WO2014166205A1 - 基于灵活栅格标签的频谱资源分配方法及装置 - Google Patents

基于灵活栅格标签的频谱资源分配方法及装置 Download PDF

Info

Publication number
WO2014166205A1
WO2014166205A1 PCT/CN2013/083457 CN2013083457W WO2014166205A1 WO 2014166205 A1 WO2014166205 A1 WO 2014166205A1 CN 2013083457 W CN2013083457 W CN 2013083457W WO 2014166205 A1 WO2014166205 A1 WO 2014166205A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
wavelength
wavelength channel
channel
identifier
Prior art date
Application number
PCT/CN2013/083457
Other languages
English (en)
French (fr)
Inventor
柯志勇
华锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020157031430A priority Critical patent/KR102106663B1/ko
Priority to EP13881788.7A priority patent/EP2985943A4/en
Priority to JP2016505679A priority patent/JP6140883B2/ja
Publication of WO2014166205A1 publication Critical patent/WO2014166205A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0224Irregular wavelength spacing, e.g. to accommodate interference to all wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/026Optical medium access at the optical channel layer using WDM channels of different transmission rates

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for allocating a spectrum resource based on a flexible grid label.
  • a reconfigurable optical add/drop multiplexer can implement local uplink and downlink and direct communication of channel wavelengths through software configuration, thereby enhancing the flexibility of optical network service transmission.
  • Existing ROADM systems are wavelength-independent, direction-independent, and wavelength-independent (Colorless Directionless, Contentionless, CDC).
  • the traditional wavelength division multiplexing system uses fixed grid technology, and the channel grid is 50 GHz or 100 GHz.
  • the ultra-100G transmission technology has spawned the need for flexible grids (gridless or flexible grid) to accommodate different modulation patterns and different rates of wavelength division multiplexing transmission requirements.
  • the flexible grid technology was initially standardized in February 2011 by the International Telecommunication Union Study Group 15 (ITU-T SG15) G.694.1 standard.
  • the internal version of the draft standard document is V1.2, the standard nominal center.
  • the frequency is 193.1THZ + nx 0.00625THz, where n is an integer and the normalized bandwidth is 12.5 GHz xm, where m is a positive integer.
  • the ROADM system with flexible grid technology in this patent is referred to as the Flex ROADM system.
  • the flexible grid wavelength labeling technology is used to implement the wavelength division multiplexing network, especially the wavelength trace function of the pure optical layer in the wavelength reconfigurable optical add/drop multiplexing system, which can distinguish and identify the wavelengths from different addresses in the system. .
  • the flexible grid wavelength labeling technology adds a wavelength label signal, subcarrier information, etc. to each wavelength signal at the source end of the wavelength path of the wavelength division multiplexing optical switching system, and detects and recognizes the passing point at each point where the wavelength path passes. Labels for each wavelength to implement wavelength path monitoring and automatic discovery.
  • the flexible grid wavelength label can be implemented by adding a topping signal to the wavelength signal. This method can bind the flexible grid wavelength label to the corresponding wavelength signal, and has less influence on the original signal quality.
  • the technology of the grading technology involved in the flexible grid wavelength labeling technology is as follows:
  • a pilot tone signal is applied to each wavelength to realize a variety of special applications, which has been studied in the industry.
  • the topping signal is sometimes called a low-frequency dither signal, and the effect of the wavelength signal loading topping signal on the transmission performance is almost negligible.
  • the related art only considers fixed frequency interval service transmission, does not consider the carrying of flexible raster information in the case of over 100 Gb/ s service rate, and does not consider the continuity problem of flexible grid channel subcarriers. In view of the above problems in the related art, an effective solution has not yet been proposed.
  • the present invention provides a spectrum resource allocation method based on a flexible grid label, which is not yet effective in solving the technical problem that the channel range is not easily determined due to the problem of the flexible grid channel subcarrier continuation. And devices to solve at least the above problems.
  • a method for allocating a spectrum resource based on a flexible grid label including: acquiring an identifier of a wavelength channel for transmitting flexible grid label information; and using the identifier pair to carry a flexible grid Each subcarrier of the label information is classified; in the wavelength channel corresponding to the identifier, the frequency range of the wavelength channel is determined according to the classified subcarrier information; and the spectrum resource is allocated according to the frequency range other wavelength channels except the wavelength channel Wherein, the wavelength channel and the other wavelength channels are used together to transmit flexible raster tag information.
  • determining a frequency range of the wavelength channel according to the classified subcarrier information includes: when the subcarrier frequency in the wavelength channel corresponding to the identifier is discontinuous, according to the center frequency of each subcarrier in the wavelength channel and the frequency of each subcarrier The width determines the frequency range.
  • determining a frequency range of the wavelength channel according to the classified subcarrier information includes: determining a frequency range according to a center frequency of the wavelength channel and a bandwidth of the wavelength channel when the subcarrier frequencies in the corresponding wavelength channel are consecutive .
  • the obtaining the identifier of the wavelength channel for transmitting the flexible grid label information comprises: acquiring the identifier from the data frame for transmitting the flexible grid label information, wherein the data frame carries the identifier.
  • the data frame further carries the following information: a nominal center frequency of the wavelength channel, a location identifier of each subcarrier center frequency in the frequency spectrum, and a number of bandwidth granularities.
  • a flexible grid tag based spectrum resource allocation apparatus comprising: an obtaining module configured to acquire an identifier of a wavelength channel for transmitting flexible grid tag information; a classification module, setting And categorizing each subcarrier for carrying the flexible grid label information according to the foregoing identifier; the determining module is configured to determine, according to the subcarrier information corresponding to the identifier, a frequency range of the wavelength channel according to the classified subcarrier information; The allocation module is configured to allocate spectrum resources according to the frequency range for other wavelength channels except the wavelength channel, wherein the wavelength channel and the other wavelength channels are used together to transmit the flexible grid tag information.
  • the determining module is configured to determine a frequency range according to each subcarrier center frequency and each subcarrier bandwidth in the wavelength channel when the subcarrier frequency in the corresponding wavelength channel is discontinuous.
  • the determining module is configured to determine the frequency range according to the center frequency of the wavelength channel and the bandwidth of the wavelength channel when the subcarrier frequencies in the corresponding wavelength channel are consecutive.
  • the obtaining module is configured to obtain an identifier from a data frame for transmitting flexible grid label information, where the data frame carries an identifier.
  • the obtaining module is further configured to: obtain an identifier when the data frame carries the following information: a nominal center frequency of the wavelength channel, a location identifier of each subcarrier center frequency in the frequency spectrum, and a bandwidth granularity.
  • each subcarrier for carrying flexible grid tag information is classified according to the identifier of the wavelength channel, and the frequency range of the wavelength channel is determined according to the classified subcarrier information, and further is another wavelength.
  • FIG. 1 is a flowchart of a flexible grid tag based spectrum resource allocation method according to Embodiment 1 of the present invention
  • FIG. 2 is a flexible grid tag based spectrum resource allocation apparatus according to Embodiment 1 of the present invention
  • 3 is a schematic diagram of a wavelength label data frame format according to Embodiment 2 of the present invention
  • FIG. 4 is a flowchart of a wavelength label transmission method according to Embodiment 2 of the present invention
  • FIG. 5 is a wavelength label transmission according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic diagram showing the structure of another wavelength label transmission apparatus according to Embodiment 2 of the present invention
  • FIG. 7 is a schematic diagram showing the spectrum of a fixed grid and a flexible grid network according to Embodiment 2 of the present invention.
  • Step S102 Acquire an identifier of a wavelength channel for transmitting flexible grid label information
  • Step S104 classify each subcarrier used to carry flexible grid label information according to the identifier
  • the identifier is used to indicate a channel identifier where each subcarrier is located, such as a channel number.
  • Step S106 Determine, in the wavelength channel corresponding to the identifier, a frequency range of the wavelength channel according to the classified subcarrier information.
  • Step S108 allocate a spectrum resource according to a frequency range other than the wavelength channel, where The wavelength channel and other wavelength channels are commonly used to transmit the above flexible grid tag information.
  • each subcarrier for carrying flexible grid tag information is classified according to the identifier of the wavelength channel, and the frequency range of the wavelength channel is determined according to the classified subcarrier information, and further
  • the technical means for allocating spectrum resources to other wavelength channels therefore, fundamentally avoids the problem that the channel range caused by the flexible grid channel subcarrier continuous problem is not easy to determine.
  • step S106 when determining the frequency range of the wavelength channel, it can be divided into two cases: In the first case, when the subcarrier frequency in the wavelength channel corresponding to the identifier is discontinuous, according to the center frequency of each subcarrier in the wavelength channel The frequency range is determined by the bandwidth of each subcarrier. In the second case, when the subcarrier frequencies in the wavelength channel corresponding to the identifier are continuous, the frequency range is determined according to the center frequency of the wavelength channel and the bandwidth of the wavelength channel.
  • the method for obtaining the foregoing identifier may be multiple, for example, may be configured locally, and may be obtained by: obtaining the identifier from a data frame used to send the flexible grid label information, where The data frame carries the above identifier.
  • the encapsulation process of the foregoing data frame is as follows: adding a frame header and a frame body respectively for the wavelength label information, where the frame header includes a frame positioning overhead, a frame ID, a frame length, and an extension field, and the frame body includes a wavelength source address and a wavelength. Head Address, channel number, whether the subcarrier is continuous, the channel center frequency, the channel bandwidth, the number of subcarriers, the subcarrier center frequency, the subcarrier bandwidth, the extension field, and the frame check bit are encapsulated into frames, where each wavelength
  • the tag information frame carries information for one channel (wavelength channel), each channel may contain one or more subcarriers, and the subcarriers may be discontinuous.
  • the data frame further carries the following information: a nominal center frequency of the wavelength channel, a location identifier of each subcarrier center frequency in the frequency spectrum, and a number of bandwidth granularities.
  • the application process of the above three types of information may be expressed as follows: The determination of the channel range is divided into two cases: one case is when the channel is continuous, and in this case, the frequency of each subcarrier in the channel is continuous. Therefore, the channel range and position are determined by the nominal center frequency of the channel and the bandwidth of the channel.
  • the nominal center frequency of the channel is calculated as 193.1THz+nx0.00625THz, n is an integer (may be negative), and the channel bandwidth calculation formula Is 12.5 GHz X m, where m is a positive integer.
  • the channel is not continuous.
  • the channel range and position are determined by the nominal center frequency of each subcarrier in the channel and the bandwidth of each subcarrier.
  • the bandwidth calculation formula is the same as the nominal center frequency of the channel and the bandwidth calculation formula of the channel, except that the values of n, m (n, m both represent the number of bandwidth granularities) may be inconsistent, and the range of each subcarrier is added to be the channel.
  • the range, the nominal center frequency of each subcarrier also determines the location of the channel.
  • a device for distributing a spectrum resource based on a flexible grid label is provided.
  • the device is used to implement the foregoing embodiment and a preferred embodiment, and details are not described herein.
  • the module to be explained.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • 2 is a structural block diagram of a flexible grid tag based spectrum resource allocation apparatus according to Embodiment 1 of the present invention. As shown in FIG.
  • the apparatus includes: an obtaining module 20, connected to the classification module 22, configured to acquire an identifier of a wavelength channel for transmitting flexible grid label information; and a classification module 22 connected to the determining module 24, configured to follow
  • the identifier is used to classify each subcarrier for carrying the flexible grid label information.
  • the determining module 24 is connected to the allocation module 26, and is configured to determine the wavelength according to the classified subcarrier information in the wavelength channel corresponding to the identifier.
  • the frequency range of the channel; the allocation module 26 is configured to allocate spectrum resources according to the frequency range other wavelength channels than the wavelength channel, wherein the wavelength channel and the other wavelength channels are used together to transmit the flexible grid tag information.
  • the determining module 24 is configured to determine a frequency range according to a center frequency of each subcarrier in the wavelength channel and a bandwidth of each subcarrier when the subcarrier frequency in the wavelength channel corresponding to the identifier is discontinuous. In this embodiment, the determining module 24 may be further configured to determine a frequency range according to a center frequency of the wavelength channel and a bandwidth of the wavelength channel when the subcarrier frequencies in the wavelength channel corresponding to the identifier are consecutive.
  • the obtaining module 20 is configured to obtain an identifier from a data frame for transmitting flexible grid label information, where the data frame carries an identifier.
  • the acquiring module 22 obtains the identifier: the nominal center frequency of the wavelength channel, the location identifier of each subcarrier center frequency in the spectrum, and the number of bandwidth granularities.
  • the main purpose of this embodiment is to provide a flexible grid wavelength label definition scheme, which effectively supports the implementation of the Flex Roadm in the wavelength division multiplexing system, supports the carrying of flexible raster subcarrier information, and supports channel information. Carrying, solving the problem of discontinuity of flexible grid channel subcarriers, supporting wavelength path monitoring and automatic discovery, and timely detecting the reception error of wavelength tags.
  • the data frame structure is composed of a frame header and a frame body, the frame header is a fixed length, the frame body is a variable length, and the frame body length is related to the actual number of subcarriers.
  • the channel center frequency and the channel bandwidth may be set to 0.
  • the frame header includes, but is not limited to, frame positioning overhead, frame ID, frame length, and extended field.
  • the frame locating overhead is used to define the starting position of the frame.
  • the character sequence of 0xF6F6F6282828 can be consistent with the frame positioning overhead of the Optical Transport Network (OTN).
  • OTN Optical Transport Network
  • Other character sequences can also be used to guarantee the sequence of characters. It does not appear in the subsequently encoded frame data, so the start of a wavelength label information frame can be identified by this special sequence.
  • the frame ID is a number of the data frame, and may be a number of 1, 2, 3, etc., or may be a number of other forms.
  • the frame length is used to indicate the length of the data frame body.
  • the frame body includes but is not limited to the wavelength source address, the wavelength destination address, the channel number, whether the subcarrier is continuous, the channel center frequency, the channel bandwidth, the number of channel subcarriers, the subcarrier center frequency, each subcarrier bandwidth, and the extension field.
  • the Cyclic Redundancy Check (CRC) is composed of, but not limited to, these fields.
  • the wavelength source address indicates the source node address of the wavelength, which may be an IP address, or may be a number such as 1, 2, 3... or a Medium Access Control (MAC) address. Or according to other address methods needed.
  • MAC Medium Access Control
  • the wavelength destination address indicates the destination address of the destination of the wavelength, which may be an IP address, or a number such as 1, 2, 3..., or a MAC (Medium/Media Access Control) address, or other address as needed.
  • the channel number indicates the number of each channel, which can be represented by 1, 2...i, or can be expressed in other ways.
  • Each subcarrier can be classified by channel number by channel number, thus solving the subcarrier frequency range is discontinuous. problem. Whether the subcarriers continuously indicate whether the carrier in the current channel number is continuous, can be continuous with 1, 0 is discontinuous, if continuous, the channel center frequency and channel bandwidth can be used to indicate the channel range. If it is not continuous, only the current range can be used.
  • the center frequency of each subcarrier in the channel and the bandwidth of each subcarrier indicate the channel range.
  • the channel center frequency and channel bandwidth are valid when the subcarriers are continuous.
  • the nominal center frequency of the current channel is represented by the formula: 193.1THz+nx0.00625THz, n is an integer (may be negative); channel bandwidth It is 12.5 GHz X m, where m is a positive integer; the channel center frequency and channel bandwidth can take a value of 0 when the subcarriers are not continuous.
  • the number of subcarriers is used to indicate the number of subcarriers in the channel. Each channel may have one or more subcarrier information.
  • the number of subcarriers in the channel indicates that there are i subcarriers in the channel.
  • the subcarrier center frequency represents the nominal center frequency of the current subcarrier, and the calculation formula is 193.1THz+nx0.00625THz, where n is an integer; the subcarrier bandwidth is 12.5 GHz xm, where m is a positive integer.
  • Extended field used for frame expansion, this field is optional, regardless of extension.
  • CRC cyclic redundancy check which realizes simple cyclic redundancy check of data frames, and other error detection/correction methods, such as Forward Error Correction (FEC), etc., if not considered This field is optional.
  • FEC Forward Error Correction
  • the wavelength label transmission method of this embodiment includes the following steps: Step S402: Encapsulate a wavelength label information frame.
  • Step S402 Encapsulate a wavelength label information frame.
  • first framing At the wavelength label transmitting end, first framing, generating a frame header and a frame body of the data frame according to the format of FIG. 3, and generating data frame fields according to rules.
  • the frame positioning overhead, the frame ID, the frame length, and the extension field of the frame header are sequentially generated, and are not limited to generating these fields.
  • the frame positioning overhead is represented by a character sequence of 0xF6F6F6282828 in this embodiment. Other special character sequences may also be used to ensure that the character sequence does not appear in the subsequently encoded frame data, so that a special sequence can be used to identify a wavelength label information frame. Start.
  • the frame ID is numbered by 1, 2, 3, i, etc. in this embodiment, and may be other numbers.
  • the frame length may be reserved before the frame body is generated. After the frame body is generated, the frame length is counted, and then the length value is filled.
  • the length unit may be represented by a byte.
  • the extended field can be reserved for the length of the byte before it is used.
  • the wavelength source address, the wavelength destination address, the channel number, the subcarrier continuity, the channel center frequency, and the channel bandwidth of the frame body are generated.
  • the source address of the wavelength indicates the source node address of the wavelength. In this embodiment, it is represented by a number such as 1, 2, 3, i, etc., and may be an IP address or a MAC address, and the like.
  • the wavelength destination address indicates the destination node address to which the wavelength arrives. In this embodiment, it is represented by a number such as 1, 2, 3, etc., and may be an IP address or a MAC address, and the like.
  • the channel number indicates the number of the channel. It is represented by numbers such as 1, 2, 3, etc. in this embodiment. It can also be expressed in other ways.
  • Each subcarrier can be classified by channel number by channel number, thus solving the subcarrier.
  • the problem of discontinuous frequency range Whether the subcarriers continuously indicate whether the carrier is continuous in the current channel number. In this embodiment, 1 is continuous, 0 is discontinuous, and other representation methods can be used. If continuous, the channel center frequency and channel bandwidth can be used.
  • the channel range can only be represented by the center frequency of each subcarrier in the channel and the bandwidth of each subcarrier.
  • the channel center frequency and channel bandwidth are valid when the subcarriers are continuous.
  • the nominal center frequency of the current channel is represented by the formula: 193.1THz+nx0.00625THz, n is an integer (may be negative); channel bandwidth Is 12.5 GHz X m, where m is a positive integer; when the subcarriers are discontinuous, the channel center frequency and channel bandwidth can take a value of 0. Then generate the number of channel subcarriers, subcarrier center frequency, bandwidth, extension field, etc. .
  • the number of subcarriers is used to indicate the number of subcarriers in the channel, and there may be one or more subcarrier information in each channel.
  • the subcarrier center frequency represents the nominal center frequency of the current subcarrier, and the calculation formula is
  • Step S404 encoding the wavelength label information frame.
  • the encoding is performed according to the encoding rule, and the data frame can be encoded by the 4B/5B encoding method, and other encoding methods such as 8B/10B, scrambling can also be used. Codes, etc., regardless of which encoding method is used, this encoding method must be satisfied to be decodable. Step S406, determining a modulation frequency according to the wavelength channel.
  • Step S408 loading the wavelength label information frame signal onto the optical channel.
  • Use the modulated low frequency perturbation signal to control the wavelength tag loading device, such as a dimmable attenuator, to load the low frequency perturbation signal to the appropriate modulation depth (3% to 8%, either empirically or by simulation) Corresponding wavelength channel, and send.
  • Step S410 splitting, photoelectrically converting, amplifying, and sampling the received optical signal.
  • the received optical signal is split by a coupler, and a small portion (such as 5%) of the optical signal is taken out, sent to the PIN receiver for photoelectric conversion, then amplified and sampled and Analog to digital conversion.
  • Step S412 performing frequency analysis on the converted optical signal.
  • Step S414 decoding the parsed bit information. Find the special bit sequence corresponding to the frame header in the bit information obtained after the spectrum analysis, such as 0xF6F6F6282828 here, and then decode the frame data after the frame header; if the sender uses 4B/5B encoded data, here The decoding process is performed with the corresponding 4B/5B decoding rule.
  • Step S416 recovering the wavelength label information frame.
  • the decoded information is framing and verified.
  • the frame check is performed by the CRC check rule. If the frame data passes the CRC check, the frame header and the frame body are generated. The frame header is generated first, and information such as frame positioning overhead, frame ID, frame length, and extended field is extracted in turn.
  • the frame body is generated, and the wavelength source address, the wavelength destination address, the channel number, the subcarrier continuity, the channel center frequency, the channel bandwidth, the number of channel subcarriers, the center frequency of each subcarrier, the subcarrier bandwidth, and the extension are sequentially extracted.
  • Valid information for fields such as fields and CRC checksums.
  • the information is extracted in the form of address offset, extracted in byte order, and each field is extracted to form a corresponding frame field until all fields are framed. Otherwise, the CRC check error is reported and the error frame is discarded. If the sender uses FEC check, the receiver also checks with FEC. As shown in FIG.
  • the wavelength label transmission apparatus of this embodiment includes: a packaging unit 50, an encoding unit 52, a frequency generating unit 54, a modulating unit 56, and a loading unit 58; wherein: a packaging unit 50 is connected to the encoding unit 52, and is configured To encapsulate the wavelength label information into a wavelength label information frame, the encapsulating unit 52 adds a frame header and a check to form a wavelength label information frame for the wavelength label information to be sent, and the frame check in this example uses a CRC check. Other error detection/correction methods such as FEC may also be employed.
  • the wavelength label information frame data includes: wavelength signal source address information necessary for wavelength tracking and wavelength path discovery; carrying of information such as channel number, number of subcarriers, subcarrier center frequency and bandwidth, and solving flexible grid optical transmission
  • the discontinuity of subcarriers in the channel leads to a problem of poorly determined channel range, and solves the problem of acquiring the center frequency and bandwidth of any subcarrier transmitted, and it is more convenient and accurate to locate the channel number and subcarriers in the flexible grid network.
  • Carrying the center frequency and bandwidth information of each subcarrier in each channel is more convenient for obtaining subcarrier information.
  • the corresponding extended information may also be added to the data of the wavelength label information frame as needed, such as time information for transmission and reception, network link information, and the like.
  • Encoding unit 52 coupled to modulation unit 56, is arranged to encode the wavelength label information.
  • the encoding unit 52 encodes the frame content of the wavelength label information frame except the frame header.
  • the 4B/5B encoding is used, and the data frame can be encoded by using the 4B/5B encoding method, and other encoding methods can also be used as needed. 8B/10B, scrambling code, etc., regardless of which encoding method is used, this encoding method is decodable.
  • the frame header adopts the OTN frame positioning mode 0xF6F6F6282828, which is an illegal codeword in the 4B5B encoding, and therefore does not appear in the encoded frame data.
  • This step is optional, as is the case with better wavelength channel performance.
  • this step can be skipped and the wavelength unit label information frame is directly modulated by the modulation unit 304 onto the corresponding low frequency perturbation frequency.
  • the frequency generating unit 54 is connected to the modulating unit 56 and is configured to generate a low frequency perturbation frequency corresponding to the wavelength channel of the wavelength label information frame.
  • the frequency generating unit 56 first determines the corresponding low frequency perturbation frequency based on the wavelength information of the wavelength signal, and then controls the digital frequency synthesizer to generate the low frequency.
  • the modulating unit 56 is configured to modulate the wavelength label information frame to the low frequency perturbation frequency, and modulate the encoded or uncoded wavelength label information frame signal into a low frequency perturbation frequency by using an amplitude modulation manner.
  • the loading unit 58 is configured to load the modulated wavelength label information frame signal into the wavelength channel for transmission, load the modulated signal onto the wavelength channel signal at a suitable modulation depth, and control the stability of the modulation depth.
  • the loading unit 58 can be implemented by controlling a device such as a dimmable attenuator with a modulation signal.
  • a low frequency perturbation frequency carrying the wavelength label information frame needs to be separately set for each wavelength channel.
  • the above device shown in Fig. 5 is mainly used for the transmitting end of the optical network.
  • FIG. 5 can be understood with reference to the related description of the aforementioned wavelength label transmission method.
  • the functions of the various processing units in the wavelength label transmission device shown in FIG. 5 may be implemented by a program running on a processor, or may be implemented by a specific logic circuit (for example, a processor).
  • 6 is a schematic structural diagram of another wavelength label transmission apparatus according to an embodiment of the present invention. As shown in FIG.
  • the wavelength label transmission apparatus of this example includes a beam splitting unit 60, a processing unit 62, a spectrum analyzing unit 64, a decoding unit 66, and a framing unit 68; wherein: the light splitting unit 60 is connected to the processing unit 62 and configured to split the received optical signal; the light splitting unit 60 is composed of a fiber coupler, which takes 5% of the optical power for the wavelength label; the detecting unit 62 is connected to the spectrum analyzing unit 64, and is configured to perform photoelectric conversion and analog-to-digital conversion on one of the optical signals (such as 5% of the entire optical signal); the processing unit 62 includes a PIN for implementing photoelectric conversion. Tubes, amplifiers and analog-to-digital converters (ADCs), etc.
  • ADCs analog-to-digital converters
  • the spectrum analysis unit 64 reads the output signal of the ADC in the processing unit 62, and performs spectral analysis using a chirped Z-transformation to obtain a frequency value and a frequency signal amplitude information of the low-frequency perturbation frequency present in the signal, and recovers the low frequency.
  • the wavelength information corresponding to the frequency of the perturbation frequency and the code stream information thereon; the decoding unit 66 is connected to the framing unit 68, and is configured to decode the bit information and decode the bit information.
  • decoding unit 66 When decoding unit 66 decodes, it first looks for a frame header in the code stream signal. In this example, the frame header is 0xF6F6F6282828, and then the frame data following the frame header is 4B/5B decoded. At the time of decoding, if a codeword is not in the coding table of 4B/5B, that is, when a code error occurs, the frame data is lost, and a decoding error is reported.
  • the decoding unit 66 in this example is not a necessary technical feature of the implementation scheme. In the case where the sender does not encode the wavelength label information frame, it is not necessary to decode the demodulated bit information.
  • the framing unit 68 is configured to obtain the wavelength label information frame from the bit information group frame, and obtain the wavelength label information from the wavelength label information frame.
  • the decoded data is framing
  • the 4B/5B decoded data is composed into one frame
  • the CRC check is performed, and if there is an error, the CRC check error is reported. . If no error is found, the wavelength source address, the wavelength destination address, the channel number, the subcarrier continuity, the channel center frequency, the channel bandwidth, the number of channel subcarriers, the center frequency of each subcarrier, and each subcarrier in the frame data. The bandwidth, number of subcarriers, frame length, extended field, etc. are extracted.
  • the wavelength source address is used for source address identification and other applications of the wavelength signal; the wavelength destination address is used for destination address identification of the wavelength signal and other applications; the channel number is used to record the number of each channel, and the corresponding subcarrier can be known by the channel number.
  • the number of channel subcarriers is used to indicate the number of subcarriers in the channel, and there may be one or more subcarrier information in each channel; whether the subcarriers are consecutive fields are used to indicate whether the subcarriers in the channel are continuous; the channel center frequency and channel frequency The value of the nominal center frequency and the bandwidth of the channel is obtained in the case of continuous subcarriers; the number of subcarriers in the channel is obtained by the number of subcarriers of the channel; and the center frequency of each subcarrier of each channel is obtained by the center frequency of the subcarrier; The subcarrier bandwidth is used to obtain the bandwidth of each subcarrier of each channel; Finally, other information such as wavelength information, address information, and flexible raster information contained in the wavelength label is recovered at the receiving end.
  • the wavelength label transmission device shown in Fig. 6 is mainly used for the receiving end of the optical network.
  • the implementation functions of the respective processing units in the wavelength label transmission device shown in FIG. 6 can be understood with reference to the related description of the aforementioned wavelength label transmission method.
  • the functions of the processing units in the wavelength label transmission device shown in FIG. 6 can be realized by a program running on the processor, or can be realized by a specific logic circuit.
  • FIG. 7 in a fixed grid network, the interval of adjacent channels carrying wavelengths of different rate services is fixed at 50 GHz, and each wavelength is allocated a fixed 50 GHz optical spectrum bandwidth resource. For a flexible grid optical network, you can allocate more spectrum bandwidth resources for high-speed services according to actual conditions.
  • the bandwidth utilization rate of the network will be greatly increased.
  • the spectral width of one channel can be 12.5G, 25G, 50G, 100GHz, etc., and the number of subcarriers per channel may not be continuous, as shown in channel 3 in Figure 7, so in a flexible grid network,
  • the channel center frequency and bandwidth can be used to represent the channel range.
  • the channel center frequency and channel bandwidth cannot be used to determine the channel carrier information.
  • the method is: applying a subcarrier center frequency and a subcarrier bandwidth to determine carrier information.
  • the modulation of the wavelength label signal can be completed by using less low frequency perturbation modulation frequency, and the wavelength signal source can be transmitted through the data frame carried on the wavelength label.
  • the address, the channel number of the subcarrier, the channel center frequency, the channel bandwidth, the number of subcarriers, the subcarrier center frequency and the bandwidth, etc. solve the problem that the subcarrier discontinuity in the flexible grid optical transmission channel leads to poorly determined channel range. problem.
  • software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them into individual integrated circuit modules, or Multiple of these modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above are only the preferred embodiments of the present invention, and are not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
  • INDUSTRIAL APPLICABILITY The above technical solution provided by the present invention can be applied to a spectrum resource allocation process based on a flexible grid tag, and classifies each subcarrier for carrying flexible grid tag information according to an identifier of a wavelength channel.
  • the effective problem of the flexible grid channel subcarrier continuity problem has not been effectively solved yet.
  • the resulting channel range is not easy to determine and other technical issues, thus enabling the transmission of information to flexible grid tags.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种基于灵活栅格标签的频谱资源分配方法及装置,其中,上述方法包括:获取用于发送灵活栅格标签信息的波长信道的标识;按照上述标识对用于承载灵活栅格标签信息的每个子载波进行归类;在上述标识对应的波长信道内,根据归类后的子载波信息确定波长信道的频率范围;根据频率范围为除波长信道之外的其它波长信道分配频谱资源,其中,上述波长信道和其它波长信道共同用于发送灵活栅格标签信息。采用本发明提供的上述技术方案,解决了相关技术中,尚无有效地解决由于灵活栅格通道子载波连续问题而导致的通道范围不易确定等技术问题,从而实现了对灵活栅格标签的信息发送。

Description

基于灵活栅格标签的频谱资源分配方法及装置 技术领域 本发明涉及通信领域, 尤其是涉及一种基于灵活栅格标签的频谱资源分配方法及 装置。 背景技术 可重构分插复用器 (Reconfigurable Optical Add Drop Multiplexer, 简称 ROADM) 可以通过软件配置实现通道波长的本地上下及直通,增强了光网络业务传送的灵活性。 现有 ROADM 系统具备波长无关性、 方向无关性、 波长竞争无关性 (Colorless Directionless、 Contentionless, 简称 CDC)。 传统波分复用系统采用固定栅格技术, 通 道栅格为 50GHz或 100GHz。超 100G传送技术催生了灵活栅格(gridless或 flexible grid) 需求,以适应不同调制码型、不同速率的波分复用传送需求。灵活栅格技术最早于 2011 年 2月由国际电信联盟第 15研究组(ITU-T SG15 ) 的 G.694.1标准对其进行了初步标 准化, 标准草案文稿内部版本为 V1.2, 规范标称中心频率为 193.1THZ + n x 0.00625THz, 其中 n为整数, 规范频宽为 12.5 GHz x m, 其中 m为正整数。 本专利中 具备灵活栅格技术的 ROADM系统简称 Flex ROADM系统。 灵活栅格波长标签技术用于实现波分复用网络, 尤其是波长可动态重构的光分插 复用系统中的纯光层的波长踪迹功能, 能区分和识别来自系统中不同地址的波长。 灵 活栅格波长标签技术通过在波分复用光交换系统的波长路径源端为每个波长信号附加 波长标签信号、 子载波信息等, 并在波长路径经过的各点来检测和识别经过该点的各 个波长的标签, 来实现波长路径的监测及自动发现等功能。 灵活栅格波长标签的实现可以通过在波长信号上附加调顶信号的方法, 这种方法 可以将灵活栅格波长标签与对应的波长信号绑定, 同时对原有信号质量影响较小。 灵 活栅格波长标签技术涉及到的调顶技术介绍如下: 波分复用系统中为每个波长加载一 个调顶 (pilot tone) 信号, 可以实现多种特殊的应用, 这在业界早有研究。 调顶信号 有时也叫低频微扰(low-frequency dither)信号, 波长信号加载调顶信号对传输性能的 影响几乎可以忽略不计。 但是, 相关技术中只考虑到固定的频率间隔业务传输, 没有考虑到超 100Gb/S业 务速率情况下灵活栅格信息的携带, 更未考虑到灵活栅格通道子载波的连续问题。 针对相关技术中的上述问题, 目前尚未提出有效的解决方案。 发明内容 针对相关技术中, 尚无有效地解决由于灵活栅格通道子载波连续问题而导致的通 道范围不易确定等技术问题, 本发明实施例提供了一种基于灵活栅格标签的频谱资源 分配方法及装置, 以至少解决上述问题。 根据本发明的一个实施例, 提供了一种基于灵活栅格标签的频谱资源分配方法, 包括: 获取用于发送灵活栅格标签信息的波长信道的标识; 按照上述标识对用于承载 灵活栅格标签信息的每个子载波进行归类; 在上述标识对应的波长信道内, 根据归类 后的子载波信息确定波长信道的频率范围; 根据频率范围为除波长信道之外的其它波 长信道分配频谱资源, 其中, 波长信道和其它波长信道共同用于发送灵活栅格标签信 息。 优选地, 根据归类后的子载波信息确定波长信道的频率范围, 包括: 在标识所对 应的波长信道内的子载波频率不连续时, 根据波长信道内各子载波中心频率和各子载 波频宽确定频率范围。 优选地, 根据归类后的子载波信息确定波长信道的频率范围, 包括: 在标识所对 应的波长信道内的子载波频率连续时, 根据波长信道的中心频率和波长信道的频宽确 定频率范围。 优选地, 获取用于发送灵活栅格标签信息的波长信道的标识, 包括: 从用于发送 灵活栅格标签信息的数据帧中获取标识, 其中, 上述数据帧中携带有标识。 优选地, 上述数据帧中还携带有以下信息: 上述波长信道的标称中心频率、 各子 载波中心频率在频谱中的位置标识、 带宽粒度个数。 根据本发明的另一个实施例,提供了一种基于灵活栅格标签的频谱资源分配装置, 包括: 获取模块, 设置为获取用于发送灵活栅格标签信息的波长信道的标识; 分类模 块, 设置为按照上述标识对用于承载灵活栅格标签信息的每个子载波进行归类; 确定 模块, 设置为在上述标识对应的波长信道内, 根据归类后的子载波信息确定波长信道 的频率范围; 分配模块, 设置为根据频率范围为除波长信道之外的其它波长信道分配 频谱资源, 其中, 波长信道和其它波长信道共同用于发送灵活栅格标签信息。 优选地, 确定模块, 设置为在标识所对应的波长信道内的子载波频率不连续时, 根据波长信道内各子载波中心频率和各子载波频宽确定频率范围。 优选地, 确定模块, 设置为在标识所对应的波长信道内的子载波频率连续时, 根 据波长信道的中心频率和波长信道的频宽确定频率范围。 优选地, 获取模块, 设置为从用于发送灵活栅格标签信息的数据帧中获取标识, 其中, 数据帧中携带有标识。 优选地, 获取模块, 还设置为在数据帧中携带以下信息时获取标识: 上述波长信 道的标称中心频率、 各子载波中心频率在频谱中的位置标识、 带宽粒度个数。 通过本发明实施例, 由于根据波长信道的标识对用于承载灵活栅格标签信息的每 个子载波进行归类, 并根据归类后的子载波信息确定该波长信道的频率范围, 进而为 其它波长信道分配频谱资源的技术手段, 解决了相关技术中, 尚无有效地解决由于灵 活栅格通道子载波连续问题而导致的通道范围不易确定等技术问题, 从而实现了对灵 活栅格标签的信息发送。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1为根据本发明实施例 1的基于灵活栅格标签的频谱资源分配方法的流程图; 图 2为根据本发明实施例 1的基于灵活栅格标签的频谱资源分配装置的结构框图; 图 3为根据本发明实施例 2的波长标签数据帧格式示意图; 图 4为根据本发明实施例 2的波长标签传输方法流程图; 图 5为根据本发明实施例 2的波长标签传输装置的组成结构示意图; 图 6为根据本发明实施例 2的另一波长标签传输装置的组成结构示意图; 图 7为根据本发明实施例 2的固定栅格与灵活栅格网络频谱示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例 1 图 1为根据本发明实施例 1的基于灵活栅格标签的频谱资源分配方法的流程图。 如图 1所示, 该方法包括: 步骤 S102, 获取用于发送灵活栅格标签信息的波长信道的标识; 步骤 S104, 按照标识对用于承载灵活栅格标签信息的每个子载波进行归类; 在本实施例中, 上述标识用于表示各子载波所在的通道标识, 例如通道编号等。 步骤 S106, 在上述标识对应的波长信道内, 根据归类后的子载波信息确定上述波 长信道的频率范围; 步骤 S108, 根据频率范围为除上述波长信道之外的其它波长信道分配频谱资源, 其中, 波长信道和其它波长信道共同用于发送上述灵活栅格标签信息。 通过上述各个处理步骤, 由于采用了根据波长信道的标识对用于承载灵活栅格标 签信息的每个子载波进行归类, 并根据归类后的子载波信息确定该波长信道的频率范 围, 进而为其它波长信道分配频谱资源的技术手段, 因此, 从根本上避免了灵活栅格 通道子载波连续问题导致的通道范围不易确定等问题。 在步骤 S106中, 确定波长信道的频率范围时, 可以分为两种情况: 第 1种情况 在上述标识所对应的波长信道内的子载波频率不连续时, 根据波长信道内各子载 波中心频率和各子载波频宽确定频率范围。 第 2种情况 在上述标识所对应的波长信道内的子载波频率连续时, 根据波长信道的中心频率 和波长信道的频宽确定频率范围。 在本实施例中, 获取上述标识的方式有多种, 例如可以在本地配置, 还可以通过 以下方式获取: 从用于发送所述灵活栅格标签信息的数据帧中获取所述标识, 其中, 该数据帧中携带有上述标识。 在本实施中, 上述数据帧的封装过程如下: 为波长标签信息分别添加帧头和帧体, 其中帧头包括帧定位开销、 帧 ID、 帧长度、 扩展字段, 帧体包括波长源地址、 波长目 的地址、 通道号、 子载波是否连续、 通道中心频率、 通道频宽、 子载波个数、 子载波 中心频率、 子载波频宽、 扩展字段、 帧校验位而封装成帧, 其中每个波长标签信息帧 携带一个通道 (波长信道) 的信息, 每个通道可能包含一个或多个子载波, 且子载波 可能是不连续的。 在本实施例中, 上述数据帧中还携带有以下信息: 上述波长信道的标称中心频率、 各子载波中心频率在频谱中的位置标识、 带宽粒度个数。 在具体实施时, 上述三种信 息的应用过程可以表现为以下形式: 通道范围的确定分两种情况: 一种情况是通道是连续的情况, 这种情况通道内各 子载波频率是连续的, 所以通道范围和位置由通道的标称中心频率和通道的频宽来确 定, 通道的标称中心频率计算公式是 193.1THz+nx0.00625THz, n为整数 (可为负), 通道频宽计算公式是 12.5 GHz X m, 其中 m为正整数。 另一种情况通道不是连续的, 这种情况通道范围和位置由通道内各子载波的标称中心频率和各子载波的频宽来确 定, 各子载波的标称中心频率和各子载波的频宽计算公式跟通道的标称中心频率和通 道的频宽计算公式相同, 只是 n,m (n, m均表示带宽粒度个数) 的值可能不一致, 把 各子载波的范围加起来就是通道的范围, 各子载波的标称中心频率也确定了通道的位 置。 在本实施例中还提供了一种基于灵活栅格标签的频谱资源分配装置, 该装置用于 实现上述实施例及优选实施方式, 已经进行过说明的不再赘述, 下面对该装置中涉及 到的模块进行说明。 如以下所使用的, 术语"模块"可以实现预定功能的软件和 /或硬件 的组合。 尽管以下实施例所描述的装置较佳地以软件来实现, 但是硬件, 或者软件和 硬件的组合的实现也是可能并被构想的。 图 2为根据本发明实施例 1的基于灵活栅格 标签的频谱资源分配装置的结构框图。 如图 2所示, 该装置包括: 获取模块 20,连接至分类模块 22, 设置为获取用于发送灵活栅格标签信息的波长 信道的标识; 分类模块 22,连接至确定模块 24, 设置为按照上述标识对用于承载灵活栅格标签 信息的每个子载波进行归类; 确定模块 24, 连接至分配模块 26, 设置为在上述标识对应的波长信道内, 根据归 类后的子载波信息确定波长信道的频率范围; 分配模块 26, 设置为根据频率范围为除上述波长信道之外的其它波长信道分配频 谱资源, 其中, 上述波长信道和其它波长信道共同用于发送灵活栅格标签信息。 通过上述各个模块实现的功能, 同样可以避免由于灵活栅格通道子载波连续问题 导致的通道范围不易确定等问题。 在本实施例中, 上述确定模块 24, 设置为在标识所对应的波长信道内的子载波频 率不连续时, 根据波长信道内各子载波中心频率和各子载波频宽确定频率范围。 在本 实施例中, 上述确定模块 24, 还可以设置为在上述标识所对应的波长信道内的子载波 频率连续时, 根据波长信道的中心频率和波长信道的频宽确定频率范围。 在本实施例中, 获取模块 20, 设置为从用于发送灵活栅格标签信息的数据帧中获 取标识, 其中, 数据帧中携带有标识。 在数据帧中携带以下信息时, 上述获取模块 22 获取上述标识: 上述波长信道的标称中心频率、 各子载波中心频率在频谱中的位置标 识、 带宽粒度个数。 为了更好地理解上述实施例, 以下结合实施例 2和相关附图详细说明。 实施例 2 本实施例从灵活栅格标签信息的发送和接收两个过程来说明。 本实施例的主要目 的是提供一种灵活栅格波长标签定义方案, 有效的支持波分复用系统中的对 Flex Roadm的实现, 支持对灵活栅格子载波信息的携带, 支持对通道信息的携带, 解决灵 活栅格通道子载波不连续的问题, 支持对波长路径监测和自动发现, 还能及时发现波 长标签接收错误的情况。 发送侧 如图 3所示, 数据帧结构由帧头和帧体组成, 帧头是固定长度, 帧体是可变长度, 帧体长度与实际子载波个数相关。 在子载波不连续的情况下, 通道中心频率和通道带 宽可以设为 0. 帧头包括但不限于帧定位开销、 帧 ID、 帧长度、 扩展字段组成。 帧定位开销用来定义帧的起始位置, 例如可以和光传输网络 (Optical Transport Network, 简称为 OTN) 的帧定位开销一致的 0xF6F6F6282828的字符序列表示, 也可 以用其它特殊字符序列, 保证这个字符序列不会出现在后续编码的帧数据中, 因而可 以通过这个特殊序列识别一个波长标签信息帧的起始。 帧 ID作为数据帧的一个编号, 可以是 1, 2, 3...等编号, 也可以是其它形式的编 号组成。 帧长度用来表示数据帧体的长度, 用来作数据帧长度的定位和对数据帧各字段长 度的定界, 此字段可选。 扩展字段用来作为以后扩展之用, 如不考虑扩展此字段可选。 帧体包括但不限于波长源地址、 波长目的地址、 通道号、 子载波是否连续、 通道 中心频率、 通道频宽、 通道子载波个数、 各子载波中心频率、 各子载波频宽、 扩展字 段、 循环冗余校验 (Cyclic Redundancy Check , 简称为 CRC)组成, 但不限于这些字段 组成。 波长源地址表示波长的来源节点地址, 可以是 IP地址, 也可以是一个编号如 1, 2, 3..., 也可以是 媒体接入控制 (Medium/Media Access Control, 简称为 MAC)地址, 或根据需要的其它地址方式组成。 波长目的地址表示波长的发送目的节点地址, 可以是 IP地址, 也可以是一个编号 如 1, 2, 3..., 也可以是 MAC(Medium/Media Access Control)地址, 或根据需要的其它 地址方式组成。 通道号表示各通道的编号, 可以用 1、 2...i表示, 也可用其它方式表示, 通过通 道号可以把每个子载波按通道号进行归类,这样解决了子载波频率范围不连续的问题。 子载波是否连续表示当前通道号内载载波是否连续, 可以用 1表示连续, 0表示 不连续, 如果连续则可用通道中心频率和通道频宽来表示通道范围, 如果不连续, 则 只能用本通道内各子载波中心频率和各子载波频宽来表示通道范围。 通道中心频率和通道频宽在子载波连续时有效, 当子载波连续时表示当前通道的 标称中心频率, 计算公式为 193.1THz+nx0.00625THz, n为整数 (可为负); 通道频宽 为 12.5 GHz X m, 其中 m为正整数; 当子载波不连续时通道中心频率和通道频宽可以 取值为 0。 子载波个数用来表示本通道内子载波的个数, 每个通道内可能有一个或多个子载 波信息, 如图 1中的通道内子载波个数 , 表示通道内有 i个子载波, 它们分别是子载 波 1、 子载波 2...子载波 i。 子载波中心频率表示当前子载波的标称中心频率, 计算公式为 193.1THz+nx0.00625THz, n为整数; 子载波频宽为 12.5 GHz x m, 其中 m为正整数。 扩展字段, 作帧体扩展之用, 如不考虑扩展, 此字段可选。 CRC循环冗余校验,实现对数据帧简单的循环冗余校验,也可采用其它检错 /纠错方 法, 如前向纠错 (Forward Error Correction, 简称为 FEC)等, 如不考虑校验此字段可选。 如图 4所示, 本实施例的波长标签传输方法包括以下步骤: 步骤 S402, 封装波长标签信息帧。 在波长标签发送端, 首先组帧, 按照图 3的格式生成数据帧的帧头和帧体, 根据 规则生成数据帧各字段。 首先依次生成帧头的帧定位开销、 帧 ID、 帧长度、 扩展字段, 不限于生成这些字 段。 帧定位开销本实施例中采用 0xF6F6F6282828 的字符序列表示, 也可以用其它特 殊字符序列, 保证这个字符序列不会出现在后续编码的帧数据中, 因而可以通过这个 特殊序列识别一个波长标签信息帧的起始。 帧 ID本实施例中用 1, 2, 3...i等编号, 也可以是其它形式的编号组成。 帧长度在帧体没有生成前可以先预留字节长度,待帧体生成完后, 统计帧体长度, 然后把长度值填充即可, 长度单位可采用字节表示。 扩展字段在没有使用前可以先预留字节长度即可。 然后生成帧体的波长源地址、 波长目的地址、 通道号、 子载波是否连续、 通道中 心频率和通道频宽。 波长源地址表示波长的来源节点地址, 本实施例中用 1, 2, 3...i等编号表示, 可 以是 IP地址或 MAC地址, 等等。 波长目的地址表示波长到达的目的节点地址, 本实施例中用 1, 2, 3...等编号表 示, 可以是 IP地址或 MAC地址, 等等。 通道号表示通道的编号, 本实施例中用 1, 2, 3...等编号表示, 也可用其它方式 表示, 通过通道号可以把每个子载波按通道号进行归类, 这样解决了子载波频率范围 不连续的问题。 子载波是否连续表示当前通道号内载载波是否连续,本实施例中用 1表示连续, 0 表示不连续, 也可以用其它表示方法, 如果连续则可用通道中心频率和通道频宽来表 示通道范围, 如果不连续, 则只能用本通道内各子载波中心频率和各子载波频宽来表 示通道范围。 通道中心频率和通道频宽在子载波连续时有效, 当子载波连续时表示当前通道的 标称中心频率, 计算公式为 193.1THz+nx0.00625THz, n为整数 (可为负); 通道频宽为 12.5 GHz X m, 其中 m为正整数; 当子载波不连续时通道中心频率和 通道频宽可以取值为 0. 然后生成通道子载波个数, 子载波中心频率, 频宽, 扩展字段等。 子载波个数用来表示本通道内子载波的个数, 每个通道内可能有一个或多个子载 波信息。 子载波中心频率表示当前子载波的标称中心频率, 计算公式为
193.1THz+nx0.00625THz, n为整数; 子载波频宽为 12.5 GHz X m, 其中 m为正整数。 扩展字段在没有使用前可以先预留字节长度即可。 等帧体生成完后, 再统计帧体长度, 并把长度写到帧头的帧长度字段内, 本专利 不限于此生成方式。 步骤 S404, 对波长标签信息帧进行编码。 对上述波长标签信息帧除帧头外的字节, 即帧体部分, 根据编码规则进行编码, 数据帧可以采用 4B/5B编码方式进行编码, 也可采用其它编码方式, 如 8B/10B、扰码 等, 无论采用哪种编码方式, 必须满足此编码方式是可解码的。 步骤 S406, 根据波长信道确定调制频率。 根据上述波长标签信息帧对应的波长信道确定该波长信道对应的低频微扰调制频 率, 可通过数字频率合成器产生该频率, 并将编码后的波长标签信息帧信号调制到该 低频微扰调制频率上, 调制的方式可选用幅度调制, 也可是其它的调制方式, 如频率 调制等。 步骤 S408, 将波长标签信息帧信号加载到光信道上。 使用调制后的低频微扰信号控制波长标签加载器件如可调光衰减器, 以合适的调 制深度 (3%~8%, 可根据经验设置或通过仿真方式确定)将低频微扰信号加载到所对应 的波长信道, 并发送。 以上步骤, 为波长标签的发送方法, 上述方法适用于各种光通信系统的发送端。 接收侧 以下为灵活栅格波长标签的接收过程。 步骤 S410, 对所接收光信号分光、 光电转换、 放大、 采样。 在波长标签接收端, 对于接收到的光信号通过耦合器进行分光, 将其中一小部分 (;如 5%)光信号取出来, 送到 PIN接收器进行光电转换, 然后进行放大并做采样和模数 转换。 步骤 S412, 对转换后的光信号进行频率分析。 通过线性调频 Z (CZT, Z-transformation)变换或快速傅里叶变换 (FFT, Fast Fourier Transform)变换等方法对采样信号进行频谱分析,根据频谱分析的结果得到低频微扰频 率的频率值及其所携带的比特信息, 恢复出低频微扰频率所对应的波长信道信息。 步骤 S414, 对解析的比特信息进行解码。 在频谱分析后得到的比特信息中寻找帧头所对应的特殊比特序列, 如此处是 0xF6F6F6282828, 然后对帧头后面的帧数据进行解码处理; 如果发送端采用 4B/5B编 码的数据,则此处用相应的 4B/5B解码规则进行解码处理。如果某一个码字不在 4B/5B 编码表格中, 则判断发生错误, 将此数据帧丢弃, 报告解码错误。 如解码时没有错误, 则将此解码后的数据组帧进行组帧。 步骤 S416, 恢复波长标签信息帧。 对解码后的信息进行组帧, 并进行校验。对于发送端采用 CRC校验生成的帧校验 字节, 此处通过 CRC校验规则进行帧校验, 如果帧内数据通过了 CRC校验, 则生成 帧头和帧体。 先生成帧头, 依次提取帧定位开销、 帧 ID、 帧长度、 扩展字段等信息。 然后生成帧体, 依次提取波长源地址、 波长目的地址、 通道号、 子载波是否连续、 通道中心频率、 通道频宽、 通道子载波个数、 各子载波中心频率、 各子载波频宽、 扩 展字段、 CRC校验等字段有效信息。 提取信息时采用地址偏移的方式, 按字节顺序提取, 每提取一个字段则组成相对 应的帧字段, 直到把所有字段组帧完毕。 反之, 则上报 CRC校验错误, 并将此错误帧丢弃。 如发送端采用 FEC校验, 则 接收端也以 FEC校验。 如图 5所示, 本实施例的波长标签传输装置包括: 封装单元 50、 编码单元 52、 频 率生成单元 54、 调制单元 56和加载单元 58; 其中: 封装单元 50, 与编码单元 52连接, 设置为将波长标签信息封装为波长标签信息 帧; 封装单元 52, 为要发送的波长标签信息添加上帧头和校验后组成一个波长标签信 息帧, 本示例中的帧校验采用 CRC校验, 也可采用其它检错 /纠错方法, 如 FEC等。 波长标签信息帧数据除了包括: 波长追踪和波长路径发现所必须的波长信号源地址信息; 通道号、 子载波个数、 子载波中心频率和频宽等信息的携带, 解决了灵活栅格光 传输通道内子载波不连续导致不好确定通道范围的问题, 并解决了对发送的任意子载 波中心频率和频宽的获取问题, 同时对灵活栅格网络定位通道号和子载波更方便和准 确。 携带了每个通道内每个子载波的中心频率和频宽信息,对获取子载波信息更方便。 也可以根据需要将相应的扩展信息加入到波长标签信息帧的数据中, 如发送、 接 收的时间信息, 网络链路信息等等。 编码单元 52, 与调制单元 56连接, 设置为对所述波长标签信息进行编码。 编码单元 52 对波长标签信息帧除帧头外的帧内容进行编码, 本实施例中采用 4B/5B编码, 数据帧可以采用 4B/5B编码方式进行编码, 根据需要也可采用其它编码 方式, 如 8B/10B、 扰码等, 无论采用哪种编码方式要求此编码方式是可解码的。 本示 例中帧头采用 OTN帧定位方式 0xF6F6F6282828,该序列是 4B5B编码中的违法码字, 因此不会在编码后的帧数据中出现。 此步骤作为可选项, 如波长信道性能较佳的情况 下, 可以跳过此步骤直接由调制单元 304将波长单元标签信息帧调制到对应的低频微 扰频率上。 频率生成单元 54, 与调制单元 56连接, 设置为生成波长标签信息帧的波长信道 对应的低频微扰频率。频率生成单元 56首先根据波长信号的波长信息确定其所对应的 低频微扰频率, 然后控制数字频率合成器生成此低频频率。 调制单元 56, 设置为将所述波长标签信息帧调制到所述低频微扰频率上, 将经过 编码后的或未经编码波长标签信息帧信号采用幅度调制方式调制到低频微扰频率上, 此处调制方式也可以采用频率调制方式等其它调制方式。 加载单元 58, 设置为将调制后的所述波长标签信息帧信号加载到所述波长信道中 发送, 将调制后的信号以一个合适的调制深度加载到波长信道信号上去, 并控制调制 深度的稳定性, 具体的,加载单元 58可以通过用调制信号控制可调光衰减器等器件来 实现。 本实施例中, 需为每一波长信道分别设置承载所述波长标签信息帧的低频微扰频 率。 图 5所示的上述装置主要用于光网络的发送端。 图 5中所示的波长标签传输装置中的各处理单元的实现功能可参照前述波长标签 传输方法的相关描述而理解。 图 5中所示的波长标签传输装置中各处理单元的功能可 通过运行于处理器上的程序而实现, 也可通过具体的逻辑电路(例如处理器)而实现。 图 6为本发明实施例的另一波长标签传输装置的组成结构示意图, 如图 6所示, 本示例的波长标签传输装置包括分光单元 60、 处理单元 62、 频谱解析单元 64、 解码 单元 66和组帧单元 68; 其中: 分光单元 60, 连接至处理单元 62, 设置为对接收到的光信号进行分光; 分光单元 60, 由光纤耦合器构成, 其将 5%的光功率取出用于波长标签检测和接收; 处理单元 62, 连接至频谱解析单元 64, 设置为对其中一路光信号 (如整个光信号 的 5%)进行光电转换和模数转换; 处理单元 62包括用于实现光电转换的 PIN管、 放大器和模拟数字转换器 (ADC) 等。将其中一路光信号取出来, 送到 PIN管进行光电转换, 然后进行放大 (由放大器进 行放大)并做采样和模数转换 (具体由模拟数字转换器进行模数转换); 频谱解析单元 64,读取处理单元 62中的 ADC的输出信号, 并采用线性调频 Z变 换进行频谱分析, 得到信号中所存在的低频微扰频率的频率值和频率信号幅度信息, 并恢复出低频微扰频率的频率所对应的波长信息和其上的码流信息; 解码单元 66, 连接至组帧单元 68, 设置为在所述比特信息进行了解码, 对所述比 特信息进行解码。解码单元 66解码时, 首先在码流信号中寻找帧头, 此示例中是帧头 为 0xF6F6F6282828,然后对帧头后面的帧数据进行 4B/5B解码。 在解码时, 如果一个 码字不在 4B/5B的编码表格中, 即发生错码时, 则将此帧数据丢失, 并报告解码错误。 本示例中解码单元 66并非实现技术方案的必要技术特征,在发送方未对波长标签 信息帧进行编码的情况下, 不必对解调出的比特信息进行解码。 组帧单元 68, 设置为将所述比特信息组帧得到波长标签信息帧, 从所述波长标签 信息帧中获取波长标签信息。组帧单元 68在解码时没有错误时,将此解码后的数据进 行组帧, 将 4B/5B解码后的数据组成一帧, 并时行 CRC校验, 如果有错误, 则上报 CRC校验错误。 如果未发现错误, 则将帧数据中的波长源地址、 波长目的地址、 通道 号、 子载波是否连续、 通道中心频率、 通道频宽、 通道子载波个数、 各子载波中心频 率、 各子载波频宽、 子载波个数、 帧长度、 扩展字段等提取出来。 波长源地址用于波长信号的源地址识别及其他应用; 波长目的地址用于波长信号的目的地址识别及其他应用; 通道号用于记录各通道的编号, 通过通道号可以知道其对应的子载波; 通道子载波个数用来表示本通道内子载波的个数, 每个通道内可能有一个或多个 子载波信息; 子载波是否连续字段用于表示通道内子载波是否连续; 通道中心频率和通道频宽在子载波连续情况下得到通道标称中心频率和频宽的 值; 通过通道子载波个数得到本通道内子载波的个数; 通过子载波中心频率得到每个通道各子载波的中心频率; 通过子载波频宽用于得到每个通道各子载波的频宽; 最终, 在接收端将波长标签包含的波长信息、 地址信息、 灵活栅格信息等其它信 息恢复出来。 图 6中所示的波长标签传输装置主要用于光网络的接收端。 图 6中所示的波长标签传输装置中的各处理单元的实现功能可参照前述波长标签 传输方法的相关描述而理解。 图 6所示波长标签传输装置中各处理单元的功能可通过 运行于处理器上的程序而实现, 也可通过具体的逻辑电路而实现。 如图 7所示, 在固定栅格网络中, 承载不同速率业务的波长的相邻通道的间隔固 定为 50 GHz, 同时每个波长分配固定 50 GHz的光频谱带宽资源。 而对于灵活栅格的 光网络, 可以根据实际情况, 为高速的业务分配较多的频谱带宽资源, 对于较低的分 配较少并且够用的光频谱资源, 这样网络的带宽利用率会大为增加, 其一个通道的光 谱宽度可为 12.5G、 25G、 50G、 100GHz等, 同时每个通道的子载波个数可能不连续, 如图 7中的通道 3, 所以在灵活栅格网络中, 对于连续子载波的通道, 可以用通道中 心频率和频宽来表示通道范围, 但对于不连续子载波的通道, 不能用通道中心频率和 通道频宽来确定通道载波信息, 此时确定通道载波信息的方式为: 应用子载波中心频 率和子载波频宽来确定载波信息。 通过上述实施例可以看出, 本发明实施例实现了以下有益效果: 可以利用较少的低频微扰调制频率完成波长标签信号的调制, 并且可以通过波长 标签上所携带的数据帧传送波长信号源地址、 子载波所在通道号、 通道中心频率、 通 道频宽、 子载波个数, 子载波中心频率和频宽等信息, 解决了灵活栅格光传输通道内 子载波不连续导致不好确定通道范围的问题。 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 工业实用性 本发明提供的上述技术方案, 可以应用于基于灵活栅格标签的频谱资源德分配过 程中,采用根据波长信道的标识对用于承载灵活栅格标签信息的每个子载波进行归类, 并根据归类后的子载波信息确定该波长信道的频率范围, 进而为其它波长信道分配频 谱资源的技术手段, 解决了相关技术中, 尚无有效地解决由于灵活栅格通道子载波连 续问题而导致的通道范围不易确定等技术问题, 从而实现了对灵活栅格标签的信息发 送。

Claims

权 利 要 求 书
1. 一种基于灵活栅格标签的频谱资源分配方法, 包括:
获取用于发送灵活栅格标签信息的波长信道的标识;
按照所述标识对用于承载所述灵活栅格标签信息的每个子载波进行归类; 在所述标识对应的波长信道内, 根据归类后的子载波信息确定所述波长信 道的频率范围;
根据所述频率范围为除所述波长信道之外的其它波长信道分配频谱资源, 其中,所述波长信道和所述其它波长信道共同用于发送所述灵活栅格标签信息。
2. 根据权利要求 1所述的方法, 其中, 根据归类后的子载波信息确定所述波长信 道的频率范围, 包括:
在所述标识所对应的波长信道内的子载波频率不连续时, 根据所述波长信 道内各子载波中心频率和各子载波频宽确定所述频率范围。
3. 根据权利要求 1所述的方法, 其中, 根据归类后的子载波信息确定所述波长信 道的频率范围, 包括:
在所述标识所对应的波长信道内的子载波频率连续时, 根据所述波长信道 的中心频率和所述波长信道的频宽确定所述频率范围。
4. 根据权利要求 1至 3任一项所述的方法, 其中, 获取用于发送灵活栅格标签信 息的波长信道的标识, 包括- 从用于发送所述灵活栅格标签信息的数据帧中获取所述标识, 其中, 所述 数据帧中携带有所述标识。
5. 根据权利要求 2或 3所述的方法, 其中, 所述数据帧中还携带有以下信息: 所 述波长信道的标称中心频率、 各子载波中心频率在频谱中的位置标识、 带宽粒 度个数。
6. 一种基于灵活栅格标签的频谱资源分配装置, 包括:
获取模块, 设置为获取用于发送灵活栅格标签信息的波长信道的标识; 分类模块, 设置为按照所述标识对用于承载所述灵活栅格标签信息的每个 子载波进行归类; 确定模块, 设置为在所述标识对应的波长信道内, 根据归类后的子载波信 息确定所述波长信道的频率范围;
分配模块, 设置为根据所述频率范围为除所述波长信道之外的其它波长信 道分配频谱资源, 其中, 所述波长信道和所述其它波长信道共同用于发送所述 灵活栅格标签信息。
7. 根据权利要求 6所述的装置, 其中, 所述确定模块, 设置为在所述标识所对应 的波长信道内的子载波频率不连续时, 根据所述波长信道内各子载波中心频率 和各子载波频宽确定所述频率范围。
8. 根据权利要求 6所述的装置, 其中, 所述确定模块, 设置为在所述标识所对应 的波长信道内的子载波频率连续时, 根据所述波长信道的中心频率和所述波长 信道的频宽确定所述频率范围。
9. 根据权利要求 6-8任一项所述的装置, 其中, 所述获取模块, 设置为从用于发 送所述灵活栅格标签信息的数据帧中获取所述标识, 其中, 所述数据帧中携带 有所述标识。
10. 根据权利要求 9所述的装置, 其中, 所述获取模块, 还设置为在所述数据帧中 携带以下信息时获取所述标识: 所述波长信道的标称中心频率、 各子载波中心 频率在频谱中的位置标识、 带宽粒度个数。
PCT/CN2013/083457 2013-04-07 2013-09-13 基于灵活栅格标签的频谱资源分配方法及装置 WO2014166205A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157031430A KR102106663B1 (ko) 2013-04-07 2013-09-13 플렉서블 그리드 라벨에 기반한 스펙트럼 자원 할당 방법 및 장치
EP13881788.7A EP2985943A4 (en) 2013-04-07 2013-09-13 Spectroscopic Assignment Method and Apparatus Based on a Flexible Grid Label
JP2016505679A JP6140883B2 (ja) 2013-04-07 2013-09-13 可変グリッドラベルに基づくスペクトルリソース割当て方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310117917.5A CN104104489B (zh) 2013-04-07 2013-04-07 基于灵活栅格标签的频谱资源分配方法及装置
CN201310117917.5 2013-04-07

Publications (1)

Publication Number Publication Date
WO2014166205A1 true WO2014166205A1 (zh) 2014-10-16

Family

ID=51672321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083457 WO2014166205A1 (zh) 2013-04-07 2013-09-13 基于灵活栅格标签的频谱资源分配方法及装置

Country Status (5)

Country Link
EP (1) EP2985943A4 (zh)
JP (1) JP6140883B2 (zh)
KR (1) KR102106663B1 (zh)
CN (1) CN104104489B (zh)
WO (1) WO2014166205A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636866A (zh) * 2020-12-31 2021-04-09 武汉邮电科学研究院有限公司 一种波长标签生成方法和装置、以及检测方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7317552B2 (ja) * 2019-04-05 2023-07-31 日本ルメンタム株式会社 光モジュール及び光通信システム
CN111211860B (zh) * 2019-12-30 2022-02-08 武汉邮电科学研究院有限公司 一种基于多载波技术的波长标签的传输方法及装置
CN112203165B (zh) * 2020-09-07 2022-04-12 烽火通信科技股份有限公司 一种otn中实现灵活栅格业务的方法及系统
CN117424674A (zh) * 2022-07-11 2024-01-19 中兴通讯股份有限公司 多波长标签信号处理方法、控制器以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820951A (zh) * 2012-07-30 2012-12-12 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
CN102857837A (zh) * 2011-06-30 2013-01-02 中兴通讯股份有限公司 灵活栅格光网络的波长标签编码方法、处理方法及节点
US20130045006A1 (en) * 2011-08-01 2013-02-21 Eci Telecom Ltd. Method and a network node for improving bandwidth efficiency in an optical network

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248798B2 (en) * 2002-09-30 2007-07-24 Tropic Networks Inc. Method and system for identification of channels in an optical network
JP4962380B2 (ja) * 2008-03-28 2012-06-27 Kddi株式会社 光通信装置及び光通信システムにおけるパス設定方法
US9479282B2 (en) * 2011-04-27 2016-10-25 Nippon Telegraph And Telephone Corporation Optical communication apparatus, optical route switching apparatus and network
CN102195739B (zh) * 2011-05-23 2015-08-12 中兴通讯股份有限公司 一种光标签的实现方法和系统
EP2571184B1 (en) * 2011-09-16 2017-02-22 Alcatel Lucent Allocation of spectral capacity in a wavelength-division multiplexing optical network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857837A (zh) * 2011-06-30 2013-01-02 中兴通讯股份有限公司 灵活栅格光网络的波长标签编码方法、处理方法及节点
US20130045006A1 (en) * 2011-08-01 2013-02-21 Eci Telecom Ltd. Method and a network node for improving bandwidth efficiency in an optical network
CN102820951A (zh) * 2012-07-30 2012-12-12 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636866A (zh) * 2020-12-31 2021-04-09 武汉邮电科学研究院有限公司 一种波长标签生成方法和装置、以及检测方法和装置
CN112636866B (zh) * 2020-12-31 2023-12-15 武汉邮电科学研究院有限公司 一种波长标签生成方法和装置、以及检测方法和装置

Also Published As

Publication number Publication date
KR102106663B1 (ko) 2020-05-06
JP6140883B2 (ja) 2017-06-07
CN104104489A (zh) 2014-10-15
CN104104489B (zh) 2018-11-09
EP2985943A4 (en) 2016-04-20
JP2016522599A (ja) 2016-07-28
KR20150140721A (ko) 2015-12-16
EP2985943A1 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
US11595130B2 (en) Method and apparatus for transmitting and receiving client signal in optical transport network
CN104468024B (zh) 一种配置节点的方法、装置及系统
WO2013143420A1 (zh) 波长标签传输方法及装置
WO2014166205A1 (zh) 基于灵活栅格标签的频谱资源分配方法及装置
JP2018504041A (ja) 複数の変調を用いた離散マルチトーン伝送のための方法及びシステム
US9571375B2 (en) Method and node for detecting subframe sequence error in inverse multiplexing
US11388494B2 (en) Optical line terminal and an optical network unit and methods therefor
BR102013008838A2 (pt) Método e aparelho para codificação convolucional para suporte de multiplexação em um sistema de comunicações de banda larga
KR20110100197A (ko) 실시간 통신을 위한 복합 광변조
US9906295B2 (en) Method, device and system for detecting optical signal
CN106331908B (zh) 一种无源光网络系统及其装置
US10439763B2 (en) Network information transmission in a mobile communication network
WO2019174298A1 (zh) 光网络保护倒换控制方法、装置和系统
CN109257093B (zh) 一种光网络中光监控信道处理的方法和装置
US20220217448A1 (en) Data processing apparatus and data processing method
JP6484935B2 (ja) マルチキャリア光伝送システム、光受信器、およびマルチキャリア光伝送方法
US20140314162A1 (en) Method, apparatus, and system for sending and receiving service data
WO2014079060A1 (zh) 跨介质的报文传输方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013881788

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157031430

Country of ref document: KR

Kind code of ref document: A