WO2015039454A1 - 一种配置节点的方法、装置及系统 - Google Patents
一种配置节点的方法、装置及系统 Download PDFInfo
- Publication number
- WO2015039454A1 WO2015039454A1 PCT/CN2014/077942 CN2014077942W WO2015039454A1 WO 2015039454 A1 WO2015039454 A1 WO 2015039454A1 CN 2014077942 W CN2014077942 W CN 2014077942W WO 2015039454 A1 WO2015039454 A1 WO 2015039454A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- optical signal
- wavelength
- unit
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 230000003287 optical effect Effects 0.000 claims abstract description 166
- 238000001228 spectrum Methods 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 29
- 230000003044 adaptive effect Effects 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 19
- 238000004458 analytical method Methods 0.000 claims description 9
- 238000009432 framing Methods 0.000 claims description 9
- 239000000284 extract Substances 0.000 claims description 8
- 238000010183 spectrum analysis Methods 0.000 claims description 7
- 238000005538 encapsulation Methods 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 238000007726 management method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000006735 deficit Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0803—Configuration setting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0227—Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
- H04J14/0254—Optical medium access
- H04J14/0272—Transmission of OAMP information
Definitions
- the present invention relates to optical transmission technologies in the field of communications, and more particularly to a method, apparatus and system for configuring nodes. Background technique
- Multi-carrier optical transmission technology Flexible Grid technology and Digital Singnal Processing (DSP) technology are introduced in the ultra-100G optical transmission system to adapt to different modulation patterns and different rates of wave division. With transfer requirements, and with configurability and programmability.
- the system can allocate and optimize spectrum resources according to the utilization of spectrum resources and line impairments of the entire network, to achieve frequency defragmentation and improve spectrum utilization, which also means that the spectrum resource allocation of the system It is no longer fixed, but needs to change according to the modulation format of the system sending node, the subcarrier multiplexing mode and the spectrum occupancy.
- the method for configuring the optical transmission system of the super 100G includes: configuration information is sent by the network management to each node of the system, and the transmission node of the line side of the system changes the modulation format and subcarrier multiplexing according to the link status.
- the network management also needs to change the configuration of the Reconfigurable Optical Add Drop Multiplexer (ROADM) node and the receiving end in the link.
- ROADM Reconfigurable Optical Add Drop Multiplexer
- an embodiment of the present invention provides a method, an apparatus, and a system for configuring a node.
- the present invention provides a method for configuring a node, the method comprising:
- the sending node encapsulates the configuration information in a wavelength label information frame, where the configuration information is used to configure a downstream node;
- the transmitting node loads the wavelength label frame onto an optical signal, and transmits the wavelength label frame and the optical signal.
- the configuration information includes: a modulation format of a transmitting node optical signal, a signal rate, a subcarrier multiplexing manner, and a spectrum resource occupied by the optical signal;
- the encapsulating includes: adding a frame header and a frame body according to a preset frame format, where the frame body includes a modulation format of the optical signal, a signal rate, a subcarrier multiplexing manner, and a spectrum resource and an extension field occupied by the optical signal.
- the method further includes: encoding the wavelength label information frame according to a preset encoding rule.
- the loading the wavelength label frame onto the optical signal includes: determining, according to the optical signal corresponding to the wavelength label information frame, a low frequency perturbation modulation frequency corresponding to the optical signal, and using the encoded wavelength label The information frame is modulated onto the low frequency perturbation modulation frequency, and the low frequency perturbation signal is loaded onto the corresponding optical signal.
- the present invention also provides a method for configuring a node, the method comprising:
- the downstream node extracts a wavelength label information frame from the received optical signal, and decodes the configuration information from the wavelength label information frame;
- the downstream node performs adaptive configuration according to the configuration information.
- the method further includes: after the adaptive configuration, the downstream node reports the current configuration to the network management.
- the downstream node extracts a wavelength label information frame from the received optical signal.
- the method includes: performing photoelectric conversion on the received optical signal; performing frequency analysis on the photoelectrically converted optical signal to obtain bit information carried in the optical signal; and decoding the bit information according to a preset decoding rule, to obtain The wavelength label information frame.
- the photoelectric conversion of the received optical signal may include: the downstream node splits the received optical signal by a coupler, and extracts a part of the split optical signal obtained by the splitting to perform photoelectric conversion, amplification, and ⁇ Sample and analog to digital conversion.
- the decoding of the bit information to obtain a wavelength label information frame includes: searching for, according to a preset decoding rule, a special bit sequence corresponding to a frame header in the bit information; according to a preset decoding rule, Decoding the frame data following the frame header to obtain a wavelength label information frame.
- the adaptive configuration includes:
- the present invention also provides a sending node, where the sending node includes: a packaging unit and a loading unit;
- the encapsulating unit is configured to encapsulate the configuration information in the wavelength label information frame, where the configuration information is used to configure the downstream node;
- the loading unit is configured to load the wavelength label frame provided by the encapsulating unit onto the optical signal, and send the wavelength label frame and the optical signal.
- the configuration information includes: a modulation format of a transmitting node optical signal, a signal rate, a subcarrier multiplexing manner, and a spectrum resource occupied by the optical signal;
- the encapsulating includes: adding a frame header and a frame body according to a preset frame format, where the frame body includes a modulation format of the optical signal, a signal rate, a subcarrier multiplexing manner, and a spectrum resource and an extension field occupied by the optical signal.
- the sending node further includes: an encoding unit configured to be according to a preset encoding a rule, encoding the wavelength label information frame provided by the encapsulating unit;
- the encapsulating unit is configured to provide the coding unit with the wavelength label information frame.
- the sending node further includes: a frequency generating unit, a modulating unit, wherein the frequency generating unit is configured to determine a low frequency perturbation modulation frequency corresponding to the optical signal according to the optical signal corresponding to the wavelength label information frame;
- a modulating unit configured to modulate the encoded wavelength label information frame provided by the coding unit to a low frequency perturbation modulation frequency
- the loading unit is configured to load the low frequency perturbation signal onto the corresponding optical signal.
- the present invention also provides a downstream node, where the downstream node includes: a decoding unit and a configuration unit;
- a decoding unit configured to extract a wavelength label information frame from the received optical signal, and decode the configuration information from the wavelength label information frame
- the configuration unit is configured to perform adaptive configuration according to the configuration information.
- the downstream node includes: a processing unit and a spectrum analyzing unit; wherein, the processing unit is configured to perform photoelectric conversion on the received optical signal;
- the spectrum analyzing unit is configured to perform frequency analysis on the optical signal after the photoelectric conversion, obtain bit information carried in the optical signal, and send the bit information to the decoding unit;
- the decoding unit is configured to decode the bit information according to a preset decoding rule to obtain the wavelength label information frame.
- the downstream node further includes: a light splitting unit configured to split the received optical signal by the coupler, and send the partial optical signal obtained by the splitting to the processing unit; correspondingly, the processing unit is configured For photoelectric extraction, amplification, sampling, and analog-to-digital conversion.
- the downstream node further includes: a framing unit configured to obtain configuration information from the wavelength label information frame;
- the coding unit is configured to use the bit information according to a preset decoding rule. Looking for a special bit sequence corresponding to the frame header, and decoding the frame following the frame header to obtain a wavelength label information frame.
- the adaptive configuration includes:
- the present invention provides a system for configuring a node, the system comprising: a sending node and at least one downstream node;
- a sending node configured to encapsulate configuration information in a wavelength label information frame, where the configuration information is used to configure a downstream node; loading the wavelength label frame onto an optical signal, and transmitting the wavelength label frame and the Optical signal
- the downstream node is configured to extract a wavelength label information frame from the received optical signal, decode the configuration information from the wavelength label information frame, and perform adaptive configuration according to the configuration information.
- the method, device, and system for configuring a node are provided by a sending node, where the configuration information is encapsulated in a wavelength label information frame; wherein the configuration information is used to configure a downstream node; and the sending node loads the wavelength label frame To the optical signal, the wavelength tag frame and the optical signal are simultaneously transmitted.
- the configuration information is directly sent to the downstream node by the sending node, and is decoded and adaptively configured by the downstream node, thereby avoiding the problem of inefficiency caused by the network controllers sequentially configuring the nodes, thereby improving the light.
- the efficiency of the configuration of nodes in the transmission system is provided by a sending node, where the configuration information is encapsulated in a wavelength label information frame; wherein the configuration information is used to configure a downstream node; and the sending node loads the wavelength label frame To the optical signal, the wavelength tag frame and the optical signal are simultaneously transmitted.
- FIG. 1 is a schematic flowchart of a sending node in a method for configuring a node according to an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a wavelength label frame according to the present invention
- FIG. 3 is a schematic flowchart of a downstream node in a method for configuring a node according to Embodiment 2 of the present invention
- FIG. 4 is a schematic flowchart of a method for configuring a node according to Embodiment 3 of the present invention
- FIG. 5 is a schematic structural diagram of a structure of a sending node according to Embodiment 4 of the present invention
- FIG. 6 is a schematic structural diagram of a structure of a downstream node according to Embodiment 5 of the present invention
- FIG. 7 is a schematic structural diagram of a system for configuring a node according to Embodiment 6 of the present invention. detailed description
- the basic idea of the embodiment of the present invention is that the sending node encapsulates the configuration information in the wavelength label information frame, where the configuration information is used to configure the downstream node, and the sending node loads the wavelength label frame onto the optical signal. And transmitting the wavelength label frame and the optical signal.
- the embodiment of the present invention provides an operation flow of a sending node in a method for configuring a node, as shown in FIG. 1 , including:
- Step 101 The sending node encapsulates the configuration information in a wavelength label information frame.
- the configuration information is used to configure a downstream node.
- Step 102 The sending node loads the wavelength label frame into an optical signal, and sends the wavelength label frame and the optical signal.
- the downstream node may be a ROADM node and a receiving end.
