WO2015039552A1 - 补充飞轮电池能量的弹力充能装置 - Google Patents

补充飞轮电池能量的弹力充能装置 Download PDF

Info

Publication number
WO2015039552A1
WO2015039552A1 PCT/CN2014/085458 CN2014085458W WO2015039552A1 WO 2015039552 A1 WO2015039552 A1 WO 2015039552A1 CN 2014085458 W CN2014085458 W CN 2014085458W WO 2015039552 A1 WO2015039552 A1 WO 2015039552A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
flywheel
wheel
friction wheel
pulley
Prior art date
Application number
PCT/CN2014/085458
Other languages
English (en)
French (fr)
Inventor
黄捷
Original Assignee
黄捷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄捷 filed Critical 黄捷
Priority to CN201480038792.XA priority Critical patent/CN105378272B/zh
Publication of WO2015039552A1 publication Critical patent/WO2015039552A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors
    • F03G3/08Other motors, e.g. gravity or inertia motors using flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage

Definitions

  • the invention relates to the field of flywheel batteries (or flywheel energy storage devices), and in particular to a device for replenishing energy of a flywheel battery.
  • flywheel battery breaks through the limitations of chemical batteries and uses physical methods to achieve energy storage.
  • the flywheel rotates at a certain angular velocity, it has a certain kinetic energy, and the flywheel battery is converted into electric energy by its kinetic energy.
  • flywheel batteries are expected to be the most promising energy storage batteries due to their high efficiency, short charging time, small relative size, and clean and pollution-free.
  • the working principle of the flywheel battery There is a motor (electric/generator integrated machine) in the flywheel battery.
  • the motor runs in the form of a motor, and the externally input electric energy is converted into the kinetic energy of the flywheel by the motor, that is, the flywheel battery is charged.
  • the motor rotates in the form of a generator, and the kinetic energy of the flywheel is converted into electric energy by the generator, and is output to an external load, that is, the flywheel battery is "discharged".
  • the flywheel battery is placed in a vacuum box and uses magnetic suspension bearings to support the rotating components.
  • Flywheel battery has high energy storage density and relatively small size. It is especially suitable for carrying in the field without power supply. Especially for bikers who travel by bicycle, it is necessary to have a laptop, radio, and high power lighting support. Power flywheel battery. However, the flywheel battery can only drive the generator in the vacuum box to drive the flywheel to rotate, so that the flywheel stores kinetic energy, but there is no power supply in the field to charge the flywheel battery.
  • the flywheel battery must be operated in a vacuum box, and the flywheel inside the vacuum box can be driven by a magnetic method.
  • the magnetic drive component in the device must be automatically separated from the flywheel to avoid unnecessary energy consumption of the flywheel.
  • a specific technical solution of the present invention includes: a flywheel battery, a vacuum box thereof, and a flywheel and a generator in the vacuum box, wherein the method further comprises:
  • Elastic drive mechanism the first positioning pile, the second positioning pile, the elastic rope assembly, the index rope, the limit assembly, the pressure wheel, the pulley, the speed increaser, the first friction wheel, the second friction wheel; One end is connected to the first end of the elastic rope assembly, and the other end is connected to the limiting component; the second end of the elastic rope assembly is connected with the second positioning pile fixed to the ground; the first positioning pile The second positioning pile is fixed to the ground at a certain distance and is connected to the vacuum box; the pulley is disposed under the vacuum box, the vacuum box is connected to the pulley and the pressure wheel through the side plate; the index rope is disposed on the pulley In the gap between the groove and the pressure wheel; the pulley, the speed increaser, the first friction wheel and the second friction wheel are connected in sequence; the second friction wheel is arranged on the upper part of the sliding rod outside the vacuum box; the second friction wheel is arranged along the circumference There are a plurality of first magnets; a ratchet assembly is arranged between the
  • a magnetic wheel is added to the vacuum box, one end of the flywheel is connected to the generator, the other end of the flywheel is connected with a magnetic wheel, and the magnetic wheel is provided with a plurality of second magnets along the circumference; the second magnet and the second magnet on the magnetic wheel The first magnets on the friction wheel are equal in number and one-to-one correspondence, and are coupled by a magnetic field; the magnetic wheel and the second friction wheel are concentric;
  • the automatic separating mechanism comprises: a guiding bolt, a first return spring, a wedge push rod mechanism, a sliding rod; an upper part of the sliding rod is connected with the vacuum box; a guiding bolt is arranged at an upper part of the sliding rod; the first return spring is arranged inside the guiding bolt, guiding a second friction wheel is disposed outside the bolt; the function of the automatic separating mechanism is: when the second friction wheel drives the rotation of the magnetic wheel, the magnetic wheel can be automatically moved away from the magnetic wheel;
  • the first positioning pile is spaced apart from the second positioning pile; then the elastic driving device is placed on the ground, and the first positioning pile is connected with the vacuum box of the flywheel battery;
  • the positioning pile is connected with the second end of the elastic rope assembly; the second friction wheel is mounted on the optical axis of the guiding bolt; at this time, the elastic rope is in a minimum tension state; then the pulling rope is pulled, and the first of the elastic rope assembly is pulled.
  • the elastic force of the elastic rope is gradually approached to the pulley, the elastic rope is elongated, and finally, the elastic rope on the elastic rope assembly is in the maximum tension state;
  • the traction rope is released, and the elastic rope assembly starts to contract by the elastic force of the elastic rope; during the contraction process, the elastic rope assembly drives the pulley to rotate by the traction rope, and the speed increaser increases the rotation speed of the pulley, and the output end of the speed increaser is driven.
