WO2015041113A1 - Coil component - Google Patents

Coil component Download PDF

Info

Publication number
WO2015041113A1
WO2015041113A1 PCT/JP2014/073909 JP2014073909W WO2015041113A1 WO 2015041113 A1 WO2015041113 A1 WO 2015041113A1 JP 2014073909 W JP2014073909 W JP 2014073909W WO 2015041113 A1 WO2015041113 A1 WO 2015041113A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic
coil pattern
conductor via
magnetic layer
Prior art date
Application number
PCT/JP2014/073909
Other languages
French (fr)
Japanese (ja)
Inventor
利夫 河端
安史 武田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015041113A1 publication Critical patent/WO2015041113A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/002Details of via holes for interconnecting the layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer

Definitions

  • the present invention relates to a coil component, and more particularly to a coil component having a low DC resistance and a high Q.
  • FIG. 15 shows a coil component 300 disclosed in Patent Document 1. However, FIG. 15 is an exploded perspective view of the coil component 300.
  • the coil component 300 includes a laminated body 103 in which a plurality of magnetic layers 101 and a plurality of coil patterns 102 are laminated.
  • a pair of external electrodes is formed on both ends of the laminate 103.
  • a conductor via hole 104 is formed so as to penetrate between both main surfaces.
  • the coil pattern 102 and the conductor via hole 104 are connected in a predetermined order to form a coil.
  • a method for reducing the direct current resistance and increasing the Q for the coil pattern 102, a method of increasing the film thickness or a method of increasing the coil width can be considered.
  • a method of increasing the diameter or a method of increasing the number to be formed can be considered.
  • the method of increasing the film thickness of the coil pattern 102 has a problem that the surface of the multilayer body 103 is raised only by a portion where the coil pattern 102 is formed. That is, the appearance of the coil component 300 may be defective. There was also a risk that defects would occur in the internal structure. These problems become more serious when the coil component 300 is seen through in the plane direction and a plurality of coil patterns 102 are formed so as to overlap each other.
  • the method of increasing the coil width of the coil pattern 102 has a problem that the inductance value of the coil component 300 is decreased.
  • the coil width of the coil pattern 102 becomes wider in the axial direction of the coil, there is a problem that the inductance value is greatly reduced.
  • the coil length may be increased to increase the inductance value.
  • the number of magnetic layers 101 may be increased, There is a problem that the size in the planar direction has to be increased, and the coil component 300 itself is increased in size.
  • the present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a coil component in which the inductance value does not decrease even if the width of the coil pattern is increased.
  • the coil component of the present invention includes a plurality of laminated magnetic layers, a plurality of coil patterns formed between the layers of the magnetic layers, and at least one of the magnetic layers that penetrates between both main surfaces. And a conductor via hole formed, a laminated body is constituted by a magnetic layer and a coil pattern, and a coil is constituted by connecting the coil pattern and the conductor via hole in a predetermined order.
  • a plurality of coils are formed so as to be aligned in a direction parallel to the laminate surface of the laminate, and each of the plurality of coils has an axial core parallel to the laminate surface of the laminate, and the plurality of coils are connected in series. It is characterized by.
  • the inductance value is not greatly reduced.
  • the number of coils can be two.
  • a material formed of ferrite or a material obtained by coating a metal magnetic powder with an insulating material as a main material can be used.
  • a non-magnetic via hole formed through both main surfaces may be further formed. In this case, the DC superposition characteristics of the coil are improved.
  • a coil pattern disposed on one main surface side of the magnetic layer and a coil pattern disposed on the other main surface side are formed on the magnetic layer.
  • they may be connected via a plurality of conductor via holes.
  • the interlayer connection between the two coil patterns is made by a plurality of conductor via holes formed in the magnetic layer, and the DC resistance of the interlayer connection portion can be reduced. Moreover, it contributes to the improvement of the Q of the coil.
  • the interlayer connection between two coil patterns may be made via a plurality of conductor via holes formed in one magnetic layer, or a plurality of conductors formed respectively in the plurality of magnetic layers. In some cases, this is done via a via hole.
  • the coil component according to the present invention has the above-described configuration, the DC resistance is small and the Q is high.
  • FIG. 1 is a perspective view showing a coil component 100 according to a first embodiment.
  • 2 is an exploded perspective view of a coil component 100.
  • FIG. 3 is an exploded perspective view of the coil component 100 continued from FIG. 2.
  • FIG. 4 is an exploded perspective view of the coil component 100 that is a continuation of FIG. 3.
  • FIG. 5 is an exploded perspective view of the coil component 100 that is a continuation of FIG. 4.
  • FIG. 6 is a continuation of FIG. 5 and is an exploded perspective view of the coil component 100. It is a top view of coil component 100 concerning a 1st embodiment.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7.
  • FIG. 2 is an exploded perspective view of a coil component 200.
  • FIG. 11 is an exploded perspective view of the coil component 200, which is a continuation of FIG.
  • FIG. 12 is an exploded perspective view of the coil component 200, which is a continuation of FIG.
  • FIG. 13 is a continuation of FIG. 12 and an exploded perspective view of the coil component 200.
  • It is a graph which shows the direct current superimposition characteristic of the coil component 100 which concerns on an Example, and the coil component 400 which concerns on a comparative example.
  • It is a disassembled perspective view of the conventional coil component 300.
  • FIG. 11 is an exploded perspective view of the coil component 200, which is a continuation of FIG.
  • FIG. 12 is an exploded perspective view of the coil component 200, which is a continuation of FIG.
  • FIG. 13 is a continuation of FIG. 12 and an exploded perspective view of the coil component 200.
  • It is a graph which shows the direct current superimposition characteristic
  • FIG. 1 is a perspective view of the coil component 100.
  • FIGS. 1 and 2 to 6 are exploded perspective views of the coil component 100, and one coil component 100 is configured in FIGS.
  • the coil component 100 includes a rectangular parallelepiped laminate 2 in which 23 magnetic layers 1a to 1w are laminated in order from the top.
  • the magnetic layers 1a to 1w are made of ferrite.
  • the magnetic layers 1a to 1w may be formed by using, as a main material, for example, a metal magnetic powder such as Fe coated with an insulating material such as Si instead of ferrite.
  • a metal magnetic powder such as Fe coated with an insulating material such as Si instead of ferrite.
  • what coated metal magnetic substance powder with the insulating substance includes what formed the oxide film of the alloy component on the surface of Fe type alloy, for example.
  • the dimensions of the laminate 2 are, for example, a length of 2.1 mm, a width of 1.25 mm, and a height of 1.0 mm.
  • a pair of external electrodes 3 a and 3 b are formed at both ends of the multilayer body 2.
  • a first coil 4a and a second coil 4b are formed in the laminated body 2 so as to be aligned in a direction parallel to the laminated surface of the laminated body 2, and the first coil 4a and the second coil 4b are formed. Are connected in series.
  • the first coil 4 a and the second coil 4 b are arranged in the length L direction of the multilayer body 2.
  • first coil 4a and the second coil 4b are in a point-symmetric relationship with respect to the center when the coil component 100 is viewed from the stacking direction, the first coil 4a is the center in the following description.
  • the second coil 4b will be described supplementarily. In FIGS. 2 to 6, the reference numerals of the components of the second coil 4b may be omitted.
  • the magnetic layer 1a laminated first from the top is a protective layer, and nothing is formed on both main surfaces. No conductor via hole or non-magnetic via hole is formed in the magnetic layer 1a.
  • the magnetic layer 1b laminated second from the top is also a protective layer, and nothing is formed on both main surfaces. In the magnetic layer 1b, neither a conductor via hole nor a non-magnetic via hole is formed.
  • the components of the first coil 4a are formed on the front side of the drawing, and the components of the second coil 4b are formed on the back side of the drawing. .
  • the coil pattern 5c of the first coil 4a is formed on the front side of the drawing, and the coil pattern 5c of the second coil 4b is formed on the back side of the drawing. ing.
  • the coil pattern 5c of the first coil 4a is connected to the first external electrode 3a, and the coil pattern 5c of the second coil 4b is connected to the second external electrode 3b.
  • a plurality of conductor via holes 6c are formed in one row at one end portion of the coil pattern 5c of the first coil 4a through the magnetic layer 1c, and one of the coil patterns 5c of the second coil 4b is formed. A plurality of conductor via holes 6c are formed in one row at the end portion.
  • a plurality of non-magnetic via holes 7c are formed in one row outside the both sides of the coil pattern 5c of the first coil 4a through the magnetic layer 1c, and both sides of the second coil 4b are formed.
  • a plurality of non-magnetic via holes 7c are formed in one row on the outside of the side.
  • the coil pattern 5c has, for example, Ag as a main component.
  • the conductor via hole 6c has, for example, Ag as a main component.
  • the nonmagnetic via hole 7c has, for example, Zn ferrite as a main component.
  • the film thickness of the coil pattern 5c is, for example, 30 ⁇ m.
  • the diameter of the conductor via hole 6c is, for example, 20 ⁇ m.
  • the diameter of the nonmagnetic via hole 7c is, for example, 20 ⁇ m.
  • the coil pattern 5c of the first coil 4a and the coil pattern 5c of the second coil 4b each have a coil width w.
  • the specific value of the coil width w of the coil pattern 5c is 850 ⁇ m.
  • the magnetic layers 1d to 1w that are stacked from the top to the fourth will be described.
  • the first coil 4a will be mainly described, and the second coil 4b may be used as necessary. Will be explained supplementarily.
  • the reference numerals of the components of the second coil 4b may be omitted.
  • a coil pattern 5d of the first coil 4a is formed on one main surface of the magnetic layer 1d that is laminated fourth from the top.
  • a plurality of conductor via holes 6d are formed in two rows at one end portion of the coil pattern 5d through the magnetic layer 1d, and a plurality of conductor via holes 6d are formed in one row at the other end portion of the coil pattern 5d. ing.
  • the coil pattern 5d is connected to one row of the two rows of conductor via holes 6d formed at one end portion.
  • the coil pattern 5d is connected to a row of conductor via holes 6d formed at the other end portion.
  • a plurality of nonmagnetic via holes 7d are formed in one row on the outer sides of both sides of the coil pattern 5d through the magnetic layer 1d.
  • a coil pattern 5e of the first coil 4a is formed on one main surface of the magnetic layer 1e stacked fifth from the top.
  • a plurality of conductor via holes 6e are formed in three rows at one end portion of the coil pattern 5e through the magnetic layer 1e, and a plurality of conductor via holes 6e are formed in the other end portion of the coil pattern 5e. ing.
  • the coil pattern 5e is connected to one row of the three rows of conductor via holes 6e formed at one end portion.
  • the coil pattern 5e is connected to one row of the two rows of conductor via holes 6e formed at the other end portion.
  • a plurality of non-magnetic via holes 7e are formed in one row on the outside of both sides of the coil pattern 5e through the magnetic layer 1e.
  • a coil pattern 5f of the first coil 4a is formed on one main surface of the magnetic layer 1f stacked sixth from the top.
  • a plurality of conductor via holes 6e are formed in four rows at one end portion of the coil pattern 5f through the magnetic layer 1f, and a plurality of conductor via holes 6f are formed in three rows at the other end portion of the coil pattern 5f. ing.
  • the coil pattern 5f is connected to one of the four rows of conductor via holes 6f formed at one end portion.
  • the coil pattern 5f is connected to one of the three rows of conductor via holes 6f formed at the other end.
  • a plurality of nonmagnetic via holes 7f are formed in one row on the outer sides of both sides of the coil pattern 5f through the magnetic layer 1f.
  • the coil pattern 5g of the first coil 4a is formed on the front side of the drawing on the one main surface of the magnetic layer 1g that is laminated seventh from the top.
  • a coil pattern 5g of the second coil 4b is also formed on the one main surface of the magnetic layer 1g on the back side of the drawing.
  • the coil pattern 5g of the first coil 4a and the coil pattern 5g of the second coil 4b are connected. As described above, the first coil 4a and the second coil 4b are connected in series, but both are connected in this portion.
  • a plurality of conductor via holes 6g are formed in four rows at one end portion of the coil pattern 5g through the magnetic layer 1g, and a plurality of conductor via holes 6g are formed in the other end portion of the coil pattern 5g. ing.
  • the coil pattern 5g is not connected to the four rows of conductor via holes 6g formed at one end portion.
  • the coil pattern 5g is connected to one of the four rows of conductor via holes 6g formed at the other end portion.
  • a plurality of non-magnetic via holes 7g are formed in one row on the outside of both sides of the coil pattern 5g through the magnetic layer 1g.
  • the coil pattern is not formed on the main surface of the magnetic layer 1h stacked eighth from the top.
  • Two sets of four rows of conductive via holes 6h penetrating through the magnetic layer 1h are formed in a total of eight rows.
  • Two rows of non-magnetic via holes 7h are formed so as to penetrate the magnetic layer 1h and sandwich the eight rows of conductor via holes 6h.
  • the 9th to 18th magnetic layers 1i to 1r stacked from the top have the same structure as the magnetic layer 1h, respectively. That is, the magnetic layers 1i to 1r are formed with conductor via holes 6i to 6r and non-magnetic via holes 7i to 7r, respectively.
  • the illustration of the reference numerals of the conductor via holes 6i to 6r and the nonmagnetic via holes 7i to 7r is omitted for easy viewing.
  • a coil pattern 5 s of the first coil 4 a is formed on one main surface of the magnetic layer 1 s that is stacked 19th from the top.
  • a plurality of conductor via holes 6s are formed in three rows at one end portion of the coil pattern 5s through the magnetic layer 1s, and a plurality of conductor via holes 6s are formed in three rows at the other end portion of the coil pattern 5s. ing.
  • the coil pattern 5s is not connected to the three rows of conductor via holes 6s formed at one end portion, and is not connected to the three rows of conductor via holes 6s formed at one end portion.
  • a plurality of nonmagnetic via holes 7s are formed in one row on the outer sides of both sides of the coil pattern 5s through the magnetic layer 1s.
  • a coil pattern 5t of the first coil 4a is formed on one main surface of the magnetic layer 1t stacked 20th from the top.
  • a plurality of conductor via holes 6t are formed in two rows at one end portion of the coil pattern 5t through the magnetic layer 1t, and a plurality of conductor via holes 6t are formed in two rows at the other end portion of the coil pattern 5t. ing.
  • the coil pattern 5t is not connected to the two rows of conductor via holes 6t formed at one end portion, and is not connected to the two rows of conductor via holes 6t formed at one end portion.
  • a plurality of non-magnetic via holes 7t are formed in one row on the outer sides of both sides of the coil pattern 5t through the magnetic layer 1t.
  • a coil pattern 5u of the first coil 4a is formed on one main surface of the magnetic layer 1u that is laminated 21st from the top.
  • a plurality of conductor via holes 6u are formed in one row at one end portion of the coil pattern 5u through the magnetic layer 1u, and a plurality of conductor via holes 6u are formed in one row at the other end portion of the coil pattern 5u. ing.
  • the coil pattern 5u is not connected to one row of conductor via holes 6u formed at one end portion, and is not connected to one row of conductor via holes 6u formed at one end portion.
  • a plurality of non-magnetic via holes 7u are formed in one row on the outside of both sides of the coil pattern 5u through the magnetic layer 1u.
  • the coil pattern 5v of the first coil 4a is formed on the one main surface of the magnetic layer 1v that is laminated 22nd from the top.
  • No conductor via hole is formed in the magnetic layer 1v.
  • a plurality of nonmagnetic via holes 7v are formed in one row on the outer sides of both sides of the coil pattern 5v so as to penetrate the magnetic layer 1v.
  • the magnetic layer 1w laminated on the 23rd from the top, that is, the bottom is a protective layer, and nothing is formed on both main surfaces. No conductor via hole or non-magnetic via hole is formed in the magnetic layer 1w.
  • the magnetic layers 1a to 1w have been described above with the first coil 4a as the center.
  • the second coil 4b is a point with the center when the first coil 4a and the coil component 100 are viewed from the stacking direction. They are symmetrical and have the same components.
  • a first coil 4a and a second coil 4b are formed in the laminate 2 in which the magnetic layers 1a to 1w are laminated.
  • the first coil 4a and the second coil 4b are connected in series. It is connected to the.
  • the axial center of a coil is parallel to the lamination surface of the laminated body 2, respectively.
  • the first coil 4a includes an external electrode 3a, a coil pattern 5c, via conductors 6c to 6u, a coil pattern 5v, via conductors 6u to 6d, a coil pattern 5d, via conductors 6d to 6t, a coil pattern 5u, and via conductors 6t to 6e.
  • the coil pattern 5e, the via conductors 6e to 6s, the coil pattern 5t, the via conductors 6s to 6f, the coil pattern 5f, the via conductors 6f to 6r, the coil pattern 5s, the via conductors 6r to 6g, and the coil pattern 5g are connected in order. It is composed of things.
  • the second coil 4b includes an external electrode 3b, a coil pattern 5c, via conductors 6c to 6u, a coil pattern 5v, via conductors 6u to 6d, a coil pattern 5d, via conductors 6d to 6t, a coil pattern 5u, and via conductors 6t to 6e.
  • the coil pattern 5e, the via conductors 6e to 6s, the coil pattern 5t, the via conductors 6s to 6f, the coil pattern 5f, the via conductors 6f to 6r, the coil pattern 5s, the via conductors 6r to 6g, and the coil pattern 5g are connected in order. It is composed of things.
  • Non-magnetic via holes 7c to 7v are connected inside the laminate 2.
  • the non-magnetic via holes 7c to 7v are formed in four rows, and are formed on the outer side of both side surfaces of the first coil 4a and the outer side of both side surfaces of the second coil 4b and the first coil 4a, respectively.
  • the non-magnetic via holes 7c to 7v play a role of improving the DC superposition characteristics of the coil.
  • FIG. 7 shows the coil component 100 as viewed from above.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 8 corresponds to a cross-sectional view of the first coil 4a cut along the way.
  • the first coil 4 a is configured to have a spiral shape by connecting a coil pattern disposed in each magnetic layer and a conductor via hole. If attention is paid to the upper part of FIG. 8, the coil patterns 5c, 5d, 5e, 5f, and 5g are arranged in order toward the inside of the spiral shape, and the length as the conductor pattern visible in the sectional view becomes shorter in this order. Yes. If attention is paid to the lower part of FIG. 8, the coil patterns 5v, 5u, 5t, 5s are arranged in order toward the inner side of the spiral shape, and the length as the conductor pattern visible in the sectional view is shortened in this order.
  • the coil component according to the first embodiment of the present invention it can be said that it is preferable that the coil pattern and the via conductor form a spiral shape when seen from the side surface adjacent to the laminated surface of the laminated body 2. Since the coil has such a spiral shape, the inductance value can be increased.
  • the coil component 100 according to the first embodiment having the above structure is manufactured by, for example, the following method.
