device of Comparative Example 6 was obtained in the same manner as in Example 1 except that the liquid crystal composition was used.
  • Example 2 As a material for forming a vertical alignment film, a polymerizable compound having a reactive group represented by the formula (V-2) is added to a polyimide solution (trade name: JALS2131-R6, manufactured by JSR) containing 3% of a polyimide precursor.
  • the liquid crystal display element of Example 2 was the same as Example 1 except that a solution containing 2% and 1% of a polymerizable compound having a reactive group represented by the following formula (VI-2) was used.
  • the liquid crystal display element of Example 2 is slightly inferior to the liquid crystal display element of Example 1, but exhibits an excellent response speed, hardly causes dripping marks, and is excellent in terms of image sticking. It became clear.
  • Example 3 Polymerization having a reactive group represented by the following formula (V-4a) in a polyimide solution (trade name: JALS2131-R6, manufactured by JSR) containing 3% of a polyimide precursor as a material for forming a vertical alignment film
  • a liquid crystal display device of Example 3 in the same manner as in Example 1 except that a solution containing 2% of the compound and 1% of the polymerizable compound having a reactive group represented by the formula (VI-1) was used.
  • a solution containing 2% of the compound and 1% of the polymerizable compound having a reactive group represented by the formula (VI-1) was used.
  • the liquid crystal display element of Example 3 is slightly inferior to the liquid crystal display element of Example 1, but exhibits an excellent response speed, hardly causes dripping marks, and is excellent in terms of image sticking. It became clear.
  • Example 4 Polymerization having a reactive group represented by the following formula (V-5) in a polyimide solution (trade name: JALS2131-R6, manufactured by JSR) containing 3% of a polyimide precursor as a material for forming a vertical alignment film
  • a liquid crystal display device of Example 4 in the same manner as in Example 1 except that a solution containing 2% of the compound and 1% of the polymerizable compound having a reactive group represented by the formula (VI-2) was used.
  • a solution containing 2% of the compound and 1% of the polymerizable compound having a reactive group represented by the formula (VI-2) was used.
  • the liquid crystal display element of Example 4 is slightly inferior to the liquid crystal display element of Example 1, it exhibits excellent response speed, hardly causes dripping marks, and is excellent in terms of image sticking. It became clear.
  • Example 5 A liquid crystal composition having the composition shown in Table 11 was prepared, and a liquid crystal display element of Example 5 was obtained in the same manner as Example 1 except that the liquid crystal composition was used.
  • Example 6 A liquid crystal composition having the composition shown in Table 12 was prepared, and a liquid crystal display device of Example 6 was obtained in the same manner as Example 1 except that the liquid crystal composition was used.
  • Example 7 A liquid crystal composition having the composition shown in Table 13 was prepared, and a liquid crystal display element of Example 7 was obtained in the same manner as in Example 1 except that the liquid crystal composition was used.
  • Example 8 A liquid crystal composition having the composition shown in Table 14 was prepared, and a liquid crystal display element of Example 8 was obtained in the same manner as Example 1 except that the liquid crystal composition was used.
  • Example 9 A liquid crystal composition having the composition shown in Table 15 was prepared, and a liquid crystal display element of Example 9 was obtained in the same manner as Example 1 except that the liquid crystal composition was used.
  • Example 10 For the liquid crystal display element of Example 9, image sticking and dropping marks were measured in the same manner as in Example 1. The results are shown in Table 15. As a result, it is clear that the liquid crystal display element of Example 9 shows an excellent response speed equivalent to that of the liquid crystal display element of Example 1, hardly causes dripping marks, and is excellent in terms of image sticking. became. (Example 10) A liquid crystal composition having the composition shown in Table 16 was prepared, and a liquid crystal display element of Example 10 was obtained in the same manner as Example 1 except that the liquid crystal composition was used.
  • Example 10 image sticking and dropping marks were measured in the same manner as in Example 1. The results are shown in Table 16. As a result, it is clear that the liquid crystal display element of Example 10 shows an excellent response speed equivalent to that of the liquid crystal display element of Example 1, hardly causes dripping marks, and is excellent in terms of image sticking. became.
  • SYMBOLS 10 Liquid crystal display element, 11 ... 1st board

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

 誘電率異方性、粘度、ネマチック相上限温度、回転粘度(γ)等の液晶表示素子としての諸特性及び液晶表示素子の焼き付き特性を悪化させることなく、製造時の滴下痕が発生し難い液晶表示素子及びその製造方法を提供する。 本発明の液晶表示素子10は、第一の基板11および第二の基板12の間に挟持された液晶組成物層13と、単官能性の反応基を有する重合性化合物と多官能性の反応基を有する重合性化合物の重合体を含む垂直配向膜16,17とを有することを特徴とする。

