WO2015040934A1 - Method for manufacturing plastic article having metal pattern, and plastic article having metal pattern - Google Patents

Method for manufacturing plastic article having metal pattern, and plastic article having metal pattern Download PDF

Info

Publication number
WO2015040934A1
WO2015040934A1 PCT/JP2014/068320 JP2014068320W WO2015040934A1 WO 2015040934 A1 WO2015040934 A1 WO 2015040934A1 JP 2014068320 W JP2014068320 W JP 2014068320W WO 2015040934 A1 WO2015040934 A1 WO 2015040934A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal pattern
pattern
resin material
metal
Prior art date
Application number
PCT/JP2014/068320
Other languages
French (fr)
Japanese (ja)
Inventor
クリストファー コルドニエ
義夫 堀内
本間 英夫
Original Assignee
学校法人関東学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人関東学院 filed Critical 学校法人関東学院
Publication of WO2015040934A1 publication Critical patent/WO2015040934A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1657Electroless forming, i.e. substrate removed or destroyed at the end of the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/007Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4682Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/0156Temporary polymeric carrier or foil, e.g. for processing or transferring

Definitions

  • the present invention relates to a method for producing a resin material with a metal pattern and a resin material with a metal pattern, and more particularly to a method for producing a cycloolefin resin material in which a metal pattern is embedded and the cycloolefin resin material.
  • Patent Document 1 describes that polyphenylene resin or cycloolefin resin is used as an interlayer insulating layer of a multilayer printed wiring board.
  • the cycloolefin resin is excellent in mechanical properties in addition to being excellent in the above electrical properties, Patent Document 1 describes that it is suitable as an interlayer insulating layer of a multilayer printed wiring board.
  • the surface of the insulating base material is roughened to obtain adhesion by an anchor effect.
  • the metal pattern is formed using a photoresist made of a photo-curing resin or the like. That is, a metal layer and a photoresist are sequentially laminated on an insulating substrate, and the photoresist is partially cured by irradiating the photoresist with light in a pattern, and the uncured photoresist is dissolved and removed. The metal layer exposed from between the resists is removed by dissolution with an etching solution. In this method, finally, the cured photoresist is removed with a strong alkaline aqueous solution or the like (for example, see Patent Document 2).
  • a photoresist made of a photo-curing resin may remain on the surface of the metal constituting the pattern even after treatment with a strong alkaline aqueous solution.
  • the photoresist may ignite, and handling thereof requires caution.
  • the metal layer is etched, the portion of the metal layer where the photoresist remains is also eroded in a tapered shape, and an accurate pattern with a rectangular cross section may not be obtained.
  • a coating solution is formed by coating a coating solution containing a metal complex on a substrate, and selectively exposing the coating film.
  • a method has been proposed in which development is performed by removing the region, the photosensitive metal complex contained in the coating film is changed to metal, and a pattern is formed by electroless plating using the metal as a catalyst.
  • the present invention provides a method for producing a resin material with a metal pattern, which can satisfy the dimensional accuracy required for the resin material and can form a fine metal pattern with good adhesion on the resin material, and It aims at providing the resin material with a metal pattern.
  • the present inventors have achieved the above object by adopting the following manufacturing method.
  • the method for producing a resin material with a metal pattern according to the present invention includes a step of forming a metal pattern on the surface of a substrate for pattern formation by an electroless plating method, and a liquid on the substrate on which the metal pattern is formed. Forming a resin composition film using the resin composition, solidifying or curing the resin composition film to obtain a resin layer in close contact with the metal pattern, and peeling the resin layer and the substrate; And a step of obtaining a resin material with a metal pattern.
  • the method for producing a resin material with a metal pattern comprises forming a first metal pattern on the surface of a first base material for pattern formation by an electroless plating method, and forming a second base for pattern formation.
  • a step of peeling the resin layer from the first base material and the second base material to obtain a resin material provided with the first metal pattern and the second metal pattern on both sides. It is characterized by.
  • the resin composition includes a cycloolefin resin, a polyimide resin, an epoxy resin, an acrylic resin, an isocyanate resin, a urethane resin, a liquid crystal polymer, a melamine resin, a polyester resin, and a polyester resin.
  • Silicon resin, polyethylene, polypropylene, polystyrene, and precursors thereof are preferably included.
  • the resin material is a cycloolefin resin material, a polyimide resin material, an epoxy resin material, an acrylic resin material, an isocyanate resin material, a urethane resin material, a liquid crystal polymer, or a melamine resin material.
  • Polyester resin material polyester resin material, silicon resin material, polyethylene material, polypropylene material, and polystyrene material.
  • the step of forming the metal pattern by an electroless plating method on the surface of the substrate is a catalyst application step of selectively applying a catalyst to the surface of the substrate.
  • the catalyst application step includes a step of forming a photosensitive catalyst film on the surface of the substrate and selectively exposing the photosensitive catalyst film. It is preferable to include.
  • the resin material with a metal pattern according to the present invention is manufactured by the above-described method for manufacturing a resin material with a metal pattern.
  • the metal pattern is embedded in the resin layer.
  • thermoplastic resin material By adopting the method described in the present invention, even if it is a thermoplastic resin material or the like, it can satisfy the dimensional accuracy required for the resin material, and a fine metal pattern with good adhesion can be obtained. It can be formed on a resin material.
  • Method for Producing Resin Material with Single-sided Metal Pattern a method for producing a resin material with a metal pattern having a metal pattern on one side of the resin material is described with reference to FIG. explain.
  • a step of forming a metal pattern 21 on the surface of a substrate 10 for pattern formation (see FIG. 1A) by an electroless plating method (FIG. 1B).
  • the metal pattern 21 is formed on the substrate 10 on which the metal pattern 21 is formed using a liquid resin composition, and the resin composition film is solidified or cured.
  • the process of obtaining the closely adhered resin layer 22 (see FIG. 1C) and the process of separating the resin layer 22 and the substrate 10 to obtain the resin material 20 with a metal pattern shown in FIG. It is characterized by including. Hereinafter, each step will be described.
  • the substrate 10 for pattern formation shown in FIG. 1 (a) refers to a substrate used only when forming the metal pattern 21, and is finally a resin on which the metal pattern 21 is provided. It is different from the material (22).
  • the material of the substrate 10 for pattern formation is not particularly limited, and examples thereof include inorganic materials typified by glass, ceramics, quartz, silicon wafer, metal, and organic materials such as various plastics. May be. In the present invention, in particular, a glass substrate or a silicon wafer having heat resistance can be suitably used.
  • Electroless plating method When the metal pattern 21 is formed on the surface of the substrate 10 for pattern formation by the electroless plating method, a pattern forming method by a conventionally known electroless plating method may be appropriately employed.
  • the specific procedure of the pattern forming process is not particularly limited. For example, a catalyst is applied to the entire surface of the substrate 10, a metal film is formed by depositing metal on the entire surface by an electroless plating method, and then the metal film is selectively dissolved and removed according to the pattern by etching or the like. Accordingly, the predetermined metal pattern 21 may be formed.
  • a catalyst is selectively applied to the surface of the substrate 10, the substrate 10 selectively applied with this catalyst is immersed in an electroless plating solution, and metal ions in the electroless plating solution are added.
  • the predetermined metal pattern 21 may be formed by depositing. In any of these methods, as long as the metal pattern 21 is formed on the substrate 10 as shown in FIG. 1B, the specific method is not particularly limited. However, as described above, from the viewpoint that the fine metal pattern 21 having a rectangular cross section can be accurately formed by a simple process, in the present invention, the pattern forming process is performed by applying a catalyst to the surface of the substrate 10.
  • a catalyst application step for selectively applying, and an electroless plating step for immersing the base material 10 to which the catalyst is selectively applied in an electroless plating solution to deposit metal ions in the electroless plating solution in a predetermined pattern. are preferably included.
  • (A) Catalyst application step In order to selectively apply the catalyst to the surface of the substrate 10, a conventionally known method can be appropriately employed. However, the fine metal pattern 21 having a rectangular cross section can be accurately obtained by a simple process. From the viewpoint that it can be formed, any one of the following first catalyst application step to fourth catalyst application step is preferably employed.
  • 1st catalyst provision process As a 1st catalyst provision process, the following method can be mentioned, for example. First, a metal oxide film having a predetermined pattern shape is formed on one surface of the substrate 10, and then the metal oxide film is fired to obtain a sintered body of the metal oxide film. And by immersing the said sintered compact in a catalyst solution, a catalyst is selectively provided to the surface of the base material 10 according to a predetermined pattern shape.
  • a metal oxide film is a film containing a metal oxide, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and liquid phase growth.
  • the film can be formed by, for example. More specifically, as these film forming methods, examples of the physical vapor deposition method (PVD) include a vacuum deposition method, a sputtering method, an ion plating method, a molecular beam epitaxy method, and a laser ablation method. Examples of chemical vapor deposition (CVD) include thermal CVD, MOCVD (metal organic chemical vapor deposition), RF plasma CVD, ECR plasma CVD, photo CVD, laser CVD, and ALE (atomic layer epitaxy). It is done. Examples of the liquid phase growth method include an anodic oxidation method, electrodeposition method, coating method, and sol-gel method.
  • metal elements constituting the metal oxide contained in the metal oxide film include beryllium (Be), magnesium (Mg), aluminum (Al), silicon (Si), calcium (Ca), scandium (Sc), and titanium (Ti ), Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge) ), Strontium (Sr), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), indium (In), tin (Sn), barium (Ba), lanthanum (La) ), Cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (G ), Hafnium (Hf), tantalum (Ti
  • the metal oxide contained in the metal oxide, together with the metal element, is lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), boron (B), phosphorus (P ), Sulfur (S), arsenic (As), selenium (Se), antimony (Sb) and the like.
  • the metal element is preferably any one or two or more metals selected from sodium, titanium, zinc, zirconium, niobium, molybdenum, hafnium, tantalum, and tungsten (W). .
  • titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ). ), Molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), or a salt or alloy thereof is desirable.
  • sodium titanate Na 2 O 7 Ti 3
  • sodium niobate NaNbO 3
  • sodium tantalate Ti 3
  • sodium zirconate Na 2 ZrO 3
  • sodium hafnium Na 2 O 7 Hf 3
  • sodium molybdate Na 2 MoO 4
  • sodium tungstate Na 2 O 4 W
  • titanium oxide TiO 2
  • niobium oxide Nb 2 O 5
  • sodium niobate NaNbO 3
  • a metal oxide film having a predetermined pattern shape can be formed by forming a metal oxide film from these metal oxides by a printing method such as offset printing or screen printing. Further, when forming a metal oxide film, first, a metal oxide film precursor film containing a photosensitizer is formed on the entire surface of the substrate 10, and then formed into a metal oxide film precursor film using a photomask or the like. A metal oxide film having a predetermined pattern shape can also be obtained by selectively irradiating ultraviolet light.
  • the metal oxide film precursor film refers to a negative or positive photosensitive film capable of forming a pattern by development processing.
  • this metal oxide film is baked for 1 to 200 minutes under a temperature condition of 100 ° C. to the breakdown temperature of the substrate, whereby a metal oxide film sintered body can be obtained. What is necessary is just to adjust a calcination temperature so that it may become a suitable temperature suitably according to a composition of a metal oxide. By performing the heat treatment, the metal oxide film becomes a porous ceramic in which fine pores are formed.
  • the surface modification treatment step the metal oxide film sintered body is appropriately subjected to surface treatment as necessary to improve the adsorptivity with the catalyst in the subsequent catalyst application step, or patterning with high accuracy.
  • the surface modification treatment is preferably performed so that Examples of such surface modification treatment include the following.
  • examples of the surface modification treatment include ultraviolet irradiation treatment.
  • the ultraviolet irradiation treatment it is preferable to irradiate the surface of the metal oxide film sintered body with ultraviolet rays having a wavelength of about 180 to 400 nm with an irradiation intensity of about 1 to 50 mW / cm 2 .
  • a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a black light, a sterilizing lamp, a DUV lamp, an excimer lamp, or the like can be used as the light source.
  • the surface molecules of the sintered body are cut and ionized to generate hydrophilic groups. Thereby, the adsorptivity of the catalyst in the subsequent catalyst application step is improved.
  • a surface modification solution immersion treatment may be mentioned.
  • the metal oxide film sintered body is immersed in the surface modification liquid together with the substrate 10 to increase the polarity of the hydrophilic group on the surface and the surface roughness, thereby adsorbing with the catalyst.
  • the surface modifying solution for example, a sodium hydroxide solution, a nonionic surfactant and / or an anionic surfactant can be used.
  • the surface modification liquid 2-aminothioethanol, polyethylene glycol, polyoxyethylene dodecyl ether, sodium dodecyl sulfate, sodium laurate, sodium dodecylbenzenesulfonate, tetramethylammonium hydroxide (TMAH), Trimethylphenylammonium hydroxide or the like can be used.
  • the metal oxide film sintered body has fine pores formed by sintering as described above. An anchor effect is obtained by this pore. Therefore, if the metal oxide film sintered body is provided on the surface of the base material 10, it is basically unnecessary to perform the surface modification liquid immersion treatment, but may be appropriately performed as necessary.
  • Catalyst application process In the catalyst application process, the palladium catalyst can be adsorbed to the sintered metal oxide film in which a large number of fine pores are formed by immersing the base material 10 together in the catalyst solution.
  • a method for catalysis any method such as a catalyst-accelerator method, a sensitizing-activating method, an activating method, or the like may be used. Further, any material such as palladium, ruthenium, platinum or the like may be used as the catalyst substance.
  • a catalyst is selectively given to the surface of the base material 10 by the said process.
  • Second catalyst application step A catalyst may be selectively applied to the surface of the substrate 10 by a second catalyst application step that differs from the first catalyst application step in part.
  • a photocatalytic film made of a metal oxide that exhibits a photocatalytic action described later is formed, and then the photocatalytic film is baked.
  • a sintered body of the photocatalytic film is obtained.
  • a water-repellent coating film is provided on the surface of the sintered body, and ultraviolet light is selectively irradiated from above the water-repellent coating film through a photomask having a predetermined exposure pattern.
  • the photocatalyst is activated to decompose the water-repellent coating film. Therefore, the photocatalytic film is exposed according to the exposure pattern, and the surface of the unexposed area is covered with the water repellent coating film. Then, like the 1st catalyst provision process, a catalyst can be selectively given to the surface of substrate 10 according to a predetermined pattern shape by immersing substrate 10 together in a catalyst solution. Only the steps different from the first catalyst application step will be described below.
  • metal oxides that exhibit photocatalytic action include titanium oxide (TiO 2 ), iron oxide (Fe 2 O 3 ), tungsten oxide (WO 3 ), tin oxide (SnO 2 ), and bismuth oxide.
  • TiO 2 titanium oxide
  • Fe 2 O 3 iron oxide
  • WO 3 tungsten oxide
  • SnO 2 tin oxide
  • bismuth oxide bismuth oxide.
  • niobium oxide Nb 2 O 5
  • nickel oxide NiO
  • copper oxide Cu 2 O
  • FeTiO 3 iron titanate
  • photocatalytic films can be formed by the general film forming method described above, and are particularly preferably formed by a sol-gel method, a sputtering method, a vapor deposition method, or the like. After forming the photocatalytic film, a firing process is performed in the same manner as in the first catalyst application process to obtain a sintered body of the photocatalytic film.
  • Water repellent coating film forming step After obtaining a photocatalytic film sintered body, a water repellent coating film is provided on the surface of the photocatalytic film sintered body.
  • the water-repellent coating film is a film provided for modifying the surface of the photocatalytic film sintered body to be hydrophobic.
  • a water-repellent coating film will not be specifically limited if it is a thin film comprised by the film
  • a self-assembled monomolecular film such as octadecyltrimethoxysilane (ODS), octadecyltrichlorosilane (OTS), octadecylphosphonic acid (ODP), or the like.
  • Exposure Step Next, ultraviolet light or the like is selectively exposed from above the water repellent coating film through a photomask having a predetermined exposure pattern. At this time, it is preferable to irradiate the surface of the water-repellent coating film with ultraviolet rays having a wavelength of about 180 to 400 nm with an irradiation intensity of about 1 to 50 mW / cm 2 .
  • the light source a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a black light, a sterilization lamp, a DUV lamp, an excimer lamp, or the like can be used.
  • the photocatalyst can be activated only in the exposed region to decompose the self-assembled monolayer.
  • the photocatalytic film is exposed according to the exposure pattern, and the surface of the unexposed area is covered with a water repellent coating film.
  • the subsequent catalyst application step can be performed in the same manner as the first catalyst application step.
  • the catalyst in the catalyst application step, when the substrate 10 is immersed in the catalyst solution, the catalyst can be selectively applied only to the region where the photocatalytic film is exposed.
  • surface modification treatment similar to the first catalyst application process can be performed as necessary.
  • a catalyst is selectively applied to the surface of the substrate 10 by the following method, for example. It may be given.
  • the third catalyst application step when the metal oxide film is formed, a water-repellent photocatalytic film containing a hydrophobic substance having hydrophobicity is formed on the photocatalytic film.
  • the photocatalytic film is formed by a sol-gel method, ODS, OTS, ODP, or the like that can form the self-assembled monolayer is mixed with the sol solution containing the photocatalytic substance.
  • a water-repellent photocatalytic film can be formed using a photosensitive sol solution.
  • This water-repellent photocatalytic film is fired to obtain a water-repellent photocatalytic film sintered body, and then selectively irradiated with ultraviolet light through a photomask having a predetermined exposure pattern as in the second catalyst application step.
  • the photocatalyst can be activated only in the exposed region to decompose the self-assembled monomolecule.
  • the catalyst can be selectively applied only to the exposed area in the catalyst application step.
  • the water-repellent photocatalytic film may be laminated. A calcination process, a catalyst provision process, etc.
  • the third catalyst application step by using the photocatalyst sol solution, a step of separately forming a water-repellent coating film can be omitted after the photocatalytic film is provided.
  • the following fourth catalyst application step may be employed.
  • the fourth catalyst application step for example, an organic compound of a first metal that does not serve as a catalyst for an electroless plating reaction, a second metal compound that serves as a catalyst for an electroless plating reaction, and a photosensitizer that forms a complex with the first metal.
  • a photosensitive catalyst solution containing a photosensitive photosensitive compound is prepared, and this catalyst solution is applied to the surface of the substrate 10 to form a coating film.
  • this coating film When this coating film is selectively irradiated with ultraviolet light through a photomask having a predetermined exposure pattern and developed with an alkaline solution or the like, the region irradiated with the ultraviolet light is dissolved, and the coating film having a predetermined pattern shape is obtained. Is obtained. Next, heat treatment is performed to decompose the photosensitive compound into a metal oxide, and this coating film is used as a photosensitive catalyst precursor film. Then, the ions of the second metal are reduced to metal, and the photosensitive catalyst precursor film is used as a catalyst film having a predetermined pattern shape.
  • Photosensitive catalyst solution preparation step First, a solution preparation step for preparing a photosensitive catalyst solution will be described.
  • the catalyst solution includes an organic compound of the first metal M1 that does not serve as a catalyst for the electroless plating reaction, a compound of the second metal M2 that serves as a catalyst for the electroless plating reaction, and a photosensitive compound that forms a metal complex with the first metal M1.
  • first metal M1 Mg, Ca, Sr, Ba, Sc, Y, La-Lu, Ti, Zr, Hf, Nb, Ta, Mo, W, Zn, Al, Si, Ni, In, or Sn are used.
  • second metal M2 Ru, Co, Rh, Ni, Pt, Cu, Ag, Fe, Pd, or Au is used.
  • titanium alkoxide represented by titanium tetraisopyropoxide
  • titanium alkoxide specifically, titanium tetraisopropoxide, tetrabutoxy titanium, tetraethoxy titanium, alkoxides composed of condensates such as dimers, trimers, and tetramers, titanyl bisacetylacetonate, Examples thereof include chelates such as dibutoxytitanium acetylacetonate and isopropoxytitanium triethanolaminate, and organic acid salts such as titanium stearate and titanium octylate.
  • Au gold
  • an Au inorganic salt typified by sodium chloroaurate
  • Specific examples of the Au inorganic salt include chloroauric acid, gold bromide, tetrachlorogold, gold sulfite, gold hydroxide, sodium hydroxide goldate (NaAu (OH) 4 ), gold acetate, or a sodium salt thereof. Or a potassium salt etc. are mentioned.
  • silver (Ag) is selected as the second metal M2
  • an Ag inorganic salt typified by silver nitrate
  • Specific examples of the Ag inorganic salt include silver chloride, silver bromide, silver acetate, silver sulfate, and silver carbonate.
  • copper (Cu) is selected as the second metal M2
  • Examples of the photosensitive compound that forms a metal complex with the first metal M1 include 4- (4,5-Dimethoxy-2-nitrobenzoylcarbonyl) catechol (NVOC-CAT), naphthoquinonediazide compound (NQD), ⁇ -diketone, ⁇ -
  • NVOC-CAT 4- (4,5-Dimethoxy-2-nitrobenzoylcarbonyl) catechol
  • NQD naphthoquinonediazide compound
  • ⁇ -diketone ⁇ -
  • photosensitive compounds disclosed in Japanese Patent Application Laid-Open No. 2011-20769 such as hydroxyketone, 1-hydroxycyclohexyl, phenyl ketone (HPK)
  • known photosensitive compounds that form metal complexes with the first metal M1 can be used. .
  • a photosensitive catalyst solution photosensitive metal complex solution
  • the organic compound of the first metal M1, the second metal compound, and the photosensitive compound for example, a photosensitive metal such as NBOC-TiCu.
  • a complex can be obtained.
  • Coating film forming step After preparing the photosensitive catalyst solution, a coating film is formed on the surface of the substrate 10 by a coating method such as spin coating, slit coating, dip coating, or spray coating.
  • a coating method such as spin coating, slit coating, dip coating, or spray coating.
  • Exposure and development step In this step, as in the second and third catalyst application steps, ultraviolet light is selectively irradiated from above the coating film via a photomask having a predetermined exposure pattern. In the region irradiated with ultraviolet rays, the metal complex becomes readily soluble in the alkaline developer, and the unexposed region remains insoluble in the alkaline developer. Therefore, after the exposure, development is performed using an alkaline developer, whereby only the exposed portion is removed and a pattern is formed. As the developer, a developer for semiconductor / liquid crystal lithography can be used.
  • Heat treatment step When a heat treatment is performed by a method such as baking the coating film having a predetermined pattern shape in the same manner as in the first to third catalyst application steps, the photosensitive metal complex can be changed to a metal oxide. . Thereby, the catalyst precursor film
  • the catalyst precursor film has a structure in which the second metal M2 ions are dispersed in an inorganic binder made of the first metal oxide.
  • Reduction process When the catalyst precursor film is immersed together with the base material 10 in an aqueous solution containing a reducing agent such as tetrahydroboric acid, hypophosphorous acid, hydrazine, borohydride, dimethylamine borane, etc., the second metal M2 ion Is reduced to the second metal M. By passing through this step, a catalyst film in which fine particles of the second metal having a catalytic function of electroless plating reaction are dispersed in the film can be obtained.
  • a reducing agent such as tetrahydroboric acid, hypophosphorous acid, hydrazine, borohydride, dimethylamine borane, etc.
  • Electroless plating step After selectively applying a catalyst to the surface of the substrate 10 by the above-described catalyst applying step or the like, activation treatment or the like is performed as necessary, and then the substrate 10 is electrolessly plated.
  • a predetermined metal pattern 21 can be obtained by immersing in the solution to deposit metal ions contained in the electroless plating solution. Examples of metals deposited by the electroless plating include nickel (Ni), phosphorus (P), boron (B), gold (Au), silver (Ag), copper (Cu), palladium (Pd), and these These alloys are mentioned.
  • the electroless plating step can be appropriately performed using a known method or the like, and is not particularly limited.
  • the above activation treatment is an optional step, and as the activation treatment liquid, one containing hydrochloric acid, sulfuric acid, hydrazine, tin chloride, formalin, hypophosphorous acid, boron hydroxide compound, amine borane compound or the like should be used. Can do.
  • the electroless plating solution a known electroless plating solution can be appropriately used depending on the metal to be deposited.
  • the metal pattern 21 is formed on the surface of the substrate 10 for pattern formation by the electroless plating method.
  • Resin Layer Forming Step First, a resin composition film is formed on the base material 10 on which the metal pattern 21 is formed using a liquid resin composition.
  • the resin composition is not particularly limited as long as the resin composition can be obtained in a liquid form and can be solidified or cured, and the thermoplastic resin composition and the thermosetting resin composition are not limited. Any of the objects may be used.
  • the bodies it is preferable to include at least one of the bodies, and by using the liquid resin composition, cycloolefin resin material, polyimide resin material, epoxy resin material, acrylic resin material, isocyanate resin material, urethane resin material, It is preferable to obtain at least one of a liquid crystal polymer, a melamine resin material, a polyester resin material, a polyester resin material, a silicon resin material, a polyethylene material, a polypropylene material, and a polystyrene material.
  • a resin composition film can be formed so as to cover the surface of the base material 10 and the metal pattern 21.
  • the resin composition film is solidified or cured by evaporating the solvent in the resin composition film or by thermosetting or photocuring to obtain the resin layer 22.
  • the solvent may be evaporated at room temperature, but heat treatment may be performed in a temperature range of 50 ° C. to 150 ° C. depending on the type of resin.
  • the metal pattern 21 is formed on the surface of the substrate 10 by the above steps, even when heat treatment or surface modification treatment such as baking treatment or roughening treatment is performed in the catalyst application step, after the metal pattern 21 is formed. Since the resin layer 22 is formed, even if a thermoplastic resin material is manufactured, the dimensional accuracy required for the resin material can be satisfied, and a fine metal pattern with good adhesion to the resin layer 22 21 can be formed.
  • the manufacturing method of resin material with metal pattern according to the present invention refers to FIG. While explaining.
  • the first metal pattern 41 is formed on the surface of the first substrate 31 for pattern formation by an electroless plating method
  • the surface of the second substrate 32 for pattern formation is formed on the surface of the first substrate 31 for pattern formation.
  • the step of forming the second metal pattern 42 by the electrolytic plating method see FIGS.
  • the first metal pattern 41 and the second metal pattern 42 are set inward, and the first substrate
  • the material 31 and the second base material 32 are arranged to face each other with a predetermined interval, the liquid resin composition is filled between the base materials 31 and 32, and this is solidified or cured, and the first A step of obtaining a resin layer 43 in close contact with the metal pattern 41 and the second metal pattern 42 (see FIG. 2C), the resin layer 43, the first base material 31, and the second base material 32.
  • the first metal pattern 41 and the second metal pattern 42 are peeled off and the resin layer 43 is peeled off. Characterized in that it comprises a step of obtaining a resin material 50 provided on the side (see Figure 2 (d)). Hereinafter, each step will be described.
  • Pattern formation process In a pattern formation process, as shown to Fig.2 (a), the 1st base material 31 for pattern formation and the 2nd base material 32 for pattern formation are prepared, and each base material 31, Metal patterns (a first metal pattern 41 and a second metal pattern 42) are respectively formed on 32 (see FIG. 2B).
  • the metal patterns 41 and 42 are formed on the respective base materials 31 and 32, the same pattern forming process as applied when the metal pattern 21 is formed on the base material 10 in the resin material 20 with a single-sided metal pattern. Since it can be performed by a process, description thereof is omitted here.
  • the first base material 31 and the second base material 32 are opposed to each other with a predetermined interval with the first metal pattern 41 and the second metal pattern 42 facing inside. It arrange
  • the resin composition may be the same as the liquid resin composition used when forming the resin composition film on the substrate 10 in the resin material 20 with a single-sided metal pattern.
  • the 1st metal pattern 41 and the 2nd metal pattern 42 are obtained by evaporating the solvent in a resin composition film, or thermosetting or photocuring.
  • the resin layer 43 solidified or hardened in a state where is embedded is obtained (see FIG. 2C).
  • peeling step In the peeling step, the resin layer 43 is physically peeled from the first base material 31 and the second base material 32.
  • each metal pattern 41, 42 is similar to the above.
  • the contact area with the resin layer 43 is larger, and the adhesion force is increased.
  • the resin layer 43 and each of the base materials 31 and 32 are physically separated, the first metal pattern 41 and the second metal pattern 42 are transferred to both sides of the resin layer 43, and these metal patterns 41 are transferred.
  • 42 can be obtained as a double-sided metal-patterned resin material 40 embedded in the resin layer 43 (see FIG. 3D).
  • the resin material with a metal pattern according to the present invention is manufactured by the method for manufacturing a resin material with a metal pattern according to the present invention, and the resin material with a single-sided metal pattern (see FIG. 1 (d)) or both surfaces It is the resin material 40 with a metal pattern (refer FIG.2 (d)).
  • the resin material 20 (40) with a metal pattern according to the present invention has the metal pattern 21 (41, 42) embedded in the resin layer 22 (43) as described above. For this reason, when the resin material 20 (40) with a metal pattern according to the present invention is applied to, for example, a flexible printed wiring board or the like, the metal pattern 21 (41, 42) serving as a wiring pattern is formed on the resin layer 22 (43). Since it does not protrude outward from the surface, the wiring pattern portion can be protected, and the risk of migration or short-circuiting can be reduced.
  • the resin material constituting the resin material 20 (40) is not particularly limited as long as it is a resin material that can be obtained by solidifying or curing a liquid resin composition.
  • the resin material is preferably applied to the various resin materials listed above, and is particularly suitable for thermoplastic resin materials such as cycloolefin resin materials.
  • the shape of the resin material is not particularly limited. By changing the shape of the base material 10 (31, 32) or the like, not only the film-like and plate-like resin materials, but also so-called casting is used. Various shaped resin materials that can be molded by the method can be obtained.
  • Adhesion if the above-mentioned catalyst application process (first catalyst application process to fourth catalyst application process) is adopted when forming a metal pattern on the surface of a thermoplastic resin material by a conventional electroless plating method.
  • a favorable metal pattern can be formed.
  • a metal pattern is formed directly on the surface of the resin material by this conventional electroless plating method, there is a risk of shrinkage in the case of a thermoplastic resin during the heat treatment in the above-described catalyst application step, etc. The accuracy may not be satisfied.
  • the surface of the resin material is roughened or subjected to surface modification treatment by irradiating ultraviolet rays, the surface roughness of the resin material increases, and the required translucency is required for transparent resin films. In some cases, the sex cannot be satisfied.
  • the metal pattern 21 (41, 42) is in close contact with the resin layer 22 (43), and the metal pattern 21 In the formation step of (41, 42), the resin layer 22 (43) is not subjected to any heat treatment or surface modification treatment, and is not exposed to various chemicals such as electroless plating solution. Therefore, even if the metal pattern-attached resin material 20 (40) is a thermoplastic transparent resin material such as a cycloolefin resin material, the required dimensional accuracy and transparency can be satisfied. For this reason, this invention is suitable for the thermoplastic transparent resin material used for uses, such as a transparent conductive film base material for touchscreens, an organic EL illumination base material, a flexible print base material, and an insulating film.
  • Example 1 a resin material with a metal pattern was manufactured as follows.
  • the metal pattern was formed by the electroless-plating method on the surface of the base material for pattern formation.
  • a plate borosilicate glass Temporary Float (registered trademark)
  • Schott Akgel Gesellshaft manufactured by SCHOTT AG
  • a catalyst is selectively given to the surface of the above-mentioned base material, the base material to which this catalyst was selectively given is immersed in an electroless copper plating solution, and copper ions in the electroless copper plating solution are deposited.
  • a copper wiring pattern was formed on the surface of the substrate.
  • Example 1 a) Catalyst application step
  • a photosensitive catalyst solution preparation step a coating film formation step, an exposure development step, a heat treatment step, and a reduction are performed as follows. The process was performed and the catalyst film of the predetermined pattern shape was provided on the surface of the base material.
  • Photosensitive catalyst solution preparation step In the photosensitive catalyst solution preparation step, a photosensitive catalyst solution containing titanium as the first metal M1, copper as the second metal M2, and NBOC-CAT as the photosensitive compound ( NBOC-TiCu) was prepared. First, NBOC-CAT was synthesized by esterifying 3,4-dihydroxybenzoic acid with a 2-nitrobenzyl alcohol derivative. Then, NBOC-CAT (2.46 g) was dissolved in ethyl lactate (12 ml) and N, N′-dimethylacetamide (2 ml), tetraisopropoxide titanium (1.04 ml) was added, and “solution A Was prepared.
  • Coating film forming step 0.35 ml of the photosensitive metal complex solution was spin-coated at 1000 revolutions on the surface of the substrate. And the base material with which the said coating film was provided on the hotplate was mounted, and it dried at 100 degreeC for 1 hour.
  • Exposure and development process Next, a photomask having a predetermined exposure pattern is placed on the coating film, and the coating film is placed on the coating film via a photomask by an ultrahigh pressure mercury lamp (ModuleX (registered trademark)) manufactured by Ushio Spex.
  • a parallel light source (UXM-500SX, 500 W lamp) manufactured by Co., Ltd. was used to expose 313 nm ultraviolet light to 2500 mJ / cm 2. Thereafter, the film was immersed in a 0.25 wt% tetramethylammonium hydroxide (TMAH) developer for 30 seconds for development. Thereby, the exposed area
  • TMAH tetramethylammonium hydroxide
  • Heat treatment step Next, the base material provided with the coating film having a predetermined pattern shape was placed in an electric furnace and baked at 300 ° C. for 1 hour. By performing the heat treatment step, the photosensitive metal complex is changed to a metal oxide, and the catalyst precursor film can be obtained.
  • Reduction process Then, as a reducing solution, it was immersed in an aqueous NaBH 4 solution 2 g / l at 50 ° C. for 2 minutes. Through this step, CuO in the catalyst precursor film is reduced to Cu having catalytic activity, and a catalyst film is obtained.
  • Electroless plating step The substrate selectively provided with the catalyst in the above step was immersed in electroless copper plating (PB-506 manufactured by JCU) to deposit copper with a thickness of about 0.2 ⁇ m. .
  • PB-506 electroless copper plating
  • the copper plating pattern shown in FIG. 3 (a grid pattern with a line width of 5 ⁇ m and an interval of 100 ⁇ m, a sheet resistance of 2 ⁇ / sq) was obtained by this process.
  • Resin composition film forming step 3 ml of a liquid cycloolefin resin composition was hung on a substrate on which a copper plating pattern was formed, and spread with a pipettor chip to form a resin composition film.
  • the cycloolefin resin layer was physically peeled from the substrate to obtain a cycloolefin resin film (resin material with a metal pattern) in which the copper plating pattern shown in FIG. 4 was embedded.
  • Example 2 when forming a resin composition film, instead of using a liquid cycloolefin resin composition, 3 ml of a commercially available liquid polyimide resin composition (trade name: aldrich575771 (Sigma-Aldrich Sakai Japan Co., Ltd.)) was used.
  • a polyimide resin film with a copper plating pattern (resin material with a metal pattern) was obtained in the same manner as in Example 1 except that the solvent was volatilized at 100 ° C. and the resin composition film was cured at 200 ° C. (FIG. 5). reference).
  • the copper plating pattern embedded in the polyimide film is a lattice pattern with a line width of 5 ⁇ m and an interval of 100 ⁇ m, as in Example 1, and the sheet resistance is 2 ⁇ / sq.
  • Example 3 the copper plating pattern was formed except that an L-shaped pattern (see FIG. 6) having a line / space (L / S) width of 100 ⁇ m and a cross pattern (see FIG. 7) having a line width of 200 ⁇ m were formed.
  • An electroless copper plating pattern was formed on the substrate in the same manner as in 1.
  • liquid dimethyl produced by Shin-Etsu Chemical Co., Ltd. was used.
  • PDMS polysiloxane composition
  • SIM-240 / CAT-240 polysiloxane composition
  • the resin films with copper plating patterns produced in Examples 1 to 3 are all highly transparent and have a smooth surface.
  • the copper plating pattern is embedded in the film, and the copper plating pattern adheres to the film.
  • the property was also excellent. Further, a fine copper plating pattern with a narrow line width can be obtained in a rectangular cross section, and a high-definition wiring pattern can be formed by a simple method.
  • thermoplastic resin material By adopting the method described in the present invention, even if it is a thermoplastic resin material or the like, it can satisfy the dimensional accuracy required for the resin material, and a fine metal pattern with good adhesion can be obtained. It can be formed on a resin material. Moreover, since this invention does not give a roughening process etc. to the surface of a resin material, it is the heat

