WO2015039570A1 - 一种拱坝变形三维位移自动化监测方法 - Google Patents

一种拱坝变形三维位移自动化监测方法 Download PDF

Info

Publication number
WO2015039570A1
WO2015039570A1 PCT/CN2014/086002 CN2014086002W WO2015039570A1 WO 2015039570 A1 WO2015039570 A1 WO 2015039570A1 CN 2014086002 W CN2014086002 W CN 2014086002W WO 2015039570 A1 WO2015039570 A1 WO 2015039570A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
monitoring
end point
segment
displacement
Prior art date
Application number
PCT/CN2014/086002
Other languages
English (en)
French (fr)
Inventor
卢欣春
胡波
刘冠军
李学胜
王军涛
Original Assignee
国网电力科学研究院
南京南瑞集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网电力科学研究院, 南京南瑞集团公司 filed Critical 国网电力科学研究院
Publication of WO2015039570A1 publication Critical patent/WO2015039570A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/02Fixed barrages
    • E02B7/04Dams across valleys
    • E02B7/08Wall dams
    • E02B7/12Arch dams

Definitions

  • the invention relates to an automatic monitoring method for three-dimensional displacement of arch dam deformation, belonging to the technical field of displacement measurement.
  • the arch dam displacement monitoring methods mainly include the vertical line method, the bimetallic tube standard method, and the static level method.
  • the vertical line is used to monitor the deflection (horizontal displacement) of specific parts of the dam
  • the bimetallic pipe standard and static level are used to monitor the subsidence of specific parts. Due to the structure of the arch dam, the number of vertical lines and bimetallic pipe labels that can be set for each arch dam is extremely limited, so that the number of parts that can be monitored in the arch dam is relatively small.
  • the static level can be set as a device for monitoring subsidence, but the instrument can only measure the direction of subsidence, and the displacement change in the horizontal direction cannot be measured.
  • the Chinese patent number is ZL200410073525.4, which discloses the use of a two-way detection symmetric closed-loop system, that is, two-way monitoring, the relative displacement between two measuring points by a symmetrical laser emitter and laser
  • the receiver completes the measurement and can measure the displacement changes at multiple locations at the same time.
  • the transmission monitoring of the rotation angle parameters of the platform itself is added at each measurement platform, that is, the measured parameters include x, y. , z (three-coordinate displacement) and Lax, Laz (the platform itself corner parameters), and then perform mathematical calculations.
  • the monitoring parameters are excessively redundant with respect to actual needs, the structure is particularly complicated, the reliability is low, and the cost is high.
  • the Chinese patent number is ZL97214241.X, which discloses a full-automatic tracing monitoring method for three-dimensional deformation of arch dams.
  • the method has a fistula between two measuring points.
  • the material of the fistula is not specifically explained, and the fistula is filled with ⁇ .
  • Gas the system transmits the laser in the manifold, and the pipeline does not evacuate. This method cannot fundamentally solve the optical path refraction error generated during laser transmission.
  • the manifold also serves as a relative displacement change monitoring device for the two ends, which is greatly affected by temperature.
  • the object of the present invention is to provide a relatively simple and practical method for three-dimensional monitoring of arch dam deformation, optimize the measurement procedure, simplify the measuring device, improve the measurement reliability and reduce the measurement. cost.
  • An automatic monitoring method for three-dimensional displacement deformation of arch dams is characterized in that the arch dam is divided into a plurality of straight line segments, and the displacement deformation of the arch dam is approximated by monitoring the physical quantity of each straight line segment; the method steps include the following steps: :
  • the laser beam of the laser emitter is transmitted to the laser receiving device in an approximately vacuum.
  • the invention can arrange the monitoring platform at the location where the monitoring is desired according to actual needs, and eliminates the problem that the dam body structure factors cannot be monitored in some parts.
  • the method adopts a one-way monitoring system, which can simultaneously monitor three-dimensional displacement, and solves the problem that the original measurement method can only monitor one-dimensional or two-dimensional defects.
  • the method combines the deformation of the actual dam body, and under the premise of ensuring the measurement validity and measurement accuracy, the rotation angle parameter monitoring of the platform part of the measuring point is cancelled, and only x, y, z (three-coordinate displacement) is measured, which satisfies Actual engineering needs, excellent
  • the measurement procedure is simplified, the structure and measuring device are simplified, the measurement reliability is improved and the measurement cost is reduced, the complexity of the system is greatly reduced, and the laser is transmitted in an approximate vacuum, which fundamentally solves the laser transmission.
  • the resulting optical path refraction error is simplified, the structure and measuring device are simplified, the measurement reliability is improved and the measurement cost is reduced, the complexity of the system is greatly reduced, and the laser is transmitted in an approximate vacuum, which fundamentally solves the laser transmission.
