WO2015040853A1 - Illumination device, and imaging device - Google Patents

Illumination device, and imaging device Download PDF

Info

Publication number
WO2015040853A1
WO2015040853A1 PCT/JP2014/004749 JP2014004749W WO2015040853A1 WO 2015040853 A1 WO2015040853 A1 WO 2015040853A1 JP 2014004749 W JP2014004749 W JP 2014004749W WO 2015040853 A1 WO2015040853 A1 WO 2015040853A1
Authority
WO
WIPO (PCT)
Prior art keywords
trigger
discharge tube
flash discharge
light emission
capacitor
Prior art date
Application number
PCT/JP2014/004749
Other languages
French (fr)
Japanese (ja)
Inventor
優太 高橋
裕昭 前田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013193831A external-priority patent/JP2015060081A/en
Priority claimed from JP2014019053A external-priority patent/JP2015145986A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015040853A1 publication Critical patent/WO2015040853A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/30Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp
    • H05B41/32Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp for single flash operation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units

Definitions

  • the present invention relates to a light emission control circuit for an illumination device, and more particularly, to an illumination device and an imaging device provided with a light emission control circuit that can emit light repeatedly and at high speed even with a large amount of light and capable of emitting light for the first time without so-called “light-out defects”.
  • a light emission control circuit for an illumination device, and more particularly, to an illumination device and an imaging device provided with a light emission control circuit that can emit light repeatedly and at high speed even with a large amount of light and capable of emitting light for the first time without so-called “light-out defects”.
  • a conventional strobe device is composed of a flash discharge tube as a light source, a light emission control element, a booster circuit, a control circuit, and the like.
  • the light emission control element includes, for example, an insulated gate bipolar transistor (hereinafter abbreviated as IGBT) and is connected in series with the flash discharge tube to control the light emission operation of the flash discharge tube.
  • IGBT insulated gate bipolar transistor
  • the flash discharge tube when the flash discharge tube is caused to emit light, first, in response to the light emission start signal of the control circuit, the operation of the drive voltage supply system to the gate terminal of the IGBT is started to turn on the IGBT. At the same time, a known trigger operation is performed to start light emission from the flash discharge tube.
  • the operation of the drive voltage supply system is stopped in response to the light emission stop signal of the control circuit, and the IGBT is turned off by short-circuiting between the gate terminal and the emitter terminal of the IGBT. To do. This stops the light emission of the flash discharge tube.
  • FIG. 9 is a diagram showing a light emission control circuit of a conventional strobe device.
  • the conventional light emission control circuit first stores electric charge in the main capacitor 6 via a power source 1 such as a commercial power source and a booster circuit 2 such as a DC-DC converter 2. At this time, the charging voltage of the main capacitor 6 is monitored by inputting the voltage divided by the resistors 4 and 5 to the MON terminal of the control circuit 34. When the charging voltage of the main capacitor 6 reaches a predetermined voltage, the operation of the booster circuit 2 is stopped and charging is completed.
  • a power source 1 such as a commercial power source
  • a booster circuit 2 such as a DC-DC converter 2.
  • the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 is charged to the same voltage as the main capacitor 6 with the polarity shown through the resistor 12, the diode 13, and the trigger transformer 15.
  • a high level (hereinafter referred to as Hi level) signal from the IT terminal of the control circuit 34 is applied to the gate terminal of the IGBT 10.
  • the first trigger switch element 16 is turned on by a signal from the TR1 terminal of the control circuit 34.
  • the charge of the first trigger capacitor 14 flows through the first trigger switch element 16, the IGBT 10, and the trigger transformer 15.
  • a high trigger voltage is generated on the secondary side of the trigger transformer 15 to excite the flash discharge tube 8.
  • a current flows through the flash discharge tube 8 and light emission starts.
  • a low level (hereinafter referred to as “low level”) signal from the IT terminal of the control circuit 34 is applied to the IGBT 10.
  • IGBT10 will be in an OFF state.
  • the current flowing through the flash discharge tube 8 is also stopped and light emission is stopped.
  • the load capacity of the flash discharge tube 8 changes as the temperature of the flash discharge tube 8 rises. Therefore, even if the amount of charge flowing to the primary side of the trigger transformer 15 is constant, a phenomenon occurs in which the voltage at the secondary side output of the trigger transformer 15 gradually decreases. As a result, there is a problem that the flash discharge tube 8 does not emit light, so-called “missing light emission” occurs.
  • the charging voltage of the first trigger capacitor 14 is almost the same as the charging voltage of the main capacitor 6. At this time, if the flash discharge tube 8 is caused to emit light continuously at a high speed, the charging time of the main capacitor 6 may be shortened, and at the same time, the charge amount of the first trigger capacitor 14 may be reduced. Therefore, similarly to the above, the output on the secondary side of the trigger transformer 15 is reduced, and “light emission failure” occurs.
  • FIG. 8A is a diagram showing an operation timing chart of a light emission control circuit of a conventional flash discharge tube.
  • the present invention increases the charge amount of the trigger capacitor or increases the voltage applied to the primary side of the trigger transformer, and controls the light emission control element to be non-conductive so that it does not emit flash light, and then the trigger voltage is flashed.
  • an illuminating device and an imaging device that prevent “missing light emission” from being applied to a tube.
  • the lighting device of the present invention applies the first capacitor for accumulating electric charge, the flash discharge tube that emits light by consuming the electric charge accumulated in the first capacitor, and the trigger voltage for causing the flash discharge tube to emit light.
  • It has a trigger circuit including one trigger capacitor and a trigger transformer.
  • it has a light emission control element connected to the flash discharge tube, a control circuit that acquires light emission information of the flash discharge tube, and a temperature information acquisition unit that acquires temperature information of the flash discharge tube.
  • the trigger circuit and the light emission control element are controlled based on temperature information and light emission information in the vicinity of the flash discharge tube.
  • the imaging device of the present invention is equipped with the lighting device. Thereby, it is possible to realize suitable photography without causing the lighting device to lack light emission during continuous photography.
  • FIG. 1 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a light emission control circuit of the illumination device according to Embodiment 2 of the present invention.
  • FIG. 3 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 3 of the present invention.
  • FIG. 4 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 4 of the present invention.
  • FIG. 5 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 5 of the present invention.
  • FIG. 6 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 6 of the present invention.
  • FIG. 7 is a perspective view of the imaging device according to each embodiment of the present invention.
  • FIG. 8A is a diagram showing an operation timing chart of a light emission control circuit of a conventional flash discharge tube.
  • FIG. 8B is a diagram showing an operation timing chart of the light emission control circuit in each embodiment of the present invention.
  • FIG. 9 is a diagram showing a light emission control circuit of a conventional strobe device.
  • Embodiment 1 an illumination device and an imaging device according to Embodiment 1 of the present invention will be described with reference to FIG.
  • a strobe device can be given as an example. The same applies to the following embodiments.
  • FIG. 1 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 1 of the present invention.
  • the light emission control circuit of the lighting device of the present embodiment includes at least a booster circuit 2, a first capacitor 6 constituting a main capacitor 6, and a xenon discharge tube (Xe discharge tube), for example.
  • the first capacitor 6 accumulates electric charges that cause the flash discharge tube 8 to emit light.
  • the first trigger capacitor 14 accumulates the charge applied to the flash discharge tube 8 via the trigger transformer 15 of the trigger circuit as a trigger voltage for causing the flash discharge tube 8 to emit light.
  • the light emission control element 10 includes, for example, an insulated gate bipolar transistor (hereinafter abbreviated as IGBT), and is connected in series with the flash discharge tube 8 to turn on / off light emission.
  • the temperature information acquisition unit 24 acquires temperature information in the vicinity of the flash discharge tube 8.
  • control circuit 34 controls the trigger circuit and the light emission control element 10 and acquires the light emission information of the flash discharge tube 8. Further, the control circuit 34 includes a voltage determination unit 45, a trigger output value prediction unit 46, and the like.
  • the voltage determination unit 45 determines the charging voltage of the first trigger capacitor 14 and the like.
  • the trigger output value prediction unit 46 predicts a trigger output value such as a trigger voltage to be applied to the flash discharge tube 8 based on the temperature information of the flash discharge tube 8 and the determined charging voltage of the first trigger capacitor 14.
  • the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
  • the light emission control circuit of the present embodiment first stores electric charge in the first capacitor 6 via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the voltage reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 and completes the charging of the first capacitor 6.
  • the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 has substantially the same voltage (the same voltage as the first capacitor 6) with the polarity shown through the resistor 12, the diode 13, and the trigger transformer 15. Charged).
  • the second trigger capacitor 20 is also charged to substantially the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown through the resistor 12, the diode 13, the diode 21, and the trigger transformer 15. Therefore, similarly to the charging voltage of the first capacitor 6, the charging voltages of the first trigger capacitor 14 and the second trigger capacitor 20 are also determined by the voltage determination unit 45 of the control circuit 34.
  • the second trigger capacitor 20 constitutes a trigger capacitor for increasing the capacity of the trigger capacitor for applying the trigger voltage as necessary, for example, by being connected in parallel with the first trigger capacitor 14. Therefore, the anode of the second trigger capacitor 20 is connected to the cathode terminal of the diode 21, and the cathode of the second trigger capacitor 20 is connected to the cathode of the first trigger capacitor 14.
  • the second trigger switch element 22 is connected between the anode of the second trigger capacitor 20 and the first trigger switch element 16. Thereby, if the 1st trigger switch element 16 and the 2nd trigger switch element 22 will be in a conduction state, it will become equivalent to connecting the 1st trigger capacitor 14 and the 2nd trigger capacitor 20 in parallel. However, in the initial state of the lighting device, the second trigger switch element 22 is set in a non-conductive state by a signal from the TR2 terminal of the control circuit 34.
  • a temperature detection device 24 such as a thermistor constituting the temperature information acquisition unit 24 is disposed in the vicinity of the flash discharge tube 8, and the detected temperature information is emitted from the control circuit 34 when the flash discharge tube 8 emits light. Output to the TMP terminal.
  • the temperature information detected by the temperature detection device 24 is not particularly necessary to use the temperature information detected by the temperature detection device 24 as the temperature information of the flash discharge tube 8.
  • data of light emission information including the light emission interval, the light emission amount of the past flash discharge tube, and the position information of the flash discharge tube at the time of light emission is recorded in a storage device such as a semiconductor memory (not shown).
  • the temperature is calculated and predicted from the stored light emission information data. Then, the predicted value may be output to the control circuit 34 as temperature information of the flash discharge tube 8, and the light emission control circuit may be controlled based on this to cause the flash discharge tube 8 to emit light.
  • the control circuit 34 includes a trigger output value prediction unit 46 inside.
  • the trigger output value prediction unit 46 determines the current condition based on the temperature information of the flash discharge tube 8 detected by the temperature information acquisition unit 24 and the determination result of the charging voltage of the first trigger capacitor 14 determined by the voltage determination unit 45. Below, the trigger output value which is the trigger voltage which can be output is estimated.
  • the predicted trigger output value is less than or equal to the specified value
  • a signal for turning on the second trigger switch element 22 is output from the TR2 terminal of the control circuit 34.
  • a signal for turning on the first trigger switch element 16 is output from the TR1 terminal of the control circuit 34.
  • a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive.
  • the specified value means at least a trigger voltage (trigger output value) necessary for exciting the rare gas in the flash discharge tube 8. Therefore, the prescribed value is determined and set for each flash discharge tube 8 to be used, based on the type of the flash discharge tube 8 and the pressure of a gas such as an enclosed rare gas.
  • the electric charge of the first trigger capacitor 14 flows through the first trigger switch element 16 and the trigger transformer 15. Furthermore, the electric charge of the second trigger capacitor 20 flows through the second trigger switch element 22 and the trigger transformer 15. As a result, the charge of the second trigger capacitor 20 is added to the charge of the first trigger capacitor 14 and flows to the primary side of the trigger transformer 15. Then, a high output trigger voltage is generated on the secondary side of the trigger transformer 15. As a result, the rare gas in the flash discharge tube 8 is excited, and a current flows to the flash discharge tube 8 through the first capacitor 6. As a result, the flash discharge tube 8 starts to emit light.
  • the trigger output value which is the trigger voltage output from the secondary side of the trigger transformer 15 falls below a specified value. Therefore, in the present embodiment, in addition to the charge amount of the first trigger capacitor 14, the charge amount of the second trigger capacitor 20 is simultaneously discharged on the discharge loop on the primary side of the trigger transformer 15. Thereby, the trigger output value on the secondary side of the trigger transformer 15 is set to a state exceeding the specified value. As a result, the rare gas in the flash discharge tube 8 can be excited to cause the flash discharge tube 8 to emit light.
  • the control circuit 34 determines that the predicted value of the trigger output value exceeds the specified value only with the charge amount of the first trigger capacitor 14 determined by the voltage determination unit 45. If predicted, the second trigger switch element 22 is held in a non-conductive state. Thereby, the flash discharge tube 8 can be made to emit light only by the charge amount of the first trigger capacitor 14.
  • FIG. 2 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 2 of the present invention.
  • the light emission control circuit of the illumination device of the present embodiment is the light emission control circuit of the first embodiment in that a third trigger capacitor 25, a third trigger switch element 28, a diode 26, and a signal resistor 27 are further provided. And different.
  • the third trigger capacitor 25 is in parallel with the first trigger capacitor 14 and the second trigger capacitor 20 as long as the first trigger switch element 16, the second trigger switch element 22, and the third trigger switch element 28 are conductive. Configured to be connected. Since other components and their operations / actions are the same as those in the first embodiment, description thereof is omitted.
  • the third trigger capacitor 25 that applies the trigger voltage to the flash discharge tube 8 similarly has the polarity shown via the resistor 12, the diode 13, the diode 21, the diode 26, and the trigger transformer 15.
  • the first capacitor 6, the first trigger capacitor 14, and the second trigger capacitor 20 are charged to substantially the same voltage (including the same voltage).
  • the third trigger capacitor 25 constitutes a trigger capacitor for increasing the capacity of the trigger capacitor for applying the trigger voltage as necessary. Therefore, the anode of the third trigger capacitor 25 is connected to the cathode terminal of the diode 26, and the cathode of the third trigger capacitor 25 is connected to the cathode of the first trigger capacitor 14. As a result, when the first trigger switch element 16, the second trigger switch element 22, and the third trigger switch element 28 become conductive, the third trigger capacitor 25 is in parallel with the first trigger capacitor 14 and the second trigger capacitor 20. Configured to be connected to.
  • the third trigger switch element 28 is connected between the anode of the third trigger capacitor 25 and the first trigger switch element 16.
  • the third trigger switch element 28 is controlled by a signal from the TR 3 terminal of the control circuit 34.
  • the charge amount of the third trigger capacitor 25 is added to the charge amounts of the first trigger capacitor 14 and the second trigger capacitor 20 and can be discharged on the discharge loop on the primary side of the trigger transformer 15. It becomes.
  • the trigger output value which is the trigger voltage on the secondary side of the trigger transformer 15, can be further increased as necessary to prevent the flash discharge tube 8 from lacking light emission.
  • the third trigger switch element 28 may be maintained in the non-conductive state. Good. As a result, only the charge amount of the first trigger capacitor 14 and the second trigger capacitor 20 can be discharged.
  • the second trigger capacitor 20 and the third trigger capacitor 25 are connected in parallel as the trigger capacitor connected to the first trigger capacitor 14.
  • a plurality of trigger capacitors may be provided and connected to the first trigger capacitor 14 in parallel.
  • the control circuit 34 controls each of the plurality of trigger capacitors.
  • the charge amount supplied to the primary side of the trigger transformer 15 can be arbitrarily adjusted according to the state where the trigger output value of the trigger transformer 15 is equal to or less than the specified value.
  • the flash discharge tube 8 can be excited with a more optimal trigger output value.
  • FIG. 3 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 3 of the present invention.
  • the light emission control circuit of the lighting apparatus of the present embodiment includes a second trigger capacitor 20 that increases the voltage applied to the primary side of the trigger transformer 15, and the fourth trigger switch element 30 is interposed therebetween.
  • the first trigger capacitor 14 is connected in series. That is, the anode of the second trigger capacitor 20 is connected to the anode of the diode 31 and the fifth trigger switch element 33.
  • the cathode of the second trigger capacitor 20 is connected to the anode of the first trigger capacitor 14 via the fourth trigger switch element 30.
  • a resistor 32 is connected between the cathode of the second trigger capacitor 20 and the trigger transformer 15.
  • a path for charging the second trigger capacitor 20 is configured through the resistor 32, the resistor 12, the diode 13, the resistor 32, and the trigger transformer 15.
  • the control circuit 34 includes a TR4 terminal and a TR5 terminal that control conduction of the fourth trigger switch element 30 and the fifth trigger switch element 33.
  • the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
  • the light emission control circuit of the present embodiment first stores electric charges in the first capacitor 6 constituting the main capacitor via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the voltage reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 and completes the charging of the first capacitor 6.
  • the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 has substantially the same voltage (the same voltage as the first capacitor 6) with the polarity shown through the resistor 12, the diode 13, the diode 31, and the trigger transformer 15. Are charged).
  • the second trigger capacitor 20 is also charged to substantially the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown through the resistor 12, the diode 13, the resistor 32, and the trigger transformer 15. Therefore, similarly to the charging voltage of the first capacitor 6, the charging voltages of the first trigger capacitor 14 and the second trigger capacitor 20 are also determined by the voltage determination unit 45 of the control circuit 34.
  • the fourth trigger switch element 30 and the fifth trigger switch element 33 are set in a non-conduction state by signals from the TR4 terminal and the TR5 terminal of the control circuit 34.
  • the trigger output value prediction unit 46 of the control circuit 34 is discriminated by the temperature information output from the temperature information acquisition unit 24 to the control circuit 34 and the voltage discrimination unit 45. Based on the determination result of the charging voltage of the trigger capacitor 14, a trigger output value corresponding to the trigger voltage that can be output is predicted under the current conditions.
  • a signal for turning off the first trigger switch element 16 is output from the TR1 terminal of the control circuit 34. Further, a signal for turning on the fourth trigger switch element 30 is output from the TR4 terminal. Similarly, a signal for turning on the fifth trigger switch element 33 is output from the TR5 terminal.
  • a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive.
  • the anode of the first trigger capacitor 14 and the cathode of the second trigger capacitor 20 are connected.
  • a voltage obtained by summing the charging voltage of the first trigger capacitor 14 and the charging voltage of the second trigger capacitor 20 is applied to the discharge loop on the primary side of the trigger transformer 15.
  • a high trigger voltage is generated on the secondary side of the trigger transformer 15 to excite the rare gas in the flash discharge tube 8, and a current flows through the flash discharge tube 8.
  • the flash discharge tube 8 starts to emit light.
  • the strobe device 42 constituting the illumination device mounted on the imaging device 44 shown in FIG. 7 when used, a trigger is generated depending on the temperature state of the flash discharge tube 8 and the charging voltage of the first trigger capacitor 14.
  • the trigger output value output from the secondary side of the transformer 15 does not excite the flash discharge tube 8 and lack of light emission occurs. Therefore, in the present embodiment, the second trigger capacitor 20 is connected in series to the first trigger capacitor 14. Thereby, the voltage applied to the primary side of the trigger transformer 15 is increased, and the trigger output value that is the trigger voltage on the secondary side of the trigger transformer 15 is increased. As a result, the rare gas in the flash discharge tube 8 can be excited to cause the flash discharge tube 8 to emit light.
  • the control circuit 34 uses only the charging voltage of the first trigger capacitor 14 determined by the voltage determination unit 45 so that the predicted value of the trigger output value is less than the specified value. If the trigger output value does not cause “missing light emission”, the fourth trigger switch element 30 and the fifth trigger switch element 33 are held in a non-conductive state. Then, the first trigger switch element 16 is turned on. As a result, the discharge loop on the primary side of the trigger transformer 15 is mainly formed by only the first trigger capacitor 14. As a result, it is possible to generate a trigger voltage on the secondary side of the trigger transformer 15 using only the voltage of the first trigger capacitor 14 and apply the trigger voltage to the flash discharge tube 8.
  • the first trigger capacitor 14 may be connected in series. Needless to say.
  • the voltage applied to the primary side of the trigger transformer 15 can be arbitrarily adjusted.
  • the trigger output value which is the trigger voltage output from the secondary side of the trigger transformer 15, can be adjusted in more detail according to the state of the flash discharge tube 8.
  • the above configurations may be combined and configured in series-parallel connection. Thereby, it is possible to control the trigger output value in further detail. As a result, power consumption and the like can be suppressed.
  • Embodiment 4 an illumination device and an imaging device according to Embodiment 4 of the present invention will be described with reference to FIG.
  • FIG. 4 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 4 of the present invention.
  • the second trigger capacitor 20 of the light emission control circuit of the lighting apparatus is a trigger capacitor for increasing the voltage applied to the primary side of the trigger transformer 15 as in the third embodiment. Therefore, the anode of the second trigger capacitor 20 is connected to the anode terminal of the diode 37, the anode terminal of the diode 31, and the fifth trigger switch element 33. Further, the cathode of the second trigger capacitor 20 is connected to the anode of the first trigger capacitor 14 via the fourth trigger switch element 30, and is connected to the primary side terminal of the trigger transformer 15 via the resistor 32. .
  • the third trigger capacitor 25 is a trigger capacitor for increasing the capacity.
  • the third trigger capacitor 25 is connected to the first trigger capacitor 14 or the trigger capacitor in which the first trigger capacitor 14 and the second trigger capacitor 20 are connected in series to the discharge loop on the primary side of the trigger transformer 15. Connected in parallel above. That is, the anode of the third trigger capacitor 25 is connected to the cathode terminal of the diode 31 and further connected to the third trigger switch element 28. The cathode of the third trigger capacitor 25 is connected to the cathode of the first trigger capacitor 14.
  • the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
  • the light emission control circuit of the present embodiment first stores electric charge in the first capacitor 6 via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the voltage reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 and completes the charging of the first capacitor 6.
  • the first trigger capacitor 14 that applies the trigger voltage to the flash discharge tube 8 has substantially the same voltage (the same voltage as the first capacitor 6) with the polarity shown through the resistor 12, the diode 13, the diode 37, and the trigger transformer 15. Are charged).
  • the second trigger capacitor 20 is also charged to substantially the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown through the resistor 12, the diode 13, the resistor 32, and the trigger transformer 15.
  • the third trigger capacitor 25 is also charged to the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown in the figure via the resistor 12, the diode 13, the diode 31, and the trigger transformer 15. Therefore, similarly to the charging voltage of the first capacitor 6, the charging voltages of the first trigger capacitor 14, the second trigger capacitor 20, and the third trigger capacitor 25 are also determined by the voltage determination unit 45 of the control circuit 34.
  • the first trigger capacitor 14, the second trigger capacitor 20, and the third trigger capacitor 25 are used as an example in the case where a series-parallel circuit is formed on the discharge loop on the primary side of the trigger transformer 15. The operation of the light emission control circuit will be described.
  • a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16, and the first trigger switch element 16 is turned off.
  • a signal is output from the TR4 terminal of the control circuit 34 to the fourth trigger switch element 30 to make the fourth trigger switch element 30 conductive.
  • the anode of the first trigger capacitor 14 and the cathode of the second trigger capacitor 20 are brought into conduction through the fourth trigger switch element 30.
  • a signal is output from the TR5 terminal of the control circuit 34 to the fifth trigger switch element 33, and the fifth trigger switch element 33 is turned on.
  • a discharge loop is formed on the primary side of the trigger transformer 15 by the first trigger capacitor 14 and the second trigger capacitor 20.
  • a signal is output from the TR3 terminal of the control circuit 34 to the third trigger switch element 28, and the third trigger switch element 28 is turned on.
  • a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive.
  • the first trigger capacitor 14 and the second trigger capacitor 20 are connected in series on the discharge loop on the primary side of the trigger transformer 15. Further, a third trigger capacitor 25 is connected in parallel to the series connection of the first trigger capacitor 14 and the second trigger capacitor 20. Thereby, the trigger output value corresponding to the trigger voltage on the secondary side of the trigger transformer 15 is increased, and the flash discharge tube 8 can be excited. As a result, a current flows through the flash discharge tube 8 and the flash discharge tube 8 starts to emit light.
  • each trigger capacitor described above is connected in series and parallel with a parallel connection constituted by conduction and non-conduction of the first trigger switch element 16 to the fifth trigger switch element 33, thereby connecting a plurality of trigger capacitors in series and parallel. Is possible.
  • a primary discharge loop of the trigger transformer 15 may be formed by only the first trigger capacitor 14. Further, a primary discharge loop of the trigger transformer 15 may be formed by connecting the first trigger capacitor 14 and the second trigger capacitor 20 in series. Further, a discharge loop on the primary side of the trigger transformer 15 may be formed by connecting the first trigger capacitor 14 and the third trigger capacitor 25 in parallel.
  • Embodiment 5 an illumination device and an imaging device according to Embodiment 5 of the present invention will be described with reference to FIGS. 5 and 8B.
  • FIG. 5 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 5 of the present invention.
  • FIG. 8B is a diagram showing an operation timing chart of the light emission control circuit in each embodiment of the present invention.
  • the light emission control circuit of the lighting apparatus of the present embodiment includes at least the booster circuit 2, the first capacitor 6, the flash discharge tube 8, and the light emission control circuit described in the first embodiment.
  • a first trigger capacitor 14, a trigger circuit including a trigger transformer 15, a light emission control element 10, a control circuit 34, and the like are provided.
  • the light emission control circuit of the present embodiment includes a first temperature information acquisition unit 40, a second temperature information acquisition unit 41, and the like.
  • the first temperature information acquisition unit 40 includes a first temperature detection device 40 such as a thermistor, for example, and is disposed in the vicinity of the flash discharge tube 8.
  • the first temperature information acquisition unit 40 acquires temperature information of the flash discharge tube 8 and outputs it to the TMP1 terminal of the control circuit 34.
  • the second temperature information acquisition unit 41 includes a second temperature detection device 41 such as a thermistor.
  • the second temperature information acquisition unit 41 measures a temperature such as the environmental temperature and outputs it to the TMP2 terminal of the control circuit 34.
  • the data acquired by the second temperature information acquisition unit 41 is stored in a storage device such as a semiconductor memory.
  • control circuit 34 controls the trigger circuit and the light emission control element 10 and acquires the light emission information of the flash discharge tube 8.
  • the control circuit 34 includes a light emission interval measurement recording unit (not shown), an elapsed time measurement recording unit 47, and the like.
  • the light emission interval measurement recording unit measures and stores the amount of light emitted from the flash discharge tube 8, the number of times of light emission, and the light emission interval.
  • the elapsed time measurement recording unit 47 measures and stores the elapsed time since the flash discharge tube 8 last emitted light.
  • the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
  • the light emission control circuit of the present embodiment first stores electric charges in the first capacitor 6 constituting the main capacitor via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the voltage reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 such as the DC-DC converter 2 and completes the charging of the first capacitor 6.
  • the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 has substantially the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown through the resistor 12, the diode 13, and the trigger transformer 15. It is charged until.
  • the first temperature detection device 40 constituting the first temperature information acquisition unit 40 arranged in the vicinity of the flash discharge tube 8 outputs the detected temperature information of the flash discharge tube 8 to the TMP1 terminal of the control circuit 34. .
  • the temperature information detected by the first temperature detection device 40 is not necessary to use the temperature information detected by the first temperature detection device 40 as the temperature information of the flash discharge tube 8 in particular.
  • the ambient temperature is acquired by the second temperature detection device 41 constituting the second temperature information acquisition unit 41, and past emission information such as the light emission interval and the amount of light emitted from the flash discharge tube 8 is not shown. Record in storage device. From the stored data, the current temperature of the flash discharge tube 8 is calculated and predicted. Then, the predicted value may be output as temperature information of the flash discharge tube 8 to the control circuit 34, and based on this, the light emission control circuit may be controlled to cause the flash discharge tube 8 to emit light.
  • a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive.
  • a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16 to make it conductive. Therefore, the charge of the first trigger capacitor 14 flows through the first trigger switch element 16 and the trigger transformer 15. As a result, a high trigger voltage is generated from the secondary side of the trigger transformer 15.
  • a current flows between the anode and the cathode of the flash discharge tube 8. As a result, the flash discharge tube 8 starts to emit light.
  • an illumination device such as a normal strobe device repeatedly performs the light emission operation of the flash discharge tube 8 as described above.
  • an illuminating device such as a strobe device may be placed in a situation where the light emission is performed continuously at regular intervals, the light is emitted continuously for a short time, or the light is not emitted for a long time.
  • the control circuit 34 determines whether or not the set condition for the occurrence of “missing light emission” of the flash discharge tube 8 occurs before performing the light emission operation of the flash discharge tube 8.
  • the “light emission deficiency” of the flash discharge tube 8 is caused by the state in which impurities deposited from the glass tube or the like constituting the flash discharge tube 8 are adsorbed on the pellet or left standing for a long time. It is determined whether or not the condition occurs.
  • a low level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to turn off the IGBT 10.
  • a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16 to make it conductive.
  • the electric charge of the first trigger capacitor 14 flows through the first trigger switch element 16 and the trigger transformer 15.
  • a high trigger voltage is generated from the secondary side of the trigger transformer 15 and applied to the flash discharge tube 8.
  • the illumination device of the present embodiment applies only the trigger voltage to the flash discharge tube 8 without causing a current to flow between the anode and the cathode of the flash discharge tube 8 in order to cause the flash discharge tube 8 to emit light.
  • the trigger voltage is applied at least once based on the data of the light emission interval measurement recording unit and the elapsed time measurement recording unit 47 of the control circuit 34 until the number of times that it can be determined that “light emission failure” does not occur.
  • the reason for this will be described with reference to FIG. 8B. That is, as shown in the operation timing chart of the light-emitting circuit in FIG. 8B, the impurities adsorbed on the pellet can be removed by applying the trigger voltage. As a result, it is possible to prevent the occurrence of “missing light emission” in the flash discharge tube 8 and maintain the light emission state.
  • the control circuit 34 or the like when power is not supplied to the control circuit 34 or the like for a long time, for example, when the power is turned off for a long time, the number of light emission performed in the past, the light emission interval, the light emission amount, and the light emission in the past (last) Information measured by a light emission interval measurement recording unit (not shown), the elapsed time measurement recording unit 47, or the like such as the elapsed time up to the present time may not be acquired from a storage device such as a semiconductor memory.
  • the low level signal is always applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 at least once. Turn off.
  • a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16, and the first trigger switch element 16 is turned on.
  • a trigger voltage is applied to the flash discharge tube 8 without flowing a current intended to emit light between the anode and the cathode of the flash discharge tube 8 to remove impurities in advance or for a long time. Release the gas that has been in a stable state where it is difficult to excite the sealed gas.
  • the flash discharge tube 8 can always be maintained in a state capable of emitting light regardless of the past progress history of the strobe device. Thereby, “missing light emission” of the flash discharge tube 8 can be prevented in advance.
  • Embodiment 6 (Embodiment 6)
  • an illumination apparatus and an imaging apparatus according to Embodiment 6 of the present invention will be described with reference to FIG.
  • FIG. 6 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 6 of the present invention.
  • the light emission control circuit of the strobe device includes a diode 21, a second trigger capacitor 20, a second trigger switch element 22, and a resistor 23, and the charge charge of the trigger capacitor on the primary loop of the trigger transformer 15. This is different from the light emission control circuit of the fifth embodiment in that two circuits for emitting light are configured. At this time, the capacity of the second trigger capacitor 20 is set to be smaller than the capacity of the first trigger capacitor 14. The other components and their operations / actions are the same as those in the fifth embodiment, and thus the description thereof is omitted.
  • the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
  • the light emission control circuit of the present embodiment first stores electric charges in the first capacitor 6 constituting the main capacitor 6 via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the charging voltage of the first capacitor 6 reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 such as the DC-DC converter 2 and completes the charging of the first capacitor 6.
  • the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 is up to substantially the same voltage (including the same voltage) as the main capacitor 6 with the polarity shown through the resistor 12, the diode 13, and the trigger transformer 15. Charged.
  • the second trigger capacitor 20 is charged to the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown in the figure via the resistor 12, the diode 13, the diode 21, and the trigger transformer 15. Further, as in the fifth embodiment, the control circuit 34 stores temperature information of the flash discharge tube 8 and ambient temperature information such as the first temperature information acquisition unit 40 and the second temperature information acquisition unit 41. Input from the acquisition unit to the TMP1 terminal and the TMP2 terminal, respectively.
  • a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive.
  • a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16 to turn on the first trigger switch element 16, and the second trigger switch element 22 is turned off from the TR2 terminal of the control circuit 34. deep.
  • the electric charge of the first trigger capacitor 14 flows through the first trigger switch element 16 and the trigger transformer 15.
  • a high trigger voltage is generated from the secondary side of the trigger transformer 15.
  • a current flows between the anode and the cathode of the flash discharge tube 8 by exciting the rare gas in the flash discharge tube 8.
  • the flash discharge tube 8 starts to emit light.
  • the control circuit 34 determines whether or not the set condition for the occurrence of “missing light emission” of the flash discharge tube 8 occurs before performing the light emission operation of the flash discharge tube 8.
  • a low level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to turn off the IGBT 10.
  • a signal is output from the TR2 terminal of the control circuit 34 to the second trigger switch element 22 to be in a conductive state, and a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16 to be in a non-conductive state.
  • the electric charge of the second trigger capacitor 20 flows through the second trigger switch element 22 and the trigger transformer 15.
  • a high trigger voltage is generated from the secondary side of the trigger transformer 15 and applied to the flash discharge tube 8.
  • the strobe device of the present embodiment applies only the trigger voltage to the flash discharge tube 8 without flowing current between the anode and the cathode of the flash discharge tube 8 to emit light.
  • the trigger voltage is applied at least once, based on the data of the light emission interval measurement recording unit (not shown) and the elapsed time measurement recording unit 47 of the control circuit 34, up to the number of times that it can be determined that no “light emission failure” occurs. To do. Thereby, the occurrence of “missing light emission” in the flash discharge tube 8 can be prevented in advance.
  • the light emission control circuit of the lighting device includes a trigger circuit configured by the second trigger capacitor 20 or the like in order to prevent lack of light emission, and an existing trigger circuit configured by the first trigger capacitor 14 or the like.
  • a capacitor having a small capacity is used for the second trigger capacitor 20 with respect to the capacity of the first trigger capacitor 14.
  • the capacity of the second trigger capacitor 20 is the same as that of the conventional trigger capacitor, the trigger voltage on the secondary side of the trigger transformer 15 may become too large.
  • a trigger transformer that can withstand high voltage is required.
  • a spark (discharge) may occur between the trigger transformer 15 and the ground line due to a high trigger voltage. As a result, the trigger voltage applied to the flash discharge tube 8 may drop below the required trigger voltage.
  • a capacitor having a smaller capacity than the first trigger capacitor 14 is used for the second trigger capacitor 20. Therefore, even when the charging voltage of the second trigger capacitor 20 is high, the trigger output value that is the trigger voltage on the secondary side of the trigger transformer 15 can be suppressed.
  • the impedance of the flash discharge tube 8 changes as compared with the case where the light emission is lost. Specifically, it varies depending on the type (gas type, diameter, etc.) and state (temperature, etc.) of the flash discharge tube. For example, when light emission is possible, the peak output of the trigger voltage is 5 kV. Changes to about 8 kV. Therefore, even if the trigger voltage is applied by the first trigger capacitor 14 having a capacity larger than that of the second trigger capacitor 20, the trigger voltage on the secondary side of the trigger transformer 15 that sparks (discharges) between the trigger transformer 15 and the ground line. Is not output. As a result, an appropriate trigger voltage for causing the flash discharge tube 8 to emit light can be applied to the flash discharge tube 8.
  • a strobe device is described as an example of a lighting device for taking a picture, but the present invention is not limited to this.
  • the present invention may be applied to an illumination device such as an endoscope using a flash discharge tube.
  • the lighting device includes a first capacitor that accumulates electric charge, a flash discharge tube that emits light by consuming the electric charge accumulated in the first capacitor, and a trigger that causes the flash discharge tube to emit light.
  • a trigger circuit including a first trigger capacitor for applying a voltage and a trigger transformer is provided.
  • the light emission control element connected to the flash discharge tube, the trigger circuit and the light emission control element are controlled, and the control circuit for acquiring the light emission information of the flash discharge tube, and the temperature information acquisition for acquiring the temperature information of the flash discharge tube And may have a part.
  • the trigger circuit and the light emission control element are controlled based on the temperature information in the vicinity of the flash discharge tube.
  • control circuit of the lighting device includes a voltage determination unit that determines a charging voltage of the first trigger capacitor, a temperature information acquisition unit, and temperature information of the flash discharge tube acquired from the voltage determination unit and the first trigger capacitor. And a trigger output value prediction unit that predicts a trigger output value based on the determination result of the charging voltage. And when a trigger output value is less than the predetermined value decided beforehand, it may have the connection composition which connects at least one trigger capacitor in parallel with the 1st trigger capacitor.
  • the trigger output value when the trigger output value can be predicted to be lower than the specified value, one or more trigger capacitors are added to increase the capacity, and a larger amount of current flows through the trigger transformer. As a result, the trigger output value can be maintained to exceed the specified value. As a result, the flash discharge tube can emit light continuously without “missing light emission”.
  • the lighting device of the present invention has at least one of the first trigger capacitor and the first trigger capacitor when the trigger output value is determined to be lower than the specified value based on the determination result of the temperature information of the flash discharge tube and the charging voltage of the first trigger capacitor. It may have a connection configuration in which two or more trigger capacitors are connected in series to the primary side of the trigger transformer.
  • the voltage is increased by adding one or more trigger capacitors, and a higher voltage is applied by the trigger transformer.
  • the trigger output value applied to the flash discharge tube can be maintained to exceed the specified value.
  • the flash discharge tube can emit light continuously without “missing light emission”.
  • connection configuration may be a series connection, a parallel connection, or a series-parallel connection configuration of the first trigger capacitor and at least one trigger capacitor.
  • the light emission information may include the number of times of light emission of the flash discharge tube, the light emission amount light emission interval, and the position information of the flash discharge tube during light emission. Therefore, it is possible to more accurately prevent “missing light emission” of the flash discharge tube.
  • the control circuit of the lighting device of the present invention at least in the flash discharge tube while keeping the light emission control element non-conductive.
  • One or more trigger voltages may be applied.
  • the lighting device of the present invention may acquire temperature information of the flash discharge tube by calculation from light emission information of the flash discharge tube.
  • the trigger output value can be predicted without directly measuring the temperature of the flash discharge tube or the vicinity thereof. Therefore, a temperature measurement device or the like can be omitted. Thereby, cost reduction of an illuminating device, an imaging device, etc. is attained.
  • the temperature information acquisition unit of the lighting device of the present invention may acquire the temperature of the flash discharge tube from the flash discharge tube or a temperature detection element arranged in the vicinity of the flash discharge tube.
  • the temperature of the flash discharge tube that emits light continuously can be obtained more accurately.
  • the trigger output value can be predicted more accurately based on the temperature information of the flash discharge tube.
  • the control circuit of the lighting device of the present invention further includes an elapsed time measurement recording unit that acquires and records the elapsed time since the flash discharge tube last emitted light, and the elapsed time acquired by the elapsed time measurement recording unit. May be used as light emission information. Thereby, based on the progress history of the flash discharge tube, “missing light emission” of the flash discharge tube can be effectively prevented.
  • the lighting device of the present invention may apply the trigger voltage to the flash discharge tube at least once while the light emission control element is kept non-conductive when the power is turned on.
  • the imaging device of the present invention may be equipped with the illumination device. Thereby, it is possible to realize suitable photography without causing the lack of light emission of the lighting device during continuous photography.
  • the present invention is useful as a lighting device such as a strobe device or an endoscope that handles a flash discharge tube because it does not cause so-called “missing light emission” even during continuous light emission or during initial light emission.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Stroboscope Apparatuses (AREA)