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)

Abstract

Provided are a method for manufacturing a plastic article having a metal pattern, and a plastic article having a metal pattern; the method enabling the dimensional accuracy required for the plastic article to be satisfied and a fine metal pattern with high adhesiveness to be formed in a plastic article. In order to achieve the abovementioned objective, the method includes: a step for forming a metal pattern (21) on the surface of a pattern formation substrate (10) using electroless plating; a step for forming a resin composition film on the substrate (10) using a liquid resin composition and causing the composition to solidify or harden to obtain a resin layer (22) that adheres fast to the metal pattern (21); and a step for separating the resin layer (22) and the substrate (10) to obtain a plastic article (20) having a metal pattern.

Description

金属パターン付樹脂材の製造方法及び金属パターン付樹脂材Manufacturing method of resin material with metal pattern and resin material with metal pattern
 本件発明は、金属パターン付樹脂材の製造方法及び金属パターン付樹脂材に関し、特に金属パターンが埋設されたシクロオレフィン樹脂材の製造方法及び当該シクロオレフィン樹脂材に関する。 The present invention relates to a method for producing a resin material with a metal pattern and a resin material with a metal pattern, and more particularly to a method for producing a cycloolefin resin material in which a metal pattern is embedded and the cycloolefin resin material.
 近年、スマートフォンや携帯電話等の小型電子機器の高機能化・高性能化の進展は著しく、これらの電子機器に搭載される信号回路の高集積化と共に、信号の高速・高周波化も益々進展している。このような流れを受けて、プリント配線板についても、より一層の回路の微細化及び高密度化が求められている。これと同時に、プリント配線板の絶縁層についても、誘電率が低く、高周波特性に優れた樹脂材料が求められている。このような樹脂材料として、従来用いられてきたフッ素樹脂に代わり、近年では、ポリフェニレン樹脂や、シクロオレフィン樹脂等が提案されている。 In recent years, small electronic devices such as smartphones and mobile phones have been remarkably advanced in functionality and performance, and with the integration of signal circuits mounted on these electronic devices, the speed and frequency of signals have also increased. ing. In response to such a flow, further miniaturization and higher density of the circuit are required for the printed wiring board. At the same time, a resin material having a low dielectric constant and excellent high-frequency characteristics is also required for the insulating layer of the printed wiring board. In recent years, polyphenylene resins, cycloolefin resins, and the like have been proposed as such resin materials in place of conventionally used fluororesins.
 例えば、特許文献1には、ポリフェニレン樹脂やシクロオレフィン樹脂を多層プリント配線板の層間絶縁層として用いることが記載されている。特に、シクロオレフィン樹脂は、上記電気的特性に優れることに加えて、機械的特性に優れるため、特許文献1には、多層プリント配線板の層間絶縁層として好適であることが記載されている。 For example, Patent Document 1 describes that polyphenylene resin or cycloolefin resin is used as an interlayer insulating layer of a multilayer printed wiring board. In particular, since the cycloolefin resin is excellent in mechanical properties in addition to being excellent in the above electrical properties, Patent Document 1 describes that it is suitable as an interlayer insulating layer of a multilayer printed wiring board.
 ところで、樹脂等の絶縁性基材に対して、その表面に金属薄膜を形成する場合、一般に絶縁性基材の表面を粗化し、アンカー効果により密着性を得ることが行われている。また、金属薄膜を所定のパターンで形成する際には、光硬化樹脂等によって構成されたフォトレジストを用いて金属パターンを形成することが行われている。すなわち、絶縁性基材上に金属層及びフォトレジストを順次積層し、フォトレジストに光をパターン状に照射することでフォトレジストを一部硬化させ、未硬化のフォトレジストを溶解除去した後、フォトレジストの間から露出した金属層をエッチング液で溶解除去している。また、この方法では、最後に、硬化されたフォトレジストを強アルカリ水溶液等によって除去している(例えば、特許文献2参照)。 By the way, when a metal thin film is formed on the surface of an insulating base material such as a resin, generally, the surface of the insulating base material is roughened to obtain adhesion by an anchor effect. Moreover, when forming a metal thin film with a predetermined pattern, the metal pattern is formed using a photoresist made of a photo-curing resin or the like. That is, a metal layer and a photoresist are sequentially laminated on an insulating substrate, and the photoresist is partially cured by irradiating the photoresist with light in a pattern, and the uncured photoresist is dissolved and removed. The metal layer exposed from between the resists is removed by dissolution with an etching solution. In this method, finally, the cured photoresist is removed with a strong alkaline aqueous solution or the like (for example, see Patent Document 2).
 しかしながら、このようなフォトレジストを用いる方法では、パターンを構成する金属の表面に、光硬化樹脂からなるフォトレジストが、強アルカリ水溶液による処理後も残る可能性がある。残存したフォトレジストを除去するために、高温による後処理を行うと、フォトレジストが発火する場合があり、その取り扱いには注意を要する。また、金属層をエッチングする際に、フォトレジストが残存した部分の金属層もテーパー状に浸食を受け、矩形断面の正確なパターンが得られない場合がある。 However, in such a method using a photoresist, a photoresist made of a photo-curing resin may remain on the surface of the metal constituting the pattern even after treatment with a strong alkaline aqueous solution. When post-processing at a high temperature is performed to remove the remaining photoresist, the photoresist may ignite, and handling thereof requires caution. Further, when the metal layer is etched, the portion of the metal layer where the photoresist remains is also eroded in a tapered shape, and an accurate pattern with a rectangular cross section may not be obtained.
 このような課題に鑑み、例えば、特許文献3に記載の発明は、金属錯体を含む塗布液を基体上に塗布して塗膜を形成し、当該塗膜を選択的に露光し、露光された領域を除去することにより現像し、塗膜に含まれる感光性金属錯体を金属に変化させて、当該金属を触媒として無電解めっき法によりパターンを形成する方法が提案されている。 In view of such a problem, for example, in the invention described in Patent Document 3, a coating solution is formed by coating a coating solution containing a metal complex on a substrate, and selectively exposing the coating film. A method has been proposed in which development is performed by removing the region, the photosensitive metal complex contained in the coating film is changed to metal, and a pattern is formed by electroless plating using the metal as a catalyst.
特開2002-9448号公報JP 2002-9448 A 特開2004-302371号公報JP 2004-302371 A 特開2012-203236号公報JP 2012-203236 A
 上記特許文献3等に記載の方法によれば、矩形断面の微細な金属パターンを簡単な工程によって正確に形成することが可能になる。しかしながら、塗膜を現像した後、感光性金属錯体に比較的高温の熱処理を施す。このため、樹脂材に対して金属パターンを形成する場合、この加熱処理の際にその温度によっては樹脂材が収縮する場合があった。特に、シクロオレフィン樹脂等のような熱可塑性樹脂は、加熱処理の際に樹脂が収縮する恐れが高く、特許文献3等に記載の方法を適用した場合、樹脂材に要求される寸法精度を満足することが出来ない場合があった。 According to the method described in Patent Document 3 and the like, it is possible to accurately form a fine metal pattern having a rectangular cross section by a simple process. However, after developing the coating film, the photosensitive metal complex is subjected to a relatively high temperature heat treatment. For this reason, when a metal pattern is formed on a resin material, the resin material may shrink depending on the temperature during the heat treatment. In particular, thermoplastic resins such as cycloolefin resins are highly likely to shrink during heat treatment, and satisfy the dimensional accuracy required for resin materials when the method described in Patent Document 3 is applied. There was a case that I could not do.
 そこで、本件発明は、樹脂材に要求される寸法精度を満足することができ、且つ、密着性の良好な微細な金属パターンを樹脂材に形成することのできる金属パターン付樹脂材の製造方法及び金属パターン付きの樹脂材を提供することを目的とする。 Accordingly, the present invention provides a method for producing a resin material with a metal pattern, which can satisfy the dimensional accuracy required for the resin material and can form a fine metal pattern with good adhesion on the resin material, and It aims at providing the resin material with a metal pattern.
 そこで、本発明者等は、鋭意研究を行った結果、以下の製造方法を採用することで上記目的を達成するに到った。 Therefore, as a result of intensive studies, the present inventors have achieved the above object by adopting the following manufacturing method.
 本件発明に係る金属パターン付樹脂材の製造方法は、パターン形成用の基材の表面に無電解めっき法により金属パターンを形成する工程と、当該金属パターンが形成された基材上に、液状の樹脂組成物を用いて樹脂組成物膜を形成し、当該樹脂組成物膜を固化又は硬化させて当該金属パターンと密着した樹脂層を得る工程と、当該樹脂層と基材とを剥離して、金属パターン付樹脂材を得る工程とを含むことを特徴とする。 The method for producing a resin material with a metal pattern according to the present invention includes a step of forming a metal pattern on the surface of a substrate for pattern formation by an electroless plating method, and a liquid on the substrate on which the metal pattern is formed. Forming a resin composition film using the resin composition, solidifying or curing the resin composition film to obtain a resin layer in close contact with the metal pattern, and peeling the resin layer and the substrate; And a step of obtaining a resin material with a metal pattern.
 本件発明に係る金属パターン付樹脂材の製造方法は、パターン形成用の第一の基材の表面に、無電解めっき法により第一の金属パターンを形成すると共に、パターン形成用の第二の基材の表面に、無電解めっき法により第二の金属パターンを形成する工程と、第一の金属パターン及び第二の金属パターンを内側にして、第一の基材と第二の基材とを所定の間隔を空けて対向配置し、両基材の間に液状の樹脂組成物を充填して、これを固化又は硬化させて、第一の金属パターン及び第二の金属パターンと密着した樹脂層を得る工程と、当該樹脂層と第一の基材及び第二の基材とを剥離して、第一の金属パターン及び第二の金属パターンを両側に備える樹脂材を得る工程とを含むことを特徴とする。 The method for producing a resin material with a metal pattern according to the present invention comprises forming a first metal pattern on the surface of a first base material for pattern formation by an electroless plating method, and forming a second base for pattern formation. A step of forming a second metal pattern on the surface of the material by an electroless plating method, and a first base material and a second base material, with the first metal pattern and the second metal pattern inside. A resin layer disposed opposite to each other at a predetermined interval, filled with a liquid resin composition between both substrates, and solidified or cured to be in close contact with the first metal pattern and the second metal pattern. And a step of peeling the resin layer from the first base material and the second base material to obtain a resin material provided with the first metal pattern and the second metal pattern on both sides. It is characterized by.
 本件発明に係る金属パターン付樹脂材の製造方法において、前記樹脂組成物は、シクロオレフィン樹脂、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、イソシアネート樹脂、ウレタン樹脂、液晶ポリマー、メラミン樹脂、ポリエステル樹脂、ポリエステル樹脂、シリコン樹脂、ポリエチレン、ポリプロピレン、ポリスチレン及びこれらの前駆体のうち、少なくともいずれか一を含むことが好ましい。 In the method for producing a resin material with a metal pattern according to the present invention, the resin composition includes a cycloolefin resin, a polyimide resin, an epoxy resin, an acrylic resin, an isocyanate resin, a urethane resin, a liquid crystal polymer, a melamine resin, a polyester resin, and a polyester resin. , Silicon resin, polyethylene, polypropylene, polystyrene, and precursors thereof are preferably included.
 本件発明に係る金属パターン付樹脂材の製造方法において、当該樹脂材は、シクロオレフィン樹脂材、ポリイミド樹脂材、エポキシ樹脂材、アクリル樹脂材、イソシアネート樹脂材、ウレタン樹脂材、液晶ポリマー、メラミン樹脂材、ポリエステル樹脂材、ポリエステル樹脂材、シリコン樹脂材、ポリエチレン材、ポリプロピレン材及びポリスチレン材の少なくともいずれか一であることが好ましい。 In the method for producing a resin material with a metal pattern according to the present invention, the resin material is a cycloolefin resin material, a polyimide resin material, an epoxy resin material, an acrylic resin material, an isocyanate resin material, a urethane resin material, a liquid crystal polymer, or a melamine resin material. , Polyester resin material, polyester resin material, silicon resin material, polyethylene material, polypropylene material, and polystyrene material.
 本件発明に係る金属パターン付樹脂材の製造方法において、前記基材の表面に無電解めっき法により前記金属パターンを形成する工程は、前記基材の表面に触媒を選択的に付与する触媒付与工程と、触媒が選択的に付与された基材を無電解めっき液に浸漬し、無電解めっき液中の金属イオンを所定のパターンで析出させる無電解めっき工程とを含むことが好ましい。 In the method for producing a resin material with a metal pattern according to the present invention, the step of forming the metal pattern by an electroless plating method on the surface of the substrate is a catalyst application step of selectively applying a catalyst to the surface of the substrate. And an electroless plating step of immersing the substrate selectively provided with the catalyst in the electroless plating solution and depositing metal ions in the electroless plating solution in a predetermined pattern.
 本件発明に係る金属パターン付樹脂材の製造方法において、前記触媒付与工程は、前記基材の表面に感光性触媒膜を成膜し、当該感光性触媒膜に対して選択的に露光する工程を含むことが好ましい。 In the method for producing a resin material with a metal pattern according to the present invention, the catalyst application step includes a step of forming a photosensitive catalyst film on the surface of the substrate and selectively exposing the photosensitive catalyst film. It is preferable to include.
 本件発明に係る金属パターン付樹脂材は、上記金属パターン付樹脂材の製造方法によって製造されたことを特徴とする。 The resin material with a metal pattern according to the present invention is manufactured by the above-described method for manufacturing a resin material with a metal pattern.
 本件発明に係る金属パターン付樹脂材は、前記金属パターンが前記樹脂層に埋設されたものとなる。 In the resin material with a metal pattern according to the present invention, the metal pattern is embedded in the resin layer.
 本件発明に記載の方法を採用することにより、熱可塑性の樹脂材等であっても当該樹脂材に要求される寸法精度を満足することができ、且つ、密着性の良好な微細な金属パターンを樹脂材に形成することができる。 By adopting the method described in the present invention, even if it is a thermoplastic resin material or the like, it can satisfy the dimensional accuracy required for the resin material, and a fine metal pattern with good adhesion can be obtained. It can be formed on a resin material.
本件発明に係る金属パターン付樹脂材(片面金属パターン付樹脂材)の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the resin material with a metal pattern (resin material with a single-sided metal pattern) which concerns on this invention. 本件発明に係る金属パターン付樹脂材(両面金属パターン付樹脂材)の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the resin material with a metal pattern (resin material with a double-sided metal pattern) which concerns on this invention. パターン形成用の基材に無電解めっき法により金属パターンを形成した状態を示す顕微鏡写真である。It is a microscope picture which shows the state which formed the metal pattern in the base material for pattern formation by the electroless-plating method. 本件発明の実施例1の金属パターン付樹脂材である銅めっきパターン付シクロオレフィン樹脂フィルムを示す顕微鏡写真である。It is a microscope picture which shows the cycloolefin resin film with a copper plating pattern which is a resin material with a metal pattern of Example 1 of this invention. 本件発明の実施例2の金属パターン付樹脂材である銅めっきパターン付ポリイミド樹脂フィルムを示す顕微鏡写真である。It is a microscope picture which shows the polyimide resin film with a copper plating pattern which is a resin material with a metal pattern of Example 2 of this invention. 本件発明の実施例3の金属パターン付樹脂材である銅めっきパターン付きPDMSフィルムを示す顕微鏡写真である。It is a microscope picture which shows the PDMS film with a copper plating pattern which is a resin material with a metal pattern of Example 3 of this invention. 本件発明の実施例3の金属パターン付樹脂材である銅めっきパターン付きPDMSフィルムの別の例を示す顕微鏡写真である。It is a microscope picture which shows another example of the PDMS film with a copper plating pattern which is a resin material with a metal pattern of Example 3 of this invention.
 以下、本発明に係る金属パターン付樹脂材の製造方法及び金属パターン付樹脂材の好ましい実施の形態を説明する。 Hereinafter, preferred embodiments of a method for producing a resin material with a metal pattern and a resin material with a metal pattern according to the present invention will be described.
〈金属パターン付樹脂材の製造方法〉
1.片面金属パターン付樹脂材の製造方法
 まず、本件発明に係る金属パターン付樹脂材の製造方法のうち、樹脂材の片面に金属パターンを備える金属パターン付樹脂材の製造方法を図1を参照しながら説明する。本件発明に係る金属パターン付樹脂材の製造方法は、パターン形成用の基材10(図1(a)参照)の表面に無電解めっき法により金属パターン21を形成する工程(図1(b)参照)と、当該金属パターン21が形成された基材10上に、液状の樹脂組成物を用いて樹脂組成物膜を形成し、当該樹脂組成物膜を固化又は硬化させて、金属パターン21と密着した樹脂層22を得る工程(図1(c)参照)と、当該樹脂層22と基材10とを剥離して、図1(d)に示す金属パターン付樹脂材20を得る工程とを含むことを特徴とする。以下、各工程毎に説明する。
<Production method of resin material with metal pattern>
1. Method for Producing Resin Material with Single-sided Metal Pattern First, among methods for producing a resin material with a metal pattern according to the present invention, a method for producing a resin material with a metal pattern having a metal pattern on one side of the resin material is described with reference to FIG. explain. In the method for producing a resin material with a metal pattern according to the present invention, a step of forming a metal pattern 21 on the surface of a substrate 10 for pattern formation (see FIG. 1A) by an electroless plating method (FIG. 1B). And the metal pattern 21 is formed on the substrate 10 on which the metal pattern 21 is formed using a liquid resin composition, and the resin composition film is solidified or cured. The process of obtaining the closely adhered resin layer 22 (see FIG. 1C) and the process of separating the resin layer 22 and the substrate 10 to obtain the resin material 20 with a metal pattern shown in FIG. It is characterized by including. Hereinafter, each step will be described.
1-1.パター形成工程
 まず、パターン形成用の基材10の表面に無電解めっき法により金属パターン21を形成する工程(以下、「パターン形成工程」と称する。)について説明する。本件発明では、樹脂材に対して直接金属パターン21を形成するのではなく、パターン形成用の基材10に対して金属パターン21を形成し、これを後述する工程を経て樹脂材(22)側に転写する方法を採用している。このため、金属パターン21を形成する過程で、基材10に対して粗化処理や表面改質処理等の各種表面処理を施したり、当該基材10に対して熱処理を施す必要があっても、樹脂材(22)に対してはこれらの処理を施す必要がない。このため、樹脂材(22)には金属パターン21を形成する過程で行われる各種処理の影響が及ばず、熱可塑性の樹脂材であっても要求される寸法精度を満足することができ、且つ、表面の平滑性等も維持することができる。
1-1. Patter formation process First, the process (henceforth a "pattern formation process") which forms the metal pattern 21 by the electroless-plating method on the surface of the base material 10 for pattern formation is demonstrated. In the present invention, the metal pattern 21 is not directly formed on the resin material, but the metal pattern 21 is formed on the substrate 10 for pattern formation, and the resin material (22) side is subjected to the process described later. The method of transferring to is adopted. For this reason, in the process of forming the metal pattern 21, it is necessary to perform various surface treatments such as roughening treatment and surface modification treatment on the base material 10, or to perform heat treatment on the base material 10. It is not necessary to perform these treatments on the resin material (22). For this reason, the resin material (22) is not affected by various processes performed in the process of forming the metal pattern 21, and can satisfy the required dimensional accuracy even with a thermoplastic resin material. Further, the smoothness of the surface can be maintained.
(1)基材
 本件発明において、図1(a)に示すパターン形成用の基材10とは、金属パターン21を形成する際にのみ用いるものをいい、最終的に金属パターン21が設けられる樹脂材(22)とは別のものを指す。このパターン形成用の基材10の材質は特に限定されるものではなく、例えば、ガラス、セラミックス、石英、シリコンウエハ、金属等に代表される無機材料の他、各種プラスチック等の有機材料等であってもよい。本件発明では、特に、耐熱性を有するガラス基板やシリコンウエハ等を好適に用いることができる。
(1) Substrate In the present invention, the substrate 10 for pattern formation shown in FIG. 1 (a) refers to a substrate used only when forming the metal pattern 21, and is finally a resin on which the metal pattern 21 is provided. It is different from the material (22). The material of the substrate 10 for pattern formation is not particularly limited, and examples thereof include inorganic materials typified by glass, ceramics, quartz, silicon wafer, metal, and organic materials such as various plastics. May be. In the present invention, in particular, a glass substrate or a silicon wafer having heat resistance can be suitably used.
(2)無電解めっき法
 無電解めっき法により、パターン形成用の基材10の表面に金属パターン21を形成する際には、従来公知の無電解めっき法によるパターン形成方法を適宜採用することができ、当該パターン形成工程の具体的な手順は、特に限定されるものではない。例えば、基材10の表面全面に触媒を付与し、無電解めっき法により金属を全面に析出させて金属被膜を形成し、その後、エッチング等によりパターンに応じて金属被膜を選択的に溶解除去することにより、所定の金属パターン21を形成してもよい。また、他の方法として、基材10の表面に触媒を選択的に付与し、この触媒が選択的に付与された基材10を無電解めっき液に浸漬し、無電解めっき液中の金属イオンを析出させることにより、所定の金属パターン21を形成してもよい。これらいずれの方法であっても、図1(b)に示すように基材10上に金属パターン21が形成されれば、その具体的な方法は特に限定されるものではない。しかしながら、上述したように、矩形断面の微細な金属パターン21を簡単な工程によって正確に形成することが可能になるという観点から、本件発明では、パターン形成工程は、基材10の表面に触媒を選択的に付与する触媒付与工程と、この触媒が選択的に付与された基材10を無電解めっき液に浸漬し、無電解めっき液中の金属イオンを所定のパターンで析出させる無電解めっき工程とを含むことが好ましい。
(2) Electroless plating method When the metal pattern 21 is formed on the surface of the substrate 10 for pattern formation by the electroless plating method, a pattern forming method by a conventionally known electroless plating method may be appropriately employed. The specific procedure of the pattern forming process is not particularly limited. For example, a catalyst is applied to the entire surface of the substrate 10, a metal film is formed by depositing metal on the entire surface by an electroless plating method, and then the metal film is selectively dissolved and removed according to the pattern by etching or the like. Accordingly, the predetermined metal pattern 21 may be formed. As another method, a catalyst is selectively applied to the surface of the substrate 10, the substrate 10 selectively applied with this catalyst is immersed in an electroless plating solution, and metal ions in the electroless plating solution are added. The predetermined metal pattern 21 may be formed by depositing. In any of these methods, as long as the metal pattern 21 is formed on the substrate 10 as shown in FIG. 1B, the specific method is not particularly limited. However, as described above, from the viewpoint that the fine metal pattern 21 having a rectangular cross section can be accurately formed by a simple process, in the present invention, the pattern forming process is performed by applying a catalyst to the surface of the substrate 10. A catalyst application step for selectively applying, and an electroless plating step for immersing the base material 10 to which the catalyst is selectively applied in an electroless plating solution to deposit metal ions in the electroless plating solution in a predetermined pattern. Are preferably included.
(a)触媒付与工程
 基材10の表面に触媒を選択的に付与するには、従来公知の方法を適宜採用することができるが、矩形断面の微細な金属パターン21を簡単な工程によって正確に形成することができるという観点において、以下の第一の触媒付与工程~第四の触媒付与工程のうち、いずれかの方法を採用することが好ましい。
(A) Catalyst application step In order to selectively apply the catalyst to the surface of the substrate 10, a conventionally known method can be appropriately employed. However, the fine metal pattern 21 having a rectangular cross section can be accurately obtained by a simple process. From the viewpoint that it can be formed, any one of the following first catalyst application step to fourth catalyst application step is preferably employed.
i)第一の触媒付与工程
 第一の触媒付与工程として、例えば、次の方法を挙げることができる。まず、基材10の一方の面に所定のパターン形状の金属酸化物膜を成膜し、次にこの金属酸化物膜を焼成して、該金属酸化物膜の焼結体を得る。そして、当該焼結体を触媒溶液に浸漬することにより、触媒が基材10の表面に所定のパターン形状に応じて選択的に付与される。
i) 1st catalyst provision process As a 1st catalyst provision process, the following method can be mentioned, for example. First, a metal oxide film having a predetermined pattern shape is formed on one surface of the substrate 10, and then the metal oxide film is fired to obtain a sintered body of the metal oxide film. And by immersing the said sintered compact in a catalyst solution, a catalyst is selectively provided to the surface of the base material 10 according to a predetermined pattern shape.
金属酸化物膜成膜工程: 金属酸化物膜は、金属酸化物を含有する膜であり、例えば、物理的気相成長法(PVD)、化学的気相成長法(CVD)、液相成長法等により成膜することができる。これらの成膜法として、より具体的に、物理的気相成長法(PVD)としては、真空蒸着法、スパッタリング法、イオンプレーティング法、分子線エピタキシー法、レーザーアブレーション法等が挙げられる。化学的気相成長法(CVD)としては、熱CVD、MOCVD(有機金属化学気相成長法)、RFプラズマCVD、ECRプラズマCVD、光CVD、レーザCVD、ALE(原子層エピタキシー法)等が挙げられる。液相成長法としては、陽極酸化法、電着法、塗布法、ゾルゲル法等が挙げられる。 Metal oxide film formation process: A metal oxide film is a film containing a metal oxide, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and liquid phase growth. The film can be formed by, for example. More specifically, as these film forming methods, examples of the physical vapor deposition method (PVD) include a vacuum deposition method, a sputtering method, an ion plating method, a molecular beam epitaxy method, and a laser ablation method. Examples of chemical vapor deposition (CVD) include thermal CVD, MOCVD (metal organic chemical vapor deposition), RF plasma CVD, ECR plasma CVD, photo CVD, laser CVD, and ALE (atomic layer epitaxy). It is done. Examples of the liquid phase growth method include an anodic oxidation method, electrodeposition method, coating method, and sol-gel method.
 金属酸化膜に含まれる金属酸化物を構成する金属元素としては、ベリリウム(Be)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、ストロンチウム(Sr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、インジウム(In)、錫(Sn)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユロピウム(Eu)、ガドリニウム(Gd)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、イリジウム(Ir)、鉛(Pb)、ビスマス(Bi)、ポロニウム(Po)、ウラニウム(U)を含む群より選択された何れか一つまたは二つ以上の金属を挙げることができる。 Examples of metal elements constituting the metal oxide contained in the metal oxide film include beryllium (Be), magnesium (Mg), aluminum (Al), silicon (Si), calcium (Ca), scandium (Sc), and titanium (Ti ), Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge) ), Strontium (Sr), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), indium (In), tin (Sn), barium (Ba), lanthanum (La) ), Cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (G ), Hafnium (Hf), tantalum (Ta), tungsten (W), iridium (Ir), lead (Pb), bismuth (Bi), polonium (Po), or any one selected from uranium (U) One or more metals may be mentioned.
 上記金属酸化物に含まれる金属酸化物は、上記金属元素と共に、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、ホウ素(B)、リン(P)、硫黄(S)、砒素(As)、セレン(Se)、アンチモン(Sb)等の元素を含んでいてもよい。 The metal oxide contained in the metal oxide, together with the metal element, is lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), boron (B), phosphorus (P ), Sulfur (S), arsenic (As), selenium (Se), antimony (Sb) and the like.
 特に、本件発明では、上記金属元素として、ナトリウム、チタン、亜鉛、ジルコニウム、ニオブ、モリブデン、ハフニウム、タンタル、タングステン(W)より選択された何れか一つまたは二つ以上の金属であることが好ましい。 In particular, in the present invention, the metal element is preferably any one or two or more metals selected from sodium, titanium, zinc, zirconium, niobium, molybdenum, hafnium, tantalum, and tungsten (W). .
 また、上記の金属が形成する金属酸化物として、酸化チタン(TiO)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化モリブデン(MoO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、或いはこれらの塩、合金が望ましい。これらの塩として、例えば、チタン酸ナトリウム(NaTi)、ニオブ酸ナトリウム(NaNbO)、タンタル酸ナトリウム(TaNaO)、ジルコン酸ナトリウム(NaZrO)、ハフニウム酸ナトリウム(NaHf)、モリブデン酸ナトリウム(NaMoO)、タングステン酸ナトリウム(NaW)等が挙げられる。中でも好ましくは、酸化チタン(TiO)、酸化ニオブ(Nb)、ニオブ酸ナトリウム(NaNbO)である。 Further, as metal oxides formed by the above metals, titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ). ), Molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), or a salt or alloy thereof is desirable. As these salts, for example, sodium titanate (Na 2 O 7 Ti 3) , sodium niobate (NaNbO 3), sodium tantalate (Tanao 3), sodium zirconate (Na 2 ZrO 3), sodium hafnium (Na 2 O 7 Hf 3 ), sodium molybdate (Na 2 MoO 4 ), sodium tungstate (Na 2 O 4 W), and the like. Among these, titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 5 ), and sodium niobate (NaNbO 3 ) are preferable.
 例えば、これらの金属酸化物をオフセット印刷やスクリーン印刷等の印刷法によって金属酸化物膜を成膜することにより、所定のパターン形状を有する金属酸化物膜を形成することができる。また、金属酸化物膜を成膜する際に、まず、感光剤を含む金属酸化膜前駆体膜を基材10の表面全面に成膜し、その後、フォトマスク等により金属酸化膜前駆体膜に選択的に紫外光を照射することで所定のパターン形状の金属酸化膜を得ることもできる。但し、金属酸化膜前駆体膜とは、現像処理によりパターンを形成可能なネガ型又はポジ型の感光性膜をいう。 For example, a metal oxide film having a predetermined pattern shape can be formed by forming a metal oxide film from these metal oxides by a printing method such as offset printing or screen printing. Further, when forming a metal oxide film, first, a metal oxide film precursor film containing a photosensitizer is formed on the entire surface of the substrate 10, and then formed into a metal oxide film precursor film using a photomask or the like. A metal oxide film having a predetermined pattern shape can also be obtained by selectively irradiating ultraviolet light. However, the metal oxide film precursor film refers to a negative or positive photosensitive film capable of forming a pattern by development processing.
焼成工程: 次に、この金属酸化膜を、100℃~基板の破壊温度の温度条件下において1~200分焼成することにより、金属酸化膜焼結体を得ることができる。焼成温度は、金属酸化物の組成に応じて適宜適切な温度となるように調整すればよい。当該熱処理を施すことにより、金属酸化膜は、微細なポアが形成された多孔質セラミックスとなる。 Baking step: Next, this metal oxide film is baked for 1 to 200 minutes under a temperature condition of 100 ° C. to the breakdown temperature of the substrate, whereby a metal oxide film sintered body can be obtained. What is necessary is just to adjust a calcination temperature so that it may become a suitable temperature suitably according to a composition of a metal oxide. By performing the heat treatment, the metal oxide film becomes a porous ceramic in which fine pores are formed.
表面改質処理工程: そして、当該金属酸化膜焼結体に対して、必要に応じて適宜表面処理を施し、後の触媒付与工程における触媒との吸着性を向上させ、或いは、精度よくパターンニングを行うことができるように表面改質処理を行うことが好ましい。このような表面改質処理として、以下のものが挙げられる。 Surface modification treatment step: Then, the metal oxide film sintered body is appropriately subjected to surface treatment as necessary to improve the adsorptivity with the catalyst in the subsequent catalyst application step, or patterning with high accuracy. The surface modification treatment is preferably performed so that Examples of such surface modification treatment include the following.
 まず、上記表面改質処理として、紫外線照射処理が挙げられる。紫外線照射処理では、波長180~400nm程度の紫外線を、1~50mW/cm程度の照射強度で金属酸化膜焼結体の表面に照射することが好ましい。この際、光源として、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ブラックライト、殺菌ランプ、DUVランプ、エキシマランプ等を用いることができる。金属酸化膜焼結体の表面に紫外線を照射することにより、当該焼結体の表面分子が切断されてイオン化し、親水性基が生成される。これにより、後の触媒付与工程における触媒の吸着性が向上する。 First, examples of the surface modification treatment include ultraviolet irradiation treatment. In the ultraviolet irradiation treatment, it is preferable to irradiate the surface of the metal oxide film sintered body with ultraviolet rays having a wavelength of about 180 to 400 nm with an irradiation intensity of about 1 to 50 mW / cm 2 . At this time, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a black light, a sterilizing lamp, a DUV lamp, an excimer lamp, or the like can be used as the light source. By irradiating the surface of the metal oxide film sintered body with ultraviolet rays, the surface molecules of the sintered body are cut and ionized to generate hydrophilic groups. Thereby, the adsorptivity of the catalyst in the subsequent catalyst application step is improved.
 また、上記表面改質処理として、表面改質液浸漬処理が挙げられる。表面改質液浸漬処理では、金属酸化膜焼結体を基材10と共に表面改質液に浸漬させることにより、表面の親水性基の極性や表面粗さを増大させ、これにより触媒との吸着性を向上させることができる。表面改質液として、例えば、水酸化ナトリウム溶液、ノニオン系及び/又はアニオン系界面活性剤などを用いることができる。より具体的には、表面改質液として、2-アミノチオエタノール、ポリエチレングリコール、ポリオキシエチレンドデシルエーテル、ドデシル硫酸ナトリウム、ラウリン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)、トリメチルフェニルアンモニウムヒドロキシド等を用いることができる。なお、金属酸化膜焼結体は、上述のとおり、焼結により微細なポアが形成される。このポアによりアンカー効果が得られる。従って、基材10の表面に金属酸化膜焼結体を設ければ、基本的に当該表面改質液浸漬処理を行う必要はないが、必要に応じて適宜行ってもよい。 Also, as the surface modification treatment, a surface modification solution immersion treatment may be mentioned. In the surface modification liquid immersion treatment, the metal oxide film sintered body is immersed in the surface modification liquid together with the substrate 10 to increase the polarity of the hydrophilic group on the surface and the surface roughness, thereby adsorbing with the catalyst. Can be improved. As the surface modifying solution, for example, a sodium hydroxide solution, a nonionic surfactant and / or an anionic surfactant can be used. More specifically, as the surface modification liquid, 2-aminothioethanol, polyethylene glycol, polyoxyethylene dodecyl ether, sodium dodecyl sulfate, sodium laurate, sodium dodecylbenzenesulfonate, tetramethylammonium hydroxide (TMAH), Trimethylphenylammonium hydroxide or the like can be used. The metal oxide film sintered body has fine pores formed by sintering as described above. An anchor effect is obtained by this pore. Therefore, if the metal oxide film sintered body is provided on the surface of the base material 10, it is basically unnecessary to perform the surface modification liquid immersion treatment, but may be appropriately performed as necessary.
触媒付与工程: 触媒付与工程では、基材10ごと、触媒溶液に浸漬することにより、多数の微細なポアが形成された金属酸化膜焼結体にパラジウム触媒を吸着させることができる。触媒化の方法としては、キャタリスト-アクセラレータ法、センシタイジング-アクティベーティング法、アクティベーティング法等、どのような方法を用いてもよい。また、触媒物質としても、パラジウム、ルテニウム、白金等、どのようなものを用いてもよい。当該工程により基材10の表面に選択的に触媒が付与される。 Catalyst application process: In the catalyst application process, the palladium catalyst can be adsorbed to the sintered metal oxide film in which a large number of fine pores are formed by immersing the base material 10 together in the catalyst solution. As a method for catalysis, any method such as a catalyst-accelerator method, a sensitizing-activating method, an activating method, or the like may be used. Further, any material such as palladium, ruthenium, platinum or the like may be used as the catalyst substance. A catalyst is selectively given to the surface of the base material 10 by the said process.
ii)第二の触媒付与工程
 上記第一の触媒付与工程と一部態様の異なる第二の触媒付与工程により、基材10の表面に選択的に触媒を付与してもよい。第二の触媒付与工程では、上記金属酸化物膜を成膜する際に、後述する光触媒作用を発現する金属酸化物からなる光触媒性膜を成膜し、次に、この光触媒性膜を焼成して光触媒性膜の焼結体を得る。そして、当該焼結体の表面に撥水性塗膜を設け、所定の露光パターンを有するフォトマスク等を介して撥水性塗膜上から選択的に紫外光を照射する。これにより、紫外光が照射された領域では、光触媒が活性化して撥水性塗膜を分解する。このため、露光パターンに応じて光触媒性膜が露出し、露光されなかった領域の表面は撥水性塗膜により被覆される。その後、第一の触媒付与工程と同様に、基材10ごと触媒溶液に浸漬することにより、基材10の表面に所定のパターン形状に応じて触媒を選択的に付与することができる。以下、第一の触媒付与工程と異なる工程のみ説明する。
ii) Second catalyst application step A catalyst may be selectively applied to the surface of the substrate 10 by a second catalyst application step that differs from the first catalyst application step in part. In the second catalyst application step, when the metal oxide film is formed, a photocatalytic film made of a metal oxide that exhibits a photocatalytic action described later is formed, and then the photocatalytic film is baked. Thus, a sintered body of the photocatalytic film is obtained. Then, a water-repellent coating film is provided on the surface of the sintered body, and ultraviolet light is selectively irradiated from above the water-repellent coating film through a photomask having a predetermined exposure pattern. Thereby, in a region irradiated with ultraviolet light, the photocatalyst is activated to decompose the water-repellent coating film. Therefore, the photocatalytic film is exposed according to the exposure pattern, and the surface of the unexposed area is covered with the water repellent coating film. Then, like the 1st catalyst provision process, a catalyst can be selectively given to the surface of substrate 10 according to a predetermined pattern shape by immersing substrate 10 together in a catalyst solution. Only the steps different from the first catalyst application step will be described below.
光触媒膜の成膜: 光触媒作用を発現する金属酸化物として、例えば、酸化チタン(TiO)、酸化鉄(Fe)、酸化タングステン(WO)、酸化スズ(SnO)、酸化ビスマス(Bi)、酸化ニオブ(Nb)、酸化ニッケル(NiO)、酸化銅(CuO)、酸化ジルコニウム(ZrO)、酸化亜鉛(ZnO)、チタン酸ストロンチウム(SrTiO)、チタン酸鉄(FeTiO)又は、これらの塩を挙げることができる。この中でも、特に、酸化チタン(TiO)、酸化ニオブ(Nb)、ニオブ酸ナトリウム(NaNbO)などを用いて、光触媒性膜を成膜することが好ましい。 Film formation of photocatalytic film: Examples of metal oxides that exhibit photocatalytic action include titanium oxide (TiO 2 ), iron oxide (Fe 2 O 3 ), tungsten oxide (WO 3 ), tin oxide (SnO 2 ), and bismuth oxide. (Bi 2 O 3 ), niobium oxide (Nb 2 O 5 ), nickel oxide (NiO), copper oxide (Cu 2 O), zirconium oxide (ZrO 2 ), zinc oxide (ZnO), strontium titanate (SrTiO 3 ) And iron titanate (FeTiO 3 ) or salts thereof. Among these, it is particularly preferable to form a photocatalytic film using titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 5 ), sodium niobate (NaNbO 3 ), or the like.
 これらの光触媒性膜は、上述した一般的な成膜方法により成膜することができ、特に、ゾルゲル法、スパッタリング法、蒸着法などにより成膜することが好ましい。光触媒性膜を成膜した後、第一の触媒付与工程と同様に焼成工程を行い、光触媒性膜の焼結体を得る。 These photocatalytic films can be formed by the general film forming method described above, and are particularly preferably formed by a sol-gel method, a sputtering method, a vapor deposition method, or the like. After forming the photocatalytic film, a firing process is performed in the same manner as in the first catalyst application process to obtain a sintered body of the photocatalytic film.
撥水性塗膜成膜工程: 光触媒性膜焼結体を得た後、当該光触媒性焼結体の表面に、撥水性塗膜を設ける。ここで、撥水性塗膜は、光触媒性膜焼結体の表面を疎水性に改質するため設けられる膜である。撥水性塗膜は、疎水性を有する膜成分により構成される薄膜であれば、特に限定されるものでない。特に、パターン形成精度が向上するという観点において、オクタデシルトリメトキシシラン(ODS)、オクタデシルトリクロロシラン(OTS)、オクタデシルホスホン酸(ODP)等の自己組織化単分子膜を設けることが好ましい。 Water repellent coating film forming step: After obtaining a photocatalytic film sintered body, a water repellent coating film is provided on the surface of the photocatalytic film sintered body. Here, the water-repellent coating film is a film provided for modifying the surface of the photocatalytic film sintered body to be hydrophobic. A water-repellent coating film will not be specifically limited if it is a thin film comprised by the film | membrane component which has hydrophobicity. In particular, from the viewpoint of improving pattern formation accuracy, it is preferable to provide a self-assembled monomolecular film such as octadecyltrimethoxysilane (ODS), octadecyltrichlorosilane (OTS), octadecylphosphonic acid (ODP), or the like.
露光工程: 次に、撥水性塗膜上から、所定の露光パターンを有するフォトマスク等を介して選択的に紫外光等を露光する。この際、波長180~400nm程度の紫外線を、1~50mW/cm程度の照射強度で撥水性塗膜の表面に照射することが好ましい。光源として、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ブラックライト、殺菌ランプ、DUVランプ、エキシマランプ等を用いることができる。露光工程を行うことにより、露光された領域のみ光触媒を活性化させて自己組織化単分子膜を分解することができる。一方、露光パターンに応じて光触媒性膜が露出し、露光されなかった領域の表面は撥水性塗膜により被覆される。 Exposure Step: Next, ultraviolet light or the like is selectively exposed from above the water repellent coating film through a photomask having a predetermined exposure pattern. At this time, it is preferable to irradiate the surface of the water-repellent coating film with ultraviolet rays having a wavelength of about 180 to 400 nm with an irradiation intensity of about 1 to 50 mW / cm 2 . As the light source, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a black light, a sterilization lamp, a DUV lamp, an excimer lamp, or the like can be used. By performing the exposure step, the photocatalyst can be activated only in the exposed region to decompose the self-assembled monolayer. On the other hand, the photocatalytic film is exposed according to the exposure pattern, and the surface of the unexposed area is covered with a water repellent coating film.
 その後の触媒付与工程は、第一の触媒付与工程と同様に行うことができる。触媒付与工程において、基材10を触媒溶液に浸漬すると、光触媒性膜が露出している領域にのみ触媒を選択的に付与することができる。なお、光触媒性膜を成膜した後、触媒を付与するまでのいずれかの段階において、必要に応じて第一の触媒付与工程と同様の表面改質処理を施すことができる。 The subsequent catalyst application step can be performed in the same manner as the first catalyst application step. In the catalyst application step, when the substrate 10 is immersed in the catalyst solution, the catalyst can be selectively applied only to the region where the photocatalytic film is exposed. In addition, after forming the photocatalytic film, in any stage from application of the catalyst, surface modification treatment similar to the first catalyst application process can be performed as necessary.
iii)第三の触媒付与工程
 上記第一及び第二の触媒付与工程と更に一部態様の異なる第三の触媒付与工程として、例えば、次の方法により基材10の表面に触媒を選択的に付与してもよい。第三の触媒付与工程では、上記金属酸化物膜を成膜する際に、上記光触媒性膜に疎水性を有する疎水性物質を含有する撥水性光触媒性膜を成膜する。具体的には、上記光触媒性膜をゾルゲル法により成膜する際に、上記光触媒性物質を含有するゾル液に、上記自己組織化単分子膜を形成可能なODS、OTS、ODP等を混合した感光性ゾル液を用いて、撥水性光触媒性膜を成膜することができる。この撥水性光触媒性膜を焼成して、撥水性光触媒性膜焼結体を得た後、第二の触媒付与工程と同様に所定の露光パターンを有するフォトマスク等を介して選択的に紫外光等を露光することにより、露光された領域のみ光触媒を活性化させて自己組織化単分子を分解させることができる。一方、露光されなかった領域の表面は撥水性を維持することから、触媒付与工程では、露光領域のみ触媒を選択的に付与することができる。なお、基材10の表面に上記光触媒性膜を成膜した後、この撥水性光触媒性膜を積層してもよい。焼成工程及び触媒付与工程等は、第一の触媒付与工程及び第二の触媒付与工程と同様に行うことができる。また、必要に応じて、適宜表面改質処理を行うことができる。当該第三の触媒付与工程によれば、光触媒ゾル液を用いることによって、光触媒性膜を設けた後に、別途撥水性塗膜を形成する工程を省略できる。
iii) Third catalyst application step As the third catalyst application step, which is further different from the first and second catalyst application steps, a catalyst is selectively applied to the surface of the substrate 10 by the following method, for example. It may be given. In the third catalyst application step, when the metal oxide film is formed, a water-repellent photocatalytic film containing a hydrophobic substance having hydrophobicity is formed on the photocatalytic film. Specifically, when the photocatalytic film is formed by a sol-gel method, ODS, OTS, ODP, or the like that can form the self-assembled monolayer is mixed with the sol solution containing the photocatalytic substance. A water-repellent photocatalytic film can be formed using a photosensitive sol solution. This water-repellent photocatalytic film is fired to obtain a water-repellent photocatalytic film sintered body, and then selectively irradiated with ultraviolet light through a photomask having a predetermined exposure pattern as in the second catalyst application step. Etc., the photocatalyst can be activated only in the exposed region to decompose the self-assembled monomolecule. On the other hand, since the surface of the unexposed area maintains water repellency, the catalyst can be selectively applied only to the exposed area in the catalyst application step. In addition, after forming the photocatalytic film on the surface of the substrate 10, the water-repellent photocatalytic film may be laminated. A calcination process, a catalyst provision process, etc. can be performed similarly to a 1st catalyst provision process and a 2nd catalyst provision process. Further, surface modification treatment can be appropriately performed as necessary. According to the third catalyst application step, by using the photocatalyst sol solution, a step of separately forming a water-repellent coating film can be omitted after the photocatalytic film is provided.
iv)第四の触媒付与工程
 基材10の表面に選択的に触媒を付与する際に、次の第四の触媒付与工程を採用してもよい。第四の触媒付与工程では、例えば、無電解めっき反応の触媒とならない第1金属の有機化合物と、無電解めっき反応の触媒となる第2金属の化合物と、第1金属と錯体を形成する感光性感光性化合物を含む感光性触媒溶液を調製し、この触媒溶液を基材10の表面に塗布し、塗布膜を成膜する。この塗布膜に所定の露光パターンを有するフォトマスク等を介して選択的に紫外光を照射し、アルカリ性溶液等により現像すると紫外光が照射された領域が溶解して、所定のパターン形状の塗布膜が得られる。次に、熱処理を施して当該感光性化合物を分解して金属酸化物とし、この塗布膜を感光性触媒前駆体膜とする。そして、第2の金属のイオンを金属に還元し、当該感光性触媒前駆体膜を所定のパターン形状の触媒膜とする。
iv) Fourth catalyst application step When the catalyst is selectively applied to the surface of the substrate 10, the following fourth catalyst application step may be employed. In the fourth catalyst application step, for example, an organic compound of a first metal that does not serve as a catalyst for an electroless plating reaction, a second metal compound that serves as a catalyst for an electroless plating reaction, and a photosensitizer that forms a complex with the first metal. A photosensitive catalyst solution containing a photosensitive photosensitive compound is prepared, and this catalyst solution is applied to the surface of the substrate 10 to form a coating film. When this coating film is selectively irradiated with ultraviolet light through a photomask having a predetermined exposure pattern and developed with an alkaline solution or the like, the region irradiated with the ultraviolet light is dissolved, and the coating film having a predetermined pattern shape is obtained. Is obtained. Next, heat treatment is performed to decompose the photosensitive compound into a metal oxide, and this coating film is used as a photosensitive catalyst precursor film. Then, the ions of the second metal are reduced to metal, and the photosensitive catalyst precursor film is used as a catalyst film having a predetermined pattern shape.
感光性触媒溶液調製工程: まず、感光性触媒溶液を調製するための溶液調製工程について説明する。触媒溶液は、無電解めっき反応の触媒とならない第1金属M1の有機化合物と、無電解めっき反応の触媒となる第2金属M2の化合物と、第1金属M1と金属錯体を形成する感光性化合物とを含む溶液である。 Photosensitive catalyst solution preparation step: First, a solution preparation step for preparing a photosensitive catalyst solution will be described. The catalyst solution includes an organic compound of the first metal M1 that does not serve as a catalyst for the electroless plating reaction, a compound of the second metal M2 that serves as a catalyst for the electroless plating reaction, and a photosensitive compound that forms a metal complex with the first metal M1. A solution containing
 第1金属M1としては、Mg、Ca、Sr、Ba、Sc、Y、La-Lu、Ti、Zr、Hf、Nb、Ta、Mo、W、Zn、Al、Si、Ni、In又は、Snを用いる。第2金属M2としては、Ru、Co、Rh、Ni、Pt、Cu、Ag、Fe、Pd又はAuを用いる。 As the first metal M1, Mg, Ca, Sr, Ba, Sc, Y, La-Lu, Ti, Zr, Hf, Nb, Ta, Mo, W, Zn, Al, Si, Ni, In, or Sn are used. Use. As the second metal M2, Ru, Co, Rh, Ni, Pt, Cu, Ag, Fe, Pd, or Au is used.
 この第1金属M1としてチタン(Ti)を選択した場合に、その有機化合物としては、チタンテトライソピロポキシドに代表されるチタンアルコキシドを用いることが好ましい。チタンアルコキシドとして、具体的には、チタンテトライソプロポキシド、テトラブトキシチタニウム、テトラエトキシチタニウム、これらの2量体、3量体、4量体等の縮合物からなるアルコキシド、チタニルビスアセチルアセトネート、ジブトキシチタニウムアセチルアセトネート、イソプロポキシチタニウムトリエタノールアミナート等のキレート、チタニウムステアレート、チタニウムオクチレート等の有機酸塩等が挙げられる。 When titanium (Ti) is selected as the first metal M1, it is preferable to use titanium alkoxide represented by titanium tetraisopyropoxide as the organic compound. As titanium alkoxide, specifically, titanium tetraisopropoxide, tetrabutoxy titanium, tetraethoxy titanium, alkoxides composed of condensates such as dimers, trimers, and tetramers, titanyl bisacetylacetonate, Examples thereof include chelates such as dibutoxytitanium acetylacetonate and isopropoxytitanium triethanolaminate, and organic acid salts such as titanium stearate and titanium octylate.
 また、第2金属M2として、金(Au)を選択した場合、その化合物としては、塩化金酸ナトリウムに代表されるAu無機塩を用いることが好ましい。Au無機塩として、具体的には、塩化金酸、臭化金、テトラクロロ金、亜硫酸金、水酸化金、水酸化金酸ナトリウム(NaAu(OH))、酢酸金又は、これらのナトリウム塩もしくはカリウム塩等が挙げられる。 When gold (Au) is selected as the second metal M2, it is preferable to use an Au inorganic salt typified by sodium chloroaurate as the compound. Specific examples of the Au inorganic salt include chloroauric acid, gold bromide, tetrachlorogold, gold sulfite, gold hydroxide, sodium hydroxide goldate (NaAu (OH) 4 ), gold acetate, or a sodium salt thereof. Or a potassium salt etc. are mentioned.
 第2金属M2として、銀(Ag)を選択した場合、その化合物としては、硝酸銀に代表されるAg無機塩を用いることが好ましい。Ag無機塩として、具体的には、塩化銀酸、臭化銀、酢酸銀、硫酸銀、又は、炭酸銀等が挙げられる。 When silver (Ag) is selected as the second metal M2, it is preferable to use an Ag inorganic salt typified by silver nitrate as the compound. Specific examples of the Ag inorganic salt include silver chloride, silver bromide, silver acetate, silver sulfate, and silver carbonate.
 第2金属M2として、銅(Cu)を選択した場合、Cuイオンの溶解性改善のため、2-メトキシエトキシ酢酸に代表される金属イオン可溶有機溶剤を含むことが好ましい。 When copper (Cu) is selected as the second metal M2, it is preferable to include a metal ion-soluble organic solvent typified by 2-methoxyethoxyacetic acid for improving the solubility of Cu ions.
 第1金属M1と金属錯体を形成する感光性化合物として、例えば、4-(4,5-Dimethoxy-2-nitrobenzyloxycarbonyl)catechol(NVOC-CAT)、ナフトキノンジアジド化合物(NQD)、β-ジケトン、α-ヒドロキシケトン、1-Hydoroxycyclohexyl Phenyl Ketone(HPK)等の特開2011-20769号公報に開示される感光性化合物の他、第1金属M1と金属錯体を形成する公知の感光性化合物を用いることができる。 Examples of the photosensitive compound that forms a metal complex with the first metal M1 include 4- (4,5-Dimethoxy-2-nitrobenzoylcarbonyl) catechol (NVOC-CAT), naphthoquinonediazide compound (NQD), β-diketone, α- In addition to the photosensitive compounds disclosed in Japanese Patent Application Laid-Open No. 2011-20769 such as hydroxyketone, 1-hydroxycyclohexyl, phenyl ketone (HPK), known photosensitive compounds that form metal complexes with the first metal M1 can be used. .
 第1金属M1の有機化合物と、第2金属の化合物と、この感光性化合物とを含む感光性触媒溶液(感光性金属錯体溶液)を調製することにより、例えば、NBOC-TiCu等の感光性金属錯体を得ることができる。 By preparing a photosensitive catalyst solution (photosensitive metal complex solution) containing the organic compound of the first metal M1, the second metal compound, and the photosensitive compound, for example, a photosensitive metal such as NBOC-TiCu. A complex can be obtained.
塗布膜成膜工程: 上記感光性触媒溶液を調製した後、基材10の表面にスピンコート法、スリットコート法、ディップコート法、スプレーコート法等のコート法により塗布膜を成膜する。 Coating film forming step: After preparing the photosensitive catalyst solution, a coating film is formed on the surface of the substrate 10 by a coating method such as spin coating, slit coating, dip coating, or spray coating.
露光現像工程: 当該工程では、第二及び第三の触媒付与工程と同様に、所定の露光パターンを有するフォトマスク等を介して塗布膜上から選択的に紫外光を照射する。紫外線が照射された領域では、金属錯体はアルカリ性現像液に対し易溶となり、露光されなかった領域はアルカリ性現像液に対し不溶のままである。よって、露光後、アルカリ性現像液を用いて現像を行うことにより、露光した部分のみが除去され、パターンが形成される。なお、現像液は、半導体・液晶リソグラフィー用の現像液等を用いることができる。 Exposure and development step: In this step, as in the second and third catalyst application steps, ultraviolet light is selectively irradiated from above the coating film via a photomask having a predetermined exposure pattern. In the region irradiated with ultraviolet rays, the metal complex becomes readily soluble in the alkaline developer, and the unexposed region remains insoluble in the alkaline developer. Therefore, after the exposure, development is performed using an alkaline developer, whereby only the exposed portion is removed and a pattern is formed. As the developer, a developer for semiconductor / liquid crystal lithography can be used.
熱処理工程: 所定のパターン形状となった塗布膜を第一~第三の触媒付与工程と同様に焼成する等の方法で熱処理を施すと、感光性金属錯体を金属酸化物に変化させることができる。これにより、金属酸化物薄膜パターンから成る触媒前駆体膜を得ることができる。触媒前駆体膜では、第1金属酸化物からなる無機バインダ中に第2金属M2イオンが分散した構造となる。 Heat treatment step: When a heat treatment is performed by a method such as baking the coating film having a predetermined pattern shape in the same manner as in the first to third catalyst application steps, the photosensitive metal complex can be changed to a metal oxide. . Thereby, the catalyst precursor film | membrane which consists of a metal oxide thin film pattern can be obtained. The catalyst precursor film has a structure in which the second metal M2 ions are dispersed in an inorganic binder made of the first metal oxide.
還元工程: そして、触媒前駆体膜をテトラヒドロホウ酸、次亜リン酸、ヒドラジン、水素化ホウ素、ジメチルアミンボランなどの還元剤を含有する水溶液等に基材10と共に浸漬すると、第2金属M2イオンが還元されて、第2金属Mとなる。当該工程を経ることにより、無電解めっき反応の触媒機能を有する第2金属の微粒子が膜中に分散した触媒膜を得ることができる。 Reduction process: When the catalyst precursor film is immersed together with the base material 10 in an aqueous solution containing a reducing agent such as tetrahydroboric acid, hypophosphorous acid, hydrazine, borohydride, dimethylamine borane, etc., the second metal M2 ion Is reduced to the second metal M. By passing through this step, a catalyst film in which fine particles of the second metal having a catalytic function of electroless plating reaction are dispersed in the film can be obtained.
(b)無電解めっき工程
 基材10の表面に上記の触媒付与工程等により選択的に触媒を付与した後、必要に応じて、活性化処理等を行い、その後、基材10を無電解めっき液に浸漬し、無電解めっき液に含まれる金属イオンを析出させ、所定の金属パターン21を得ることができる。この無電解めっきにより析出される金属として、例えば、ニッケル(Ni)、リン(P)、ホウ素(B)、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)、及びこれらの合金が挙げられる。
(B) Electroless plating step After selectively applying a catalyst to the surface of the substrate 10 by the above-described catalyst applying step or the like, activation treatment or the like is performed as necessary, and then the substrate 10 is electrolessly plated. A predetermined metal pattern 21 can be obtained by immersing in the solution to deposit metal ions contained in the electroless plating solution. Examples of metals deposited by the electroless plating include nickel (Ni), phosphorus (P), boron (B), gold (Au), silver (Ag), copper (Cu), palladium (Pd), and these These alloys are mentioned.
 無電解めっき工程は、公知の方法等を用いて適宜行うことができ、特に限定されるものではない。上記活性化処理は任意の工程であり、活性化処理液としては、塩酸、硫酸、ヒドラジン、塩化スズ、ホルマリン、次亜リン酸、水酸化ホウ素化合物、アミンボラン化合物等を含有するものなどを用いることができる。また、無電解めっき液は、析出させる金属に応じて、適宜、公知の無電解めっき液を用いることができる。 The electroless plating step can be appropriately performed using a known method or the like, and is not particularly limited. The above activation treatment is an optional step, and as the activation treatment liquid, one containing hydrochloric acid, sulfuric acid, hydrazine, tin chloride, formalin, hypophosphorous acid, boron hydroxide compound, amine borane compound or the like should be used. Can do. Further, as the electroless plating solution, a known electroless plating solution can be appropriately used depending on the metal to be deposited.
 以上の工程により、パターン形成用の基材10の表面に無電解めっき法により金属パターン21が形成される。 Through the above steps, the metal pattern 21 is formed on the surface of the substrate 10 for pattern formation by the electroless plating method.
1-2.樹脂層形成工程
 樹脂層形成工程では、上記金属パターン21が形成された基材10上に、まず、液状の樹脂組成物を用いて樹脂組成物膜を形成する。
1-2. Resin Layer Forming Step In the resin layer forming step, first, a resin composition film is formed on the base material 10 on which the metal pattern 21 is formed using a liquid resin composition.
 樹脂組成物は、液状であり固化又は硬化させることにより目的とする樹脂材(22)を得ることができるものであれば特に限定されるものではなく、熱可塑性樹脂組成物、熱硬化性樹脂組成物のいずれであってもよい。本件発明では、特に、シクロオレフィン樹脂、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、イソシアネート樹脂、ウレタン樹脂、液晶ポリマー、メラミン樹脂、ポリエステル樹脂、ポリエステル樹脂、シリコン樹脂、ポリエチレン、ポリプロピレン、ポリスチレン及び及びこれらの前駆体のうち、少なくともいずれか一を含むことが好ましく、当該液状の樹脂組成物を用いることにより、シクロオレフィン樹脂材、ポリイミド樹脂材、エポキシ樹脂材、アクリル樹脂材、イソシアネート樹脂材、ウレタン樹脂材、液晶ポリマー、メラミン樹脂材、ポリエステル樹脂材、ポリエステル樹脂材、シリコン樹脂材、ポリエチレン材、ポリプロピレン材及びポリスチレン材の少なくともいずれか一が得られることが好ましい。これらの液状の樹脂組成物を用いて、基材10上に塗布することにより、基材10及び金属パターン21の表面を被覆するように樹脂組成物膜を形成することができる。 The resin composition is not particularly limited as long as the resin composition can be obtained in a liquid form and can be solidified or cured, and the thermoplastic resin composition and the thermosetting resin composition are not limited. Any of the objects may be used. In the present invention, in particular, cycloolefin resin, polyimide resin, epoxy resin, acrylic resin, isocyanate resin, urethane resin, liquid crystal polymer, melamine resin, polyester resin, polyester resin, silicon resin, polyethylene, polypropylene, polystyrene, and precursors thereof. It is preferable to include at least one of the bodies, and by using the liquid resin composition, cycloolefin resin material, polyimide resin material, epoxy resin material, acrylic resin material, isocyanate resin material, urethane resin material, It is preferable to obtain at least one of a liquid crystal polymer, a melamine resin material, a polyester resin material, a polyester resin material, a silicon resin material, a polyethylene material, a polypropylene material, and a polystyrene material. By applying these liquid resin compositions onto the base material 10, a resin composition film can be formed so as to cover the surface of the base material 10 and the metal pattern 21.
 次に、樹脂組成物膜中の溶剤を蒸発させ、或いは、熱硬化又は光硬化させることにより、樹脂組成物膜を固化又は硬化させて樹脂層22を得る。これにより、図1(c)に示すように、固化又は硬化された樹脂層22内に金属パターン21が埋設された状態となる。なお、溶剤を蒸発させる際には、常温で溶剤を蒸発させてもよいが、樹脂の種類に応じて50℃~150℃の温度範囲で熱処理を施してもよい。 Next, the resin composition film is solidified or cured by evaporating the solvent in the resin composition film or by thermosetting or photocuring to obtain the resin layer 22. Thereby, as shown in FIG.1 (c), it will be in the state by which the metal pattern 21 was embed | buried in the resin layer 22 solidified or hardened | cured. When evaporating the solvent, the solvent may be evaporated at room temperature, but heat treatment may be performed in a temperature range of 50 ° C. to 150 ° C. depending on the type of resin.
1-3.剥離工程
 樹脂層22を得た後、樹脂層22と基材10とを剥離する。ここで、図1(c)に示すように、金属パターン21と基材10との密着面積と、金属パターン21と樹脂層22との密着面積を比較すると、金属パターン21と樹脂層22とは金属パターン21の両側面においても密着するため、後者の方が大きく、密着力が大きくなる。このため、樹脂層22と基材10とを物理的に剥離すると、金属パターン21が基材10から樹脂層22側に転写され、金属パターン付樹脂材20を得ることができる。
1-3. Peeling process After obtaining the resin layer 22, the resin layer 22 and the base material 10 are peeled. Here, as shown in FIG. 1C, when the adhesion area between the metal pattern 21 and the substrate 10 and the adhesion area between the metal pattern 21 and the resin layer 22 are compared, the metal pattern 21 and the resin layer 22 are Since both sides of the metal pattern 21 are in close contact with each other, the latter is larger and the adhesion is increased. For this reason, when the resin layer 22 and the base material 10 are physically peeled, the metal pattern 21 is transferred from the base material 10 to the resin layer 22 side, and the resin material 20 with a metal pattern can be obtained.
 以上の工程により、金属パターン21を基材10の表面に形成する際に、触媒付与工程において焼成処理や粗化処理等の熱処理や表面改質処理を施す場合でも、金属パターン21を形成した後に樹脂層22を形成するため、熱可塑性の樹脂材を製造する場合であっても樹脂材に要求される寸法精度を満足することができ、樹脂層22との密着性の良好な微細な金属パターン21を形成することができる。 When the metal pattern 21 is formed on the surface of the substrate 10 by the above steps, even when heat treatment or surface modification treatment such as baking treatment or roughening treatment is performed in the catalyst application step, after the metal pattern 21 is formed. Since the resin layer 22 is formed, even if a thermoplastic resin material is manufactured, the dimensional accuracy required for the resin material can be satisfied, and a fine metal pattern with good adhesion to the resin layer 22 21 can be formed.
2.両面金属パターン付樹脂材の製造方法
 次に、本件発明に係る金属パターン付樹脂材の製造方法のうち、樹脂材の両面に金属パターンを備える両面金属パターン付樹脂材の製造方法を図2を参照しながら説明する。当該製造方法は、パターン形成用の第一の基材31の表面に、無電解めっき法により第一の金属パターン41を形成すると共に、パターン形成用の第二の基材32の表面に、無電解めっき法により第二の金属パターン42を形成する工程(図2(a)、(b)参照)と、第一の金属パターン41及び第二の金属パターン42を内側にして、第一の基材31と第二の基材32とを所定の間隔を空けて対向配置し、両基材31、32の間に液状の樹脂組成物を充填して、これを固化又は硬化させて、第一の金属パターン41及び第二の金属パターン42と密着した樹脂層43を得る工程(図2(c)参照)と、当該樹脂層43と第一の基材31及び第二の基材32とを剥離して、第一の金属パターン41及び第二の金属パターン42を樹脂層43両側に備える樹脂材50を得る工程(図2(d)参照)とを含むことを特徴とする。以下、各工程毎に説明する。
2. 2. Manufacturing method of resin material with double-sided metal pattern Next, in the manufacturing method of resin material with metal pattern according to the present invention, refer to FIG. While explaining. In the manufacturing method, the first metal pattern 41 is formed on the surface of the first substrate 31 for pattern formation by an electroless plating method, and the surface of the second substrate 32 for pattern formation is formed on the surface of the first substrate 31 for pattern formation. The step of forming the second metal pattern 42 by the electrolytic plating method (see FIGS. 2A and 2B), the first metal pattern 41 and the second metal pattern 42 are set inward, and the first substrate The material 31 and the second base material 32 are arranged to face each other with a predetermined interval, the liquid resin composition is filled between the base materials 31 and 32, and this is solidified or cured, and the first A step of obtaining a resin layer 43 in close contact with the metal pattern 41 and the second metal pattern 42 (see FIG. 2C), the resin layer 43, the first base material 31, and the second base material 32. The first metal pattern 41 and the second metal pattern 42 are peeled off and the resin layer 43 is peeled off. Characterized in that it comprises a step of obtaining a resin material 50 provided on the side (see Figure 2 (d)). Hereinafter, each step will be described.
2-1.パターン形成工程
 パターン形成工程では、図2(a)に示すように、パターン形成用の第一の基材31と、パターン形成用の第二の基材32とを用意し、各基材31、32に対してそれぞれ金属パターン(第一の金属パターン41及び第二の金属パターン42)を形成する(図2(b)参照)。各基材31、32に対して金属パターン41、42を形成する際には、上記片面金属パターン付樹脂材20において基材10に金属パターン21を形成する際に適用したパターン形成工程と同様の工程により行うことができるため、ここでは説明を省略する。
2-1. Pattern formation process In a pattern formation process, as shown to Fig.2 (a), the 1st base material 31 for pattern formation and the 2nd base material 32 for pattern formation are prepared, and each base material 31, Metal patterns (a first metal pattern 41 and a second metal pattern 42) are respectively formed on 32 (see FIG. 2B). When the metal patterns 41 and 42 are formed on the respective base materials 31 and 32, the same pattern forming process as applied when the metal pattern 21 is formed on the base material 10 in the resin material 20 with a single-sided metal pattern. Since it can be performed by a process, description thereof is omitted here.
2-2.樹脂層形成工程
 樹脂層形成工程では、第一の金属パターン41及び第二の金属パターン42を内側にして、第一の基材31と第二の基材32とを所定の間隔を空けて対向配置し、両基材31、32の間に液状の樹脂組成物を充填して樹脂組成物膜を形成する。樹脂組成物は上記片面金属パターン付樹脂材20において、基材10上に樹脂組成物膜を形成する際に用いた液状の樹脂組成物と同様のものを用いることができる。そして、片面金属パターン付樹脂材の製造方法と同様に、樹脂組成物膜中の溶剤を蒸発させ、或いは、熱硬化又は光硬化させることにより、第一の金属パターン41及び第二の金属パターン42が埋設された状態で固化又は硬化した樹脂層43が得られる(図2(c)参照)。
2-2. Resin Layer Forming Step In the resin layer forming step, the first base material 31 and the second base material 32 are opposed to each other with a predetermined interval with the first metal pattern 41 and the second metal pattern 42 facing inside. It arrange | positions and it fills with a liquid resin composition between both the base materials 31 and 32, and forms a resin composition film | membrane. The resin composition may be the same as the liquid resin composition used when forming the resin composition film on the substrate 10 in the resin material 20 with a single-sided metal pattern. And like the manufacturing method of the resin material with a single-sided metal pattern, the 1st metal pattern 41 and the 2nd metal pattern 42 are obtained by evaporating the solvent in a resin composition film, or thermosetting or photocuring. The resin layer 43 solidified or hardened in a state where is embedded is obtained (see FIG. 2C).
2-3.剥離工程
 剥離工程では、上記樹脂層43と第一の基材31及び第二の基材32とを物理的に剥離する。各金属パターン41、42と各基材31、32との密着面積と、各金属パターン41、42と樹脂層43との密着面積を比較すると、上記と同様に、いずれの金属パターン41、42も樹脂層43との密着面積の方が大きく、密着力が大きくなる。このため、樹脂層43と各基材31、32とをそれぞれ物理的に剥離すると、樹脂層43の両側に第一の金属パターン41及び第二の金属パターン42が転写され、これらの金属パターン41、42が樹脂層43に埋設された両面金属パターン付樹脂材40を得ることができる(図3(d)参照)。
2-3. Peeling step In the peeling step, the resin layer 43 is physically peeled from the first base material 31 and the second base material 32. When the adhesion area between each metal pattern 41, 42 and each base material 31, 32 and the adhesion area between each metal pattern 41, 42 and the resin layer 43 are compared, each metal pattern 41, 42 is similar to the above. The contact area with the resin layer 43 is larger, and the adhesion force is increased. For this reason, when the resin layer 43 and each of the base materials 31 and 32 are physically separated, the first metal pattern 41 and the second metal pattern 42 are transferred to both sides of the resin layer 43, and these metal patterns 41 are transferred. , 42 can be obtained as a double-sided metal-patterned resin material 40 embedded in the resin layer 43 (see FIG. 3D).
〈金属パターン付樹脂材〉
 本件発明に係る金属パターン付樹脂材は、上記本件発明に係る金属パターン付樹脂材の製造方法によって製造されたことを特徴とする片面金属パターン付樹脂材20(図1(d)参照)又は両面金属パターン付樹脂材40(図2(d)参照)である。
<Resin material with metal pattern>
The resin material with a metal pattern according to the present invention is manufactured by the method for manufacturing a resin material with a metal pattern according to the present invention, and the resin material with a single-sided metal pattern (see FIG. 1 (d)) or both surfaces It is the resin material 40 with a metal pattern (refer FIG.2 (d)).
 本件発明に係る金属パターン付樹脂材20(40)は、上述したとおり金属パターン21(41、42)が樹脂層22(43)内に埋設されたものとなる。このため、本件発明に係る金属パターン付樹脂材20(40)を、例えば、フレキシブルプリント配線板等に適用した場合、配線パターンとなる金属パターン21(41、42)が樹脂層22(43)の表面から外側に突出しないため、当該配線パターン部分を保護することができ、マイグレーションやショート等のリスクを減少することができる。 The resin material 20 (40) with a metal pattern according to the present invention has the metal pattern 21 (41, 42) embedded in the resin layer 22 (43) as described above. For this reason, when the resin material 20 (40) with a metal pattern according to the present invention is applied to, for example, a flexible printed wiring board or the like, the metal pattern 21 (41, 42) serving as a wiring pattern is formed on the resin layer 22 (43). Since it does not protrude outward from the surface, the wiring pattern portion can be protected, and the risk of migration or short-circuiting can be reduced.
 本件発明において、樹脂材20(40)を構成する樹脂材料は特に限定されるものではなく、液状の樹脂組成物を固化又は硬化させることにより得ることのできる樹脂材であればよ。例えば、上記列挙した各種樹脂材に適用することが好ましく、特に、シクロオレフィン樹脂材等の熱可塑性樹脂材に好適である。また、本件発明において、樹脂材の形状は特に限定されるものではなく、基材10(31、32)の形状等を変化させることにより、フィルム状、板状の樹脂材だけではなく、いわゆるキャスティング法により成形可能な各種形状の樹脂材を得ることができる。 In the present invention, the resin material constituting the resin material 20 (40) is not particularly limited as long as it is a resin material that can be obtained by solidifying or curing a liquid resin composition. For example, it is preferably applied to the various resin materials listed above, and is particularly suitable for thermoplastic resin materials such as cycloolefin resin materials. In the present invention, the shape of the resin material is not particularly limited. By changing the shape of the base material 10 (31, 32) or the like, not only the film-like and plate-like resin materials, but also so-called casting is used. Various shaped resin materials that can be molded by the method can be obtained.
 従来の無電解めっき方法により、熱可塑性樹脂材の表面に金属パターンを形成する際に、上述した触媒付与工程(第一の触媒付与工程~第四の触媒付与工程)等を採用すれば密着性の良好な金属パターンを形成することができる。しかしながら、この従来の無電解めっき方法により、樹脂材の表面に直接金属パターンを形成すると、上述した触媒付与工程等における熱処理の際に熱可塑性樹脂の場合は収縮する恐れがあり、要求される寸法精度を満足することができない場合がある。また、樹脂材の表面を粗化施したり、紫外線を照射するなどして表面改質処理を施すと、樹脂材の表面粗度が大きくなり、透明樹脂フィルム等の場合には要求される透光性を満足することができない場合が生じる。 Adhesion if the above-mentioned catalyst application process (first catalyst application process to fourth catalyst application process) is adopted when forming a metal pattern on the surface of a thermoplastic resin material by a conventional electroless plating method. A favorable metal pattern can be formed. However, if a metal pattern is formed directly on the surface of the resin material by this conventional electroless plating method, there is a risk of shrinkage in the case of a thermoplastic resin during the heat treatment in the above-described catalyst application step, etc. The accuracy may not be satisfied. In addition, if the surface of the resin material is roughened or subjected to surface modification treatment by irradiating ultraviolet rays, the surface roughness of the resin material increases, and the required translucency is required for transparent resin films. In some cases, the sex cannot be satisfied.
 これに対して、本件発明に係る方法で製造された金属パターン付樹脂材20(40)は、金属パターン21(41、42)が樹脂層22(43)に密着されていると共に、金属パターン21(41、42)の形成工程において樹脂層22(43)には何ら熱処理や表面改質処理等が施されることはなく、また、無電解めっき液等の各種薬剤に晒されることもない。従って、当該金属パターン付樹脂材20(40)が、シクロオレフィン樹脂材等の熱可塑性透明樹脂材であっても、要求される寸法精度や透明性を満足することができる。このため、本件発明は、タッチパネル用透明導電フィルム基材、有機EL照明基材、フレキシブルプリント基材、絶縁膜等の用途に用いられる熱可塑性透明樹脂材に好適である。 In contrast, in the resin material with metal pattern 20 (40) manufactured by the method according to the present invention, the metal pattern 21 (41, 42) is in close contact with the resin layer 22 (43), and the metal pattern 21 In the formation step of (41, 42), the resin layer 22 (43) is not subjected to any heat treatment or surface modification treatment, and is not exposed to various chemicals such as electroless plating solution. Therefore, even if the metal pattern-attached resin material 20 (40) is a thermoplastic transparent resin material such as a cycloolefin resin material, the required dimensional accuracy and transparency can be satisfied. For this reason, this invention is suitable for the thermoplastic transparent resin material used for uses, such as a transparent conductive film base material for touchscreens, an organic EL illumination base material, a flexible print base material, and an insulating film.
 次に、実施例を示して本件発明を具体的に説明する。但し、本件発明は以下の実施例に限定されるものではなく、本件発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。 Next, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and it is needless to say that the present invention can be appropriately changed without departing from the gist of the present invention.
 実施例1では、次のようにして金属パターン付樹脂材を製造した。 In Example 1, a resin material with a metal pattern was manufactured as follows.
(1)パターン形成工程
 まず、パターン形成用の基材の表面に無電解めっき法により金属パターンを形成した。 実施例1では、パターン形成用の基材として、50mm×50mmの厚み0.7mmのショット アクチエンゲゼルシャフト社製(SCHOTT AG社製)の板ホウケイ酸ガラス(テンパックス フロート(登録商標))を用いた。
(1) Pattern formation process First, the metal pattern was formed by the electroless-plating method on the surface of the base material for pattern formation. In Example 1, as a base material for pattern formation, a plate borosilicate glass (Tempax Float (registered trademark)) made by Schott Akgel Gesellshaft (manufactured by SCHOTT AG) having a thickness of 50 mm × 50 mm and 0.7 mm is used. It was.
 そして、上記基材の表面に触媒を選択的に付与し、この触媒が選択的に付与された基材を無電解銅めっき液に浸漬し、無電解銅めっき液中の銅イオンを析出させることにより、基材の表面に銅の配線パターンを形成した。 And a catalyst is selectively given to the surface of the above-mentioned base material, the base material to which this catalyst was selectively given is immersed in an electroless copper plating solution, and copper ions in the electroless copper plating solution are deposited. Thus, a copper wiring pattern was formed on the surface of the substrate.
a)触媒付与工程
 実施例1では、上記実施の形態で説明した第四の触媒付与工程に従い、以下のように感光性触媒溶液調製工程、塗布膜成膜工程、露光現像工程、熱処理工程、還元工程を行い、所定のパターン形状の触媒膜を基材の表面に設けた。
a) Catalyst application step In Example 1, in accordance with the fourth catalyst application step described in the above embodiment, a photosensitive catalyst solution preparation step, a coating film formation step, an exposure development step, a heat treatment step, and a reduction are performed as follows. The process was performed and the catalyst film of the predetermined pattern shape was provided on the surface of the base material.
感光性触媒溶液調製工程: 感光性触媒溶液調製工程では、上記第1金属M1としてのチタンと、上記第2金属M2としての銅と、感光性化合物としてのNBOC-CATを含む感光性触媒溶液(NBOC-TiCu)を調製した。
 まず、3,4-ジヒドロキシ安息香酸を2-ニトロベンジルアルコール誘導体でエステル化して、NBOC-CATを合成した。そして、このNBOC-CAT(2.46g)を乳酸エチル(12ml)とN,N‘-ジメチルアセトアミド(2ml)に溶解させて、テトライソプロポキシドチタン(1.04ml)を添加して「溶液A」を調製した。一方、2-メトキシエトキシ酢酸(0.171ml)と無水酢酸銅(0.272g)とをN,N‘-ジメチルアセトアミド(2ml)に100℃で溶解させて「溶液B」を調製した。そして、「溶液A」と「溶液B」とを混合し、100℃で1時間加熱し、感光性金属錯体溶液(NBOC-TiCu)を得た。なお、感光性金属錯体(NBOC-TiCu)は、短波長光を受光すると、アルカリ現像液に対する溶解性が大きく増加するいわゆるポジ型の感光性を有する金属錯体である。
Photosensitive catalyst solution preparation step: In the photosensitive catalyst solution preparation step, a photosensitive catalyst solution containing titanium as the first metal M1, copper as the second metal M2, and NBOC-CAT as the photosensitive compound ( NBOC-TiCu) was prepared.
First, NBOC-CAT was synthesized by esterifying 3,4-dihydroxybenzoic acid with a 2-nitrobenzyl alcohol derivative. Then, NBOC-CAT (2.46 g) was dissolved in ethyl lactate (12 ml) and N, N′-dimethylacetamide (2 ml), tetraisopropoxide titanium (1.04 ml) was added, and “solution A Was prepared. On the other hand, 2-methoxyethoxyacetic acid (0.171 ml) and anhydrous copper acetate (0.272 g) were dissolved in N, N′-dimethylacetamide (2 ml) at 100 ° C. to prepare “Solution B”. Then, “Solution A” and “Solution B” were mixed and heated at 100 ° C. for 1 hour to obtain a photosensitive metal complex solution (NBOC-TiCu). Note that the photosensitive metal complex (NBOC-TiCu) is a metal complex having a so-called positive photosensitivity that greatly increases the solubility in an alkali developer upon receiving short-wavelength light.
塗布膜成膜工程: 上記基材の表面に、感光性金属錯体溶液0.35mlを1000回転でスピンコートして塗布した。そして、ホットプレートの上に当該塗布膜が設けられた基材を載置し、100℃で1時間乾燥した。 Coating film forming step: 0.35 ml of the photosensitive metal complex solution was spin-coated at 1000 revolutions on the surface of the substrate. And the base material with which the said coating film was provided on the hotplate was mounted, and it dried at 100 degreeC for 1 hour.
露光現像工程: 次に、所定の露光パターンを有するフォトマスクを上記塗布膜の上に設置し、フォトマスクを介して塗布膜にウシオスペックス社製の超高圧水銀灯(ModuleX(登録商標))にウシオ電機株式会社製の平行光光源(UXM-500SX 500Wランプ)により、313nmの紫外光を2500mJ/cm2となるように露光した。その後、0.25wt%の水酸化テトラメチルアンモニウム(TMAH)系現像液に30秒間浸し、現像した。これにより、露光した領域が溶解し、所定のパターン形状の塗布膜が得られる。 Exposure and development process: Next, a photomask having a predetermined exposure pattern is placed on the coating film, and the coating film is placed on the coating film via a photomask by an ultrahigh pressure mercury lamp (ModuleX (registered trademark)) manufactured by Ushio Spex. A parallel light source (UXM-500SX, 500 W lamp) manufactured by Co., Ltd. was used to expose 313 nm ultraviolet light to 2500 mJ / cm 2. Thereafter, the film was immersed in a 0.25 wt% tetramethylammonium hydroxide (TMAH) developer for 30 seconds for development. Thereby, the exposed area | region melt | dissolves and the coating film of a predetermined pattern shape is obtained.
熱処理工程: 次に、所定のパターン形状となった塗布膜を備える基材を電気炉に入れて、300℃で1時間焼成した。当該熱処理工程を行うことにより、感光性金属錯体が金属酸化物に変化し、上記触媒前駆体膜を得ることができる。 Heat treatment step: Next, the base material provided with the coating film having a predetermined pattern shape was placed in an electric furnace and baked at 300 ° C. for 1 hour. By performing the heat treatment step, the photosensitive metal complex is changed to a metal oxide, and the catalyst precursor film can be obtained.
還元工程: そして、還元液として、NaBH水溶液2g/lに50℃で2分浸漬した。当該工程により、触媒前駆体膜中のCuOが触媒活性を有するCuに還元されて、触媒膜が得られる。 Reduction process: Then, as a reducing solution, it was immersed in an aqueous NaBH 4 solution 2 g / l at 50 ° C. for 2 minutes. Through this step, CuO in the catalyst precursor film is reduced to Cu having catalytic activity, and a catalyst film is obtained.
b)無電解めっき工程
 上記工程により触媒が選択的に付与された基材を無電解銅めっき良く(JCU社製PB-506)に浸漬して、約0.2μmの厚みで銅を析出させた。当該工程により、図3に示す銅めっきパターン(線幅5μm、間隔100μmの格子状パターン、シート抵抗2Ω/sq)が得られた。
b) Electroless plating step The substrate selectively provided with the catalyst in the above step was immersed in electroless copper plating (PB-506 manufactured by JCU) to deposit copper with a thickness of about 0.2 μm. . The copper plating pattern shown in FIG. 3 (a grid pattern with a line width of 5 μm and an interval of 100 μm, a sheet resistance of 2Ω / sq) was obtained by this process.
(2)樹脂組成物膜形成工程
 銅めっきパターンが形成された基板上に、液状のシクロオレフィン樹脂組成物を3mlを垂らして、ピペッターのチップで広げ樹脂組成物膜を形成した。
(2) Resin composition film forming step 3 ml of a liquid cycloolefin resin composition was hung on a substrate on which a copper plating pattern was formed, and spread with a pipettor chip to form a resin composition film.
(3)樹脂層形成工程
 そして、80℃の温度雰囲気下で溶剤を蒸発させて、樹脂組成物膜を固化し、シクロオレフィン樹脂層を得た。
(3) Resin layer forming step Then, the solvent was evaporated under a temperature atmosphere of 80 ° C. to solidify the resin composition film to obtain a cycloolefin resin layer.
 そして、シクロオレフィン樹脂層を基材から物理的に剥離し、図4に示す銅めっきパターンが埋設されたシクロオレフィン樹脂フィルム(金属パターン付樹脂材)を得た。 Then, the cycloolefin resin layer was physically peeled from the substrate to obtain a cycloolefin resin film (resin material with a metal pattern) in which the copper plating pattern shown in FIG. 4 was embedded.
 実施例2では、樹脂組成物膜を形成する際に、液状シクロオレフィン樹脂組成物を用いる代わりに、市販の液状ポリイミド樹脂組成物(商品名:aldrich575771(シグマ アルドリッチ ジャパン株式会社))3mlを用い、100℃で溶剤を揮発させると共に、200℃で樹脂組成物膜を硬化させた以外は、実施例1と同様にして銅めっきパターン付ポリイミド樹脂フィルム(金属パターン付樹脂材)を得た(図5参照)。なお、ポリイミド系フィルムに埋設された銅めっきパターンは実施例1と同様に線幅5μm、間隔100μmの格子状パターンであり、シート抵抗は2Ω/sqである。 In Example 2, when forming a resin composition film, instead of using a liquid cycloolefin resin composition, 3 ml of a commercially available liquid polyimide resin composition (trade name: aldrich575771 (Sigma-Aldrich Sakai Japan Co., Ltd.)) was used. A polyimide resin film with a copper plating pattern (resin material with a metal pattern) was obtained in the same manner as in Example 1 except that the solvent was volatilized at 100 ° C. and the resin composition film was cured at 200 ° C. (FIG. 5). reference). The copper plating pattern embedded in the polyimide film is a lattice pattern with a line width of 5 μm and an interval of 100 μm, as in Example 1, and the sheet resistance is 2Ω / sq.
 実施例3では、銅めっきパターンとして(ライン/スペース(L/S)幅がそれぞれ100μmのL字パターン(図6参照)と線幅200μmの十字パターン(図7参照)を形成した以外は実施例1と同様にして基材上に無電解銅めっきパターンを形成した。そして、樹脂組成物膜を形成する際に、液状シクロオレフィン樹脂組成物を用いる代わりに、信越化学工業株式会社製の液状ジメチルポリシロキサン組成物(PDMS(商品名:SIM-240/CAT-240))を3mlを用い、100℃で溶剤を揮発させて、樹脂組成物膜を硬化させた。他の工程は、全て実施例1と同様に行い、銅めっきパターン付PDMSフィルム(金属パターン付樹脂材)を得た。 In Example 3, the copper plating pattern was formed except that an L-shaped pattern (see FIG. 6) having a line / space (L / S) width of 100 μm and a cross pattern (see FIG. 7) having a line width of 200 μm were formed. An electroless copper plating pattern was formed on the substrate in the same manner as in 1. In addition, when forming the resin composition film, instead of using the liquid cycloolefin resin composition, liquid dimethyl produced by Shin-Etsu Chemical Co., Ltd. was used. Using 3 ml of a polysiloxane composition (PDMS (trade name: SIM-240 / CAT-240)), the solvent was volatilized at 100 ° C. to cure the resin composition film. 1 was performed to obtain a PDMS film with a copper plating pattern (resin material with a metal pattern).
 実施例1~実施例3で製造した銅めっきパターン付樹脂フィルムは、いずれも透明性が高く表面が平滑であり、銅めっきパターンがフィルム内に埋設されていると共に、銅めっきパターンのフィルムに対する密着性も優れていた。また、線幅の細い微細な銅めっきパターンを矩形断面で得ることができ、高精細な配線パターンを簡易な方法で形成することが可能であった。 The resin films with copper plating patterns produced in Examples 1 to 3 are all highly transparent and have a smooth surface. The copper plating pattern is embedded in the film, and the copper plating pattern adheres to the film. The property was also excellent. Further, a fine copper plating pattern with a narrow line width can be obtained in a rectangular cross section, and a high-definition wiring pattern can be formed by a simple method.
 本件発明に記載の方法を採用することにより、熱可塑性の樹脂材等であっても当該樹脂材に要求される寸法精度を満足することができ、且つ、密着性の良好な微細な金属パターンを樹脂材に形成することができる。また、本件発明は、樹脂材の表面に粗化処理等を施すこともないため、タッチパネル用透明導電フィルム基材、有機EL照明基材、フレキシブルプリント基材、絶縁膜等の用途に用いられる熱可塑性透明樹脂材に好適である By adopting the method described in the present invention, even if it is a thermoplastic resin material or the like, it can satisfy the dimensional accuracy required for the resin material, and a fine metal pattern with good adhesion can be obtained. It can be formed on a resin material. Moreover, since this invention does not give a roughening process etc. to the surface of a resin material, it is the heat | fever used for uses, such as a transparent conductive film base material for touchscreens, an organic EL lighting base material, a flexible printed base material, and an insulating film. Suitable for plastic transparent resin material
  10・・・基材
  20・・・片面金属パターン付樹脂材
  21・・・金属パターン
  22・・・樹脂層
  31・・・第一の基材
  32・・・第二の基材
  40・・・両面金属パターン付樹脂材
  41・・・第一の金属パターン
  42・・・第二の金属パターン
  43・・・樹脂層
DESCRIPTION OF SYMBOLS 10 ... Base material 20 ... Resin material with a single-sided metal pattern 21 ... Metal pattern 22 ... Resin layer 31 ... First base material 32 ... Second base material 40 ... Resin material with double-sided metal pattern 41... First metal pattern 42... Second metal pattern 43.