Description

液晶表示素子及びその製造方法
 本発明は、液晶TV等の構成部材として有用な液晶表示素子及びその製造方法に関する。
 液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ、時計、広告表示板等に用いられるようになっている。液晶表示方式としては、その代表的なものとして、TN(ツイステッド・ネマチック)型、STN(スーパー・ツイステッド・ネマチック)型、TFT(薄膜トランジスタ)を用いた垂直配向型(バーチカル・アライメント;VA)やIPS(イン・プレーン・スイッチング)型等が挙げられる。これらの液晶表示素子に用いられる液晶組成物は、水分、空気、熱、光などの外的要因に対して安定であること、また、室温を中心としてできるだけ広い温度範囲で液晶相を示し、低粘性であり、かつ駆動電圧が低いことが求められる。さらに、液晶組成物は、個々の液晶表示素子に対して、誘電率異方性(Δε)や屈折率異方性(Δn)等を最適な値とするために、数種類から数十種類の化合物から構成されている。
 VA型ディスプレイでは、Δεが負の液晶組成物が用いられており、液晶TV等に広く用いられている。一方、全ての駆動方式において、低電圧駆動、高速応答、広い動作温度範囲が求められている。すなわち、Δεの絶対値が大きく、粘度(η)が小さく、高いネマチック相-等方性液体相転移温度(Tni)が要求されている。また、Δnとセルギャップ(d)との積であるΔn×dの設定から、液晶組成物のΔnをセルギャップに合わせて適当な範囲に調節する必要がある。加えて、液晶表示素子をテレビ等へ応用する場合、高速応答性が重視されるため、回転粘度(γ)の小さい液晶組成物が要求される。
 一方、VA型ディスプレイの視野角特性を改善するために、基板上に突起構造物を設けることにより、画素中の液晶分子の配向方向を複数に分割するMVA(マルチドメイン・バーチカル・アライメント)型の液晶表示素子が広く用いられるに至った。MVA型液晶表示素子は、視野角特性の点では優れるものの、基板上の突起構造物の近傍と離れた部位とでは、液晶分子の応答速度が異なり、突起構造物から離れた応答速度の遅い液晶分子の影響から、全体としての応答速度が不十分である問題があり、突起構造物に起因する透過率の低下の問題があった。この問題を解決するために、通常のMVA型液晶表示素子とは異なり、セル中に非透過性の突起構造物を設けることなく、分割した画素内で均一なプレチルト角を付与する方法として、PSA液晶表示素子(polymer sustained alignment:ポリマー維持配向、PS液晶表示素子(polymer stabilised:ポリマー安定化)を含む。)が開発されている。PSA液晶表示素子は、少量の反応性モノマーを液晶組成物に添加し、その液晶組成物を液晶セルに導入後、電極間に電圧を印加しながら、活性エネルギー線の照射により、液晶組成物中の反応性モノマーを重合させることにより製造されるものである。そのため、分割画素中において適切なプレチルト角を付与することができ、結果として、透過率向上によるコントラストの向上及び均一なプレチルト角の付与による高速応答性を達成できる(例えば、特許文献1参照)。しかしながら、PSA液晶表示素子においては、液晶組成物中に反応性モノマーを添加する必要があり、高い電圧保持率が要求されるアクティブマトリクス液晶表示素子においては、問題が多く、焼き付き等の表示不良が発生する問題もあった。
 PSA液晶表示素子の欠点を改良し、液晶組成物中に液晶材料以外の異物を混入することなく、液晶分子に均一なプレチルト角を付与する方法として、反応性モノマーを配向膜材料中に混入し、液晶組成物を液晶セルに導入後、電極間に電圧を印加しながら、活性エネルギー線の照射により、配向膜中の反応性モノマーを重合させる方式が開発されている(例えば、特許文献2、3及び4参照)。
 一方、液晶表示素子の大画面化に伴って、液晶表示素子の製造方法も大きな変化を遂げている。すなわち、従来の真空注入法は、大型のパネルを製造する場合、製造プロセスに多大な時間を要することから、大型パネルの製造においては、ODF(one-drop-fill)方式による製造方法が主流となってきている(例えば、特許文献5参照)。この方式は、真空注入法と比較して、注入時間を短縮できることから、液晶表示素子の製造方法の主流となっている。しかし、液晶組成物を滴下した滴下痕が、液晶表示素子作製後にも、滴下した形状に液晶表示素子に残る現象が新たな問題となってきている。なお、滴下痕とは、黒表示した場合に液晶組成物を滴下した痕が白く浮かび上がる現象と定義する。特に、前述した配向膜材料中に反応性モノマーを添加して液晶分子にプレチルト角を付与する方式においては、液晶組成物の基板への滴下時には異物である反応性モノマーが配向膜中に存在していることから、滴下痕の問題が発生し易い。また、一般的に滴下痕の発生は液晶材料の選択により発生することも多く、その原因は明らかではない。
 滴下痕の抑制方法としては、液晶組成物中に混合した重合性化合物が重合して、液晶組成物層中にポリマー層を形成することにより、配向制御膜との関係で発生する滴下痕を抑制する方法が開示されている(例えば、特許文献6参照)。しかしながら、この方法においては、PSA方式等と同様に、液晶組成物中に添加した反応性モノマーに起因する表示の焼き付きの問題があり、滴下痕の抑制についてもその効果は不十分であり、液晶表示素子としての基本的な特性を維持しつつ、焼き付きや滴下痕の発生し難い液晶表示素子の開発が求められていた。
特開2002-357830号公報 特開2010-107536号公報 米国特許出願公開第2011/261295号明細書 特開2011-227284号公報 特開平6-235925 特開2006-58755号公報
 本発明は、上記事情に鑑みてなされたものであって、誘電率異方性、粘度、ネマチック相上限温度、回転粘度(γ)等の液晶表示素子としての諸特性及び液晶表示素子の焼き付き特性を悪化させることなく、製造時の滴下痕が発生し難い液晶表示素子及びその製造方法を提供することを目的とする。
 本発明者等は、上記課題を解決するために、種々の液晶組成物と、液晶表示素子におけるプレチルト角の付与方法の組み合わせを検討した結果、垂直配向膜中に反応性モノマーを含有させ、液晶組成物を液晶セルに導入後、電極間に電圧を印加しながら、活性エネルギー線の照射により、配向膜中の反応性モノマーを重合させる方式において、特定の液晶組成物を組み合わせることにより、前記課題を解決できることを見出し、本願発明を完成するに至った。
 すなわち、本発明は、共通電極を有する第一の基板と、画素電極を有する第二の基板と、前記第一の基板と前記第二の基板の間に挟持された液晶組成物層とを有し、前記共通電極と前記画素電極間に、前記第一の基板と前記第二の基板に略垂直に電荷を印加し、前記液晶組成物層中の液晶分子を制御する液晶表示素子であって、
 前記第一の基板と前記第二の基板の少なくとも一方に、前記液晶組成物層中の液晶分子の配向方向を、前記第一の基板および前記第二の基板における前記液晶組成物層と隣接する面に対して略垂直に制御する垂直配向膜を有し、該垂直配向膜が、単官能性の反応基を有する重合性化合物と多官能性の反応基を有する重合性化合物の重合体を含むことを特徴とする液晶表示素子である。
 また、本発明は、共通電極を有する第一の基板と画素電極を有する第二の基板の少なくとも一方に、単官能性の反応基を有する重合性化合物、多官能性の反応基を有する重合性化合物及び垂直配向材料を含有する配向材料を塗布し、加熱することにより配向膜を形成した後、前記第一の基板と前記第二の基板により液晶組成物を挟持し、前記共通電極と前記画素電極間に、電圧を印加した状態で活性エネルギー線を照射することにより、前記配向膜中の重合性化合物を重合する液晶表示素子の製造方法であって、
 前記の単官能性の反応基を有する重合性化合物が、下記一般式(VI)
Figure JPOXMLDOC01-appb-C000008
(式中、Xは、水素原子又はメチル基を表し、Spは、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、tは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Vは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、Wは水素原子、ハロゲン原子又は炭素原子数1~8のアルキレン基を表す。)で表される重合性化合物であり、
前記の多官能性の反応基を有する重合性化合物が、下記一般式(V)
Figure JPOXMLDOC01-appb-C000009
(式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Uは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、kは1~5の整数を表す。)で表される重合性化合物であることを特徴とする液晶表示素子の製造方法である。
 本発明によれば、液晶表示素子としての高速応答性優れ、焼き付きの発生が少なく、その製造時における滴下痕の発生が少ないので、液晶TV、モニター等の表示素子として有効に用いることができる。
 また、本発明によれば、滴下痕の発生し難い効率的な液晶表示素子の製造が可能となる。
本発明の液晶表示素子の一実施形態を示す概略斜視図である。 本発明の液晶表示素子に用いられるスリット電極(櫛形電極)の一例を示す概略平面図である。 本発明の液晶表示素子におけるプレチルト角の定義を示す図である。
 本発明の液晶表示素子及びその製造方法の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[液晶表示素子]
 本発明の液晶表示素子は、一対の基板の間に挟持された液晶組成物層を有する液晶表示素子であって、液晶組成物層に電圧を印加し、液晶組成物層中の液晶分子をフレデリクス転移させることにより、光学的なスイッチとして働かせる原理に基づくものであり、この点では周知慣用技術を用いることができる。
 二つの基板は、液晶分子をフレデリクス転移するための電極を有する、通常の垂直配向液晶表示素子では、一般的に、二つの基板間に垂直に電荷を印加する方式が採用される。この場合、一方の電極は共通電極となり、もう一方の電極は画素電極となる。以下に、この方式の最も典型的な実施形態を示す。
 図1は、本発明の液晶表示素子の一実施形態を示す概略斜視図である。
 本実施形態の液晶表示素子10は、第一の基板11と、第二の基板12と、第一の基板11と第二の基板12の間に挟持された液晶組成物層13と、第一の基板11における液晶組成物層13と対向する面上に設けられた共通電極14と、第二の基板12における液晶組成物層13と対向する面上に設けられた画素電極15と、共通電極14における液晶組成物層13と対向する面上に設けられた垂直配向膜16と、画素電極15における液晶組成物層13と対向する面上に設けられた垂直配向膜17と、第一の基板11と共通電極14の間に設けられたカラーフィルター18とから概略構成されている。
 第一の基板11と、第二の基板12としては、ガラス基板又はプラスチック基板が用いられる。 プラスチック基板としては、アクリル樹脂、メタクリル樹脂、ポリエチレンテレフタレート、ポリカーボネート、環状オレフィン樹脂等の樹脂からなる基板が用いられる。
 共通電極14は、通常、インジウム添加酸化スズ(ITO)等の透明性を有する材料から構成される。
 画素電極15は、通常、インジウム添加酸化スズ(ITO)等の透明性を有する材料から構成される。画素電極15は、第二の基板12にマトリクス状に配設されている。画素電極15は、TFTスイッチング素子に代表されるアクティブ素子のドレイン電極により制御され、そのTFTスイッチング素子は、アドレス信号線であるゲート線及びデータ線であるソース線をマトリクス状に有している。なお、ここでは、TFTスイッチング素子の構成を図示していない。
 視野角特性を向上させるために画素内の液晶分子の倒れる方向をいくつかの領域に分割する画素分割を行う場合、各画素内において、ストライプ状やV字状のパターンを有するスリット(電極の形成されない部分)を有する画素電極を設けていてもよい。
 図2は、画素内を4つの領域に分割する場合のスリット電極(櫛形電極)の典型的な形態を示す概略平面図である。このスリット電極は、画素の中央から4方向に櫛歯状にスリットを有することにより、電圧無印加時に基板に対して略垂直配向している各画素内の液晶分子は、電圧の印加に伴って4つの異なった方向に液晶分子のダイレクターを向けて、水平配向に近づいていく。その結果、画素内の液晶の配向方位を複数に分割できるので極めて広い視野角特性を有する。
 画素分割するための方法としては、前記画素電極にスリットを設ける方法の他に、画素内に線状突起等の構造物を設ける方法、画素電極や共通電極以外の電極を設ける方法等が用いられる。これらの方法により、液晶分子の配向方向を分割することもできるが、透過率、製造の容易さから、スリット電極を用いる構成が好ましい。スリットを設けた画素電極は、電圧無印加時には液晶分子に対して駆動力を有さないことから、液晶分子にプレチルト角を付与することはできない。しかし、本発明において用いられる配向膜材料を併用することにより、プレチルト角を付与することができるとともに、画素分割したスリット電極と組み合わせることにより、画素分割による広視野角を達成することができる。
 本発明において、プレチルト角を有するとは、電圧無印加状態において、基板面(第一の基板11および第二の基板12における液晶組成物層13と隣接する面)に対して垂直方向と液晶分子のダイレクターが僅かに異なっている状態を言う。
 本発明の液晶表示素子は、垂直配向(VA)型液晶表示素子であるので、電圧無印加時に液晶分子のダイレクターは基板面に対して略垂直配向しているものである。液晶分子を垂直配向させるためには、一般的に垂直配向膜が用いられる。垂直配向膜を形成する材料(垂直配向膜材料)としては、ポリイミド、ポリアミド、ポリシロキサン等が用いられるが、これらのなかでもポリイミドが好ましい。垂直配向膜材料は、メソゲン性部位を含んでいてもよいが、後述する重合性化合物とは異なり、メソゲン性部位を含まないことが好ましい。垂直配向膜材料がメソゲン性部位を含むと、電圧の印加を繰り返すことにより、分子配列が乱れることに起因する焼き付き等が発生することがある。垂直配向膜がポリイミドからなる場合には、テトラカルボン酸二無水物およびジイソシアネートの混合物、ポリアミック酸、ポリイミドを溶剤に溶解又は分散させたポリイミド溶液を用いることが好ましく、この場合、ポリイミド溶液中におけるポリイミドの含有量は、1質量%以上10質量%以下であることが好ましく、3質量%以上5質量%以下であることがより好ましい。
