WO2015041270A1 - Method for producing fine powder - Google Patents

Method for producing fine powder Download PDF

Info

Publication number
WO2015041270A1
WO2015041270A1 PCT/JP2014/074624 JP2014074624W WO2015041270A1 WO 2015041270 A1 WO2015041270 A1 WO 2015041270A1 JP 2014074624 W JP2014074624 W JP 2014074624W WO 2015041270 A1 WO2015041270 A1 WO 2015041270A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fine powder
film
manufactured
layers
Prior art date
Application number
PCT/JP2014/074624
Other languages
French (fr)
Japanese (ja)
Inventor
毅 神田
利行 善當
直人 福原
中村 英慈
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2015537956A priority Critical patent/JP6378686B2/en
Publication of WO2015041270A1 publication Critical patent/WO2015041270A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/04Making granules by dividing preformed material in the form of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers

Definitions

  • the present invention relates to a method for producing a scaly fine powder having a particle size of 1 to 300 ⁇ m and a thickness of 0.1 to 50 ⁇ m.
  • Various powders for example, powdered clay minerals and / or coloring materials (for example, dyes and pigments) are used for cosmetics.
  • Some clay minerals are typified by talc and mica. These powders have been used for a long time because they have the covering power, spreadability, adhesion, etc. necessary for cosmetics.
  • the brightness, color, etc. of fine powders have been reduced by human sebum and oils contained in cosmetics. It is easy to decrease the degree, and it is easy to cause darkening of the powder and a dull phenomenon.
  • organic fine powder is softer and softer than inorganic clay minerals.
  • the scale-like fine powder is excellent in the spreadability compared with the spherical fine powder (Patent Document 1, Patent Document 2).
  • Patent Document 2 A method of pulverizing the thin film (Patent Document 2) has been proposed. However, in this method, a drying process is required, productivity is low, and the use of a large amount of an organic solvent causes problems on the environment and workers.
  • Patent Document 3 a method in which minute droplets of a polymer solution are dropped on a flat plate and solidified.
  • a scaly polymer suitable for use as a cosmetic or the like because it is difficult to cut into a fine powder of the desired thickness or because it is not easy to peel the thin film from the substrate. This fine powder was not easily obtained.
  • the present invention solves the above-described problem, and is a polymer that can easily produce a thin powder for producing fine powder, and can easily provide a scaly powder having a small thickness and excellent thickness uniformity. It is an object of the present invention to provide a fine powder of a polymer useful as a method for producing a fine powder and a powder for cosmetics or an industrial powder such as a coloring material.
  • the method for producing a fine powder of the polymer of the present invention includes a step of alternately laminating two kinds of resins (resin A and resin B), a step of producing a multi-layered body having 16 or more layers, and a step of pulverizing by pulverization.
  • a method for producing fine powder comprising a step of separating (peeling) laminated interfaces.
  • the number of layers considering the production amount of fine powder, 16 layers or more are necessary, and 32 layers or more are preferable.
  • the order of the step of pulverizing by pulverization and the step of separating (peeling) the stacked interfaces may be reversed, or both steps may be performed simultaneously.
  • the powder of a single material can be obtained by melt
  • the fine powder of the present invention has an average thickness (t) in the range of 0.1 ⁇ m or more and 50 ⁇ m or less, and a particle size (d) represented by the median value of the particle size distribution in the range of 1 ⁇ m or more to 300 ⁇ m or less.
  • the aspect ratio (d / t) which is a ratio of a particle size (d) and thickness (t) is 6 or more and 300 or less.
  • PMMA polymethyl methacrylate resin
  • PS polystyrene resin
  • PMMA polymethyl methacrylate resin
  • COP alicyclic olefin resin
  • COC alicyclic olefin copolymer
  • One of the combinations of polymethyl methacrylate resin (PMMA) and polyamide resin (PA) is preferable from the viewpoint of peeling at the laminated interface.
  • the laminate manufacturing method of the present invention has a laminated flow (2 in which at least two molten resins are arranged side by side in the step 1 in which two types of resins called feed blocks are laminated. 2 layers of seeds or 2 layers of 3 layers), dividing into 2 left and right in step 2, performing the step of expanding in the width direction in step 3 and the step of reducing in the thickness direction at the same time, and overlapping each layer in step 4 By combining them, an alternating laminate of 17 layers is produced. By repeating these steps 2 to 4 as one set, the number of stacked layers can be increased.
  • the outermost layer (resin C) is laminated in order to prevent the structure of the laminate (B / A /... A / B) from collapsing inside the film die. What is necessary is just to determine suitably the thickness of each layer after shape
  • An example of a method for efficiently producing a film is a melt extrusion method.
  • a single-layer film having a target thickness of 1 to 50 ⁇ m is produced using this method, the strength of the material is insufficient, and there is a problem that the film breaks during the take-up process and the winding process. It was difficult to manufacture.
  • the film thickness that can be stably produced is empirically 50-60 ⁇ m or more. The resulting film may then be stretched.
  • a multilayer film made by alternately laminating resins with low adhesiveness thinner than the target thickness is prepared by the melt extrusion method, and the layers are peeled at the same time as the pulverization to produce a thin scale-like fine powder. can do.
  • the obtained multilayer film is pulverized by a pulverizer into a fine powder.
  • the pulverization method include dry pulverization, wet pulverization, and freeze pulverization.
  • the pulverizer include a hammer mill pulverizer, a pin pulverizer, an impact pulverizer, a jet mill pulverizer, a ball mill pulverizer, an impact fine pulverizer, an airflow pulverizer, and a jet pulverizer.
  • the dry pulverization method is preferable because a drying step is unnecessary.
  • the pulverizer becomes hot due to frictional heat, etc., so refrigeration and pulverization while cooling the multilayer film using liquefied gas such as liquefied carbon dioxide gas and liquid nitrogen gas as a coolant, and cooling through a cooling medium through the device
  • liquefied gas such as liquefied carbon dioxide gas and liquid nitrogen gas as a coolant
  • cooling through a cooling medium through the device
  • the multilayer film does not cause fusion or the like even by shearing heat, frictional heat, or the like at the time of pulverization, and the thin film can be made into fine powder without impairing the thickness of the thin film.
  • a method of cooling the apparatus through a cooling medium is preferable.
  • the pulverization process can be divided into surface pulverization, where the surface of the solid material is scraped, and volume pulverization, where the solid breaks down and becomes smaller. Actually, it is considered that pulverization proceeds in a combination of surface pulverization and volume pulverization.
  • a product obtained by alternately laminating resins having low affinity to each other seems to be bonded, but is considered to be in a state where it can be easily peeled off. Some of these laminated films are triggered by several crushing forces generated during the crushing process, and the peeling between layers proceeds.
  • a resin having low affinity for example, in the case of a combination with a polymethyl methacrylate resin, polystyrene resin (PS), alicyclic olefin resin (COP), alicyclic olefin copolymer (COC), polyamide resin ( PA) and the like, and these alternately laminated films are easily delaminated.
  • PS polystyrene resin
  • COP alicyclic olefin resin
  • COC alicyclic olefin copolymer
  • PA polyamide resin
  • FIG. 6 shows an enlarged perspective view of an example of the fine powder obtained by the above method.
  • the fine powder includes polymer particles having a shape such as so-called “flaky” or “flaky” that may be generated depending on the manner of pulverization.
  • the thickness is assumed to be a thickness (t) representative of t1 by the arithmetic average of the individual t1 obtained by observation with an electron microscope, and it is difficult to individually measure d1 for the particle size.
  • the central value of the particle size distribution obtained by the optical diffraction method is used as the particle size (d) representing d1.
  • plate polymer powders having various aspect ratios (d / t) can be obtained by these adjustments.
  • the thickness (t) is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably about 0.1 ⁇ m to 30 ⁇ m, particularly preferably 0.5 ⁇ m to 20 ⁇ m.
  • the particle size of the fine powder is 1 ⁇ m to 300 ⁇ m, more preferably 1 ⁇ m to 200 ⁇ m.
  • the aspect ratio (d / t) of the fine powder is preferably about 6 or more and 300 or less, more preferably about 10 or more and 200 or less.
  • the adhesion depends on the thickness of the fine powder, and the thinner the one, the easier it is to adhere.
  • the thickness of the fine powder is too thin, dispersibility and spreadability tend to be inferior, and it is not preferable because it accumulates or aggregates in pores and skin grooves. On the other hand, if the fine powder is too thick, the spreadability is impaired, and the adhesion to the skin and the adhesion between the particles are lowered, which is not preferable.
  • the fine powder to be blended in cosmetics is in the above-mentioned range, it is bulky and thin and has good transparency. Therefore, it has excellent dispersibility in cosmetics, soft touch and sliding properties. It is well adhered to the skin, has no color dullness with time, and the transparency of the coating film is maintained, so that a good cosmetic effect can be obtained.