Claims (7)

  1.  パターン形成用の基材の表面に無電解めっき法により金属パターンを形成する工程と、
     当該金属パターンが形成された基材上に、液状の樹脂組成物を用いて樹脂組成物膜を形成し、当該樹脂組成物膜を固化又は硬化させて当該金属パターンと密着した樹脂層を得る工程と、
     当該樹脂層と基材とを剥離して、金属パターン付樹脂材を得る工程と、
     を含むことを特徴とする金属パターン付樹脂材の製造方法。
    Forming a metal pattern on the surface of the substrate for pattern formation by an electroless plating method;
    A step of forming a resin composition film using a liquid resin composition on a substrate on which the metal pattern is formed, and solidifying or curing the resin composition film to obtain a resin layer in close contact with the metal pattern When,
    Peeling the resin layer and the substrate to obtain a resin material with a metal pattern;
    The manufacturing method of the resin material with a metal pattern characterized by including.
  2.  パターン形成用の第一の基材の表面に、無電解めっき法により第一の金属パターンを形成すると共に、パターン形成用の第二の基材の表面に、無電解めっき法により第二の金属パターンを形成する工程と、
     第一の金属パターン及び第二の金属パターンを内側にして、第一の基材と第二の基材とを所定の間隔を空けて対向配置し、両基材の間に液状の樹脂組成物を充填して、これを固化又は硬化させて、第一の金属パターン及び第二の金属パターンと密着した樹脂層を得る工程と、
     当該樹脂層と第一の基材及び第二の基材とを剥離して、第一の金属パターン及び第二の金属パターンを両側に備える樹脂材を得る工程と、
     を含むことを特徴とする金属パターン付樹脂材の製造方法。
    A first metal pattern is formed on the surface of the first substrate for pattern formation by electroless plating, and a second metal is formed on the surface of the second substrate for pattern formation by electroless plating. Forming a pattern;
    The first metal pattern and the second metal pattern are inside, the first base material and the second base material are arranged to face each other at a predetermined interval, and a liquid resin composition is provided between the two base materials. And solidifying or curing this to obtain a resin layer in close contact with the first metal pattern and the second metal pattern;
    Peeling the resin layer from the first base material and the second base material to obtain a resin material provided on both sides with the first metal pattern and the second metal pattern;
    The manufacturing method of the resin material with a metal pattern characterized by including.
  3.  前記樹脂組成物は、シクロオレフィン樹脂、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、イソシアネート樹脂、ウレタン樹脂、液晶ポリマー、メラミン樹脂、ポリエステル樹脂、ポリエステル樹脂、シリコン樹脂、ポリエチレン、ポリプロピレン、ポリスチレン及びこれらの前駆体のうち、少なくともいずれか一を含む請求項1又は請求項2に記載の金属パターン付樹脂材の製造方法。 The resin composition includes cycloolefin resin, polyimide resin, epoxy resin, acrylic resin, isocyanate resin, urethane resin, liquid crystal polymer, melamine resin, polyester resin, polyester resin, silicon resin, polyethylene, polypropylene, polystyrene, and precursors thereof. The manufacturing method of the resin material with a metal pattern of Claim 1 or Claim 2 containing at least any one among these.
  4.  当該樹脂材は、シクロオレフィン樹脂材、ポリイミド樹脂材、エポキシ樹脂材及びアクリル樹脂材、イソシアネート樹脂材、ウレタン樹脂材、液晶ポリマー、メラミン樹脂材、ポリエステル樹脂材、ポリエステル樹脂材、シリコン樹脂材、ポリエチレン材、ポリプロピレン材及びポリスチレン材の少なくともいずれか一である請求項1~請求項3のいずれか一項に記載の金属パターン付樹脂材の製造方法。 The resin material is cycloolefin resin material, polyimide resin material, epoxy resin material and acrylic resin material, isocyanate resin material, urethane resin material, liquid crystal polymer, melamine resin material, polyester resin material, polyester resin material, silicon resin material, polyethylene The method for producing a resin material with a metal pattern according to any one of claims 1 to 3, which is at least one of a material, a polypropylene material, and a polystyrene material.
  5.  前記基材の表面に無電解めっき法により前記金属パターンを形成する工程は、
     前記基材の表面に触媒を選択的に付与する触媒付与工程と、
     触媒が選択的に付与された基材を無電解めっき液に浸漬し、無電解めっき液中の金属イオンを所定のパターンで析出させる無電解めっき工程と、
    を含む請求項1~請求項4のいずれか一項に記載の金属パターン付樹脂材の製造方法。
    The step of forming the metal pattern by the electroless plating method on the surface of the base material,
    A catalyst application step of selectively applying a catalyst to the surface of the substrate;
    An electroless plating step of immersing a substrate selectively provided with a catalyst in an electroless plating solution, and depositing metal ions in the electroless plating solution in a predetermined pattern;
    The method for producing a resin material with a metal pattern according to any one of claims 1 to 4, comprising:
  6.  前記触媒付与工程は、前記触媒付与工程は、前記基材の表面に感光性触媒膜を成膜し、当該感光性触媒膜に対して選択的に露光する工程を含む請求項5に記載の金属パターン付樹脂材の製造方法。 6. The metal according to claim 5, wherein the catalyst application step includes a step of forming a photosensitive catalyst film on the surface of the substrate and selectively exposing the photosensitive catalyst film. Manufacturing method of resin material with a pattern.
  7.  請求項1~請求項6のいずれか一項に記載に金属パターン付樹脂材の製造方法によって製造されたことを特徴とする金属パターン付樹脂材。 A resin material with a metal pattern produced by the method for producing a resin material with a metal pattern according to any one of claims 1 to 6.
PCT/JP2014/068320 2013-09-19 2014-07-09 Method for manufacturing plastic article having metal pattern, and plastic article having metal pattern WO2015040934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013193802A JP2015059244A (en) 2013-09-19 2013-09-19 Manufacturing method of resin material with metal pattern and resin material with metal pattern
JP2013-193802 2013-09-19