 一方、ポリシロキサン系の垂直配向膜を用いる場合には、アルコキシ基を有するケイ素化合物、アルコール誘導体及びシュウ酸誘導体を所定の配合量比で混合して加熱することにより製造したポリシロキサンを溶解させた、ポリシロキサン溶液を用いることができる。
 本発明の液晶表示素子において、ポリイミド等により形成される前記垂直配向膜は、反応性基を有する重合性化合物の重合により形成される重合体を含むものである。この重合性化合物は、液晶分子のプレチルト角を固定する機能を付与するものである。すなわち、スリット電極等を用いて、画素内の液晶分子のダイレクターを電圧印加時に異なった方向にチルトさせることが可能となる。しかし、スリット電極を用いた構成においても、電圧無印加時に、液晶分子は基板面に対してほとんど垂直配向しており、プレチルト角は発生しない。
 上述のPSA方式の場合、電極間に電圧を印加し、液晶分子を僅かにチルトさせた状態で、紫外線等を照射し、液晶組成物中の反応性モノマーを重合させることにより、適切なプレチルト角を付与している。
 本発明の液晶表示素子においても、PSA方式と同様に、電極間に電圧を印加し、液晶分子を僅かにチルトさせた状態で、紫外線等を照射し、プレチルト角を付与するが、PSA方式とは異なり、液晶組成物中に重合性化合物を含有していない。本発明にあっては、前記ポリイミド等の垂直配向膜材料に反応性基を有する重合性化合物をあらかじめ含有させ、液晶組成物を基板間に挟持した後、電圧を印加しながら、重合性化合物を硬化させることにより、プレチルト角を付与するものであり、PSA方式とは重合性化合物の相分離を利用しない点で本質的に異なる。
 本発明において、略垂直とは、垂直配向している液晶分子のダイレクターが垂直方向からやや倒れてプレチルト角を付与した状態を意味する。プレチルト角が完全な垂直配向の場合を90°、ホモジニアス配向(基板面に水平に配向)の場合を0°とすると、略垂直とは、89~85°であることが好ましく、89~87°であることがより好ましい。
 反応性基を有する重合性化合物の重合体を含む垂直配向膜は、垂直配向膜材料に混合した重合性化合物の効果により形成されるものである。従って、垂直配向膜と重合性化合物は複雑に絡み合って、一種のポリマーアロイを形成しているものと推定されるが、その正確な構造を示すことはできない。
(反応性基を有する重合性化合物)
 反応性基を有する重合性化合物は、ひとつの反応性基を有する単官能性の重合性化合物と二官能又は三官能等の二つ以上の反応性基を有する多官能性の重合性化合物の両方を含有する。反応性基を有する重合性化合物はメソゲン性部位を含んでいても、含んでいなくてもよい。
 反応性基を有する重合性化合物において、反応性基は光による重合性を有する置換基が好ましい。特に、垂直配向膜が熱重合により生成するときに、垂直配向膜材料の熱重合の際に、反応性基を有する重合性化合物の反応を抑制できるので、反応性基は光による重合性を有する置換基が特に好ましい。
 反応性基を有する重合性化合物の内、単官能性の反応基を有する重合性化合物として具体的には、下記一般式(VI)
Figure JPOXMLDOC01-appb-C000010
(式中、Xは、水素原子又はメチル基を表し、Spは、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、tは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Vは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、Wは水素原子、ハロゲン原子又は炭素原子数1~8のアルキレン基を表す。)で表される重合性化合物が好ましい。
 上記一般式(VI)において、Xは、水素原子又はメチル基を表すが、反応速度を重視する場合には水素原子が好ましく、反応残留量を低減することを重視する場合にはメチル基が好ましい。
 上記一般式(VI)において、Spは、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、tは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表すが、炭素鎖があまり長くないことが好ましく、単結合又は炭素原子数1~5のアルキレン基が好ましく、単結合又は炭素原子数1~3のアルキレン基がより好ましい。また、Spが-O-(CH-を表す場合も、tは1~5が好ましく、1~3がより好ましい。
 上記一般式(VI)において、Vは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、2つ以上の環状置換基により置換されていることが好ましい。
 一般式(VI)で表される重合性化合物は更に具体的には、一般式(X1a)
Figure JPOXMLDOC01-appb-C000011
(式中、Aは水素原子又はメチル基を表し、
は単結合又は炭素原子数1~8のアルキレン基(該アルキレン基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキレン基中の1個又は2個以上の水素原子はそれぞれ独立してフッ素原子、メチル基又はエチル基で置換されていてもよい。)を表し、
及びAはそれぞれ独立して水素原子、ハロゲン原子又は炭素原子数1~10のアルキル基(該アルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数1~17のアルキル基で置換されていてもよい。)を表わし、
及びAはそれぞれ独立して水素原子、ハロゲン原子又は炭素原子数1~10のアルキル基(該アルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数1~9のアルキル基で置換されていてもよい。)を表し、
pは1~10を表し、
、B及びBは、それぞれ独立して水素原子、炭素原子数1~10の直鎖状若しくは分岐鎖状のアルキル基(該アルキル基中の1個又は2個以上のメチレン基は、酸素原子が相互に直接結合しないものとして、それぞれ独立して酸素原子、-CO-、-COO-又は-OCO-で置換されていてもよく、該アルキル基中の1個又は2個以上の水素原子は、それぞれ独立してハロゲン原子又は炭素原子数3~6のトリアルコキシシリル基で置換されていてもよい。)を表わす化合物が挙げられる。
 また、一般式(VI)で表される重合性化合物は具体的には、一般式(X1b)
Figure JPOXMLDOC01-appb-C000012
(式中、Aは水素原子又はメチル基を表し、
6員環T、T及びTはそれぞれ独立して
Figure JPOXMLDOC01-appb-C000013
のいずれか(ただしqは1から4の整数を表す。)を表し、
qは0又は1を表し、
及びYはそれぞれ独立して単結合、-CHCH-、-CHO-、-OCH-、-COO-、-OCO-、-C≡C-、-CH=CH-、-CF=CF-、-(CH-、-CHCHCHO-、-OCHCHCH-、-CH=CHCHCH-又は-CHCHCH=CH-を表し、
は単結合、-COO-又は-OCO-を表し、
は炭素原子数1~18の炭化水素基を表す。)で表わす化合物も挙げられる。
 更に、一般式(VI)で表される重合性化合物は具体的には、一般式(X1c)
Figure JPOXMLDOC01-appb-C000014
(式中、R70は水素原子又はメチル基を表し、R71は縮合環を有する炭化水素基を表す。)で表わす化合物も挙げられる。
 反応性基を有する重合性化合物の内、多官能性の反応基を有する重合性化合物が、下記一般式(V)
Figure JPOXMLDOC01-appb-C000015
(式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Uは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、kは1~5の整数を表す。)で表される重合性化合物が好ましい。
上記一般式(V)において、X及びXはそれぞれ独立して、水素原子又はメチル基を表すが、反応速度を重視する場合には水素原子が好ましく、反応残留量を低減することを重視する場合にはメチル基が好ましい。
 上記一般式(V)において、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表すが、炭素鎖があまり長くないことが好ましく、単結合又は炭素原子数1~5のアルキレン基が好ましく、単結合又は炭素原子数1~3のアルキレン基がより好ましい。また、Sp及びSpが-O-(CH-を表す場合も、sは1~5が好ましく、1~3がより好ましく、Sp及びSpの少なくとも一方が、単結合であることがより好ましく、いずれも単結合であることが特に好ましい。
 上記一般式(V)において、Uは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)、環状置換基により置換されていてもよく、2つ以上の環状置換基により置換されていることが好ましい。
 上記一般式(V)において、Uは具体的には、以下の式(Va-1)から式(Va-5)を表すことが好ましく、式(Va-1)から式(Va-3)を表すことがより好ましく、式(Va-1)を表すことが特に好ましい。
Figure JPOXMLDOC01-appb-C000016
(式中、両端はSp又はSpに結合するものとする。)
 Uが環構造を有する場合、前記Sp及びSpは少なくとも一方が単結合を表すことが好ましく、両方共に単結合であることも好ましい。
 上記一般式(V)において、kは1~5の整数を表すが、kが1の二官能化合物、又はkが2の三官能化合物であることが好ましく、二官能化合物であることがより好ましい。
 上記一般式(V)で表される化合物は、具体的には、以下の一般式(Vb)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000017
(式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Zは-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して水素又はフッ素を表す。)、-C≡C-又は単結合を表し、Cは1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子により置換されていてもよい。)
 上記一般式(Vb)において、X及びXは、はそれぞれ独立して、水素原子又はメチル基を表すが、いずれも水素原子を表すジアクリレート誘導体、又はいずれもメチル基を有するジメタクリレート誘導体が好ましく、一方が水素原子を表し、もう一方がメチル基を表す化合物も好ましい。これらの化合物の重合速度は、ジアクリレート誘導体が最も早く、ジメタクリレート誘導体が遅く、非対称化合物がその中間であり、その用途により好ましい態様を用いることができる。PSA液晶表示素子においては、ジメタクリレート誘導体が特に好ましい。
 上記一般式(Vb)において、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH)s-を表すが、PSA液晶表示素子においては少なくとも一方が単結合であることが好ましく、共に単結合を表す化合物又は一方が単結合でもう一方が炭素原子数1~8のアルキレン基又は-O-(CH)s-を表す態様が好ましい。この場合、炭素原子数1~4のアルキレン基が好ましく、sは1~4が好ましい。
 上記一般式(Vb)において、Zは、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して水素又はフッ素を表す。)、-C≡C-又は単結合を表すが、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-又は単結合が好ましく、-COO-、-OCO-又は単結合がより好ましく、単結合が特に好ましい。
上記一般式(Vb)において、Cは任意の水素原子がフッ素原子により置換されていてもよい1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表すが、1,4-フェニレン基又は単結合が好ましい。
Cが単結合以外の環構造を表す場合、Zは単結合以外の連結基も好ましく、Cが単結合の場合、Zは単結合が好ましい。
 以上より、上記一般式(Vb)において、Cが単結合を表し、環構造が二つの環で形成される場合が好ましく、環構造を有する重合性化合物としては、具体的には以下の一般式(V-1)から(V-6)で表される化合物が好ましく、一般式(V-1)から(V-4)で表される化合物が特に好ましく、一般式(V-2)で表される化合物が最も好ましい。
Figure JPOXMLDOC01-appb-C000018
 上記一般式(V)で表される化合物は、具体的には、以下の一般式(Vc)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000019
(式中、X、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、Sp、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Z11及びZ12はそれぞれ独立して、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して水素又はフッ素を表す。)、-C≡C-又は単結合を表し、Jは1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子により置換されていてもよい。)
(液晶組成物)