  • NiZnCu ferrite a predetermined amount of oxide raw materials are mixed and calcined at 800 ° C. for 1 hour to produce a calcined ferrite body.
  • the calcined ferrite body is pulverized with a ball mill and dried to prepare a ferrite powder having an average particle diameter of 2 ⁇ m.
  • the ferrite powder is mixed with a solvent, a binder, and a dispersant, and a green sheet for a magnetic layer having a thickness of 35 ⁇ m is prepared by a doctor blade method.
  • the magnetic layer green sheet is a mother green sheet, and a large number of magnetic layers can be obtained from each magnetic layer green sheet.
  • a 20 ⁇ m via hole necessary for forming a conductor via hole or a non-magnetic via hole is formed on the magnetic layer green sheet depending on which of the magnetic layers 1a to 1w is used. If not necessary, no via hole is formed in the magnetic layer green sheet.
  • a conductive paste mainly composed of Ag prepared in advance is applied to the green sheet for the magnetic layer depending on which of the magnetic layers 1a to 1w is used, and the coil pattern and the conductor via hole are applied. And form. At this time, the film thickness of the coil pattern was 30 ⁇ m. In addition, a coil pattern and a conductor via hole are not formed in the unnecessary green sheet for a magnetic layer.
  • a nonmagnetic paste prepared in advance is applied to the green sheet for the magnetic layer depending on which of the magnetic layers 1a to 1w is used, thereby forming a nonmagnetic via hole. Note that a non-magnetic via hole is not formed in the unnecessary magnetic layer green sheet.
  • the magnetic layer green sheets are laminated in a predetermined order, thermocompression-bonded, and then cut into individual unfired laminates.
  • the unfired laminate was subjected to binder removal treatment at 400 ° C. for 3 hours, then fired at 900 ° C. for 2 hours, further chamfered with a barrel, length 2.0 mm, width 1.
  • a laminate 2 having a height of 25 mm and a height of 1.0 mm is produced.
  • a conductive paste mainly composed of Ag is applied to both end portions of the laminate 2 so that the dimension of the folded portion is 0.5 mm, and baking is performed at 800 ° C., followed by barrel plating. Then, Ni plating and Sn plating are formed, and further washed and dried to complete the coil component 100.
  • the coil component 100 according to the first embodiment manufactured by the above method has an inductance of 0.84 ⁇ H and a DC resistance of 29 m ⁇ .
  • the film thickness of each of the coil patterns 5c to 5v was as small as 30 ⁇ m, no defect occurred in the appearance of the laminate 2.
  • the internal structures such as the coil patterns 5c to 5v, the conductor via holes 6c to 6u, and the nonmagnetic via holes 7c to 7v are provided. There was no deformation or the like.
  • FIGS. 9 and 10 to 13 show a coil component 200 according to the second embodiment of the present invention.
  • FIG. 9 is a perspective view of the coil component 200.
  • 10 to 13 are exploded perspective views of the coil component 200, and one coil component 200 is configured in FIGS.
  • the coil component 200 includes a rectangular parallelepiped laminated body 12 in which eleven magnetic layers 11a to 1k are laminated in order from the top.
  • the magnetic layers 11a to 11k are mainly formed by coating a metal magnetic material powder containing Fe as a main component with an insulating material such as Si.
  • an insulating material such as Si.
  • what coated metal magnetic substance powder with the insulating substance includes what formed the oxide film of the alloy component on the surface of Fe type alloy, for example.
  • the dimensions of the laminate 12 are, for example, a length of 1.6 mm, a width of 0.8 mm, and a height of 0.8 mm.
  • a pair of external electrodes 13 a and 13 b are formed at both ends of the multilayer body 12.
  • a first coil 14a and a second coil 14b are formed inside the laminated body 12 so as to be aligned in a direction parallel to the laminated surface of the laminated body 12, and the first coil 14a and the second coil 14b are formed. Are connected in series.
  • the first coil 14 a and the second coil 14 b are arranged in the width S direction of the multilayer body 12.
  • the magnetic layer 11a stacked first from the top is a protective layer, and nothing is formed on both main surfaces. No conductor via hole is formed in the magnetic layer 11a.
  • the magnetic layer 11b that is stacked second from the top is formed with the components of the first coil 14a on the front side of the drawing and the components of the second coil 14b on the back side of the drawing. .
  • a coil pattern 15b of the first coil 14a is formed on the front side of the drawing, and a coil pattern 15b of the second coil 14b is formed on the back side of the drawing. ing.
  • Conductive via holes 16b are formed in both end portions of the coil pattern 15b of the first coil 14a through the magnetic layer 11b, and conductive via holes 16b are formed in both end portions of the coil pattern 15b of the second coil 14b. Are formed respectively.
  • the coil patterns 15b are connected to the conductor via holes 16b at both ends.
  • the coil pattern 15b is mainly composed of Cu, for example.
  • the conductor via hole 16b has, for example, Cu as a main component. These materials are the same for the coil patterns formed in the magnetic layers 11c to 11k and the conductor via holes formed in the magnetic layers 11c to 11j described below.
  • the film thickness of the coil pattern 15b is, for example, 30 ⁇ m.
  • the conductor via hole 16b has a rectangular shape of 90 ⁇ m ⁇ 90 ⁇ m, for example. These dimensions are the same for the coil patterns and conductor via holes formed in the magnetic layers 11c to 11j described below.
  • the coil pattern 15b of the first coil 14a and the coil pattern 15b of the second coil 14b each have a coil width w.
  • a coil pattern 15c of the first coil 14a and a coil pattern 15c of the second coil 14b are formed on one main surface of the magnetic layer 11c stacked third from the top.
  • Two conductor via holes 16c are formed at both ends of the coil pattern 15c of the first coil 14a through the magnetic layer 11c. Further, two conductor via holes 16c are formed in both end portions of the coil pattern 15c of the second coil 14b so as to penetrate the magnetic layer 11c. Each of the coil patterns 15c is connected to one of the two conductor via holes 16c at both end portions.
  • a coil pattern 15d of the first coil 14a and a coil pattern 15d of the second coil 14b are formed on one main surface of the magnetic layer 11d stacked fourth from the top. ing.
  • Three conductor via holes 16d are formed in both end portions of the coil pattern 15d of the first coil 14a through the magnetic layer 11d. Further, three conductor via holes 16d are formed in both end portions of the coil pattern 15d of the second coil 14b through the magnetic layer 11d. Each of the coil patterns 15d is connected to one of the three conductor via holes 16d at both end portions.
  • a coil pattern 15e of the first coil 14a and a coil pattern 15e of the second coil 14b are formed on one main surface of the magnetic layer 11e laminated fifth from the top.
  • Each of the coil patterns 15e is connected to one of the four conductor via holes 16e at both ends.
  • the coil pattern is not formed on the main surface of the magnetic layer 11f stacked sixth from the top.
  • Four conductor via holes 16f of the first coil 14a are formed on both the left and right sides on the front side of the magnetic layer 11f through the magnetic layer 11f. Further, four conductor via holes 16f of the second coil 14b are formed on both the left and right sides on the back side of the magnetic layer 11f through the magnetic layer 11f.
  • the coil pattern 15g of the first coil 14a is formed on the front side of the drawing on the one main surface of the magnetic layer 11g that is laminated seventh from the top.
  • a coil pattern 15g of the second coil 14b is also formed on the one main surface of the magnetic layer 11g on the back side of the drawing.
  • the coil pattern 15g of the first coil 14a and the coil pattern 15g of the second coil 14b are connected. As described above, the first coil 14a and the second coil 14b are connected in series, but both are connected in this portion.
  • three conductor via holes 16g are formed at one end portion of the coil pattern 15g of the first coil 14a, and four conductor via holes 16g are formed at the other end portion. Further, three conductor via holes 16g are formed at one end portion of the coil pattern 15g of the second coil 14b through the magnetic layer 11g, and four conductor via holes 16g are formed at the other end portion. None of the coil patterns 15g is connected to the conductor via hole 16g.
  • a coil pattern 15h of the first coil 14a and a coil pattern 15h of the second coil 14b are formed on one main surface of the magnetic layer 11h stacked eighth from the top.
  • two conductor via holes 16h are formed at one end portion of the coil pattern 15h of the first coil 14a, and three conductor via holes 16h are formed at the other end portion. Further, two conductor via holes 16h are formed in one end portion of the coil pattern 15h of the second coil 14b and three conductor via holes 16h are formed in the other end portion, penetrating the magnetic layer 11h. None of the coil patterns 15h are connected to the conductor via hole 16h.
  • a coil pattern 15i of the first coil 14a and a coil pattern 15i of the second coil 14b are formed on one main surface of the magnetic layer 11i that is laminated ninth from the top.
  • One conductor via hole 16i is formed at one end portion of the coil pattern 15i of the first coil 14a and two conductor via holes 16i are formed at the other end portion, penetrating the magnetic layer 11i. Further, two conductor via holes 16i are formed at one end portion of the coil pattern 15i of the second coil 14b and one conductor via hole 16i is formed at the other end portion, penetrating the magnetic layer 11i. None of the coil patterns 15i are connected to the conductor via hole 16i.
  • a coil pattern 15j of the first coil 14a and a coil pattern 15j of the second coil 14b are formed on one main surface of the magnetic layer 11j laminated tenth from the top. ing.
  • One conductor via hole 16j is formed in one end portion of the coil pattern 15j of the first coil 14a through the magnetic layer 11j. Further, one conductor via hole 16j is formed at one end portion of the coil pattern 15j of the second coil 14b so as to penetrate the magnetic layer 11j. None of the coil patterns 15j is connected to the conductor via hole 16j.
  • a coil pattern 15k of the first coil 14a and a coil pattern 15k of the second coil 14b are formed on one main surface of the magnetic layer 11k that is stacked eleventh from the top.
  • the coil pattern 15k of the first coil 14a is connected to the external electrode 13a, and the coil pattern 15k of the second coil 14b is connected to the external electrode 13a.
  • a first coil 14a and a second coil 4b are formed in the laminated body 12 in which the magnetic layers 11a to 11k are laminated. As described above, the first coil 14a and the second coil 4b are formed. The coil 14b is connected in series. In addition, as for the 1st coil 14a and the 2nd coil 14b, the axial center of a coil is parallel to the lamination surface of the laminated body 12, respectively.
  • the first coil 14a includes an external electrode 13a, a coil pattern 15k, via conductors 6j to 6b, a coil pattern 15b, via conductors 16b to 16i, a coil pattern 15j, via conductors 16i to 16c, a coil pattern 15c, and via conductors 16c to 16h.
  • the coil pattern 15i, the via conductors 16h to 16d, the coil pattern 15d, the via conductors 16d to 16g, the coil pattern 15h, the via conductors 16g to 16e, the coil pattern 15e, the via conductors 16e to 6f, and the coil pattern 15g are connected in order. It is composed of things.
  • the second coil 14b includes an external electrode 13b, a coil pattern 15k, via conductors 6j to 6b, a coil pattern 15b, via conductors 16b to 16i, a coil pattern 15j, via conductors 16i to 16c, a coil pattern 15c, and via conductors 16c to 16h.
  • the coil pattern 15i, the via conductors 16h to 16d, the coil pattern 15d, the via conductors 16d to 16g, the coil pattern 15h, the via conductors 16g to 16e, the coil pattern 15e, the via conductors 16e to 6f, and the coil pattern 15g are connected in order. It is composed of things.
  • the coil component according to the second embodiment of the present invention further includes external electrodes 13a and 13b on side surfaces adjacent to each other and facing each other on the laminated surface of the laminated body 12, and a direction perpendicular to the direction in which the external electrodes 13a and 13b face each other. It can be said that it is preferable that a plurality of coils are formed so as to line up.
  • the coil component 200 according to the second embodiment having the above structure is manufactured by, for example, the following method.
  • the magnetic material sheet is formed mainly by coating a metal magnetic material powder containing Fe as a main component with an insulating substance such as Si.
  • the magnetic sheet is a mother sheet, and a large number of magnetic layers are produced from each magnetic sheet.
  • the copper foils on the surface of the nine magnetic sheets for the magnetic layers 11b to 11e and the magnetic layers 11g to 11k are etched to form coil patterns 15b to 15e having a predetermined shape, and coil patterns, respectively. 15g to 15k are formed.
  • the magnetic material sheet for the magnetic material layer 11a and the magnetic material layer 11f a magnetic material sheet having no copper foil formed on the surface is prepared separately from the beginning.
  • the magnetic material sheet for the magnetic material layer 11j is stacked on the magnetic material sheet for the magnetic material layer 11k and pressure-bonded.
  • a hole for forming the conductor via hole 16j is formed in the magnetic material sheet for the magnetic material layer 11j.
  • each conductor via hole 16j is connected to a coil pattern 15k.
  • the magnetic sheet for the magnetic layer 11i is overlaid and pressure-bonded on the magnetic sheet for the magnetic layer 11j.
  • a hole for forming the conductor via hole 16i is formed in the magnetic material sheet for the magnetic material layer 11i.
  • Conductive via hole 16i is connected to either coil pattern 15j or conductive via hole 16j, respectively.
  • the magnetic sheet for the magnetic layer 11h is stacked on the magnetic sheet for the magnetic layer 11i and pressure-bonded.
  • a hole for forming the conductor via hole 16h is formed in the magnetic material sheet for the magnetic material layer 11h.
  • the hole formed in the magnetic sheet for the magnetic layer 11h is plated to form a conductor via hole 16h.
  • the conductor via hole 16h is connected to either the coil pattern 15i or the conductor via hole 16i.
  • a magnetic sheet for the magnetic layer 11g is overlaid on the magnetic sheet for the magnetic layer 11h, and pressure-bonded.
  • a hole for forming the conductor via hole 16g is formed in the magnetic material sheet for the magnetic material layer 11g.
  • the inside of the hole formed in the magnetic material sheet for the magnetic material layer 11g is plated to form a conductor via hole 16g.
  • the conductor via hole 16g is connected to either the coil pattern 15h or the conductor via hole 16h.
  • the magnetic material sheet for the magnetic material layer 11f is stacked on the magnetic material sheet for the magnetic material layer 11g and pressure-bonded.
  • a hole for forming the conductor via hole 16f is formed in the magnetic material sheet for the magnetic material layer 11f.
  • the hole formed in the magnetic material sheet for the magnetic material layer 11f is plated to form a conductor via hole 16f.
  • the conductor via hole 16f is connected to either the coil pattern 15g or the conductor via hole 16g.
  • the magnetic sheet for the magnetic layer 11e is overlaid on the magnetic sheet for the magnetic layer 11f and pressure-bonded.
  • a hole for forming the conductor via hole 16e is formed in the magnetic material sheet for the magnetic material layer 11e.
  • the hole formed in the magnetic material sheet for the magnetic material layer 11e is plated to form the conductor via hole 16e.
  • the conductor via hole 16e is connected to the conductor via hole 16f.
  • the magnetic sheet for the magnetic layer 11d is overlaid on the magnetic sheet for the magnetic layer 11e, and pressure-bonded.
  • a hole for forming the conductor via hole 16d is formed in the magnetic material sheet for the magnetic material layer 11d.
  • the inside of the hole formed in the magnetic material sheet for the magnetic material layer 11d is plated to form the conductor via hole 16d.
  • the conductor via hole 16d is connected to either the coil pattern 15e or the conductor via hole 16e.
  • the magnetic material sheet for the magnetic material layer 11c is stacked on the magnetic material sheet for the magnetic material layer 11d and pressure-bonded.
  • a hole for forming the conductor via hole 16c is formed in the magnetic sheet for the magnetic layer 11c.
  • Conductive via hole 16c is connected to either coil pattern 15d or conductive via hole 16d.
  • the magnetic material sheet for the magnetic material layer 11b is stacked on the magnetic material material sheet for the magnetic material layer 11c and pressure-bonded.
  • a hole for forming the conductor via hole 16b is formed in the magnetic sheet for the magnetic layer 11b.
  • the hole formed in the magnetic material sheet for the magnetic material layer 11b is plated to form a conductor via hole 16b.
  • the conductor via hole 16b is connected to either the coil pattern 15c or the conductor via hole 16c.
  • the magnetic sheet for the magnetic layer 11a is overlaid on the magnetic sheet for the magnetic layer 11b, and pressure bonded.
  • the magnetic sheet laminate is cut to produce individual laminates 12.
  • a conductive resin paste is applied to both ends of the laminate 12 to form the external electrodes 13a and 13b, and the coil component 200 is completed.
  • the coil component 200 according to the second embodiment manufactured by the above method is also a coil component having a low DC resistance and a high Q.
  • the examples and comparative examples were compared.
  • the coil component 100 according to the first embodiment was prepared.
  • the external dimensions of the coil component 100 are 2.1 mm in length, 1.25 mm in width, and 1.0 mm in height.
  • the film thickness of the coil patterns 5d to 5v of the coil component 100 is 30 ⁇ m.
  • the coil width of the coil patterns 5d to 5v of the coil component 100 is 850 ⁇ m.
  • the inductance value of the coil component 100 was 0.84 ⁇ H.
  • the DC resistance of the coil component 100 was 29 m ⁇ .
  • the DC superposition characteristics of the coil component 100 are shown in FIG.
  • a coil component 400 was prepared as a comparative example.
  • the basic structure of the coil component 400 is the same as that of the conventional coil component 300 shown in FIG. 15, but the details are as follows.
  • the external dimensions of the coil component 400 are a length of 2.0 mm, a width of 1.25 mm, and a height of 0.85 mm.
  • the coil component 400 includes a laminated body composed of eight layers in which seven dielectric layers and one nonmagnetic layer inserted in the middle are laminated.
  • the nonmagnetic layer is inserted in order to improve the direct current superposition characteristics.
  • the upper and lower outermost magnetic layers of the laminate are protective layers, and no coil pattern is formed.
  • the coil component 400 has a coil pattern formed on five magnetic layers excluding the protective layer and one non-magnetic layer, and a 5.5-turn coil as a whole.
  • the film thickness of the coil pattern is 30 ⁇ m and the coil width is 200 ⁇ m.
  • the inductance of the coil component 400 was 0.81 ⁇ H.
  • the DC resistance of the coil component 400 was 66 m ⁇ .
  • the DC superposition characteristics of the coil component 400 are shown in FIG.
  • the inductance value of the coil component 100 according to the example is 0.84 ⁇ H
  • the inductance value of the coil component 400 according to the comparative example is 0.81 ⁇ H, and both are close to each other.
  • the DC resistance is 29 m ⁇ for the coil component 100 and 66 m ⁇ for the coil component 400, and the coil component 100 is much smaller than the coil component 400.
  • the coil component 100 is superior to the coil component 400 also in the DC superposition characteristics.
  • the present invention can be used for coil parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A coil component (100) comprises a plurality of magnetic body layers (1a-1w), a plurality of coil patterns (5c-5v), and conductor via holes (6c-6u). A laminated body (2) is constituted by the magnetic body layers (1a-1w) and the coil patterns (5c-5v). Coils (4a, 4b) are formed by connecting, in a prescribed order, the coil patterns (5c-5v) and the conductor via holes (6c-6u). The present invention is characterized in that the coils (4a, 4b) are formed so as to be arranged in a direction that is parallel to the lamination plane of the laminated body (2), the axis of the coils is parallel to the lamination plane of the laminated body (2), and the coils are mutually connected in series.