Publications (1)

Publication Number Publication Date
WO2015040934A1 true WO2015040934A1 (en) 2015-03-26

Family

ID=52688594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068320 WO2015040934A1 (en) 2013-09-19 2014-07-09 Method for manufacturing plastic article having metal pattern, and plastic article having metal pattern

Country Status (3)

Country Link
JP (1) JP2015059244A (en)
TW (1) TWI563124B (en)
WO (1) WO2015040934A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140971A1 (en) * 2020-01-08 2021-07-15 パナソニックIpマネジメント株式会社 Method for manufacturing wiring body, pattern plate, and wiring body

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804011B2 (en) * 2013-09-20 2015-11-04 大日本印刷株式会社 Transmission type display device
KR102465117B1 (en) * 2017-11-29 2022-11-11 주식회사 잉크테크 Method for manufacturing printed circuit board
WO2020100710A1 (en) * 2018-11-16 2020-05-22 株式会社ニコン Pattern forming method, transistor manufacturing method, and film for pattern formation
TWI706704B (en) * 2019-06-19 2020-10-01 特豪科技股份有限公司 Circuit board manufacturing method
WO2021220919A1 (en) * 2020-05-01 2021-11-04 東京応化工業株式会社 Method for producing surface-modified metal oxide microparticles, method for producing surface-modified metal oxide microparticle dispersion, and method for producing solid product
KR102414125B1 (en) * 2020-07-21 2022-06-29 (주)티에스이 Flexible printed circuit board and method for manufacturing the same
KR102358393B1 (en) * 2020-09-22 2022-02-08 (주)티에스이 Flexible printed circuit board and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132499A (en) * 1986-11-25 1988-06-04 古河電気工業株式会社 Manufacture of circuit board
JPH05198901A (en) * 1991-09-19 1993-08-06 Nitto Denko Corp Printed circuit board and manufacture thereof
JPH05335712A (en) * 1992-06-01 1993-12-17 Alps Electric Co Ltd Through-hole of printed wiring board and formation thereof
JPH11170421A (en) * 1997-12-17 1999-06-29 Sumitomo Osaka Cement Co Ltd Transparent conductive film and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751146A (en) * 1985-07-09 1988-06-14 Showa Denko Kabushiki Kaisha Printed circuit boards
US5374469A (en) * 1991-09-19 1994-12-20 Nitto Denko Corporation Flexible printed substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132499A (en) * 1986-11-25 1988-06-04 古河電気工業株式会社 Manufacture of circuit board
JPH05198901A (en) * 1991-09-19 1993-08-06 Nitto Denko Corp Printed circuit board and manufacture thereof
JPH05335712A (en) * 1992-06-01 1993-12-17 Alps Electric Co Ltd Through-hole of printed wiring board and formation thereof
JPH11170421A (en) * 1997-12-17 1999-06-29 Sumitomo Osaka Cement Co Ltd Transparent conductive film and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140971A1 (en) * 2020-01-08 2021-07-15 パナソニックIpマネジメント株式会社 Method for manufacturing wiring body, pattern plate, and wiring body

Also Published As

Publication number Publication date
JP2015059244A (en) 2015-03-30
TWI563124B (en) 2016-12-21
TW201512455A (en) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2015040934A1 (en) Method for manufacturing plastic article having metal pattern, and plastic article having metal pattern
EP2525392B1 (en) Method of forming metal oxide thin film pattern using nanoimprint and manufacturing method of led element using same
JP2002348680A (en) Pattern of metal film and manufacturing method therefor
JP4526029B2 (en) Photocatalyst composition and photocatalyst-containing layer
JP4266596B2 (en) Method for manufacturing conductive pattern forming body
JP2003295428A (en) Method for manufacturing pattern forming body and photomask used for the same
JP2013185216A (en) Laminate, and method of manufacturing the laminate
JP2004343109A (en) Method of forming metal wiring and electromagnetic wave shielding filter using this
JP2013067084A (en) Method for producing base body with metal film pattern and method for producing mold
JP2005029735A (en) Method for forming inorganic thin film on polyimide resin and method for producing polyimide resin for forming surface-modified inorganic thin film
JP2006188757A (en) Method for depositing inorganic thin film of polyimide resin and method for producing polyimide resin for depositing surface-reformed inorganic thin film
JP2005045236A (en) Inorganic thin film pattern forming method of polyimide resin
JP2007103479A (en) Forming method of inorganic thin film pattern on polyimide resin substrate
JP2007266124A (en) Wiring board manufacturing method and liquid discharge head manufactured thereby
JP4300012B2 (en) Multilayer wiring board
US10999934B2 (en) Metal oxide nanoparticle ink composition, method of producing same, and method of forming conductive layer pattern using same
JP5787569B2 (en) Method for producing metal thin film pattern
JP3922378B2 (en) Wiring board manufacturing method
JP3934025B2 (en) Multilayer wiring board
JP2004087976A (en) Method for manufacturing conductive pattern form
JP6641217B2 (en) Coating agent for forming metal oxide film and method for producing substrate having metal oxide film
JP2007324255A (en) Resist film forming method and apparatus thereof
WO2023189250A1 (en) Conductive film and display device
JP4743254B2 (en) Method for manufacturing conductive pattern forming body
JP2019123910A (en) Formation method of front and rear surfaces of fine circuit pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845601

Country of ref document: EP

Kind code of ref document: A1