 本発明における液晶組成物において、第一成分として、以下の一般式(I)で表される化合物を25~70質量%含有することが好ましく、30~60質量%含有することがより好ましく、35~50質量%含有することがさらに好ましく、38~47質量%含有することが最も好ましい。
Figure JPOXMLDOC01-appb-C000020
(式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、lは1又は2を表すが、lが2の場合二つのAは同一であっても異なっていてもよい。)
 上記一般式(I)において、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、
炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基、炭素原子数1~5のアルコキシ基又は炭素原子数2~5のアルケニルオキシ基を表すことが好ましく、
炭素原子数2~5のアルキル基、炭素原子数2~4のアルケニル基、炭素原子数1~4のアルコキシ基又は炭素原子数2~4のアルケニルオキシ基を表すことがより好ましく、
炭素原子数2~5のアルキル基、炭素原子数2~4のアルケニル基を表すことが特に好ましい。
がアルキル基を表す場合においては、炭素原子数1、3又は5のアルキル基が特に好ましい。Rがアルケニル基を表す場合においては以下の構造が好ましい。
Figure JPOXMLDOC01-appb-C000021
(式中、環構造へは右端で結合するものとする。)
 上記構造中、炭素原子数2又は3のアルケニル基であるビニル基又は1-プロペニル基がさらに好ましい。
 上記一般式(I)において、R及びRは同一であっても異なっていてもよいが、異なっていることが好ましく、R及びRが共にアルキル基の場合、相互に異なった原子数の炭素原子数1、3又は5のアルキル基が特に好ましい。
及びRの少なくとも一方の置換基が炭素原子数3~5のアルキル基である、上記一般式(I)で表される化合物の含有量が、上記一般式(I)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
 また、R及びRの少なくとも一方の置換基が炭素原子数3のアルキル基である、上記一般式(I)で表される化合物の含有量が、上記一般式(I)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、100%であることが最も好ましい。
 上記一般式(I)において、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表すが、トランス-1,4-シクロヘキシレン基を表すことが好ましい。また、Aがトランス-1,4-シクロヘキシレン基を表す、上記一般式(I)で表される化合物の含有量が、上記一般式(I)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることより好ましく、80質量%以上であることがさらに好ましい。
 上記一般式(I)で表される化合物は、具体的には、以下の一般式(Ia)から一般式(Ik)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000022
(式中、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基又は炭素原子数1~5のアルコキシ基を表すが、一般式(I)におけるR及びRと同様の実施態様が好ましい。)
 上記一般式(Ia)から一般式(Ik)において、一般式(Ia)、一般式(Ib)及び一般式(Ig)が好ましく、一般式(Ia)及び一般式(Ig)がより好ましく、応答速度、焼付き特性の低減、並びに滴下痕の抑制をバランス良く改善するためには、一般式(Ia)が特に好ましいが、応答速度を重視する場合には一般式(Ib)も好ましく、より応答速度を重視する場合には、一般式(Ib)、一般式(Ie)、一般式(If)及び一般式(Ih)が好ましく、一般式(Ie)及び一般式(If)のジアルケニル化合物は特に応答速度を重視する場合に好ましい。
 これらの点から、上記一般式(Ia)及び一般式(Ig)で表される化合物の含有量が、上記一般式(I)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、100質量%であることが最も好ましい。また、上記一般式(Ia)で表される化合物の含有量が、上記一般式(I)で表される化合物中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
 本発明の液晶組成物において、第二成分として、下記一般式(II)
Figure JPOXMLDOC01-appb-C000023
(式中、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、B及びDはそれぞれ独立して、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-を表し、mは0、1又は2を表すが、mが2の場合二つのBは同一であっても異なっていてもよい。)で表される化合物を含有することが好ましい。
 式中のmは1又2であることが好ましい。
 mが1である一般式(II)で表される化合物として、具体的には、以下の一般式(II-1)、一般式(II-1’)及び一般式(II―2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000024
(式中、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表す。)
 上記一般式(II-1)及び一般式(II―2)において、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましい。
 上記一般式(II-1)及び一般式(II―2)において、Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表すが、炭素原子数1~5のアルキル基又は炭素原子数1~5のアルコキシ基を表すことが好ましく、炭素原子数1~3のアルキル基又は炭素原子数1~3のアルコキシ基を表すことがより好ましく、炭素原子数3のアルキル基又は炭素原子数2のアルコキシ基を表すことがさらに好ましく、炭素原子数2のアルコキシ基を表すことが特に好ましい。
 上記一般式(II-1)及び一般式(II―2)で表される化合物は、具体的には、以下の一般式(II-1a)及び一般式(II-1b)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000025
(式中、Rは炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表し、R4aは炭素原子数1~5のアルキル基を表す。)
 上記一般式(II-1a)において、R4aは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
 上記一般式(II-1b)において、R4aは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は3のアルキル基がより好ましく、炭素原子数3のアルキル基が特に好ましい。
 上記一般式(II-1a)及び一般式(II-1b)の中でも、誘電率異方性の絶対値を増大するためには、一般式(II-1a)が好ましい。
 上記一般式(II-2a)において、R4aは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
 上記一般式(II-2b)において、R4aは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は3のアルキル基がより好ましく、炭素原子数3のアルキル基が特に好ましい。
 上記一般式(II-2a)及び一般式(II-2b)の中でも、誘電率異方性の絶対値を増大するためには、一般式(II-2a)が好ましい。
 本発明の液晶組成物において、一般式(II-1)及び一般式(II―2)で表される化合物を5~30質量%含有することが好ましく、10~25質量%含有することがより好ましく、12~20質量%含有することがさらに好ましい。
 mが1である一般式(II)で表される化合物として、具体的には、以下の一般式(II-3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000026
(式中、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、Bは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-を表す。)
 上記一般式(II-3)において、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましい。
 上記一般式(II-3)において、Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表すが、炭素原子数1~5のアルキル基又は炭素原子数1~5のアルコキシ基を表すことが好ましく、炭素原子数1~3のアルキル基又は炭素原子数1~3のアルコキシ基を表すことがより好ましく、炭素原子数3のアルキル基又は炭素原子数2のアルコキシ基を表すことがさらに好ましく、炭素原子数2のアルコキシ基を表すことが特に好ましい。
 上記一般式(II-3)において、Bはフッ素置換されていてもよい、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表すが、無置換の1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基が好ましく、トランス-1,4-シクロヘキシレン基がより好ましい。
 上記一般式(II-3)において、Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-を表すが、単結合又は-CHO-を表すことが好ましく、単結合を表すことがより好ましい。
 上記一般式(II-3)で表される化合物は、具体的には、以下の一般式(II-3a)から一般式(II-3f)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000027
(式中、Rは炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表し、R6aは炭素原子数1~5のアルキル基を表すが、一般式(II-3)におけるR及びRと同様の実施態様が好ましい。)
 上記一般式(II-3a)から一般式(II-3f)において、Rは一般式(II-3)における同様の実施態様が好ましい。
上記一般式(II-3a)から一般式(II-3f)において、R6aは炭素原子数1~3のアルキル基が好ましく、炭素原子数1又は2のアルキル基がより好ましく、炭素原子数2のアルキル基が特に好ましい。
 上記一般式(II-3a)から一般式(II-3f)の中でも、誘電率異方性の絶対値を増大するためには、一般式(II-3a)又は一般式(II-3e)が好ましく、Δnが大きい組成物においては一般式(II-3b)が好ましい。
 本発明の液晶組成物において、一般式(II-3)で表される化合物を20~45質量%含有することが好ましく、25~40質量%含有することがより好ましく、28~38質量%含有することがさらに好ましい。
 本発明の液晶組成物において、第三成分として、以下の一般式(III)で表される化合物を含有することもできる。
Figure JPOXMLDOC01-appb-C000028
(式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Y及びYはそれぞれ独立して、水素原子またはフッ素原子を表し、E、F及びGはそれぞれ独立して、1,4-フェニレン基又はトランス-1,4-シクロヘキシレンを表し、Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-を表し、nは0又は1を表す。)
 上記一般式(III)において、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表すが、
 Eがトランス-1,4-シクロヘキシレンを表す場合、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましく、
 Eがフッ素置換されていてもよい、1,4-フェニレン基を表す場合、炭素原子数1~5のアルキル基又は炭素原子数4又は5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数4のアルケニル基を表すことがより好ましく、炭素原子数2~4のアルキル基を表すことがさらに好ましい。
 上記一般式(III)において、Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表すが、
 Gがトランス-1,4-シクロヘキシレンを表す場合、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~4のアルケニル基を表すことがより好ましく、炭素原子数3~5のアルキル基又は炭素原子数2のアルケニル基を表すことがさらに好ましく、炭素原子数3のアルキル基を表すことが特に好ましく、
 Gがフッ素置換されていてもよい、1,4-フェニレン基を表す場合、炭素原子数1~5のアルキル基又は炭素原子数4又は5のアルケニル基を表すことが好ましく、炭素原子数2~5のアルキル基又は炭素原子数4のアルケニル基を表すことがより好ましく、炭素原子数2~4のアルキル基を表すことがさらに好ましい。
 上記一般式(III)において、R及びRがアルケニル基を表し、結合するF又はGがフッ素置換されていてもよい、1,4-フェニレン基を表す場合、炭素原子数4又は5のアルケニル基としては以下の式で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000029
(式中、環構造へは右端で結合するものとする。)
 この場合においても、炭素原子数4のアルケニル基がさらに好ましい。