Abstract

This illumination device has: a first capacitor (6) that stores a charge; a flash discharge tube (8) that emits light by consuming the charge stored by the first capacitor (6); and a first trigger capacitor (14) that applies a trigger voltage for causing the flash discharge tube (8) to emit light. Moreover, the illumination device has: a trigger circuit comprising a trigger transformer (15); a light emission control element (10) that is serially connected to the flash discharge tube (8); a control circuit (34) that controls the trigger circuit and the light emission control element (10) and that obtains light emission information of the flash discharge tube (8); and a temperature information acquisition unit (24) that obtains temperature information of the flash discharge tube (8). Thus, the occurrence of light emission defects that accompany rises in the temperature of the flash discharge tube (8), etc., can be prevented.

Description

照明装置および撮像装置Illumination device and imaging device
 本発明は、照明装置の発光制御回路に関し、特に、大光量でも繰り返しかつ高速で行われる発光および初回における、いわゆる「発光欠け」せずに発光可能とする発光制御回路を備える照明装置および撮像装置に関する。 The present invention relates to a light emission control circuit for an illumination device, and more particularly, to an illumination device and an imaging device provided with a light emission control circuit that can emit light repeatedly and at high speed even with a large amount of light and capable of emitting light for the first time without so-called “light-out defects”. About.
 従来から、写真撮影時に使用する照明装置として、以下に示す動作で閃光放電管を発光させるストロボ装置および撮像装置が開示されている(例えば、特許文献1参照)。 Conventionally, a strobe device and an imaging device that cause a flash discharge tube to emit light by the following operation have been disclosed as an illumination device used at the time of taking a photograph (for example, see Patent Document 1).
 従来のストロボ装置は、光源である閃光放電管と、発光制御素子と、昇圧回路と、制御回路などから構成されている。発光制御素子は、例えば絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor; 以下、IGBTと略記する)から構成され、閃光放電管と直列に接続され、閃光放電管の発光動作を制御する。 A conventional strobe device is composed of a flash discharge tube as a light source, a light emission control element, a booster circuit, a control circuit, and the like. The light emission control element includes, for example, an insulated gate bipolar transistor (hereinafter abbreviated as IGBT) and is connected in series with the flash discharge tube to control the light emission operation of the flash discharge tube.
 具体的には、閃光放電管を発光させる場合、まず、制御回路の発光開始信号に応答して、IGBTのゲート端子への駆動電圧供給系の動作を開始してIGBTをオンする。同時に、周知のトリガ動作を行って、閃光放電管の発光を開始する。 Specifically, when the flash discharge tube is caused to emit light, first, in response to the light emission start signal of the control circuit, the operation of the drive voltage supply system to the gate terminal of the IGBT is started to turn on the IGBT. At the same time, a known trigger operation is performed to start light emission from the flash discharge tube.
 一方、閃光放電管発光を停止させる場合、制御回路の発光停止信号に応答して、上記駆動電圧供給系の動作を停止し、IGBTのゲート端子とエミッタ端子間を短絡することによって、IGBTをオフする。これにより、閃光放電管の発光を停止させる。 On the other hand, when the flash discharge tube light emission is stopped, the operation of the drive voltage supply system is stopped in response to the light emission stop signal of the control circuit, and the IGBT is turned off by short-circuiting between the gate terminal and the emitter terminal of the IGBT. To do. This stops the light emission of the flash discharge tube.
 以下に、特許文献1に記載されたストロボ装置の発光制御回路の動作について、図9を用いて説明する。図9は、従来のストロボ装置の発光制御回路を示す図である。 Hereinafter, the operation of the light emission control circuit of the strobe device described in Patent Document 1 will be described with reference to FIG. FIG. 9 is a diagram showing a light emission control circuit of a conventional strobe device.
 図9に示すように、従来の発光制御回路は、まず、商用電源などの電源1とDC-DCコンバータ2などの昇圧回路2を介して、主コンデンサ6に電荷を蓄える。このとき、主コンデンサ6の充電電圧は、抵抗4および抵抗5で分圧された電圧を制御回路34のMON端子に入力することにより、監視される。そして、主コンデンサ6の充電電圧が、所定の電圧に達すると、昇圧回路2の動作を停止して、充電を完了させる。 As shown in FIG. 9, the conventional light emission control circuit first stores electric charge in the main capacitor 6 via a power source 1 such as a commercial power source and a booster circuit 2 such as a DC-DC converter 2. At this time, the charging voltage of the main capacitor 6 is monitored by inputting the voltage divided by the resistors 4 and 5 to the MON terminal of the control circuit 34. When the charging voltage of the main capacitor 6 reaches a predetermined voltage, the operation of the booster circuit 2 is stopped and charging is completed.
 同様に、閃光放電管8にトリガ電圧を印加するための第1トリガコンデンサ14は、抵抗12、ダイオード13、トリガトランス15を介して図示する極性で主コンデンサ6とほぼ同じ電圧まで充電される。 Similarly, the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 is charged to the same voltage as the main capacitor 6 with the polarity shown through the resistor 12, the diode 13, and the trigger transformer 15.
 そして、閃光放電管8を発光させる場合、制御回路34のIT端子からのハイレベル(以下、Hiレベルと記す)の信号をIGBT10のゲート端子へ印加する。同時に、制御回路34のTR1端子からの信号により第1トリガスイッチ素子16を導通状態とする。これにより、第1トリガコンデンサ14の電荷は、第1トリガスイッチ素子16、IGBT10、トリガトランス15を介して流れる。そして、トリガトランス15の2次側に高電圧のトリガ電圧を発生させて、閃光放電管8を励起する。その結果、閃光放電管8に電流が流れて、発光を開始する。 When the flash discharge tube 8 is caused to emit light, a high level (hereinafter referred to as Hi level) signal from the IT terminal of the control circuit 34 is applied to the gate terminal of the IGBT 10. At the same time, the first trigger switch element 16 is turned on by a signal from the TR1 terminal of the control circuit 34. As a result, the charge of the first trigger capacitor 14 flows through the first trigger switch element 16, the IGBT 10, and the trigger transformer 15. Then, a high trigger voltage is generated on the secondary side of the trigger transformer 15 to excite the flash discharge tube 8. As a result, a current flows through the flash discharge tube 8 and light emission starts.
 一方、閃光放電管8の発光を停止させる場合、制御回路34のIT端子からのローレベル(以下、Lowレベルと記す)の信号をIGBT10へ印加する。これにより、IGBT10がオフ状態となる。その結果、閃光放電管8に流れる電流も停止して、発光が停止する。 On the other hand, in order to stop the light emission of the flash discharge tube 8, a low level (hereinafter referred to as “low level”) signal from the IT terminal of the control circuit 34 is applied to the IGBT 10. Thereby, IGBT10 will be in an OFF state. As a result, the current flowing through the flash discharge tube 8 is also stopped and light emission is stopped.
 しかしながら、上記発光制御回路の構成は、連続して閃光放電管8を発光させる場合、閃光放電管8の温度上昇などにともない、閃光放電管8の負荷容量などが変化する。そのため、トリガトランス15の1次側に流れる電荷量を一定にしてもトリガトランス15の2次側出力の電圧が徐々に低下する現象が生じる。その結果、閃光放電管8が発光しなくなる、いわゆる「発光欠け」が発生するという課題があった。 However, in the configuration of the light emission control circuit, when the flash discharge tube 8 is caused to emit light continuously, the load capacity of the flash discharge tube 8 changes as the temperature of the flash discharge tube 8 rises. Therefore, even if the amount of charge flowing to the primary side of the trigger transformer 15 is constant, a phenomenon occurs in which the voltage at the secondary side output of the trigger transformer 15 gradually decreases. As a result, there is a problem that the flash discharge tube 8 does not emit light, so-called “missing light emission” occurs.
 また、閃光放電管8を連続発光させた場合、第1トリガコンデンサ14の充電電圧は主コンデンサ6の充電電圧とほぼ同じ電圧となる。このとき、高速で閃光放電管8を連続発光させると、主コンデンサ6の充電時間が短くなり、同時に第1トリガコンデンサ14の充電電荷量が少なくなる可能性がある。そのため、上記と同様に、トリガトランス15の2次側の出力が低下して、「発光欠け」が発生する。 When the flash discharge tube 8 is caused to emit light continuously, the charging voltage of the first trigger capacitor 14 is almost the same as the charging voltage of the main capacitor 6. At this time, if the flash discharge tube 8 is caused to emit light continuously at a high speed, the charging time of the main capacitor 6 may be shortened, and at the same time, the charge amount of the first trigger capacitor 14 may be reduced. Therefore, similarly to the above, the output on the secondary side of the trigger transformer 15 is reduced, and “light emission failure” occurs.
 上記の課題を解消するため、第1トリガコンデンサ14に大容量のコンデンサを使用する方法がある。これにより、トリガトランスの2次側の出力が低下しても発光可能なトリガ電圧を確保できる。しかし、この場合、初期のトリガ電圧が高いため、高電圧に耐えるトリガトランスが必要となる。さらに、場合によっては、トリガトランスとグランドライン間でスパークして、閃光放電管8に印加するトリガ電圧が低下する場合がある。そのため、確実に「発光欠け」を解消できない可能性がある。 In order to solve the above problem, there is a method of using a large-capacity capacitor for the first trigger capacitor 14. As a result, it is possible to secure a trigger voltage that can emit light even if the output on the secondary side of the trigger transformer decreases. However, in this case, since the initial trigger voltage is high, a trigger transformer that can withstand a high voltage is required. Further, in some cases, the trigger voltage applied to the flash discharge tube 8 may decrease due to sparking between the trigger transformer and the ground line. Therefore, there is a possibility that the “missing light emission” cannot be solved reliably.
 また、ある一定以上の光量で連続して閃光放電管8を発光させた場合、上述したように閃光放電管8の温度が上昇する。このときに発生する閃光放電管8の内部の状態について、図8Aを用いて説明する。 Further, when the flash discharge tube 8 is caused to emit light continuously with a certain amount of light, the temperature of the flash discharge tube 8 rises as described above. The state inside the flash discharge tube 8 generated at this time will be described with reference to FIG. 8A.
 図8Aは、従来の閃光放電管の発光制御回路の動作タイミングチャートを示す図である。 FIG. 8A is a diagram showing an operation timing chart of a light emission control circuit of a conventional flash discharge tube.
 つまり、図8Aに示すように、発光にともない、閃光放電管8のガラス管などから析出される不純物が、トリガ電圧の印加によって、閃光放電管8内部の電子を放出させるペレットに付着する。そのため、長時間発光を行っていない場合、あるいはペレットに不純物が付着していない場合でも、一定時間以上、暗中放置などをしていた場合、閃光放電管8では、内部の希ガスの発光開始に寄与しやすい電子が著しく減少する。そのため、上記の状態にあるような閃光放電管8は、発光しない、「発光欠け」が発生するという場合もあった。 That is, as shown in FIG. 8A, as light is emitted, impurities deposited from the glass tube of the flash discharge tube 8 adhere to the pellets that emit electrons inside the flash discharge tube 8 by applying a trigger voltage. Therefore, even when no light is emitted for a long time or when no impurities are adhered to the pellet, the flash discharge tube 8 starts to emit light of an internal rare gas when left in the dark for a certain time or longer. Electrons that tend to contribute are significantly reduced. For this reason, the flash discharge tube 8 in the above-described state sometimes does not emit light and “missing light emission” may occur.
特開2001-66671号公報JP 2001-66671 A
 本発明は、トリガコンデンサの電荷量を増加またはトリガトランスの1次側の印加電圧を増加し、また発光制御素子を非導通として閃光発光を有しない制御を行ったうえで、トリガ電圧を閃光放電管に印加することで「発光欠け」を防止する照明装置および撮像装置を提供する。 The present invention increases the charge amount of the trigger capacitor or increases the voltage applied to the primary side of the trigger transformer, and controls the light emission control element to be non-conductive so that it does not emit flash light, and then the trigger voltage is flashed. Provided are an illuminating device and an imaging device that prevent “missing light emission” from being applied to a tube.
 つまり、本発明の照明装置は、電荷を蓄積する第1コンデンサと、第1コンデンサに蓄積された電荷を消費することで発光する閃光放電管と、閃光放電管を発光させるトリガ電圧を印加する第1トリガコンデンサと、トリガトランスを含むトリガ回路を有する。さらに、閃光放電管と接続された発光制御素子と、閃光放電管の発光情報を取得する制御回路と、閃光放電管の温度情報を取得する温度情報取得部と、を有する。 In other words, the lighting device of the present invention applies the first capacitor for accumulating electric charge, the flash discharge tube that emits light by consuming the electric charge accumulated in the first capacitor, and the trigger voltage for causing the flash discharge tube to emit light. It has a trigger circuit including one trigger capacitor and a trigger transformer. Furthermore, it has a light emission control element connected to the flash discharge tube, a control circuit that acquires light emission information of the flash discharge tube, and a temperature information acquisition unit that acquires temperature information of the flash discharge tube.
 この構成によれば、閃光放電管が連続発光している場合、閃光放電管の近傍の温度情報、発光情報に基づいて、トリガ回路および発光制御素子を制御する。 According to this configuration, when the flash discharge tube is continuously emitting light, the trigger circuit and the light emission control element are controlled based on temperature information and light emission information in the vicinity of the flash discharge tube.
 これにより、閃光放電管を「発光欠け」することなく発光をさせることができる。その結果、連続撮影を行う撮像装置に好適な照明装置を実現できる。 This allows the flash discharge tube to emit light without “missing light emission”. As a result, an illumination device suitable for an imaging device that performs continuous shooting can be realized.
 また、本発明の撮像装置は、上記照明装置を搭載する。これにより、連続撮影時において、照明装置が発光欠けを起こすことなく、好適な写真撮影を実現できる。 Also, the imaging device of the present invention is equipped with the lighting device. Thereby, it is possible to realize suitable photography without causing the lighting device to lack light emission during continuous photography.
図1は、本発明の実施の形態1における照明装置の発光制御回路を示す図である。FIG. 1 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態2における照明装置の発光制御回路を示す図である。FIG. 2 is a diagram showing a light emission control circuit of the illumination device according to Embodiment 2 of the present invention. 図3は、本発明の実施の形態3における照明装置の発光制御回路を示す図である。FIG. 3 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 3 of the present invention. 図4は、本発明の実施の形態4における照明装置の発光制御回路を示す図である。FIG. 4 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 4 of the present invention. 図5は、本発明の実施の形態5における照明装置の発光制御回路を示す図である。FIG. 5 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 5 of the present invention. 図6は、本発明の実施の形態6における照明装置の発光制御回路を示す図である。FIG. 6 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 6 of the present invention. 図7は、本発明の各実施の形態における撮像装置の斜視図である。FIG. 7 is a perspective view of the imaging device according to each embodiment of the present invention. 図8Aは、従来の閃光放電管の発光制御回路の動作タイミングチャートを示す図である。FIG. 8A is a diagram showing an operation timing chart of a light emission control circuit of a conventional flash discharge tube. 図8Bは、本発明に各実施の形態における発光制御回路の動作タイミングチャートを示す図である。FIG. 8B is a diagram showing an operation timing chart of the light emission control circuit in each embodiment of the present invention. 図9は、従来のストロボ装置の発光制御回路を示す図である。FIG. 9 is a diagram showing a light emission control circuit of a conventional strobe device.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.
 (実施の形態1)
 以下に、本発明の実施の形態1における照明装置および撮像装置について、図1を用いて説明する。なお、本実施の形態の照明装置としては、例えばストロボ装置などを一例として挙げることができる。以下の実施の形態でも、同様である。
(Embodiment 1)
Hereinafter, an illumination device and an imaging device according to Embodiment 1 of the present invention will be described with reference to FIG. As an example of the lighting device of the present embodiment, a strobe device can be given as an example. The same applies to the following embodiments.
 図1は、本発明の実施の形態1における照明装置の発光制御回路を示す図である。 FIG. 1 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 1 of the present invention.
 図1に示すように、本実施の形態の照明装置の発光制御回路は、少なくとも昇圧回路2と、主コンデンサ6を構成する第1コンデンサ6と、例えばキセノン放電管(Xe放電管)などからなる閃光放電管8と、第1トリガコンデンサ14と、トリガトランス15を含むトリガ回路と、発光制御素子10と、第2トリガコンデンサ20と、温度情報取得部24と、制御回路34などから構成されている。第1コンデンサ6は、閃光放電管8を発光させる電荷を蓄積する。第1トリガコンデンサ14は、閃光放電管8を発光させるトリガ電圧を、トリガ回路のトリガトランス15を介して、閃光放電管8に印加する電荷を蓄積する。発光制御素子10は、例えば絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor; 以下、IGBTと略記する)から構成され、閃光放電管8と直列に接続されて、発光のオン/オフを行う。温度情報取得部24は、閃光放電管8の近傍の温度情報を取得する。 As shown in FIG. 1, the light emission control circuit of the lighting device of the present embodiment includes at least a booster circuit 2, a first capacitor 6 constituting a main capacitor 6, and a xenon discharge tube (Xe discharge tube), for example. A flash discharge tube 8, a first trigger capacitor 14, a trigger circuit including a trigger transformer 15, a light emission control element 10, a second trigger capacitor 20, a temperature information acquisition unit 24, a control circuit 34, etc. Yes. The first capacitor 6 accumulates electric charges that cause the flash discharge tube 8 to emit light. The first trigger capacitor 14 accumulates the charge applied to the flash discharge tube 8 via the trigger transformer 15 of the trigger circuit as a trigger voltage for causing the flash discharge tube 8 to emit light. The light emission control element 10 includes, for example, an insulated gate bipolar transistor (hereinafter abbreviated as IGBT), and is connected in series with the flash discharge tube 8 to turn on / off light emission. The temperature information acquisition unit 24 acquires temperature information in the vicinity of the flash discharge tube 8.
 また、制御回路34は、トリガ回路および発光制御素子10を制御するとともに、閃光放電管8の発光情報を取得する。さらに、制御回路34は、電圧判別部45と、トリガ出力値予測部46などを備えている。電圧判別部45は、第1トリガコンデンサ14などの充電電圧を判別する。トリガ出力値予測部46は、閃光放電管8の温度情報や、判別された第1トリガコンデンサ14の充電電圧に基づいて、閃光放電管8に印加するトリガ電圧などのトリガ出力値を予測する。 Further, the control circuit 34 controls the trigger circuit and the light emission control element 10 and acquires the light emission information of the flash discharge tube 8. Further, the control circuit 34 includes a voltage determination unit 45, a trigger output value prediction unit 46, and the like. The voltage determination unit 45 determines the charging voltage of the first trigger capacitor 14 and the like. The trigger output value prediction unit 46 predicts a trigger output value such as a trigger voltage to be applied to the flash discharge tube 8 based on the temperature information of the flash discharge tube 8 and the determined charging voltage of the first trigger capacitor 14.
 以上のように、本実施の形態の照明装置の発光制御回路が構成されている。 As described above, the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
 以下に、上記発光制御回路の動作について、図1を参照しながら説明する。 Hereinafter, the operation of the light emission control circuit will be described with reference to FIG.
 本実施の形態の発光制御回路は、まず、商用電源などの電源1とDC-DCコンバータ2などの昇圧回路2を介して第1コンデンサ6に電荷を蓄える。このとき、第1コンデンサ6の充電電圧は、抵抗4および抵抗5の抵抗分圧により制御回路34のMON端子でモニターされている。なお、MON端子に入力された第1コンデンサ6の充電電圧は、制御回路34の電圧判別部45で判別される。そして、所定の電圧に達すると、制御回路34は昇圧回路2の動作を停止して、第1コンデンサ6の充電を完了させる。 The light emission control circuit of the present embodiment first stores electric charge in the first capacitor 6 via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the voltage reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 and completes the charging of the first capacitor 6.
 このとき、閃光放電管8にトリガ電圧を印加するための第1トリガコンデンサ14は、抵抗12、ダイオード13、トリガトランス15を介して図示する極性で第1コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。 At this time, the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 has substantially the same voltage (the same voltage as the first capacitor 6) with the polarity shown through the resistor 12, the diode 13, and the trigger transformer 15. Charged).
 また、第2トリガコンデンサ20も、同様に、抵抗12、ダイオード13、ダイオード21、トリガトランス15を介して図示する極性で第1コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。そのため、第1コンデンサ6の充電電圧と同様に、第1トリガコンデンサ14や第2トリガコンデンサ20の充電電圧も、制御回路34の電圧判別部45で判別される。 Similarly, the second trigger capacitor 20 is also charged to substantially the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown through the resistor 12, the diode 13, the diode 21, and the trigger transformer 15. Therefore, similarly to the charging voltage of the first capacitor 6, the charging voltages of the first trigger capacitor 14 and the second trigger capacitor 20 are also determined by the voltage determination unit 45 of the control circuit 34.
 なお、第2トリガコンデンサ20は、例えば第1トリガコンデンサ14と並列に接続することにより、トリガ電圧を印加するためのトリガコンデンサの容量を必要に応じて増加させるためのトリガコンデンサを構成する。そのため、第2トリガコンデンサ20の陽極はダイオード21のカソード端子と接続し、第2トリガコンデンサ20の陰極は第1トリガコンデンサ14の陰極と接続される。 The second trigger capacitor 20 constitutes a trigger capacitor for increasing the capacity of the trigger capacitor for applying the trigger voltage as necessary, for example, by being connected in parallel with the first trigger capacitor 14. Therefore, the anode of the second trigger capacitor 20 is connected to the cathode terminal of the diode 21, and the cathode of the second trigger capacitor 20 is connected to the cathode of the first trigger capacitor 14.
 また、放電ループを形成するために、第2トリガスイッチ素子22は、第2トリガコンデンサ20の陽極と第1トリガスイッチ素子16との間に接続されている。これにより、第1トリガスイッチ素子16および第2トリガスイッチ素子22が導通状態となれば、第1トリガコンデンサ14と第2トリガコンデンサ20は並列に接続されることと等しくなる。ただし、照明装置の初期状態において、第2トリガスイッチ素子22は、制御回路34のTR2端子からの信号により非導通状態に設定されている。 Further, in order to form a discharge loop, the second trigger switch element 22 is connected between the anode of the second trigger capacitor 20 and the first trigger switch element 16. Thereby, if the 1st trigger switch element 16 and the 2nd trigger switch element 22 will be in a conduction state, it will become equivalent to connecting the 1st trigger capacitor 14 and the 2nd trigger capacitor 20 in parallel. However, in the initial state of the lighting device, the second trigger switch element 22 is set in a non-conductive state by a signal from the TR2 terminal of the control circuit 34.
 また、温度情報取得部24を構成する、例えばサーミスタなどの温度検出デバイス24は、閃光放電管8の近傍に配置され、閃光放電管8を発光させる際に、検出された温度情報を制御回路34のTMP端子に出力する。 Further, a temperature detection device 24 such as a thermistor constituting the temperature information acquisition unit 24 is disposed in the vicinity of the flash discharge tube 8, and the detected temperature information is emitted from the control circuit 34 when the flash discharge tube 8 emits light. Output to the TMP terminal.
 なお、閃光放電管8の温度情報として、特に、温度検出デバイス24で検知した温度情報を使用する必要はない。例えば、過去の閃光放電管の発光間隔、発光光量や、発光時における閃光放電管の位置情報などを含む発光情報のデータを半導体メモリ(図示せず)などの記憶装置に記録しておく。記憶した発光情報のデータから現在の閃光放電管8の状態に基づいて、温度を演算して予測する。そして、予測した値を閃光放電管8の温度情報として制御回路34に出力し、それに基づいて、発光制御回路を制御して閃光放電管8を発光させる構成としてもよい。 Note that it is not particularly necessary to use the temperature information detected by the temperature detection device 24 as the temperature information of the flash discharge tube 8. For example, data of light emission information including the light emission interval, the light emission amount of the past flash discharge tube, and the position information of the flash discharge tube at the time of light emission is recorded in a storage device such as a semiconductor memory (not shown). Based on the current state of the flash discharge tube 8, the temperature is calculated and predicted from the stored light emission information data. Then, the predicted value may be output to the control circuit 34 as temperature information of the flash discharge tube 8, and the light emission control circuit may be controlled based on this to cause the flash discharge tube 8 to emit light.
 さらに、制御回路34は、上述したように、内部にトリガ出力値予測部46を備えている。トリガ出力値予測部46は、温度情報取得部24で検出した閃光放電管8の温度情報と、電圧判別部45で判別した第1トリガコンデンサ14の充電電圧の判別結果に基づいて、現在の条件下において、出力可能なトリガ電圧であるトリガ出力値を予測する。 Further, as described above, the control circuit 34 includes a trigger output value prediction unit 46 inside. The trigger output value prediction unit 46 determines the current condition based on the temperature information of the flash discharge tube 8 detected by the temperature information acquisition unit 24 and the determination result of the charging voltage of the first trigger capacitor 14 determined by the voltage determination unit 45. Below, the trigger output value which is the trigger voltage which can be output is estimated.
 そして、予測されたトリガ出力値が規定値以下である場合、制御回路34のTR2端子から第2トリガスイッチ素子22を導通状態とする信号を出力する。同時に、制御回路34のTR1端子から第1トリガスイッチ素子16を導通状態とする信号を出力する。さらに、IGBT10のゲート端子へ、制御回路34のIT端子からHiレベル信号を印加し、IGBT10を導通状態とする。ここで、規定値とは、閃光放電管8の希ガスを励起させるために、少なくとも必要なトリガ電圧(トリガ出力値)を意味する。そのため、規定値は、閃光放電管8の種類、封入された希ガスなどの気体の圧力などから、使用する閃光放電管8ごとに決定して設定される。 When the predicted trigger output value is less than or equal to the specified value, a signal for turning on the second trigger switch element 22 is output from the TR2 terminal of the control circuit 34. At the same time, a signal for turning on the first trigger switch element 16 is output from the TR1 terminal of the control circuit 34. Further, a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive. Here, the specified value means at least a trigger voltage (trigger output value) necessary for exciting the rare gas in the flash discharge tube 8. Therefore, the prescribed value is determined and set for each flash discharge tube 8 to be used, based on the type of the flash discharge tube 8 and the pressure of a gas such as an enclosed rare gas.
 これにより、第1トリガコンデンサ14の電荷が、第1トリガスイッチ素子16、トリガトランス15を介して流れる。さらに、第2トリガコンデンサ20の電荷が、第2トリガスイッチ素子22、トリガトランス15を介して流れる。その結果、第1トリガコンデンサ14の電荷に第2トリガコンデンサ20の電荷が加えられて、トリガトランス15の1次側に流れる。そして、トリガトランス15の2次側に高出力のトリガ電圧が発生する。これにより、閃光放電管8内の希ガスが励起されて、第1コンデンサ6を介して閃光放電管8に電流が流れる。その結果、閃光放電管8が発光を開始する。 Thereby, the electric charge of the first trigger capacitor 14 flows through the first trigger switch element 16 and the trigger transformer 15. Furthermore, the electric charge of the second trigger capacitor 20 flows through the second trigger switch element 22 and the trigger transformer 15. As a result, the charge of the second trigger capacitor 20 is added to the charge of the first trigger capacitor 14 and flows to the primary side of the trigger transformer 15. Then, a high output trigger voltage is generated on the secondary side of the trigger transformer 15. As a result, the rare gas in the flash discharge tube 8 is excited, and a current flows to the flash discharge tube 8 through the first capacitor 6. As a result, the flash discharge tube 8 starts to emit light.
 一方、閃光放電管8の発光を停止させる場合、制御回路34のIT端子から、IGBT10のゲート端子へLowレベル信号を印加する。これにより、IGBT10はオフ状態となる。その結果、閃光放電管8に流れる電流が停止して、発光が停止する。 On the other hand, when the light emission of the flash discharge tube 8 is stopped, a Low level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10. Thereby, IGBT10 will be in an OFF state. As a result, the current flowing through the flash discharge tube 8 is stopped and light emission is stopped.
 つまり、上述したように、図7に示す撮像装置44に搭載された照明装置を構成するストロボ装置42の使用時において、閃光放電管8の温度状態や第1トリガコンデンサ14の充電電荷量により、トリガトランス15の2次側から出力されるトリガ電圧であるトリガ出力値が規定値を下回る場合がある。そこで、本実施の形態では、第1トリガコンデンサ14の充電電荷量に加えて、第2トリガコンデンサ20の充電電荷量を、同時にトリガトランス15の1次側の放電ループ上で放電する。これにより、トリガトランス15の2次側のトリガ出力値を規定値を上回る状態にする。その結果、閃光放電管8内の希ガスを励起して、閃光放電管8を発光させることが可能となる。 That is, as described above, when the strobe device 42 constituting the illumination device mounted on the imaging device 44 shown in FIG. 7 is used, depending on the temperature state of the flash discharge tube 8 and the charge amount of the first trigger capacitor 14, In some cases, the trigger output value, which is the trigger voltage output from the secondary side of the trigger transformer 15, falls below a specified value. Therefore, in the present embodiment, in addition to the charge amount of the first trigger capacitor 14, the charge amount of the second trigger capacitor 20 is simultaneously discharged on the discharge loop on the primary side of the trigger transformer 15. Thereby, the trigger output value on the secondary side of the trigger transformer 15 is set to a state exceeding the specified value. As a result, the rare gas in the flash discharge tube 8 can be excited to cause the flash discharge tube 8 to emit light.
 一方、閃光放電管8を発光させようとする際に、制御回路34は、電圧判別部45で判別した第1トリガコンデンサ14の充電電荷量のみでトリガ出力値の予測値が規定値を上回ると予測される場合、第2トリガスイッチ素子22を非導通状態に保持する。これにより、第1トリガコンデンサ14の充電電荷量のみで閃光放電管8を発光させることができる。 On the other hand, when trying to cause the flash discharge tube 8 to emit light, the control circuit 34 determines that the predicted value of the trigger output value exceeds the specified value only with the charge amount of the first trigger capacitor 14 determined by the voltage determination unit 45. If predicted, the second trigger switch element 22 is held in a non-conductive state. Thereby, the flash discharge tube 8 can be made to emit light only by the charge amount of the first trigger capacitor 14.
 上記構成により、閃光放電管8を「発光欠け」することなく連続発光できる撮像装置44に好適なストロボ装置42を実現できる。 With the above configuration, it is possible to realize a strobe device 42 suitable for the imaging device 44 that can continuously emit light without causing the flash discharge tube 8 to be “missing light emission”.
 (実施の形態2)
 以下に、本発明の実施の形態2における照明装置および撮像装置について、図2を用いて説明する。
(Embodiment 2)
Hereinafter, an illumination device and an imaging device according to Embodiment 2 of the present invention will be described with reference to FIG.
 図2は、本発明の実施の形態2における照明装置の発光制御回路を示す図である。 FIG. 2 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 2 of the present invention.
 本実施の形態の照明装置の発光制御回路は、第3トリガコンデンサ25と、第3トリガスイッチ素子28、ダイオード26、信号用抵抗27を、さらに設けた点で、実施の形態1の発光制御回路と異なる。そして、第3トリガコンデンサ25は、第1トリガスイッチ素子16、第2トリガスイッチ素子22および第3トリガスイッチ素子28が導通状態であれば、第1トリガコンデンサ14および第2トリガコンデンサ20と並列に接続されるように構成される。なお、他の構成要素およびそれらの動作・作用は、実施の形態1と同様であるので、説明を省略する。 The light emission control circuit of the illumination device of the present embodiment is the light emission control circuit of the first embodiment in that a third trigger capacitor 25, a third trigger switch element 28, a diode 26, and a signal resistor 27 are further provided. And different. The third trigger capacitor 25 is in parallel with the first trigger capacitor 14 and the second trigger capacitor 20 as long as the first trigger switch element 16, the second trigger switch element 22, and the third trigger switch element 28 are conductive. Configured to be connected. Since other components and their operations / actions are the same as those in the first embodiment, description thereof is omitted.
 すなわち、図2に示すように、閃光放電管8にトリガ電圧を印加する第3トリガコンデンサ25も、同様に、抵抗12、ダイオード13、ダイオード21、ダイオード26、トリガトランス15を介して図示する極性で第1コンデンサ6および第1トリガコンデンサ14、第2トリガコンデンサ20とほぼ同じ電圧(同じ電圧を含む)まで充電される。 That is, as shown in FIG. 2, the third trigger capacitor 25 that applies the trigger voltage to the flash discharge tube 8 similarly has the polarity shown via the resistor 12, the diode 13, the diode 21, the diode 26, and the trigger transformer 15. Thus, the first capacitor 6, the first trigger capacitor 14, and the second trigger capacitor 20 are charged to substantially the same voltage (including the same voltage).
 つまり、第3トリガコンデンサ25は、第2トリガコンデンサ20と同様に、トリガ電圧を印加するためのトリガコンデンサの容量を、必要に応じて、増加させるためのトリガコンデンサを構成する。そのため、第3トリガコンデンサ25の陽極はダイオード26のカソード端子と接続し、第3トリガコンデンサ25の陰極は第1トリガコンデンサ14の陰極と接続される。これにより、第1トリガスイッチ素子16、第2トリガスイッチ素子22および第3トリガスイッチ素子28が導通状態となれば、第3トリガコンデンサ25が、第1トリガコンデンサ14と第2トリガコンデンサ20と並列に接続されるように構成される。 That is, like the second trigger capacitor 20, the third trigger capacitor 25 constitutes a trigger capacitor for increasing the capacity of the trigger capacitor for applying the trigger voltage as necessary. Therefore, the anode of the third trigger capacitor 25 is connected to the cathode terminal of the diode 26, and the cathode of the third trigger capacitor 25 is connected to the cathode of the first trigger capacitor 14. As a result, when the first trigger switch element 16, the second trigger switch element 22, and the third trigger switch element 28 become conductive, the third trigger capacitor 25 is in parallel with the first trigger capacitor 14 and the second trigger capacitor 20. Configured to be connected to.
 また、放電ループを形成するために、第3トリガスイッチ素子28は、第3トリガコンデンサ25の陽極と第1トリガスイッチ素子16との間に接続されている。 In order to form a discharge loop, the third trigger switch element 28 is connected between the anode of the third trigger capacitor 25 and the first trigger switch element 16.
 そして、第2トリガスイッチ素子22と同様に、第3トリガスイッチ素子28を制御回路34のTR3端子からの信号で制御する。これにより、第3トリガコンデンサ25の充電電荷量が第1トリガコンデンサ14、第2トリガコンデンサ20の充電電荷量に加えられて、トリガトランス15の1次側の放電ループ上で放電することが可能となる。その結果、トリガトランス15の2次側のトリガ電圧であるトリガ出力値を、必要に応じて、さらに増加させて、閃光放電管8の発光欠けを防止することができる。 Then, similarly to the second trigger switch element 22, the third trigger switch element 28 is controlled by a signal from the TR 3 terminal of the control circuit 34. As a result, the charge amount of the third trigger capacitor 25 is added to the charge amounts of the first trigger capacitor 14 and the second trigger capacitor 20 and can be discharged on the discharge loop on the primary side of the trigger transformer 15. It becomes. As a result, the trigger output value, which is the trigger voltage on the secondary side of the trigger transformer 15, can be further increased as necessary to prevent the flash discharge tube 8 from lacking light emission.
 また、上記構成においても、トリガ出力値予測部46で予測されたトリガトランス15の2次側のトリガ出力値が規定値を上回る場合、第3トリガスイッチ素子28を非導通状態に維持してもよい。これにより、第1トリガコンデンサ14と第2トリガコンデンサ20の充電電荷量のみを放電させることが可能となる。 Also in the above configuration, when the trigger output value on the secondary side of the trigger transformer 15 predicted by the trigger output value predicting unit 46 exceeds the specified value, the third trigger switch element 28 may be maintained in the non-conductive state. Good. As a result, only the charge amount of the first trigger capacitor 14 and the second trigger capacitor 20 can be discharged.
 なお、実施の形態1および実施の形態2では、第1トリガコンデンサ14に接続されるトリガコンデンサとして、第2トリガコンデンサ20、さらに第3トリガコンデンサ25を並列に接続する例で説明したが、これに限られない。例えば、第2トリガコンデンサ20および第3トリガコンデンサ25のほかに、さらに複数のトリガコンデンサを設けて、第1トリガコンデンサ14に並列に接続してもよい。これにより、トリガトランス15の1次側に供給される充電電荷量を、さらに増すことができる。そして、制御回路34により、複数のトリガコンデンサのそれぞれを制御する。これにより、トリガトランス15のトリガ出力値が規定値以下になる状態に応じて、トリガトランス15の1次側に供給される充電電荷量を任意に調整することができる。その結果、より最適なトリガ出力値で、閃光放電管8を励起できる。 In the first and second embodiments, the second trigger capacitor 20 and the third trigger capacitor 25 are connected in parallel as the trigger capacitor connected to the first trigger capacitor 14. Not limited to. For example, in addition to the second trigger capacitor 20 and the third trigger capacitor 25, a plurality of trigger capacitors may be provided and connected to the first trigger capacitor 14 in parallel. Thereby, the charge amount supplied to the primary side of the trigger transformer 15 can be further increased. The control circuit 34 controls each of the plurality of trigger capacitors. Thereby, the charge amount supplied to the primary side of the trigger transformer 15 can be arbitrarily adjusted according to the state where the trigger output value of the trigger transformer 15 is equal to or less than the specified value. As a result, the flash discharge tube 8 can be excited with a more optimal trigger output value.
 (実施の形態3)
 以下に、本発明の実施の形態3における照明装置およびそれを備える撮像装置について、図3を用いて説明する。
(Embodiment 3)
Hereinafter, an illumination apparatus and an imaging apparatus including the illumination apparatus according to Embodiment 3 of the present invention will be described with reference to FIG.
 図3は、本発明の実施の形態3における照明装置の発光制御回路を示す図である。 FIG. 3 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 3 of the present invention.
 図3に示すように、本実施の形態の照明装置の発光制御回路は、トリガトランス15の1次側に印加する電圧を増加させる第2トリガコンデンサ20を備え、第4トリガスイッチ素子30を介して第1トリガコンデンサ14と直列に接続されている。つまり、第2トリガコンデンサ20の陽極は、ダイオード31のアノードと第5トリガスイッチ素子33とに接続されている。また、第2トリガコンデンサ20の陰極は、第4トリガスイッチ素子30を介して第1トリガコンデンサ14の陽極と接続されている。さらに、抵抗32が第2トリガコンデンサ20の陰極とトリガトランス15との間に接続されている。なお、抵抗32、抵抗12、ダイオード13、抵抗32、トリガトランス15を介して、第2トリガコンデンサ20を充電する経路を構成する。 As shown in FIG. 3, the light emission control circuit of the lighting apparatus of the present embodiment includes a second trigger capacitor 20 that increases the voltage applied to the primary side of the trigger transformer 15, and the fourth trigger switch element 30 is interposed therebetween. The first trigger capacitor 14 is connected in series. That is, the anode of the second trigger capacitor 20 is connected to the anode of the diode 31 and the fifth trigger switch element 33. The cathode of the second trigger capacitor 20 is connected to the anode of the first trigger capacitor 14 via the fourth trigger switch element 30. Further, a resistor 32 is connected between the cathode of the second trigger capacitor 20 and the trigger transformer 15. A path for charging the second trigger capacitor 20 is configured through the resistor 32, the resistor 12, the diode 13, the resistor 32, and the trigger transformer 15.
 また、制御回路34は、第4トリガスイッチ素子30および第5トリガスイッチ素子33の導通を制御するTR4端子およびTR5端子を備えている。 The control circuit 34 includes a TR4 terminal and a TR5 terminal that control conduction of the fourth trigger switch element 30 and the fifth trigger switch element 33.
 なお、他の構成要素およびそれらの動作・作用は、実施の形態1や実施の形態2と同様である。 Note that other components and their operations / actions are the same as those in the first and second embodiments.
 以上のように、本実施の形態の照明装置の発光制御回路が構成されている。 As described above, the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
 以下に、上記発光制御回路の動作について、図3を参照しながら説明する。 Hereinafter, the operation of the light emission control circuit will be described with reference to FIG.
 本実施の形態の発光制御回路は、まず、商用電源などの電源1とDC-DCコンバータ2などの昇圧回路2を介して主コンデンサを構成する第1コンデンサ6に電荷を蓄える。このとき、第1コンデンサ6の充電電圧は、抵抗4および抵抗5の抵抗分圧により、制御回路34のMON端子で監視されている。なお、MON端子に入力された第1コンデンサ6の充電電圧は、制御回路34の電圧判別部45で判別される。そして、所定の電圧に達すると、制御回路34は昇圧回路2の動作を停止して、第1コンデンサ6の充電を完了させる。 The light emission control circuit of the present embodiment first stores electric charges in the first capacitor 6 constituting the main capacitor via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the voltage reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 and completes the charging of the first capacitor 6.
 このとき、閃光放電管8にトリガ電圧を印加する第1トリガコンデンサ14は、抵抗12、ダイオード13、ダイオード31、トリガトランス15を介して図示する極性で第1コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。 At this time, the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 has substantially the same voltage (the same voltage as the first capacitor 6) with the polarity shown through the resistor 12, the diode 13, the diode 31, and the trigger transformer 15. Are charged).
 また、第2トリガコンデンサ20も、同様に、抵抗12、ダイオード13、抵抗32、トリガトランス15を介して図示する極性で第1コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。そのため、第1コンデンサ6の充電電圧と同様に、第1トリガコンデンサ14や第2トリガコンデンサ20の充電電圧も、制御回路34の電圧判別部45で判別される。 Similarly, the second trigger capacitor 20 is also charged to substantially the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown through the resistor 12, the diode 13, the resistor 32, and the trigger transformer 15. Therefore, similarly to the charging voltage of the first capacitor 6, the charging voltages of the first trigger capacitor 14 and the second trigger capacitor 20 are also determined by the voltage determination unit 45 of the control circuit 34.
 このとき、照明装置の初期状態において、第4トリガスイッチ素子30、第5トリガスイッチ素子33は、制御回路34のTR4端子およびTR5端子からの信号により非導通状態に設定されている。 At this time, in the initial state of the lighting device, the fourth trigger switch element 30 and the fifth trigger switch element 33 are set in a non-conduction state by signals from the TR4 terminal and the TR5 terminal of the control circuit 34.
 そして、閃光放電管8を発光させる時、制御回路34のトリガ出力値予測部46は、温度情報取得部24から制御回路34に出力される温度情報と、電圧判別部45で判別される第1トリガコンデンサ14の充電電圧の判別結果に基づいて、現在の条件下において、出力可能なトリガ電圧に相当するトリガ出力値を予測する。 Then, when the flash discharge tube 8 is caused to emit light, the trigger output value prediction unit 46 of the control circuit 34 is discriminated by the temperature information output from the temperature information acquisition unit 24 to the control circuit 34 and the voltage discrimination unit 45. Based on the determination result of the charging voltage of the trigger capacitor 14, a trigger output value corresponding to the trigger voltage that can be output is predicted under the current conditions.
 このとき、予測されたトリガ出力値が規定値を下回る場合、制御回路34のTR1端子から第1トリガスイッチ素子16を非導通状態とする信号を出力する。また、TR4端子から第4トリガスイッチ素子30を導通状態とする信号を出力する。同様に、TR5端子から第5トリガスイッチ素子33を導通状態とする信号を出力する。 At this time, if the predicted trigger output value falls below the specified value, a signal for turning off the first trigger switch element 16 is output from the TR1 terminal of the control circuit 34. Further, a signal for turning on the fourth trigger switch element 30 is output from the TR4 terminal. Similarly, a signal for turning on the fifth trigger switch element 33 is output from the TR5 terminal.
 さらに、IGBT10のゲート端子へ、制御回路34のIT端子からHiレベル信号を印加し、IGBT10を導通状態とする。これにより、第1トリガコンデンサ14の陽極と第2トリガコンデンサ20の陰極が接続される。そして、トリガトランス15の1次側の放電ループに、第1トリガコンデンサ14の充電電圧と第2トリガコンデンサ20の充電電圧とを合計した電圧が印加される。これにより、トリガトランス15の2次側に高いトリガ電圧が発生して、閃光放電管8内の希ガスを励起し、閃光放電管8に電流が流れる。その結果、閃光放電管8が発光を開始する。 Further, a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive. As a result, the anode of the first trigger capacitor 14 and the cathode of the second trigger capacitor 20 are connected. A voltage obtained by summing the charging voltage of the first trigger capacitor 14 and the charging voltage of the second trigger capacitor 20 is applied to the discharge loop on the primary side of the trigger transformer 15. As a result, a high trigger voltage is generated on the secondary side of the trigger transformer 15 to excite the rare gas in the flash discharge tube 8, and a current flows through the flash discharge tube 8. As a result, the flash discharge tube 8 starts to emit light.
 一方、閃光放電管8の発光を停止させる場合、制御回路34のIT端子から、IGBT10のゲート端子へLowレベル信号を印加する。これにより、IGBT10はオフ状態となる。その結果、閃光放電管8に流れる電流が停止して、発光が停止する。 On the other hand, when the light emission of the flash discharge tube 8 is stopped, a Low level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10. Thereby, IGBT10 will be in an OFF state. As a result, the current flowing through the flash discharge tube 8 is stopped and light emission is stopped.
 つまり、上述したように、図7に示す撮像装置44に搭載された照明装置を構成するストロボ装置42の使用時において、閃光放電管8の温度状態や第1トリガコンデンサ14の充電電圧により、トリガトランス15の2次側から出力されるトリガ出力値が閃光放電管8を励起させるに至らず、発光欠けが発生する場合がある。そこで、本実施の形態では、第1トリガコンデンサ14に第2トリガコンデンサ20を直列接続する。これにより、トリガトランス15の1次側に印加する電圧を高くして、トリガトランス15の2次側のトリガ電圧であるトリガ出力値を高くする。その結果、閃光放電管8内の希ガスを励起して、閃光放電管8を発光させることが可能となる。 That is, as described above, when the strobe device 42 constituting the illumination device mounted on the imaging device 44 shown in FIG. 7 is used, a trigger is generated depending on the temperature state of the flash discharge tube 8 and the charging voltage of the first trigger capacitor 14. In some cases, the trigger output value output from the secondary side of the transformer 15 does not excite the flash discharge tube 8 and lack of light emission occurs. Therefore, in the present embodiment, the second trigger capacitor 20 is connected in series to the first trigger capacitor 14. Thereby, the voltage applied to the primary side of the trigger transformer 15 is increased, and the trigger output value that is the trigger voltage on the secondary side of the trigger transformer 15 is increased. As a result, the rare gas in the flash discharge tube 8 can be excited to cause the flash discharge tube 8 to emit light.
 なお、本実施の形態では、閃光放電管8を発光させる際に、制御回路34は、電圧判別部45で判別した第1トリガコンデンサ14の充電電圧のみでトリガ出力値の予測値が規定値よりも高く、「発光欠け」が発生しないトリガ出力値である場合、第4トリガスイッチ素子30および第5トリガスイッチ素子33を非導通状態に保持する。そして、第1トリガスイッチ素子16を導通状態にする。これにより、トリガトランス15の1次側の放電ループは、主に第1トリガコンデンサ14のみで形成される。その結果、第1トリガコンデンサ14のみの電圧でトリガトランス15の2次側にトリガ電圧を発生させ、閃光放電管8にトリガ電圧の印加を行うことが可能となる。 In the present embodiment, when the flash discharge tube 8 is caused to emit light, the control circuit 34 uses only the charging voltage of the first trigger capacitor 14 determined by the voltage determination unit 45 so that the predicted value of the trigger output value is less than the specified value. If the trigger output value does not cause “missing light emission”, the fourth trigger switch element 30 and the fifth trigger switch element 33 are held in a non-conductive state. Then, the first trigger switch element 16 is turned on. As a result, the discharge loop on the primary side of the trigger transformer 15 is mainly formed by only the first trigger capacitor 14. As a result, it is possible to generate a trigger voltage on the secondary side of the trigger transformer 15 using only the voltage of the first trigger capacitor 14 and apply the trigger voltage to the flash discharge tube 8.
 また、本実施の形態では、第2トリガコンデンサ20と同様に、さらにスイッチング素子、ダイオードなどを追加して、複数のトリガコンデンサを設け、第1トリガコンデンサ14と直列に接続する構成としてよいことは言うまでもない。これにより、トリガトランス15の1次側に印加する電圧を、任意に調整することができる。その結果、トリガトランス15の2次側から出力されるトリガ電圧であるトリガ出力値を、閃光放電管8の状況に応じて、さらに詳細に調節することができる。 In the present embodiment, similarly to the second trigger capacitor 20, a switching element, a diode, and the like are further added to provide a plurality of trigger capacitors, and the first trigger capacitor 14 may be connected in series. Needless to say. Thereby, the voltage applied to the primary side of the trigger transformer 15 can be arbitrarily adjusted. As a result, the trigger output value, which is the trigger voltage output from the secondary side of the trigger transformer 15, can be adjusted in more detail according to the state of the flash discharge tube 8.
 また、上記各実施の形態では、第2トリガコンデンサと第3トリガコンデンサなどからなる複数のトリガコンデンサをトリガトランスの1次側の放電ループ上で、並列接続あるいは直列接続とした構成を例に説明したが、これに限られない。例えば、上記構成を組み合わせて、直並列接続で構成してもよい。これにより、さらにより詳細にトリガ出力値を制御できる。その結果、消費電力などを抑制することが可能となる。 In each of the above embodiments, a description is given of an example in which a plurality of trigger capacitors including a second trigger capacitor and a third trigger capacitor are connected in parallel or in series on the discharge loop on the primary side of the trigger transformer. However, it is not limited to this. For example, the above configurations may be combined and configured in series-parallel connection. Thereby, it is possible to control the trigger output value in further detail. As a result, power consumption and the like can be suppressed.
 (実施の形態4)
 以下に、本発明の実施の形態4における照明装置および撮像装置について、図4を用いて説明する。
(Embodiment 4)
Hereinafter, an illumination device and an imaging device according to Embodiment 4 of the present invention will be described with reference to FIG.
 図4は、本発明の実施の形態4における照明装置の発光制御回路を示す図である。 FIG. 4 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 4 of the present invention.
 まず、本実施の形態の照明装置の発光制御回路の第2トリガコンデンサ20は、実施の形態3と同様に、トリガトランス15の1次側に印加する電圧を増加させるためのトリガコンデンサである。そのため、第2トリガコンデンサ20の陽極は、ダイオード37のアノード端子およびダイオード31のアノード端子および第5トリガスイッチ素子33と接続されている。さらに、第2トリガコンデンサ20の陰極は、第4トリガスイッチ素子30を介して第1トリガコンデンサ14の陽極と接続され、抵抗32を介してトリガトランス15の1次側の端子に接続されている。 First, the second trigger capacitor 20 of the light emission control circuit of the lighting apparatus according to the present embodiment is a trigger capacitor for increasing the voltage applied to the primary side of the trigger transformer 15 as in the third embodiment. Therefore, the anode of the second trigger capacitor 20 is connected to the anode terminal of the diode 37, the anode terminal of the diode 31, and the fifth trigger switch element 33. Further, the cathode of the second trigger capacitor 20 is connected to the anode of the first trigger capacitor 14 via the fourth trigger switch element 30, and is connected to the primary side terminal of the trigger transformer 15 via the resistor 32. .
 一方、第3トリガコンデンサ25は、容量を増加させるためのトリガコンデンサである。具体的には、第3トリガコンデンサ25は、第1トリガコンデンサ14、あるいは第1トリガコンデンサ14と第2トリガコンデンサ20とが直列接続されたトリガコンデンサに、トリガトランス15の1次側の放電ループ上で並列に接続されている。つまり、第3トリガコンデンサ25の陽極は、ダイオード31のカソード端子に接続され、さらに第3トリガスイッチ素子28と接続されている。また、第3トリガコンデンサ25の陰極は、第1トリガコンデンサ14の陰極に接続されている。 On the other hand, the third trigger capacitor 25 is a trigger capacitor for increasing the capacity. Specifically, the third trigger capacitor 25 is connected to the first trigger capacitor 14 or the trigger capacitor in which the first trigger capacitor 14 and the second trigger capacitor 20 are connected in series to the discharge loop on the primary side of the trigger transformer 15. Connected in parallel above. That is, the anode of the third trigger capacitor 25 is connected to the cathode terminal of the diode 31 and further connected to the third trigger switch element 28. The cathode of the third trigger capacitor 25 is connected to the cathode of the first trigger capacitor 14.
 なお、他の構成要素およびそれらの動作・作用は、実施の形態1から実施の形態3と同様である。 Note that other components and their operations / actions are the same as those in the first to third embodiments.
 以上のように、本実施の形態の照明装置の発光制御回路が構成されている。 As described above, the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
 以下に、上記発光制御回路の動作について、図4を参照しながら説明する。 Hereinafter, the operation of the light emission control circuit will be described with reference to FIG.
 本実施の形態の発光制御回路は、まず、商用電源などの電源1とDC-DCコンバータ2などの昇圧回路2を介して第1コンデンサ6に電荷を蓄える。このとき、第1コンデンサ6の充電電圧は、抵抗4および抵抗5の抵抗分圧により、制御回路34のMON端子で監視されている。なお、MON端子に入力された第1コンデンサ6の充電電圧は、制御回路34の電圧判別部45で判別される。そして、所定の電圧に達すると、制御回路34は昇圧回路2の動作を停止して、第1コンデンサ6の充電を完了させる。 The light emission control circuit of the present embodiment first stores electric charge in the first capacitor 6 via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the voltage reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 and completes the charging of the first capacitor 6.
 このとき、閃光放電管8にトリガ電圧を印加する第1トリガコンデンサ14は、抵抗12、ダイオード13、ダイオード37、トリガトランス15を介して図示する極性で第1コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。 At this time, the first trigger capacitor 14 that applies the trigger voltage to the flash discharge tube 8 has substantially the same voltage (the same voltage as the first capacitor 6) with the polarity shown through the resistor 12, the diode 13, the diode 37, and the trigger transformer 15. Are charged).
 また、第2トリガコンデンサ20も、同様に、抵抗12、ダイオード13、抵抗32、トリガトランス15を介して図示する極性で第1コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。 Similarly, the second trigger capacitor 20 is also charged to substantially the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown through the resistor 12, the diode 13, the resistor 32, and the trigger transformer 15.
 さらに、第3トリガコンデンサ25も、抵抗12、ダイオード13、ダイオード31、トリガトランス15を介して図示する極性で第1コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。そのため、第1コンデンサ6の充電電圧と同様に、第1トリガコンデンサ14、第2トリガコンデンサ20および第3トリガコンデンサ25の充電電圧も、制御回路34の電圧判別部45で判別される。 Furthermore, the third trigger capacitor 25 is also charged to the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown in the figure via the resistor 12, the diode 13, the diode 31, and the trigger transformer 15. Therefore, similarly to the charging voltage of the first capacitor 6, the charging voltages of the first trigger capacitor 14, the second trigger capacitor 20, and the third trigger capacitor 25 are also determined by the voltage determination unit 45 of the control circuit 34.
 以下に、第1トリガコンデンサ14、第2トリガコンデンサ20、第3トリガコンデンサ25によって、トリガトランス15の1次側の放電ループ上で直並列回路を形成した場合を例に、本実施の形態の発光制御回路の動作について、説明する。 In the following, the first trigger capacitor 14, the second trigger capacitor 20, and the third trigger capacitor 25 are used as an example in the case where a series-parallel circuit is formed on the discharge loop on the primary side of the trigger transformer 15. The operation of the light emission control circuit will be described.
 まず、制御回路34のTR1端子から第1トリガスイッチ素子16に信号を出力して、第1トリガスイッチ素子16を非導通状態にする。同時に、制御回路34のTR4端子から第4トリガスイッチ素子30に信号を出力して、第4トリガスイッチ素子30を導通状態とする。これにより、第1トリガコンデンサ14の陽極と第2トリガコンデンサ20の陰極が、第4トリガスイッチ素子30を介して導通状態となる。 First, a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16, and the first trigger switch element 16 is turned off. At the same time, a signal is output from the TR4 terminal of the control circuit 34 to the fourth trigger switch element 30 to make the fourth trigger switch element 30 conductive. As a result, the anode of the first trigger capacitor 14 and the cathode of the second trigger capacitor 20 are brought into conduction through the fourth trigger switch element 30.
 また、制御回路34のTR5端子から第5トリガスイッチ素子33に信号を出力して、第5トリガスイッチ素子33を導通状態とする。これにより、第1トリガコンデンサ14と第2トリガコンデンサ20によりトリガトランス15の1次側で放電ループが形成される。 In addition, a signal is output from the TR5 terminal of the control circuit 34 to the fifth trigger switch element 33, and the fifth trigger switch element 33 is turned on. As a result, a discharge loop is formed on the primary side of the trigger transformer 15 by the first trigger capacitor 14 and the second trigger capacitor 20.
 さらに、制御回路34のTR3端子から第3トリガスイッチ素子28に信号を出力して、第3トリガスイッチ素子28を導通状態とする。 Further, a signal is output from the TR3 terminal of the control circuit 34 to the third trigger switch element 28, and the third trigger switch element 28 is turned on.
 また、制御回路34のIT端子からIGBT10のゲート端子へHiレベル信号を印加し、IGBT10を導通状態とする。 Also, a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive.
 上記により、トリガトランス15の1次側の放電ループ上において、まず、第1トリガコンデンサ14と第2トリガコンデンサ20が直列に接続される。さらに、第1トリガコンデンサ14と第2トリガコンデンサ20の直列接続に、第3トリガコンデンサ25が並列に接続される。これにより、トリガトランス15の2次側のトリガ電圧に相当するトリガ出力値が増大し、閃光放電管8を励起させることができる。その結果、閃光放電管8に電流が流れて、閃光放電管8は発光を開始する。 As described above, first, the first trigger capacitor 14 and the second trigger capacitor 20 are connected in series on the discharge loop on the primary side of the trigger transformer 15. Further, a third trigger capacitor 25 is connected in parallel to the series connection of the first trigger capacitor 14 and the second trigger capacitor 20. Thereby, the trigger output value corresponding to the trigger voltage on the secondary side of the trigger transformer 15 is increased, and the flash discharge tube 8 can be excited. As a result, a current flows through the flash discharge tube 8 and the flash discharge tube 8 starts to emit light.
 一方、閃光放電管8の発光を停止させる場合、制御回路34のIT端子からIGBT10へLowレベル信号を印加する。これにより、IGBT10はオフ状態となる。その結果、閃光放電管8に流れる電流が停止して、発光が停止する。 On the other hand, when the light emission of the flash discharge tube 8 is stopped, a Low level signal is applied from the IT terminal of the control circuit 34 to the IGBT 10. Thereby, IGBT10 will be in an OFF state. As a result, the current flowing through the flash discharge tube 8 is stopped and light emission is stopped.
 つまり、上述した各トリガコンデンサを、第1トリガスイッチ素子16から第5トリガスイッチ素子33の導通、非導通により構成される並列接続と直列接続とを組み合わせることにより、複数のトリガコンデンサの直並列接続が可能となる。 That is, each trigger capacitor described above is connected in series and parallel with a parallel connection constituted by conduction and non-conduction of the first trigger switch element 16 to the fifth trigger switch element 33, thereby connecting a plurality of trigger capacitors in series and parallel. Is possible.
 なお、本実施の形態では、複数のトリガコンデンサの接続を組み合わせることにより直並列回路を形成する例で説明したが、これに限られない。例えば、第1トリガコンデンサ14のみでトリガトランス15の1次側の放電ループを形成してもよい。また、第1トリガコンデンサ14と第2トリガコンデンサ20の直列接続によりトリガトランス15の1次側の放電ループを形成してもよい。さらに、第1トリガコンデンサ14と第3トリガコンデンサ25の並列接続によりトリガトランス15の1次側の放電ループを形成してもよい。 In this embodiment, the example in which the series-parallel circuit is formed by combining the connection of a plurality of trigger capacitors has been described. However, the present invention is not limited to this. For example, a primary discharge loop of the trigger transformer 15 may be formed by only the first trigger capacitor 14. Further, a primary discharge loop of the trigger transformer 15 may be formed by connecting the first trigger capacitor 14 and the second trigger capacitor 20 in series. Further, a discharge loop on the primary side of the trigger transformer 15 may be formed by connecting the first trigger capacitor 14 and the third trigger capacitor 25 in parallel.
 (実施の形態5)
 以下に、本発明の実施の形態5における照明装置および撮像装置について、図5および図8Bを用いて説明する。
(Embodiment 5)
Hereinafter, an illumination device and an imaging device according to Embodiment 5 of the present invention will be described with reference to FIGS. 5 and 8B.
 図5は、本発明の実施の形態5における照明装置の発光制御回路を示す図である。図8Bは、本発明の各実施の形態における発光制御回路の動作タイミングチャートを示す図である。 FIG. 5 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 5 of the present invention. FIG. 8B is a diagram showing an operation timing chart of the light emission control circuit in each embodiment of the present invention.
 図5に示すように、本実施の形態の照明装置の発光制御回路は、実施の形態1の発光制御回路で説明した、少なくとも昇圧回路2と、第1コンデンサ6と、閃光放電管8と、第1トリガコンデンサ14と、トリガトランス15を含むトリガ回路と、発光制御素子10と、制御回路34などを備えている。さらに、本実施の形態の発光制御回路は、第1温度情報取得部40と、第2温度情報取得部41などを備えている。第1温度情報取得部40は、例えばサーミスタなどの第1温度検出デバイス40で構成され、閃光放電管8の近傍に配置される。第1温度情報取得部40は、閃光放電管8の温度情報を取得し、制御回路34のTMP1端子に出力する。第2温度情報取得部41は、例えばサーミスタなどの第2温度検出デバイス41で構成される。第2温度情報取得部41は、環境温度などの温度を測定し、制御回路34のTMP2端子に出力する。そして、第2温度情報取得部41で取得したデータは、例えば半導体メモリなどの記憶装置に記憶される。 As shown in FIG. 5, the light emission control circuit of the lighting apparatus of the present embodiment includes at least the booster circuit 2, the first capacitor 6, the flash discharge tube 8, and the light emission control circuit described in the first embodiment. A first trigger capacitor 14, a trigger circuit including a trigger transformer 15, a light emission control element 10, a control circuit 34, and the like are provided. Furthermore, the light emission control circuit of the present embodiment includes a first temperature information acquisition unit 40, a second temperature information acquisition unit 41, and the like. The first temperature information acquisition unit 40 includes a first temperature detection device 40 such as a thermistor, for example, and is disposed in the vicinity of the flash discharge tube 8. The first temperature information acquisition unit 40 acquires temperature information of the flash discharge tube 8 and outputs it to the TMP1 terminal of the control circuit 34. The second temperature information acquisition unit 41 includes a second temperature detection device 41 such as a thermistor. The second temperature information acquisition unit 41 measures a temperature such as the environmental temperature and outputs it to the TMP2 terminal of the control circuit 34. The data acquired by the second temperature information acquisition unit 41 is stored in a storage device such as a semiconductor memory.
 また、制御回路34は、トリガ回路および発光制御素子10を制御するとともに、閃光放電管8の発光情報を取得する。さらに、制御回路34は、図示しない発光間隔計測記録部と、経過時間計測記録部47などを備えている。発光間隔計測記録部は、閃光放電管8の発光光量、発光回数や発光間隔を計測し記憶する。経過時間計測記録部47は、閃光放電管8が、最後に発光してからの経過時間を計測し記憶する。 Further, the control circuit 34 controls the trigger circuit and the light emission control element 10 and acquires the light emission information of the flash discharge tube 8. Further, the control circuit 34 includes a light emission interval measurement recording unit (not shown), an elapsed time measurement recording unit 47, and the like. The light emission interval measurement recording unit measures and stores the amount of light emitted from the flash discharge tube 8, the number of times of light emission, and the light emission interval. The elapsed time measurement recording unit 47 measures and stores the elapsed time since the flash discharge tube 8 last emitted light.
 なお、他の構成要素およびそれらの動作・作用は、実施の形態1から実施の形態4と同様である。 The other components and their operations / actions are the same as those in the first to fourth embodiments.
 以上のように、本実施の形態の照明装置の発光制御回路が構成されている。 As described above, the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
 以下に、上記発光制御回路の動作について、図5を参照しながら、図8Bを用いて説明する。 Hereinafter, the operation of the light emission control circuit will be described with reference to FIG. 5 and FIG. 8B.
 本実施の形態の発光制御回路は、まず、商用電源などの電源1とDC-DCコンバータ2などの昇圧回路2を介して主コンデンサを構成する第1コンデンサ6に電荷を蓄える。このとき、第1コンデンサ6の充電電圧は、抵抗4および抵抗5の抵抗分圧により制御回路34のMON端子でモニターされている。なお、MON端子に入力された第1コンデンサ6の充電電圧は、制御回路34の電圧判別部45で判別される。そして、所定の電圧に達すると、制御回路34はDC-DCコンバータ2などの昇圧回路2の動作を停止して、第1コンデンサ6の充電を完了させる。 The light emission control circuit of the present embodiment first stores electric charges in the first capacitor 6 constituting the main capacitor via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the voltage reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 such as the DC-DC converter 2 and completes the charging of the first capacitor 6.
 このとき、閃光放電管8にトリガ電圧を印加する第1トリガコンデンサ14は、抵抗12、ダイオード13、トリガトランス15を介して図示する極性で第1コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。 At this time, the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 has substantially the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown through the resistor 12, the diode 13, and the trigger transformer 15. It is charged until.
 また、閃光放電管8の近傍に配置された第1温度情報取得部40を構成する第1温度検出デバイス40は、検出された閃光放電管8の温度情報を制御回路34のTMP1端子に出力する。 Further, the first temperature detection device 40 constituting the first temperature information acquisition unit 40 arranged in the vicinity of the flash discharge tube 8 outputs the detected temperature information of the flash discharge tube 8 to the TMP1 terminal of the control circuit 34. .
 なお、閃光放電管8の温度情報として、特に、第1温度検出デバイス40で検知した温度情報を使用する必要はない。例えば、第2温度情報取得部41を構成する第2温度検出デバイス41で環境温度を取得し、過去の閃光放電管8の発光間隔および発光光量などの発光情報を、図示しないを半導体メモリなどの記憶装置に記録する。記憶したデータから、現在の閃光放電管8の温度を演算して予測する。そして、予測した値を閃光放電管8の温度情報として、制御回路34に出力し、それに基づいて、発光制御回路を制御して閃光放電管8を発光させる構成としてもよい。 Note that it is not necessary to use the temperature information detected by the first temperature detection device 40 as the temperature information of the flash discharge tube 8 in particular. For example, the ambient temperature is acquired by the second temperature detection device 41 constituting the second temperature information acquisition unit 41, and past emission information such as the light emission interval and the amount of light emitted from the flash discharge tube 8 is not shown. Record in storage device. From the stored data, the current temperature of the flash discharge tube 8 is calculated and predicted. Then, the predicted value may be output as temperature information of the flash discharge tube 8 to the control circuit 34, and based on this, the light emission control circuit may be controlled to cause the flash discharge tube 8 to emit light.
 つぎに、閃光放電管8を発光させる場合、制御回路34のIT端子からIGBT10のゲート端子へHiレベル信号を印加し、IGBT10導通状態とする。同時に、制御回路34のTR1端子から第1トリガスイッチ素子16に信号を出力して導通状態とする。そのため、第1トリガコンデンサ14の電荷は、第1トリガスイッチ素子16、トリガトランス15を介して流れる。これにより、トリガトランス15の2次側から高電圧のトリガ電圧が発生する。そして、閃光放電管8内の希ガスを励起させることにより、閃光放電管8のアノードとカソード間に電流が流れる。その結果、閃光放電管8が発光を開始する。 Next, when the flash discharge tube 8 is caused to emit light, a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive. At the same time, a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16 to make it conductive. Therefore, the charge of the first trigger capacitor 14 flows through the first trigger switch element 16 and the trigger transformer 15. As a result, a high trigger voltage is generated from the secondary side of the trigger transformer 15. Then, by exciting the rare gas in the flash discharge tube 8, a current flows between the anode and the cathode of the flash discharge tube 8. As a result, the flash discharge tube 8 starts to emit light.
 一方、閃光放電管8の発光を停止させる場合、制御回路34のIT端子からIGBT10のゲート端子へLowレベル信号を印加する。これにより、IGBT10はオフ状態となる。その結果、閃光放電管8に流れる電流が停止して、発光が停止する。 On the other hand, when the light emission of the flash discharge tube 8 is stopped, a low level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10. Thereby, IGBT10 will be in an OFF state. As a result, the current flowing through the flash discharge tube 8 is stopped and light emission is stopped.
 つまり、通常のストロボ装置などの照明装置は、上記のような閃光放電管8の発光動作を繰り返し行っている。 That is, an illumination device such as a normal strobe device repeatedly performs the light emission operation of the flash discharge tube 8 as described above.
 しかし、ストロボ装置などの照明装置は、上記発光を一定間隔で連続的に行う場合のほか、短時間に連続発光を行う場合や、長時間発光しない場合などの状況に置かれることがある。 However, an illuminating device such as a strobe device may be placed in a situation where the light emission is performed continuously at regular intervals, the light is emitted continuously for a short time, or the light is not emitted for a long time.
 そこで、本実施の形態では、過去に行った発光回数、発光間隔や発光光量などの発光情報、閃光放電管8の温度、環境温度、過去(最後)に発光を行ってから現在に至るまでの経過時間などの情報を、上述した制御回路34の発光間隔計測記録部や経過時間計測記録部47などで取得する。そして、制御回路34は、取得したデータに基づいて、閃光放電管8の発光動作を行う前に、設定した閃光放電管8の「発光欠け」が発生する条件か否かを判断する。 Therefore, in the present embodiment, the number of times of light emission performed in the past, light emission information such as the light emission interval and the amount of light emitted, the temperature of the flash discharge tube 8, the environmental temperature, and the past (last) light emission to the present. Information such as the elapsed time is acquired by the light emission interval measurement recording unit and the elapsed time measurement recording unit 47 of the control circuit 34 described above. Then, based on the acquired data, the control circuit 34 determines whether or not the set condition for the occurrence of “missing light emission” of the flash discharge tube 8 occurs before performing the light emission operation of the flash discharge tube 8.
 つまり、図8Aおよび図8Bに示すように、閃光放電管8を構成するガラス管などから析出した不純物がペレットに吸着された状態や長期間放置状態などにより、閃光放電管8の「発光欠け」が発生する条件か否かを判断する。 That is, as shown in FIG. 8A and FIG. 8B, the “light emission deficiency” of the flash discharge tube 8 is caused by the state in which impurities deposited from the glass tube or the like constituting the flash discharge tube 8 are adsorbed on the pellet or left standing for a long time. It is determined whether or not the condition occurs.
 このとき、閃光放電管8の「発光欠け」が発生する状況と判断される場合、制御回路34のIT端子からIGBT10のゲート端子へLowレベル信号を印加して、IGBT10をオフ状態にする。同時に、制御回路34のTR1端子から第1トリガスイッチ素子16に信号を出力して導通状態とする。これにより、第1トリガコンデンサ14の電荷は、第1トリガスイッチ素子16、トリガトランス15を介して流れる。その結果、トリガトランス15の2次側から高電圧のトリガ電圧を発生させて、閃光放電管8に印加する。 At this time, when it is determined that the “light emission failure” of the flash discharge tube 8 occurs, a low level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to turn off the IGBT 10. At the same time, a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16 to make it conductive. Thereby, the electric charge of the first trigger capacitor 14 flows through the first trigger switch element 16 and the trigger transformer 15. As a result, a high trigger voltage is generated from the secondary side of the trigger transformer 15 and applied to the flash discharge tube 8.
 つまり、本実施の形態の照明装置は、閃光放電管8を発光させるために閃光放電管8のアノードとカソード間に電流を流すことなく、トリガ電圧のみを閃光放電管8に印加する。このとき、制御回路34の発光間隔計測記録部や経過時間計測記録部47のデータに基づいて、トリガ電圧を少なくとも1回以上、「発光欠け」が発生しないと判断できる回数まで印加する。この理由について、図8Bを用いて説明する。つまり、図8Bの発光回路の動作タイミングチャートに示すように、トリガ電圧を印加することにより、ペレットに吸着した不純物を除去することができる。その結果、閃光放電管8の「発光欠け」の発生を未然に防いで、発光可能な状態に維持できる。 That is, the illumination device of the present embodiment applies only the trigger voltage to the flash discharge tube 8 without causing a current to flow between the anode and the cathode of the flash discharge tube 8 in order to cause the flash discharge tube 8 to emit light. At this time, the trigger voltage is applied at least once based on the data of the light emission interval measurement recording unit and the elapsed time measurement recording unit 47 of the control circuit 34 until the number of times that it can be determined that “light emission failure” does not occur. The reason for this will be described with reference to FIG. 8B. That is, as shown in the operation timing chart of the light-emitting circuit in FIG. 8B, the impurities adsorbed on the pellet can be removed by applying the trigger voltage. As a result, it is possible to prevent the occurrence of “missing light emission” in the flash discharge tube 8 and maintain the light emission state.
 しかし、通常、例えば長時間の電源オフ時など、長時間にわたり制御回路34などへ電力を供給しない場合、過去に行った発光回数と発光間隔や発光光量、過去(最後)に発光を行ってから現在に至るまでの経過時間など、図示しない発光間隔計測記録部や経過時間計測記録部47などで計測した情報を半導体メモリなどの記憶装置から取得できない場合がある。 However, normally, when power is not supplied to the control circuit 34 or the like for a long time, for example, when the power is turned off for a long time, the number of light emission performed in the past, the light emission interval, the light emission amount, and the light emission in the past (last) Information measured by a light emission interval measurement recording unit (not shown), the elapsed time measurement recording unit 47, or the like such as the elapsed time up to the present time may not be acquired from a storage device such as a semiconductor memory.
 そこで、上記の状況に対応するために、本実施の形態では、電源投入時において、必ず少なくとも1回以上、制御回路34のIT端子からIGBT10のゲート端子へLowレベル信号を印加して、IGBT10をオフ状態する。同時に、制御回路34のTR1端子から第1トリガスイッチ素子16に信号を出力して、第1トリガスイッチ素子16を導通状態とする。これにより、閃光放電管8のアノードとカソード間に、発光させることを目的とする電流を流すことなく、トリガ電圧のみを閃光放電管8に印加して、不純物などを事前に除去、あるいは長期間放置による封入ガスが励起しにくい安定状態となっているものを解除する。その結果、ストロボ装置の過去の経過履歴に関わらず、常に、閃光放電管8が発光可能な状態に維持できる。それにより、閃光放電管8の「発光欠け」を、未然に防止できる。 Therefore, in order to cope with the above situation, in the present embodiment, at the time of turning on the power, the low level signal is always applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 at least once. Turn off. At the same time, a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16, and the first trigger switch element 16 is turned on. Thus, only a trigger voltage is applied to the flash discharge tube 8 without flowing a current intended to emit light between the anode and the cathode of the flash discharge tube 8 to remove impurities in advance or for a long time. Release the gas that has been in a stable state where it is difficult to excite the sealed gas. As a result, the flash discharge tube 8 can always be maintained in a state capable of emitting light regardless of the past progress history of the strobe device. Thereby, “missing light emission” of the flash discharge tube 8 can be prevented in advance.
 (実施の形態6)
 以下に、本発明の実施の形態6における照明装置および撮像装置について、図6を用いて説明する。
(Embodiment 6)
Hereinafter, an illumination apparatus and an imaging apparatus according to Embodiment 6 of the present invention will be described with reference to FIG.
 図6は、本発明の実施の形態6における照明装置の発光制御回路を示す図である。 FIG. 6 is a diagram showing a light emission control circuit of the lighting apparatus according to Embodiment 6 of the present invention.
 本実施の形態のストロボ装置の発光制御回路は、ダイオード21、第2トリガコンデンサ20、第2トリガスイッチ素子22、抵抗23を追加し、トリガトランス15の1次側ループ上にトリガコンデンサの充電電荷を放出する回路を2つ構成した点で、実施の形態5の発光制御回路とは異なる。このとき、第2トリガコンデンサ20の容量を、第1トリガコンデンサ14の容量より小さい容量とする。なお、他の構成要素およびそれらの動作・作用は、実施の形態5と同様であるので、説明を省略する。 The light emission control circuit of the strobe device according to the present embodiment includes a diode 21, a second trigger capacitor 20, a second trigger switch element 22, and a resistor 23, and the charge charge of the trigger capacitor on the primary loop of the trigger transformer 15. This is different from the light emission control circuit of the fifth embodiment in that two circuits for emitting light are configured. At this time, the capacity of the second trigger capacitor 20 is set to be smaller than the capacity of the first trigger capacitor 14. The other components and their operations / actions are the same as those in the fifth embodiment, and thus the description thereof is omitted.
 以上のように、本実施の形態の照明装置の発光制御回路が構成されている。 As described above, the light emission control circuit of the lighting apparatus according to the present embodiment is configured.
 以下に、上記発光制御回路の動作について、図6を参照しながら説明する。 Hereinafter, the operation of the light emission control circuit will be described with reference to FIG.
 本実施の形態の発光制御回路は、まず、商用電源などの電源1とDC-DCコンバータ2などの昇圧回路2を介して主コンデンサ6を構成する第1コンデンサ6に電荷を蓄える。このとき、第1コンデンサ6の充電電圧は、抵抗4および抵抗5の抵抗分圧により、制御回路34のMON端子でモニターされている。なお、MON端子に入力された第1コンデンサ6の充電電圧は、制御回路34の電圧判別部45で判別される。そして、第1コンデンサ6の充電電圧が所定の電圧に達すると、制御回路34はDC-DCコンバータ2などの昇圧回路2の動作を停止して、第1コンデンサ6の充電を完了させる。 The light emission control circuit of the present embodiment first stores electric charges in the first capacitor 6 constituting the main capacitor 6 via the power source 1 such as a commercial power source and the booster circuit 2 such as the DC-DC converter 2. At this time, the charging voltage of the first capacitor 6 is monitored at the MON terminal of the control circuit 34 by the resistance voltage division of the resistors 4 and 5. Note that the charging voltage of the first capacitor 6 input to the MON terminal is determined by the voltage determination unit 45 of the control circuit 34. When the charging voltage of the first capacitor 6 reaches a predetermined voltage, the control circuit 34 stops the operation of the booster circuit 2 such as the DC-DC converter 2 and completes the charging of the first capacitor 6.
 このとき、閃光放電管8にトリガ電圧を印加する第1トリガコンデンサ14は、抵抗12、ダイオード13、トリガトランス15を介して図示する極性で主コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。 At this time, the first trigger capacitor 14 for applying the trigger voltage to the flash discharge tube 8 is up to substantially the same voltage (including the same voltage) as the main capacitor 6 with the polarity shown through the resistor 12, the diode 13, and the trigger transformer 15. Charged.
 また、第2トリガコンデンサ20も、抵抗12、ダイオード13、ダイオード21、トリガトランス15を介して図示する極性で第1コンデンサ6とほぼ同じ電圧(同じ電圧を含む)まで充電される。さらに、上記実施の形態5と同様に、制御回路34には、閃光放電管8の温度情報や周囲の温度情報が、第1温度情報取得部40や第2温度情報取得部41などの温度情報取得部から、それぞれTMP1端子およびTMP2端子に入力される。 Also, the second trigger capacitor 20 is charged to the same voltage (including the same voltage) as the first capacitor 6 with the polarity shown in the figure via the resistor 12, the diode 13, the diode 21, and the trigger transformer 15. Further, as in the fifth embodiment, the control circuit 34 stores temperature information of the flash discharge tube 8 and ambient temperature information such as the first temperature information acquisition unit 40 and the second temperature information acquisition unit 41. Input from the acquisition unit to the TMP1 terminal and the TMP2 terminal, respectively.
 そして、閃光放電管8を発光させる場合、制御回路34のIT端子からIGBT10のゲート端子へHiレベル信号を印加し、IGBT10を導通状態とする。同時に、制御回路34のTR1端子から第1トリガスイッチ素子16に信号を出力して第1トリガスイッチ素子16を導通状態とし、制御回路34のTR2端子から第2トリガスイッチ素子22は非導通状態としておく。このとき、第1トリガコンデンサ14の電荷は、第1トリガスイッチ素子16、トリガトランス15を介して流れる。これにより、トリガトランス15の2次側から高電圧のトリガ電圧が発生する。そして、閃光放電管8内の希ガスを励起させることにより、閃光放電管8のアノード-カソード間に電流が流れる。その結果、閃光放電管8が発光を開始する。 Then, when the flash discharge tube 8 is caused to emit light, a Hi level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to make the IGBT 10 conductive. At the same time, a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16 to turn on the first trigger switch element 16, and the second trigger switch element 22 is turned off from the TR2 terminal of the control circuit 34. deep. At this time, the electric charge of the first trigger capacitor 14 flows through the first trigger switch element 16 and the trigger transformer 15. As a result, a high trigger voltage is generated from the secondary side of the trigger transformer 15. Then, a current flows between the anode and the cathode of the flash discharge tube 8 by exciting the rare gas in the flash discharge tube 8. As a result, the flash discharge tube 8 starts to emit light.
 一方、閃光放電管8の発光を停止させる場合、制御回路34のIT端子からIGBT10のゲート端子へLowレベル信号を印加する。これにより、IGBT10はオフ状態となる。その結果、閃光放電管8に流れる電流が停止して、発光が停止する。 On the other hand, when the light emission of the flash discharge tube 8 is stopped, a low level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10. Thereby, IGBT10 will be in an OFF state. As a result, the current flowing through the flash discharge tube 8 is stopped and light emission is stopped.
 また、実施の形態5と同様に、過去に行った発光回数、発光間隔や発光光量などの発光情報、閃光放電管8の温度、環境温度、過去に発光を行ってから現在に至るまでの経過時間などの情報を、制御回路34の発光間隔計測記録部(図示しない)や経過時間計測記録部47などで取得する。そして、制御回路34は、取得したデータに基づいて、閃光放電管8の発光動作を行う前に、設定した閃光放電管8の「発光欠け」が発生する条件か否かを判断する。 Further, similarly to the fifth embodiment, the number of times of light emission performed in the past, light emission information such as the light emission interval and the amount of light emitted, the temperature of the flash discharge tube 8, the environmental temperature, and the process from the previous light emission to the present. Information such as time is acquired by a light emission interval measurement recording unit (not shown) or an elapsed time measurement recording unit 47 of the control circuit 34. Then, based on the acquired data, the control circuit 34 determines whether or not the set condition for the occurrence of “missing light emission” of the flash discharge tube 8 occurs before performing the light emission operation of the flash discharge tube 8.
 このとき、閃光放電管8の「発光欠け」が発生する状況と判断された場合、制御回路34のIT端子からIGBT10のゲート端子へLowレベル信号を印加して、IGBT10をオフ状態にする。同時に、制御回路34のTR2端子から第2トリガスイッチ素子22に信号を出力して導通状態とし、さらに制御回路34のTR1端子から第1トリガスイッチ素子16に信号を出力して非導通状態とする。これにより、第2トリガコンデンサ20の電荷は、第2トリガスイッチ素子22、トリガトランス15を介して流れる。その結果、トリガトランス15の2次側から高電圧のトリガ電圧を発生させて、閃光放電管8に印加する。 At this time, when it is determined that the “light emission failure” of the flash discharge tube 8 occurs, a low level signal is applied from the IT terminal of the control circuit 34 to the gate terminal of the IGBT 10 to turn off the IGBT 10. At the same time, a signal is output from the TR2 terminal of the control circuit 34 to the second trigger switch element 22 to be in a conductive state, and a signal is output from the TR1 terminal of the control circuit 34 to the first trigger switch element 16 to be in a non-conductive state. . As a result, the electric charge of the second trigger capacitor 20 flows through the second trigger switch element 22 and the trigger transformer 15. As a result, a high trigger voltage is generated from the secondary side of the trigger transformer 15 and applied to the flash discharge tube 8.
 つまり、本実施の形態のストロボ装置は、閃光放電管8のアノードとカソード間に、発光させるために電流を流すことなく、トリガ電圧のみを閃光放電管8に印加する。このとき、制御回路34の発光間隔計測記録部(図示しない)や経過時間計測記録部47のデータに基づいて、トリガ電圧を少なくとも1回以上、「発光欠け」が発生しないと判断できる回数まで印加する。これにより、閃光放電管8の「発光欠け」の発生を未然に防止できる。 That is, the strobe device of the present embodiment applies only the trigger voltage to the flash discharge tube 8 without flowing current between the anode and the cathode of the flash discharge tube 8 to emit light. At this time, the trigger voltage is applied at least once, based on the data of the light emission interval measurement recording unit (not shown) and the elapsed time measurement recording unit 47 of the control circuit 34, up to the number of times that it can be determined that no “light emission failure” occurs. To do. Thereby, the occurrence of “missing light emission” in the flash discharge tube 8 can be prevented in advance.
 なお、本実施の形態の照明装置の発光制御回路は、発光欠けを防ぐために第2トリガコンデンサ20などで構成されるトリガ回路を、上記第1トリガコンデンサ14などで構成される既存のトリガ回路とは別に備えている。このとき、上述したように、第1トリガコンデンサ14の容量に対して、第2トリガコンデンサ20に、小さい容量のコンデンサを用いている。この理由は、閃光放電管8が発光欠けとなる場合、閃光放電管8のインピーダンスが、発光可能な状態に対して変化している場合がある。そのため、第2トリガコンデンサ20の容量を、従来のトリガコンデンサと同じ容量とすると、トリガトランス15の2次側のトリガ電圧が大きくなりすぎる場合がある。この場合、高電圧に耐えるトリガトランスが必要となる。また、場合によっては、高いトリガ電圧により、トリガトランス15とグランドライン間にスパーク(放電)が発生する場合がある。その結果、閃光放電管8に印加するトリガ電圧が、必要とするトリガ電圧以下に低下してしまうことがある。 Note that the light emission control circuit of the lighting device according to the present embodiment includes a trigger circuit configured by the second trigger capacitor 20 or the like in order to prevent lack of light emission, and an existing trigger circuit configured by the first trigger capacitor 14 or the like. Separately. At this time, as described above, a capacitor having a small capacity is used for the second trigger capacitor 20 with respect to the capacity of the first trigger capacitor 14. The reason for this is that when the flash discharge tube 8 lacks light emission, the impedance of the flash discharge tube 8 may change with respect to the state capable of light emission. Therefore, if the capacity of the second trigger capacitor 20 is the same as that of the conventional trigger capacitor, the trigger voltage on the secondary side of the trigger transformer 15 may become too large. In this case, a trigger transformer that can withstand high voltage is required. In some cases, a spark (discharge) may occur between the trigger transformer 15 and the ground line due to a high trigger voltage. As a result, the trigger voltage applied to the flash discharge tube 8 may drop below the required trigger voltage.
 そこで、本実施の形態では、第2トリガコンデンサ20に、第1トリガコンデンサ14よりも小さい容量のコンデンサを用いる。これにより、第2トリガコンデンサ20の充電電圧が高い場合でも、トリガトランス15の2次側のトリガ電圧であるトリガ出力値を抑えることができる。 Therefore, in the present embodiment, a capacitor having a smaller capacity than the first trigger capacitor 14 is used for the second trigger capacitor 20. Thereby, even when the charging voltage of the second trigger capacitor 20 is high, the trigger output value that is the trigger voltage on the secondary side of the trigger transformer 15 can be suppressed.
 一方、閃光放電管8を発光させるためにトリガ電圧の印加を行う場合、閃光放電管8のインピーダンスは、発光欠けとなる場合と比較して変化する。具体的には、閃光放電管の種類(ガス種、径など)や状態(温度など)により異なるが、例えば発光可能時の場合、トリガ電圧のピーク出力は5kV、発光欠け時の場合、ピーク出力は8kV程度に変化する。そのため、第2トリガコンデンサ20より容量の大きい第1トリガコンデンサ14でトリガ電圧を印加しても、トリガトランス15とグランドライン間にスパーク(放電)するようなトリガトランス15の2次側のトリガ電圧の出力にはならない。その結果、閃光放電管8を発光させるために適正なトリガ電圧を、閃光放電管8に印加することができる。 On the other hand, when a trigger voltage is applied to cause the flash discharge tube 8 to emit light, the impedance of the flash discharge tube 8 changes as compared with the case where the light emission is lost. Specifically, it varies depending on the type (gas type, diameter, etc.) and state (temperature, etc.) of the flash discharge tube. For example, when light emission is possible, the peak output of the trigger voltage is 5 kV. Changes to about 8 kV. Therefore, even if the trigger voltage is applied by the first trigger capacitor 14 having a capacity larger than that of the second trigger capacitor 20, the trigger voltage on the secondary side of the trigger transformer 15 that sparks (discharges) between the trigger transformer 15 and the ground line. Is not output. As a result, an appropriate trigger voltage for causing the flash discharge tube 8 to emit light can be applied to the flash discharge tube 8.
 本実施の形態によれば、低コストで、信頼性の高い照明装置および撮像装置を実現できる。 According to the present embodiment, it is possible to realize a highly reliable illumination device and imaging device at low cost.
 なお、上記の各実施の形態では、写真撮影における照明装置としてストロボ装置を例に説明したが、これに限られない。例えば、閃光放電管を使用した内視鏡などの照明装置に適用してもよい。 In each of the above embodiments, a strobe device is described as an example of a lighting device for taking a picture, but the present invention is not limited to this. For example, the present invention may be applied to an illumination device such as an endoscope using a flash discharge tube.
 以上で説明したように、本発明の照明装置は、電荷を蓄積する第1コンデンサと、第1コンデンサに蓄積された電荷を消費することで発光する閃光放電管と、閃光放電管を発光させるトリガ電圧を印加する第1トリガコンデンサと、トリガトランスを含むトリガ回路を有する。さらに、閃光放電管と接続された発光制御素子と、トリガ回路および発光制御素子を制御するとともに、閃光放電管の発光情報を取得する制御回路と、閃光放電管の温度情報を取得する温度情報取得部と、を有してもよい。 As described above, the lighting device according to the present invention includes a first capacitor that accumulates electric charge, a flash discharge tube that emits light by consuming the electric charge accumulated in the first capacitor, and a trigger that causes the flash discharge tube to emit light. A trigger circuit including a first trigger capacitor for applying a voltage and a trigger transformer is provided. Furthermore, the light emission control element connected to the flash discharge tube, the trigger circuit and the light emission control element are controlled, and the control circuit for acquiring the light emission information of the flash discharge tube, and the temperature information acquisition for acquiring the temperature information of the flash discharge tube And may have a part.
 この構成によれば、閃光放電管が連続発光している場合、閃光放電管の近傍の温度情報に基づいて、トリガ回路および発光制御素子を制御する。 According to this configuration, when the flash discharge tube is continuously emitting light, the trigger circuit and the light emission control element are controlled based on the temperature information in the vicinity of the flash discharge tube.
 これにより、閃光放電管を「発光欠け」することなく連続発光をさせることができる。その結果、連続撮影を行う撮像装置に好適な照明装置を実現できる。 This allows the flash discharge tube to emit light continuously without “missing light emission”. As a result, an illumination device suitable for an imaging device that performs continuous shooting can be realized.
 また、本発明の照明装置の制御回路は、第1トリガコンデンサの充電電圧を判別する電圧判別部と、温度情報取得部ならびに電圧判別部から取得した、閃光放電管の温度情報と第1トリガコンデンサの充電電圧の判別結果に基づいてトリガ出力値を予測するトリガ出力値予測部と、をさらに有する。そして、トリガ出力値が予め決められた規定値を下回る場合、第1トリガコンデンサに、少なくとも一つ以上のトリガコンデンサを並列接続する接続構成を有してもよい。 In addition, the control circuit of the lighting device according to the present invention includes a voltage determination unit that determines a charging voltage of the first trigger capacitor, a temperature information acquisition unit, and temperature information of the flash discharge tube acquired from the voltage determination unit and the first trigger capacitor. And a trigger output value prediction unit that predicts a trigger output value based on the determination result of the charging voltage. And when a trigger output value is less than the predetermined value decided beforehand, it may have the connection composition which connects at least one trigger capacitor in parallel with the 1st trigger capacitor.
 この構成によれば、トリガ出力値が規定値を下回ると予測できる場合、1つ以上のトリガコンデンサを追加して容量を増加させ、トリガトランスにより多くの電流を流す。これにより、トリガ出力値を規定値を上回るように維持できる。その結果、閃光放電管を「発光欠け」することなく連続発光をさせることができる。 ∙ According to this configuration, when the trigger output value can be predicted to be lower than the specified value, one or more trigger capacitors are added to increase the capacity, and a larger amount of current flows through the trigger transformer. As a result, the trigger output value can be maintained to exceed the specified value. As a result, the flash discharge tube can emit light continuously without “missing light emission”.
 また、本発明の照明装置は、閃光放電管の温度情報と第1トリガコンデンサの充電電圧の判別結果から、トリガ出力値が規定値を下回ると判断される場合、第1トリガコンデンサと、少なくとも一つ以上のトリガコンデンサをトリガトランスの1次側に直列接続を行う接続構成を有してもよい。 Further, the lighting device of the present invention has at least one of the first trigger capacitor and the first trigger capacitor when the trigger output value is determined to be lower than the specified value based on the determination result of the temperature information of the flash discharge tube and the charging voltage of the first trigger capacitor. It may have a connection configuration in which two or more trigger capacitors are connected in series to the primary side of the trigger transformer.
 この構成によれば、トリガ出力値が規定値を下回ると予測できる場合、1つ以上のトリガコンデンサを追加して電圧を増加して、トリガトランスにより高い電圧を印加する。これにより、閃光放電管に印加するトリガ出力値を規定値を上回るように維持できる。その結果、閃光放電管を「発光欠け」することなく連続発光をさせることができる。 According to this configuration, when the trigger output value can be predicted to fall below the specified value, the voltage is increased by adding one or more trigger capacitors, and a higher voltage is applied by the trigger transformer. Thereby, the trigger output value applied to the flash discharge tube can be maintained to exceed the specified value. As a result, the flash discharge tube can emit light continuously without “missing light emission”.
 また、本発明の照明装置は、接続構成が、第1トリガコンデンサと、少なくとも一つ以上のトリガコンデンサの直列接続、並列接続または直列並列接続構成でもよい。これにより、閃光放電管の「発光欠け」を防止する発光回路の設計自由度が向上する。その結果、トリガ出力値を、必要に応じて、任意に設定できる。 Further, in the lighting device of the present invention, the connection configuration may be a series connection, a parallel connection, or a series-parallel connection configuration of the first trigger capacitor and at least one trigger capacitor. As a result, the degree of freedom in designing the light emitting circuit for preventing the “light emission defect” of the flash discharge tube is improved. As a result, the trigger output value can be arbitrarily set as required.
 また、本発明の照明ボ装置は、発光情報が、閃光放電管の発光回数、発光光量発光間隔、発光時における閃光放電管の位置情報を含んでもよい。これにより、より正確に、閃光放電管の「発光欠け」を防止できる。 Further, in the illumination device of the present invention, the light emission information may include the number of times of light emission of the flash discharge tube, the light emission amount light emission interval, and the position information of the flash discharge tube during light emission. Thereby, it is possible to more accurately prevent “missing light emission” of the flash discharge tube.
 また、本発明の照明装置の制御回路は、取得した発光情報から、予め規定した発光欠けが生じる条件を満足したと判断される場合、発光制御素子を非導通としたまま、閃光放電管に少なくとも1回以上のトリガ電圧の印加を行ってもよい。これにより、ペレットに付着した不純物の除去、あるいは長期間放置による閃光放電管内の希ガス安定状態を解除し、「発光欠け」を防ぐことができる。 In addition, when it is determined from the acquired light emission information that the condition for causing the lack of light emission is satisfied, the control circuit of the lighting device of the present invention at least in the flash discharge tube while keeping the light emission control element non-conductive. One or more trigger voltages may be applied. As a result, removal of impurities adhering to the pellets or release of the stable state of the rare gas in the flash discharge tube after standing for a long period of time can be prevented, thereby preventing “missing light emission”.
 また、本発明の照明装置は、閃光放電管の温度情報を、閃光放電管の発光情報から演算により取得してもよい。 Further, the lighting device of the present invention may acquire temperature information of the flash discharge tube by calculation from light emission information of the flash discharge tube.
 この構成によれば、閃光放電管またはその近傍の温度を直接測定することなく、トリガ出力値を予測することができる。そのため、温度測定用のデバイスなどが省略できる。これにより、照明装置や撮像装置などのコストダウンが可能となる。 According to this configuration, the trigger output value can be predicted without directly measuring the temperature of the flash discharge tube or the vicinity thereof. Therefore, a temperature measurement device or the like can be omitted. Thereby, cost reduction of an illuminating device, an imaging device, etc. is attained.
 また、本発明の照明装置の温度情報取得部は、閃光放電管または閃光放電管の近傍に配置した温度検出素子から閃光放電管の温度を取得してもよい。 Further, the temperature information acquisition unit of the lighting device of the present invention may acquire the temperature of the flash discharge tube from the flash discharge tube or a temperature detection element arranged in the vicinity of the flash discharge tube.
 この構成によれば、連続発光している閃光放電管の温度を、より正確に取得できる。これにより、閃光放電管の温度情報に基づいて、トリガ出力値の予測をより正確に行うことができる。 According to this configuration, the temperature of the flash discharge tube that emits light continuously can be obtained more accurately. Thereby, the trigger output value can be predicted more accurately based on the temperature information of the flash discharge tube.
 また、本発明の照明装置の制御回路は、閃光放電管が最後に発光してからの経過時間を取得記録する経過時間計測記録部を、さらに有し、経過時間計測記録部で取得した経過時間を発光情報として用いてもよい。これにより、閃光放電管の経過履歴に基づいて、閃光放電管の「発光欠け」を効果的に防止できる。 The control circuit of the lighting device of the present invention further includes an elapsed time measurement recording unit that acquires and records the elapsed time since the flash discharge tube last emitted light, and the elapsed time acquired by the elapsed time measurement recording unit. May be used as light emission information. Thereby, based on the progress history of the flash discharge tube, “missing light emission” of the flash discharge tube can be effectively prevented.
 また、本発明の照明装置は、電源投入時において、発光制御素子を非導通としたまま、閃光放電管に少なくとも1回以上のトリガ電圧の印加を行ってもよい。 Moreover, the lighting device of the present invention may apply the trigger voltage to the flash discharge tube at least once while the light emission control element is kept non-conductive when the power is turned on.
 これにより、照明装置が長期間使用されない場合でも、閃光放電管の経過履歴に関わらず、「発光欠け」を未然に防止できる。 Thereby, even when the lighting device is not used for a long time, it is possible to prevent “missing light emission” in advance regardless of the progress history of the flash discharge tube.
 また、本発明の撮像装置は、上記照明装置を搭載してもよい。これにより、連続撮影時において、照明装置の発光欠けを起こすことなく、好適な写真撮影を実現できる。 Moreover, the imaging device of the present invention may be equipped with the illumination device. Thereby, it is possible to realize suitable photography without causing the lack of light emission of the lighting device during continuous photography.
 本発明は、連続発光しても、また初回発光時においても、いわゆる「発光欠け」を生じないので、閃光放電管を扱う、ストロボ装置や内視鏡などの照明装置として有用である。 The present invention is useful as a lighting device such as a strobe device or an endoscope that handles a flash discharge tube because it does not cause so-called “missing light emission” even during continuous light emission or during initial light emission.
 1  電源
 2  DC-DCコンバータ(昇圧回路)
 4,5,12,23,32  抵抗
 6  第1コンデンサ(主コンデンサ)
 8  閃光放電管
 10  IGBT(発光制御素子)
 13,21,26,31,37  ダイオード
 14  第1トリガコンデンサ
 15  トリガトランス
 16  第1トリガスイッチ素子
 20  第2トリガコンデンサ
 22  第2トリガスイッチ素子
 24  温度検出デバイス(温度情報取得部)
 25  第3トリガコンデンサ
 27  信号用抵抗
 28  第3トリガスイッチ素子
 30  第4トリガスイッチ素子
 33  第5トリガスイッチ素子
 34  制御回路
 40  第1温度検出デバイス(第1温度情報取得部)
 41  第2温度検出デバイス(第2温度情報取得部)
 42  ストロボ装置
 44  撮像装置
 45  電圧判別部
 46  トリガ出力値予測部
 47  経過時間計測記録部
1 Power supply 2 DC-DC converter (Boost circuit)
4, 5, 12, 23, 32 Resistance 6 First capacitor (main capacitor)
8 Flash discharge tube 10 IGBT (light emission control element)
13, 21, 26, 31, 37 Diode 14 First trigger capacitor 15 Trigger transformer 16 First trigger switch element 20 Second trigger capacitor 22 Second trigger switch element 24 Temperature detection device (temperature information acquisition unit)
25 3rd trigger capacitor 27 Signal resistor 28 3rd trigger switch element 30 4th trigger switch element 33 5th trigger switch element 34 Control circuit 40 1st temperature detection device (1st temperature information acquisition part)
41 2nd temperature detection device (2nd temperature information acquisition part)
42 Strobe device 44 Imaging device 45 Voltage determination unit 46 Trigger output value prediction unit 47 Elapsed time measurement recording unit

Claims (11)

  1. 電荷を蓄積する第1コンデンサと、
    前記第1コンデンサに蓄積された電荷を消費することで発光する閃光放電管と、
    前記閃光放電管を発光させるトリガ電圧を印加する第1トリガコンデンサと、
    トリガトランスを含むトリガ回路と、
    前記閃光放電管と直列に接続された発光制御素子と、
    前記トリガ回路および前記発光制御素子を制御するとともに、前記閃光放電管の発光情報を取得する制御回路と、
    前記閃光放電管の温度情報を取得する温度情報取得部と、
    を有する照明装置。
    A first capacitor for storing charge;
    A flash discharge tube that emits light by consuming the charge accumulated in the first capacitor;
    A first trigger capacitor for applying a trigger voltage for causing the flash discharge tube to emit light;
    A trigger circuit including a trigger transformer;
    A light emission control element connected in series with the flash discharge tube;
    A control circuit that controls the trigger circuit and the light emission control element, and obtains light emission information of the flash discharge tube;
    A temperature information acquisition unit for acquiring temperature information of the flash discharge tube;
    A lighting device.
  2. 前記制御回路は、前記第1トリガコンデンサの充電電圧を判別する電圧判別部と、
    前記温度情報取得部ならびに前記電圧判別部から取得した、前記閃光放電管の温度情報と前記第1トリガコンデンサの充電電圧の判別結果に基づいてトリガ出力値を予測するトリガ出力値予測部と、をさらに有し、
    前記トリガ出力値が予め決められた規定値を下回る場合、前記第1トリガコンデンサに、少なくとも一つ以上のトリガコンデンサを並列接続する接続構成を有する請求項1に記載の照明装置。
    The control circuit includes a voltage determining unit that determines a charging voltage of the first trigger capacitor;
    A trigger output value prediction unit that predicts a trigger output value based on the temperature information of the flash discharge tube and the determination result of the charge voltage of the first trigger capacitor, acquired from the temperature information acquisition unit and the voltage determination unit; In addition,
    2. The lighting device according to claim 1, wherein when the trigger output value falls below a predetermined value, the lighting device according to claim 1, wherein at least one trigger capacitor is connected in parallel to the first trigger capacitor.
  3. 前記閃光放電管の温度情報と前記第1トリガコンデンサの充電電圧の判別結果から、前記トリガ出力値が前記規定値を下回ると判断される場合、
    前記第1トリガコンデンサと、少なくとも一つ以上の前記トリガコンデンサを前記トリガトランスの1次側に直列接続を行う接続構成を有する請求項1に記載の照明装置。
    From the determination result of the temperature information of the flash discharge tube and the charging voltage of the first trigger capacitor, when the trigger output value is determined to be below the specified value,
    The lighting device according to claim 1, wherein the lighting device has a connection configuration in which the first trigger capacitor and at least one trigger capacitor are connected in series to a primary side of the trigger transformer.
  4. 前記接続構成が、前記第1トリガコンデンサと、少なくとも一つ以上の前記トリガコンデンサの直列接続、並列接続または直列並列接続構成である請求項2または請求項3のいずれか1項に記載の照明装置。 4. The lighting device according to claim 2, wherein the connection configuration is a series connection, a parallel connection, or a series-parallel connection configuration of the first trigger capacitor and at least one of the trigger capacitors. 5. .
  5. 前記発光情報は、前記閃光放電管の発光回数、発光光量および発光間隔、また発光時における前記閃光放電管の位置情報を含む請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the light emission information includes the number of times of light emission of the flash discharge tube, the light emission amount and the light emission interval, and positional information of the flash discharge tube at the time of light emission.
  6. 前記制御回路は、取得した前記発光情報から、予め規定した発光欠けが生じる条件を満足したと判断される場合、
    前記発光制御素子を非導通状態としたまま、前記閃光放電管に少なくとも1回以上のトリガ電圧の印加を行う請求項1に記載の照明装置。
    When it is determined from the acquired light emission information that the control circuit satisfies a condition for causing a predetermined lack of light emission,
    The lighting device according to claim 1, wherein a trigger voltage is applied to the flash discharge tube at least once while the light emission control element is in a non-conductive state.
  7. 前記閃光放電管の前記温度情報は、前記閃光放電管の前記発光情報から演算することにより取得する請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the temperature information of the flash discharge tube is obtained by calculating from the light emission information of the flash discharge tube.
  8. 前記温度情報取得部は、前記閃光放電管または前記閃光放電管の近傍に配置した温度検出素子から前記閃光放電管の温度を取得する請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the temperature information acquisition unit acquires the temperature of the flash discharge tube from the flash discharge tube or a temperature detection element disposed in the vicinity of the flash discharge tube.
  9. 前記制御回路は、前記閃光放電管が最後に発光してからの経過時間を取得記録する経過時間計測記録部を、さらに有し、
    前記経過時間計測記録部で取得した前記経過時間を前記発光情報として用いる請求項1に記載の照明装置。
    The control circuit further includes an elapsed time measurement recording unit that acquires and records an elapsed time since the flash discharge tube last emitted light,
    The lighting device according to claim 1, wherein the elapsed time acquired by the elapsed time measurement recording unit is used as the light emission information.
  10. 電源投入時において、前記発光制御素子を非導通としたまま、前記閃光放電管に少なくとも1回以上の前記トリガ電圧の印加を行う請求項1に記載の照明装置。 The lighting device according to claim 1, wherein at the time of turning on the power, the trigger voltage is applied to the flash discharge tube at least once while the light emission control element is kept non-conductive.
  11. 請求項1に記載の照明装置を搭載する撮像装置。 An imaging device equipped with the illumination device according to claim 1.
PCT/JP2014/004749 2013-09-19 2014-09-16 Illumination device, and imaging device WO2015040853A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013193831A JP2015060081A (en) 2013-09-19 2013-09-19 Imaging apparatus and stroboscopic device
JP2013-193831 2013-09-19
JP2014019053A JP2015145986A (en) 2014-02-04 2014-02-04 Illuminating device
JP2014-019053 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015040853A1 true WO2015040853A1 (en) 2015-03-26

Family

ID=52688517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004749 WO2015040853A1 (en) 2013-09-19 2014-09-16 Illumination device, and imaging device

Country Status (1)

Country Link
WO (1) WO2015040853A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186468A (en) * 1996-12-25 1998-07-14 Canon Inc Flash light emitting device
JP2001117148A (en) * 1999-10-15 2001-04-27 Canon Inc Stroboscopic device and camera equipped therewith
JP2008009052A (en) * 2006-06-28 2008-01-17 Fujifilm Corp Stroboscopic device and photographing device
JP2009139519A (en) * 2007-12-05 2009-06-25 Canon Inc Stroboscope device and imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186468A (en) * 1996-12-25 1998-07-14 Canon Inc Flash light emitting device
JP2001117148A (en) * 1999-10-15 2001-04-27 Canon Inc Stroboscopic device and camera equipped therewith
JP2008009052A (en) * 2006-06-28 2008-01-17 Fujifilm Corp Stroboscopic device and photographing device
JP2009139519A (en) * 2007-12-05 2009-06-25 Canon Inc Stroboscope device and imaging apparatus

Similar Documents

Publication Publication Date Title
JP4845613B2 (en) Battery charger with power capacitor life diagnosis function
WO2015040853A1 (en) Illumination device, and imaging device
TW200941794A (en) Activation device for lead-acid battery
JP2014035366A (en) Light emission device, and method and program for controlling the same
JP2003202617A (en) Capacitor charging device and stroboscope charging device for camera
WO2015170477A1 (en) Lighting device and imaging device
US20090261788A1 (en) Discharge apparatus, method of controlling discharge apparatus, and imaging apparatus
JP2015060081A (en) Imaging apparatus and stroboscopic device
EP3487056B1 (en) Combined current, voltage and zero crossing detection with zero drain in standby
JP2006064683A (en) Degradation determining device of secondary battery
JP6171249B2 (en) Emergency lighting system
JP2015145986A (en) Illuminating device
WO2021053798A1 (en) Power supply device and lifespan diagnosis method
JP2011249135A (en) Lighting device, and lighting fixture and vehicle having the same
JP5111819B2 (en) Permission signal generation circuit and power supply circuit for flash discharge tube using the same
US20140117863A1 (en) Strobe Device and Electric Power Supply Method Therefor
JP7380396B2 (en) emergency lighting system
JP2001013560A (en) Flashing light emitting device
JP4816470B2 (en) CHARGE CONTROL DEVICE, CHARGE CONTROL METHOD, CHARGE CONTROL PROGRAM
JP2007099028A (en) Method and device for determining deterioration of storage battery for starting engine, and storage battery for starting engine with deterioration determining device
JP2009236962A (en) Image forming apparatus and method of measuring capacitance of capacitor thereof
JP2012048001A (en) Light emitting device
JP6021453B2 (en) LIGHT EMITTING DEVICE, ITS CONTROL METHOD, AND CONTROL PROGRAM
CN111313373B (en) Power supply circuit, circuit fault detection method, circuit board and vehicle-mounted air conditioner
JP2007227153A (en) Electronic flash device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846629

Country of ref document: EP

Kind code of ref document: A1