  • the acrylic resin used in the present invention is a homopolymer of methyl methacrylate or a copolymer of a monomer mixture containing methyl methacrylate as a main component and containing other comonomer, and has a polymerization degree of 3000 or less. Is preferably used. Further, when transparency is required, those having a degree of polymerization of about 300 to 1000 are preferred, and those having a degree of polymerization of 400 to 600 and a melt flow rate of about 25 to 34 g / 10 min (200 ° C.-3.8 kg). Is more preferable.
  • Examples of the monomer copolymerized with methyl methacrylate include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Methacrylates such as hydroxyethyl, glycidyl methacrylate, cyclohexyl methacrylate, acetates such as vinyl acetate, aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, maleic anhydride, mono- and dialkyl esters of maleic acid, Examples thereof include maleimides such as N-phenylmaleimide, acrylic acid, methacrylic acid, acrylic acid metal salts, and methacrylic acid metal salts. One or more of these can be used, but the copolymerization ratio with methyl methacrylate is usually preferably in the range of about 1 to 30% by weight.
  • the styrene resin is composed of styrene monomer units.
  • the styrene monomer include styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene, 4 -Dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene and the like can be mentioned, and these can be used alone or in combination of two or more. Of these, styrene resins are preferred.
  • the styrene resin may be a rubber-containing polystyrene resin containing a rubbery polymer.
  • the rubbery polymer herein has a glass transition temperature of preferably 0 ° C. or lower, more preferably ⁇ 20 ° C. or lower, and polybutadiene, styrene-butadiene copolymer, up to 30% by weight of (meth) acrylic.
  • Preferred examples include diene rubbers such as styrene-butadiene copolymer, polyisoprene, polychloroprene and the like which contain an acid lower alkyl ester.
  • Examples of other suitable rubbery polymers include alkyl acrylate rubbers based on C1-C8 alkyl acrylates, especially ethyl acrylate, butyl and ethylhexyl.
  • the alkyl acrylate rubber may be copolymerized with up to 30% by weight of vinyl acetate, methyl methacrylate, styrene, acrylonitrile, vinyl ether, etc., and further, 5% by weight or less of alkylene diol (meth) acrylate, divinylbenzene, cyanuric
  • a crosslinkable unsaturated monomer such as triallyl acid may be copolymerized.
  • styrene resin examples include polystyrene, rubber-containing polystyrene, acrylonitrile-styrene copolymer, rubber-containing acrylonitrile-styrene copolymer, styrene-methyl methacrylate copolymer, rubber-containing styrene-methyl methacrylate copolymer.
  • Polymer styrene-butyl acrylate copolymer, rubber-containing styrene-butyl acrylate copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, etc.
  • These resins may be used by blending not only one type but also two or more types. Among these, polystyrene and rubber-containing polystyrene resin are preferable from the viewpoint of various physical property balances.
  • Examples of the alicyclic polyolefin-based resin include Arton (registered trademark) of JSR Corporation, ZEONOR (registered trademark) and ZEONEX of ZEON Corporation, Apel (registered trademark) of Mitsui Chemicals, Polyplastics ( Topas, Inc.) is preferably used.
  • polyamide-based resin a polyamide resin obtained by polycondensation of a lactam having a three-membered ring or more, a polymerizable ⁇ -amino acid, a dibasic acid and a diamine can be used.
  • polymers such as ⁇ -caprolactam, aminocaproic acid, enanthractam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, ⁇ -pyrrolidone, ⁇ -piperidone, hexamethylenediamine, nonamethylenediamine
  • a heavy polymer obtained by subjecting diamines such as undecamethylenediamine, dodecamethylenediamine and metaxylenediamine to dicarboxylic acids such as terephthalic acid, isophthalic acid, adipic acid, sebacic acid, dodecane dibasic acid and glutaric acid.
  • nylon 4 6, 7, 8, 11, 12, 6 ⁇ 6, 6 ⁇ 10, 6 ⁇ 11, 6 ⁇ 12, 6T, 6/6 ⁇ 6, 6/12 , 6 / 6T, 6I / 6T, etc.
  • nylon 6 nylon 6/6/6 copolymer resin is particularly suitable from the viewpoint of the thermal and mechanical properties of the film obtained.
  • the above resins used in the present invention may be used alone or in a blend of two or more.
  • PMMA resin polymethyl methacrylate
  • HR-L polystyrene
  • Example 2 A fine powder was produced under the same conditions as in Example 1 except for the amount of resin input, the number of rotations, and the treatment time. A fine powder was produced under the conditions of an input amount of 30 g, a rotational speed of 8000 ⁇ 10000 min ⁇ 1 (IN ⁇ OUT), and a treatment time of 2 minutes and 50 seconds.
  • PMMA resin Polymethyl methacrylate
  • HR-L cycloolefin copolymer
  • LDPE resin low-density polyethylene
  • Novatec LC600 low-density polyethylene
  • the one discharged through a 300 mm wide film die (die gap: about 1 mm) is taken up.
  • Speed controlled at 6 m / min, 40 ° C 3 The film was cooled with a metal mirror roll, and a total of 19 layers of film were produced.
  • the resin used for material A is polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GF, manufactured by Kuraray), and a polymethyl methacrylate-polystyrene copolymer resin (MS resin, Estyrene MS-200, manufactured by Nippon Steel & Sumikin Chemical).
  • PMMA resin polymethyl methacrylate
  • MS resin polymethyl methacrylate-polystyrene copolymer resin
  • MS resin Estyrene MS-200, manufactured by Nippon Steel & Sumikin Chemical
  • a 17-layer laminate was produced.
  • the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm).
  • LDPE resin low-density polyethylene
  • the film was cooled with three metal mirror rolls controlled at 3.6 m / min and 40 ° C. to produce a total of 19 layers of film.
  • polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GF, manufactured by Kuraray) was used as the resin A
  • polypropylene (PP resin, Novatec MA3, manufactured by Nippon Polypro Co., Ltd.) was used as the resin B.
  • the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm).
  • LDPE resin low-density polyethylene
  • the film was cooled by three metal mirror rolls controlled at 6 m / min and 40 ° C. to produce a total of 19 layers of film.
  • 30 g was charged into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 ⁇ 9000 min ⁇ 1 (IN ⁇ OUT) and a treatment time of 2 minutes 30 seconds.
  • the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm).
  • LDPE resin low-density polyethylene
  • the film was cooled by three metal mirror rolls controlled at 6 m / min and 40 ° C. to produce a total of 19 layers of film.
  • 30 g was charged into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 ⁇ 9000 min ⁇ 1 (IN ⁇ OUT) and a treatment time of 2 minutes 30 seconds.
  • peeling was observed in part, but peeling was not observed in most part.
  • the observation result of the pulverized product is shown in FIG.
  • ⁇ Reference Example 3> As the resin used for the material A, polymethyl methacrylate (PMMA resin, Parapet (registered trademark) HR-L, manufactured by Kuraray) is used as the resin A, and amorphous polyethylene terephthalate (PET resin, SKYGREEN PETG S2008 SK Chemical) is used as the resin B. It was. Resin A and Resin B were each melted at a temperature of 230 ° C. using a single screw extruder (PSV 22 mm: manufactured by Praengi Co., Ltd.), and weighed by a gear pump so that the discharge ratio was Resin A / Resin B 1/1. It was introduced into the mold of Step 1.
  • PMMA resin polymethyl methacrylate
  • HR-L amorphous polyethylene terephthalate
  • PET resin SKYGREEN PETG S2008 SK Chemical
  • a 17-layer laminate was produced.
  • the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm).
  • LDPE resin low-density polyethylene
  • the film was cooled by three metal mirror rolls controlled at 6 m / min and 40 ° C. to produce a total of 19 layers of film.
  • 30 g was charged into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 ⁇ 9000 min ⁇ 1 (IN ⁇ OUT) and a treatment time of 3 minutes and 16 seconds.
  • peeling was observed in part, but peeling was not observed in most part.
  • Resin A was mixed at a weight ratio, and polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GH-S, manufactured by Kuraray Co., Ltd.) was used as resin B as the resin used for material B.
  • Resin A and Resin B were each melted at a temperature of 230 ° C.
  • a resin used for the material A a mixture of polymethyl methacrylate (PMMA resin, Parapet (registered trademark) EH, manufactured by Kuraray) and polycarbonate (PC resin, Lexan 121R, manufactured by SABIC) in a weight ratio of 20/80 is used.
  • Resin A was used, and polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GF, manufactured by Kuraray Co., Ltd.) was used as Resin B.
  • Resin A and Resin B were each melted at a temperature of 250 ° C.
  • Table 1 shows the results of the above examples and reference examples.
  • the resin combinations in Reference Examples 1 to 4 could not be divided under the test conditions of the above Reference Example, but may be divided if the conditions are appropriate. Therefore, the present invention is a combination of resins in the Reference Examples. Is not to be excluded.
  • LDPE resin low density polyethylene
  • Novatec LC701 manufactured by Nippon Polyethylene
  • the film was cooled with three metal mirror rolls controlled to a temperature of 6 mm / min and 40 ° C. to produce a total of 19 layers of film.
  • 30 g of the obtained film with the LDPE resin layer peeled off was put into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 ⁇ 9000 min. ⁇ 1 (IN ⁇ out) and a processing time of 2 minutes and 30 seconds.
  • the obtained fine powder was stirred in warm water of 95 ° C. for 2 hours to dissolve only the water-soluble resin, followed by filtration to obtain a fine powder of only polymethyl methacrylate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The objective of the present invention is to provide a method for producing a fine polymer powder with which it is possible to easily produce a scaly powder that is thin and has excellent thickness uniformity. This objective is achieved by: a fine powder production method comprising a step for alternately laminating two types of resins (resin A and resin B) and preparing a multi-layer laminate including at least 16 layers, a step for reducing the laminate into a fine powder by pulverization, and a (peeling) step for dividing the interface between the laminated layers; and particularly a fine powder production method in which the pulverization step and the division step are integrated.