Description

コイル部品Coil parts
 本発明はコイル部品に関し、さらに詳しくは、直流抵抗が小さく、Qの高いコイル部品に関する。 The present invention relates to a coil component, and more particularly to a coil component having a low DC resistance and a high Q.
 従来から広く使用されているコイル部品として、特許文献1(WO2007/040029号公報)に開示されたコイル部品がある。 As a coil component that has been widely used conventionally, there is a coil component disclosed in Patent Document 1 (WO 2007/040029).
 図15に、特許文献1に開示されたコイル部品300を示す。ただし、図15は、コイル部品300の分解斜視図である。 FIG. 15 shows a coil component 300 disclosed in Patent Document 1. However, FIG. 15 is an exploded perspective view of the coil component 300.
 コイル部品300は、複数の磁性体層101と複数のコイルパターン102とが積層された積層体103を備える。 The coil component 300 includes a laminated body 103 in which a plurality of magnetic layers 101 and a plurality of coil patterns 102 are laminated.
 積層体103の両端には、図示しないが、1対の外部電極が形成されている。
 所定の磁性体層101には、両主面間を貫通して導体ビアホール104が形成されている。そして、コイルパターン102と導体ビアホール104とが所定の順番に接続されて、コイルが構成されている。
Although not shown, a pair of external electrodes is formed on both ends of the laminate 103.
In the predetermined magnetic layer 101, a conductor via hole 104 is formed so as to penetrate between both main surfaces. The coil pattern 102 and the conductor via hole 104 are connected in a predetermined order to form a coil.
WO2007/040029号公報WO2007 / 040029 publication
 直流抵抗が小さく、Qの高いコイル部品が求められている。
 図15に示したコイル部品300において、直流抵抗を小さくし、Qを高くする方法としては、コイルパターン102については、膜厚を大きくする方法や、コイル幅を大きくする方法が考えられ、導体ビアホール104については、径を大きくする方法や、形成する個数を増やす方法が考えられる。
There is a need for a coil component having a low DC resistance and a high Q.
In the coil component 300 shown in FIG. 15, as a method for reducing the direct current resistance and increasing the Q, for the coil pattern 102, a method of increasing the film thickness or a method of increasing the coil width can be considered. With regard to 104, a method of increasing the diameter or a method of increasing the number to be formed can be considered.
 しかしながら、コイルパターン102の膜厚を大きくする方法には、コイルパターン102が形成された部分だけ積層体103の表面が盛り上がってしまうという問題があった。すなわち、コイル部品300の外観に不良が発生するおそれがあった。また、内部構造に欠陥が発生するおそれもあった。これらの問題は、コイル部品300を平面方向に透視した場合に、複数のコイルパターン102が同じ位置に重なって形成されている場合に、より大きな問題になる。 However, the method of increasing the film thickness of the coil pattern 102 has a problem that the surface of the multilayer body 103 is raised only by a portion where the coil pattern 102 is formed. That is, the appearance of the coil component 300 may be defective. There was also a risk that defects would occur in the internal structure. These problems become more serious when the coil component 300 is seen through in the plane direction and a plurality of coil patterns 102 are formed so as to overlap each other.
 また、コイルパターン102のコイル幅を大きくする方法には、コイル部品300のインダクタンス値が小さくなってしまうという問題があった。特に、コイルパターン102のコイル幅が、コイルの軸芯方向に向かって幅広となる場合に、インダクタンス値が大きく低下してしまうという問題があった。そして、インダクタンス値の低下に対しては、コイル長を大きくしてインダクタンス値を大きくすれば良いが、コイル長を大きくするためには、磁性体層101の枚数を増やしたり、磁性体層101の平面方向の大きさを大きくしたりしなければならず、コイル部品300自体が大型化してしまうという問題があった。 Further, the method of increasing the coil width of the coil pattern 102 has a problem that the inductance value of the coil component 300 is decreased. In particular, when the coil width of the coil pattern 102 becomes wider in the axial direction of the coil, there is a problem that the inductance value is greatly reduced. To reduce the inductance value, the coil length may be increased to increase the inductance value. However, in order to increase the coil length, the number of magnetic layers 101 may be increased, There is a problem that the size in the planar direction has to be increased, and the coil component 300 itself is increased in size.
 本願発明は、上述した従来の課題を解決するためになされたものであり、コイルパターンの幅を大きくしても、インダクタンス値が小さくなってしまわないコイル部品を提供することを目的とする。 The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a coil component in which the inductance value does not decrease even if the width of the coil pattern is increased.
 その手段として本願発明のコイル部品は、積層された複数の磁性体層と、磁性体層の層間に形成された複数のコイルパターンと、磁性体層の少なくとも1つに、両主面間を貫通して形成された導体ビアホールとを備え、磁性体層とコイルパターンとで積層体が構成され、コイルパターンと導体ビアホールとが、所定の順番に接続されてコイルが構成され、積層体内には、積層体の積層面と平行な方向に並ぶようにコイルが複数形成され、複数のコイルは、それぞれ、軸芯が積層体の積層面と平行であり、複数のコイルが直列に接続されていることを特徴とする。 As a means for this, the coil component of the present invention includes a plurality of laminated magnetic layers, a plurality of coil patterns formed between the layers of the magnetic layers, and at least one of the magnetic layers that penetrates between both main surfaces. And a conductor via hole formed, a laminated body is constituted by a magnetic layer and a coil pattern, and a coil is constituted by connecting the coil pattern and the conductor via hole in a predetermined order. A plurality of coils are formed so as to be aligned in a direction parallel to the laminate surface of the laminate, and each of the plurality of coils has an axial core parallel to the laminate surface of the laminate, and the plurality of coils are connected in series. It is characterized by.
 本発明のコイル部品においては、コイルパターンの幅(コイル幅)を大きくして直流抵抗を小さくしても、インダクタンス値が大きく低下してしまうことがない。 In the coil component of the present invention, even if the width of the coil pattern (coil width) is increased and the direct current resistance is reduced, the inductance value is not greatly reduced.
 コイルの数は、例えば、2個とすることができる。
 磁性体層には、フェライトにより形成されたものや、金属磁性体粉を絶縁性物質で被覆したものを主材料に形成されたものを使用することができる。
For example, the number of coils can be two.
As the magnetic layer, a material formed of ferrite or a material obtained by coating a metal magnetic powder with an insulating material as a main material can be used.
 磁性体層の少なくとも1つに、両主面間を貫通して形成された非磁性体ビアホールが更に形成されていても良い。この場合には、コイルの直流重畳特性が改善される。 In at least one of the magnetic layers, a non-magnetic via hole formed through both main surfaces may be further formed. In this case, the DC superposition characteristics of the coil are improved.
 また、ある磁性体層をみた場合に、その磁性体層の一方主面側に配置されているコイルパターンと、他方主面側に配置されているコイルパターンとが、その磁性体層に形成された複数の導体ビアホールを経由して接続されるようにしても良い。この場合には、2つのコイルパターン間の層間接続が、磁性体層に形成された複数の導体ビアホールによりおこなわれ、層間接続部分の直流抵抗を小さくすることができる。また、コイルのQの向上にも寄与する。なお、2つのコイルパターン間の層間接続は、1枚の磁性体層に形成された複数の導体ビアホールを経由しておこなわれる場合もあれば、複数の磁性体層にそれぞれ形成された複数の導体ビアホールを経由しておこなわれる場合もある。 When a certain magnetic layer is viewed, a coil pattern disposed on one main surface side of the magnetic layer and a coil pattern disposed on the other main surface side are formed on the magnetic layer. Alternatively, they may be connected via a plurality of conductor via holes. In this case, the interlayer connection between the two coil patterns is made by a plurality of conductor via holes formed in the magnetic layer, and the DC resistance of the interlayer connection portion can be reduced. Moreover, it contributes to the improvement of the Q of the coil. In addition, the interlayer connection between two coil patterns may be made via a plurality of conductor via holes formed in one magnetic layer, or a plurality of conductors formed respectively in the plurality of magnetic layers. In some cases, this is done via a via hole.
 本願発明に係るコイル部品は、上述した構成としたため、直流抵抗が小さく、Qが高い。 Since the coil component according to the present invention has the above-described configuration, the DC resistance is small and the Q is high.
第1実施形態に係るコイル部品100を示す斜視図である。1 is a perspective view showing a coil component 100 according to a first embodiment. コイル部品100の分解斜視図である。図2~図6で、1つのコイル部品100が構成される。2 is an exploded perspective view of a coil component 100. FIG. 2 to 6, one coil component 100 is configured. 図2の続きであり、コイル部品100の分解斜視図である。FIG. 3 is an exploded perspective view of the coil component 100 continued from FIG. 2. 図3の続きであり、コイル部品100の分解斜視図である。FIG. 4 is an exploded perspective view of the coil component 100 that is a continuation of FIG. 3. 図4の続きであり、コイル部品100の分解斜視図である。FIG. 5 is an exploded perspective view of the coil component 100 that is a continuation of FIG. 4. 図5の続きであり、コイル部品100の分解斜視図である。FIG. 6 is a continuation of FIG. 5 and is an exploded perspective view of the coil component 100. 第1実施形態に係るコイル部品100の平面図である。It is a top view of coil component 100 concerning a 1st embodiment. 図7におけるVIII-VIII線に関する矢視断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7. 第2実施形態に係るコイル部品200を示す斜視図である。It is a perspective view which shows the coil component 200 which concerns on 2nd Embodiment. コイル部品200の分解斜視図である。図11~図13で、1つのコイル部品200が構成される。2 is an exploded perspective view of a coil component 200. FIG. 11 to 13, one coil component 200 is configured. 図10の続きであり、コイル部品200の分解斜視図である。FIG. 11 is an exploded perspective view of the coil component 200, which is a continuation of FIG. 図11の続きであり、コイル部品200の分解斜視図である。FIG. 12 is an exploded perspective view of the coil component 200, which is a continuation of FIG. 図12の続きであり、コイル部品200の分解斜視図である。FIG. 13 is a continuation of FIG. 12 and an exploded perspective view of the coil component 200. 実施例に係るコイル部品100および比較例に係るコイル部品400の直流重畳特性を示すグラフである。It is a graph which shows the direct current superimposition characteristic of the coil component 100 which concerns on an Example, and the coil component 400 which concerns on a comparative example. 従来のコイル部品300の分解斜視図である。It is a disassembled perspective view of the conventional coil component 300. FIG.
 以下、図面とともに、本願発明の実施形態について説明する。
 [第1実施形態]
 図1と、図2~図6に、それぞれ、本発明の第1実施形態に係るコイル部品100を示す。ただし、図1は、コイル部品100の斜視図である。図2~図6は、コイル部品100の分解斜視図であり、図2~図6で1つのコイル部品100が構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
1 and 2 to 6 show a coil component 100 according to a first embodiment of the present invention. However, FIG. 1 is a perspective view of the coil component 100. 2 to 6 are exploded perspective views of the coil component 100, and one coil component 100 is configured in FIGS.
 コイル部品100は、上から順に23層の磁性体層1a~1wが積層された、直方体状の積層体2を備える。本実施形態においては、磁性体層1a~1wは、フェライトからなる。ただし、磁性体層1a~1wは、フェライトに代えて、例えば、Fe等の金属磁性体粉をSi等の絶縁性物質で被覆したものを主材料に形成しても良い。なお、金属磁性体粉を絶縁性物質で被覆したものには、例えば、Fe系合金の表面に、その合金成分の酸化被膜を形成したようなものも含まれる。 The coil component 100 includes a rectangular parallelepiped laminate 2 in which 23 magnetic layers 1a to 1w are laminated in order from the top. In the present embodiment, the magnetic layers 1a to 1w are made of ferrite. However, the magnetic layers 1a to 1w may be formed by using, as a main material, for example, a metal magnetic powder such as Fe coated with an insulating material such as Si instead of ferrite. In addition, what coated metal magnetic substance powder with the insulating substance includes what formed the oxide film of the alloy component on the surface of Fe type alloy, for example.
 積層体2の寸法は、例えば、長さ2.1mm、幅1.25mm、高さ1.0mmである。 The dimensions of the laminate 2 are, for example, a length of 2.1 mm, a width of 1.25 mm, and a height of 1.0 mm.
 積層体2の両端には、1対の外部電極3a、3bが形成されている。
 積層体2の内部には、積層体2の積層面と平行な方向に並ぶように、第1のコイル4aと第2のコイル4bとが形成され、第1のコイル4aと第2のコイル4bとは直列に接続されている。なお、本実施形態では、第1のコイル4aと第2のコイル4bとは、積層体2の長さL方向に並んでいる。
A pair of external electrodes 3 a and 3 b are formed at both ends of the multilayer body 2.
A first coil 4a and a second coil 4b are formed in the laminated body 2 so as to be aligned in a direction parallel to the laminated surface of the laminated body 2, and the first coil 4a and the second coil 4b are formed. Are connected in series. In the present embodiment, the first coil 4 a and the second coil 4 b are arranged in the length L direction of the multilayer body 2.
 なお、第1のコイル4aと第2のコイル4bとは、コイル部品100を積層方向からみた場合の中央を中心として点対称の関係にあるので、以下の説明においては第1のコイル4aを中心に説明し、第2のコイル4bについては補足的に説明する。また、図2~図6においては、第2のコイル4bの構成要素の符号の図示を省略する場合がある。 Since the first coil 4a and the second coil 4b are in a point-symmetric relationship with respect to the center when the coil component 100 is viewed from the stacking direction, the first coil 4a is the center in the following description. The second coil 4b will be described supplementarily. In FIGS. 2 to 6, the reference numerals of the components of the second coil 4b may be omitted.
 図2に示すように、上から1番目に積層される磁性体層1aは保護層であり、両主面には何も形成されていない。磁性体層1aには、導体ビアホールや非磁性体ビアホールも形成されていない。 As shown in FIG. 2, the magnetic layer 1a laminated first from the top is a protective layer, and nothing is formed on both main surfaces. No conductor via hole or non-magnetic via hole is formed in the magnetic layer 1a.
 上から2番目に積層される磁性体層1bも保護層であり、両主面には何も形成されていない。磁性体層1bには、導体ビアホールや非磁性体ビアホールも形成されていない。 The magnetic layer 1b laminated second from the top is also a protective layer, and nothing is formed on both main surfaces. In the magnetic layer 1b, neither a conductor via hole nor a non-magnetic via hole is formed.
 上から3番目に積層される磁性体層1cには、図面の手前側に、第1のコイル4aの構成要素が、図面の奥側に、第2のコイル4bの構成要素が形成されている。 In the magnetic layer 1c laminated third from the top, the components of the first coil 4a are formed on the front side of the drawing, and the components of the second coil 4b are formed on the back side of the drawing. .