 上記一般式(III)において、Y及びYはそれぞれ独立して、水素原子またはフッ素原子を表すが、Y及びYのいずれか一方はフッ素原子を表すことが好ましく、誘電率異方性の絶対値を重要視する場合には、Y及びYがいずれもフッ素原子を表すことが好ましい。
上記一般式(III)において、E、F及びGはそれぞれ独立して、フッ素置換されていてもよい、1,4-フェニレン基又はトランス-1,4-シクロヘキシレンを表すが、無置換の1,4-フェニレン基又はトランス-1,4-シクロヘキシレンを表すことが好ましい。
上記一般式(III)において、Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-を表すが、単結合、-CHO-又は-COO-を表すことが好ましく、単結合を表すことがより好ましい。
上記一般式(III)において、nは0又は1を表すが、Zが単結合以外の置換基を表す場合、0を表すことが好ましい。
上記一般式(III)で表される化合物は、nが0を表す場合、具体的には、以下の一般式(III-1a)から一般式(III-1h)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000030
(式中、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~5のアルコキシ基を表すが、一般式(III)におけるR及びRと同様の実施態様が好ましい。)
 上記一般式(III)で表される化合物は、nが1を表す場合、具体的には、以下の一般式(III-2a)から一般式(III-2i)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000031
(式中、R及びRはそれぞれ独立して、炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~5のアルコキシ基を表すが、一般式(III)におけるR及びRと同様の実施態様が好ましい。)
 本発明の液晶組成物において、一般式(III)で表される化合物を5~20質量%含有することが好ましく、8~15質量%含有することがより好ましく、10~13質量%含有することがさらに好ましい。
 本発明における液晶組成物は、上記一般式(I)から一般式(III)で表される化合物の組合せで構成されるものであるが、これらの組合せとしては次のような含有量が好ましい。
上記一般式(II-1)、一般式(II-2)及び一般式(II-1’)で表される化合物は共に、誘電率異方性が負であって、その絶対値が比較的大きい化合物であるが、液晶組成物における、これら化合物の合計含有量は、30~65質量%が好ましく、40~55質量%がより好ましく、43~50質量%が特に好ましい。
 上記一般式(III)で表される化合物は、誘電率異方性については正の化合物も負の化合物も包含しているが、誘電率異方性が負であって、その絶対値が0.3以上の化合物を用いる場合、液晶組成物における、一般式(II-1)、一般式(II-2)、一般式(II-1’)及び一般式(III)で表される化合物の合計含有量は、35~70質量%が好ましく、45~65質量%がより好ましく、50~60質量%が特に好ましい。
また、本発明における液晶組成物は、上記一般式(I)で表される化合物を30~50質量%含有することが好ましく、一般式(II-1)、一般式(II-2)、一般式(II-1’)及び一般式(III)で表される化合物を35~70質量%含有することが好ましく、
 上記一般式(I)で表される化合物を35~45質量%含有することがより好ましく、一般式(II-1)、一般式(II-2)、一般式(II-1’)及び一般式(III)で表される化合物を45~65質量%含有することがより好ましく、
 上記一般式(I)で表される化合物を38~42質量%含有することが特に好ましく、一般式(II-1)、一般式(II-2)、一般式(II-1’)及び一般式(III)で表される化合物を50~60質量%含有することが特に好ましい。
また、一般式(II-1)、一般式(II-2)、一般式(II-1’)及び一般式(III)で表される化合物の合計含有量は、液晶組成物全体に対して、80~100質量%が好ましく、90~100質量%がより好ましく、95~100質量%が特に好ましい。
 本発明における液晶組成物は、ネマチック相-等方性液体相転移温度(Tni)を幅広い範囲で使用することができるものであるが、ネマチック相-等方性液体相転移温度(Tni)は60~120℃であることが好ましく、70~100℃であることがより好ましく、70~85℃であることが特に好ましい。
 本発明における液晶組成物の誘電率異方性は、25℃において、-2.0~-6.0であることが好ましく、-2.5~-5.0であることがより好ましく、-2.5~-3.5であることが特に好ましい。
 本発明における液晶組成物の屈折率異方性は、25℃において、0.08~0.13であることが好ましいが、0.09~0.12であることがより好ましい。さらに詳述すると、薄いセルギャップに対応する場合、本発明における液晶組成物の屈折率異方性は、25℃において、0.10~0.12であることが好ましく、厚いセルギャップに対応する場合、本発明における液晶組成物の屈折率異方性は、25℃において、0.08~0.10であることが好ましい。
[液晶表示素子の製造方法]
 次に、図1を参照して、本発明の液晶表示素子の製造方法を説明する。
 第一の基板11の共通電極14が形成された面及び第二の基板12の画素電極15が形成された面に、反応性基を有する重合性化合物及び垂直配向材料を含有する配向材料を塗布し、加熱することにより垂直配向膜16,17を形成する。
 ここでは、まず、第1の高分子化合物となる高分子化合物前駆体(重合性化合物)と、上記一般式(VI)及び一般式(V)で表される化合物の重合性化合物、更に必要に応じて、光重合性および光架橋性を有する化合物を含む配向材料を調製する。
 第1の高分子化合物がポリイミドの場合には、高分子化合物前駆体としては、例えば、テトラカルボン酸二無水物およびジイソシアネートの混合物や、ポリアミック酸や、ポリイミドを溶剤に溶解あるいは分散させたポリイミド溶液等が挙げられる。このポリイミド溶液中におけるポリイミドの含有量は、1質量%以上10質量%以下であることが好ましく、3質量%以上5質量%以下であることがより好ましい。
 また、第1の高分子化合物がポリシロキサンの場合には、高分子化合物前駆体としては、例えば、アルコキシ基を有するケイ素化合物、ハロゲン化アルコキシ基を有するケイ素化合物、アルコールおよびシュウ酸を所定の配合量比で混合して加熱することによりポリシロキサンを合成し、それを溶剤に溶解させたポリシロキサン溶液などが挙げられる。
なお、配向材料には、必要に応じて、光架橋性を有する化合物、光重合開始剤、溶剤などを添加してもよい。
 配向材料の調整後、この配向材料を、第一の基板11および第二の基板12のそれぞれに、共通電極14、並びに、画素電極15およびそのスリット部(図示略)を覆うように塗布あるいは印刷した後、加熱などの処理をする。これにより、塗布あるいは印刷された配向材料に含まれる高分子化合物前駆体が、重合および硬化して第1の高分子化合物となり、第1の高分子化合物と重合性化合物とが混在した垂直配向膜16,17が形成される。
 ここで、加熱処理する場合、その温度は、80℃以上が好ましく、150~200℃がより好ましい。
 なお、第1の高分子化合物を含む配向制御部は、この段階において形成される。この後、必要に応じて、ラビングなどの処理を施してもよい。
 次に、第一の基板11と第二の基板12とを重ね合わせ、それらの間に、液晶分子を含む液晶組成物層13を封止する。
 具体的には、第一の基板11と第二の基板12のいずれか一方における、垂直配向膜16,17が形成されている面に対して、セルギャップを確保するためのスペーサ突起物、例えば、プラスチックビーズ等を散布すると共に、例えば、スクリーン印刷法によりエポキシ接着剤等を用いて、シール部を印刷する。
 この後、第一の基板11と第二の基板12とを、垂直配向膜16,17を対向させるように、スペーサ突起物およびシール部を介して貼り合わせ、液晶分子を含む液晶組成物を注入する。
 その後、加熱するなどして、シール部を硬化することにより、液晶組成物を、第一の基板11と第二の基板12との間に封止する。
 次に、共通電極14と画素電極15との間に、電圧印加手段を用いて、電圧を印加する。電圧は、例えば、5~30(V)の大きさで印加する。これにより、第一の基板11における液晶組成物層13と隣接する面(液晶組成物層13と対向する面)、および、第二の基板12におけるにおける液晶組成物層13と隣接する面(液晶組成物層13と対向する面)に対して所定の角度をなす方向の電場が生じ、液晶分子19が、第一の基板11と第二の基板12の法線方向から所定方向に傾いて配向することとなる。このとき、液晶分子19の傾斜角は、後述の工程で液晶分子19に付与されるプレチルトθと概ね等しくなる。従って、電圧の大きさを適宜調節することにより、液晶分子19のプレチルトθの大きさを制御することが可能である(図3参照)。
 さらに、電圧を印加した状態のまま、紫外光UVを、例えば、第一の基板11の外側から液晶組成物層13に照射することにより、垂直配向膜16,17中の重合性化合物を重合させ、第2の高分子化合物を生成する。
 この場合、照射する紫外光UVの強度は一定であっても、一定でなくてもよく、照射強度を変化させる際の各々の強度における照射時間も任意であるが、2段階以上の照射工程を採用する場合には、2段階目以降の照射工程の照射強度は1段階目の照射強度よりも弱い強度を選択することが好ましく、2段階目以降の総照射時間は1段階目の照射時間よりも長くかつ照射総エネルギー量が大きことが好ましい。また、照射強度を不連続に変化させる場合には、全照射工程時間の前半部分の平均照射光強度が後半部分の平均照射強度よりも強いことが望ましく、照射開始直後の強度が最も強いことがより望ましく、照射時間の経過と共にある一定値まで常に照射強度が減少し続けることがさらに好ましい。その場合の紫外線UV強度は2mW/cm-2~100mW/cm-2であることが好ましいが、多段階照射の場合の1段階目、または不連続に照射強度変化させる場合の全照射工程中の最高照射強度は10mW/cm-2~100mW/cm-2であること、かつ多段階照射の場合の2段階目以降、または不連続に照射強度を変化させる場合の最低照射強度は2mW/cm-2~50mW/cm-2であることがより好ましい。また、照射総エネルギー量は10J~300Jであることが好ましいが、50J~250Jであることがより好ましく、100J~250Jであることがさらに好ましい。
 この場合、印加電圧は交流であっても直流であってもよい。
 その結果、垂直配向膜16,17の配向制御部と固着した、第2の高分子化合物を含む配向規制部(図示略)が形成される。この配向規制部は、非駆動状態において、液晶組成物層13における垂直配向膜16,17との界面近傍に位置する液晶分子19にプレチルトθを付与する機能を有する。なお、ここでは、紫外光UVを、第一の基板11の外側から照射したが、第二の基板12の外側から照射してもよく、第一の基板11および第二の基板12の双方の基板の外側から照射してもよい。
 このように、本発明の液晶表示素子では、液晶組成物層13において、液晶分子19が、所定のプレチルトθを有している。プレチルトθは89~89.9度が好ましく、89.5~89.9度が更に好ましい。液晶分子が垂直の状態に加えて、垂直からプレチルトした状態を、まとめて「略垂直」の状態と称する。プレチルト処理が全く施されていない液晶表示素子およびそれを備えた液晶表示装置と比較して、駆動電圧に対する応答速度を大幅に向上させることができる。
 本発明の液晶表示素子において、垂直配向膜16,17を構成する高分子化合物前駆体としては、感光性でないポリイミド前駆体が好ましい。
 重合性化合物、特に上記一般式(VI)及び一般式(V)で表される化合物の、前記高分子化合物前駆体中における含有量の合計は、0.5~4質量%であることが好ましく、1~2質量%であることがより好ましい。
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は「質量%」を意味する。
 以下の実施例及び比較例において、Tni、Δn、Δε、η、γをそれぞれ下記の通り定義する。
  Tni :ネマチック相-等方性液体相転移温度(℃)
  Δn  :25℃における屈折率異方性
  Δε  :25℃における誘電率異方性
  η   :20℃における粘度(mPa・s)
  γ  :25℃における回転粘度(mPa・s)
 以下の実施例及び比較例において、下記の方法により、液晶表示素子の焼き付き、滴下痕を評価した。
(焼き付き)
 液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1000時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
◎:残像無し
○:残像ごく僅かに有るも許容できるレベル
△:残像有り許容できないレベル
×:残像有りかなり劣悪
(滴下痕)
 液晶表示装置の滴下痕の評価は、全面黒表示した場合における白く浮かび上がる滴下痕を目視にて以下の4段階評価で行った。
◎:残像無し
○:残像ごく僅かに有るも許容できるレベル
△:残像有り許容できないレベル
×:残像有りかなり劣悪
なお、実施例において化合物の記載について以下の略号を用いた。
(側鎖)
-nは、-C2n+1(炭素原子数nの直鎖状アルキル基)を表す。
-Onは、-OC2n+1(炭素原子数nの直鎖状アルコキシ基)を表す。
(環構造)
Figure JPOXMLDOC01-appb-C000032
(実施例1)
 透明な共通電極からなる透明電極層及びカラーフィルター層を具備した第一の基板(共通電極基板)と、アクティブ素子により駆動される透明画素電極を有する画素電極層を具備した第二の基板(画素電極基板)とを作製した。
 画素電極基板において、各画素電極としては、液晶分子の配向を分割するため、画素電極に電極を有さないスリットが存在するように、ITOをエッチングしたものを用いた。