Description

微粉末の製造方法Method for producing fine powder
 本発明は、粒径が1~300μm、厚みが0.1~50μmからなる鱗片状微粉末の製造方法に関する。 The present invention relates to a method for producing a scaly fine powder having a particle size of 1 to 300 μm and a thickness of 0.1 to 50 μm.
 化粧品などには各種の粉体、例えば、粘土鉱物を粉体化したものおよび/または色材(例えば、染料、顔料)が使用されている。粘土鉱物は主にタルク、マイカなどに代表されるものがある。これらの粉体は、化粧料として必要な被覆力、延展性、付着性等を有するため古くから使用されているが、人間の皮脂および化粧品中に含まれる油剤などにより、微粉末の明度、彩度を低下させ易く、粉体黒ずみや色くすみ現象の原因となりやすい。一方、有機物の微粉末は、無機系の粘土鉱物に比較してより柔らかくソフト感が高い。また、球状の微粉末に比べて鱗片状の微粉末は展延性に優れる(特許文献1、特許文献2)。以上の理由から、化粧品等として用いるのに好適な有機物、特にポリマーの鱗片状微粉末の提供が望まれている。 Various powders, for example, powdered clay minerals and / or coloring materials (for example, dyes and pigments) are used for cosmetics. Some clay minerals are typified by talc and mica. These powders have been used for a long time because they have the covering power, spreadability, adhesion, etc. necessary for cosmetics. However, the brightness, color, etc. of fine powders have been reduced by human sebum and oils contained in cosmetics. It is easy to decrease the degree, and it is easy to cause darkening of the powder and a dull phenomenon. On the other hand, organic fine powder is softer and softer than inorganic clay minerals. Moreover, the scale-like fine powder is excellent in the spreadability compared with the spherical fine powder (Patent Document 1, Patent Document 2). For the above reasons, it is desired to provide organic substances suitable for use as cosmetics and the like, in particular, polymer scaly fine powders.
 鱗片状の微粉末の製造方法としては、ポリマーが有機溶剤に溶解されている重合体溶液を常温の液体である液層の液面上に膜状に展開させて、脱溶剤により膜を形成させ、この薄膜を粉砕する方法(特許文献2)が提案されている。しかしながら、この方法では乾燥工程が必要なこと、生産性が低いこと、有機溶剤を大量に使用するため環境や作業者への影響が問題となっていた。 As a method for producing a scaly fine powder, a polymer solution in which a polymer is dissolved in an organic solvent is spread on a liquid surface of a liquid layer that is a liquid at room temperature, and a film is formed by solvent removal. A method of pulverizing the thin film (Patent Document 2) has been proposed. However, in this method, a drying process is required, productivity is low, and the use of a large amount of an organic solvent causes problems on the environment and workers.
 また、ポリマー溶液の微小な液滴を平板上に滴下し、固化させる方法(特許文献3)が提案されている。しかしながら、この方法では、目的とする厚さの微粉末に切削することが困難であったり、基板から薄膜を剥離することが容易ではない等の理由により、化粧品等として用いるに好適な鱗片状ポリマーの微粉末は容易には得られなかった。 Also proposed is a method (Patent Document 3) in which minute droplets of a polymer solution are dropped on a flat plate and solidified. However, in this method, a scaly polymer suitable for use as a cosmetic or the like because it is difficult to cut into a fine powder of the desired thickness or because it is not easy to peel the thin film from the substrate. This fine powder was not easily obtained.
特許第3963635号公報Japanese Patent No. 3963635 特開2002-308996号公報JP 2002-308996 A 特開昭63-117040号公報JP-A-63-117040
 従来の製造方法では、目的とする厚さの鱗片状微粉末に粉砕することが困難であったり、均一な厚さを有する微粉末が得られ難かったり、また微粉末を製造するための薄膜が得られても生産性が低く、また、排水処理が必要となるため、容易には得られなかった。 In the conventional production method, it is difficult to pulverize into a scaly fine powder of the desired thickness, it is difficult to obtain a fine powder having a uniform thickness, or a thin film for producing a fine powder is provided. Even if it was obtained, the productivity was low, and wastewater treatment was required, so it was not easily obtained.
 本発明は、前記課題を解決するものであって、微粉末を製造するための薄膜の製造が容易で、しかも厚さが薄くて厚さ均一性に優れた鱗片状粉末が容易に得られるポリマーの微粉末の製造方法および化粧品用粉末あるいは色材などの工業用粉体などとして有用なポリマーの微粉末を提供することを目的とする。 The present invention solves the above-described problem, and is a polymer that can easily produce a thin powder for producing fine powder, and can easily provide a scaly powder having a small thickness and excellent thickness uniformity. It is an object of the present invention to provide a fine powder of a polymer useful as a method for producing a fine powder and a powder for cosmetics or an industrial powder such as a coloring material.
 本発明のポリマーの微粉末の製造法は、2種類の樹脂(樹脂Aと樹脂B)を交互積層し、積層数が16層以上の多積層体を作製する工程、粉砕により微粉末化する工程、積層した界面を分ける(剥離)工程を備えることを特徴とする微粉末の製造方法である。積層数としては、微粉末の生産量を考慮すると16層以上が必要であり、32層以上であるのが好ましい。ここで粉砕により微粉末化する工程と積層した界面を分ける(剥離)工程とはその順番が前後しても良いし、両工程が同時に行われても良い。 The method for producing a fine powder of the polymer of the present invention includes a step of alternately laminating two kinds of resins (resin A and resin B), a step of producing a multi-layered body having 16 or more layers, and a step of pulverizing by pulverization. A method for producing fine powder, comprising a step of separating (peeling) laminated interfaces. As the number of layers, considering the production amount of fine powder, 16 layers or more are necessary, and 32 layers or more are preferable. Here, the order of the step of pulverizing by pulverization and the step of separating (peeling) the stacked interfaces may be reversed, or both steps may be performed simultaneously.
 単一材料の微粉末を作製する場合、一方の樹脂を水溶性樹脂からなる多積層体を作製し、粉砕工程後に水溶性材料を溶かすことで単一材料の微粉末を得ることができる。また、粉砕工程前に水溶性材料を溶かした後に粉砕することで単一材料の粉末を得ることができる。 When producing a single material fine powder, it is possible to obtain a single material fine powder by preparing a multi-layered product made of a water-soluble resin as one resin and dissolving the water-soluble material after the pulverization step. Moreover, the powder of a single material can be obtained by melt | dissolving after dissolving a water-soluble material before a grinding | pulverization process.
 本発明の微粉末は、平均厚み(t)が0.1μm以上50μm以下の範囲にあり、粒径分布の中心値で代表される粒径(d)が1μm以上~300μm以下の範囲にあり、かつ、粒径(d)と厚み(t)との比であるアスペクト比(d/t)が6以上300以下である。 The fine powder of the present invention has an average thickness (t) in the range of 0.1 μm or more and 50 μm or less, and a particle size (d) represented by the median value of the particle size distribution in the range of 1 μm or more to 300 μm or less. And the aspect ratio (d / t) which is a ratio of a particle size (d) and thickness (t) is 6 or more and 300 or less.
 積層する樹脂としては、ポリメチルメタアクリレート樹脂(PMMA)とポリスチレン樹脂(PS)、ポリメチルメタアクリレート樹脂(PMMA)と脂環式オレフィン系樹脂(COP)または脂環式オレフィン系コポリマー(COC)およびポリメチルメタアクリレート樹脂(PMMA)とポリアミド樹脂(PA)の組合せのいずれかであるのが、積層界面の剥離の点から好ましい。 As the resin to be laminated, polymethyl methacrylate resin (PMMA) and polystyrene resin (PS), polymethyl methacrylate resin (PMMA) and alicyclic olefin resin (COP) or alicyclic olefin copolymer (COC) and One of the combinations of polymethyl methacrylate resin (PMMA) and polyamide resin (PA) is preferable from the viewpoint of peeling at the laminated interface.
 本発明によれば、厚さが薄くて厚さ均一性に優れた鱗片状粉末が容易に得られるポリマーの微粉末の製造方法および化粧品用粉末あるいは色材などの工業用粉体などとして有用なポリマーの微粉末を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is useful as a method for producing a fine powder of a polymer from which a flaky powder having a small thickness and excellent thickness uniformity can be easily obtained, and an industrial powder such as a cosmetic powder or a coloring material. A fine powder of the polymer can be provided.
本発明の積層体の製造方法の例を示す工程図である。It is process drawing which shows the example of the manufacturing method of the laminated body of this invention. 本発明の実施例1で作製した積層フィルムの断面構造の例を示すレーザー顕微鏡写真である。It is a laser micrograph which shows the example of the cross-section of the laminated film produced in Example 1 of this invention. 本発明の実施例1で作製した積層フィルム粉砕品の電子顕微鏡写真である。It is an electron micrograph of the laminated film pulverized product produced in Example 1 of the present invention. 本発明の実施例1で作製した微粉末の粒径分布の測定結果の例を示すグラフである。It is a graph which shows the example of the measurement result of the particle size distribution of the fine powder produced in Example 1 of this invention. 参考例2に示したPMMA/PCフィルムの粉砕品の電子顕微鏡写真である。4 is an electron micrograph of a pulverized product of PMMA / PC film shown in Reference Example 2. 本発明の微粉末の一例を示す斜視図である。It is a perspective view which shows an example of the fine powder of this invention.
<積層体の製造方法>
 本発明の積層体の製造方法は、図1に示したように少なくとも2つの溶融樹脂をフィードブロックと呼ばれる2種類の樹脂を積層する工程1において横方向に配列して隣接させた積層流(2種2層または2種3層)を作製し、工程2において左右に2分割を行い、工程3において幅方向に広げる工程と、厚み方向に縮める工程を同時に行い、工程4においてそれぞれの層を重ね合わせることで、17層の交互積層体を作製する。これら工程2から4を1セットとして繰り返し行うことで、積層数を増やすことができる。上記に述べたように、2種3層の積層流からはじめる場合は、1セットでは5層、2セットでは9層、3セットでは17層の積層体を作製することが可能であり、積層数は2(N+1)+1(ここでNは工程2~4のセット数)で表すことができる。2種2層の積層流からはじめる場合は、1セットでは4層、2セットでは8層、3セットでは16層の積層体を作製することが可能であり、積層数は2(N+1)(ここでNは工程2~4のセット数)で表すことができる。
<Method for producing laminate>
As shown in FIG. 1, the laminate manufacturing method of the present invention has a laminated flow (2 in which at least two molten resins are arranged side by side in the step 1 in which two types of resins called feed blocks are laminated. 2 layers of seeds or 2 layers of 3 layers), dividing into 2 left and right in step 2, performing the step of expanding in the width direction in step 3 and the step of reducing in the thickness direction at the same time, and overlapping each layer in step 4 By combining them, an alternating laminate of 17 layers is produced. By repeating these steps 2 to 4 as one set, the number of stacked layers can be increased. As described above, when starting from a laminated flow of 2 types and 3 layers, it is possible to produce a laminate of 5 layers with 1 set, 9 layers with 2 sets, and 17 layers with 3 sets. Can be expressed as 2 (N + 1) +1 (where N is the number of sets of steps 2 to 4). When starting with a two-layer, two-layer flow, it is possible to produce a laminate of 4 layers in 1 set, 8 layers in 2 sets, 16 layers in 3 sets, and the number of layers is 2 (N + 1) (here N can be expressed by the number of sets of steps 2-4.
 積層体を形成させた各工程を経た後、最外層側に樹脂Cを積層した後にダイにより横方向に広げてフィルム形状に成形する。ここで最外層(樹脂C)はフィルムダイ内部で積層体(B/A/・・・A/B)の構造が崩れることを防ぐために積層を行う。フィルム状に成形された後の各層の厚みは、後述する粉砕工程により得られる粒子の厚みにあわせて適宜決定すればよい。 After passing through each process which formed the laminated body, after laminating | stacking resin C on the outermost layer side, it spreads laterally with a die | dye and shape | molds in a film shape. Here, the outermost layer (resin C) is laminated in order to prevent the structure of the laminate (B / A /... A / B) from collapsing inside the film die. What is necessary is just to determine suitably the thickness of each layer after shape | molding in the film form according to the thickness of the particle | grains obtained by the crushing process mentioned later.
 効率的にフィルムを製造する方法としては、溶融押出方法が挙げられる。しかし、同方法を用いて、目標とする厚み1~50μmの単層フィルムを作製する場合、材料の強度が不足し、引取る工程や巻取る工程においてフィルムが破断するなどの問題があり、安定して製造することは困難であった。安定して製造可能なフィルム厚みは、経験的に50~60μm以上である。得られたフィルムは、その後延伸しても良い。 An example of a method for efficiently producing a film is a melt extrusion method. However, when a single-layer film having a target thickness of 1 to 50 μm is produced using this method, the strength of the material is insufficient, and there is a problem that the film breaks during the take-up process and the winding process. It was difficult to manufacture. The film thickness that can be stably produced is empirically 50-60 μm or more. The resulting film may then be stretched.
 そこで、接着性の低い樹脂同士を、目標とする厚みよりも薄く交互積層した多層フィルムを溶融押出方法により作製し、これを粉砕と同時に層間を剥離させて、薄膜の鱗片状の微粉末を作製することができる。 Therefore, a multilayer film made by alternately laminating resins with low adhesiveness thinner than the target thickness is prepared by the melt extrusion method, and the layers are peeled at the same time as the pulverization to produce a thin scale-like fine powder. can do.
 得られた多層フィルムは、粉砕機により粉砕されて微粉末とされる。粉砕方法としては、乾式粉砕、湿式粉砕、凍結粉砕などが挙げられる。前記粉砕機の例は、ハンマーミル粉砕機、ピン式粉砕機、衝撃式粉砕機、ジェットミル粉砕機、ボールミル粉砕機、衝撃微粉砕機、気流式粉砕機、ジェット粉砕機などが挙げられる。なかでも、乾式粉砕法が乾燥工程が不要なため好ましい。 The obtained multilayer film is pulverized by a pulverizer into a fine powder. Examples of the pulverization method include dry pulverization, wet pulverization, and freeze pulverization. Examples of the pulverizer include a hammer mill pulverizer, a pin pulverizer, an impact pulverizer, a jet mill pulverizer, a ball mill pulverizer, an impact fine pulverizer, an airflow pulverizer, and a jet pulverizer. Of these, the dry pulverization method is preferable because a drying step is unnecessary.
 粉砕工程では、粉砕装置が摩擦熱などによって高温になるため、液化炭酸ガス、液体窒素ガスなどの液化気体等を冷却剤として多層フィルムを冷却しながら破砕する冷凍粉砕や、装置に冷却媒体を通して冷却する方法などが挙げられる。これによって粉砕時の剪断熱、摩擦熱等によっても多層フィルムは融着等を起こさなくなり、薄膜の厚さを損なうことなく薄膜を微粉末化できる。粉砕方法として、製造コストを考えた場合、装置に冷却媒体を通して冷却する方法が好ましい。 In the pulverization process, the pulverizer becomes hot due to frictional heat, etc., so refrigeration and pulverization while cooling the multilayer film using liquefied gas such as liquefied carbon dioxide gas and liquid nitrogen gas as a coolant, and cooling through a cooling medium through the device The method of doing is mentioned. Thus, the multilayer film does not cause fusion or the like even by shearing heat, frictional heat, or the like at the time of pulverization, and the thin film can be made into fine powder without impairing the thickness of the thin film. As a pulverization method, when manufacturing cost is considered, a method of cooling the apparatus through a cooling medium is preferable.
 粉砕過程では、固体材料の表面が削れていく表面粉砕と、固体が大きく割れて段々と小さくなっていく体積粉砕に別けられる。現実的には表面粉砕と体積粉砕が組み合わさった中で粉砕が進むと考えられる。お互いの親和性が低い樹脂を交互積層したものは、一見、接着しているように見えるが、容易に剥離することが可能な状態であると考えられる。この積層フィルムは粉砕過程で発生するいくつかの粉砕力が引き金となって、層間の剥離が進むものもある。 The pulverization process can be divided into surface pulverization, where the surface of the solid material is scraped, and volume pulverization, where the solid breaks down and becomes smaller. Actually, it is considered that pulverization proceeds in a combination of surface pulverization and volume pulverization. A product obtained by alternately laminating resins having low affinity to each other seems to be bonded, but is considered to be in a state where it can be easily peeled off. Some of these laminated films are triggered by several crushing forces generated during the crushing process, and the peeling between layers proceeds.
 親和性の低い樹脂としては、例えば、ポリメチルメタアクリレート樹脂との組合せの場合、ポリスチレン樹脂(PS)、脂環式オレフィン系樹脂(COP)、脂環式オレフィン系コポリマー(COC)、ポリアミド樹脂(PA)などが挙げられ、これらの交互積層フィルムは層間剥離が起こりやすい。 As a resin having low affinity, for example, in the case of a combination with a polymethyl methacrylate resin, polystyrene resin (PS), alicyclic olefin resin (COP), alicyclic olefin copolymer (COC), polyamide resin ( PA) and the like, and these alternately laminated films are easily delaminated.
 上記方法で得られた微粉末の一例の外観を拡大した斜視図を図6示す。この微粉末には狭義の「板状」の他、粉砕の仕方によって生じることのある、いわゆる「薄片状」、「鱗片状」等の形状のポリマー粒子も含む。 FIG. 6 shows an enlarged perspective view of an example of the fine powder obtained by the above method. In addition to “plate-like” in the narrow sense, the fine powder includes polymer particles having a shape such as so-called “flaky” or “flaky” that may be generated depending on the manner of pulverization.
 一方の樹脂に水溶性樹脂を用いる場合、エクセバール(株式会社クラレ商標)やポリビニルアルコール樹脂に水分を含ました含水PVA樹脂などが上げられる。得られた複層フィルムを粉砕した後、98℃×60分間熱水中で処理することで、水溶性樹脂成分は完全に溶出し、非水溶性樹脂成分を得ることができる(処理条件参照、出願番号:特願平11-247061、発明の名称:易分割性ポリアミド系複合繊維)。 When a water-soluble resin is used for one resin, Exeval (Kuraray Co., Ltd.) or a water-containing PVA resin containing moisture in a polyvinyl alcohol resin can be raised. After pulverizing the resulting multilayer film, the water-soluble resin component is completely eluted by treating in hot water at 98 ° C. for 60 minutes (see processing conditions, Application No .: Japanese Patent Application No. 11-247061, Title of Invention: Easily resolvable polyamide composite fiber).
 本発明で使用する微粉末において、一般に、図6中t1で示される厚さ、すなわち一個の粉体のうちの厚さは、押出成形によって作製する際の吐出量や引取り速度、粉砕条件によって調整することができる。また、図中d1で示される粒径も、得られた粉砕の程度により調整することができる。なお、厚さについては電子顕微鏡観察により求めた個別のt1の算術平均によりt1を代表する厚さ(t)とすることとし、粒径については、d1を個別に測定することは困難であるため、光回折法により求めた粒径分布の中心値をもってd1を代表する粒径(d)とすることとする。更にこれらの調整により、種々のアスペクト比(d/t)の板状ポリマー粉体を得ることができる。 In the fine powder used in the present invention, in general, the thickness indicated by t1 in FIG. 6, that is, the thickness of one powder depends on the discharge amount, the take-up speed, and the pulverization conditions when produced by extrusion molding. Can be adjusted. Further, the particle size indicated by d1 in the figure can also be adjusted by the degree of pulverization obtained. The thickness is assumed to be a thickness (t) representative of t1 by the arithmetic average of the individual t1 obtained by observation with an electron microscope, and it is difficult to individually measure d1 for the particle size. The central value of the particle size distribution obtained by the optical diffraction method is used as the particle size (d) representing d1. Furthermore, plate polymer powders having various aspect ratios (d / t) can be obtained by these adjustments.
 本発明の微粉末を化粧料に配合する微粉末とする場合には、厚さ(t)は0.1μm~50μmが好ましく、より好ましくは約0.1μm~30μm、特に好ましくは0.5μm~20μmである。また、微粉体の粒径は、1μm~300μmであり、より好ましくは1μm~200μmである。また、微粉末のアスペクト比(d/t)は約6以上300以下であることが好ましく、より好ましくは約10以上200以下である。一般に付着性は微粉体の厚さに依存し、薄いものほど付着しやすいとされる。微粉体の厚みが薄すぎると分散性や展延性が劣る傾向にあり、毛穴や皮溝に集積したり凝集したりするため、好ましくない。また、微粉体の厚みが厚すぎると、展延性が損なわれ、肌への付着性や粒子間の付着性が低下し好ましくない。 When the fine powder of the present invention is used as a fine powder to be blended in cosmetics, the thickness (t) is preferably 0.1 μm to 50 μm, more preferably about 0.1 μm to 30 μm, particularly preferably 0.5 μm to 20 μm. The particle size of the fine powder is 1 μm to 300 μm, more preferably 1 μm to 200 μm. The aspect ratio (d / t) of the fine powder is preferably about 6 or more and 300 or less, more preferably about 10 or more and 200 or less. In general, the adhesion depends on the thickness of the fine powder, and the thinner the one, the easier it is to adhere. If the thickness of the fine powder is too thin, dispersibility and spreadability tend to be inferior, and it is not preferable because it accumulates or aggregates in pores and skin grooves. On the other hand, if the fine powder is too thick, the spreadability is impaired, and the adhesion to the skin and the adhesion between the particles are lowered, which is not preferable.
 化粧料中に配合する微粉末として上記した範囲のものを用いれば、嵩高であると共に薄く、透明性が良いものであるため、化粧料中での分散性が優れ、柔らかな感触でスライド性も良く、肌に密着し、経時的な色のくすみがなく塗布膜の透明感が持続し、化粧効果の高さにおいて良好なものを得ることができる。 If the fine powder to be blended in cosmetics is in the above-mentioned range, it is bulky and thin and has good transparency. Therefore, it has excellent dispersibility in cosmetics, soft touch and sliding properties. It is well adhered to the skin, has no color dullness with time, and the transparency of the coating film is maintained, so that a good cosmetic effect can be obtained.
 本発明に用いるアクリル系樹脂とは、メタクリル酸メチルの単独ポリマー、あるいはメタクリル酸メチルを主成分とし他の共重合単量体を含有する単量体混合物のコポリマーをいい、重合度3000以下のものが好ましく用いられる。さらに透明性を必要とする場合には、重合度300~1000程度のものが好もしく、重合度400~600でメルトフローレートが25~34g/10min(200℃-3.8Kg)程度のものがより好ましい。 The acrylic resin used in the present invention is a homopolymer of methyl methacrylate or a copolymer of a monomer mixture containing methyl methacrylate as a main component and containing other comonomer, and has a polymerization degree of 3000 or less. Is preferably used. Further, when transparency is required, those having a degree of polymerization of about 300 to 1000 are preferred, and those having a degree of polymerization of 400 to 600 and a melt flow rate of about 25 to 34 g / 10 min (200 ° C.-3.8 kg). Is more preferable.
 メタクリル酸メチルと共重合する単量体としては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどのアクリル酸エステル類、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸グリシジル、メタクリル酸シクロヘキシルなどのメタクリル酸エステル類、酢酸ビニルなどの酢酸エステル類、スチレン、α-メチルスチレンなどの芳香族ビニル化合物、無水マレイン酸、マレイン酸モノ、及びジアルキルエステル、N-フェニルマレイミドなどのマレイミド類、アクリル酸、メタクリル酸、アクリル酸金属塩、メタクリル酸金属塩などが挙げられる。これらは1種以上を用いることができるが、メタクリル酸メチルとの共重合比率は、通常1~30重量%程度の範囲で使用するのが好ましい。 Examples of the monomer copolymerized with methyl methacrylate include acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Methacrylates such as hydroxyethyl, glycidyl methacrylate, cyclohexyl methacrylate, acetates such as vinyl acetate, aromatic vinyl compounds such as styrene and α-methylstyrene, maleic anhydride, mono- and dialkyl esters of maleic acid, Examples thereof include maleimides such as N-phenylmaleimide, acrylic acid, methacrylic acid, acrylic acid metal salts, and methacrylic acid metal salts. One or more of these can be used, but the copolymerization ratio with methyl methacrylate is usually preferably in the range of about 1 to 30% by weight.
 スチレン樹脂は、スチレン系単量体単位から構成されており、かかるスチレン系単量体としては、例えば、スチレン、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン等が挙げられ、これらは1種のみならず、2種以上を併用することもできる。これらの中でもスチレン系樹脂スチレン系樹脂が好ましい。 The styrene resin is composed of styrene monomer units. Examples of the styrene monomer include styrene, α-methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene, 4 -Dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene and the like can be mentioned, and these can be used alone or in combination of two or more. Of these, styrene resins are preferred.
 また、スチレン系樹脂は、ゴム質重合体を含有したゴム含有ポリスチレン樹脂であってもよい。ここでいうゴム質重合体とは、ガラス転移温度が好ましくは0℃以下、より好ましくは-20℃以下のものであり、ポリブタジエン、スチレン-ブタジエン共重合体、30重量%までの(メタ)アクリル酸低級アルキルエステルを含有するスチレン-ブタジエン系共重合体、ポリイソプレン、ポリクロロプレン等のジエン系ゴムが好ましいものとして挙げられる。他の適当なゴム質重合体の例としては、アクリル酸C1~C8アルキル、特にアクリル酸エチル、ブチルおよびエチルヘキシルを主体とするアクリル酸アルキルゴムが挙げられる。アクリル酸アルキルゴムは、30重量%までの酢酸ビニル、メタクリル酸メチル、スチレン、アクリロニトリル、ビニルエーテルなどが共重合されていてもよく、さらに5重量%以下のアルキレンジオール(メタ)アクリレート、ジビニルベンゼン、シアヌル酸トリアリル等の架橋性不飽和単量体が共重合されていてもよい。 Further, the styrene resin may be a rubber-containing polystyrene resin containing a rubbery polymer. The rubbery polymer herein has a glass transition temperature of preferably 0 ° C. or lower, more preferably −20 ° C. or lower, and polybutadiene, styrene-butadiene copolymer, up to 30% by weight of (meth) acrylic. Preferred examples include diene rubbers such as styrene-butadiene copolymer, polyisoprene, polychloroprene and the like which contain an acid lower alkyl ester. Examples of other suitable rubbery polymers include alkyl acrylate rubbers based on C1-C8 alkyl acrylates, especially ethyl acrylate, butyl and ethylhexyl. The alkyl acrylate rubber may be copolymerized with up to 30% by weight of vinyl acetate, methyl methacrylate, styrene, acrylonitrile, vinyl ether, etc., and further, 5% by weight or less of alkylene diol (meth) acrylate, divinylbenzene, cyanuric A crosslinkable unsaturated monomer such as triallyl acid may be copolymerized.
 スチレン系樹脂の好ましい具体例としては、ポリスチレン、ゴム含有ポリスチレン、アクリロニトリル-スチレン共重合体、ゴム含有アクリロニトリル-スチレン共重合体、スチレン-メタクリル酸メチル共重合体、ゴム含有スチレン-メタクリル酸メチル共重合体、スチレン-アクリル酸ブチル共重合体、ゴム含有スチレン-アクリル酸ブチル共重合体、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体等のスチレン-ジエンブロック共重合体およびその水添物が挙げられる。これらの樹脂は1種のみならず、2種以上をブレンドして使用しても良い。これらのなかでも、ポリスチレンおよびゴム含有ポリスチレン樹脂が、各種の物性バランスの面から好ましいものとして挙げられる。 Preferred examples of the styrene resin include polystyrene, rubber-containing polystyrene, acrylonitrile-styrene copolymer, rubber-containing acrylonitrile-styrene copolymer, styrene-methyl methacrylate copolymer, rubber-containing styrene-methyl methacrylate copolymer. Polymer, styrene-butyl acrylate copolymer, rubber-containing styrene-butyl acrylate copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, etc. Styrene-diene block copolymers and hydrogenated products thereof. These resins may be used by blending not only one type but also two or more types. Among these, polystyrene and rubber-containing polystyrene resin are preferable from the viewpoint of various physical property balances.
 脂環式ポリオレフィン系樹脂としては、JSR(株)のアートン(登録商標)、日本ゼオン(株)のゼオノア(登録商標)およびゼオネックス、三井化学(株)のアペル(登録商標)、ポリプラスチックス(株)のトーパスなどが好ましく用いられる。 Examples of the alicyclic polyolefin-based resin include Arton (registered trademark) of JSR Corporation, ZEONOR (registered trademark) and ZEONEX of ZEON Corporation, Apel (registered trademark) of Mitsui Chemicals, Polyplastics ( Topas, Inc.) is preferably used.
 ポリアミド系樹脂とは、3員環以上のラクタム、重合可能なω-アミノ酸、二塩基酸とジアミンなどの重縮合によって得られるポリアミド樹脂を用いることができる。具体的にはε-カプロラクタム、アミノカプロン酸、エナントラクタム、7-アミノヘプタン酸、11-アミノウンデカン酸、9-アミノノナン酸、α-ピロリドン、α-ピペリドンなどの重合体、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、メタキシレンジアミンなどのジアミン類とテレフタル酸、イソフタル酸、アジピン酸、セバシン酸、ドデカン二塩基酸、グルタール酸などのジカルボン酸類とを宿重合させて得られる重合体、または共重合体であり例えば、ナイロン4、6、7、8、11、12、6・6、6・10、6・11、6・12、6T、6/6・6、6/12、6/6T、6I/6Tなどが上げられる。
 これらのうちで得られるフィルムの熱的、機械的特性の面から、特にナイロン6ナイロン6/6・6共重合樹脂の使用が適している。
As the polyamide-based resin, a polyamide resin obtained by polycondensation of a lactam having a three-membered ring or more, a polymerizable ω-amino acid, a dibasic acid and a diamine can be used. Specifically, polymers such as ε-caprolactam, aminocaproic acid, enanthractam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 9-aminononanoic acid, α-pyrrolidone, α-piperidone, hexamethylenediamine, nonamethylenediamine A heavy polymer obtained by subjecting diamines such as undecamethylenediamine, dodecamethylenediamine and metaxylenediamine to dicarboxylic acids such as terephthalic acid, isophthalic acid, adipic acid, sebacic acid, dodecane dibasic acid and glutaric acid. For example, nylon 4, 6, 7, 8, 11, 12, 6 · 6, 6 · 10, 6 · 11, 6 · 12, 6T, 6/6 · 6, 6/12 , 6 / 6T, 6I / 6T, etc.
Of these, nylon 6 nylon 6/6/6 copolymer resin is particularly suitable from the viewpoint of the thermal and mechanical properties of the film obtained.
 本発明で用いる上記の各樹脂は、それぞれ単独で用いても良いし、2種以上をブレンドして用いても良い。 The above resins used in the present invention may be used alone or in a blend of two or more.
<鱗片状微粉末の作製方法>
 ツインインペラ対向気流乾式粉砕機(ドライバースト型式DB-180W、スギノマシン製)を用いて行った。粉砕方法は、材料投入側のインペラ回転数と材料排出側のインペラ回転数を調整することで行った。粉砕条件は表1に記載した。
<Method for producing scaly fine powder>
This was carried out using a twin impeller opposed airflow dry pulverizer (Drivest type DB-180W, manufactured by Sugino Machine). The crushing method was performed by adjusting the impeller rotation speed on the material input side and the impeller rotation speed on the material discharge side. The grinding conditions are listed in Table 1.
<鱗片状微粒子の形状測定>
[粒径(d)の測定]
 粉砕により得られた微粉末について、堀場製作所製のレーザー回折式粒度分布測定装置(型式:LA-910)を用いて粒径を測定した。本発明において粒径は、前記粒度分布測定装置によって得られる粒径分布の中心値(D50)をもって粒径(d)とした。
[平均厚み(t)の測定]
 粉砕により得られた微粉末の厚さを、日立製作所製の走査型電子顕微鏡(型式:S-2150)を用いて測定した。厚さ測定はランダムに選んだ5つの粉末の測定結果の平均値とした。
<Shape measurement of scale-like fine particles>
[Measurement of particle diameter (d)]
With respect to the fine powder obtained by pulverization, the particle size was measured using a laser diffraction particle size distribution analyzer (model: LA-910) manufactured by Horiba. In the present invention, the particle size is defined as the particle size (d) with the center value (D50) of the particle size distribution obtained by the particle size distribution measuring device.
[Measurement of average thickness (t)]
The thickness of the fine powder obtained by pulverization was measured using a scanning electron microscope (model: S-2150) manufactured by Hitachi, Ltd. The thickness measurement was the average of the measurement results of five randomly selected powders.
<実施例1>
 材料Aに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)HR-L、クラレ製)を樹脂Aとし、ポリスチレン(PS樹脂、MT5D/G100C=50/50wt%、トーヨースチロール製)を樹脂Bとした。樹脂Aおよび樹脂Bをそれぞれ単軸押出機(PSV22mm:プラエンジ社製)にて、温度230℃の溶融状態とし、ギアポンプによって吐出比が樹脂A/樹脂B=1/5になるように計量し、工程1の金型へ導入した。工程2~4を3セット繰り返し行うことで17層の積層体を作製した。その次に、積層体の最外層に低密度ポリエチレン(LDPE樹脂、ノバテックLC600、日本ポリエチレン製)を被覆した後、300mm幅のフィルムダイ(ダイの隙間:約1mm)を通して吐出したものを、引取り速度6m/min、40℃に温度コントロールした3本の金属製の鏡面ロールにて冷却し、トータル19層のフィルムを作製した。得られたフィルムのLDPE樹脂層を剥がしたものを、粉砕機に30g投入し、回転数8000×9000min-1(IN×OUT)、処理時間2分30秒の条件にて微粉末を作製した。粉砕前の積層体のレーザー顕微鏡写真を図2に示した。粉砕品の走査型電子顕微鏡写真を図3に示した。微粉末の粒径を測定した結果を図4に示した。
<Example 1>
As resin used for material A, polymethyl methacrylate (PMMA resin, Parapet (registered trademark) HR-L, manufactured by Kuraray) is used as resin A, and polystyrene (PS resin, MT5D / G100C = 50/50 wt%, manufactured by Toyostyrene) Was Resin B. Resin A and Resin B were each melted at a temperature of 230 ° C. with a single screw extruder (PSV 22 mm: manufactured by Praengi), and weighed by a gear pump so that the discharge ratio was Resin A / Resin B = 1/5. It was introduced into the mold of Step 1. By repeating the steps 2 to 4 in 3 sets, a 17-layer laminate was produced. Next, after coating the outermost layer of the laminate with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene), the one discharged through a 300 mm wide film die (die gap: about 1 mm) is taken up. The film was cooled with three metal mirror rolls controlled at a temperature of 6 m / min and 40 ° C. to produce a total of 19 layers of film. 30 g of the obtained film, from which the LDPE resin layer had been peeled, was put into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 × 9000 min −1 (IN × OUT) and a treatment time of 2 minutes and 30 seconds. A laser micrograph of the laminate before pulverization is shown in FIG. A scanning electron micrograph of the pulverized product is shown in FIG. The results of measuring the particle size of the fine powder are shown in FIG.
<実施例2>
 樹脂の投入量と回転数、処理時間以外は、実施例1と同様の条件にて微粉末を作製した。投入量30g、回転数8000×10000min-1(IN×OUT)、処理時間2分50秒の条件にて微粉末を作製した。
<Example 2>
A fine powder was produced under the same conditions as in Example 1 except for the amount of resin input, the number of rotations, and the treatment time. A fine powder was produced under the conditions of an input amount of 30 g, a rotational speed of 8000 × 10000 min −1 (IN × OUT), and a treatment time of 2 minutes and 50 seconds.
<実施例3>
 材料Aに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)HR-L、クラレ製)を樹脂Aとし、シクロオレフィンコポリマー(COP樹脂、Topas6013S、Ticona製)を樹脂Bとした。樹脂Aおよび樹脂Bをそれぞれ単軸押出機(PSV22mm:プラエンジ社製)にて、温度250℃の溶融状態とし、ギアポンプによって吐出比が樹脂A/樹脂B=1/5になるように計量し、工程1の金型へ導入した。工程2~4を3セット繰り返し行うことで17層の積層体を作製した。
 その次に、積層体の最外層に低密度ポリエチレン(LDPE樹脂、ノバテックLC600、日本ポリエチレン製)を被覆した後、300mm幅のフィルムダイ(ダイの隙間:約1mm)を通して吐出したものを、引取り速度6m/min、40℃に温度コントロールした3
本の金属製の鏡面ロールにて冷却し、トータル19層のフィルムを作製した。
 得られたフィルムのLDPE樹脂層を剥がしたものを、粉砕機に30g投入し、回転数8000×9000min-1(IN×OUT)、処理時間2分30秒の条件にて微粉末を作製した。
<Example 3>
As the resin used for the material A, polymethyl methacrylate (PMMA resin, Parapet (registered trademark) HR-L, manufactured by Kuraray) was used as the resin A, and cycloolefin copolymer (COP resin, Topas 6013S, manufactured by Ticona) was used as the resin B. Resin A and Resin B were each melted at a temperature of 250 ° C. with a single screw extruder (PSV 22 mm: manufactured by Praengi), and weighed with a gear pump so that the discharge ratio was Resin A / Resin B = 1/5. It was introduced into the mold of Step 1. By repeating the steps 2 to 4 in 3 sets, a 17-layer laminate was produced.
Next, after coating the outermost layer of the laminate with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene), the one discharged through a 300 mm wide film die (die gap: about 1 mm) is taken up. Speed controlled at 6 m / min, 40 ° C 3
The film was cooled with a metal mirror roll, and a total of 19 layers of film were produced.
30 g of the obtained film, from which the LDPE resin layer had been peeled, was put into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 × 9000 min −1 (IN × OUT) and a treatment time of 2 minutes and 30 seconds.
<実施例4> 
 材料Aに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)GF、クラレ製)とし、ポリメチルメタクリレート-ポリスチレンの共重合樹脂(MS樹脂、エスチレンMS-200、新日鉄住金化学製)を樹脂Bとした。樹脂Aおよび樹脂Bをそれぞれ単軸押出機(PSV22mm:プラエンジ社製)にて、温度230℃の溶融状態とし、ギアポンプによって吐出比が樹脂A/樹脂B=4/1になるように計量し、工程1の金型へ導入した。工程2~4を3セット繰り返し行うことで17層の積層体を作製した。その次に、積層体の最外層に低密度ポリエチレン(LDPE樹脂、ノバテックLC600、日本ポリエチレン製)を被覆し、300mm幅のフィルムダイ(ダイの隙間:約1mm)を通して吐出したものを、引取り速度3.6m/min、40℃に温度コントロールした3本の金属製の鏡面ロールにて冷却し、トータル19層のフィルムを作製した。
 得られたフィルムのLDPE樹脂層を剥がしたものを、粉砕機に268g投入し、回転数8000×10000min-1(IN×OUT)、処理時間12分12秒の条件にて微粉末を作製した。
<Example 4>
The resin used for material A is polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GF, manufactured by Kuraray), and a polymethyl methacrylate-polystyrene copolymer resin (MS resin, Estyrene MS-200, manufactured by Nippon Steel & Sumikin Chemical). Was Resin B. Resin A and Resin B were each melted at a temperature of 230 ° C. using a single screw extruder (PSV 22 mm: manufactured by Praengi), and weighed by a gear pump so that the discharge ratio was Resin A / Resin B = 4/1. It was introduced into the mold of Step 1. By repeating the steps 2 to 4 in 3 sets, a 17-layer laminate was produced. Next, the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm). The film was cooled with three metal mirror rolls controlled at 3.6 m / min and 40 ° C. to produce a total of 19 layers of film.
268 g of the obtained film from which the LDPE resin layer had been peeled was placed in a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 × 10000 min −1 (IN × OUT) and a treatment time of 12 minutes and 12 seconds.
<参考例1>
 材料Aに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)GF、クラレ製)を樹脂Aとし、ポリプロピレン(PP樹脂、ノバテックMA3、日本ポリプロ製)を樹脂Bとした。樹脂Aおよび樹脂Bをそれぞれ単軸押出機(PSV22mm:プラエンジ社製)にて、温度230℃の溶融状態とし、ギアポンプによって吐出比が樹脂A/樹脂B=1/2になるように計量し、工程1の金型へ導入した。工程2~4を3セット繰り返し行うことで17層の積層体を作製した。その次に、積層体の最外層に低密度ポリエチレン(LDPE樹脂、ノバテックLC600、日本ポリエチレン製)を被覆し、300mm幅のフィルムダイ(ダイの隙間:約1mm)を通して吐出したものを、引取り速度6m/min、40℃に温度コントロールした3本の金属製の鏡面ロールにて冷却し、トータル19層のフィルムを作製した。粉砕機に30g投入し、回転数8000×9000min-1(IN×OUT)、処理時間2分30秒の条件にて微粉末を作製した。粉砕品の層の剥離状態を走査型電子顕微鏡写真にて観察した結果、ポリプロピレンの融着物とポリメチルメタクリレートの粉砕品が混在し、良好な微粉末は得られなかった。
<Reference Example 1>
As the resin used for the material A, polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GF, manufactured by Kuraray) was used as the resin A, and polypropylene (PP resin, Novatec MA3, manufactured by Nippon Polypro Co., Ltd.) was used as the resin B. Resin A and Resin B were each melted at a temperature of 230 ° C. using a single screw extruder (PSV 22 mm: manufactured by Praengi), and measured with a gear pump so that the discharge ratio was Resin A / Resin B = 1/2. It was introduced into the mold of Step 1. By repeating the steps 2 to 4 in 3 sets, a 17-layer laminate was produced. Next, the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm). The film was cooled by three metal mirror rolls controlled at 6 m / min and 40 ° C. to produce a total of 19 layers of film. 30 g was charged into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 × 9000 min −1 (IN × OUT) and a treatment time of 2 minutes 30 seconds. As a result of observing the peeled state of the layer of the pulverized product with a scanning electron micrograph, the fused product of polypropylene and the pulverized product of polymethyl methacrylate were mixed, and a good fine powder could not be obtained.
<参考例2>
 材料Aに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)GF、クラレ製)を樹脂Aとし、ポリカーボネイト(PC樹脂、レキサン121R、サービック製)を樹脂Bとした。樹脂Aおよび樹脂Bをそれぞれ単軸押出機(PSV22mm:プラエンジ社製)にて、温度250℃の溶融状態とし、ギアポンプによって吐出比が樹脂A/樹脂B=1/2になるように計量し、工程1の金型へ導入した。工程2~4を3セット繰り返し行うことで17層の積層体を作製した。その次に、積層体の最外層に低密度ポリエチレン(LDPE樹脂、ノバテックLC600、日本ポリエチレン製)を被覆し、300mm幅のフィルムダイ(ダイの隙間:約1mm)を通して吐出したものを、引取り速度6m/min、40℃に温度コントロールした3本の金属製の鏡面ロールにて冷却し、トータル19層のフィルムを作製した。粉砕機に30g投入し、回転数8000×9000min-1(IN×OUT)、処理時間2分30秒の条件にて微粉末を作製した。粉砕品の層の剥離状態を走査型電子顕微鏡写真にて観察した結果、一部に剥離が見られたが、大部分には剥離は見られなかった。粉砕品の観察結果を図5に示した。
<Reference Example 2>
As the resin used for the material A, polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GF, manufactured by Kuraray) was used as the resin A, and polycarbonate (PC resin, Lexan 121R, manufactured by Servic) was used as the resin B. Resin A and Resin B were each melted at a temperature of 250 ° C. with a single screw extruder (PSV 22 mm: manufactured by Praengi), and weighed so that the discharge ratio was Resin A / Resin B = 1/2 by a gear pump. It was introduced into the mold of Step 1. By repeating the steps 2 to 4 in 3 sets, a 17-layer laminate was produced. Next, the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm). The film was cooled by three metal mirror rolls controlled at 6 m / min and 40 ° C. to produce a total of 19 layers of film. 30 g was charged into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 × 9000 min −1 (IN × OUT) and a treatment time of 2 minutes 30 seconds. As a result of observing the peeled state of the layer of the pulverized product with a scanning electron micrograph, peeling was observed in part, but peeling was not observed in most part. The observation result of the pulverized product is shown in FIG.
<参考例3>
 材料Aに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)HR-L、クラレ製)を樹脂Aとし、非晶性ポリエチレンテレフタレート(PET樹脂、SKYGREEN PETG S2008 SKケミカル)を樹脂Bとした。樹脂Aおよび樹脂Bをそれぞれ単軸押出機(PSV22mm:プラエンジ社製)にて、温度230℃の溶融状態とし、ギアポンプによって吐出比が樹脂A/樹脂B=1/1になるように計量し、工程1の金型へ導入した。工程2~4を3セット繰り返し行うことで17層の積層体を作製した。その次に、積層体の最外層に低密度ポリエチレン(LDPE樹脂、ノバテックLC600、日本ポリエチレン製)を被覆し、300mm幅のフィルムダイ(ダイの隙間:約1mm)を通して吐出したものを、引取り速度6m/min、40℃に温度コントロールした3本の金属製の鏡面ロールにて冷却し、トータル19層のフィルムを作製した。
 粉砕機に30g投入し、回転数8000×9000min-1(IN×OUT)、処理時間3分16秒の条件にて微粉末を作製した。粉砕品の層の剥離状態を走査型電子顕微鏡写真にて観察した結果、一部に剥離が見られたが、大部分には剥離は見られなかった。
<Reference Example 3>
As the resin used for the material A, polymethyl methacrylate (PMMA resin, Parapet (registered trademark) HR-L, manufactured by Kuraray) is used as the resin A, and amorphous polyethylene terephthalate (PET resin, SKYGREEN PETG S2008 SK Chemical) is used as the resin B. It was. Resin A and Resin B were each melted at a temperature of 230 ° C. using a single screw extruder (PSV 22 mm: manufactured by Praengi Co., Ltd.), and weighed by a gear pump so that the discharge ratio was Resin A / Resin B = 1/1. It was introduced into the mold of Step 1. By repeating the steps 2 to 4 in 3 sets, a 17-layer laminate was produced. Next, the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm). The film was cooled by three metal mirror rolls controlled at 6 m / min and 40 ° C. to produce a total of 19 layers of film.
30 g was charged into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 × 9000 min −1 (IN × OUT) and a treatment time of 3 minutes and 16 seconds. As a result of observing the peeled state of the layer of the pulverized product with a scanning electron micrograph, peeling was observed in part, but peeling was not observed in most part.
<実施例5>
 材料Aに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)GF、クラレ製)と、ポリスチレン(PS樹脂、MT5D/G100C=50/50wt%、トーヨースチロール製)を20/80の重量比で混合したものを樹脂Aとし、材料Bに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)GH-S、クラレ製)を樹脂Bとした。樹脂Aおよび樹脂Bをそれぞれ単軸押出機(PSV22mm:プラエンジ社製)にて、温度230℃の溶融状態とし、ギアポンプによって吐出比が樹脂A/樹脂B=4/1になるように計量し、工程1の金型へ導入した。工程2~4を3セット繰り返し行うことで17層の積層体を作製した。
 その次に、積層体の最外層に低密度ポリエチレン(LDPE樹脂、ノバテックLC600、日本ポリエチレン製)を被覆し、300mm幅のフィルムダイ(ダイの隙間:約1mm)を通して吐出したものを、引取り速度3.6m/min、40℃に温度コントロールした3本の金属製の鏡面ロールにて冷却し、トータル19層のフィルムを作製した。得られたフィルムのLDPE樹脂層を剥がしたものを、粉砕機に30g投入し、回転数8000×9000min-1(IN×OUT)、処理時間2分30秒の条件にて微粉末を作製した。
<Example 5>
As resin used for material A, polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GF, manufactured by Kuraray) and polystyrene (PS resin, MT5D / G100C = 50/50 wt%, manufactured by Toyostyrene) are 20/80. Resin A was mixed at a weight ratio, and polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GH-S, manufactured by Kuraray Co., Ltd.) was used as resin B as the resin used for material B. Resin A and Resin B were each melted at a temperature of 230 ° C. using a single screw extruder (PSV 22 mm: manufactured by Praengi), and weighed by a gear pump so that the discharge ratio was Resin A / Resin B = 4/1. It was introduced into the mold of Step 1. By repeating the steps 2 to 4 in 3 sets, a 17-layer laminate was produced.
Next, the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm). The film was cooled by three metal mirror rolls controlled at 3.6 m / min and 40 ° C. to produce a total of 19 layers of film. 30 g of the obtained film, from which the LDPE resin layer had been peeled, was put into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 × 9000 min −1 (IN × OUT) and a treatment time of 2 minutes and 30 seconds.
<参考例4>
 材料Aに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)EH、クラレ製)と、ポリカーボネイト(PC樹脂、レキサン121R、SABIC製)を20/80の重量比で混合したものを樹脂Aとし、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)GF、クラレ製)を樹脂Bとした。樹脂Aおよび樹脂Bをそれぞれ単軸押出機(PSV22mm:プラエンジ社製)にて、温度250℃の溶融状態とし、ギアポンプによって吐出比が樹脂A/樹脂B=4/1になるように計量し、工程1の金型へ導入した。工程2~4を3セット繰り返し行うことで17層の積層体を作製した。その次に、積層体の最外層に低密度ポリエチレン(LDPE樹脂、ノバテックLC600、日本ポリエチレン製)を被覆し、300mm幅のフィルムダイ(ダイの隙間:約1mm)を通して吐出したものを、引取り速度3.6m/min、40℃に温度コントロールした3本の金属製の鏡面ロールにて冷却し、トータル19層のフィルムを作製した。
 得られたフィルムのLDPE樹脂層を剥がしたものを、粉砕機に30g投入し、回転数8000×9000min-1(IN×OUT)、処理時間2分30秒の条件にて微粉末を作製した。粉砕品の層の剥離状態を走査型電子顕微鏡写真にて観察した結果、一部に剥離が見られたが、大部分には剥離は見られなかった。
<Reference Example 4>
As a resin used for the material A, a mixture of polymethyl methacrylate (PMMA resin, Parapet (registered trademark) EH, manufactured by Kuraray) and polycarbonate (PC resin, Lexan 121R, manufactured by SABIC) in a weight ratio of 20/80 is used. Resin A was used, and polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GF, manufactured by Kuraray Co., Ltd.) was used as Resin B. Resin A and Resin B were each melted at a temperature of 250 ° C. with a single screw extruder (PSV 22 mm: manufactured by Praengi), and weighed with a gear pump so that the discharge ratio was Resin A / Resin B = 4/1. It was introduced into the mold of Step 1. By repeating the steps 2 to 4 in 3 sets, a 17-layer laminate was produced. Next, the outermost layer of the laminate is coated with low-density polyethylene (LDPE resin, Novatec LC600, manufactured by Nippon Polyethylene) and discharged through a 300 mm wide film die (die gap: about 1 mm). The film was cooled with three metal mirror rolls controlled at 3.6 m / min and 40 ° C. to produce a total of 19 layers of film.
30 g of the obtained film, from which the LDPE resin layer had been peeled, was put into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 × 9000 min −1 (IN × OUT) and a treatment time of 2 minutes and 30 seconds. As a result of observing the peeled state of the layer of the pulverized product with a scanning electron micrograph, peeling was observed in part, but peeling was not observed in most part.
 上記の実施例および参考例の結果を表1に示す。なお、参考例1~4における樹脂の組み合わせは、前記参考例の試験条件では分割できなかったが、条件が適切であれば分割できる可能性があるので、本発明は該参考例における樹脂の組み合わせを排除するものではない。 Table 1 shows the results of the above examples and reference examples. The resin combinations in Reference Examples 1 to 4 could not be divided under the test conditions of the above Reference Example, but may be divided if the conditions are appropriate. Therefore, the present invention is a combination of resins in the Reference Examples. Is not to be excluded.
  <実施例6>
 材料Aに使用する樹脂として、ポリメチルメタクリレート(PMMA樹脂、パラペット(登録商標)GF、クラレ製)を用い、水溶性樹脂(エクセバール(登録商標)CP-410、クラレ製)を樹脂Bとした。樹脂Aおよび樹脂Bをそれぞれ単軸押出機(PSV22mm:プラエンジ社製)にて、温度220℃の溶融状態とし、ギアポンプによって吐出比が樹脂A/樹脂B=1/5になるように計量し、工程1の金型へ導入した。工程2~4を3セット繰り返し行なうことで17層の積層体を作製した。その次に、積層体の最外層に低密度ポリエチレン(LDPE樹脂、ノバテックLC701、日本ポリエチレン製)を被覆した後、300mm幅のフィルムダイ(ダイの隙間:約1mm)を通して吐出したものを、引取速度6mm/min、40℃の温度にコントロールした3本の金属製の鏡面ロールにて冷却して、トータル19層のフィルムを作製した。
 得られたフィルムのLDPE樹脂層を剥がしたものを、粉砕機に30g投入し、回転数8000×9000min.-1(IN×out)、処理時間2分30秒の条件にて微粉末を作製した。
 次に、得られた微粉末を95℃の温水中で2時間攪拌することで、水溶性樹脂のみを溶解させた後、濾過することでポリメチルメタクリレートのみの微粉末を得た。
<Example 6>
Polymethyl methacrylate (PMMA resin, Parapet (registered trademark) GF, manufactured by Kuraray) was used as the resin used for material A, and water-soluble resin (Exeval (registered trademark) CP-410, manufactured by Kuraray) was used as resin B. Resin A and Resin B were each melted at a temperature of 220 ° C. with a single screw extruder (PSV 22 mm: manufactured by Praengi), and weighed by a gear pump so that the discharge ratio was Resin A / Resin B = 1/5. It was introduced into the mold of Step 1. By repeating the steps 2 to 3 in 3 sets, a 17-layer laminate was produced. Next, after coating the outermost layer of the laminate with low density polyethylene (LDPE resin, Novatec LC701, manufactured by Nippon Polyethylene), the one discharged through a 300 mm wide film die (die gap: about 1 mm) The film was cooled with three metal mirror rolls controlled to a temperature of 6 mm / min and 40 ° C. to produce a total of 19 layers of film.
30 g of the obtained film with the LDPE resin layer peeled off was put into a pulverizer, and a fine powder was produced under the conditions of a rotational speed of 8000 × 9000 min. −1 (IN × out) and a processing time of 2 minutes and 30 seconds. .
Next, the obtained fine powder was stirred in warm water of 95 ° C. for 2 hours to dissolve only the water-soluble resin, followed by filtration to obtain a fine powder of only polymethyl methacrylate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1. 少なくとも2種類の樹脂を溶融して交互積層し、樹脂層の層数が16層以上の多積層体を作製する工程、
    前記多積層体を粉砕する工程、
    および積層された層を分割する工程を備えることを特徴とする微粉末の製造方法。
    A step of melting and alternately laminating at least two kinds of resins to produce a multi-layered body having 16 or more resin layers;
    Crushing the multi-laminate.
    And a method for producing a fine powder, comprising the step of dividing the laminated layer.
  2. 粉砕する工程と分割する工程とが一体化したことを特徴とする請求項1に記載の微粉末の製造方法。 The method for producing fine powder according to claim 1, wherein the pulverizing step and the dividing step are integrated.
  3. 積層する樹脂が、ポリメチルメタアクリレート樹脂(PMMA)とポリスチレン樹脂(PS)、ポリメチルメタアクリレート樹脂(PMMA)と脂環式オレフィン系樹脂(COP)または脂環式オレフィン系コポリマー(COC)およびポリメチルメタアクリレート樹脂(PMMA)とポリアミド樹脂(PA)の組合せかのいずれかよりなる請求項1または2に記載の微粉末の製造方法。 The resin to be laminated is polymethyl methacrylate resin (PMMA) and polystyrene resin (PS), polymethyl methacrylate resin (PMMA) and alicyclic olefin resin (COP) or alicyclic olefin copolymer (COC) and poly The manufacturing method of the fine powder of Claim 1 or 2 which consists of either the combination of methyl methacrylate resin (PMMA) and a polyamide resin (PA).
  4. 前記分割する工程が、少なくとも一つの樹脂を溶解することにより行われる請求項1に記載の微粉末の製造方法。 The method for producing fine powder according to claim 1, wherein the dividing step is performed by dissolving at least one resin.
  5. 前記分割する工程において溶解される樹脂が、水溶性樹脂である請求項4に記載の微粉末の製造方法。 The method for producing fine powder according to claim 4, wherein the resin dissolved in the dividing step is a water-soluble resin.
  6. 該微粉末が、粒径分布の中心値で代表される粒径(d)が1μm以上300μm以下、平均厚み(t)が0.1μm以上50μm以下、かつ、アスペクト比(d/t)が6以上300以下である請求項1~5のいずれか1項に記載の微粉末の製造方法。 The fine powder has a particle size (d) represented by a median value of the particle size distribution of 1 μm to 300 μm, an average thickness (t) of 0.1 μm to 50 μm, and an aspect ratio (d / t) of 6 The method for producing fine powder according to any one of claims 1 to 5, which is 300 or more.
PCT/JP2014/074624 2013-09-18 2014-09-18 Method for producing fine powder WO2015041270A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015537956A JP6378686B2 (en) 2013-09-18 2014-09-18 Method for producing fine powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-192782 2013-09-18
JP2013192782 2013-09-18