 すなわち、磁性体層1cの一方主面には、図面の手前側に、第1のコイル4aのコイルパターン5cが形成され、図面の奥側に、第2のコイル4bのコイルパターン5cが形成されている。第1のコイル4aのコイルパターン5cは第1の外部電極3aと、第2のコイル4bのコイルパターン5cは第2の外部電極3bと、それぞれ接続されている。 That is, on one main surface of the magnetic layer 1c, the coil pattern 5c of the first coil 4a is formed on the front side of the drawing, and the coil pattern 5c of the second coil 4b is formed on the back side of the drawing. ing. The coil pattern 5c of the first coil 4a is connected to the first external electrode 3a, and the coil pattern 5c of the second coil 4b is connected to the second external electrode 3b.
 また、磁性体層1cを貫通して、第1のコイル4aのコイルパターン5cの一方端部分に複数の導体ビアホール6cが1列に形成され、また、第2のコイル4bのコイルパターン5cの一方端部分に複数の導体ビアホール6cが1列に形成されている。 A plurality of conductor via holes 6c are formed in one row at one end portion of the coil pattern 5c of the first coil 4a through the magnetic layer 1c, and one of the coil patterns 5c of the second coil 4b is formed. A plurality of conductor via holes 6c are formed in one row at the end portion.
 さらに、磁性体層1cを貫通して、第1のコイル4aのコイルパターン5cの両側辺の外側にそれぞれ複数の非磁性体ビアホール7cが1列に形成され、また、第2のコイル4bの両側辺の外側にそれぞれ複数の非磁性体ビアホール7cが1列に形成されている。 Further, a plurality of non-magnetic via holes 7c are formed in one row outside the both sides of the coil pattern 5c of the first coil 4a through the magnetic layer 1c, and both sides of the second coil 4b are formed. A plurality of non-magnetic via holes 7c are formed in one row on the outside of the side.
 コイルパターン5cは、例えば、Agを主成分とする。導体ビアホール6cは、例えば、Agを主成分とする。非磁性体ビアホール7cは、例えば、Znフェライトを主成分とする。これらの材質は、以下に説明する、磁性体層1d~1g、1s~1vに形成されるコイルパターン、磁性体層1d~1uに形成される導体ビアホール、磁性体層1d~1vに形成される非磁性体ビアホールにおいても同じである。 The coil pattern 5c has, for example, Ag as a main component. The conductor via hole 6c has, for example, Ag as a main component. The nonmagnetic via hole 7c has, for example, Zn ferrite as a main component. These materials are formed in the magnetic layer 1d-1g, 1s-1v, the coil pattern formed in the magnetic layers 1d-1g, the conductor via holes formed in the magnetic layers 1d-1u, and the magnetic layers 1d-1v described below. The same applies to nonmagnetic via holes.
 コイルパターン5cの膜厚は、例えば、30μmである。導体ビアホール6cの直径は、例えば、20μmである。非磁性体ビアホール7cの直径は、例えば、20μmである。これらの寸法は、以下に説明する、磁性体層1d~1g、1s~1vに形成されるコイルパターン、磁性体層1d~1uに形成される導体ビアホール、磁性体層1d~1vに形成される非磁性体ビアホールにおいても同じである。 The film thickness of the coil pattern 5c is, for example, 30 μm. The diameter of the conductor via hole 6c is, for example, 20 μm. The diameter of the nonmagnetic via hole 7c is, for example, 20 μm. These dimensions are described below. Coil patterns formed in magnetic layers 1d to 1g and 1s to 1v, conductor via holes formed in magnetic layers 1d to 1u, and magnetic layers 1d to 1v. The same applies to nonmagnetic via holes.
 第1のコイル4aのコイルパターン5cと、第2のコイル4bのコイルパターン5cとは、それぞれ、コイル幅wをもつ。 The coil pattern 5c of the first coil 4a and the coil pattern 5c of the second coil 4b each have a coil width w.
 膜厚が一定であれば、コイル幅wが大きいほど、直流抵抗が小さくなるので望ましい。
 なお、本実施形態に係るコイル部品100においては、コイルパターン5cのコイル幅wの具体的な値は850μmである。
If the film thickness is constant, the larger the coil width w, the smaller the DC resistance, which is desirable.
In the coil component 100 according to the present embodiment, the specific value of the coil width w of the coil pattern 5c is 850 μm.
 以下に、上から4番目に以降に積層される磁性体層1d~1wにについて説明するが、上述した通り、第1のコイル4aを中心に説明し、第2のコイル4bについては必要に応じて補足的に説明する。また、上述した通り、図2~図6においては、第2のコイル4bの構成要素の符号の図示を省略する場合がある。 Hereinafter, the magnetic layers 1d to 1w that are stacked from the top to the fourth will be described. However, as described above, the first coil 4a will be mainly described, and the second coil 4b may be used as necessary. Will be explained supplementarily. Further, as described above, in FIGS. 2 to 6, the reference numerals of the components of the second coil 4b may be omitted.
 上から4番目に積層される磁性体層1dの一方主面には、第1のコイル4aのコイルパターン5dが形成されている。 A coil pattern 5d of the first coil 4a is formed on one main surface of the magnetic layer 1d that is laminated fourth from the top.
 磁性体層1dを貫通して、コイルパターン5dの一方端部分に複数の導体ビアホール6dが2列に形成され、また、コイルパターン5dの他方端部分に複数の導体ビアホール6dが1列に形成されている。コイルパターン5dは、一方端部分に形成された2列の導体ビアホール6dのうちの1列と接続している。また、コイルパターン5dは、他方端部分に形成された1列の導体ビアホール6dと接続している。 A plurality of conductor via holes 6d are formed in two rows at one end portion of the coil pattern 5d through the magnetic layer 1d, and a plurality of conductor via holes 6d are formed in one row at the other end portion of the coil pattern 5d. ing. The coil pattern 5d is connected to one row of the two rows of conductor via holes 6d formed at one end portion. The coil pattern 5d is connected to a row of conductor via holes 6d formed at the other end portion.
 また、磁性体層1dを貫通して、コイルパターン5dの両側辺の外側にそれぞれ複数の非磁性体ビアホール7dが1列に形成されている。 Further, a plurality of nonmagnetic via holes 7d are formed in one row on the outer sides of both sides of the coil pattern 5d through the magnetic layer 1d.
 図3を参照して、上から5番目に積層される磁性体層1eの一方主面には、第1のコイル4aのコイルパターン5eが形成されている。 Referring to FIG. 3, a coil pattern 5e of the first coil 4a is formed on one main surface of the magnetic layer 1e stacked fifth from the top.
 磁性体層1eを貫通して、コイルパターン5eの一方端部分に複数の導体ビアホール6eが3列に形成され、また、コイルパターン5eの他方端部分に複数の導体ビアホール6eが2列に形成されている。コイルパターン5eは、一方端部分に形成された3列の導体ビアホール6eのうちの1列と接続している。また、コイルパターン5eは、他方端部分に形成された2列の導体ビアホール6eのうちの1列と接続している。 A plurality of conductor via holes 6e are formed in three rows at one end portion of the coil pattern 5e through the magnetic layer 1e, and a plurality of conductor via holes 6e are formed in the other end portion of the coil pattern 5e. ing. The coil pattern 5e is connected to one row of the three rows of conductor via holes 6e formed at one end portion. The coil pattern 5e is connected to one row of the two rows of conductor via holes 6e formed at the other end portion.
 また、磁性体層1eを貫通して、コイルパターン5eの両側辺の外側にそれぞれ複数の非磁性体ビアホール7eが1列に形成されている。 Further, a plurality of non-magnetic via holes 7e are formed in one row on the outside of both sides of the coil pattern 5e through the magnetic layer 1e.
 上から6番目に積層される磁性体層1fの一方主面には、第1のコイル4aのコイルパターン5fが形成されている。 A coil pattern 5f of the first coil 4a is formed on one main surface of the magnetic layer 1f stacked sixth from the top.
 磁性体層1fを貫通して、コイルパターン5fの一方端部分に複数の導体ビアホール6eが4列に形成され、また、コイルパターン5fの他方端部分に複数の導体ビアホール6fが3列に形成されている。コイルパターン5fは、一方端部分に形成された4列の導体ビアホール6fのうちの1列と接続している。また、コイルパターン5fは、他方端部分に形成された3列の導体ビアホール6fのうちの1列と接続している。 A plurality of conductor via holes 6e are formed in four rows at one end portion of the coil pattern 5f through the magnetic layer 1f, and a plurality of conductor via holes 6f are formed in three rows at the other end portion of the coil pattern 5f. ing. The coil pattern 5f is connected to one of the four rows of conductor via holes 6f formed at one end portion. The coil pattern 5f is connected to one of the three rows of conductor via holes 6f formed at the other end.
 また、磁性体層1fを貫通して、コイルパターン5fの両側辺の外側にそれぞれ複数の非磁性体ビアホール7fが1列に形成されている。 Further, a plurality of nonmagnetic via holes 7f are formed in one row on the outer sides of both sides of the coil pattern 5f through the magnetic layer 1f.
 上から7番目に積層される磁性体層1gの一方主面には、図面の手前側に、第1のコイル4aのコイルパターン5gが形成されている。また、磁性体層1gの一方主面には、図面の奥側に、第2のコイル4bのコイルパターン5gも形成されている。そして、第1のコイル4aのコイルパターン5gと、第2のコイル4bのコイルパターン5gとは接続されている。第1のコイル4aと第2のコイル4bとは直列に接続されていると上述したが、両者は、この部分において接続されている。 The coil pattern 5g of the first coil 4a is formed on the front side of the drawing on the one main surface of the magnetic layer 1g that is laminated seventh from the top. A coil pattern 5g of the second coil 4b is also formed on the one main surface of the magnetic layer 1g on the back side of the drawing. The coil pattern 5g of the first coil 4a and the coil pattern 5g of the second coil 4b are connected. As described above, the first coil 4a and the second coil 4b are connected in series, but both are connected in this portion.
 以下、再度、第1のコイル4aを中心に説明し、第2のコイル4bについては必要に応じて補足的に説明する。 Hereinafter, the first coil 4a will be described again, and the second coil 4b will be supplementarily described as necessary.
 磁性体層1gを貫通して、コイルパターン5gの一方端部分に複数の導体ビアホール6gが4列に形成され、また、コイルパターン5gの他方端部分に複数の導体ビアホール6gが4列に形成されている。コイルパターン5gは、一方端部分に形成された4列の導体ビアホール6gとは接続していない。コイルパターン5gは、他方端部分に形成された4列の導体ビアホール6gのうちの1列と接続している。 A plurality of conductor via holes 6g are formed in four rows at one end portion of the coil pattern 5g through the magnetic layer 1g, and a plurality of conductor via holes 6g are formed in the other end portion of the coil pattern 5g. ing. The coil pattern 5g is not connected to the four rows of conductor via holes 6g formed at one end portion. The coil pattern 5g is connected to one of the four rows of conductor via holes 6g formed at the other end portion.
 また、磁性体層1gを貫通して、コイルパターン5gの両側辺の外側にそれぞれ複数の非磁性体ビアホール7gが1列に形成されている。 Further, a plurality of non-magnetic via holes 7g are formed in one row on the outside of both sides of the coil pattern 5g through the magnetic layer 1g.
 図4を参照して、上から8番目に積層される磁性体層1hの主面には、コイルパターンは形成されていない。 Referring to FIG. 4, the coil pattern is not formed on the main surface of the magnetic layer 1h stacked eighth from the top.
 磁性体層1hを貫通して、4列の導体ビアホール6hが2組、間隔を開けて、合計8列に形成されている。 Two sets of four rows of conductive via holes 6h penetrating through the magnetic layer 1h are formed in a total of eight rows.
 磁性体層1hを貫通して、8列の導体ビアホール6hを挟み込むように、2列の非磁性体ビアホール7hが形成されている。 Two rows of non-magnetic via holes 7h are formed so as to penetrate the magnetic layer 1h and sandwich the eight rows of conductor via holes 6h.
 上から9~18番目に積層される磁性体層1i~1rは、それぞれ、磁性体層1hと同じ構造からなる。すなわち、磁性体層1i~1rは、それぞれ、導体ビアホール6i~6rと、非磁性体ビアホール7i~7rとが形成されている。なお、図4においては、見やすさを考慮して、導体ビアホール6i~6rと非磁性体ビアホール7i~7rとの符号の図示を省略している。 The 9th to 18th magnetic layers 1i to 1r stacked from the top have the same structure as the magnetic layer 1h, respectively. That is, the magnetic layers 1i to 1r are formed with conductor via holes 6i to 6r and non-magnetic via holes 7i to 7r, respectively. In FIG. 4, the illustration of the reference numerals of the conductor via holes 6i to 6r and the nonmagnetic via holes 7i to 7r is omitted for easy viewing.
 図5を参照して、上から19番目に積層される磁性体層1sの一方主面には、第1のコイル4aのコイルパターン5sが形成されている。 Referring to FIG. 5, a coil pattern 5 s of the first coil 4 a is formed on one main surface of the magnetic layer 1 s that is stacked 19th from the top.
 磁性体層1sを貫通して、コイルパターン5sの一方端部分に複数の導体ビアホール6sが3列に形成され、また、コイルパターン5sの他方端部分に複数の導体ビアホール6sが3列に形成されている。コイルパターン5sは、一方端部分に形成された3列の導体ビアホール6sとは接続しておらず、一方端部分に形成された3列の導体ビアホール6sとも接続していない。 A plurality of conductor via holes 6s are formed in three rows at one end portion of the coil pattern 5s through the magnetic layer 1s, and a plurality of conductor via holes 6s are formed in three rows at the other end portion of the coil pattern 5s. ing. The coil pattern 5s is not connected to the three rows of conductor via holes 6s formed at one end portion, and is not connected to the three rows of conductor via holes 6s formed at one end portion.
 また、磁性体層1sを貫通して、コイルパターン5sの両側辺の外側にそれぞれ複数の非磁性体ビアホール7sが1列に形成されている。 Further, a plurality of nonmagnetic via holes 7s are formed in one row on the outer sides of both sides of the coil pattern 5s through the magnetic layer 1s.
 上から20番目に積層される磁性体層1tの一方主面には、第1のコイル4aのコイルパターン5tが形成されている。 A coil pattern 5t of the first coil 4a is formed on one main surface of the magnetic layer 1t stacked 20th from the top.
 磁性体層1tを貫通して、コイルパターン5tの一方端部分に複数の導体ビアホール6tが2列に形成され、また、コイルパターン5tの他方端部分に複数の導体ビアホール6tが2列に形成されている。コイルパターン5tは、一方端部分に形成された2列の導体ビアホール6tとは接続しておらず、一方端部分に形成された2列の導体ビアホール6tとも接続していない。 A plurality of conductor via holes 6t are formed in two rows at one end portion of the coil pattern 5t through the magnetic layer 1t, and a plurality of conductor via holes 6t are formed in two rows at the other end portion of the coil pattern 5t. ing. The coil pattern 5t is not connected to the two rows of conductor via holes 6t formed at one end portion, and is not connected to the two rows of conductor via holes 6t formed at one end portion.
 また、磁性体層1tを貫通して、コイルパターン5tの両側辺の外側にそれぞれ複数の非磁性体ビアホール7tが1列に形成されている。 Further, a plurality of non-magnetic via holes 7t are formed in one row on the outer sides of both sides of the coil pattern 5t through the magnetic layer 1t.
 上から21番目に積層される磁性体層1uの一方主面には、第1のコイル4aのコイルパターン5uが形成されている。 A coil pattern 5u of the first coil 4a is formed on one main surface of the magnetic layer 1u that is laminated 21st from the top.
 磁性体層1uを貫通して、コイルパターン5uの一方端部分に複数の導体ビアホール6uが1列に形成され、また、コイルパターン5uの他方端部分に複数の導体ビアホール6uが1列に形成されている。コイルパターン5uは、一方端部分に形成された1列の導体ビアホール6uとは接続しておらず、一方端部分に形成された1列の導体ビアホール6uとも接続していない。 A plurality of conductor via holes 6u are formed in one row at one end portion of the coil pattern 5u through the magnetic layer 1u, and a plurality of conductor via holes 6u are formed in one row at the other end portion of the coil pattern 5u. ing. The coil pattern 5u is not connected to one row of conductor via holes 6u formed at one end portion, and is not connected to one row of conductor via holes 6u formed at one end portion.
 また、磁性体層1uを貫通して、コイルパターン5uの両側辺の外側にそれぞれ複数の非磁性体ビアホール7uが1列に形成されている。 Further, a plurality of non-magnetic via holes 7u are formed in one row on the outside of both sides of the coil pattern 5u through the magnetic layer 1u.