  • the first friction wheel rotates, the first friction wheel drives the second friction wheel; the magnet on the second friction wheel and the magnet on the magnetic wheel in the vacuum box are coupled by a magnetic field, so that the second friction wheel drives the magnetic wheel and the flywheel in the vacuum box Rotating, the flywheel stores kinetic energy during rotation;
  • the kinetic energy of the flywheel is converted into electric energy by the generator and output to an external load.
  • the flywheel battery can simultaneously output electric energy to an external load.
  • the magnetic drive component in the elastic drive mechanism can be automatically separated from the flywheel battery to avoid unnecessary energy consumption of the flywheel.
  • FIG. 1 is a schematic overall view of the present invention in a stationary state.
  • Fig. 2 is a schematic overall view of the start of operation of the present invention.
  • Figure 3 is a partial perspective view of the present invention.
  • Figure 4 is a schematic illustration of the operation of the present invention to the final stage with the parts separated.
  • Figure 5 is a cross-sectional view taken along line F-F of Figure 4.
  • Fig. 6 is an enlarged view of a portion B in Fig. 5;
  • Fig. 7 is an enlarged view of a portion C in Fig. 6;
  • FIG. 8 is a partial schematic view showing the first friction wheel 17 and the second friction wheel 43 removed in FIG.
  • Fig. 9 is an enlarged view of a portion D in Fig. 8.
  • Figure 10 is a running process 1 of the present invention.
  • Fig. 11 is an enlarged view of a portion E in Fig. 10;
  • Figure 12 is a running process 2 of the present invention.
  • Fig. 13 is an enlarged view of a portion H in Fig. 12;
  • Figure 14 is a partial cross-sectional view taken along line A-A of Figure 5 (schematic diagram of the ratchet assembly).
  • Figure 15 is a schematic illustration of another embodiment.
  • Fig. 16 is an enlarged view of a portion J in Fig. 2;
  • the technical solution of the present invention mainly provides an elastic driving mechanism and an automatic separating mechanism outside the flywheel battery vacuum box 21 of the prior art, and a magnetic moving wheel 23 connected to the flywheel 22 is added to the vacuum box 21 of the flywheel battery ( See Figure 3).
  • the function of the elastic driving mechanism is to drive the flywheel 22 to rotate by using the elastic potential energy (see FIGS. 1 to 5), so that the flywheel 22 stores kinetic energy: it includes the first positioning pile 18, the second positioning pile 19, the elastic rope assembly 11, and the index rope 12 a limiting component 13, a pressure roller 14, a pulley 15, a speed increaser 16, a first friction wheel 17, and a second friction wheel 43; the first end 111 of the elastic cord assembly 11 is coupled to the index cord 12, and the second end 112 Connected to the second positioning pile 19 fixed to the ground; the first positioning pile 18 is fixed to the ground at a certain distance from the second positioning pile 19 and connected to the vacuum box 21; the pulley 15 is disposed below the vacuum box 21 (see 5), the vacuum box 21 is connected to the pulley 15 and the pressing wheel 14 through the side plate 26; one end of the indexing rope 12 is connected to the first end 111 of the elastic cord assembly 11, and the other end is connected to the limiting assembly 13 (see Fig.
  • the index line 12 is disposed in the gap between the groove 151 of the pulley and the pressure roller 14.
  • the function of the pressure roller 14 is to press the indexing string 12 into the groove 151 of the pulley 15, increasing the frictional force, so that the indexing rope 12 effectively drives the pulley 15 to rotate.
  • Bearings may be provided in the pressure roller 14 to avoid unnecessary power consumption;
  • the indexing cord 12 is preferably made of a lightweight nylon material. Metal chain sprocket sets are not used here because they reduce the load on the road.
  • the elastic cord assembly 11 mainly includes a first end 111, a plurality of elastic ropes 113 and a second end 112, and the first end 111 passes the bullet
  • the force cord 113 is connected to the second end 112.
  • the most commonly used material for making the elastic rope 113 is polyester and high-elastic yarn, which is light in weight and easy to carry.
  • the elastic cord assembly 11 does not use a metal spring with a heavy weight because it reduces the load on the road.
  • the pulley 15, the speed increaser 16, the first friction wheel 17 and the second friction wheel 43 are sequentially connected; the second friction wheel 43 is disposed at the upper portion of the slide bar 34 outside the vacuum box 21; The second friction wheel 43 is provided with a plurality of first magnets 431 along the circumference; a ratchet assembly 9 is provided between the pulley 15 and the input shaft 161 of the speed increaser 16 (see Figs. 5 and 14).
  • the limit assembly 13 includes a bumper 131, a limit spring 132, and a fixed block 133.
  • the bumper 131 can slide over the leash 12 and the retaining block 133 is secured to the leash 12.
  • a limit spring 132 is disposed between the bumper 131 and the fixed block 133.
  • the flywheel 22 is connected to a magnetic wheel 23, and the magnetic wheel 23 is provided with a plurality of second magnets 231 along the circumference; the second magnet 231 on the magnetic wheel 23 is The first magnets 431 on the second friction wheel 43 are equal in number and one-to-one correspondence, and are coupled by a magnetic field; to reduce friction consumption, a plurality of balls 182 are disposed on the end surface of the second friction wheel, as shown in FIG.
  • a chute 211 for the operation of the ball 182 is provided; the magnet wheel 23 is concentric with the second friction wheel 43; it should be noted that the parts close to the magnet wheel 23 and the second friction wheel 43 should be It is made of a non-magnetic material that is not easily magnetized to prevent the operation of the magnetic wheel 23 and the second friction wheel 43 from being disturbed.
  • the function of the automatic separating mechanism is that after the second friction wheel 43 drives the rotation of the magnetic wheel 23, it can automatically move away from the magnetic wheel 23, otherwise the first magnet 431 on the second friction wheel 43 The rotating magnetic wheel 23 generates a resistance that will consume the kinetic energy of the flywheel 22.