Publications (1)

Publication Number Publication Date
WO2015041270A1 true WO2015041270A1 (en) 2015-03-26

Family

ID=52688917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074624 WO2015041270A1 (en) 2013-09-18 2014-09-18 Method for producing fine powder

Country Status (3)

Country Link
JP (2) JP6378686B2 (en)
TW (1) TW201516076A (en)
WO (1) WO2015041270A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159404A (en) * 1982-03-17 1983-09-21 Shiseido Co Ltd Cosmetic
JP2000239394A (en) * 1999-02-24 2000-09-05 Reiko Co Ltd Shining resin pellet
JP2006036836A (en) * 2004-07-23 2006-02-09 Teijin Dupont Films Japan Ltd Particulate material and cosmetic

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310584A (en) * 1979-12-26 1982-01-12 The Mearl Corporation Multilayer light-reflecting film
CA2177714C (en) * 1993-12-21 2005-08-09 Andrew J. Ouderkirk Multilayered optical film
BR9906911A (en) * 1998-01-13 2000-10-10 Minnesota Mining & Mfg Gliter particles, article, composite article, dispersion, dispersive combination, molding compound, injection moldable composition, cosmetic composition, and topical drug composition
US6291056B1 (en) * 1998-07-01 2001-09-18 Engelhard Corporation Flakes from multilayer iridescent films for use in paints and coatings
JP2002321462A (en) * 2001-04-26 2002-11-05 Oji Paper Co Ltd Recording medium for thermal transfer recording
JP4173074B2 (en) * 2003-08-11 2008-10-29 帝人株式会社 Biaxially oriented multilayer laminated film, decorative yarn and decorative powder
JP2013178336A (en) * 2012-02-28 2013-09-09 Sumitomo Chemical Co Ltd Method for manufacturing optical multilayer film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159404A (en) * 1982-03-17 1983-09-21 Shiseido Co Ltd Cosmetic
JP2000239394A (en) * 1999-02-24 2000-09-05 Reiko Co Ltd Shining resin pellet
JP2006036836A (en) * 2004-07-23 2006-02-09 Teijin Dupont Films Japan Ltd Particulate material and cosmetic

Also Published As

Publication number Publication date
JP6467082B2 (en) 2019-02-06
TW201516076A (en) 2015-05-01
JP6378686B2 (en) 2018-08-22
JP2018119152A (en) 2018-08-02
JPWO2015041270A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
CN102971144B (en) Readily removable film, label for in-mold molding, molded resin article having label attached thereto, wallpaper, glue label, and container having label attached thereto
JP5698709B2 (en) Fluororesin laminated acrylic resin film and molded product including the same
JP6974673B2 (en) Dimensionally stable acrylic alloy for 3D printing
WO2018221580A1 (en) Layered film, layered molded body, and methods for producing these
WO2006087965A1 (en) Laminate for laser marking
WO1997030117A1 (en) Acrylic film and moldings made using the same
JP2023126637A (en) Material extrusion 3-d printing on compatible thermoplastic film
JPH10279766A (en) Acrylic film and molding product using the same
JP2009235187A (en) Metallic resin composition, molded article, and laminated product
JPH11147237A (en) Acrylic film for bonding simultaneously with injection molding
JP6467082B2 (en) Method for producing fine powder
JP5176584B2 (en) Laminated film
DE102005057196A1 (en) Molding compounds and films made from polyamide containing crosslinked polymer particles
JP2011143584A (en) Laminated film for direct deposition of metal
JP2008207554A (en) Laminated film
JP2011046186A (en) Multilayered stretched film
JP2009235160A (en) Acrylic resin film
JP4816317B2 (en) Laminated film
JP2009248362A (en) Laminated film
US20140018504A1 (en) Impact modifier and uses thereof in thermoset materials
JP2006181915A (en) Polypropylene-based laminate film
JP7487396B1 (en) Laminated sheet and its manufacturing method, printed matter, and molded product
JP7487433B1 (en) Laminated sheet and its manufacturing method, printed matter, and molded product
JP5465390B2 (en) Laminated film
JP2009196150A (en) Laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845105

Country of ref document: EP

Kind code of ref document: A1