 図6を参照して、上から22番目に積層される磁性体層1vの一方主面には、第1のコイル4aのコイルパターン5vが形成されている。 Referring to FIG. 6, the coil pattern 5v of the first coil 4a is formed on the one main surface of the magnetic layer 1v that is laminated 22nd from the top.
 磁性体層1vには、導体ビアホールは形成されていない。
 磁性体層1vを貫通して、コイルパターン5vの両側辺の外側にそれぞれ複数の非磁性体ビアホール7vが1列に形成されている。
No conductor via hole is formed in the magnetic layer 1v.
A plurality of nonmagnetic via holes 7v are formed in one row on the outer sides of both sides of the coil pattern 5v so as to penetrate the magnetic layer 1v.
 上から23番目、すなわち1番下に積層される磁性体層1wは保護層であり、両主面には何も形成されていない。磁性体層1wには、導体ビアホールや非磁性体ビアホールも形成されていない。 The magnetic layer 1w laminated on the 23rd from the top, that is, the bottom is a protective layer, and nothing is formed on both main surfaces. No conductor via hole or non-magnetic via hole is formed in the magnetic layer 1w.
 以上、磁性体層1a~1wについて、第1のコイル4aを中心に説明したが、第2のコイル4bは、第1のコイル4aとコイル部品100を積層方向からみた場合の中央を中心として点対称の関係にあり、同じ構成要素を備えている。 The magnetic layers 1a to 1w have been described above with the first coil 4a as the center. However, the second coil 4b is a point with the center when the first coil 4a and the coil component 100 are viewed from the stacking direction. They are symmetrical and have the same components.
 以上の磁性体層1a~1wが積層された積層体2の内部には、第1のコイル4aと第2のコイル4bとが形成され、第1のコイル4aと第2のコイル4bとは直列に接続されている。なお、第1のコイル4aと第2のコイル4bとは、それぞれ、コイルの軸芯が積層体2の積層面と平行である。 A first coil 4a and a second coil 4b are formed in the laminate 2 in which the magnetic layers 1a to 1w are laminated. The first coil 4a and the second coil 4b are connected in series. It is connected to the. In addition, as for the 1st coil 4a and the 2nd coil 4b, the axial center of a coil is parallel to the lamination surface of the laminated body 2, respectively.
 第1のコイル4aは、外部電極3a、コイルパターン5c、ビア導体6c~6u、コイルパターン5v、ビア導体6u~6d、コイルパターン5d、ビア導体6d~6t、コイルパターン5u、ビア導体6t~6e、コイルパターン5e、ビア導体6e~6s、コイルパターン5t、ビア導体6s~6f、コイルパターン5f、ビア導体6f~6r、コイルパターン5s、ビア導体6r~6g、コイルパターン5gが、順番に接続されたものにより構成されている。 The first coil 4a includes an external electrode 3a, a coil pattern 5c, via conductors 6c to 6u, a coil pattern 5v, via conductors 6u to 6d, a coil pattern 5d, via conductors 6d to 6t, a coil pattern 5u, and via conductors 6t to 6e. The coil pattern 5e, the via conductors 6e to 6s, the coil pattern 5t, the via conductors 6s to 6f, the coil pattern 5f, the via conductors 6f to 6r, the coil pattern 5s, the via conductors 6r to 6g, and the coil pattern 5g are connected in order. It is composed of things.
 第2のコイル4bは、外部電極3b、コイルパターン5c、ビア導体6c~6u、コイルパターン5v、ビア導体6u~6d、コイルパターン5d、ビア導体6d~6t、コイルパターン5u、ビア導体6t~6e、コイルパターン5e、ビア導体6e~6s、コイルパターン5t、ビア導体6s~6f、コイルパターン5f、ビア導体6f~6r、コイルパターン5s、ビア導体6r~6g、コイルパターン5gが、順番に接続されたものにより構成されている。 The second coil 4b includes an external electrode 3b, a coil pattern 5c, via conductors 6c to 6u, a coil pattern 5v, via conductors 6u to 6d, a coil pattern 5d, via conductors 6d to 6t, a coil pattern 5u, and via conductors 6t to 6e. The coil pattern 5e, the via conductors 6e to 6s, the coil pattern 5t, the via conductors 6s to 6f, the coil pattern 5f, the via conductors 6f to 6r, the coil pattern 5s, the via conductors 6r to 6g, and the coil pattern 5g are connected in order. It is composed of things.
 積層体2の内部において、非磁性体ビアホール7c~7vが接続されている。非磁性体ビアホール7c~7vは、4列からなり、第1のコイル4aの両側面の外側と、第2のコイル4b第1のコイル4aの両側面の外側とに、それぞれ形成されている。非磁性体ビアホール7c~7vは、コイルの直流重畳特性を改善する役割を果たしている。 Non-magnetic via holes 7c to 7v are connected inside the laminate 2. The non-magnetic via holes 7c to 7v are formed in four rows, and are formed on the outer side of both side surfaces of the first coil 4a and the outer side of both side surfaces of the second coil 4b and the first coil 4a, respectively. The non-magnetic via holes 7c to 7v play a role of improving the DC superposition characteristics of the coil.
 コイル部品100を上から見たところを図7に示す。図7におけるVIII-VIII線に関する矢視断面図を図8に示す。図8は第1のコイル4aを途中で切った断面図に相当する。図8に示されるように、第1のコイル4aは、各磁性体層に配置されたコイルパターンと導体ビアホールとが接続されることによって渦巻き形状になるように構成されている。図8の上部に注目すれば、渦巻き形状の内側に向かうにつれてコイルパターン5c,5d,5e,5f,5gが順に配列されており、断面図で見える導体パターンとしての長さはこの順に短くなっている。図8の下部に注目すれば、渦巻き形状の内側に向かうにつれてコイルパターン5v,5u,5t,5sが順に配列されており、断面図で見える導体パターンとしての長さはこの順に短くなっている。 FIG. 7 shows the coil component 100 as viewed from above. FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. FIG. 8 corresponds to a cross-sectional view of the first coil 4a cut along the way. As shown in FIG. 8, the first coil 4 a is configured to have a spiral shape by connecting a coil pattern disposed in each magnetic layer and a conductor via hole. If attention is paid to the upper part of FIG. 8, the coil patterns 5c, 5d, 5e, 5f, and 5g are arranged in order toward the inside of the spiral shape, and the length as the conductor pattern visible in the sectional view becomes shorter in this order. Yes. If attention is paid to the lower part of FIG. 8, the coil patterns 5v, 5u, 5t, 5s are arranged in order toward the inner side of the spiral shape, and the length as the conductor pattern visible in the sectional view is shortened in this order.
 本発明の第1実施形態に係るコイル部品としては、積層体2の積層面に隣接する側面から透視した場合、コイルパターンとビア導体とで渦巻き形状を構成していることが好ましいといえる。コイルがこのように渦巻き形状となっていることによって、インダクタンス値を大きくすることができる。 As the coil component according to the first embodiment of the present invention, it can be said that it is preferable that the coil pattern and the via conductor form a spiral shape when seen from the side surface adjacent to the laminated surface of the laminated body 2. Since the coil has such a spiral shape, the inductance value can be increased.
 以上の構造からなる、第1の実施形態に係るコイル部品100は、例えば、次の方法により製造される。 The coil component 100 according to the first embodiment having the above structure is manufactured by, for example, the following method.
 まず、NiZnCuフェライトを作製するため、所定量の酸化物原料を混合して、800℃、1時間、仮焼し、フェライト仮焼体を作製する。 First, in order to produce NiZnCu ferrite, a predetermined amount of oxide raw materials are mixed and calcined at 800 ° C. for 1 hour to produce a calcined ferrite body.
 次に、フェライト仮焼体をボールミルで粉砕し、乾燥後、平均粒径2μmのフェライト粉末を作製する。 Next, the calcined ferrite body is pulverized with a ball mill and dried to prepare a ferrite powder having an average particle diameter of 2 μm.
 次に、フェライト粉末に、溶媒、バインダー、分散剤を加えて混合し、ドクターブレード法により、厚さ35μmの磁性体層用グリーンシートを作製する。なお、磁性体層用グリーンシートはマザーグリーンシートであり、各磁性体層用グリーンシートから多数個の磁性体層を得ることができる。 Next, the ferrite powder is mixed with a solvent, a binder, and a dispersant, and a green sheet for a magnetic layer having a thickness of 35 μm is prepared by a doctor blade method. The magnetic layer green sheet is a mother green sheet, and a large number of magnetic layers can be obtained from each magnetic layer green sheet.
 次に、磁性体層用グリーンシートに、磁性体層1a~1wのいずれに用いるかに応じて、導体ビアホールまたは非磁性体ビアホールを形成するのに必要となる20μmのビアホールを形成する。なお、必要がない場合には、磁性体層用グリーンシートにビアホールは形成しない。 Next, a 20 μm via hole necessary for forming a conductor via hole or a non-magnetic via hole is formed on the magnetic layer green sheet depending on which of the magnetic layers 1a to 1w is used. If not necessary, no via hole is formed in the magnetic layer green sheet.
 次に、磁性体層用グリーンシートに、磁性体層1a~1wのいずれに用いるかに応じて、予め作製しておいたAgを主成分とする導電性ペーストを塗布し、コイルパターンと導体ビアホールとを形成する。このとき、コイルパターンの膜厚は30μmとした。なお、必要のない磁性体層用グリーンシートには、コイルパターン、導体ビアホールは形成しない。 Next, a conductive paste mainly composed of Ag prepared in advance is applied to the green sheet for the magnetic layer depending on which of the magnetic layers 1a to 1w is used, and the coil pattern and the conductor via hole are applied. And form. At this time, the film thickness of the coil pattern was 30 μm. In addition, a coil pattern and a conductor via hole are not formed in the unnecessary green sheet for a magnetic layer.
 次に、磁性体層用グリーンシートに、磁性体層1a~1wのいずれに用いるかに応じて、予め作製しておいた非磁性ペーストを塗布し、非磁性体ビアホールを形成する。なお、必要のない磁性体層用グリーンシートには、非磁性体ビアホールは形成しない。 Next, a nonmagnetic paste prepared in advance is applied to the green sheet for the magnetic layer depending on which of the magnetic layers 1a to 1w is used, thereby forming a nonmagnetic via hole. Note that a non-magnetic via hole is not formed in the unnecessary magnetic layer green sheet.
 次に、磁性体層用グリーンシートを所定の順番に積層し、熱圧着したうえで、個々の未焼成積層体にカットする。 Next, the magnetic layer green sheets are laminated in a predetermined order, thermocompression-bonded, and then cut into individual unfired laminates.
 次に、未焼成積層体を、400℃、3時間、脱バインダー処理をおこなったうえで、900℃、2時間、焼成し、さらにバレルにより面取りをして、長さ2.0mm、幅1.25mm、高さ1.0mmの積層体2を作製する。 Next, the unfired laminate was subjected to binder removal treatment at 400 ° C. for 3 hours, then fired at 900 ° C. for 2 hours, further chamfered with a barrel, length 2.0 mm, width 1. A laminate 2 having a height of 25 mm and a height of 1.0 mm is produced.
 次に、積層体2の両端部に、折返し部の寸法が0.5mmとなるように、Agを主成分とする導電性ペーストを塗布し、800℃で焼付けをおこなった後、バレルめっき法で、Niめっき、Snめっきを形成し、さらに洗浄、乾燥し、コイル部品100を完成させる。 Next, a conductive paste mainly composed of Ag is applied to both end portions of the laminate 2 so that the dimension of the folded portion is 0.5 mm, and baking is performed at 800 ° C., followed by barrel plating. Then, Ni plating and Sn plating are formed, and further washed and dried to complete the coil component 100.
 以上の方法で製造された、第1の実施形態に係るコイル部品100は、インダクタンスが0.84μH、直流抵抗は29mΩであった。コイル部品100は、コイルパターン5c~5vの膜厚が、それぞれ30μmと小さいため、積層体2の外観に不良は発生しなかった。また、積層体2の内部においても、磁性体層1a~1wに層間剥離やクラックは発生せず、コイルパターン5c~5v、導体ビアホール6c~6u、非磁性体ビアホール7c~7vなどの内部構造に変形等が発生することもなかった。 The coil component 100 according to the first embodiment manufactured by the above method has an inductance of 0.84 μH and a DC resistance of 29 mΩ. In the coil component 100, since the film thickness of each of the coil patterns 5c to 5v was as small as 30 μm, no defect occurred in the appearance of the laminate 2. Also, even within the laminate 2, there is no delamination or cracks in the magnetic layers 1a to 1w, and the internal structures such as the coil patterns 5c to 5v, the conductor via holes 6c to 6u, and the nonmagnetic via holes 7c to 7v are provided. There was no deformation or the like.
 [第2実施形態]
 図9と、図10~図13に、それぞれ、本発明の第2実施形態に係るコイル部品200を示す。ただし、図9は、コイル部品200の斜視図である。図10~図13は、コイル部品200の分解斜視図であり、図10~図13で1つのコイル部品200が構成される。
[Second Embodiment]
9 and 10 to 13 show a coil component 200 according to the second embodiment of the present invention. However, FIG. 9 is a perspective view of the coil component 200. 10 to 13 are exploded perspective views of the coil component 200, and one coil component 200 is configured in FIGS.
 コイル部品200は、上から順に11層の磁性体層11a~1kが積層された、直方体状の積層体12を備える。本実施形態においては、磁性体層11a~11kは、Feを主成分とする金属磁性体粉をSi等の絶縁性物質で被覆したものを主材料に形成されている。なお、金属磁性体粉を絶縁性物質で被覆したものには、例えば、Fe系合金の表面に、その合金成分の酸化被膜を形成したようなものも含まれる。 The coil component 200 includes a rectangular parallelepiped laminated body 12 in which eleven magnetic layers 11a to 1k are laminated in order from the top. In this embodiment, the magnetic layers 11a to 11k are mainly formed by coating a metal magnetic material powder containing Fe as a main component with an insulating material such as Si. In addition, what coated metal magnetic substance powder with the insulating substance includes what formed the oxide film of the alloy component on the surface of Fe type alloy, for example.
 積層体12の寸法は、例えば、長さ1.6mm、幅0.8mm、高さ0.8mmである。 The dimensions of the laminate 12 are, for example, a length of 1.6 mm, a width of 0.8 mm, and a height of 0.8 mm.
 積層体12の両端には、1対の外部電極13a、13bが形成されている。
 積層体12の内部には、積層体12の積層面と平行な方向に並ぶように、第1のコイル14aと第2のコイル14bとが形成され、第1のコイル14aと第2のコイル14bとは直列に接続されている。なお、本実施形態では、第1のコイル14aと第2のコイル14bとは、積層体12の幅S方向に並んでいる。
A pair of external electrodes 13 a and 13 b are formed at both ends of the multilayer body 12.
A first coil 14a and a second coil 14b are formed inside the laminated body 12 so as to be aligned in a direction parallel to the laminated surface of the laminated body 12, and the first coil 14a and the second coil 14b are formed. Are connected in series. In the present embodiment, the first coil 14 a and the second coil 14 b are arranged in the width S direction of the multilayer body 12.
 図10に示すように、上から1番目に積層される磁性体層11aは保護層であり、両主面には何も形成されていない。磁性体層11aには、導体ビアホールも形成されていない。 As shown in FIG. 10, the magnetic layer 11a stacked first from the top is a protective layer, and nothing is formed on both main surfaces. No conductor via hole is formed in the magnetic layer 11a.
 上から2番目に積層される磁性体層11bには、図面の手前側に、第1のコイル14aの構成要素が、図面の奥側に、第2のコイル14bの構成要素が形成されている。 The magnetic layer 11b that is stacked second from the top is formed with the components of the first coil 14a on the front side of the drawing and the components of the second coil 14b on the back side of the drawing. .
 すなわち、磁性体層11bの一方主面には、図面の手前側に、第1のコイル14aのコイルパターン15bが形成され、図面の奥側に、第2のコイル14bのコイルパターン15bが形成されている。 That is, on one main surface of the magnetic layer 11b, a coil pattern 15b of the first coil 14a is formed on the front side of the drawing, and a coil pattern 15b of the second coil 14b is formed on the back side of the drawing. ing.