 共通電極基板及び画素電極基板のそれぞれに、ポリイミド前駆体及び反応性基を有する重合性化合物を含む垂直配向膜材料をスピンコート法により塗布し、その塗布膜を200℃で加熱することにより、垂直配向膜材料中のポリイミド前駆体を硬化させ、各基板の表面に100nmの垂直配向膜を形成した。この段階において、その垂直配向膜において、反応性基を有する重合性化合物は硬化していない。
 垂直配向膜形成材料としては、ポリイミド前駆体を3%含有するポリイミド溶液(商品名:JALS2131-R6、JSR社製 )に、以下の式(V-2)で表される反応性基を有する重合性化合物を2%及び、式(VI-1)で表される反応性基を有する重合性化合物を1%含有する溶液を用いた。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 垂直配向膜を形成した共通電極基板及び画素電極基板に、以下に示す化学式で表される化合物を含有する液晶組成物を挟持した後、シール材を硬化させて、液晶組成物層を形成した。この際、厚さ4μmのスペーサを用いて、液晶組成物層の厚さを4μmとした。
 なお、以下に示す化学式において、(I)の群に属する化合物は、上記一般式(I)で表される化合物であり、(II)の群に属する化合物は、上記一般式(II)で表される化合物である。
Figure JPOXMLDOC01-appb-C000035
 得られた液晶表示素子に、矩形の交流電場を印加した状態で紫外線を照射し、前記反応性基を有する重合性化合物を硬化させた。照射装置としては、ウシオ電機社製UIS-S2511RZと共に、紫外線ランプとして、ウシオ電機社製USH-250BYを用いて、20mWで10分間、液晶表示素子に紫外線を照射し、実施例1の液晶表示素子を得た。この工程により、反応性基を有する重合性化合物の重合体を含む垂直配向膜が形成され、液晶組成物層中の液晶分子にプレチルト角が付与される。
 ここで、プレチルト角は、図3に示すように定義される。完全な垂直配向をしている場合、プレチルト角(θ)は90°となり、プレチルト角が付与された場合、プレチルト角(θ)は90°より小さくなる。
 実施例1の液晶表示素子は、図2に示すような画素電極のスリットに従って、4つの区画において異なった方向にプレチルト角を有し、前記重合性化合物の硬化後、交流電場を切った状態でもプレチルト角が維持された。維持されたプレチルト角は87°であった。
 このように得られた実施例1の液晶表示素子は、表1に示すように、優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000036
(比較例1)
以下に示す化学式で表される化合物を含有する液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、比較例1の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-C000037
 比較例1の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表2に示す。
 その結果、比較例1で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して劣った結果を示した。また、比較例1で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して、応答速度が劣っていた。
Figure JPOXMLDOC01-appb-T000038
(比較例2)
表3に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、比較例2の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000039
 比較例2の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表3に示す。
 その結果、比較例2で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して劣った結果を示した。また、比較例2で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して、応答速度が劣っていた。
(比較例3)
表4に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、比較例3の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000040
 比較例3の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表4に示す。
 その結果、比較例3で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して劣った結果を示した。また、比較例3で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して、応答速度が劣っていた。
(比較例4)
 表5に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、比較例4の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000041
 比較例4の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表5に示す。
 その結果、比較例4で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して劣った結果を示した。また、比較例4で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して、応答速度が劣っていた。
(比較例5)
 表6に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、比較例5の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000042
 比較例5の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表6に示す。
 その結果、比較例5で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して劣った結果を示した。また、比較例5で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して、応答速度が劣っていた。
(比較例6)
 表7に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、比較例6の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000043
 比較例6の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表7に示す。
 その結果、比較例6で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して劣った結果を示した。また、比較例6で調製した液晶組成物は、実施例1で調製した液晶組成物と比較して、応答速度が劣っていた。
(実施例2)
垂直配向膜形成材料として、ポリイミド前駆体を3%含有するポリイミド溶液(商品名:JALS2131-R6、JSR社製 )に、式(V-2)で表される反応性基を有する重合性化合物を2%及び、以下の式(VI-2)で表される反応性基を有する重合性化合物を1%含有する溶液を用いた以外は実施例1と同様にして、実施例2の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-C000044
 実施例2の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表8に示す。
 その結果、実施例2の液晶表示素子は、実施例1の液晶表示素子と比較して若干劣るものの、優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000045
(実施例3)
 垂直配向膜形成材料として、ポリイミド前駆体を3%含有するポリイミド溶液(商品名:JALS2131-R6、JSR社製 )に、以下の式(V-4a)で表される反応性基を有する重合性化合物を2%及び、式(VI-1)で表される反応性基を有する重合性化合物を1%含有する溶液を用いた以外は実施例1と同様にして、実施例3の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-C000046
 実施例3の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表9に示す。
 その結果、実施例3の液晶表示素子は、実施例1の液晶表示素子と比較して若干劣るものの、優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000047
(実施例4)
 垂直配向膜形成材料として、ポリイミド前駆体を3%含有するポリイミド溶液(商品名:JALS2131-R6、JSR社製 )に、以下の式(V-5)で表される反応性基を有する重合性化合物を2%及び、式(VI-2)で表される反応性基を有する重合性化合物を1%含有する溶液を用いた以外は実施例1と同様にして、実施例4の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-C000048
 実施例4の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表10に示す。
 その結果、実施例4の液晶表示素子は、実施例1の液晶表示素子と比較して若干劣るものの、優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
Figure JPOXMLDOC01-appb-T000049
(実施例5)
表11に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、実施例5の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000050
 実施例5の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表11に示す。
 その結果、実施例5の液晶表示素子は、実施例1の液晶表示素子と比較して若干劣るものの、比較的優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
(実施例6)
 表12に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、実施例6の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000051
 実施例6の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。
 結果を表12に示す。
 その結果、実施例6の液晶表示素子は、実施例1の液晶表示素子と比較して若干劣るものの、比較的優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
(実施例7)
 表13に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、実施例7の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000052
 実施例7の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表13に示す。
 その結果、実施例7の液晶表示素子は、実施例1の液晶表示素子と比較して若干劣るものの、比較的優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
(実施例8)
 表14に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、実施例8の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000053
 実施例8の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表14に示す。
 その結果、実施例8の液晶表示素子は、実施例1の液晶表示素子と比較して若干劣るものの、比較的優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
(実施例9)
表15に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、実施例9の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000054
実施例9の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表15に示す。
その結果、実施例9の液晶表示素子は、実施例1の液晶表示素子と比較して同等の優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
(実施例10)
表16に示す組成からなる液晶組成物を調製し、その液晶組成物を用いた以外は実施例1と同様にして、実施例10の液晶表示素子を得た。
Figure JPOXMLDOC01-appb-T000055
実施例10の液晶表示素子について、実施例1と同様にして、焼き付き及び滴下痕を測定した。結果を表16に示す。
その結果、実施例10の液晶表示素子は、実施例1の液晶表示素子と比較して同等の優れた応答速度を示し、滴下痕が発生し難く、焼き付きの点でも優れていることが明らかとなった。
10・・・液晶表示素子、11・・・第一の基板、12・・・第二の基板、13・・・液晶組成物層、14・・・共通電極、15・・・画素電極、16・・・垂直配向膜、17・・・垂直配向膜、18・・・カラーフィルター、19・・・液晶分子。

Claims (13)

  1.  共通電極を有する第一の基板と、画素電極を有する第二の基板と、前記第一の基板と前記第二の基板の間に挟持された液晶組成物層とを有し、前記共通電極と前記画素電極間に、前記第一の基板と前記第二の基板に略垂直に電荷を印加し、前記液晶組成物層中の液晶分子を制御する液晶表示素子であって、
     前記第一の基板と前記第二の基板の少なくとも一方に、前記液晶組成物層中の液晶分子の配向方向を、前記第一の基板および前記第二の基板における前記液晶組成物層と隣接する面に対して略垂直に制御する垂直配向膜を有し、該垂直配向膜が、単官能性の反応基を有する重合性化合物と多官能性の反応基を有する重合性化合物の重合体を含むことを特徴とする液晶表示素子。
  2.  前記の単官能性の反応基を有する重合性化合物が、下記一般式(VI)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、水素原子又はメチル基を表し、Spは、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、tは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Vは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、Wは水素原子、ハロゲン原子又は炭素原子数1~8のアルキレン基を表す。)で表される重合性化合物であり、
    前記の多官能性の反応基を有する重合性化合物が、下記一般式(V)
    Figure JPOXMLDOC01-appb-C000002
    (式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Uは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、kは1~5の整数を表す。)で表される重合性化合物である請求項1に記載の液晶表示素子。
  3.  複数の画素を有し、該画素中にプレチルト角が異なる2以上の領域を有する請求項1又は2に記載の液晶表示素子。
  4.  前記垂直配向膜が、ポリイミド構造を含む請求項1又は2に記載の液晶表示素子。
  5.  前記第一の基板及び前記第二の基板における前記液晶組成物層と隣接する面に前記垂直配向膜を有し、前記第一の基板にカラーフィルター層を有する請求項1又は2に記載の液晶表示素子。
  6.  前記画素電極が、画素の中央から4方向に櫛歯状にスリットを有し、前記液晶組成物層中の液晶分子が異なった方向に配向する4つの領域を有する請求項1又は2に記載の液晶表示素子。
  7.  前記液晶組成物層が、滴下法により形成された請求項1又は2に記載の液晶表示素子。
  8.  前記液晶組成物層を構成する液晶組成物が、下記一般式(I)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、lは1又は2を表すが、lが2の場合二つのAは同一であっても異なっていてもよい。)で表される化合物及び、下記一般式(II)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Rは炭素原子数1~8のアルキル基、炭素原子数4~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数3~8のアルケニルオキシ基を表し、B及びDはそれぞれ独立して、1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-を表し、mは0、1又は2を表すが、mが2の場合二つのBは同一であっても異なっていてもよい。)で表される化合物を含有する請求項1又は2記載の液晶表示素子。
  9.  前記液晶組成物が、前記一般式(I)で表される化合物を30~60質量%含有し、前記一般式(II)で表される化合物を30~65質量%含有する請求項8に記載の液晶表示素子。
  10.  前記液晶組成物が、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R及びRはそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Y及びYはそれぞれ独立して、水素原子またはフッ素原子を表し、E、F及びGはそれぞれ独立して、1,4-フェニレン基又はトランス-1,4-シクロヘキシレンを表し、Zは単結合、-OCH-、-OCO-、-CHO-又は-COO-を表し、nは0又は1を表す。)で表される化合物を5~20質量%含有する請求項8又は9に記載の液晶表示素子。
  11.  共通電極を有する第一の基板と画素電極を有する第二の基板の少なくとも一方に、単官能性の反応基を有する重合性化合物、多官能性の反応基を有する重合性化合物及び垂直配向材料を含有する配向材料を塗布し、加熱することにより配向膜を形成した後、前記第一の基板と前記第二の基板により液晶組成物を挟持し、前記共通電極と前記画素電極間に、電圧を印加した状態で活性エネルギー線を照射することにより、前記配向膜中の重合性化合物を重合する液晶表示素子の製造方法であって、
     前記の単官能性の反応基を有する重合性化合物が、下記一般式(VI)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Xは、水素原子又はメチル基を表し、Spは、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、tは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Vは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、Wは水素原子、ハロゲン原子又は炭素原子数1~8のアルキレン基を表す。)で表される重合性化合物であり、
    前記の多官能性の反応基を有する重合性化合物が、下記一般式(V)
    Figure JPOXMLDOC01-appb-C000007
    (式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2~7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Uは炭素原子数2~20の直鎖もしくは分岐多価アルキレン基又は炭素原子数5~30の多価環状置換基を表すが、多価アルキレン基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、kは1~5の整数を表す。)で表される重合性化合物であることを特徴とする液晶表示素子の製造方法。
  12.  前記活性エネルギー線が紫外線であり、その強度が2mW/cm-2~100mW/cm-2であり、照射総エネルギー量が10J~300Jである請求項11に記載の液晶表示素子の製造方法。
  13.  前記液晶組成物が、前記一般式(I)で表される化合物を30~50質量%含有し、前記一般式(II)で表される化合物を30~50質量%含有する請求項11又12に記載の液晶表示素子の製造方法。
PCT/JP2014/074670 2013-09-20 2014-09-18 液晶表示素子及びその製造方法 WO2015041285A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/023,149 US10119075B2 (en) 2013-09-20 2014-09-18 Liquid crystal display device and method for manufacturing the same
KR1020167006919A KR101643209B1 (ko) 2013-09-20 2014-09-18 액정 표시 소자 및 그 제조 방법
JP2015508348A JP5822097B2 (ja) 2013-09-20 2014-09-18 液晶表示素子及びその製造方法
CN201480051208.4A CN105556380B (zh) 2013-09-20 2014-09-18 液晶显示元件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013195481 2013-09-20
JP2013-195481 2013-09-20

Publications (1)

Publication Number Publication Date
WO2015041285A1 true WO2015041285A1 (ja) 2015-03-26

Family

ID=52688932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074670 WO2015041285A1 (ja) 2013-09-20 2014-09-18 液晶表示素子及びその製造方法

Country Status (5)

Country Link
US (1) US10119075B2 (ja)
JP (1) JP5822097B2 (ja)
KR (1) KR101643209B1 (ja)
CN (1) CN105556380B (ja)
WO (1) WO2015041285A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057557A1 (ja) * 2015-10-01 2017-04-06 Dic株式会社 液晶表示素子及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556380B (zh) 2013-09-20 2017-03-22 Dic株式会社 液晶显示元件及其制造方法
CN105793770A (zh) * 2013-12-11 2016-07-20 Dic株式会社 液晶显示元件及其制造方法
CN105629585A (zh) * 2016-01-13 2016-06-01 深圳市华星光电技术有限公司 液晶显示面板构造及其制作方法
CN108239539A (zh) * 2016-12-23 2018-07-03 江苏和成显示科技有限公司 负介电各向异性的液晶组合物及其显示器件
US10784570B2 (en) * 2017-06-22 2020-09-22 Innolux Corporation Liquid-crystal antenna device
TWI640609B (zh) * 2018-05-07 2018-11-11 達興材料股份有限公司 Liquid crystal composition and liquid crystal display device
WO2020075508A1 (ja) * 2018-10-11 2020-04-16 Dic株式会社 液晶組成物および液晶表示素子
CN111748356B (zh) * 2020-07-24 2023-03-14 京东方科技集团股份有限公司 液晶组合材料及显示面板
WO2022125627A1 (en) * 2020-12-08 2022-06-16 Kent State University Patterned waveguide liquid crystal display
CN113428005B (zh) * 2021-06-08 2023-11-07 浙江汽车仪表有限公司 一种可靠性高的汽车全液晶仪表盘

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141576A (ja) * 2010-12-15 2012-07-26 Jsr Corp 液晶表示素子の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235925A (ja) 1993-02-10 1994-08-23 Matsushita Electric Ind Co Ltd 液晶表示素子の製造方法
US6977704B2 (en) 2001-03-30 2005-12-20 Fujitsu Display Technologies Corporation Liquid crystal display
JP4472263B2 (ja) 2003-03-20 2010-06-02 シャープ株式会社 液晶表示装置の製造方法
TWI304496B (en) 2003-03-20 2008-12-21 Sharp Kk Liquid crystal display apparatus and manufacturing method therefor
KR100558716B1 (ko) * 2003-10-14 2006-03-10 엘지.필립스 엘시디 주식회사 액정표시패널 및 그 제조 방법
JP2006058755A (ja) 2004-08-23 2006-03-02 Fujitsu Display Technologies Corp 液晶表示装置およびその製造方法
JP4900571B2 (ja) * 2006-03-20 2012-03-21 Jsr株式会社 垂直液晶配向剤および垂直液晶表示素子
JP2009265317A (ja) * 2008-04-24 2009-11-12 Fujifilm Corp 垂直配向膜及びvaモード液晶セル
US20110261295A1 (en) 2008-09-17 2011-10-27 Kim Jae-Hoon Liquid crystal display and manufacturing method of the same
JP2010072424A (ja) * 2008-09-19 2010-04-02 Toray Ind Inc 液晶配向膜形成用フィルムおよび液晶配向膜
JP2010107536A (ja) 2008-10-28 2010-05-13 Sony Corp 液晶表示素子、液晶表示装置およびそれらの製造方法
JP5903890B2 (ja) 2009-11-09 2016-04-13 Jnc株式会社 液晶表示素子、液晶組成物及び配向剤並びに液晶表示素子の製造方法及びその使用
US8482708B2 (en) * 2009-11-30 2013-07-09 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Multi-domain liquid crystal display and manufacturing method of the same
JP5522384B2 (ja) 2010-04-20 2014-06-18 Jsr株式会社 液晶表示素子の製造方法
CN102069361B (zh) 2011-01-21 2012-01-25 山东贝特尔车轮有限公司 工程车轮制造工艺
CN102709235B (zh) 2011-10-26 2015-04-29 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN102936504A (zh) * 2012-10-29 2013-02-20 深圳市华星光电技术有限公司 液晶组合物与液晶面板
CN105556380B (zh) 2013-09-20 2017-03-22 Dic株式会社 液晶显示元件及其制造方法
CN105793770A (zh) * 2013-12-11 2016-07-20 Dic株式会社 液晶显示元件及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141576A (ja) * 2010-12-15 2012-07-26 Jsr Corp 液晶表示素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057557A1 (ja) * 2015-10-01 2017-04-06 Dic株式会社 液晶表示素子及びその製造方法
JPWO2017057557A1 (ja) * 2015-10-01 2018-02-22 Dic株式会社 液晶表示素子及びその製造方法

Also Published As

Publication number Publication date
CN105556380B (zh) 2017-03-22
JP5822097B2 (ja) 2015-11-24
JPWO2015041285A1 (ja) 2017-03-02
KR20160039684A (ko) 2016-04-11
KR101643209B1 (ko) 2016-07-27
US10119075B2 (en) 2018-11-06
US20160230096A1 (en) 2016-08-11
CN105556380A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP5333693B1 (ja) 液晶表示素子及びその製造方法
JP5299595B1 (ja) 液晶表示素子及びその製造方法
JP5822097B2 (ja) 液晶表示素子及びその製造方法
JP5333694B1 (ja) 液晶表示素子及びその製造方法
JP6011904B1 (ja) 液晶表示素子及びその製造方法
JP6011903B1 (ja) 液晶表示素子及びその製造方法
JP5930134B2 (ja) 液晶表示素子及びその製造方法
JP6395007B2 (ja) 液晶表示素子及びその製造方法
JP6319524B2 (ja) 液晶表示素子及びその製造方法
JP6296320B2 (ja) 液晶表示素子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051208.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015508348

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006919

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15023149

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846342

Country of ref document: EP

Kind code of ref document: A1