  • Figure 1 is a schematic sectional view of an arch dam
  • Figure 2 is an X-direction calculation view of two adjacent segments
  • Figure 3 is a Y-direction calculation view of two adjacent segments
  • Figure 4 is a Z-direction calculation view of two adjacent segments.
  • the present invention is an arch dam displacement monitoring method, which divides an arch dam into n segments, and measures three-dimensional displacement values at the end points of the first segment by other means, and monitors each segment end point relative to the upper portion.
  • the three-dimensional variation of an endpoint can be used to find the three-dimensional displacement values at the endpoints of all segments according to the transmission principle.
  • a platform is disposed at the second end point, and a laser receiving device and a laser emitter are mounted on the platform, and the laser receiving device receives the laser beam emitted from the first end point, and the receiving plane of the laser receiving device is perpendicular to the laser beam, and the laser emitter is Shooting to the third end point, likewise, setting a platform at the third end point, the platform is provided with a laser receiving device and a laser emitter, the laser receiving device receives the laser beam emitted by the second end point, and the receiving plane and the laser of the laser receiving device The beam is vertical, the laser emitter is directed at the 4th endpoint, and so on, up to the nth endpoint.
  • Only the laser receiver is disposed at the nth end point for receiving the laser light emitted by the n-1th end laser emitter, and the receiving plane of the laser receiving device is perpendicular to the laser beam. That is, a platform is disposed on the end of the m+1th segment, and the laser transmitter and the receiving laser receiving device for receiving the laser beam emitted from the end of the mth segment are mounted on the platform, and the laser receiving device The receiving plane is perpendicular to the laser beam, where m ⁇ 1 and m +1 ⁇ n.
  • the arrangement direction of the Invar ruler is consistent with the direction of laser irradiation, and the length is equivalent to the length of each segment.
  • the end of the Invar ruler at the first end is fixed, The other end is free to expand and contract.
  • the inferior ruler is fixed at the end of the second end point, the other end is free to expand and contract, and so on, up to the nth stage.
  • a monitoring device is provided at the free end of all Invars, which is fixed to the platform for monitoring the displacement of the point relative to the fixed end of the Invar.
  • the invention effectively reduces the influence of temperature by using a certain Invar material with a small coefficient of linear expansion when measuring the relative displacement of the points at both ends.
  • the method adopts the principle of sequential transmission of measuring points.
  • the first end point adopts the vertical line and the bimetallic tube standard to obtain the original measured value.
  • the three-dimensional displacement change of each end point relative to the previous end point is measured in turn. , in turn, can be calculated to calculate the three-dimensional displacement change value of each endpoint.
  • the i-th moves from the O (i) point to O' (i) , where the three-dimensional coordinates after the change at the i-1th point are known, respectively: ⁇ X (i-1, i) , ⁇ Y (i -1, i) and ⁇ Z (i-1, i) , the above three three-dimensional relative displacement values are all values in the X (i-1) O (i-1) Y (i-1) coordinate system. Find the three-dimensional displacements ⁇ X (i) , ⁇ Y (i) and ⁇ Z (i) at the ith in the X (i) O (i) Y (i) coordinate system.
  • A AB+BC+C O (i) ;
  • BC ⁇ X (i-1, i) ;
  • ⁇ X (i) ( ⁇ X (i-1, i) + ⁇ X (i-1) + ⁇ Y (i) ⁇ (sin ⁇ )) / (cos ⁇ ) (1)
  • BC ⁇ Y (i-1, i) ;
  • ⁇ X (i) and ⁇ Y (i) can be obtained by combining the two equations (1) and (2 ) .
  • ⁇ Z (i) ⁇ Z (i-1) + ⁇ Z (i-1, i) (3)
  • the three-dimensional displacements ⁇ X (i) , ⁇ Y (i) and ⁇ Z (i) at the i-th are all calculated.
  • the three-dimensional displacement value of the first place is measured by other means, and the three-dimensional variation of each position relative to the previous position is monitored, the three-dimensional displacement value at all the segment end points can be obtained according to the transmission principle.
  • the method of the invention is simple, feasible, convenient for engineering implementation and meets the needs of actual engineering monitoring, and provides an effective means for automatic monitoring of three-dimensional displacement of arch dams.
  • this law can deploy monitoring platforms in the parts that are expected to be monitored according to actual needs, eliminating the problem that the dam body structure factors can not be monitored in some parts.
  • the method can simultaneously monitor the three-dimensional displacement, and solves the problem that the original measurement method can only monitor one-dimensional or two-dimensional defects.
  • the method combines the deformation of the actual dam body, and under the premise of ensuring the measurement validity and measurement accuracy, the corner parameter monitoring of the measuring platform part is eliminated, the measurement procedure is optimized, the measuring device is simplified, and the measurement reliability is improved. And reduce the cost of measurement.

Abstract

一种拱坝变形三维位移自动化监测方法,其是将拱坝分成n段,测得第1段端点处的三维位移值,且监测每段端点相对于上一端点的三维变化量,根据传递原理即可求所有分段端点处的三维位移值。解决了原有测量方法只能监测一维或二维的缺陷,取消了测点平台部位的转角参数监测,优化了测量程序,简化了测量装置,提高了测量可靠性且降低了测量成本。

Description

一种拱坝变形三维位移自动化监测方法 技术领域
本发明涉及一种拱坝变形三维位移自动化监测方法,属于位移测量技术领域。
背景技术
目前,拱坝位移监测方法主要有垂线法、双金属管标法、静力水准法等。其中垂线用于监测坝体特定部位的挠度(水平位移),双金属管标和静力水准用于监测特定部位的沉陷。因拱坝的结构所限,每个拱坝所能设置的垂线和双金属管标数量极其有限,以至于拱坝中能监测的部位相对较少。静力水准作为监测沉陷的仪器可以设置多处,但该仪器只能测量沉陷方向,水平方向的位移变化无法测量。
前期有一种对称闭合激光拱坝变形监测方法,其中国专利号为ZL200410073525.4,其公开采用了双向检测对称闭环系统,即采用双向监测,两测点间相对位移由对称的激光发射器和激光接收器完成测量,可以同时测量多处的位移变化,但由于该方法采用激光来回照射的设计,同时在每个测量平台处增加了平台本身转角参数的传递监测,即测量的参数包括x,y,z(三坐标位移)和Lax,Laz(平台本身转角参数),再进行数学计算。导致监测参数相对于实际需要冗余过度,结构特别复杂,可靠性低,成本很高。
此外,中国专利号为ZL97214241.X,其公开了一种拱坝三维变形全自动追迹监测方法,该方法在两测点间设置了氦管,氦管的材料没有特别交代,氦管内充满氦气,系统将激光在氦管内进行传输,管道不抽真空,该方法不能从本质上解决激光传输时产生的光路折射误差。而且氦管还作为两端点的相对位移变化监测装置,该方法受温度影响较大。
发明内容
为克服现有技术上的不足,本发明目的是提供一种相对简单实用,对拱坝变形可以进行三维监测的方法,优化了测量程序,简化了测量装置,提高了测量可靠性且降低了测量成本。
为实现上述目的,本发明的技术方案如下:
一种拱坝变形三维位移自动化监测方法,其特征在于,其是将拱坝分成若干直线分段,通过对每个直线分段的监测物理量来近似模拟拱坝的位移变形;其方法步骤包括如下:
1)将拱坝分成若干个直线分段;将拱坝从拱坝前端点向后端点依次分为若干个直线分段;
2)在直线分段上安装激光发射装置和激光接收装置;将每一直线分段的端点上安装激光发射器,且在每两直线分段交接处的端点上均设置有一平台,在所述平台上安装所述的激光发射器和用于接收前一直线分段的端点发射过来的激光光束的激光接收装置,位于前一直线分段的端点的激光发射器照射方向指向后一直线分段的端点,并使发射出的激光通过真空管道传输至激光接收装置,所述激光接收装置的接收平面与激光发射器的激光光束垂直;
3)监测每一分段处的位移变化;在每一直线分段处安装一传递位移变化的殷钢尺,所述殷钢尺的布设方向与激光照射方向一致,长度与每一分段的长度相等;
4)监测每一直线分段的端点相对于殷钢尺固定端的位移;将上述步骤3)中的每一殷钢尺的一端头固定在直线分段的端点处,所述殷钢尺的另一端自由伸缩,在每一殷钢尺的另一端上设置一监测装置,该监测装置固定于平台上,用来监测该点相对于殷钢固定端的位移;
5)计算每个直线分段端点的三维位移变化值;采用测点依次传递的原理,第1直线分段的端点采用垂线或双金属管标的方法得到原始测值,从第2直线分段的端点开始,通过监测装置依次测量每一端点相对于上一端点的三维位移变化,依次传递下去,即可算得每个端点的三维位移变化值。
所述激光发射器的激光光束在近似真空中进行传输至激光接收装置。
本发明的有益效果如下:
本发明可根据实际需要在期望监测的部位布设监测平台,消除了坝体结构因素导致某些部位无法监测的问题。同时该方法采用单向监测系统,能够同时监测三维位移,解决了原有测量方法只能监测一维或二维的缺陷。另外,该方法结合实际坝体的变形情况,在保证测量有效性和测量精度的前提下,取消了测点平台部位的转角参数监测,只测量x,y,z(三坐标位移),既满足实际工程需求,优 化了测量程序,简化了结构和测量装置,提高了测量可靠性且降低了测量成本,极大地减少了系统的复杂程度;并且采用激光在近似真空中进行传输,从根本上解决了激光传输时产生的光路折射误差。
附图说明
图1为拱坝分段示意图;
图2为相邻两分段X向计算视图;
图3为相邻两分段Y向计算视图;
图4为相邻两分段Z向计算视图。
具体实施方式
下面参照附图并结合实施例对本发明作进一步的详细描述。
参见图1-图4,本发明是一种拱坝位移监测方法,其是将拱坝分成n段,通过其他手段测得第1段端点处的三维位移值,且监测每段端点相对于上一端点的三维变化量,根据传递原理即可求所有分段端点处的三维位移值,该方法具体步骤如下:
1)将拱坝分成n段,n=1,2,…i-1,i,i+1,…n,其中i为自然数,依次将每一段的端点从拱坝的一端点向另一端进行编号,编号为1,2,…i,i+1,…n。
2)在编号为1的端点位置安装一激光发射器,其照射方向指向第二端点。在第2端点处设置一平台,平台上安装一激光接收装置和激光发射器,激光接收装置接收第1端点发射过来的激光光束,且激光接收装置的接收平面与激光光束垂直,激光发射器则射向第3端点,同样,在第3端点设置一平台,平台上安装一激光接收装置和激光发射器,激光接收装置接收第2端点发射过来的激光光束,且激光接收装置的接收平面与激光光束垂直,激光发射器则射向第4端点,以此类推,直至第n端点。第n端点处只设置激光接收器,用来接收第n-1端点激光发射器发射过来的激光,且激光接收装置的接收平面与激光光束垂直。即位于第m+1段的端点上设置有一平台,所述平台上安装所述的激光发射器和用于接收第m段端点发射过来的激光光束的接收激光接收装置,所述激光接收装置的接收平面与激光光束垂直,其中,m≥1,且m+1≤n。
3)在每一直线分段处安装一传递位移变化的殷钢尺,殷钢尺的布设方向与激光照射方向一致,长度与每一分段的长度相当。第1端点处的殷钢尺端头固定, 另一端自由伸缩。第2段殷钢尺位于第2端点处的端头固定,另一端自由伸缩,以此类推,直至第n段。在所有殷钢尺自由端设置一监测装置,该装置固定于平台上,用来监测该点相对于殷钢固定端的位移。本发明通过在测量两端点的相对位移变化时采用的是特定的线胀系数很小的殷钢材料,有效地减小了温度的影响。
4)该方法采用测点依次传递的原理,第1端点采用垂线,双金属管标等方法得到原始测值,从第2端点开始,依次测量每一端点相对于上一端点的三维位移变化,依次传递下去,即可算得每个端点的三维位移变化值。
数学关系推导:
不失一般性,取第i-1和第i两段进行理论计算。首先确立坐标系:坐标系采用右手法则,水平平面为XOY平面,竖直方向为Z向。第i-1处的坐标系为X(i-1)O(i-1)Y(i-1),第i处的坐标系为X(i)O(i)Y(i),两坐标系间的夹角为θ。设第i-1处从O(i-1)点移到O′(i-1),该位移变化的三维坐标已知,分别为:ΔX(i-1),ΔY(i-1)和ΔZ(i-1)。第i处从O(i)点移到O′(i),该处相对于的第i-1处变化后的三维坐标已知,分别为:ΔX(i-1,i),ΔY(i-1,i)和ΔZ(i-1,i),上述三个三维相对位移值均为X(i-1)O(i-1)Y(i-1)坐标系下的数值。在X(i)O(i)Y(i)坐标系下求第i处的三维位移ΔX(i),ΔY(i)和ΔZ(i)
由图2可知:
ΔX(i)=O(i)A/(cosθ);
O(i)A=AB+BC+C O(i)
AB=O(i)D=ΔY(i)·(sinθ)
其中:
BC=ΔX(i-1,i)
C O(i)=ΔX(i-1)
联立上式可得:
ΔX(i)=(ΔX(i-1,i)+ΔX(i-1)+ΔY(i)·(sinθ))/(cosθ)   (1)
由图3可知:
O(i)C=O(i)B+BC=O(i)A+AC;
AC=DE;
其中:
O(i)B=ΔY(i-1)
BC=ΔY(i-1,i)
DE=ΔX(i)·(sinθ);
O(i)A=ΔY(i)·(sinθ);
联立上式可得:
ΔY(i)·(sinθ)+ΔX(i)·(sinθ)=ΔY(i-1)+ΔY(i-1,i);   (2)
联立(1)(2)两式即可求得ΔX(i)和ΔY(i)
由图4可知:
O(i)B=O(i)A+AB;
其中:
O(i)A=ΔZ(i-1)
AB=ΔZ(i-1,i)
O(i)B=ΔZ(i)
联立上式可得:
ΔZ(i)=ΔZ(i-1)+ΔZ(i-1,i)   (3)
至此,第i处的三维位移ΔX(i),ΔY(i)和ΔZ(i)全部计算得到。综上,只要通过其他手段测得第1处的三维位移值,且监测到每处相对于上一处的三维变化量,根据传递原理即可求所有分段端点处的三维位移值。
通过实践可知,本发明的方法简单、可行、便于工程实施且符合实际工程监测需要,为拱坝的三维位移自动化监测提供了一种有效的手段。
而且本法可根据实际需要在期望监测的部位布设监测平台,消除了坝体结构因素导致某些部位无法监测的问题。同时该方法能够同时监测三维位移,解决了原有测量方法只能监测一维或二维的缺陷。另外,该方法结合实际坝体的变形情况,在保证测量有效性和测量精度的前提下,取消了测点平台部位的转角参数监测,优化了测量程序,简化了测量装置,提高了测量可靠性且降低了测量成本。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有 各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (2)

  1. 一种拱坝变形三维位移自动化监测方法,其特征在于,其是将拱坝分成若干直线分段,通过对每个直线分段的监测物理量来近似模拟拱坝的位移变形;其方法步骤包括如下:
    1)将拱坝分成若干个直线分段;将拱坝从拱坝前端点向后端点依次分为若干个直线分段;
    2)在直线分段上安装激光发射装置和激光接收装置:在每一直线分段的端点上安装激光发射器,且在每两直线分段交接处的端点上均设置有一平台,在所述平台上安装所述的激光发射器和用于接收前一直线分段的端点发射过来的激光光束的激光接收装置,位于前一直线分段的端点的激光发射器照射方向指向后一直线分段的端点,并使发射出的激光通过真空管道传输至激光接收装置,所述激光接收装置的接收平面与激光发射器的激光光束垂直;
    3)监测每一分段处的位移变化;在每一直线分段处安装一传递位移变化的殷钢尺,所述殷钢尺的布设方向与激光照射方向一致,长度与每一分段的长度相等;
    4)监测每一直线分段的端点相对于殷钢尺固定端的位移;将上述步骤3)中的每一殷钢尺的一端头固定在直线分段的端点处,所述殷钢尺的另一端自由伸缩,在每一殷钢尺的另一端上设置一监测装置,该监测装置固定于平台上,用来监测该点相对于殷钢固定端的位移;
    5)计算每个直线分段端点的三维位移变化值;采用测点依次传递的原理,第1直线分段的端点采用垂线或双金属管标的方法得到原始测值,从第2直线分段的端点开始,通过监测装置依次测量每一端点相对于上一端点的三维位移变化,依次传递下去,即可算得每个端点的三维位移变化值。
  2. 根据权利要求1所述的拱坝变形三维位移自动化监测方法,其特征在于,所述激光发射器的激光光束在近似真空中进行传输至激光接收装置。
PCT/CN2014/086002 2013-09-23 2014-09-05 一种拱坝变形三维位移自动化监测方法 WO2015039570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310443377.X 2013-09-23
CN201310443377.XA CN103499336A (zh) 2013-09-23 2013-09-23 一种拱坝变形三维位移自动化监测方法

Publications (1)

Publication Number Publication Date
WO2015039570A1 true WO2015039570A1 (zh) 2015-03-26

Family

ID=49864567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086002 WO2015039570A1 (zh) 2013-09-23 2014-09-05 一种拱坝变形三维位移自动化监测方法

Country Status (2)

Country Link
CN (1) CN103499336A (zh)
WO (1) WO2015039570A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228656A (zh) * 2017-07-19 2017-10-03 中国电建集团中南勘测设计研究院有限公司 用于监测裂缝三向变形的组件及监测方法
CN108225262A (zh) * 2018-01-04 2018-06-29 重庆市勘测院 基于亚毫米位移传感器的隧道断面沉降测量装置、系统及方法
CN111694916A (zh) * 2020-06-09 2020-09-22 福州大学 浆砌石拱坝自动化监测系统
CN112257153A (zh) * 2020-10-20 2021-01-22 黄河勘测规划设计研究院有限公司 一种拱坝弦长计算方法及系统
CN112304274A (zh) * 2020-09-11 2021-02-02 雅砻江流域水电开发有限公司 一种基于阵列式位移计的心墙坝沉降监测方法
CN112964191A (zh) * 2021-03-25 2021-06-15 四川合众精准科技有限公司 一种微变形激光准直测量方法
CN114152242A (zh) * 2021-12-18 2022-03-08 浙江省正邦水电建设有限公司 坝体水平位移监测垂线护管预埋施工方法
CN114777729A (zh) * 2022-05-20 2022-07-22 安徽建筑大学 一种巷道开挖后应力场偏转的测试分析方法和系统
CN115876260A (zh) * 2023-03-07 2023-03-31 四川省水利科学研究院 一种大坝结构施工用质量检测装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499336A (zh) * 2013-09-23 2014-01-08 国家电网公司 一种拱坝变形三维位移自动化监测方法
CN103791882B (zh) * 2014-02-28 2016-05-25 中国电建集团昆明勘测设计研究院有限公司 一种拱坝全变形监测方法
CN104048609B (zh) * 2014-06-28 2017-01-11 长沙矿山研究院有限责任公司 非接触式岩体三维空间位移量监测方法
CN104318030B (zh) * 2014-10-31 2017-09-29 中国电建集团成都勘测设计研究院有限公司 基于变形等效的拱坝坝基综合变形模量自动化计算方法
CN105806310A (zh) * 2016-04-25 2016-07-27 绍兴文理学院 用激光测距仪监测隧道洞口边仰坡地表三维位移的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196475A (zh) * 1997-04-15 1998-10-21 董伟 拱坝三维变形全自动追迹监测方法
JP2004294389A (ja) * 2003-03-28 2004-10-21 Furuno Electric Co Ltd 変位検出装置および変位検出方法
CN1632461A (zh) * 2004-12-29 2005-06-29 西安华腾光电有限责任公司 对称闭合激光拱坝变形监测方法
EP1857595A1 (de) * 2006-05-17 2007-11-21 Sächsisches Textilforschungsinstitut e.V. Verwendung eines multifunktionalen, sensorbasierten Geotextilsystems zur Deichertüchtigung, für räumlich ausgedehntes Deichmonitoring sowie für die Gefahrenerkennung im Hochwasserfall
CN101231156A (zh) * 2007-01-25 2008-07-30 张立英 土石坝位移分段激光准直监测方法
CN103499336A (zh) * 2013-09-23 2014-01-08 国家电网公司 一种拱坝变形三维位移自动化监测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235013C (zh) * 2003-11-28 2006-01-04 大连理工大学 一种真空激光坝变形测量方法
JP5565576B2 (ja) * 2010-09-10 2014-08-06 タマヤ計測システム株式会社 ダム堤体の変位測定装置および変位測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196475A (zh) * 1997-04-15 1998-10-21 董伟 拱坝三维变形全自动追迹监测方法
JP2004294389A (ja) * 2003-03-28 2004-10-21 Furuno Electric Co Ltd 変位検出装置および変位検出方法
CN1632461A (zh) * 2004-12-29 2005-06-29 西安华腾光电有限责任公司 对称闭合激光拱坝变形监测方法
EP1857595A1 (de) * 2006-05-17 2007-11-21 Sächsisches Textilforschungsinstitut e.V. Verwendung eines multifunktionalen, sensorbasierten Geotextilsystems zur Deichertüchtigung, für räumlich ausgedehntes Deichmonitoring sowie für die Gefahrenerkennung im Hochwasserfall
CN101231156A (zh) * 2007-01-25 2008-07-30 张立英 土石坝位移分段激光准直监测方法
CN103499336A (zh) * 2013-09-23 2014-01-08 国家电网公司 一种拱坝变形三维位移自动化监测方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228656B (zh) * 2017-07-19 2023-05-09 中国电建集团中南勘测设计研究院有限公司 用于监测裂缝三向变形的组件及监测方法
CN107228656A (zh) * 2017-07-19 2017-10-03 中国电建集团中南勘测设计研究院有限公司 用于监测裂缝三向变形的组件及监测方法
CN108225262A (zh) * 2018-01-04 2018-06-29 重庆市勘测院 基于亚毫米位移传感器的隧道断面沉降测量装置、系统及方法
CN108225262B (zh) * 2018-01-04 2023-11-03 重庆市勘测院 基于亚毫米位移传感器的隧道断面沉降监测的方法
CN111694916A (zh) * 2020-06-09 2020-09-22 福州大学 浆砌石拱坝自动化监测系统
CN111694916B (zh) * 2020-06-09 2022-12-13 福州大学 浆砌石拱坝自动化监测系统
CN112304274A (zh) * 2020-09-11 2021-02-02 雅砻江流域水电开发有限公司 一种基于阵列式位移计的心墙坝沉降监测方法
CN112257153A (zh) * 2020-10-20 2021-01-22 黄河勘测规划设计研究院有限公司 一种拱坝弦长计算方法及系统
CN112257153B (zh) * 2020-10-20 2023-08-01 黄河勘测规划设计研究院有限公司 一种拱坝弦长计算方法及系统
CN112964191A (zh) * 2021-03-25 2021-06-15 四川合众精准科技有限公司 一种微变形激光准直测量方法
CN114152242A (zh) * 2021-12-18 2022-03-08 浙江省正邦水电建设有限公司 坝体水平位移监测垂线护管预埋施工方法
CN114152242B (zh) * 2021-12-18 2024-04-05 浙江省正邦水电建设有限公司 坝体水平位移监测垂线护管预埋施工方法
CN114777729A (zh) * 2022-05-20 2022-07-22 安徽建筑大学 一种巷道开挖后应力场偏转的测试分析方法和系统
CN115876260A (zh) * 2023-03-07 2023-03-31 四川省水利科学研究院 一种大坝结构施工用质量检测装置

Also Published As

Publication number Publication date
CN103499336A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
WO2015039570A1 (zh) 一种拱坝变形三维位移自动化监测方法
CN101571379B (zh) 一种无缝圆形钢管直径及直线度参数测量的方法
CN103292732B (zh) 一种可伸缩式的大型自由曲面在机测量装置
CN104075656B (zh) 激光干涉仪的准直偏差检测及消除方法
CN107264724A (zh) 机舱曲面反态分段中用于舾装管系安装的基准线设计方法
CN103307984A (zh) 一种用于可调桨叶片的激光测量装置、系统及方法
CN104897061A (zh) 一种全站仪与三维激光扫描联合的大型海工装备测量方法
CN106643643A (zh) 一种非接触式目标坐标的测量方法
CN102288123A (zh) 一种用于焊接变形三维非接触式测量的精确定位方法
CN104390632A (zh) 一种全站仪视准线法水平位移观测台及其使用方法
CN106225710A (zh) 基于误差修正的列车轮踏面三维轮廓自动化测量方法和系统
CN106767512A (zh) 基于实时监测运动误差的光学元件高精度测量装置
CN205300497U (zh) 位置敏感探测器定位误差的标定装置
CN106017354A (zh) 列车轮对踏面三维轮廓自动化测量方法和系统
CN106052589A (zh) 列车轮对踏面标准滚动圆廓形自动化测量方法和系统
CN106646498B (zh) 一种掘进机横向偏移测量方法
CN101864709B (zh) 一种高速铁路大跨度连续梁上cpⅲ点位移动控制方法
CN100405009C (zh) 对称闭合激光拱坝变形监测方法
CN203274694U (zh) 一种可伸缩式的大型自由曲面在机测量装置
CN105588512B (zh) 类矩形隧道管片构件尺寸的测量装置与方法
CN110428471A (zh) 一种针对光学自由曲面子孔径偏折测量的精确自定位方法
CN202788804U (zh) 测量定向井工程角差用的激光标定装置
CN212300315U (zh) 一种顶管机姿态测量系统
CN109443211A (zh) 一种空间三维位置测量装置
CN103256944B (zh) 一种顶管自动测量导向系统大气折光误差消除方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845894

Country of ref document: EP

Kind code of ref document: A1