 また、磁性体層11bを貫通して、第1のコイル14aのコイルパターン15bの両端部分に導体ビアホール16bがそれぞれ形成され、また、第2のコイル14bのコイルパターン15bの両端部分に導体ビアホール16bがそれぞれ形成されている。コイルパターン15bは、それぞれ、両端部分で導体ビアホール16bと接続されている。 Conductive via holes 16b are formed in both end portions of the coil pattern 15b of the first coil 14a through the magnetic layer 11b, and conductive via holes 16b are formed in both end portions of the coil pattern 15b of the second coil 14b. Are formed respectively. The coil patterns 15b are connected to the conductor via holes 16b at both ends.
 コイルパターン15bは、例えば、Cuを主成分とする。導体ビアホール16bは、例えば、Cuを主成分とする。これらの材質は、以下に説明する、磁性体層11c~11kに形成されるコイルパターン、磁性体層11c~11jに形成される導体ビアホールにおいても同じである。 The coil pattern 15b is mainly composed of Cu, for example. The conductor via hole 16b has, for example, Cu as a main component. These materials are the same for the coil patterns formed in the magnetic layers 11c to 11k and the conductor via holes formed in the magnetic layers 11c to 11j described below.
 コイルパターン15bの膜厚は、例えば、30μmである。導体ビアホール16bは、例えば、90μm×90μmの矩形状からなる。これらの寸法は、以下に説明する、磁性体層11c~11jに形成されるコイルパターン、導体ビアホールにおいても同じである。 The film thickness of the coil pattern 15b is, for example, 30 μm. The conductor via hole 16b has a rectangular shape of 90 μm × 90 μm, for example. These dimensions are the same for the coil patterns and conductor via holes formed in the magnetic layers 11c to 11j described below.
 第1のコイル14aのコイルパターン15bと、第2のコイル14bのコイルパターン15bとは、それぞれ、コイル幅wをもつ。 The coil pattern 15b of the first coil 14a and the coil pattern 15b of the second coil 14b each have a coil width w.
 膜厚が一定であれば、コイル幅wが大きいほど、直流抵抗が小さくなるので望ましい。
 上から3番目に積層される磁性体層11cの一方主面には、第1のコイル14aのコイルパターン15cと、第2のコイル14bのコイルパターン15cとが形成されている。
If the film thickness is constant, the larger the coil width w, the smaller the DC resistance, which is desirable.
A coil pattern 15c of the first coil 14a and a coil pattern 15c of the second coil 14b are formed on one main surface of the magnetic layer 11c stacked third from the top.
 磁性体層11cを貫通して、第1のコイル14aのコイルパターン15cの両端部分に、それぞれ2つの導体ビアホール16cが形成されている。また、磁性体層11cを貫通して、第2のコイル14bのコイルパターン15cの両端部分に、それぞれ2つの導体ビアホール16cが形成されている。コイルパターン15cは、それぞれ、両端部分で、2つの導体ビアホール16cうちの1つと接続されている。 Two conductor via holes 16c are formed at both ends of the coil pattern 15c of the first coil 14a through the magnetic layer 11c. Further, two conductor via holes 16c are formed in both end portions of the coil pattern 15c of the second coil 14b so as to penetrate the magnetic layer 11c. Each of the coil patterns 15c is connected to one of the two conductor via holes 16c at both end portions.
 図11を参照して、上から4番目に積層される磁性体層11dの一方主面には、第1のコイル14aのコイルパターン15dと、第2のコイル14bのコイルパターン15dとが形成されている。 Referring to FIG. 11, a coil pattern 15d of the first coil 14a and a coil pattern 15d of the second coil 14b are formed on one main surface of the magnetic layer 11d stacked fourth from the top. ing.
 磁性体層11dを貫通して、第1のコイル14aのコイルパターン15dの両端部分に、それぞれ3つの導体ビアホール16dが形成されている。また、磁性体層11dを貫通して、第2のコイル14bのコイルパターン15dの両端部分に、それぞれ3つの導体ビアホール16dが形成されている。コイルパターン15dは、それぞれ、両端部分で、3つの導体ビアホール16dうちの1つと接続されている。 Three conductor via holes 16d are formed in both end portions of the coil pattern 15d of the first coil 14a through the magnetic layer 11d. Further, three conductor via holes 16d are formed in both end portions of the coil pattern 15d of the second coil 14b through the magnetic layer 11d. Each of the coil patterns 15d is connected to one of the three conductor via holes 16d at both end portions.
 上から5番目に積層される磁性体層11eの一方主面には、第1のコイル14aのコイルパターン15eと、第2のコイル14bのコイルパターン15eとが形成されている。 A coil pattern 15e of the first coil 14a and a coil pattern 15e of the second coil 14b are formed on one main surface of the magnetic layer 11e laminated fifth from the top.
 磁性体層11eを貫通して、第1のコイル14aのコイルパターン15eの両端部分に、それぞれ4つの導体ビアホール16eが形成されている。また、磁性体層11eを貫通して、第2のコイル14bのコイルパターン15eの両端部分に、それぞれ4つの導体ビアホール16eが形成されている。コイルパターン15eは、それぞれ、両端部分で、4つの導体ビアホール16eうちの1つと接続されている。 Four conductor via holes 16e are formed in both end portions of the coil pattern 15e of the first coil 14a so as to penetrate the magnetic layer 11e. Further, four conductor via holes 16e are formed in both end portions of the coil pattern 15e of the second coil 14b so as to penetrate the magnetic layer 11e. Each of the coil patterns 15e is connected to one of the four conductor via holes 16e at both ends.
 上から6番目に積層される磁性体層11fの主面には、コイルパターンは形成されていない。 The coil pattern is not formed on the main surface of the magnetic layer 11f stacked sixth from the top.
 磁性体層11fを貫通して、磁性体層11fの手前側の左右両側に、第1のコイル14aの導体ビアホール16fが、それぞれ4つ形成されている。また、磁性体層11fを貫通して、磁性体層11fの奥側の左右両側に、第2のコイル14bの導体ビアホール16fが、それぞれ4つ形成されている。 Four conductor via holes 16f of the first coil 14a are formed on both the left and right sides on the front side of the magnetic layer 11f through the magnetic layer 11f. Further, four conductor via holes 16f of the second coil 14b are formed on both the left and right sides on the back side of the magnetic layer 11f through the magnetic layer 11f.
 図12を参照して、上から7番目に積層される磁性体層11gの一方主面には、図面の手前側に、第1のコイル14aのコイルパターン15gが形成されている。また、磁性体層11gの一方主面には、図面の奥側に、第2のコイル14bのコイルパターン15gも形成されている。そして、第1のコイル14aのコイルパターン15gと、第2のコイル14bのコイルパターン15gとは接続されている。第1のコイル14aと第2のコイル14bとは直列に接続されていると上述したが、両者は、この部分において接続されている。 Referring to FIG. 12, the coil pattern 15g of the first coil 14a is formed on the front side of the drawing on the one main surface of the magnetic layer 11g that is laminated seventh from the top. A coil pattern 15g of the second coil 14b is also formed on the one main surface of the magnetic layer 11g on the back side of the drawing. The coil pattern 15g of the first coil 14a and the coil pattern 15g of the second coil 14b are connected. As described above, the first coil 14a and the second coil 14b are connected in series, but both are connected in this portion.
 磁性体層11gを貫通して、第1のコイル14aのコイルパターン15gの一方端部分に3つの導体ビアホール16gが形成され、他方端部分に4つの導体ビアホール16gが形成されている。また、磁性体層11gを貫通して、第2のコイル14bのコイルパターン15gの一方端部分に3つの導体ビアホール16gが形成され、他方端部分に4つの導体ビアホール16gが形成されている。いずれのコイルパターン15gも、導体ビアホール16gとは接続していない。 Through the magnetic layer 11g, three conductor via holes 16g are formed at one end portion of the coil pattern 15g of the first coil 14a, and four conductor via holes 16g are formed at the other end portion. Further, three conductor via holes 16g are formed at one end portion of the coil pattern 15g of the second coil 14b through the magnetic layer 11g, and four conductor via holes 16g are formed at the other end portion. None of the coil patterns 15g is connected to the conductor via hole 16g.
 上から8番目に積層される磁性体層11hの一方主面には、第1のコイル14aのコイルパターン15hと、第2のコイル14bのコイルパターン15hとが形成されている。 A coil pattern 15h of the first coil 14a and a coil pattern 15h of the second coil 14b are formed on one main surface of the magnetic layer 11h stacked eighth from the top.
 磁性体層11hを貫通して、第1のコイル14aのコイルパターン15hの一方端部分に2つの導体ビアホール16hが形成され、他方端部分に3つの導体ビアホール16hが形成されている。また、磁性体層11hを貫通して、第2のコイル14bのコイルパターン15hの一方端部分に2つの導体ビアホール16hが形成され、他方端部分に3つの導体ビアホール16hが形成されている。いずれのコイルパターン15hも、導体ビアホール16hとは接続していない。 Through the magnetic layer 11h, two conductor via holes 16h are formed at one end portion of the coil pattern 15h of the first coil 14a, and three conductor via holes 16h are formed at the other end portion. Further, two conductor via holes 16h are formed in one end portion of the coil pattern 15h of the second coil 14b and three conductor via holes 16h are formed in the other end portion, penetrating the magnetic layer 11h. None of the coil patterns 15h are connected to the conductor via hole 16h.
 上から9番目に積層される磁性体層11iの一方主面には、第1のコイル14aのコイルパターン15iと、第2のコイル14bのコイルパターン15iとが形成されている。 A coil pattern 15i of the first coil 14a and a coil pattern 15i of the second coil 14b are formed on one main surface of the magnetic layer 11i that is laminated ninth from the top.
 磁性体層11iを貫通して、第1のコイル14aのコイルパターン15iの一方端部分に1つの導体ビアホール16iが形成され、他方端部分に2つの導体ビアホール16iが形成されている。また、磁性体層11iを貫通して、第2のコイル14bのコイルパターン15iの一方端部分に2つの導体ビアホール16iが形成され、他方端部分に1つの導体ビアホール16iが形成されている。いずれのコイルパターン15iも、導体ビアホール16iとは接続していない。 One conductor via hole 16i is formed at one end portion of the coil pattern 15i of the first coil 14a and two conductor via holes 16i are formed at the other end portion, penetrating the magnetic layer 11i. Further, two conductor via holes 16i are formed at one end portion of the coil pattern 15i of the second coil 14b and one conductor via hole 16i is formed at the other end portion, penetrating the magnetic layer 11i. None of the coil patterns 15i are connected to the conductor via hole 16i.
 図13を参照して、上から10番目に積層される磁性体層11jの一方主面には、第1のコイル14aのコイルパターン15jと、第2のコイル14bのコイルパターン15jとが形成されている。 Referring to FIG. 13, a coil pattern 15j of the first coil 14a and a coil pattern 15j of the second coil 14b are formed on one main surface of the magnetic layer 11j laminated tenth from the top. ing.
 磁性体層11jを貫通して、第1のコイル14aのコイルパターン15jの一方端部分に1つの導体ビアホール16jが形成されている。また、磁性体層11jを貫通して、第2のコイル14bのコイルパターン15jの一方端部分に1つの導体ビアホール16jが形成されている。いずれのコイルパターン15jも、導体ビアホール16jとは接続していない。 One conductor via hole 16j is formed in one end portion of the coil pattern 15j of the first coil 14a through the magnetic layer 11j. Further, one conductor via hole 16j is formed at one end portion of the coil pattern 15j of the second coil 14b so as to penetrate the magnetic layer 11j. None of the coil patterns 15j is connected to the conductor via hole 16j.
 上から11番目に積層される磁性体層11kの一方主面には、第1のコイル14aのコイルパターン15kと、第2のコイル14bのコイルパターン15kとが形成されている。第1のコイル14aのコイルパターン15kは外部電極13aと、第2のコイル14bのコイルパターン15kは外部電極13aと、それぞれ接続されている。 A coil pattern 15k of the first coil 14a and a coil pattern 15k of the second coil 14b are formed on one main surface of the magnetic layer 11k that is stacked eleventh from the top. The coil pattern 15k of the first coil 14a is connected to the external electrode 13a, and the coil pattern 15k of the second coil 14b is connected to the external electrode 13a.
 以上の磁性体層11a~11kが積層された積層体12の内部には、第1のコイル14aと第2のコイル4bとが形成され、上述したように、第1のコイル14aと第2のコイル14bとは直列に接続されている。なお、第1のコイル14aと第2のコイル14bとは、それぞれ、コイルの軸芯が積層体12の積層面と平行である。 A first coil 14a and a second coil 4b are formed in the laminated body 12 in which the magnetic layers 11a to 11k are laminated. As described above, the first coil 14a and the second coil 4b are formed. The coil 14b is connected in series. In addition, as for the 1st coil 14a and the 2nd coil 14b, the axial center of a coil is parallel to the lamination surface of the laminated body 12, respectively.
 第1のコイル14aは、外部電極13a、コイルパターン15k、ビア導体6j~6b、コイルパターン15b、ビア導体16b~16i、コイルパターン15j、ビア導体16i~16c、コイルパターン15c、ビア導体16c~16h、コイルパターン15i、ビア導体16h~16d、コイルパターン15d、ビア導体16d~16g、コイルパターン15h、ビア導体16g~16e、コイルパターン15e、ビア導体16e~6f、コイルパターン15gが、順番に接続されたものにより構成されている。 The first coil 14a includes an external electrode 13a, a coil pattern 15k, via conductors 6j to 6b, a coil pattern 15b, via conductors 16b to 16i, a coil pattern 15j, via conductors 16i to 16c, a coil pattern 15c, and via conductors 16c to 16h. The coil pattern 15i, the via conductors 16h to 16d, the coil pattern 15d, the via conductors 16d to 16g, the coil pattern 15h, the via conductors 16g to 16e, the coil pattern 15e, the via conductors 16e to 6f, and the coil pattern 15g are connected in order. It is composed of things.
 第2のコイル14bは、外部電極13b、コイルパターン15k、ビア導体6j~6b、コイルパターン15b、ビア導体16b~16i、コイルパターン15j、ビア導体16i~16c、コイルパターン15c、ビア導体16c~16h、コイルパターン15i、ビア導体16h~16d、コイルパターン15d、ビア導体16d~16g、コイルパターン15h、ビア導体16g~16e、コイルパターン15e、ビア導体16e~6f、コイルパターン15gが、順番に接続されたものにより構成されている。 The second coil 14b includes an external electrode 13b, a coil pattern 15k, via conductors 6j to 6b, a coil pattern 15b, via conductors 16b to 16i, a coil pattern 15j, via conductors 16i to 16c, a coil pattern 15c, and via conductors 16c to 16h. The coil pattern 15i, the via conductors 16h to 16d, the coil pattern 15d, the via conductors 16d to 16g, the coil pattern 15h, the via conductors 16g to 16e, the coil pattern 15e, the via conductors 16e to 6f, and the coil pattern 15g are connected in order. It is composed of things.
 本発明の第2実施形態としては、第1のコイル14aと第2のコイル14bとが積層体12の幅S方向に並んでいる例を説明した。本発明の第2実施形態に係るコイル部品としては、積層体12の積層面に隣接し互いに対向する側面に外部電極13a,13bをさらに備え、外部電極13a,13bが対向する方向と垂直な方向に並ぶようにコイルが複数形成されていることが好ましいといえる。このように、複数のコイルが、外部電極が対向する方向と垂直な方向に並ぶように構成することによって、コイルから発生する磁束が外部電極を通過することがなくなり、外部電極において渦電流が発生しないので、高いQ値を得ることができる。 As the second embodiment of the present invention, the example in which the first coil 14a and the second coil 14b are arranged in the width S direction of the stacked body 12 has been described. The coil component according to the second embodiment of the present invention further includes external electrodes 13a and 13b on side surfaces adjacent to each other and facing each other on the laminated surface of the laminated body 12, and a direction perpendicular to the direction in which the external electrodes 13a and 13b face each other. It can be said that it is preferable that a plurality of coils are formed so as to line up. In this way, by configuring a plurality of coils so that they are arranged in a direction perpendicular to the direction in which the external electrodes face each other, magnetic flux generated from the coils does not pass through the external electrodes, and eddy currents are generated in the external electrodes. Therefore, a high Q value can be obtained.