  • the automatic separating mechanism comprises a guiding bolt 31, a first return spring 32, a wedge push rod mechanism 33 (see FIG.
  • a sliding rod 34 an upper portion of the sliding rod 34 is connected with the vacuum box 21, and a guiding bolt 31 is disposed at an upper portion of the sliding rod 34;
  • the first return spring 32 is disposed inside the guide bolt 31, and functions to prevent the first return spring 32 from being pressed when the external force causes the guide bolt 31 to move in the direction of the magnetic wheel 23. As the external force for guiding the bolt 31 disappears, the first The return spring 32 resets the guide bolt 31.
  • a second friction wheel 43 is disposed outside the guide bolt 31.
  • the guide bolt 31 includes a slope 311, an optical axis 312, and a thread 313. The slope 311 is provided for the wedge 333 to be wedged (see Figs. 7 and 9).
  • the optical axis 312 is a small diameter of the screw hole 183 of the second friction wheel 43 that rotates on the optical axis 312.
  • the wedge push rod mechanism 33 mainly includes a second return spring 331, a push rod 332, and a wedge 333.
  • the second return spring 331 When the impact block 131 pushes the push rod 332 (at this time, the second return spring 331 is pressed), the wedge 333 connected to the push rod 332 is wedged into the inclined surface 311 of the guide bolt, forcing the guide bolt 31 to move toward the magnetic wheel 23; After the collision block 131 leaves the push rod 332, the second return spring 331 returns the push rod 332 to the position before being pushed.
  • the second friction wheel 43 is rotated through the thread 313 of the guiding bolt 31, and mounted on the optical axis 312 of the guiding bolt 31; (see Fig. 1) first in the ground Positioning pile 18 and second positioning pile 19, the first positioning pile 18 is spaced apart from the second positioning pile 19; then the elastic driving device is placed on the ground, the first positioning pile 18 is connected with the vacuum box 21 of the flywheel battery; The pile 19 is coupled to the second end 112 of the bungee cord assembly. At this time, the elastic cord 113 At the minimum tension state; then pulling the traction rope 12, the first end 111 of the traction elastic cord assembly 11 gradually approaches the pulley 15 against the elastic force of the elastic rope 113 (see Fig.
  • the ratchet assembly 9 is provided (see FIGS. 5 and 14), so when one end of the elastic cord assembly 11 is pulled upward, the pulley 15 is in an idling state, and pulling is not laborious; and when the elastic cord assembly 11 is biased against the elastic rope 113 Upon contraction, the reverse rotation of the pulley 15 acts on the ratchet assembly 9, which engages the input shaft 161 of the speed increaser 16 to cause the speed increaser 16 and associated connecting members to rotate.
  • the elastic cord 113 When the first end 111 of the elastic cord assembly approaches the pulley 15; the elastic cord 113 is elongated, and the elastic cord 113 on the elastic cord assembly is in the maximum tension state, that is, the elastic potential energy is at the maximum state (see Fig. 2).
  • the traction rope 12 is released, and the elastic rope assembly 11 starts to gradually contract by the elastic force of the elastic rope 113.
  • the elastic rope assembly 11 drives the pulley 15 to rotate by the traction rope 12, and the speed increaser 16 drives the pulley 15
  • the rotation speed is increased, the output end 163 of the speed increaser 16 drives the first friction wheel 17 to rotate, the first friction wheel 17 drives the second friction wheel 43, the first magnet 431 on the second friction wheel 43 and the magnetic wheel in the vacuum box 21.
  • the second magnet 231 on the 23 is coupled by the magnetic field, so that the second friction wheel 43 drives the magnetic wheel 23 and the flywheel 22 to rotate, and the flywheel 22 stores kinetic energy during the rotation.
  • the small contraction spring force of the elastic rope 113 can gradually compress the limit spring 132 behind the collision block 131, and the elastic force generated by the limit spring 132 pushes the push rod 332 through the collision block 131, and the wedge connected with the push rod 332 333 wedges into the inclined surface 311 of the guiding bolt to axially move the guiding bolt 31 toward the magnetic wheel 23, as shown in FIG. 7 (the flat key 39 causes the guiding bolt 31 to only allow axial movement); thus, the thread of the guiding bolt 313 is engaged with the screw hole 183 of the second friction wheel 43 in rotation, see FIGS. 11 and 13.
  • the rotational force of the second friction wheel 43 mainly comes from the magnetic wheel 23 driven by the flywheel 22, and the magnetic wheel 23 is coupled to the magnetic field of the second friction wheel 43 to drive the second friction wheel 43 to rotate. Then, the second friction wheel 43 continues to rotate, and the rotation at this time is rotated about the thread 313 of the guide bolt, so that finally the second friction wheel 43 can be rotated out of the thread 313 of the guide bolt, sliding from the slide bar 34 to On the ground; thus the second friction wheel 43 is away from the magnet wheel 23 (see the broken line portion in FIG. 4), the magnetic force of the first magnet 431 no longer exerts a resistance to the magnet wheel 23.
  • the flywheel 22 can then continue to rotate in the vacuum within the vacuum box 21 by means of stored kinetic energy.
  • the kinetic energy of the flywheel 22 is converted into electric energy by the generator 25 and output to an external load.
  • the stop magnet 28 (see FIG. 15) can be inserted into the vacuum box by the stop magnet 27, and the second magnet 231 in the magnetic wheel 23 in the vacuum box is subjected to the stop magnet. 27 magnetic force causes the magnetic wheel 23 and the flywheel 22 to gradually stop rotating; then the second friction wheel 43 is mounted on the optical axis 213 of the guide bolt; the rest is the same as the method 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种补充飞轮电池能量的弹力充能装置,包括真空盒(21)、弹力驱动机构和自动分离机构,真空盒(21)内设置有飞轮(22)和发电机(25),飞轮(22)一端与磁动轮(23)连接,磁动轮(23)沿圆周设有多块第二磁铁(231),弹力驱动机构包括第一定位桩(18)、第二定位桩(19)、弹力绳组件(11)、索引绳(12)、限位组件(13)、带轮(15)、第一摩擦轮(17)和第二摩擦轮(43),第二摩擦轮(43)沿圆周设有多块第一磁铁(431),自动分离机构包括引导螺栓(31)、第一复位弹簧(32)、楔块推杆机构(33)和滑落杆(34),该装置利用弹力驱动机构驱动磁动轮(23)使飞轮(22)储存动能,自动分离机构能自动将驱动部件与飞轮(22)分离,避免飞轮(22)的动能损耗,在无电源场合,可利用弹力给飞轮电池补充动能。