- the configuration information includes, but is not limited to, a modulation format of a transmitting node optical signal, a signal rate, a subcarrier multiplexing manner, and a spectrum resource occupied by the optical signal.
- the modulation format of the optical signal includes but is not limited to: Polarization Division Multiplexed Quadrature Phase Shift Keying (PDM-QPSK), 16 Quadrature Amplitude Modulation (QAM), 32QAM , 64QAM, etc.;
- PDM-QPSK Polarization Division Multiplexed Quadrature Phase Shift Keying
- QAM 16 Quadrature Amplitude Modulation
- 32QAM 32QAM
- 64QAM 64QAM, etc.
- the subcarrier multiplexing mode includes but is not limited to: single carrier and multi-carrier orthogonal frequency division multiplexing (OFDM), multi-carrier Nyquist, etc.; the spectrum resources occupied by the optical signal include but not It is limited to: the number of subcarriers in the optical channel, whether the subcarriers are continuous, the center frequency of the carrier/subcarrier, the bandwidth range, and the like; wherein, the center frequency granularity is 0.00625 THz, and the nominal center frequency is calculated as 193.1 THz. +nx 0.00625 THz, n is an integer (may be negative), and the specification bandwidth is 12.5 GHz ⁇ m, where m is a positive integer.
- OFDM orthogonal frequency division multiplexing
- Each optical channel may contain one or more subcarriers, and the subcarriers may be discontinuous.
- the information of the optical channel may be encapsulated in a wavelength label, when in an optical channel.
- each subcarrier path is different, each subcarrier needs to use a different wavelength label, and the wavelength label contains information of the current subcarrier.
- the encapsulation is: generating a frame header and a frame body of the data frame according to a preset frame format, and each field of the data frame; the frame format may be as shown in FIG. 2, including a frame header and a frame body;
- the frame header is a fixed length
- the frame body is a variable length
- the length of the frame body is related to the actual number of subcarriers.
- the frame header includes, but is not limited to: a frame positioning overhead, a frame ID, a frame length, and an extension field; wherein the frame positioning overhead is used to define a start position of the frame, and the frame ID is used as a number of the data frame;
- the length is used to indicate the length of the data frame body, used for positioning the data frame length and delimiting the length of each field of the data frame. This field is optional; the extended field is used for future expansion.
- the frame body includes: a signal source address, a signal destination address, a signal modulation format, a sub-signal rate, a subcarrier multiplexing mode, a number of subcarriers, a subcarrier number, a center frequency of each subcarrier, a subcarrier bandwidth, and an extension. Fields, CRC components, but not limited to these fields.
- the signal source address represents a source node address of the signal
- the signal destination address represents a destination node address of the signal
- the modulation format of the signal includes PDM-QPSK, 16QAM, 32QAM, 64QAM, etc.; the signal rate refers to the signal rate of the optical channel, such as 100G, 400G, IT, etc.;
- the subcarrier multiplexing mode includes single carrier and multi-carrier OFDM, multi-carrier Nyquist, etc.;
- the spectral characteristic of the signal refers to a distribution of signals on a spectrum, including the number of subcarriers of the signal, whether the subcarriers are continuous, and each sub-carrier.
- the extension field is used for frame extension, and is optional if the extension is not considered.
- Cyclic Redundancy Check implements simple cyclic redundancy check on data frames, and can also use other error detection/correction methods, such as forward error correction (FEC, Forward). Error Correction ), etc., if you do not consider verifying this field is optional.
- the method further includes: encoding, according to a preset encoding rule, the wavelength label information frame.
- the frame body outside the frame header of the foregoing wavelength label information frame may be encoded according to an encoding rule.
- the encoding rule may be: ⁇ encoding by using 4B/5B encoding mode, or using other encoding.
- the method, such as 8 ⁇ /10 ⁇ , ⁇ , etc., regardless of which encoding method is used, must be satisfied that this encoding method is decodable.
- the foregoing step 102 is specifically: determining, according to the wavelength of the optical signal corresponding to the wavelength label information frame, a low frequency perturbation modulation frequency corresponding to the wavelength of the optical signal, and modulating the encoded wavelength label information frame to the low frequency perturbation modulation frequency. And loading the low frequency perturbation signal onto the corresponding optical signal, and transmitting the wavelength label frame and the optical signal.
- the frame of the encoded wavelength label information is modulated onto the low frequency perturbation modulation frequency
- the optical signal transmission may be: generating the frequency by the digital frequency synthesizer, and modulating the encoded wavelength label signal and the frame signal to At the low frequency perturbation modulation frequency, the modulation mode may be selected by amplitude modulation, or other modulation methods, such as frequency modulation, etc.; using the modulated low frequency perturbation signal to control a wavelength tag loading device such as a dimmable attenuator,
- the modulation depth (3% to 8%, which can be determined empirically or determined by simulation) loads the low frequency perturbation signal to the corresponding optical signal and transmits it.
- the embodiment of the present invention provides an operation procedure of a downstream node in a method for configuring a node, as shown in FIG. 3, including:
- Step 301 The downstream node extracts a wavelength label information frame from the received optical signal, and decodes the configuration information from the wavelength label information frame.
- Step 302 The downstream node performs adaptive configuration according to the configuration information.
- the downstream node may be a ROADM node or a receiving node.
- the downstream node may also be configured after adaptive configuration. Report the current configuration to the NMS.
- the configuration information includes, but is not limited to, a modulation format of a transmitting node optical signal, a signal rate, a subcarrier multiplexing manner, and a spectrum resource occupied by the optical signal.
- the extracting, by the downstream node, the wavelength label information frame from the received optical signal comprises: performing photoelectric conversion on the received optical signal; performing frequency analysis on the photoelectrically converted optical signal to obtain bit information carried in the optical signal And decoding the bit information according to a preset decoding rule to obtain the wavelength label information frame.
- the photoelectric conversion of the received optical signal may include: the downstream node splitting the received optical signal by a coupler, and extracting a small portion (such as 5%) of the optical signal for photoelectric conversion. Then zoom in and do a sample and analog to digital conversion.
- the frequency analysis may be: performing spectrum analysis on the sample signal by means of a chirped z-transformation (CZT, Z-transformation) or a fast Fourier transform (FFT), and obtaining a low-frequency micro according to the result of the spectrum analysis.
- CZT chirped z-transformation
- FFT fast Fourier transform
- Decoding the bit information to obtain the wavelength label information frame may include: searching for a special bit sequence corresponding to the frame header in the bit information according to a preset decoding rule, for example, may be 0xF6F6F6282828; according to preset decoding A rule is to decode the frame data behind the frame header to obtain a wavelength label information frame.
- Decoding the frame data behind the frame header to obtain a wavelength label information frame may be: if the transmitting end uses the data of the 4B/5B encoding rule, the corresponding 4B/5B decoding rule is used for decoding processing, if If a codeword is not in the 4B/5B encoding table, it is determined that an error occurs in decoding, and the data frame is discarded, and a decoding error is reported; if it is determined that there is no error in decoding, the decoded data group frame is obtained to obtain wavelength label information. frame. Performing verification on the wavelength label information frame, and performing frame verification on the CRC check rule by using the CRC check rule, if the intra-frame data passes the CRC check, Generate a frame header and a frame body.
- the generating the frame header and the frame body may be: first generating a frame header, and sequentially extracting information such as a frame positioning overhead, a frame ID, a frame length, and an extended field. Then generate a frame body, which in turn extracts the address and signal tone Valid information for the format, signal rate, subcarrier multiplexing method, signal spectral characteristics, extended fields, CRC check, etc.
- the address offset is used, extracted in byte order, and each field is extracted to form a corresponding frame field until all fields are framed.
- the CRC check error is reported and the error frame is discarded. If the sender uses FEC check, the receiver also checks with FEC.
- the adaptive configuration includes but is not limited to:
- Embodiment 3 Setting the grid width of the wavelength selection switch according to the spectrum resource required by the corresponding optical signal; setting the filter shape according to the modulation format of the optical signal and the characteristics of the subcarrier multiplexing mode; according to the rate, modulation format, and multiplexing of the corresponding optical signal The mode, etc., set the DSP algorithm used by the receiver, and so on.
- FIG. 4 is a schematic diagram of a method for configuring a node according to an embodiment of the present invention, including the following steps:
- Step 401 The sending node encapsulates the configuration information in a wavelength label information frame.
- the sending node first groups the frame, generates a frame header and a frame body of the data frame according to the format of FIG. 2, and generates each field of the data frame according to the rule.
- Step 402 The sending node encodes the wavelength label information frame according to a preset encoding rule.
- the byte label information frame except the frame header, that is, the frame body part is encoded according to an encoding rule, and the data frame can be encoded by using the 4B/5B encoding method, and other encoding methods can also be used, such as 8B/10B, scrambling code, etc., regardless of which encoding method is used, it must be satisfied that this encoding method is decodable.
- Step 403 The transmitting node determines a low frequency perturbation modulation frequency of the wavelength label.
- the low frequency perturbation modulation frequency corresponding to the wavelength channel is determined according to the wavelength channel corresponding to the wavelength label information frame, and the frequency may be generated by the digital frequency synthesizer, and the encoded wavelength label information frame signal is modulated to the low frequency micro
- the modulation method can be selected by amplitude modulation. It can also be other modulation methods, such as frequency modulation.
- Step 404 The transmitting node modulates the encoded wavelength label information frame to a low frequency perturbation modulation frequency, and sends the wavelength label frame and the optical signal to a downstream node.
- the modulated low frequency perturbation signal to control the wavelength tag loading device, such as a dimmable attenuator, to load the low frequency perturbation signal to the appropriate modulation depth (3% to 8%, empirically determined or determined by simulation) Corresponding wavelength channel, and send.
- the downstream node may be a ROADM node or a receiving node.
- Step 405 The downstream node performs photoelectric conversion on the received optical signal.
- the photoelectric conversion may be: splitting, photoelectrically converting, amplifying, and sampling the optical signal.
- the splitting may be to take out a small portion (e.g., 5%) of the optical signal, send it to a PIN receiver for photoelectric conversion, and then amplify and perform sample and analog to digital conversion.
- Step 406 The downstream node performs frequency analysis on the optical signal after the photoelectric conversion to obtain bit information carried in the optical signal.
- the CZT or FFT method performs spectrum analysis on the sample signal, and obtains the frequency value of the low frequency perturbation frequency and the bit information carried thereby according to the result of the spectrum analysis, and recovers the wavelength channel information corresponding to the low frequency perturbation frequency.
- Step 407 The downstream node decodes the bit information according to a preset decoding rule to obtain the wavelength label information frame.
- bit information obtained after the spectrum analysis look for a special bit sequence corresponding to the frame header, such as 0xF6F6F6282828 here, and then decode the frame data after the frame header; if the transmitting end uses 4B/5B encoded data, Then, the corresponding 4B/5B decoding rule is used for decoding processing. If a codeword is not in the 4B/5B encoding table, an error is judged, the data frame is discarded, and a decoding error is reported. If there is no error in decoding, the decoded data framing is framing.
- the decoded information is framing and verified.
- the frame check is performed by the CRC check rule. If the intraframe data passes the CRC check, the frame header and the frame body are generated. The frame header is generated first, and information such as frame positioning overhead, frame ID, frame length, and extended field is extracted in turn. Then, the frame body is generated, and the effective information of the address, the signal modulation format, the signal rate, the subcarrier multiplexing method, the signal spectrum characteristic, the extension field, the CRC check, and the like are sequentially extracted.
- the address offset is used, extracted in byte order, and each field is extracted to form a corresponding frame field until all fields are framed.
- the CRC check error is reported and the error frame is discarded. If the sender uses FEC check, the receiver also checks with FEC.
- Step 408 The downstream node extracts configuration information from the wavelength label information frame.
- the modulation format, the signal rate, the subcarrier multiplexing mode, and the spectrum resources occupied by the optical signal may be extracted from the wavelength label information frame according to the frame format preset in FIG. The configuration information.
- the downstream node further obtains information required by itself from the configuration information.
- Step 409 The downstream node performs adaptive configuration according to the configuration information.
- the adaptive configuration includes but is not limited to:
- the ROADM node sets the grid width of the wavelength selection switch according to the spectrum resource required by the corresponding optical signal
- the OADM node sets the shape of the filter according to the modulation format of the optical signal and the characteristics of the subcarrier multiplexing mode
- the receiving end sets the DSP algorithm used by the receiving end according to the rate, modulation format, multiplexing mode, etc. of the corresponding optical signal.
- Embodiment 4
- FIG. 5 is a schematic structural diagram of a sending node according to an embodiment of the present invention, including: a packaging unit 51, an loading unit 52;
- the encapsulating unit 51 is configured to encapsulate configuration information in a wavelength label information frame, where the configuration information is used to configure a downstream node;
- a loading unit 52 configured to load the wavelength label frame provided by the encapsulating unit 51 to the optical signal And transmitting the wavelength label frame and the optical signal.
- the configuration information includes, but is not limited to, a modulation format of a transmitting node optical signal, a signal rate, a subcarrier multiplexing manner, and a spectrum resource occupied by the optical signal.
- the modulation format of the optical signal includes but is not limited to: polarization multiplexing differential phase shift keying
- the subcarrier multiplexing manner includes but is not limited to: single carrier and multicarrier orthogonal frequency division multiplexing technology
- the spectrum resources occupied by the optical signal include, but are not limited to: the number of subcarriers in the optical channel, whether the subcarriers are continuous, the center frequency of the carrier/subcarrier, and the bandwidth. Range and the like; wherein, the center frequency granularity is 0.00625 THz, the nominal center frequency is calculated as 193.1 THz+nx 0.00625 THz, n is an integer (may be negative), and the specification bandwidth is 12.5 GHz ⁇ m , where m is a positive integer.
- Each optical channel may contain one or more subcarriers, and the subcarriers may be discontinuous.
- the information of the optical channel may be encapsulated in a wavelength label, when an optical channel is used.
- each subcarrier path is different, each subcarrier needs to use a different wavelength label, and the wavelength label contains information of the current subcarrier.
- the encapsulating unit 51 is configured to generate a frame header and a frame body of the data frame and each field of the data frame according to a preset frame format.
- the frame format may be as shown in FIG. 2, including a frame header and a frame body.
- the frame header is a fixed length
- the frame body is a variable length
- the length of the frame body is related to the actual number of subcarriers.
- the frame header includes, but is not limited to: a frame positioning overhead, a frame ID, a frame length, and an extension field; wherein the frame positioning overhead is used to define a start position of the frame, and the frame ID is used as a number of the data frame;
- the length is used to indicate the length of the data frame body, used for positioning the data frame length and delimiting the length of each field of the data frame. This field is optional; the extended field is used for future expansion.
- the frame body includes: a signal source address, a signal destination address, a signal modulation format, and a sub-signal rate Rate, subcarrier multiplexing mode, number of subcarriers, subcarrier number, subcarrier center frequency, subcarrier bandwidth, extension field, CRC composition, but not limited to these field components.
- the signal source address represents a source node address of the signal
- the signal destination address represents a destination node address of the signal
- the modulation format of the signal includes PDM-QPSK, 16QAM, 32QAM, 64QAM, etc.; the signal rate refers to the signal rate of the optical channel, such as 100G, 400G, IT, etc.;
- the subcarrier multiplexing mode includes single carrier and multi-carrier OFDM, multi-carrier Nyquist, etc.;
- the spectral characteristic of the signal refers to a distribution of signals on a spectrum, including the number of subcarriers of the signal, whether the subcarriers are continuous, and each sub-carrier.
- the extension field is used for frame extension, and is optional if the extension is not considered.
- the Cyclic Redundancy Check implements a simple cyclic redundancy check on the data frame, and can also use other error detection/correction methods, such as forward error correction (FEC, Forward).
- FEC forward error correction
- the sending node may further include: an encoding unit 53 configured to encode the wavelength label information frame provided by the encapsulating unit 51 according to a preset encoding rule.
- an encoding unit 53 configured to encode the wavelength label information frame provided by the encapsulating unit 51 according to a preset encoding rule.
- the frame body outside the frame header of the foregoing wavelength label information frame may be encoded according to an encoding rule.
- the encoding rule may be: ⁇ encoding by using 4B/5B encoding mode, or using other encoding.
- the method, such as 8 ⁇ /10 ⁇ , ⁇ , etc., regardless of which encoding method is used, must be satisfied that this encoding method is decodable.
- the foregoing sending node may further include: a frequency generating unit 54 and a modulating unit 55;
- a frequency generating unit 54 for determining a low frequency perturbation modulation frequency of the wavelength label
- a modulating unit 55 configured to modulate the encoded wavelength label information frame provided by the encoding unit 53 onto the low frequency perturbation modulation frequency
- the loading unit 52 is configured to load and transmit the wavelength label frame and the optical signal.
- the frequency generating unit 54 is configured to generate a low frequency perturbation frequency corresponding to the wavelength channel of the wavelength label information frame.
- the frequency generating unit 54 first determines the corresponding low frequency perturbation frequency based on the wavelength information of the wavelength signal, and then controls the digital frequency synthesizer to generate the low frequency.
- the modulating unit 55 is configured to modulate the wavelength label information frame to the low frequency perturbation frequency, and modulate the encoded or uncoded wavelength label information frame signal into a low frequency perturbation frequency by using an amplitude modulation manner.
- the modulation method may also use other modulation methods such as a frequency modulation method.
- the loading unit 52 is configured to load the modulated wavelength label information frame signal into the wavelength channel for transmission, load the modulated signal onto the wavelength channel signal at a suitable modulation depth, and control the modulation depth.
- the stability can be achieved by controlling a device such as a dimmable attenuator with a modulation signal.
- the frequency generating unit 54 can be implemented by a frequency synthesizer, for example, by a digital frequency synthesizer.
- the above package unit, load unit and modulation unit can all be implemented by hardware such as a DSP or a CPU.
- FIG. 6 is a schematic structural diagram of a downstream node provided by the present invention, including: a decoding unit 61 and a configuration unit 62;
- the decoding unit 61 is configured to extract a wavelength label information frame from the received optical signal, and decode the configuration information from the wavelength label information frame.
- the configuration unit 62 is configured to perform adaptive configuration according to the configuration information.
- the downstream node may further include: a light splitting unit 63 and a processing unit 64; wherein the light splitting unit 63 is configured to split the received optical signal;
- the processing unit 64 is configured to perform photoelectric conversion on the optical signal sent from the beam splitting unit 63.
- the light splitting unit 63 may be composed of a fiber coupler that takes out 5% of the optical power for wavelength tag detection and reception.
- the processing unit 64 is configured to perform photoelectric conversion and analog to digital conversion on one of the optical signals (e.g., 5% of the entire optical signal).
- the processing unit 64 can be a photoelectrically converted PIN tube, an amplifier, and an analog to digital converter (ADC)) and so on. For example, one of the optical signals is taken out, sent to a PIN tube for photoelectric conversion, then amplified (amplified by an amplifier) and sampled and analog-to-digital converted (specifically, analog-to-digital conversion by an analog-to-digital converter).
- ADC analog to digital converter
- the downstream node may further include: a spectrum parsing unit 65, configured to perform frequency analysis on the optical signal that is photoelectrically converted by the processing unit 64 to obtain bit information carried in the optical signal.
- a spectrum parsing unit 65 configured to perform frequency analysis on the optical signal that is photoelectrically converted by the processing unit 64 to obtain bit information carried in the optical signal.
- the spectrum analyzing unit 65 is configured to perform spectrum analysis by using a chirp z-transform to obtain a frequency value of the low-frequency perturbation frequency and a frequency signal amplitude information existing in the signal, and recover a frequency corresponding to the low-frequency perturbation frequency. Wavelength information and bit information thereon.
- the decoding unit 61 is configured to decode the bit information obtained by the spectrum parsing unit 65 according to a preset decoding rule to obtain the wavelength label information frame.
- the decoding unit 61 is configured to first search for a frame header in the code stream signal.
- the frame header is 0xF6F6F6282828, and then the frame data following the frame header is 4B/5B decoded.
- the frame data is lost, and a decoding error is reported.
- the downstream node may further include: a framing unit 66, configured to acquire configuration information from the wavelength label information frame acquired by the decoding unit 61, and send the configuration information to the configuration unit 62.
- a framing unit 66 configured to acquire configuration information from the wavelength label information frame acquired by the decoding unit 61, and send the configuration information to the configuration unit 62.
- the decoded data is framing
- the 4B/5B decoded data is composed into one frame
- the CRC is checked, and if there is an error, the CRC is reported. Check the error.
- the configuration unit 62 is configured to extract an address, a signal modulation format, a signal rate, a subcarrier multiplexing method, a signal spectrum characteristic, an extension field, and the like in the frame data, and perform the RO ADM node and the receiving end according to the information.
- Adaptive configuration including:
- the decoding unit 61, the configuration unit 62, the processing unit 64, the frequency i "analysis unit 65" and the framing unit 66 can all be implemented by hardware such as a DSP or a CPU, and the beam splitting unit 63 can be implemented by a beam splitter.
- composition of the system for configuring a node may be as shown in FIG. 7 , including: a sending node and at least one downstream node;
- a sending node configured to encapsulate configuration information in a wavelength label information frame, where the configuration information is used to configure a downstream node; loading the wavelength label frame onto an optical signal, and transmitting the wavelength label frame by using an optical signal ;
- a downstream node configured to extract a wavelength label information frame from the received optical signal, decode the configuration information from the wavelength label information frame, and perform adaptive configuration according to the configuration information.
- the system may further include: a network management system, configured to receive the current configuration situation reported by the downstream node; and correspondingly, the downstream node is configured to report the current configuration to the network management system after the adaptive configuration.
- a network management system configured to receive the current configuration situation reported by the downstream node; and correspondingly, the downstream node is configured to report the current configuration to the network management system after the adaptive configuration.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
本发明公开了一种配置节点的方法、装置及系统,其中方法包括:发送节点将配置信息封装在波长标签信息帧中;其中,所述配置信息用于配置下游节点;所述发送节点将所述波长标签帧加载到光信号上,并发送所述波长标签帧及所述光信号。
Description
一种配置节点的方法、 装置及系统 技术领域
本发明涉及通信领域中的光传送技术, 尤其涉及一种配置节点的方法、 装 置及系统。 背景技术
超 100G的光传送系统中引入了多载波光传输技术、灵活栅格( Flexible Grid ) 技术和相干数字信号处理(DSP, Digital Singnal Processing )技术, 从而适应不 同调制码型、 不同速率的波分复用传送需求, 并且具备可配置及可编程性。 在 光传送系统的超 100G时代, 系统可根据全网频谱资源利用情况和线路损伤进 行频谱资源调配与优化, 实现频 i普碎片整理, 提升频谱利用率, 这也意味着, 系统的频谱资源配置不再是固定的, 而是需要根据系统发送节点的调制格式、 子载波复用方式和频谱占用情况的变化而变化。
目前, 对上述超 100G的光传送系统进行配置的方法包括: 配置信息由网 管下发到系统的各节点, 当系统的线路侧发送节点根据链路状态由网管改变了 调制格式、 子载波复用方式等发送侧配置时, 网管也需要改变链路中各可重构 分插复用器( ROADM, Reconfigurable Optical Add Drop Multiplexer )节点和接 收端的配置。 例如, 当线路侧发送节点根据链路状态由网管改变了调制格式、 子载波复用方式等发送侧配置时, 需要改变链路中各下游 ROADM节点和接收 端的配置; 或者, 当超 100G光传输系统进行灵活栅格频 i "优化时, 信号的频 谱占用情况会发生变化, 需要对光传输系统的发送节点、 下游 ROADM节点以 及接收端进行重新配置。 但是, 当配置工作量增大时, 通过网管进行配置不仅 效率低, 而且容易出错。
发明内容
有鉴于此, 本发明实施例提供一种配置节点的方法、 装置及系统。
本发明提供了一种配置节点的方法, 该方法包括:
发送节点将配置信息封装在波长标签信息帧中; 其中, 所述配置信息用 于配置下游节点;
所述发送节点将所述波长标签帧加载到光信号上,并发送所述波长标签 帧及所述光信号。
上述方案中, 所述配置信息包括: 发送节点光信号的调制格式、 信号速 率、 子载波复用方式、 以及光信号所占用的频谱资源;
所述封装包括: 按照预设的帧格式分别添加帧头和帧体, 帧体包括光信 号的调制格式、信号速率、子载波复用方式、以及光信号所占用的频谱资源、 扩展字段。
上述方案中, 所述发送节点将配置信息封装在波长标签信息帧中之后, 所述方法还包括: 根据预设的编码规则, 对所述波长标签信息帧进行编码。
上述方案中, 所述将所述波长标签帧加载到光信号上, 包括: 根据所述 波长标签信息帧对应的光信号, 确定该光信号对应的低频微扰调制频率, 将 编码后的波长标签信息帧调制到低频微扰调制频率上,将所述低频微扰信号 加载到所对应的光信号上。
本发明还提供了一种配置节点的方法, 所述方法包括:
下游节点从接收到的光信号中提取波长标签信息帧,从所述波长标签信 息帧中解码得到配置信息;
所述下游节点根据所述配置信息进行自适应配置。
上述方案中, 所述下游节点根据所述配置信息进行自适应配置之后, 所 述方法还包括: 所述下游节点在自适应配置后, 将当前的配置情况上报给网 管。
上述方案中, 所述下游节点从接收到的光信号中提取波长标签信息帧,
包括:对接收的光信号进行光电转换;对光电转换后的光信号进行频率分析, 得到所述光信号中携带的比特信息; 根据预设的解码规则, 对所述比特信息 进行解码, 得到所述波长标签信息帧。
上述方案中, 所述对接收的光信号进行光电转换可以包括: 所述下游节 点对于接收到的光信号通过耦合器进行分光,将分光后得到的部分分光信号 取出来进行光电转换、 放大、 釆样和模数转换。
上述方案中, 对所述比特信息进行解码, 得到波长标签信息帧, 包括: 根据预设的解码规则, 在所述比特信息中寻找帧头所对应的特殊比特序列; 根据预设的解码规则,对所述帧头后面的帧数据进行解码得到波长标签信息 帧。
上述方案中, 所述自适应配置包括:
根据相应光信号所需的频谱资源, 设置波长选择开关的栅格宽度; 根据光信号的调制格式和子载波复用方式特性, 设置滤波器形状; 根据相应光信号的速率、 调制格式、 复用方式, 设置接收端所釆用的数 字信号处理 DSP算法。
本发明还提供了一种发送节点, 所述发送节点包括: 封装单元和加载单 元; 其中,
封装单元, 配置为将配置信息封装在波长标签信息帧中; 其中, 所述配 置信息用于配置下游节点;
加载单元, 配置为将封装单元提供的的所述波长标签帧加载到光信号 上, 并发送所述波长标签帧及所述光信号。
上述方案中, 所述配置信息包括: 发送节点光信号的调制格式、 信号速 率、 子载波复用方式、 以及光信号所占用的频谱资源;
所述封装包括: 按照预设的帧格式分别添加帧头和帧体, 帧体包括光信 号的调制格式、信号速率、子载波复用方式、以及光信号所占用的频谱资源、 扩展字段。
上述方案中, 所述发送节点还包括: 编码单元, 配置为根据预设的编码
规则, 对封装单元提供的所述波长标签信息帧进行编码;
相应的, 所述封装单元, 配置为为编码单元提供所述波长标签信息帧。 上述方案中, 所述发送节点还包括: 频率生成单元、 调制单元; 其中, 频率生成单元, 配置为根据所述波长标签信息帧对应的光信号, 确定该 光信号对应的低频微扰调制频率;
调制单元,配置为将编码单元提供的编码后的波长标签信息帧调制到低 频微扰调制频率上;
相应的, 所述加载单元, 配置为将所述低频微扰信号加载到所对应的光 信号上。
本发明还提供了一种下游节点, 所述下游节点包括: 解码单元和配置单 元; 其中,
解码单元, 配置为从接收到的光信号中提取波长标签信息帧, 从所述波 长标签信息帧中解码得到配置信息;
配置单元, 配置为根据所述配置信息进行自适应配置。
上述方案中, 所述下游节点包括: 处理单元以及频谱分析单元; 其中, 处理单元, 配置为对接收的光信号进行光电转换;
频谱分析单元, 配置为对光电转换后的光信号进行频率分析, 得到所述 光信号中携带的比特信息, 发送所述比特信息给解码单元;
相应的, 所述解码单元, 配置为根据预设的解码规则, 对所述比特信息 进行解码, 得到所述波长标签信息帧。
上述方案中, 所述下游节点还包括: 分光单元, 配置为对于接收到的光 信号通过耦合器进行分光, 将分光后得到的部分光信号发送给处理单元; 相应的, 所述处理单元, 配置为取出来进行光电转换、 放大、 釆样和模 数转换。
上述方案中, 所述下游节点还包括: 组帧单元, 配置为从波长标签信息 帧中获取配置信息;
相应的, 所述编码单元, 配置为根据预设的解码规则, 在所述比特信息
中寻找帧头所对应的特殊比特序列,对所述帧头后面的帧进行解码得到波长 标签信息帧。
上述方案中, 所述自适应配置包括:
根据相应光信号所需的频谱资源, 设置波长选择开关的栅格宽度; 根据光信号的调制格式和子载波复用方式特性, 设置滤波器形状; 根据相应光信号的速率、 调制格式、 复用方式, 设置接收端所釆用的
DSP算法。
本发明提供了一种配置节点的系统, 所述系统包括: 发送节点以及至少 一个下游节点; 其中,
发送节点, 配置为将配置信息封装在波长标签信息帧中; 其中, 所述配 置信息用于配置下游节点; 将所述波长标签帧加载到光信号上, 并发送所述 波长标签帧及所述光信号;
下游节点, 配置为从接收到的光信号中提取波长标签信息帧, 从所述波 长标签信息帧中解码得到配置信息; 根据所述配置信息进行自适应配置。
本发明所提供配置节点的方法、装置及系统, 由发送节点将配置信息封装 在波长标签信息帧中; 其中, 所述配置信息用于配置下游节点; 所述发送节 点将所述波长标签帧加载到光信号上, 同时发送所述波长标签帧及所述光信 号。 可见, 通过将配置信息由发送节点直接下发给下游节点, 并由下游节点进 行解码并自适应进行配置, 避免由网管对各个节点依次进行配置而带来的效率 低下的问题, 从而提高了光传输系统中的节点的配置效率。 附图说明
图 1为本发明实施例一配置节点的方法中发送节点的流程示意图; 图 2为本发明波长标签帧组成结构示意图;
图 3为本发明实施例二配置节点的方法中下游节点的流程示意图; 图 4为本发明实施例三配置节点的方法流程示意图;
图 5为本发明实施例四发送节点的组成结构示意图;
图 6为本发明实施例五下游节点的组成结构示意图;
图 7为本发明实施例六配置节点的系统组成结构示意图。 具体实施方式
本发明实施例的基本思想是:发送节点将配置信息封装在波长标签信息 帧中; 其中, 所述配置信息用于配置下游节点; 所述发送节点将所述波长标 签帧加载到光信号上, 并发送所述波长标签帧及所述光信号。
下面结合附图及具体实施例对本发明再作进一步详细的说明。
实施例一、
本发明实施例提供配置节点的方法中发送节点的操作流程, 如图 1所示, 包括:
步骤 101 : 发送节点将配置信息封装在波长标签信息帧中; 其中, 所述 配置信息用于配置下游节点。
步骤 102: 所述发送节点将所述波长标签帧加载到光信号, 发送所述波 长标签帧及所述光信号。
所述下游节点可以为 ROADM节点以及接收端。
优选地, 所述配置信息包括但不限于: 发送节点光信号的调制格式、 信 号速率、 子载波复用方式、 以及光信号所占用的频谱资源等。
其中, 所述光信号的调制格式包括但不限于: 偏振复用差分相移键控 ( PDM-QPSK, Polarization Division Multiplexed Quadrature Phase Shift Keying ) 、 16正交振幅调制 ( QAM, Quadrature Amplitude Modulation ) 、 32QAM、 64QAM等;
所述子载波复用方式包括但不限于:单载波和多载波正交频分复用技术 ( OFDM, Orthogonal Frequency Division Multiplexing )、 多载波 Nyquist等; 所述光信号所占用的频谱资源包括但不限于: 光通道内子载波个数、 子 载波是否连续、 载波 /子载波的中心频率、 频宽范围等; 其中, 所述中心频 率颗粒度为 0.00625THz, 所述标称中心频率计算公式为 193.1THz+n x
0.00625THz, n为整数(可为负) , 所述规范频宽为 12.5 GHz χ m, 其中 m 为正整数。
每个光通道可能包含一个或多个子载波, 且子载波可能是不连续的, 当 一个光通道内各子载波路径相同时此光通道的信息可以封装在一个波长标 签内, 当一个光通道内的各个子载波路径不同时, 则每个子载波需要使用不 同的波长标签, 且波长标签内包含当前子载波的信息。
优选地, 所述封装为: 按照预设的帧格式生成数据帧的帧头和帧体, 以 及数据帧各字段; 所述帧格式可以如图 2所示, 包括帧头和帧体;
所述帧头是固定长度, 帧体是可变长度, 所述帧体的长度与实际子载波 个数相关。
所述帧头包括但不限于: 帧定位开销、 帧 ID、 帧长度、 扩展字段; 其 中, 所述帧定位开销用来定义帧的起始位置, 帧 ID作为数据帧的一个编号; 所述帧长度用来表示数据帧体的长度,用来作数据帧长度的定位和对数据帧 各字段长度的定界, 此字段可选; 所述扩展字段用来作为以后扩展之用。
所述帧体包括: 信号源地址、 信号目的地址、 信号调制格式、 子信号速 率、 子载波复用方式、 子载波个数、 子载波编号、 各子载波中心频率、 各子 载波频宽、 扩展字段、 CRC组成, 但不限于这些字段组成。
其中, 所述信号源地址表示信号的来源节点地址;
所述信号目的地址表示信号的发送目的节点地址;
所述信号的调制格式包括 PDM-QPSK、 16QAM、 32QAM、 64QAM等; 所述信号速率指光通道的信号速率, 如 100G、 400G、 IT等;
所述子载波复用方式包括单载波和多载波 OFDM、 多载波 Nyquist等; 所述信号的频谱特性指信号在频谱上的分布情况, 包括信号的子载波个 数、 子载波是否连续、 各子载波的中心频率和频宽等;
所述扩展字段, 作帧体扩展之用, 如不考虑扩展此字段可选。
所述循环冗余校验(CRC, Cyclic Redundancy Check ) 实现对数据帧简 单的循环冗余校验,也可釆用其它检错 /纠错方法,如前向纠错(FEC, Forward
Error Correction ) 等, 如不考虑校验此字段可选。
优选地, 所述步骤 101完成后, 还可以包括: 根据预设的编码规则, 对 所述波长标签信息帧进行编码。
比如, 可以为对上述波长标签信息帧除帧头外的帧体部分, 根据编码规 则进行编码; 其中, 所述编码规则可以为: 釆用 4B/5B编码方式进行编码, 也可釆用其它编码方式, 如 8Β/10Β、 ·ί尤码等, 无论釆用哪种编码方式, 必 须满足此编码方式是可解码的。
优选地, 上述步骤 102具体为: 根据上述波长标签信息帧对应的光信号 波长, 确定该光信号波长对应的低频微扰调制频率, 将编码后的波长标签信 息帧调制到低频微扰调制频率上,将所述低频微扰信号加载到所对应的光信 号上, 并发送所述波长标签帧及所述光信号。
其中, 所述将编码后的波长标签信息帧调制到低频微扰调制频率上, 并 通过光信号发送可以为: 通过数字频率合成器产生该频率, 将编码后的波长 标签信, 帧信号调制到该低频微扰调制频率上, 调制的方式可选用幅度调 制, 也可是其它的调制方式, 如频率调制等; 使用调制后的低频微扰信号控 制波长标签加载器件如可调光衰减器, 以合适的调制深度(3%~8%, 可根据 经验设置或通过仿真方式确定)将低频微扰信号加载到所对应的光信号并发 送。 实施例二、
本发明实施例提供配置节点的方法中下游节点的操作流程, 如图 3所示, 包括:
步骤 301 : 下游节点从接收到的光信号中提取波长标签信息帧, 从所述 波长标签信息帧中解码得到配置信息;
步骤 302: 所述下游节点根据所述配置信息进行自适应配置。
所述下游节点可以为 ROADM节点或接收节点。
优选地, 上述步骤 302完成后, 所述下游节点还可以在自适应配置后,
将当前的配置情况上报给网管。
优选地, 所述配置信息包括但不限于: 发送节点光信号的调制格式、 信 号速率、 子载波复用方式、 以及光信号所占用的频谱资源等。
优选地, 所述下游节点从接收到的光信号中提取波长标签信息帧包括: 对接收的光信号进行光电转换;对光电转换后的光信号进行频率分析得到所 述光信号中携带的比特信息; 根据预设的解码规则, 对所述比特信息进行解 码, 得到所述波长标签信息帧。
其中, 所述对接收的光信号进行光电转换可以包括: 所述下游节点对于 接收到的光信号通过耦合器进行分光, 将其中一小部分(如 5% ) 的光信号 取出来进行光电转换, 然后进行放大并做釆样和模数转换。
所述频率分析可以为: 通过线性调频 z变换 (CZT, Z-transformation ) 或快速傅里叶变换 ( FFT, Fast Fourier Transform ) 等方法对釆样信号进行频 谱分析,根据频谱分析的结果得到低频微扰频率的频率值及其所携带的比特 信息。
对所述比特信息进行解码, 得到波长标签信息帧可以包括: 根据预设的 解码规则, 在所述比特信息中寻找帧头所对应的特殊比特序列, 比如, 可以 为 0xF6F6F6282828; 根据预设的解码规则, 对所述帧头后面的帧数据进行 解码得到波长标签信息帧。
所述对所述帧头后面的帧数据进行解码得到波长标签信息帧可以为:如 果发送端釆用 4B/5B编码规则的数据, 则此处用相应的 4B/5B解码规则进 行解码处理,如果某一个码字不在 4B/5B编码表格中,则判定解码发生错误, 将此数据帧丟弃, 报告解码错误; 如果判定解码没有错误, 则将此解码后的 数据组帧组帧得到波长标签信息帧。 对所述波长标签信息帧进行校验, 对于 发送端釆用 CRC校验生成的帧校验字节,此处通过 CRC校验规则进行帧校 验, 如果帧内数据通过了 CRC校验, 则生成帧头和帧体。
其中,所述生成帧头和帧体可以为: 先生成帧头,依次提取帧定位开销、 帧 ID、 帧长度、 扩展字段等信息。 然后生成帧体, 依次提取地址、 信号调
制格式、 信号速率、 子载波复用方法、 信号频谱特性、 扩展字段、 CRC 校 验等字段有效信息。
提取信息时釆用地址偏移的方式, 按字节顺序提取, 每提取一个字段则 组成相对应的帧字段, 直到把所有字段组帧完毕。
反之, 则上报 CRC校验错误, 并将此错误帧丟弃。 如发送端釆用 FEC 校验, 则接收端也以 FEC校验。
所述自适应配置包括但不限于:
根据相应光信号所需的频谱资源, 设置波长选择开关的栅格宽度; 根据光信号的调制格式和子载波复用方式特性等, 设置滤波器形状; 根据相应光信号的速率、 调制格式、 复用方式等, 设置接收端所釆用的 DSP算法等。 实施例三、
图 4为本发明实施例提供的配置节点的方法, 包括以下步骤:
步骤 401 : 发送节点将配置信息封装在波长标签信息帧中。
具体的, 所述发送节点先组帧, 按照图 2的格式生成数据帧的帧头和帧 体, 根据规则生成数据帧各字段。
步骤 402: 所述发送节点根据预设的编码规则, 对所述波长标签信息帧 进行编码。
具体的, 对上述波长标签信息帧除帧头外的字节, 即帧体部分, 根据编 码规则进行编码, 数据帧可以釆用 4B/5B编码方式进行编码, 也可釆用其它 编码方式, 如 8B/10B、 扰码等, 无论釆用哪种编码方式, 必须满足此编码 方式是可解码的。
步骤 403 : 所述发送节点确定波长标签的低频微扰调制频率。
具体的,根据上述波长标签信息帧对应的波长信道确定该波长信道对应 的低频微扰调制频率, 可通过数字频率合成器产生该频率, 并将编码后的波 长标签信息帧信号调制到该低频微扰调制频率上,调制的方式可选用幅度调
制, 也可是其它的调制方式, 如频率调制等。
步骤 404: 所述发送节点将编码后的波长标签信息帧调制到低频微扰调 制频率上, 并发送所述波长标签帧及所述光信号至下游节点。
使用调制后的低频微扰信号控制波长标签加载器件如可调光衰减器,以 合适的调制深度( 3%~8%, 可根据经验设置或通过仿真方式确定)将低频微 扰信号加载到所对应的波长信道, 并发送。
所述下游节点可以为 ROADM节点或接收节点。
步骤 405: 所述下游节点对接收的光信号进行光电转换。
所述光电转换可以为: 对所述光信号进行分光、 光电转换、放大、 釆样。 所述分光可以为将其中一小部分 (如 5%)光信号取出来, 送到 PIN接收 器进行光电转换, 然后进行放大并做釆样和模数转换。
步骤 406: 所述下游节点对光电转换后的光信号进行频率分析得到所述 光信号中携带的比特信息。
具体的, CZT或 FFT等方法对釆样信号进行频谱分析, 根据频谱分析 的结果得到低频微扰频率的频率值及其所携带的比特信息,恢复出低频微扰 频率所对应的波长信道信息。
步骤 407: 所述下游节点根据预设的解码规则, 对所述比特信息进行解 码, 得到所述波长标签信息帧。
比如, 在频谱分析后得到的比特信息中寻找帧头所对应的特殊比特序 列, 如此处是 0xF6F6F6282828, 然后对帧头后面的帧数据进行解码处理; 如果发送端釆用 4B/5B编码的数据, 则此处用相应的 4B/5B解码规则进行 解码处理。 如果某一个码字不在 4B/5B编码表格中, 则判断发生错误, 将此 数据帧丟弃, 报告解码错误。 如解码时没有错误, 则将此解码后的数据组帧 进行组帧。
对解码后的信息进行组帧, 并进行校验。 对于发送端釆用 CRC校验生 成的帧校验字节, 此处通过 CRC校验规则进行帧校验, 如果帧内数据通过 了 CRC校验, 则生成帧头和帧体。
先生成帧头, 依次提取帧定位开销、 帧 ID、 帧长度、 扩展字段等信息。 然后生成帧体, 依次提取地址、 信号调制格式、 信号速率、 子载波复用 方法、 信号频谱特性、 扩展字段、 CRC校验等字段有效信息。
提取信息时釆用地址偏移的方式, 按字节顺序提取, 每提取一个字段则 组成相对应的帧字段, 直到把所有字段组帧完毕。
反之, 则上报 CRC校验错误, 并将此错误帧丟弃。 如发送端釆用 FEC 校验, 则接收端也以 FEC校验。
步骤 408: 所述下游节点从所述波长标签信息帧中提取得到配置信息。 比如, 可以为按照图 2中预设的帧格式, 从所述波长标签信息帧中提取 发送节点光信号的调制格式、 信号速率、 子载波复用方式、 以及光信号所占 用的频谱资源等组成所述配置信息。
优选地, 所述下游节点还会从所述配置信息中, 获取自身需要的信息。 步骤 409: 所述下游节点根据所述配置信息进行自适应配置。
所述自适应配置包括但不限于:
ROADM节点根据相应光信号所需的频谱资源,设置波长选择开关的栅 格宽度;
OADM节点根据光信号的调制格式和子载波复用方式特性等,设置滤 波器形状;
接收端根据相应光信号的速率、 调制格式、 复用方式等, 设置接收端所 釆用的 DSP算法等。 实施例四、
图 5 为本发明实施例中发送节点的组成结构, 包括: 封装单元 51、 加 载单元 52;
封装单元 51, 用于将配置信息封装在波长标签信息帧中; 其中, 所述 配置信息用于配置下游节点;
加载单元 52, 用于将封装单元 51提供的的所述波长标签帧加载到光信
号上, 并发送所述波长标签帧及所述光信号。
优选地, 所述配置信息包括但不限于: 发送节点光信号的调制格式、 信 号速率、 子载波复用方式、 以及光信号所占用的频谱资源等。
其中, 所述光信号的调制格式包括但不限于: 偏振复用差分相移键控
( PDM-QPSK, Polarization Division Multiplexed Quadrature Phase Shift Keying ) 、 16正交振幅调制 ( QAM, Quadrature Amplitude Modulation ) 、 32QAM、 64QAM等;
所述子载波复用方式包括但不限于:单载波和多载波正交频分复用技术
( OFDM, Orthogonal Frequency Division Multiplexing )、 多载波 Nyquist等; 所述光信号所占用的频谱资源包括但不限于: 光通道内子载波个数、 子 载波是否连续、 载波 /子载波的中心频率、 频宽范围等; 其中, 所述中心频 率颗粒度为 0.00625THz, 所述标称中心频率计算公式为 193.1THz+n x 0.00625THz, n为整数(可为负) , 所述规范频宽为 12.5 GHz χ m, 其中 m 为正整数。
每个光通道可能包含一个或多个子载波, 且子载波可能是不连续的, 当 一个光通道内各子载波路径相同时此光通道的信息可以用封装在一个波长 标签内, 当一个光通道内的各个子载波路径不同时, 则每个子载波需要使用 不同的波长标签, 且波长标签内包含当前子载波的信息。
优选地, 所述封装单元 51, 配置为按照预设的帧格式生成数据帧的帧 头和帧体, 以及数据帧各字段; 所述帧格式可以如图 2所示, 包括帧头和帧 体; 所述帧头是固定长度, 帧体是可变长度, 所述帧体的长度与实际子载波 个数相关。
所述帧头包括但不限于: 帧定位开销、 帧 ID、 帧长度、 扩展字段; 其 中, 所述帧定位开销用来定义帧的起始位置, 帧 ID作为数据帧的一个编号; 所述帧长度用来表示数据帧体的长度,用来作数据帧长度的定位和对数据帧 各字段长度的定界, 此字段可选; 所述扩展字段用来作为以后扩展之用。
所述帧体包括: 信号源地址、 信号目的地址、 信号调制格式、 子信号速
率、 子载波复用方式、 子载波个数、 子载波编号、 各子载波中心频率、 各子 载波频宽、 扩展字段、 CRC组成, 但不限于这些字段组成。
其中, 所述信号源地址表示信号的来源节点地址;
所述信号目的地址表示信号的发送目的节点地址;
所述信号的调制格式包括 PDM-QPSK、 16QAM、 32QAM、 64QAM等; 所述信号速率指光通道的信号速率, 如 100G、 400G、 IT等;
所述子载波复用方式包括单载波和多载波 OFDM、 多载波 Nyquist等; 所述信号的频谱特性指信号在频谱上的分布情况, 包括信号的子载波个 数、 子载波是否连续、 各子载波的中心频率和频宽等;
所述扩展字段, 作帧体扩展之用, 如不考虑扩展此字段可选。
所述循环冗余校验(CRC, Cyclic Redundancy Check ) 实现对数据帧简 单的循环冗余校验,也可釆用其它检错 /纠错方法,如前向纠错(FEC, Forward
Error Correction ) 等, 如不考虑校验此字段可选。
优选地, 所述发送节点还可以包括: 编码单元 53, 用于根据预设的编 码规则, 对封装单元 51提供的所述波长标签信息帧进行编码。
比如, 可以为对上述波长标签信息帧除帧头外的帧体部分, 根据编码规 则进行编码; 其中, 所述编码规则可以为: 釆用 4B/5B编码方式进行编码, 也可釆用其它编码方式, 如 8Β/10Β、 ·ί尤码等, 无论釆用哪种编码方式, 必 须满足此编码方式是可解码的。
优选地, 上述发送节点还可以包括: 频率生成单元 54、 调制单元 55; 其中,
频率生成单元 54, 用于确定波长标签的低频微扰调制频率; 调制单元 55, 用于将编码单元 53提供的编码后的波长标签信息帧调制到低频微扰调 制频率上; 相应的, 所述加载单元 52, 配置为加载并发送所述波长标签帧 及所述光信号。
所述频率生成单元 54, 配置为生成波长标签信息帧的波长信道对应的低频 微扰频率。
频率生成单元 54 首先根据波长信号的波长信息确定其所对应的低频微扰 频率, 然后控制数字频率合成器生成此低频频率。
所述调制单元 55, 配置为将所述波长标签信息帧调制到所述低频微扰频率 上, 将经过编码后的或未经编码波长标签信息帧信号釆用幅度调制方式调制到 低频微扰频率上, 此处调制方式也可以釆用频率调制方式等其它调制方式。
所述加载单元 52, 用于将调制后的所述波长标签信息帧信号加载到所述波 长信道中发送, 将调制后的信号以一个合适的调制深度加载到波长信道信号上 去, 并控制调制深度的稳定性, 可以通过用调制信号控制可调光衰减器等器件 来实现。
优选地, 所述频率生成单元 54 可以由频率合成器实现, 比如, 通过数字 频率合成器产生频率。 上述封装单元、 加载单元及调制单元均可以由 DSP 或 CPU等硬件实现。 实施例五、
图 6 为本发明提供的下游节点的组成结构示意图, 包括: 解码单元 61 和配置单元 62; 其中,
解码单元 61, 用于从接收到的光信号中提取波长标签信息帧, 从所述 波长标签信息帧中解码得到配置信息;
配置单元 62, 用于根据所述配置信息进行自适应配置。
所述下游节点还可以包括: 分光单元 63以及处理单元 64; 其中, 分光单元 63, 用于用于对接收到的光信号进行分光;
处理单元 64, 用于对分光单元 63发来的光信号进行光电转换。
其中, 所述分光单元 63可以由光纤耦合器构成, 其将 5%的光功率取出 用于波长标签检测和接收。
所述处理单元 64, 配置为对其中一路光信号 (如整个光信号的 5%)进行 光电转换和模数转换。
所述处理单元 64可以由光电转换的 PIN管、 放大器和模拟数字转换器
( ADC) ) 等实现。 比如, 将其中一路光信号取出来, 送到 PIN管进行光电 转换, 然后进行放大(由放大器进行放大)并做釆样和模数转换(具体由模 拟数字转换器进行模数转换) 。
所述下游节点还可以包括: 频谱解析单元 65, 用于对处理单元 64光电 转换后的光信号进行频率分析得到所述光信号中携带的比特信息。
所述频谱解析单元 65, 配置为釆用线性调频 z变换进行频谱分析,得到 信号中所存在的低频微扰频率的频率值和频率信号幅度信息,并恢复出低频 微扰频率的频率所对应的波长信息和其上的比特信息。
所述解码单元 61, 配置为根据预设的解码规则, 对所述频谱解析单元 65获得的所述比特信息进行解码, 得到所述波长标签信息帧。
所述解码单元 61, 配置为首先在码流信号中寻找帧头, 此示例中是帧 头为 0xF6F6F6282828,然后对帧头后面的帧数据进行 4B/5B解码。在解码时, 如果一个码字不在 4B/5B的编码表格中,即发生错码时,则将此帧数据丟失, 并报告解码错误。
所述下游节点还可以包括: 组帧单元 66, 用于从解码单元 61获取的所 述波长标签信息帧中获取配置信息, 将所述配置信息发送给所述配置单元 62。
所述组帧单元 66在解码时没有错误时, 将此解码后的数据进行组帧, 将 4B/5B解码后的数据组成一帧, 并时行 CRC校验, 如果有错误, 则上报 CRC校验错误。
所述配置单元 62, 配置为将帧数据中的地址、 信号调制格式、 信号速 率、 子载波复用方法、 信号频谱特性、 扩展字段等提取出来, 并根据这些信 息对 RO ADM节点和接收端进行自适应配置, 包括:
根据相应光信号所需的频谱资源,设置 ROADM节点波长选择开关的栅 格宽度; 根据光信号的调制格式和子载波复用方式特性等,设置 ROADM节 点波长选择开关的滤波器形状; 根据相应光信号的速率、 调制格式、 复用方 式等, 设置接收端所釆用的 DSP算法等。
上述各个单元的实现功能可参照前述波长标签传输方法的相关描述而 理解, 可通过运行于处理器上的程序而实现, 也可通过具体的逻辑电路而实 现。 上述解码单元 61、 配置单元 62、 处理单元 64、 频 i "解析单元 65及组 帧单元 66均可以由 DSP或 CPU等硬件实现, 所述分光单元 63可以由分光 器实现。 实施例六、
本发明实施例提供的配置节点的系统的组成, 可以如图 7所示, 包括: 发送节点以及至少一个下游节点; 其中,
发送节点, 用于将配置信息封装在波长标签信息帧中; 其中, 所述配置 信息用于配置下游节点; 将所述波长标签帧加载到光信号上, 并通过光信号 发送所述波长标签帧;
下游节点, 用于从接收到的光信号中提取波长标签信息帧, 从所述波长 标签信息帧中解码得到配置信息; 根据所述配置信息进行自适应配置。
优选地, 所述系统还可以包括: 网管, 用于接收所述下游节点上报的当 前配置情况; 相应的, 所述下游节点, 配置为在自适应配置后, 将当前的配 置情况上报给网管。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。
Claims
1、 一种配置节点的方法, 该方法包括:
发送节点将配置信息封装在波长标签信息帧中; 其中, 所述配置信息用 于配置下游节点;
所述发送节点将所述波长标签帧加载到光信号;
发送所述波长标签帧及所述光信号。
2、 根据权利要求 1 所述的方法, 其中, 所述配置信息包括: 发送节点 光信号的调制格式、 信号速率、 子载波复用方式、 以及光信号所占用的频谱 资源;
所述封装包括: 按照预设的帧格式分别添加帧头和帧体, 帧体包括光信 号的调制格式、信号速率、子载波复用方式、以及光信号所占用的频谱资源、 扩展字段。
3、 根据权利要求 1 所述的方法, 其中, 所述发送节点将配置信息封装 在波长标签信息帧中之后, 所述方法还包括: 根据预设的编码规则, 对所述 波长标签信息帧进行编码。
4、 根据权利要求 3所述的方法, 其中, 所述将所述波长标签帧加载到 光信号上, 包括: 根据所述波长标签信息帧对应的光信号, 确定该光信号对 应的低频微扰调制频率,将编码后的波长标签信息帧调制到低频微扰调制频 率上, 将所述低频微扰信号加载到所对应的光信号上。
5、 一种配置节点的方法, 所述方法包括:
下游节点从接收到的光信号中提取波长标签信息帧,从所述波长标签信 息帧中解码得到配置信息;
所述下游节点根据所述配置信息进行自适应配置。
6、 根据权利要求 5所述的方法, 其中, 所述下游节点根据所述配置信 息进行自适应配置之后, 所述方法还包括: 所述下游节点在自适应配置后, 将配置情况上报给网管。
7、 根据权利要求 5或 6所述的方法, 其中, 所述下游节点从接收到的 光信号中提取波长标签信息帧, 包括: 对接收的光信号进行光电转换; 对光 电转换后的光信号进行频率分析, 得到所述光信号中携带的比特信息; 根据 预设的解码规则, 对所述比特信息进行解码, 得到所述波长标签信息帧。
8、 根据权利要求 7所述的方法, 其中, 所述对接收的光信号进行光电 转换, 包括: 所述下游节点对于接收到的光信号通过耦合器进行分光, 对分 光后得到的部分分光信号进行光电转换、 放大、 釆样和模数转换。
9、 根据权利要求 7所述的方法, 其中, 对所述比特信息进行解码, 得 到波长标签信息帧, 包括: 根据预设的解码规则, 在所述比特信息中寻找帧 头所对应的特殊比特序列; 根据预设的解码规则, 对所述帧头后面的帧数据 进行解码得到波长标签信息帧。
10、 根据权利要求 7所述的方法, 其中, 所述自适应配置包括: 根据相应光信号所需的频谱资源, 设置波长选择开关的栅格宽度; 根据光信号的调制格式和子载波复用方式特性, 设置滤波器形状; 根据相应光信号的速率、 调制格式、 复用方式, 设置接收端所釆用的数 字信号处理 DSP算法。
11、 一种发送节点, 所述发送节点包括: 封装单元和加载单元; 其中, 封装单元, 配置为将配置信息封装在波长标签信息帧中; 其中, 所述配 置信息用于配置下游节点;
加载单元, 配置为将封装单元提供的的所述波长标签帧加载到光信号 上, 并发送所述波长标签帧及所述光信号。
12、 根据权利要求 11 所述的发送节点, 其中, 所述配置信息包括: 发 送节点光信号的调制格式、 信号速率、 子载波复用方式、 以及光信号所占用 的频谱资源;
所述封装包括: 按照预设的帧格式分别添加帧头和帧体, 帧体包括光信 号的调制格式、信号速率、子载波复用方式、以及光信号所占用的频谱资源、 扩展字段。
13、 根据权利要求 12所述的发送节点, 其中, 所述发送节点还包括: 编码单元, 配置为根据预设的编码规则, 对封装单元提供的所述波长标签信 息帧进行编码;
相应的, 所述封装单元, 配置为为编码单元提供所述波长标签信息帧。
14、 根据权利要求 13 所述的发送节点, 其中, 所述发送节点还包括: 频率生成单元、 调制单元; 其中,
频率生成单元, 配置为根据所述波长标签信息帧对应的光信号, 确定该 光信号对应的低频微扰调制频率;
调制单元,配置为将编码单元提供的编码后的波长标签信息帧调制到低 频微扰调制频率上;
相应的, 所述加载单元, 配置为将所述低频微扰信号加载到所对应的光 信号上。
15、 一种下游节点, 所述下游节点包括:
解码单元, 配置为从接收到的光信号中提取波长标签信息帧, 从所述波 长标签信息帧中解码得到配置信息;
配置单元, 配置为根据所述配置信息进行自适应配置。
16、 根据权利要求 15所述的下游节点, 其中, 所述下游节点还包括: 处理单元, 配置为对接收的光信号进行光电转换;
频谱分析单元, 配置为对光电转换后的光信号进行频率分析, 得到所述 光信号中携带的比特信息, 发送所述比特信息给解码单元;
相应的, 所述解码单元, 配置为根据预设的解码规则, 对所述比特信息 进行解码, 得到所述波长标签信息帧。
17、 根据权利要求 16所述的下游节点, 其中, 所述下游节点还包括: 分光单元, 配置为对于接收到的光信号通过耦合器进行分光, 将分光后得到 的部分光信号发送给处理单元;
相应的, 所述处理单元, 配置为对所述部分分光信号进行光电转换、 放 大、 釆样和模数转换。
18、 根据权利要求 17所述的下游节点, 其中, 所述下游节点还包括: 组帧单元, 配置为从波长标签信息帧中获取配置信息;
相应的, 所述编码单元, 配置为根据预设的解码规则, 在所述比特信息 中寻找帧头所对应的特殊比特序列,对所述帧头后面的帧进行解码得到波长 标签信息帧。
19、 根据权利要求 7所述的方法, 其中,
所述配置单元, 配置为根据相应光信号所需的频谱资源, 设置波长选择 开关的栅格宽度;
根据光信号的调制格式和子载波复用方式特性, 设置滤波器形状; 根据相应光信号的速率、 调制格式、 复用方式, 设置接收端所釆用的
DSP算法。
20、 一种配置节点的系统, 所述系统包括: 发送节点以及至少一个下游 节点; 其中,
发送节点, 配置为将配置信息封装在波长标签信息帧中; 其中, 所述配 置信息用于配置下游节点; 将所述波长标签帧加载到光信号上, 并发送所述 波长标签帧及所述光信号;
下游节点, 配置为从接收到的光信号中提取波长标签信息帧, 从所述波 长标签信息帧中解码得到配置信息; 根据所述配置信息进行自适应配置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/023,040 US9887796B2 (en) | 2013-09-23 | 2014-05-20 | Method for configuring a node, device and system |
EP14845827.6A EP3051752B1 (en) | 2013-09-23 | 2014-05-20 | Method, device and system for configuring node |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310435769.1A CN104468024B (zh) | 2013-09-23 | 2013-09-23 | 一种配置节点的方法、装置及系统 |
CN201310435769.1 | 2013-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015039454A1 true WO2015039454A1 (zh) | 2015-03-26 |
Family
ID=52688162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/077942 WO2015039454A1 (zh) | 2013-09-23 | 2014-05-20 | 一种配置节点的方法、装置及系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9887796B2 (zh) |
EP (1) | EP3051752B1 (zh) |
CN (1) | CN104468024B (zh) |
WO (1) | WO2015039454A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110519666B (zh) * | 2019-08-16 | 2022-04-01 | 青岛海信宽带多媒体技术有限公司 | 一种光模块波长配置方法、装置及光模块 |
CN111211860B (zh) * | 2019-12-30 | 2022-02-08 | 武汉邮电科学研究院有限公司 | 一种基于多载波技术的波长标签的传输方法及装置 |
CN111510241B (zh) * | 2020-03-26 | 2022-06-03 | 武汉邮电科学研究院有限公司 | 基于频域微扰光标签dwdm光信道识别监控方法及系统 |
CN111585655B (zh) * | 2020-04-13 | 2021-07-06 | 烽火海洋网络设备有限公司 | 一种海底设备远程交互控制系统及方法 |
US11153670B1 (en) | 2020-04-14 | 2021-10-19 | Nubis Communications, Inc. | Communication system employing optical frame templates |
CN113824498B (zh) * | 2020-06-19 | 2023-04-25 | 青岛海信宽带多媒体技术有限公司 | 光模块的速率模式切换方法及光模块 |
CN112100475B (zh) * | 2020-08-14 | 2023-10-03 | 武汉光迅科技股份有限公司 | 一种roadm设备维护方法、装置及计算机存储介质 |
CN112636866B (zh) * | 2020-12-31 | 2023-12-15 | 武汉邮电科学研究院有限公司 | 一种波长标签生成方法和装置、以及检测方法和装置 |
WO2022221850A1 (en) * | 2021-04-14 | 2022-10-20 | Nubis Communications, Inc. | Communication system employing optical frame templates |
CN113810149B (zh) * | 2021-09-23 | 2023-09-15 | 烽火通信科技股份有限公司 | 一种波长标签传输方法及装置 |
CN116366198A (zh) * | 2023-03-24 | 2023-06-30 | 武汉烽火技术服务有限公司 | 多路异步波长标签信号判决阈值确定方法和系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1728604A (zh) * | 2004-07-26 | 2006-02-01 | 华为技术有限公司 | 信息传输设备、方法及系统 |
CN102143052A (zh) * | 2010-11-08 | 2011-08-03 | 华为技术有限公司 | 一种无损带宽调整方法、设备及系统 |
CN102624479A (zh) * | 2012-03-30 | 2012-08-01 | 中兴通讯股份有限公司 | 波长标签传输方法及装置 |
WO2013056739A1 (en) * | 2011-10-20 | 2013-04-25 | Telefonaktiebolaget L M Ericsson (Publ) | Resizing existing traffic flow in optical transport network |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7630636B1 (en) * | 2005-11-21 | 2009-12-08 | At&T Intellectual Property Ii, L.P. | Optical swapping of digitally-encoded optical labels |
US8085869B2 (en) * | 2008-02-14 | 2011-12-27 | Broadcom Corporation | Configurable load impedance for power amplifier predistortion calibration |
US8659392B2 (en) * | 2010-09-22 | 2014-02-25 | General Electric Company | System and method for determining the location of wireless sensors |
US8989591B2 (en) * | 2012-06-06 | 2015-03-24 | Techsys Insights | Remote optical demarcation point |
CN102820951B (zh) * | 2012-07-30 | 2016-12-21 | 华为技术有限公司 | 光传送网中传送、接收客户信号的方法和装置 |
-
2013
- 2013-09-23 CN CN201310435769.1A patent/CN104468024B/zh active Active
-
2014
- 2014-05-20 US US15/023,040 patent/US9887796B2/en active Active
- 2014-05-20 WO PCT/CN2014/077942 patent/WO2015039454A1/zh active Application Filing
- 2014-05-20 EP EP14845827.6A patent/EP3051752B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1728604A (zh) * | 2004-07-26 | 2006-02-01 | 华为技术有限公司 | 信息传输设备、方法及系统 |
CN102143052A (zh) * | 2010-11-08 | 2011-08-03 | 华为技术有限公司 | 一种无损带宽调整方法、设备及系统 |
WO2013056739A1 (en) * | 2011-10-20 | 2013-04-25 | Telefonaktiebolaget L M Ericsson (Publ) | Resizing existing traffic flow in optical transport network |
CN102624479A (zh) * | 2012-03-30 | 2012-08-01 | 中兴通讯股份有限公司 | 波长标签传输方法及装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3051752A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3051752B1 (en) | 2017-11-22 |
US20160226619A1 (en) | 2016-08-04 |
EP3051752A1 (en) | 2016-08-03 |
CN104468024B (zh) | 2020-01-14 |
CN104468024A (zh) | 2015-03-25 |
US9887796B2 (en) | 2018-02-06 |
EP3051752A4 (en) | 2016-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015039454A1 (zh) | 一种配置节点的方法、装置及系统 | |
US11239916B2 (en) | Systems and methods for delta-sigma digitization | |
CN101714971B (zh) | 无源光网络通信方法及系统、光网络单元和光线路终端 | |
CN107113059B (zh) | 利用多调制的离散多音调传输方法和系统 | |
JP6139639B2 (ja) | 高次変調を用いた複数の非同期データストリームの伝達 | |
WO2013143420A1 (zh) | 波长标签传输方法及装置 | |
US8964896B2 (en) | PLS header coding for efficient signaling of modulation and coding schemes for broadband satellite communications systems | |
US10218464B2 (en) | Method and an apparatus for generating a second data packet from a first data packet | |
US20210314067A1 (en) | Optical transmission system and transmission mode selecting method | |
US9912431B2 (en) | Optical communication that achieves baud rate greater than sample rate | |
WO2019096964A1 (en) | Multi-code probabilistic signal shaping using frequency-division multiplexing | |
CN114144999B (zh) | 子信道编解码方法、装置和子信道复用光通信系统 | |
Xu et al. | Fast statistical estimation in highly compressed digital RoF systems for efficient 5G wireless signal delivery | |
BR102013008838A2 (pt) | Método e aparelho para codificação convolucional para suporte de multiplexação em um sistema de comunicações de banda larga | |
WO2014166205A1 (zh) | 基于灵活栅格标签的频谱资源分配方法及装置 | |
CN104038463B (zh) | 基于四维动态资源分配的光接入网络系统 | |
US8737516B2 (en) | Amplitude modulation of carrier to encode data | |
CN106331908B (zh) | 一种无源光网络系统及其装置 | |
Wang et al. | SNR improved digital-cascaded-pulse-code-modulation radio-over-fiber scheme supporting 16,777,216 QAM for mobile fronthaul | |
WO2015010283A1 (zh) | 一种信号发送和接收的方法、装置及系统 | |
JP2015115761A (ja) | 局舎端末、加入者端末、並びに局舎端末及び加入者端末を備える光アクセスネットワーク | |
Luo et al. | DAC/ADC-free 65536-level Quantum Noise Stream Cipher for Secure Fiber Transmission based on Delta-Sigma Modulation | |
TW200526045A (en) | Base station processing using SONET links | |
JP2015165635A (ja) | 局舎端末、光アクセスネットワーク、並びに、変調フォーマット及びシンボルレートの最適化方法 | |
JP5599267B2 (ja) | デジタル放送信号再送信システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14845827 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15023040 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014845827 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014845827 Country of ref document: EP |