 以上の構造からなる、第2の実施形態に係るコイル部品200は、例えば、次の方法により製造される。 The coil component 200 according to the second embodiment having the above structure is manufactured by, for example, the following method.
 表面に銅箔が貼着された11枚の磁性体シートを準備する。磁性体シートは、Feを主成分とする金属磁性体粉をSi等の絶縁性物質で被覆したものを主材料に形成されている。磁性体シートはマザーシートであり、各磁性体シートから多数個の磁性体層が作製される。 Prepare 11 magnetic sheets with copper foil attached to the surface. The magnetic material sheet is formed mainly by coating a metal magnetic material powder containing Fe as a main component with an insulating substance such as Si. The magnetic sheet is a mother sheet, and a large number of magnetic layers are produced from each magnetic sheet.
 まず、磁性体層11b~11e、磁性体層11g~11k用の9枚の磁性体シートに対し、表面の銅箔をエッチングして、それぞれ、所定の形状からなるコイルパターン15b~15e、コイルパターン15g~15kを形成する。なお、磁性体層11a用および磁性体層11f用の磁性体シートには、初めから表面に銅箔の形成されていない磁性体シートを、別途、準備する。 First, the copper foils on the surface of the nine magnetic sheets for the magnetic layers 11b to 11e and the magnetic layers 11g to 11k are etched to form coil patterns 15b to 15e having a predetermined shape, and coil patterns, respectively. 15g to 15k are formed. In addition, as the magnetic material sheet for the magnetic material layer 11a and the magnetic material layer 11f, a magnetic material sheet having no copper foil formed on the surface is prepared separately from the beginning.
 次に、磁性体層11k用の磁性体シート上に、磁性体層11j用の磁性体シートを重ね、圧着する。 Next, the magnetic material sheet for the magnetic material layer 11j is stacked on the magnetic material sheet for the magnetic material layer 11k and pressure-bonded.
 次に、磁性体層11j用の磁性体シートに、導体ビアホール16jを形成するための孔を形成する。 Next, a hole for forming the conductor via hole 16j is formed in the magnetic material sheet for the magnetic material layer 11j.
 次に、磁性体層11j用の磁性体シートに形成された孔内をめっきし、導体ビアホール16jを形成する。導体ビアホール16jは、それぞれ、コイルパターン15kと接続される。 Next, the hole formed in the magnetic material sheet for the magnetic material layer 11j is plated to form a conductor via hole 16j. Each conductor via hole 16j is connected to a coil pattern 15k.
 次に、磁性体層11j用の磁性体シート上に、磁性体層11i用の磁性体シートを重ね、圧着する。 Next, the magnetic sheet for the magnetic layer 11i is overlaid and pressure-bonded on the magnetic sheet for the magnetic layer 11j.
 次に、磁性体層11i用の磁性体シートに、導体ビアホール16iを形成するための孔を形成する。 Next, a hole for forming the conductor via hole 16i is formed in the magnetic material sheet for the magnetic material layer 11i.
 次に、磁性体層11i用の磁性体シートに形成された孔内をめっきし、導体ビアホール16iを形成する。導体ビアホール16iは、それぞれ、コイルパターン15jおよび導体ビアホール16jのいずれかと接続される。 Next, the hole formed in the magnetic material sheet for the magnetic material layer 11i is plated to form a conductor via hole 16i. Conductive via hole 16i is connected to either coil pattern 15j or conductive via hole 16j, respectively.
 次に、磁性体層11i用の磁性体シート上に、磁性体層11h用の磁性体シートを重ね、圧着する。 Next, the magnetic sheet for the magnetic layer 11h is stacked on the magnetic sheet for the magnetic layer 11i and pressure-bonded.
 次に、磁性体層11h用の磁性体シートに、導体ビアホール16hを形成するための孔を形成する。 Next, a hole for forming the conductor via hole 16h is formed in the magnetic material sheet for the magnetic material layer 11h.
 次に、磁性体層11h用の磁性体シートに形成された孔内をめっきし、導体ビアホール16hを形成する。導体ビアホール16hは、それぞれ、コイルパターン15iおよび導体ビアホール16iのいずれかと接続される。 Next, the hole formed in the magnetic sheet for the magnetic layer 11h is plated to form a conductor via hole 16h. The conductor via hole 16h is connected to either the coil pattern 15i or the conductor via hole 16i.
 次に、磁性体層11h用の磁性体シート上に、磁性体層11g用の磁性体シートを重ね、圧着する。 Next, a magnetic sheet for the magnetic layer 11g is overlaid on the magnetic sheet for the magnetic layer 11h, and pressure-bonded.
 次に、磁性体層11g用の磁性体シートに、導体ビアホール16gを形成するための孔を形成する。 Next, a hole for forming the conductor via hole 16g is formed in the magnetic material sheet for the magnetic material layer 11g.
 次に、磁性体層11g用の磁性体シートに形成された孔内をめっきし、導体ビアホール16gを形成する。導体ビアホール16gは、それぞれ、コイルパターン15hおよび導体ビアホール16hのいずれかと接続される。 Next, the inside of the hole formed in the magnetic material sheet for the magnetic material layer 11g is plated to form a conductor via hole 16g. The conductor via hole 16g is connected to either the coil pattern 15h or the conductor via hole 16h.
 次に、磁性体層11g用の磁性体シート上に、磁性体層11f用の磁性体シートを重ね、圧着する。 Next, the magnetic material sheet for the magnetic material layer 11f is stacked on the magnetic material sheet for the magnetic material layer 11g and pressure-bonded.
 次に、磁性体層11f用の磁性体シートに、導体ビアホール16fを形成するための孔を形成する。 Next, a hole for forming the conductor via hole 16f is formed in the magnetic material sheet for the magnetic material layer 11f.
 次に、磁性体層11f用の磁性体シートに形成された孔内をめっきし、導体ビアホール16fを形成する。導体ビアホール16fは、それぞれ、コイルパターン15gおよび導体ビアホール16gのいずれかと接続される。 Next, the hole formed in the magnetic material sheet for the magnetic material layer 11f is plated to form a conductor via hole 16f. The conductor via hole 16f is connected to either the coil pattern 15g or the conductor via hole 16g.
 次に、磁性体層11f用の磁性体シート上に、磁性体層11e用の磁性体シートを重ね、圧着する。 Next, the magnetic sheet for the magnetic layer 11e is overlaid on the magnetic sheet for the magnetic layer 11f and pressure-bonded.
 次に、磁性体層11e用の磁性体シートに、導体ビアホール16eを形成するための孔を形成する。 Next, a hole for forming the conductor via hole 16e is formed in the magnetic material sheet for the magnetic material layer 11e.
 次に、磁性体層11e用の磁性体シートに形成された孔内をめっきし、導体ビアホール16eを形成する。導体ビアホール16eは、導体ビアホール16fと接続される。 Next, the hole formed in the magnetic material sheet for the magnetic material layer 11e is plated to form the conductor via hole 16e. The conductor via hole 16e is connected to the conductor via hole 16f.
 次に、磁性体層11e用の磁性体シート上に、磁性体層11d用の磁性体シートを重ね、圧着する。 Next, the magnetic sheet for the magnetic layer 11d is overlaid on the magnetic sheet for the magnetic layer 11e, and pressure-bonded.
 次に、磁性体層11d用の磁性体シートに、導体ビアホール16dを形成するための孔を形成する。 Next, a hole for forming the conductor via hole 16d is formed in the magnetic material sheet for the magnetic material layer 11d.
 次に、磁性体層11d用の磁性体シートに形成された孔内をめっきし、導体ビアホール16dを形成する。導体ビアホール16dは、それぞれ、コイルパターン15eおよび導体ビアホール16eのいずれかと接続される。 Next, the inside of the hole formed in the magnetic material sheet for the magnetic material layer 11d is plated to form the conductor via hole 16d. The conductor via hole 16d is connected to either the coil pattern 15e or the conductor via hole 16e.
 次に、磁性体層11d用の磁性体シート上に、磁性体層11c用の磁性体シートを重ね、圧着する。 Next, the magnetic material sheet for the magnetic material layer 11c is stacked on the magnetic material sheet for the magnetic material layer 11d and pressure-bonded.
 次に、磁性体層11c用の磁性体シートに、導体ビアホール16cを形成するための孔を形成する。 Next, a hole for forming the conductor via hole 16c is formed in the magnetic sheet for the magnetic layer 11c.
 次に、磁性体層11c用の磁性体シートに形成された孔内をめっきし、導体ビアホール16cを形成する。導体ビアホール16cは、それぞれ、コイルパターン15dおよび導体ビアホール16dのいずれかと接続される。 Next, the hole formed in the magnetic material sheet for the magnetic material layer 11c is plated to form a conductor via hole 16c. Conductive via hole 16c is connected to either coil pattern 15d or conductive via hole 16d.
 次に、磁性体層11c用の磁性体シート上に、磁性体層11b用の磁性体シートを重ね、圧着する。 Next, the magnetic material sheet for the magnetic material layer 11b is stacked on the magnetic material material sheet for the magnetic material layer 11c and pressure-bonded.
 次に、磁性体層11b用の磁性体シートに、導体ビアホール16bを形成するための孔を形成する。 Next, a hole for forming the conductor via hole 16b is formed in the magnetic sheet for the magnetic layer 11b.
 次に、磁性体層11b用の磁性体シートに形成された孔内をめっきし、導体ビアホール16bを形成する。導体ビアホール16bは、それぞれ、コイルパターン15cおよび導体ビアホール16cのいずれかと接続される。 Next, the hole formed in the magnetic material sheet for the magnetic material layer 11b is plated to form a conductor via hole 16b. The conductor via hole 16b is connected to either the coil pattern 15c or the conductor via hole 16c.
 次に、磁性体層11b用の磁性体シート上に、磁性体層11a用の磁性体シートを重ね、圧着する。 Next, the magnetic sheet for the magnetic layer 11a is overlaid on the magnetic sheet for the magnetic layer 11b, and pressure bonded.
 さらに、磁性体層11k~11a用の磁性体シートが積層された磁性体シート積層体に圧力を加え、全体を一体化する。 Further, pressure is applied to the magnetic sheet laminate in which the magnetic sheets for the magnetic layers 11k to 11a are laminated to integrate the whole.
 次に、磁性体シート積層体をカットし、個々の積層体12を作製する。
 次に、積層体12の両端に、導電性樹脂ペーストを塗布して、外部電極13a、13bを形成し、コイル部品200が完成する。
Next, the magnetic sheet laminate is cut to produce individual laminates 12.
Next, a conductive resin paste is applied to both ends of the laminate 12 to form the external electrodes 13a and 13b, and the coil component 200 is completed.
 以上の方法で製造された、第2の実施形態に係るコイル部品200も、直流抵抗が小さく、Qの高いコイル部品となった。 The coil component 200 according to the second embodiment manufactured by the above method is also a coil component having a low DC resistance and a high Q.
実験例Experimental example
 本発明の有効性を確認するために、実施例と比較例の対比をおこなった。
 実施例として、第1実施形態に係るコイル部品100を用意した。
In order to confirm the effectiveness of the present invention, the examples and comparative examples were compared.
As an example, the coil component 100 according to the first embodiment was prepared.
 コイル部品100の外観寸法は、長さ2.1mm、幅1.25mm、高さ1.0mmである。 The external dimensions of the coil component 100 are 2.1 mm in length, 1.25 mm in width, and 1.0 mm in height.
 コイル部品100のコイルパターン5d~5vの膜厚は30μmである。
 コイル部品100のコイルパターン5d~5vのコイル幅は850μmである。
The film thickness of the coil patterns 5d to 5v of the coil component 100 is 30 μm.
The coil width of the coil patterns 5d to 5v of the coil component 100 is 850 μm.
 コイル部品100のその他の詳細は、上述したとおりである。
 コイル部品100のインダクタンス値は0.84μHであった。
Other details of the coil component 100 are as described above.
The inductance value of the coil component 100 was 0.84 μH.
 コイル部品100の直流抵抗は29mΩであった。
 コイル部品100の直流重畳特性を図14に示す。
The DC resistance of the coil component 100 was 29 mΩ.
The DC superposition characteristics of the coil component 100 are shown in FIG.
 一方、比較例として、コイル部品400を用意した。コイル部品400の基本的構造は、図15に示した従来のコイル部品300と共通するが、詳細は次のとおりである。 Meanwhile, a coil component 400 was prepared as a comparative example. The basic structure of the coil component 400 is the same as that of the conventional coil component 300 shown in FIG. 15, but the details are as follows.
 コイル部品400の外観寸法は、長さ2.0mm、幅1.25mm、高さ0.85mmである。 The external dimensions of the coil component 400 are a length of 2.0 mm, a width of 1.25 mm, and a height of 0.85 mm.
 コイル部品400は、7層の誘電体層と途中に挿入された1層の非磁性体層とが積層された、8層からなる積層体を備える。非磁性体層は、直流重畳特性を改善するために挿入されたものである。 The coil component 400 includes a laminated body composed of eight layers in which seven dielectric layers and one nonmagnetic layer inserted in the middle are laminated. The nonmagnetic layer is inserted in order to improve the direct current superposition characteristics.
 コイル部品400において、積層体の上下最外層の磁性体層は保護層であり、コイルパターンは形成されていない。 In the coil component 400, the upper and lower outermost magnetic layers of the laminate are protective layers, and no coil pattern is formed.
 コイル部品400は、保護層を除いた5層の磁性体層と、1枚の非磁性体層にコイルパターンが形成されており、全体として5.5ターンのコイルが形成されている。 The coil component 400 has a coil pattern formed on five magnetic layers excluding the protective layer and one non-magnetic layer, and a 5.5-turn coil as a whole.
 コイルパターンの膜厚は30μm、コイル幅は200μmである。
 コイル部品400のインダクタンスは0.81μHであった。
The film thickness of the coil pattern is 30 μm and the coil width is 200 μm.
The inductance of the coil component 400 was 0.81 μH.
 コイル部品400の直流抵抗は66mΩであった。
 コイル部品400の直流重畳特性を図14に示す。
The DC resistance of the coil component 400 was 66 mΩ.
The DC superposition characteristics of the coil component 400 are shown in FIG.
 実施例に係るコイル部品100のインダクタンス値は0.84μHであり、比較例に係るコイル部品400のインダクタンス値は0.81μHであり、両者は近い値である。 The inductance value of the coil component 100 according to the example is 0.84 μH, the inductance value of the coil component 400 according to the comparative example is 0.81 μH, and both are close to each other.
 これに対し、直流抵抗は、コイル部品100が29mΩであり、コイル部品400が66mΩであり、コイル部品100はコイル部品400に比べて格段に小さい。 On the other hand, the DC resistance is 29 mΩ for the coil component 100 and 66 mΩ for the coil component 400, and the coil component 100 is much smaller than the coil component 400.
 また、図14から分かるように、直流重畳特性においても、コイル部品100はコイル部品400よりも優れている。 Further, as can be seen from FIG. 14, the coil component 100 is superior to the coil component 400 also in the DC superposition characteristics.
 以上より、本発明の有効性が分かった。 From the above, the effectiveness of the present invention was found.
 本発明はコイル部品に利用することができる。 The present invention can be used for coil parts.
 1a~1w,11a~11k 磁性体層、2,12 積層体、3a,3b,13a,13b 外部電極、4a,14a 第1のコイル、4b,14b 第2のコイル、5e~5g,5s~5v,15b~15e,15g~15k コイルパターン、6c~6u,16b~16j 導体ビアホール、7c~7v 非磁性体ビアホール、100,200 コイル部品。 1a to 1w, 11a to 11k magnetic layer, 2,12 laminate, 3a, 3b, 13a, 13b external electrode, 4a, 14a first coil, 4b, 14b second coil, 5e to 5g, 5s to 5v , 15b to 15e, 15g to 15k, coil pattern, 6c to 6u, 16b to 16j, conductor via hole, 7c to 7v, non-magnetic via hole, 100, 200 coil parts.