Description

补充飞轮电池能量的弹力充能装置 技术领域
本发明是关于飞轮电池(或称飞轮储能装置)领域,特别是涉及一种飞轮电池补充能量的装置。
背景技术
在众多储能装置中,飞轮电池突破了化学电池的局限,用物理方法实现储能。当飞轮以一定角速度旋转时,就具有一定的动能,飞轮电池以其动能转换成电能。飞轮电池与化学电池相比,以其高效率,充电时间短、相对尺寸小、清洁无污染等突出优势有望成为最具前景的储能电池。
飞轮电池的工作原理:飞轮电池中有一个电机(电动/发电一体机),充电时,该电机以电动机形式运转,将外界输入的电能通过电动机转化为飞轮的动能储存起来,即飞轮电池“充电”;当外界需要电能时,该电机以发电机形式转动,通过发电机将飞轮的动能转化为电能,输出给外部负载,即飞轮电池“放电”。为了减少风阻损耗,摩擦等能量损失,飞轮电池设置在真空盒内,并使用磁悬浮轴承支撑转动部件。
飞轮电池的储能密度大、相对尺寸小的特点,尤其适合携带于野外无电源场合,特别是对于骑自行车旅行的车友,非常需要有一个能给手提电脑、收音机,较大功率的灯光支持电力的飞轮电池。然而,飞轮电池目前只能用通电的方式驱动真空盒内的发电机带动飞轮转动,使飞轮储存动能,而在野外却没有可以给飞轮电池充电的电源。
发明内容
本发明的目的是提供一种利用弹力势能给飞轮电池补充动能的装置及使用方法。
本发明主要技术思路:
1、旅行者在无电源的野外宿营时,可以利用弹力绳的弹力给飞轮电池补充动能,使飞轮电池在宿营时和次日旅途中可供电使用。
2、飞轮电池必须是在真空盒内运作,可以用磁动的方法驱动真空盒内的飞轮。
3、当装置停止给飞轮电池补充能量后,装置中的具有磁性的驱动部件须自动与飞轮分离,以避免飞轮不必要的能量消耗。
本发明的具体技术方案:包括飞轮电池及其真空盒和真空盒内的飞轮及发电机,其特征在于,还包括:
弹力驱动机构:其包括第一定位桩、第二定位桩、弹力绳组件、索引绳、限位组件、压轮、带轮、增速器、第一摩擦轮、第二摩擦轮;索引绳的一端与弹力绳组件的第一端连接,另一端与限位组件连接;弹力绳组件的第二端与固定于地面的第二定位桩连接;第一定位桩 相距第二定位桩一定间距固定于地面,并与所述真空盒连接;带轮设置在真空盒的下方,所述真空盒通过侧板连接于带轮和压轮;索引绳设置在带轮的槽和压轮之间的间隙中;带轮、增速器、第一摩擦轮和第二摩擦轮依次连接;第二摩擦轮设置在真空盒外的滑落杆上部;第二摩擦轮沿圆周设有多块第一磁铁;带轮与增速器的输入轴之间设置棘轮组件;弹力驱动机构的作用在于利用弹力势能驱动飞轮转动;
所述真空盒内增设一磁动轮,飞轮的一端与发电机连接,飞轮的另一端与一磁动轮连接,磁动轮沿圆周设有多块第二磁铁;磁动轮上的第二磁铁与第二摩擦轮上的第一磁铁数量相等,且一一对应,并通过磁场耦合;磁动轮与第二摩擦轮同轴心;
自动分离机构:其包括引导螺栓、第一复位弹簧、楔块推杆机构、滑落杆;滑落杆上部与真空盒连接;引导螺栓设置在滑落杆上部;第一复位弹簧设置在引导螺栓内部,引导螺栓外设置第二摩擦轮;自动分离机构的作用在于:当第二摩擦轮驱动磁动轮转动的工作结束后,能自动远离磁动轮;
使用方法:
在地面上打入第一定位桩和第二定位桩,第一定位桩相距第二定位桩一定间距;然后把弹力驱动装置安放在地面,第一定位桩与飞轮电池的真空盒连接;第二定位桩与弹力绳组件的第二端连接;将第二摩擦轮安装在导引螺栓的光轴上;此时,弹力绳处于最小张紧状态;然后拉动牵引绳,牵引弹力绳组件的第一端克服弹力绳的弹力逐渐接近带轮,弹力绳被拉长,最后,弹力绳组件上的弹力绳处于最大张紧状态;
然后放开牵引绳,弹力绳组件开始靠弹力绳的弹力收缩;弹力绳组件在收缩过程中,通过牵引绳带动带轮转动,增速器将带轮的转速提高,增速器的输出端带动第一摩擦轮转动,第一摩擦轮带动第二摩擦轮;第二摩擦轮上的磁铁与真空盒内的磁动轮上的磁铁通过磁场耦合,使第二摩擦轮带动真空盒内磁动轮和飞轮转动,飞轮在转动中储存动能;
当弹力绳的收缩弹力逐渐减小,弹力绳逐渐缩短,最后,牵引绳上的限位组件的撞块与自动分离机构的推杆接触,限位弹簧产生的弹力通过撞块推动推杆,与推杆连接的楔块楔入导引螺栓的斜面,使导引螺栓朝磁动轮方向轴向移动;于是,导引螺栓的螺纹与转动中的第二摩擦轮的螺孔啮合;第二摩擦轮绕导引螺栓的螺纹旋转,最后第二摩擦轮旋转出导引螺栓的螺纹外,从滑落杆滑落至地面上;磁动轮与第二摩擦轮的磁场耦合作用消失;飞轮在真空盒内依靠储存的动能继续转动;
当外界需要电能时,飞轮的动能通过发电机转化为电能,输出给外部负载。
本发明与现有技术相比的特点是:
1、在无电源场合,可以利用弹力给飞轮电池补充动能。
2、飞轮电池在补充动能过程中,可以同时向外部负载输出电能。
3、当装置停止给飞轮电池补充能量后,弹力驱动机构中的具有磁性的驱动部件能自动与飞轮电池分离,以避免飞轮不必要的能量消耗。
附图说明
图1是本发明静止状态时的整体示意图。
图2是本发明开始运行时的整体示意图。
图3是本发明的局部立体视图。
图4是本发明运行到最后阶段,零件分离时的示意图。
图5是图4中的F-F剖视图。
图6是图5中的B部放大图。
图7是图6中的C部放大图。
图8是图3中删除了第一摩擦轮17和第二摩擦轮43的局部示意图。
图9是图8中的D部放大图。
图10是本发明运行过程1。
图11是图10中的E部放大图。
图12是本发明运行过程2。
图13是图12中的H部放大图。
图14是图5中的A-A局部剖视图(棘轮组件示意图)。
图15是另一种实施方法的示意图。
图16是图2中的J部放大图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步说明:
方法1、本发明技术方案主要是在现有技术的飞轮电池真空盒21外设置了弹力驱动机构和自动分离机构,并在飞轮电池的真空盒21内增设了与飞轮22相连的磁动轮23(见图3)。
弹力驱动机构的作用在于利用弹力势能驱动飞轮22转动(见图1至图5),使飞轮22储存动能:其包括第一定位桩18、第二定位桩19、弹力绳组件11、索引绳12、限位组件13、压轮14、带轮15、增速器16、第一摩擦轮17、第二摩擦轮43;弹力绳组件11的第一端111与索引绳12连接,第二端112与固定于地面的第二定位桩19连接;第一定位桩18相距第二定位桩19一定间距固定于地面,并与所述真空盒21连接;带轮15设置在真空盒21的下方(见图5),真空盒21通过侧板26连接于带轮15和压轮14;索引绳12的一端与弹力绳组件11的第一端111连接,另一端与限位组件13连接(见图1和图2);索引绳12设置在带轮的槽151和压轮14之间的间隙中。压轮14的作用在于将索引绳12压紧在带轮15的槽151中,增加摩擦力,使索引绳12有效地带动带轮15转动。压轮14中可设置轴承(未画出),以避免不必要的动力消耗;索引绳12优先采用轻质的尼龙材料。在这里不采用金属的链条链轮副,原因在于可减少旅途中的负载。
弹力绳组件11主要包括第一端111、多条弹力绳113和第二端112,第一端111通过弹 力绳113与第二端112连接,制作弹力绳113最常用材料是涤纶、高弹纱,质地轻,便于携带。弹力绳组件11不采用质地重的金属弹簧,原因也在于可减少旅途中的负载。
(见图5至图7)所述带轮15、增速器16、第一摩擦轮17和第二摩擦轮43依次连接;第二摩擦轮43设置在真空盒21外的滑落杆34上部;第二摩擦轮43沿圆周设有多块第一磁铁431;带轮15与增速器16的输入轴161之间设置棘轮组件9(见图5和图14)。
见图1和图16,限位组件13包括撞块131、限位弹簧132和固定块133。撞块131可以在牵引绳12上滑动,固定块133则固定在牵引绳12上。撞块131与固定块133之间设置限位弹簧132。
见图5和图6,所述飞轮电池的真空盒21内,飞轮22与一磁动轮23连接,磁动轮23沿圆周设有多块第二磁铁231;磁动轮23上的第二磁铁231与第二摩擦轮43上的第一磁铁431数量相等,且一一对应,并通过磁场耦合;为减少摩擦消耗,在第二摩擦轮的端面设置了多个滚球182,见图7,相对应,在真空盒外,设置了供滚球182运行的滑槽211;磁动轮23与第二摩擦轮43同轴心;需要说明的是接近磁动轮23和第二摩擦轮43的零部件都应该是不易被磁化的无磁性材料制作,以避免磁动轮23和第二摩擦轮43的运行受到干扰。
(见图3至图9)自动分离机构的作用在于:第二摩擦轮43驱动磁动轮23转动的工作结束后,能自动远离磁动轮23,否则第二摩擦轮43上的第一磁铁431对转动中的磁动轮23产生阻力,将会消耗飞轮22的动能。自动分离机构包括引导螺栓31、第一复位弹簧32、楔块推杆机构33(见图9)、滑落杆34;滑落杆34上部与真空盒21连接,引导螺栓31设置在滑落杆34上部;第一复位弹簧32设置在引导螺栓31内部,其作用是当外力使引导螺栓31向磁动轮23方向移动时,第一复位弹簧32受压,当作用于引导螺栓31的外力消失后,第一复位弹簧32使引导螺栓31复位。引导螺栓31外设置第二摩擦轮43。引导螺栓31包括了斜面311,光轴312和螺纹313。斜面311是供楔块333楔入而设置的(见图7和图9)。光轴312是供第二摩擦轮43的螺孔183的小径在光轴312上转动。当引导螺栓31的螺纹313进入到转动中第二摩擦轮43的螺孔183后,第二摩擦轮就可以绕螺纹313旋转,直至旋转出螺纹313外,从滑落杆34滑落至地面上。
见图8、图9,楔块推杆机构33主要包括第二复位弹簧331、推杆332、楔块333。当撞块131推动推杆332(此时,第二复位弹簧331受压),与推杆332连接的楔块333楔入引导螺栓的斜面311,迫使引导螺栓31朝磁动轮23方向移动;当撞块131离开推杆332后,第二复位弹簧331使推杆332恢复到被推动之前的位置。
使用方法:
方法1、见图5至图7,将第二摩擦轮43经引导螺栓31的螺纹313旋转进入,安装在导引螺栓31的光轴312上;(参见图1)在地面上打入第一定位桩18和第二定位桩19,第一定位桩18相距第二定位桩19一定间距;然后把弹力驱动装置安放在地面,第一定位桩18与飞轮电池的真空盒21连接;第二定位桩19与弹力绳组件的第二端112连接,此时,弹力绳113 处于最小张紧状态;然后拉动牵引绳12,牵引弹力绳组件11的第一端111克服弹力绳113的弹力逐渐接近带轮15(见图2);由于带轮15与增速器16之间设置了棘轮组件9(见图5和图14),所以将弹力绳组件11的一端牵引向上时,带轮15处于空转状态,拉动并不费力;而当弹力绳组件11靠弹力绳113的弹力收缩时,带轮15反向转动作用于棘轮组件9,棘轮组件9与增速器16的输入轴161啮合,带动增速器16和相关连接部件转动。
当弹力绳组件的第一端111接近带轮15;,弹力绳113被拉长,弹力绳组件上的弹力绳113处于最大张紧状态即弹力势能处于最大状态(见图2)。
然后,放开牵引绳12,弹力绳组件11开始靠弹力绳113的弹力逐渐收缩,弹力绳组件11在收缩过程中,通过牵引绳12带动带轮15转动,增速器16将带轮15的转速提高,增速器16的输出端163带动第一摩擦轮17转动,第一摩擦轮17带动第二摩擦轮43,第二摩擦轮43上的第一磁铁431与真空盒21内的磁动轮23上的第二磁铁231通过磁场耦合,使第二摩擦轮43带动磁动轮23和飞轮22转动,飞轮22在转动中储存动能。
当弹力绳组件11收缩的弹力势能逐渐减小,弹力绳113逐渐缩短,牵引绳11上的限位组件的撞块131与推杆332接触(见图1、图4、图8、图9和图16)。这时候,真空盒21内的飞轮22已经储存了足够的动能,飞轮22实际上已经可以通过磁动轮23带动第二摩擦轮43转动。所以,弹力绳113很小的收缩弹力就可以使撞块131后面的限位弹簧132逐渐受压缩,限位弹簧132产生的弹力通过撞块131推动推杆332,与推杆332连接的楔块333楔入导引螺栓的斜面311,使导引螺栓31朝磁动轮23方向轴向移动,见图7(平键39使得导引螺栓31只允许轴向移动);于是,导引螺栓的螺纹313与转动中的第二摩擦轮43的螺孔183啮合,见图11和图13。这时候,第二摩擦轮43的被转动力主要来自被飞轮22带动的磁动轮23,磁动轮23通过与第二摩擦轮43的磁场耦合,带动第二摩擦轮43转动。于是,第二摩擦轮43继续旋转,而这时的旋转是绕导引螺栓的螺纹313旋转的,所以最后第二摩擦轮43可以旋转出导引螺栓的螺纹313外,从滑落杆34滑落到地面上;从而第二摩擦轮43远离磁动轮23(见图4中虚线部分),其第一磁铁431的磁力不再对磁动轮23产生阻力。于是飞轮22可以在真空盒21内的真空中依靠储存的动能继续转动。
当外界需要电能时,飞轮22的动能通过发电机25转化为电能,输出给外部负载。
方法2、当飞轮22还有剩余动能时,可以用止动磁铁27插入真空盒上的止动槽28(见图15),真空盒中的磁动轮23中的第二磁铁231受止动磁铁27磁力,使磁动轮23和飞轮22逐渐停止转动;然后将第二摩擦轮43安装在导引螺栓的光轴213上;其余与方法1相同。

Claims (10)

  1. 一种补充飞轮电池能量的弹力充能装置,其特征在于,包括飞轮电池的真空盒和设置于所述真空盒内的飞轮及发电机,所述真空盒的外部设有一侧板;
    弹力驱动机构:其包括第一定位桩、第二定位桩、弹力绳组件、索引绳、限位组件、带轮、第一摩擦轮、第二摩擦轮;所述索引绳的一端与所述弹力绳组件的第一端连接,另一端与所述限位组件连接;所述弹力绳组件的第二端与固定于地面的所述第二定位桩连接;所述第一定位桩相距所述第二定位桩一定间距固定于地面,并与所述真空盒连接;所述带轮设置在所述真空盒的下方,所述真空盒通过所述侧板连接于所述带轮;所述带轮上设有一槽,所述索引绳设置在所述带轮的槽中;所述带轮、所述第一摩擦轮和所述第二摩擦轮依次连接;所述第二摩擦轮设置在所述真空盒外的滑落杆上部;所述第二摩擦轮沿圆周设有多块第一磁铁;
    所述真空盒内增设一磁动轮,所述飞轮的一端与所述发电机连接,所述飞轮的另一端与所述磁动轮连接,所述磁动轮沿圆周设有多块第二磁铁;所述磁动轮上的所述第二磁铁与所述第二摩擦轮上的所述第一磁铁数量相等,且一一对应,并通过磁场耦合;所述磁动轮与所述第二摩擦轮同轴心;
    自动分离机构:其包括引导螺栓、第一复位弹簧、楔块推杆机构、滑落杆;所述滑落杆上部与所述真空盒连接;所述引导螺栓设置在所述滑落杆上部;所述第一复位弹簧设置在所述引导螺栓内部,所述引导螺栓外设置所述第二摩擦轮;所述自动分离机构的用于当所述第二摩擦轮驱动所述磁动轮转动的工作结束后,自动远离所述磁动轮。
  2. 如权利要求1所述的补充飞轮电池能量的弹力充能装置,其特征在于,所述弹力驱动机构还包括一压轮,所述压轮设置于所述侧板上,且设置于所述带轮与所述真空盒之间,所述压轮用于将所述索引绳压紧在所述带轮的槽中,增加摩擦力,使所述索引绳有效地带动所述带轮转动。
  3. 如权利要求2所述的补充飞轮电池能量的弹力充能装置,其特征在于,所述压轮内设有一轴承,所述轴承用于避免不必要的动力消耗。
  4. 如权利要求1所述的补充飞轮电池能量的弹力充能装置,其特征在于,所述弹力绳组件包括第一端、多条弹力绳和第二端,所述第一端通过所述弹力绳与第二端连接。
  5. 如权利要求1所述的补充飞轮电池能量的弹力充能装置,其特征在于,所述弹力驱动机构还包括一增速器,所述增速器一端与所述带轮连接,所述增速器另一端与所述第一摩檫轮连接,所述增速器用于提高所述带轮的转速,并驱动所述第一摩檫轮转动。
  6. 如权利要求1所述的补充飞轮电池能量的弹力充能装置,其特征在于,所述增速器包括一输入轴,所述的带轮与所述增速器的输入轴之间设有一棘轮组件,所述棘轮组件用于当拉动所述牵引绳,牵引所述弹力绳组件的第一端接近所述带轮,所述带轮处于空转的状态,以致拉动省力。
  7. 如权利要求1所述的补充飞轮电池能量的弹力充能装置,其特征在于,所述限位组件 包括撞块、限位弹簧和固定块,所述固定孔设置于所述牵引绳上,所述限位弹簧设置于所述撞块与所述固定块之间,所述撞块滑动设置于所述牵引绳上。
  8. 如权利要求1所述的补充飞轮电池能量的弹力充能装置,其特征在于,所述楔块推杆机构包括第二复位弹簧、推杆、楔块,所述推杆与所述撞块间接性连接,所述第二复位弹簧与所述推杆连接,所述推杆与所述楔块连接,所述楔块与所述引导螺栓连接。
  9. 如权利要求8所述的补充飞轮电池能量的弹力充能装置,其特征在于,所述引导螺栓包括斜面,光轴和螺纹,所述斜面与所述楔块连接,所述光轴与所述斜面连接,所述光轴与所述螺纹连接。
  10. 如权利要求1所述的补充飞轮电池能量的弹力充能装置,其特征在于,所述第二摩檫轮的端面上设置了多个滚球,所述真空盒上设有与所述滚球对应的滑槽,所述滚球用于减少摩擦消耗。
PCT/CN2014/085458 2013-09-18 2014-08-28 补充飞轮电池能量的弹力充能装置 WO2015039552A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480038792.XA CN105378272B (zh) 2013-09-18 2014-08-28 补充飞轮电池能量的弹力充能装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310427231.6 2013-09-18
CN201310427231.6A CN104454394A (zh) 2013-09-18 2013-09-18 补充飞轮电池能量的弹力充能装置

Publications (1)

Publication Number Publication Date
WO2015039552A1 true WO2015039552A1 (zh) 2015-03-26

Family

ID=52688216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085458 WO2015039552A1 (zh) 2013-09-18 2014-08-28 补充飞轮电池能量的弹力充能装置

Country Status (2)

Country Link
CN (2) CN104454394A (zh)
WO (1) WO2015039552A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760506A (en) * 1995-06-07 1998-06-02 The Boeing Company Flywheels for energy storage
CN1730877A (zh) * 2005-08-03 2006-02-08 吴斐 具有飞轮自发电装置的电子锁
CN202550787U (zh) * 2011-12-16 2012-11-21 杭州英若飞科技有限公司 飞轮电池
CN103498769A (zh) * 2013-09-18 2014-01-08 杜文娟 补充飞轮电池能量的弹力充能装置及使用方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103024U (zh) * 1991-07-20 1992-04-29 廖善任 橡筋蓄能装置
JPH05284690A (ja) * 1992-03-31 1993-10-29 Sony Corp ぜんまいばねバッテリ
CN1111323A (zh) * 1994-05-06 1995-11-08 萧辉刚 重力、液压传动式发动机
WO2008037004A1 (en) * 2006-09-25 2008-04-03 James Kwok An energy storage device and method of use
CN101825053B (zh) * 2010-05-05 2012-06-20 徐玉良 能量转换装置与应用
CN202008929U (zh) * 2010-12-19 2011-10-12 浙江富隆电气有限公司 一种飞轮式的电动机单向传动机构
CN102723804B (zh) * 2012-06-18 2014-04-09 江苏大学 分体式磁悬浮开关磁阻电机支承与传动的飞轮电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760506A (en) * 1995-06-07 1998-06-02 The Boeing Company Flywheels for energy storage
CN1730877A (zh) * 2005-08-03 2006-02-08 吴斐 具有飞轮自发电装置的电子锁
CN202550787U (zh) * 2011-12-16 2012-11-21 杭州英若飞科技有限公司 飞轮电池
CN103498769A (zh) * 2013-09-18 2014-01-08 杜文娟 补充飞轮电池能量的弹力充能装置及使用方法

Also Published As

Publication number Publication date
CN104454394A (zh) 2015-03-25
CN105378272A (zh) 2016-03-02
CN105378272B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2015039535A1 (zh) 飞轮电池补充能量的自动离合弹力驱动装置及使用方法
WO2015039551A1 (zh) 能自动离合的飞轮电池补能重力驱动装置的使用方法
WO2015039545A1 (zh) 自行车行驶中的风力补充飞轮电池能量的装置的使用方法
WO2015039529A1 (zh) 自行车在下坡时的能量给飞轮电池补能的装置及使用方法
WO2015039514A1 (zh) 补充飞轮电池能量的弹力充能装置的使用方法
WO2015039543A1 (zh) 飞轮电池补充能量的自动离合弹力驱动装置
WO2015039534A1 (zh) 重力发电补充飞轮电池能量的重力势能装置
CN105378274B (zh) 依靠重力补充飞轮电池能量的重力充能装置及使用方法
WO2015039510A1 (zh) 能自动分离的飞轮电池能量的机动补充装置的使用方法
WO2015039536A1 (zh) 自行车在下坡时发电补充飞轮电池能量的装置的使用方法
WO2015039552A1 (zh) 补充飞轮电池能量的弹力充能装置
WO2015039542A1 (zh) 依靠重力补充飞轮电池能量的重力充能装置
WO2015039507A1 (zh) 能自动分离的飞轮电池能量的机动补充装置
CN105359392A (zh) 能快速分离的飞轮电池能量机动补充装置及使用方法
WO2015039527A1 (zh) 飞轮电池补充能量的自动离合人力驱动装置
WO2015039539A1 (zh) 能自动离合的飞轮电池补能重力驱动装置
WO2015039528A1 (zh) 弹力发电补充飞轮电池能量的弹力势能装置
WO2015039532A1 (zh) 弹力发电补充飞轮电池能量的弹力势能装置的使用方法
CN206745984U (zh) 风筝收线装置
CN104467263A (zh) 补充飞轮电池能量的快速离合人力驱动装置
CN104467266A (zh) 能快速分离的飞轮电池能量机动补充装置
CN104595129A (zh) 利用弹力给蓄电池充电的弹力充电装置及其使用方法
CN104595128A (zh) 利用弹力给蓄电池充电的弹力充电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845243

Country of ref document: EP

Kind code of ref document: A1