Claims (7)

  1.  積層された複数の磁性体層と、
     前記磁性体層の層間に形成された複数のコイルパターンと、
     前記磁性体層の少なくとも1つに、両主面間を貫通して形成された導体ビアホールとを備え、
     前記磁性体層と前記コイルパターンとで積層体が構成され、
     前記コイルパターンと前記導体ビアホールとが、所定の順番に接続されてコイルが構成されたコイル部品において、
     前記積層体内には、当該積層体の積層面と平行な方向に並ぶように前記コイルが複数形成され、
     前記複数のコイルは、それぞれ、軸芯が前記積層体の積層面と平行であり、
     前記複数のコイルが直列に接続されていることを特徴とするコイル部品。
    A plurality of laminated magnetic layers;
    A plurality of coil patterns formed between the magnetic layers;
    At least one of the magnetic layers is provided with a conductor via hole formed between both main surfaces,
    A laminate is configured by the magnetic layer and the coil pattern,
    In the coil component in which the coil pattern and the conductor via hole are connected in a predetermined order to form a coil,
    In the laminate, a plurality of the coils are formed so as to be arranged in a direction parallel to the laminate surface of the laminate,
    Each of the plurality of coils has an axis parallel to the laminated surface of the laminated body,
    The coil component, wherein the plurality of coils are connected in series.
  2.  前記複数のコイルが、2個のコイルであることを特徴とする、請求項1に記載されたコイル部品。 2. The coil component according to claim 1, wherein the plurality of coils are two coils.
  3.  前記コイルは、前記積層体の積層面に隣接する側面から透視した場合、前記コイルパターンと前記ビア導体とで渦巻き形状を構成していることを特徴とする、請求項1または2に記載されたコイル部品。 3. The coil according to claim 1, wherein the coil has a spiral shape formed by the coil pattern and the via conductor when viewed from a side surface adjacent to a stacked surface of the stacked body. Coil parts.
  4.  前記積層体の積層面に隣接し互いに対向する側面に外部電極をさらに備え、
     前記外部電極が対向する方向と垂直な方向に並ぶように前記コイルが複数形成されていることを特徴とする、請求項1から3のいずれか1項に記載されたコイル部品。
    Further comprising external electrodes on the side surfaces adjacent to each other and facing each other on the laminate surface of the laminate,
    4. The coil component according to claim 1, wherein a plurality of the coils are formed so that the external electrodes are arranged in a direction perpendicular to a direction in which the external electrodes are opposed to each other.
  5.  前記磁性体層が、フェライトにより形成され、または金属磁性体粉を絶縁性物質で被覆したものを主材料に形成されていることを特徴とする、請求項1から4のいずれか1項に記載されたコイル部品。 5. The magnetic material layer according to claim 1, wherein the magnetic material layer is formed of ferrite, or a metal material powder coated with an insulating material as a main material. 6. Coil parts.
  6.  前記磁性体層の少なくとも1つに、両主面間を貫通して形成された非磁性体ビアホールが更に形成されていることを特徴とする、請求項1から5のいずれか1項に記載されたコイル部品。 The at least one of the magnetic layers is further formed with a non-magnetic via hole formed so as to penetrate between both main surfaces. 6. Coil parts.
  7.  前記磁性体層の一方主面側に配置されている前記コイルパターンと、他方主面側に配置されている前記コイルパターンとが、当該磁性体層に形成された複数の前記導体ビアホールを経由して接続されていることを特徴とする、請求項1から6のいずれか1項に記載されたコイル部品。 The coil pattern disposed on one main surface side of the magnetic layer and the coil pattern disposed on the other main surface side pass through the plurality of conductor via holes formed in the magnetic layer. The coil component according to any one of claims 1 to 6, wherein the coil component is connected to each other.
PCT/JP2014/073909 2013-09-20 2014-09-10 Coil component WO2015041113A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-194861 2013-09-20
JP2013194861 2013-09-20

Publications (1)

Publication Number Publication Date
WO2015041113A1 true WO2015041113A1 (en) 2015-03-26

Family

ID=52688764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073909 WO2015041113A1 (en) 2013-09-20 2014-09-10 Coil component

Country Status (1)

Country Link
WO (1) WO2015041113A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237106A (en) * 1991-01-21 1992-08-25 Nippon Telegr & Teleph Corp <Ntt> Integrated inductance element and integrated transformer
JPH08250333A (en) * 1995-03-14 1996-09-27 Taiyo Yuden Co Ltd Inductor array
JP2013065853A (en) * 2011-09-19 2013-04-11 Samsung Electro-Mechanics Co Ltd Laminated inductor and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237106A (en) * 1991-01-21 1992-08-25 Nippon Telegr & Teleph Corp <Ntt> Integrated inductance element and integrated transformer
JPH08250333A (en) * 1995-03-14 1996-09-27 Taiyo Yuden Co Ltd Inductor array
JP2013065853A (en) * 2011-09-19 2013-04-11 Samsung Electro-Mechanics Co Ltd Laminated inductor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5642036B2 (en) Chip coil components
JP4201043B2 (en) Laminated coil
TW201721675A (en) Laminated inductor
WO2009125656A1 (en) Electronic component
JP5126243B2 (en) Electronic components
JP2006351962A (en) Common mode filter array
JP2018006411A (en) Laminated coil component
KR101156986B1 (en) Multilayer inductor
JP5262775B2 (en) Multilayer electronic component and manufacturing method thereof
JPWO2005024863A1 (en) Multilayer coil component and manufacturing method thereof
WO2013054736A1 (en) Electronic component
KR101266307B1 (en) Electronic component and method of manufacturing same
US8207810B2 (en) Multilayer electronic component
US8143989B2 (en) Multilayer inductor
JP5327231B2 (en) Electronic components
JP5009267B2 (en) Manufacturing method of multilayer inductor
WO2010010799A1 (en) Electronic component and method for manufacturing same
WO2015041113A1 (en) Coil component
JP4930228B2 (en) Laminated electronic components
JP2005167098A (en) Laminated ceramic electronic component
JP6477608B2 (en) Electronic components
WO2012077315A1 (en) Laminated inductor
JP2009277689A (en) Electronic parts
JP2024034146A (en) Laminated coil component
WO2009147899A1 (en) Electronic part and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP