WO2015037589A1 - 固体燃料バーナ - Google Patents

固体燃料バーナ Download PDF

Info

Publication number
WO2015037589A1
WO2015037589A1 PCT/JP2014/073826 JP2014073826W WO2015037589A1 WO 2015037589 A1 WO2015037589 A1 WO 2015037589A1 JP 2014073826 W JP2014073826 W JP 2014073826W WO 2015037589 A1 WO2015037589 A1 WO 2015037589A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid fuel
fluid accelerator
burner
flow path
nozzle
Prior art date
Application number
PCT/JP2014/073826
Other languages
English (en)
French (fr)
Inventor
谷口 正行
潤也 渡部
研二 山本
由貴 上川
大輔 喜名
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2015037589A1 publication Critical patent/WO2015037589A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/20Burner staging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices

Definitions

  • the present invention relates to a solid fuel burner.
  • Patent Document 1 Japanese Patent No. 2781740
  • Patent Document 1 Japanese Patent No. 2781740
  • a mixture of pulverized coal and air is introduced almost vertically upward, the direction is changed horizontally at the vent part and ejected from the flat nozzle part at the tip, and two around the nozzle part.
  • the pulverized coal burning burner is provided in the horizontal axis of the pulverized coal pipe, the cross-sectional shape gradually expands along the flow, and then parallel to the flow direction After that, it ends with a plane perpendicular to the axis, and is provided at the upper part of the outlet of the vent part of the pulverized coal pipe, and is inclined with respect to the flow direction.
  • a kicker block having a curved surface ".
  • the pulverized coal mixture which collided with the density separator is divided into upper, lower, left and right, and the pulverized coal collects in the vicinity of the inner wall of the pulverized coal pipe.
  • the conventional solid fuel burner has the following problems to be solved.
  • a distance is required for the solid fuel to be in a uniform mixed state in the vertical cross section with respect to the pipe from the bend to the density separator, and the burner length becomes long. This leads to difficulty in maintenance and an increase in necessary site area, leading to an increase in cost.
  • An object of the present invention is to provide a solid fuel burner structure capable of achieving solid fuel concentration with a short burner length.
  • the solid fuel burner of the present invention is a fuel nozzle having a bent portion that ejects a mixed gas of a solid fuel and its carrier gas, and is inserted downstream of the bent portion in the fuel nozzle, and the flow path is formed on the inner peripheral side and the outer periphery.
  • a hollow fluid accelerator for accelerating the fluid by dividing the flow path cross-sectional area, and the cross-sectional area of the fuel nozzle outer peripheral flow path divided by the fluid accelerator is once reduced, It has a shape that expands again.
  • the solid fuel burner of the present invention can achieve solid fuel enrichment with a short burner length.
  • Example 1 of the solid fuel burner by this invention It is the structure of Example 1 of the solid fuel burner by this invention. It is the structure of Example 2 of the solid fuel burner by this invention. It is the structure of Example 3 of the solid fuel burner by this invention. It is a structure of Example 4 of the solid fuel burner by this invention. It is an example of the support method of the fluid accelerator in the solid fuel burner by this invention. It is a figure which shows the position of the fluid accelerator which can implement enrichment effectively in the solid fuel burner by this invention. It is the relationship between the particle
  • FIG. 1 is a schematic view showing the structure of Example 1 of a solid fuel burner.
  • the upper figure shows a cross-sectional view cut in the vertical direction when the solid fuel burner is viewed from the front of the outlet.
  • the lower figure shows the AA 'cross-sectional view of the upper figure.
  • the solid fuel burner according to the first embodiment includes a fuel nozzle 11 having a circular cross section having a 90 ° bent portion 12 and a hollow cylindrical fluid accelerator 13 inserted downstream of the bent portion 12.
  • the fuel nozzle 11 is a straight pipe downstream of the bent portion 12, and the outlet thereof opens toward the furnace 17.
  • the mixed gas 10 of the solid fuel and the carrier gas supplied from the lower side upstream of the fuel nozzle 11 passes through the bent portion 12, turns 90 °, is accelerated once through the fluid accelerator 13, and then toward the furnace 17. It flows and is ejected from the fuel nozzle outlet.
  • a secondary air nozzle and a tertiary air nozzle are arranged concentrically around the fuel nozzle 11, and a secondary air flow 20 and a tertiary air flow 21 are supplied toward the furnace 17. These air flows are ejected so as to spread in the outer circumferential direction.
  • a flame holder 14 is attached to the fuel nozzle outlet, and a circulating flow 22 is formed on the downstream side (furnace side).
  • the fuel mixture, secondary air, and high-temperature combustion gas ejected from the fuel nozzle flow and stay.
  • the temperature of the fuel particles increases due to the radiation heat from the furnace. With these effects, the solid fuel is ignited and flame-stored downstream of the flame holder.
  • Patent Document 1 As a means for realizing the concentration of solid fuel in the fuel nozzle, as represented by Patent Document 1, an obstacle that becomes a concentration mechanism is introduced into the fuel nozzle and the solid fuel is diffused in the outer circumferential direction. It was. However, in this case, the burner length is increased by introducing the concentration mechanism. Further, in many cases, a mechanism such as a kicker block that makes the fuel concentration uniform in the nozzle is attached downstream of the bend, and the concentration mechanism is introduced after making the fuel concentration uniform to some extent. In this case as well, a distance for making the fuel concentration uniform is necessary, and the burner length is increased.
  • the inventors thought that the burner length could be greatly shortened by actively utilizing the solid fuel concentration by the centrifugal effect at the bend.
  • the fluid simulation result including solid particles After passing through the bent portion 12, a high concentration region of about 40 times the fuel concentration upstream of the bent portion is formed in the vicinity of the wall surface 11A above the fuel nozzle.
  • the concentration portion As the concentration portion flows downstream, the concentration gradually diffuses and decreases in the inner circumferential direction of the nozzle.
  • the concentration is increased by installing a hollow cylindrical fluid accelerator 13 in the vicinity of the bent portion. The flow can be effectively guided to the outer peripheral side flow path 16 divided by the fluid accelerator 13, and the concentrated flow can be retained in the vicinity of the fuel nozzle upper side inner wall 11A.
  • the concentrated flow captured by the outer peripheral flow path 16 reaches the outlet along the fuel nozzle inner wall 11 ⁇ / b> A and effectively has a high concentration near the flame holder 14. Fuel mixture gas can be supplied, and ignition and flame holding properties can be improved.
  • the fluid accelerator 13 of the present embodiment has a shape that once narrows the outer peripheral flow path 16. As a result, the pressure loss in the outer peripheral flow path increases, the fluid hardly enters the outer peripheral flow path 16, and most of the carrier gas passes through the inner peripheral flow path 15. On the other hand, since solid fuel particles having a large inertial force enter the outer peripheral flow path 16, the fuel concentration of the air-fuel mixture flowing on the outer peripheral side can be increased. Furthermore, the fluid accelerator 13 has a shape that enlarges the outer circumferential side cross-sectional area again on the downstream side.
  • the flow velocity of the air-fuel mixture flowing in the outer peripheral side channel 16 can be reduced, the staying time of the concentrated flow passing near the flame holder is increased, and the ignition / flame holding property is improved.
  • the angle for enlarging the outer peripheral flow path on the fluid accelerator leading edge side is smaller than the angle for narrowing the outer peripheral flow path on the trailing edge of the fluid accelerator.
  • the road is enlarged.
  • the separation of the flow at the outer peripheral side flow path enlarged portion can be suppressed, the particles and the fluid can be efficiently separated, and the particle concentration efficiency can be increased.
  • the front side of the solid fuel burner is the furnace 17 side
  • the rear side of the solid fuel burner is the bent portion 12 side into which the mixed gas 10 of the solid fuel and the carrier gas flows.
  • FIG. 2 is a schematic view showing the structure of Example 2 of the solid fuel burner.
  • an additional air nozzle 30 for supplying air from the wind box 18 to the fluid accelerator outer peripheral flow path 16 is provided.
  • the additional air nozzle 30 is provided on the upper side wall surface 11A of the fuel nozzle where the solid fuel is concentrated.
  • the additional air nozzle 30 is perpendicular to the mixed airflow flowing from the additional air nozzle 30 through the fluid accelerator outer peripheral flow path 16. It becomes the form which is injected into. Due to the additional air flow 31, the concentrated portion can be diffused in the fluid accelerator outer peripheral flow path 16, and a concentrated flow having a homogeneous fuel concentration can be formed along the inner wall of the fuel nozzle 11.
  • the injection angle of the additional air is arbitrary, and the additional air may be injected in a tangential direction with respect to the circular cross section of the fuel nozzle 11 to form a swirl flow in the outer peripheral side flow path 16.
  • the fuel concentration on the wall surface can be further increased by the centrifugal effect.
  • additional air may be introduced from a plurality of positions on the fuel nozzle upper side wall surface 11A.
  • This example is particularly useful when lignite with a high content of moisture is used as a solid fuel or when combustion exhaust gas is used as a carrier gas.
  • the low oxygen concentration of the air-fuel mixture makes ignition and flame holding difficult.
  • the oxygen concentration in the air-fuel mixture can be increased, and ignition and flame holding properties can be improved.
  • the fuel concentration and oxygen concentration in the fluid accelerator outer peripheral flow path 16 can be adjusted, and the combustion state can also be controlled.
  • FIG. 3 is a schematic view showing the structure of Example 3 of the solid fuel burner.
  • an obstacle called a particle scattering device 40 is provided in the fluid accelerator outer peripheral flow path 16 on the fuel nozzle upper side wall surface 11A side.
  • the particle scattering device 40 By installing the particle scattering device 40 in the fluid accelerator outer peripheral flow path 16 into which the concentrated flow flows, the concentrated portion can be diffused into the outer peripheral flow path 16 and homogeneous along the inner wall of the fuel nozzle 11. It is possible to form a concentrated stream having a high fuel concentration.
  • grain scattering apparatus 40 is introduce
  • the particle scattering device 40 is connected to the inner wall of the fuel nozzle 11, it can also be used as a fixture for the fluid acceleration device 13.
  • FIG. 4 is a schematic view showing the structure of Example 4 of the solid fuel burner.
  • a guide 50 that allows the mixed gas to flow along the fuel nozzle lower side wall surface 11B is provided in the bent portion 12.
  • the guide 50 is provided in the vicinity of the fuel nozzle lower side wall surface 11B, and guides a part of the mixed gas passing through the bent portion 12 to the fuel nozzle lower side wall surface 11B side of the fluid accelerator outer peripheral side flow path 16.
  • the separation flow formed in the vicinity of the fuel nozzle lower side wall surface 11B downstream of the bent portion 12 can be suppressed, the formation of the stagnation region can be suppressed, and the solid fuel can be prevented from accumulating inside the nozzle.
  • FIG. 5 is a schematic view showing a method of supporting the fluid accelerator in the solid fuel burner according to the present embodiment.
  • the mandrel 60 is passed through the axis of the fuel nozzle straight pipe opened to the outlet, and the fluid accelerator 13 is fixed by at least one support member 61 from the inner peripheral side of the fuel nozzle 11.
  • the support member 61 does not become a baffle plate for the concentrated flow that flows through the outer peripheral flow path 16 of the fluid accelerator 13.
  • the fluid accelerator 13 can be easily inserted and removed and easily replaced.
  • the fluid accelerator 13 may be heated by collision of solid fuel particles or radiant heat from the furnace, and the temperature may rise. If it has the structure of the mandrel 60 and the supporting member 61, the heat
  • FIG. 6 is a diagram showing the position of the fluid accelerator capable of effectively performing the enrichment in the solid fuel burner according to the present embodiment.
  • the position in the burner axial direction of the tip of the fluid accelerator 13 that can effectively guide the concentrated flow concentrated in the vicinity of the upper side wall surface of the fuel nozzle at the bent portion 12 to the fluid accelerator outer peripheral flow path 16 was examined.
  • particle trajectory calculation taking into account the repulsion of the solid fuel particles on the nozzle wall surface and the trajectory deviation from the streamline
  • the ratio of the particles flowing into the accelerator outer peripheral flow path 16 has a distribution as shown in FIG.
  • the horizontal axis in the figure is the trailing edge position of the fluid accelerator made dimensionless with the burner tube diameter D, the burner axis direction is x, and the origin is the bent portion start position of the fuel nozzle.
  • the front side of the solid fuel burner is the furnace 17 side
  • the rear side of the solid fuel burner is the bent portion 12 side into which the mixed gas 10 of the solid fuel and the carrier gas flows.
  • FIG. 8 is a schematic view showing the structure of Example 7 of the solid fuel burner.
  • the rear edge of the fuel accelerator 13 on the fuel nozzle lower side (the side where the separation flow occurs, that is, the curvature center direction side) is the fuel nozzle upper side (the concentrated flow is formed). It is characterized in that it is on the upstream side of the trailing edge (the side to be operated, ie, the centrifugal direction side).
  • FIG. 9 is a schematic view showing the structure of the solid fuel burner of Example 8 of the present invention.
  • the fluid accelerator 13 is not a block shape but a thin plate.
  • the cross-sectional area on the inner peripheral side of the fluid accelerator 13 is once enlarged and then reduced. According to the configuration of the present embodiment, since the fluid accelerator 13 is formed of a thin plate, the fluid accelerator becomes light and the cost of the burner is reduced. Further, once the cross-sectional area on the inner peripheral side of the fluid accelerator 13 is once increased, the pressure loss of the burner is reduced.
  • the shape of the fluid accelerator 13 of the present embodiment is such that the cross-sectional area on the inner peripheral side once expands and then contracts as described above, but the fluid described in the first to seventh embodiments.
  • a structure in which a parallel portion, that is, a surface parallel to the fuel nozzle upper side wall surface 11A or the fuel nozzle lower side wall surface 11B is provided between the front edge side inclined portion and the rear edge side inclined portion is also good.
  • FIG. 10 is a schematic view showing the structure of Example 9 of the solid fuel burner of the present invention.
  • the burner that is the subject of the present invention it is desirable that as many pulverized coal particles as possible enter the outer peripheral flow path, and no pulverized coal particles enter the inner peripheral flow path.
  • As a result of calculating the flow of particles in the burner nozzle almost no pulverized coal particles enter the inner circumferential flow path of the fluid accelerator 13 above the mandrel 60.
  • pulverized coal particles enter the inner peripheral flow path of the fluid accelerator 13.
  • the 10 has a structure in which the central axis of the fluid accelerator 13 is shifted upward with respect to the central axis (mandrel 60) of the burner. As a result, the pulverized coal particles flowing under the mandrel 60 that has entered the inner peripheral flow path enter the outer peripheral flow path.
  • the concentration performance of the particles to the outer periphery side is shifted by shifting the central axis of the fluid accelerator 13 with respect to the central axis (mandrel 60) of the burner in the direction in which the mixed gas is subjected to centrifugal force. And the combustion performance of the burner is improved.
  • the shape of the fluid accelerator 13 of the present embodiment is a parallel portion between the inclined portion on the front edge side and the inclined portion on the rear edge side, that is, the fuel nozzle upper side wall surface 11A or the fuel nozzle lower portion. It is good also as a structure which provides a surface parallel to the side wall surface 11B.
  • FIG. 11 is a schematic view showing the structure of Example 10 of the solid fuel burner of the present invention.
  • the fluid accelerator 13 of the present embodiment has a hollow structure and has an inner peripheral flow path. Since the pulverized coal particles slightly flow into the inner peripheral flow path, the pulverized coal particles may stay inside the fluid accelerator 13. In this embodiment, the fluid accelerator is cut out at the bottom. This prevents pulverized coal particles from staying inside the fluid accelerator.
  • FIG. 12 is a schematic view showing the structure of Example 11 of the solid fuel burner of the present invention.
  • the fluid accelerator 13 of the present embodiment has a structure in which an opening is provided in the lower portion of the fluid accelerator 13 instead of the notch provided in the lower portion of the fluid accelerator 13 of the tenth embodiment.
  • the pulverized coal particles can be prevented from staying inside the fluid accelerator, and at the same time, the fluid accelerator can be used without changing the flow of the inner peripheral flow path more than necessary. Thirteen effects can be obtained.
  • the mandrel 60 described in each of the embodiments 5 and 8 to 11 can also be provided as an oil gun.
  • a hollow tube is used for the mandrel 60 so that oil such as heavy oil can be supplied to the furnace 17.
  • the ignitability can be improved by supplying heavy oil into the furnace 17 from the tip of the mandrel 60 first.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 10 Mixed gas of solid fuel and carrier gas, 11 ... Fuel nozzle, 11A ... Fuel nozzle upper side wall surface, 11B ... Fuel nozzle lower side wall surface, 12 ... Bending part, 13 ... Fluid accelerator, 14 ... Flame stabilizer, 15 ... Fluid accelerator inner peripheral flow path, 16 ... Fluid accelerator outer peripheral flow path, 17 ... Furnace, 18 ... Wind box, 20 ... Secondary air flow, 21 ... Tertiary air flow, 22 ... Circulating flow, 30 ... Additional air nozzle, 31 ... Additional air flow, 40 ... Particle scattering device, 50 ... Guide, 60 ... Mandrel, 61 ... Support member

Abstract

 固体燃料の濃縮を短いバーナ長さで達成できる固体燃料バーナ構造を提供すること。固体燃料とその搬送気体の混合気体を噴出する、曲がり部を持った燃料ノズルと、前記燃料ノズル内の曲がり部下流に挿入され、流路を内周側と外周側に分割し、流路断面積を絞ることで流体を加速する中空状の流体加速器を備えた固体燃料バーナにおいて、前記流体加速器により分割される燃料ノズル外周側流路の断面積が、一旦縮小した後、再度拡大する形状を有することを特徴とする固体燃料バーナ。本発明の固体燃料バーナは、固体燃料の濃縮を短いバーナ長さで達成できる。

Description

固体燃料バーナ
 本発明は、固体燃料バーナに関する。
 固体燃料を用いた燃焼装置において、安定した着火・保炎を達成するためには、バーナ出口の保炎部に十分な濃度の燃料混合気を供給することが要求される。バーナ内部で固体燃料の濃縮を達成する従来技術として、特許第2781740号公報(特許文献1)がある。この公報には、「微粉炭と空気の混合気をほぼ鉛直上向きに導入しベント部で水平に向きを変えて先端の偏平なノズル部から噴出させる微粉炭管と、上記ノズル部の周辺に二次空気を供給する偏平な二次空気ノズルとを有する微粉炭焚きバーナにおいて、上記微粉炭管の水平部軸心に設けられ、流れに沿って断面形状が徐々に拡大し、その後流れ方向に平行になった後、軸線に垂直な平面で終わるとともに、軸線周辺を前後に貫通する切欠ぎスリットを有する濃淡分離器と、上記微粉炭管の上記ベント部出口上部に設けられ、流れ方向に対し傾斜した面を有するキッカブロックとを備えたことを特徴とする」と記載されている。この従来技術では、キッカブロックによりベント部出口後に生じる強い旋回流を緩和し、濃度が均一な微粉炭混合気流を形成し、後流の濃淡分離器に導く。そして、濃淡分離器に衝突した微粉炭混合気は上下左右に分けられ、微粉炭が微粉炭管の内壁近傍に集まる。一方、空気は濃淡分離器の後方で微粉炭管の軸心部に戻る。したがって、微粉炭濃度は管内の外側で高く、管軸心部で低くなる。また、切欠ぎスリットを設けたことで、一部の微粉炭混合気が切欠ぎスリットを貫流し、濃淡分離器の背面に生じる負圧による渦を解消して、濃淡分離効果を促進する。
特許第2781740号公報
 前記従来の固体燃料バーナには以下の解決すべき課題があった。
 (1) 曲がり部から濃淡分離器までに固体燃料が配管に対して垂直断面中で均一な混合状態となるための距離が必要であり、バーナ長さが長くなる。これにより、メンテナンスの困難さや必要な敷地面積の増大を招き、コストアップにつながる。
 (2) 曲がり部の下流に大規模な剥離流れが生じ、よどみ領域を形成する可能性がある。固体燃料はよどみ領域に堆積しやすく、何らかのきっかけで着火する可能性があるため、よどみ領域を削減し、安全性を高める必要がある。
 本発明の目的は、固体燃料の濃縮を短いバーナ長さで達成できる固体燃料バーナ構造を提供することにある。
 本発明の固体燃料バーナは、固体燃料とその搬送気体の混合気体を噴出する、曲がり部を持った燃料ノズルと、前記燃料ノズル内の曲がり部下流に挿入され、流路を内周側と外周側に分割し、流路断面積を絞ることで流体を加速する中空状の流体加速器を備えており、前記流体加速器により分割される燃料ノズル外周側流路の断面積が、一旦縮小した後、再度拡大する形状を有することを特徴とする。
 本発明の固体燃料バーナは、固体燃料の濃縮を短いバーナ長さで達成できる。
本発明による固体燃料バーナの実施例1の構造である。 本発明による固体燃料バーナの実施例2の構造である。 本発明による固体燃料バーナの実施例3の構造である。 本発明による固体燃料バーナの実施例4の構造である。 本発明による固体燃料バーナにおける流体加速器の支持方法の一例である。 本発明による固体燃料バーナにおいて、濃縮を効果的に実施できる流体加速器の位置を示す図である。 流体加速器外周側流路への粒子捕獲率と加速器設置位置の関係である。 本発明による固体燃料バーナの実施例7の構造である。 本発明による固体燃料バーナの実施例8の構造である。 本発明による固体燃料バーナの実施例9の構造である。 本発明による固体燃料バーナの実施例10の構造である。 本発明による固体燃料バーナの実施例11の構造である。
 以下、実施例を図面を用いて説明する。
 図1は固体燃料バーナの実施例1の構造を示した概略図である。上図は固体燃料バーナを出口正面から見た際に、垂直方向に切断した断面図を示す。下図は、上図のAA’断面図を示す。実施例1の固体燃料バーナは、90°の曲がり部12を有した円形断面の燃料ノズル11と、曲がり部12の下流に挿入された中空円筒状の流体加速器13を備えている。曲がり部12の下流で燃料ノズル11は直管となっており、その出口は火炉17に向かって開口している。燃料ノズル11上流において下方から供給される固体燃料と搬送気体の混合気体10は曲がり部12を通過して90°向きを変え、流体加速器13を通って一旦加速された後、火炉17に向かって流れ、燃料ノズル出口から噴出される。燃料ノズル11の周囲には二次空気ノズル、三次空気ノズルが同心円状に配置され、火炉17に向って二次空気流20、三次空気流21が供給される。これらの空気流は外周方向に広がるように噴出される。燃料ノズル出口には保炎器14が取り付けられており、その下流側(火炉側)には循環流22が形成される。循環流22には燃料ノズルから噴出した燃料混合気、二次空気、高温な燃焼ガスが流入し、滞留する。また、火炉からのふく射熱を受けて燃料粒子の温度が増加する。これらの効果で、固体燃料は保炎器下流で着火・保炎される。
 褐炭などの含有水分の多い固体燃料を用いる場合や燃焼排ガスを搬送気体として用いる場合などには、酸素濃度の低下や比熱の変化などの理由により着火・保炎性が悪化する。このような場合には、安定した着火・保炎を達成するためにバーナ出口の保炎器近傍での燃料濃度を増加させることが必要である。
 燃料ノズル内における固体燃料の濃縮を実現する手段として、特許文献1に代表されるように、濃縮機構となる障害物を燃料ノズル内に導入し、固体燃料を外周方向へ拡散させることが従来多かった。しかし、この場合、濃縮機構を導入する分だけバーナ長さが増大する。また、多くの場合、燃料濃度をノズル内で均一にするようなキッカブロックのような機構が曲がり部下流に取り付けられ、ある程度燃料濃度を均一にした上で濃縮機構を導入する。この場合も燃料濃度を均一にするための距離が必要であり、バーナ長さの増大を招く。
 発明者らは、曲がり部での遠心効果による固体燃料の濃縮を積極的に利用することで、バーナ長さを大幅に短縮できると考えた。固体粒子を含む流体シミュレーション結果によれば、曲がり部12を通過後、燃料ノズル上方の壁面11A近傍では曲がり部上流の燃料濃度の40倍程度の高濃度領域が形成される。この濃縮部は下流へ流れるに従い、次第にノズル内周方向へ拡散し濃度が低下していくが、本実施例のように、曲がり部近傍に中空円筒状の流体加速器13を設置することで、濃縮流を流体加速器13が分割する外周側流路16に効果的に導くことができ、燃料ノズル上方側内壁11A近傍に濃縮流を留めることができる。流体加速器13の下流には障害物はないため、外周側流路16に捕えられた濃縮流は燃料ノズル内壁11Aに沿って出口に到達し、保炎器14の近傍に効果的に高濃度の燃料混合気体を供給でき、着火・保炎性を向上できる。
 また、本実施例の流体加速器13はその外周側流路16を一旦絞る形状を有している。これにより、外周側流路の圧力損失が大きくなり、流体は外周側流路16には入りにくく、大部分の搬送気体は内周側流路15を通過する。一方で、慣性力の大きい固体燃料粒子は外周側流路16に入るため、外周側を流れる混合気の燃料濃度を増加させることができる。さらに、流体加速器13は下流側でその外周側流路断面積を再度拡大する形状を有している。これにより、外周側流路16を流れる混合気の流速を低下させることができ、保炎器近傍を通過する濃縮流の滞在時間を増加させ、着火・保炎性を高めている。また、図1に示した実施例では、流体加速器後縁の外周側流路を絞る角度よりも流体加速器前縁側の外周側流路を拡大する角度のほうが小さくなっており、ゆるやかに外周側流路が拡大する形状としている。これにより、外周側流路拡大部での流れの剥離を抑えて、粒子と流体を効率的に分離し、粒子濃縮効率を高めることができる。なお、本実施例において、固体燃料バーナの前方側は火炉17側であり、固体燃料バーナの後方側は固体燃料と搬送気体の混合気体10が流入する曲がり部12側とする。
 上記のように、曲がり部12と流体加速器13のみの要素で十分な濃縮性能を達成でき、その下流に特別な機構を設ける必要はない。さらに、流体加速器13は曲がり部12の近傍に設置することで、バーナ長さは従来と比較し大幅に短縮することが可能である。しかも、構成要素が簡素であるため、製造やメンテナンスのコストを抑えることもできる。
 また、曲がり部のすぐ下流では燃料ノズル内壁11B近傍に剥離流れが発生し、大規模なよどみ領域が形成され、固体燃料の堆積が生じやすいという問題がある。本発明の流体加速器13を曲がり部12近傍に設置すると、曲がり部下流のよどみ領域を削減できる。図1において、流体加速器13の下方側は流体を加速し、よどみ領域をつぶす効果を持っている。これにより固体燃料の堆積を抑制でき、安全性を高めている。また、流体加速器13により燃料ノズル内の流速が一旦加速されるために、火炉17内から火炎が伝播してバーナ内部にまで到達する逆火を防止することができる。
 図2は固体燃料バーナの実施例2の構造を示した概略図である。本実施例では、実施例1のバーナ構造に加えて、風箱18から流体加速器外周側流路16に空気を供給する追加空気ノズル30が備えられている。追加空気ノズル30は固体燃料が濃縮されている燃料ノズル上方側壁面11Aに設けることを特徴としており、本実施例では追加空気ノズル30から流体加速器外周側流路16を流れる混合気流に対して垂直に噴射される形態となっている。追加空気流31により、流体加速器外周側流路16内において濃縮部を拡散させ、燃料ノズル11の内壁に沿って均質な燃料濃度を持つ濃縮流を形成することができる。なお、追加空気の噴射角度は任意であり、燃料ノズル11の円形断面に対して接線方向に追加空気を噴射して、外周側流路16内に旋回流を形成させてもよい。この場合、遠心効果により壁面での燃料濃度をさらに高めることができる。また、燃料ノズル上方側壁面11Aの複数の位置から追加空気を導入してもよい。
 含有水分の多い褐炭を固体燃料として用いる場合や燃焼排ガスを搬送気体として用いる場合において、本実施例は特に有用である。これらの場合、混合気の酸素濃度が低いことが着火・保炎を困難にする。本実施例のように、濃縮部に高酸素濃度の空気を導入し、混合させることで、混合気中の酸素濃度を増加でき、着火・保炎性の向上が図れる。
 また、追加する空気量を調整すれば、流体加速器外周側流路16内の燃料濃度および酸素濃度を調節でき、燃焼状態を制御することも可能である。
 図3は固体燃料バーナの実施例3の構造を示した概略図である。本実施例では、実施例1のバーナ構造に加えて、燃料ノズル上方側壁面11A側の流体加速器外周側流路16内に粒子散乱装置40と呼ばれる障害物が備えられている。粒子散乱装置40を濃縮流が流入してくる流体加速器外周側流路16に設置することで、濃縮部を外周側流路16内に拡散させることができ、燃料ノズル11の内壁に沿って均質な燃料濃度を持つ濃縮流を形成することができる。なお、本実施例では角型の粒子散乱装置40を導入しているが、その形状は任意である。また、粒子散乱装置は複数あってもよい。
 粒子散乱装置40を燃料ノズル11の内壁と接続すれば、流体加速装置13の固定具としても用いることができる。
 図4は固体燃料バーナの実施例4の構造を示した概略図である。本実施例では、実施例1のバーナ構造に加えて、混合気体を燃料ノズル下方側壁面11Bに沿って流れるようにするガイド50を曲がり部12に設置している。ガイド50は燃料ノズル下方側壁面11Bの近傍に設け、曲がり部12を通過する混合気体の一部を流体加速器外周側流路16の燃料ノズル下方側壁面11B側に導く。これにより、曲がり部12下流の燃料ノズル下方側壁面11B近傍に形成される剥離流れを抑制でき、よどみ領域の形成を抑止し、固体燃料のノズル内部での堆積を防止できる。また、燃料流の一部は流体加速器外周側流路16の下方側に導入できるため、流体加速器外周側流路16内で燃料ノズル上方側壁面11Aの近傍でのみ過度に濃縮されることを抑制でき、外周側流路16内での濃縮度の不均一性を緩和できる。
 図5は本実施例による固体燃料バーナにおいて、流体加速器を支持する方法を示した概略図である。出口へ開口した燃料ノズル直管の軸線上に心棒60を通し、燃料ノズル11の内周側から少なくとも一つ以上の支持部材61によって流体加速器13を固定する。この構成により、支持部材61が流体加速器13の外周側流路16を流れる濃縮流の邪魔板とならない。また、流体加速器13の抜き差しが容易であり、取り替えしやすい。流体加速器13は固体燃料粒子の衝突や火炉内からのふく射熱により加熱されて温度が上昇する可能性がある。心棒60と支持部材61の構成を有していれば、流体加速器13の熱を心棒側に逃がすことができ、流体加速器の寿命を延ばすことができる。
 図6は本実施例による固体燃料バーナにおいて、濃縮を効果的に実施できる流体加速器の位置を示す図である。曲がり部12で燃料ノズル上方側壁面近傍に濃縮された濃縮流を効果的に流体加速器外周側流路16に導ける流体加速器13の先端のバーナ軸方向位置を検討した。固体燃料粒子のノズル壁面での反発および流線からの軌道のズレを考慮した粒子軌道計算を行った結果、流体加速器13の先端位置をバーナ軸方向に変化させた場合に、全粒子のうち流体加速器外周側流路16へ流入する粒子の割合は図7に示すような分布となる。図の横軸はバーナ管径Dで無次元化された流体加速器後縁位置であり、バーナ軸方向をxとし、原点は燃料ノズルの曲がり部開始位置としている。x/D=0.5Dからx/D=1.2Dの間に流体加速器13の後縁が来るように設置することで、曲がり部12で濃縮される固体燃料粒子を効果的に流体加速器外周側流路16へ導くことができる。
 なお、本実施例において、固体燃料バーナの前方側は火炉17側であり、固体燃料バーナの後方側は固体燃料と搬送気体の混合気体10が流入する曲がり部12側とする。
 図8は固体燃料バーナの実施例7の構造を示した概略図である。本実施例では、実施例1のバーナ構造において、流体加速器13の燃料ノズル下方側(剥離流れの発生する側、即ち、曲率中心方向側)の後縁が、燃料ノズル上方側(濃縮流が形成される側、即ち、遠心方向側)の後縁より上流側にあることを特徴としている。剥離流れが発生する燃料ノズル下方側の流体加速器後縁位置を曲がり部終端部のすぐ下流とすることで、剥離領域の大きさを極力小さくすることができ、安全性を向上させることができる。
 図9は本発明の固体燃料バーナの実施例8の構造を示した概略図である。本実施例では、流体加速器13をブロック状ではなく、薄い板で構成している。また、流体加速器13の内周側の断面積が一旦拡大した後、縮小するような構造となっている。本実施例の構成によれば、流体加速器13を薄い板で構成したことにより、流体加速器が軽くなり、バーナのコストが低減される。また、流体加速器13の内周側の断面積を一旦拡大することにより、バーナの圧力損失が小さくなる。
 なお、本実施例の流体加速器13の形状は、上記のように、内周側の断面積が一旦拡大した後、縮小するような構造としているが、実施例1乃至実施例7で説明した流体加速器のように、前縁側の傾斜部と後縁側の傾斜部との間に平行部、すなわち、燃料ノズル上方側壁面11A或いは燃料ノズル下方側壁面11Bに対して平行な面を設けるような構造としてもよい。
 図10は本発明の固体燃料バーナの実施例9の構造を示した概略図である。本発明の対象となるバーナでは、できるだけ多くの微粉炭粒子が外周側流路へ入り、内周側流路へは微粉炭粒子が入らないことが望ましい。バーナノズル内の粒子の流れを計算した結果では、心棒60の上側では、微粉炭粒子がほとんど流体加速器13の内周側流路へは入らない。一方、心棒60の下側では、流体加速器13の内周側流路に微粉炭粒子が入る。
 図10の構成では、流体加速器13の中心軸を、バーナの中心軸(心棒60)に対して上にずらした構造としている。これにより、内周側流路へ入っていた心棒60の下側を流れる微粉炭粒子が、外周側流路に入るようになる。
 上記のバーナノズル内の粒子流の計算結果が示すように、燃料ノズル11の曲がり部12での遠心効果により固体燃料のほとんどが燃料ノズル上方側壁面11A近傍に集中するのに対し、内周側流路の心棒60の上側には固体燃料はほとんど流ない。一方、燃料ノズル下方側壁面11B近傍には剥離流れが発生するが、剥離流れは粒子の質量の影響を受け難いため、燃料ノズル下方側壁面11B近傍とともに、内周側流路の心棒60の下側にも固体燃料が流れる。従って、図10の構成のように、流体加速器13の中心軸を、バーナの中心軸(心棒60)に対し、混合気体に遠心力が掛かる方向にずらすことにより、外周側への粒子の濃縮性能が向上し、バーナの燃焼性能が改善される。
 なお、実施例8と同様に、本実施例の流体加速器13の形状は、前縁側の傾斜部と後縁側の傾斜部との間に平行部、すなわち、燃料ノズル上方側壁面11A或いは燃料ノズル下方側壁面11Bに対して平行な面を設けるような構造としてもよい。
 図11は本発明の固体燃料バーナの実施例10の構造を示した概略図である。本実施例の流体加速器13は中空型の構造であり、内周側流路がある。内周側流路にもわずかではあるが微粉炭粒子が流入するため、流体加速器13の内部に微粉炭粒子が滞留する可能性がある。本実施例では流体加速器の下部を切り欠いた構造とした。これにより、流体加速器の内部への微粉炭粒子の滞留が防がれる。
 図12は本発明の固体燃料バーナの実施例11の構造を示した概略図である。本実施例の流体加速器13は、実施例10の流体加速器13の下部に設けた切欠きに替えて、流体加速器13の下部に開口を設けた構造とした。これにより、実施例10の流体加速器13と同様に、流体加速器の内部への微粉炭粒子の滞留を防ぐことができると同時に、内周側流路の流れを必要以上に変えることなく、流体加速器13の効果を得ることができる。
 なお、実施例5および実施例8乃至実施例11の各実施例で説明した心棒60は、オイルガンを兼ねて設けることもできる。例えば、心棒60に中空状の管を用いて、火炉17に重油などの油を供給できるような構造とする。微粉炭などの固体燃料を含む混合気体を火炉17に供給する前に、心棒60の先端から火炉17内に重油を先に供給することで、着火性を向上することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
10…固体燃料と搬送気体の混合気体,11…燃料ノズル,11A…燃料ノズル上方側壁面,11B…燃料ノズル下方側壁面,12…曲がり部,13…流体加速器,14…保炎器,15…流体加速器内周側流路,16…流体加速器外周側流路,17…火炉,18…風箱,20…二次空気流,21…三次空気流,22…循環流,30…追加空気ノズル,31…追加空気流,40…粒子散乱装置,50…ガイド,60…心棒,61…支持部材

Claims (13)

  1.  固体燃料とその搬送気体の混合気体を噴出する、曲がり部を持った燃料ノズルと、前記燃料ノズル内の曲がり部下流に挿入され、流路を内周側と外周側に分割し、流路断面積を絞ることで流体を加速する中空状の流体加速器を備えた固体燃料バーナにおいて、前記流体加速器により分割される燃料ノズル外周側流路の断面積が、一旦縮小した後、再度拡大する形状を有することを特徴とする固体燃料バーナ。
  2.  前記流体加速器が分割する外周側流路内に空気を噴出する追加空気ノズルを備え、該追加空気ノズルが曲がり部の遠心方向側の燃料ノズル内壁に設けられていることを特徴とする請求項1記載の固体燃料バーナ。
  3.  前記流体加速器が分割する外周側流路内に固体燃料を散乱させる障害物を備え、該障害物が曲がり部の遠心方向側の燃料ノズル内壁に設けられていることを特徴とする請求項1記載の固体燃料バーナ。
  4.  曲がり部の曲率中心方向側の燃料ノズル内壁近傍に、内壁に沿った形状を有するガイドを備えていることを特徴とする請求項1記載の固体燃料バーナ。
  5.  固体燃料と搬送気体の混合気体の噴出方向に軸心を持つ心棒を、前記燃料ノズル内に設け、前記心棒と前記流体加速器を支持部材で接続することで前記流体加速器を内側から固定することを特徴とする請求項1記載の固体燃料バーナ。
  6.  前記流体加速器の上流側後縁位置を、曲がり部開始位置からの距離が前記燃料ノズル管径の0.5倍から1.2倍の位置の間に設置することを特徴とする請求項1記載の固体燃料バーナ。
  7.  曲がり部の曲率中心方向側の流体加速器上流側後縁位置が、曲がり部遠心方向側の流体加速器上流側後縁位置よりも上流側にあることを特徴とする請求項1記載の固体燃料バーナ。
  8.  曲がり部の曲率中心方向側の流体加速器上流側前縁位置が、曲がり部遠心方向側の流体加速器上流側前縁位置よりも上流側にあることを特徴とする請求項1記載の固体燃料バーナ。
  9.  固体燃料とその搬送気体の混合気体を噴出する、曲がり部を持った燃料ノズルと、前記燃料ノズル内の曲がり部下流に挿入され、流路を内周側と外周側に分割し、流路断面積を絞ることで流体を加速する中空状の流体加速器を備えた固体燃料バーナにおいて、前記流体加速器により分割される燃料ノズル外周側流路の断面積が、一旦縮小した後、再度拡大する形状を有し、当該燃料ノズル内周側の断面積が、一旦拡大した後、縮小することを特徴とする固体燃料バーナ。
  10.  前記流体加速器の中心軸が、当該バーナの中心軸より上側にずれていることを特徴とする、請求項1から9のいずれかに記載の固体燃料バーナ。
  11.  前記流体加速器の中心軸が、当該バーナの中心軸に対し、前記曲がり部において前記混合気体に遠心力が掛かる方向にずれていることを特徴とする、請求項1から9のいずれかに記載の固体燃料バーナ。
  12.  前記流体加速器の構造が、下部を切り欠いた構造であることを特徴とする、請求項1から9のいずれかに記載の固体燃料バーナ。
  13.  前記流体加速器の構造が、下部に開口を設けた構造であることを特徴とする、請求項1から9のいずれかに記載の固体燃料バーナ。
PCT/JP2014/073826 2013-09-11 2014-09-09 固体燃料バーナ WO2015037589A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013187883 2013-09-11
JP2013-187883 2013-09-11

Publications (1)

Publication Number Publication Date
WO2015037589A1 true WO2015037589A1 (ja) 2015-03-19

Family

ID=52665691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073826 WO2015037589A1 (ja) 2013-09-11 2014-09-09 固体燃料バーナ

Country Status (1)

Country Link
WO (1) WO2015037589A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212256A1 (en) * 2016-06-08 2017-12-14 Doosan Babcock Limited Burner
WO2018142772A1 (ja) * 2017-01-31 2018-08-09 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
CN110848672A (zh) * 2018-08-20 2020-02-28 三菱日立电力系统株式会社 固体燃料喷烧器
IT201900020506A1 (it) * 2019-11-06 2021-05-06 Ac Boilers S P A Gruppo bruciatore, metodo per operare detto gruppo bruciatore e impianto comprendente detto gruppo bruciatore

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2360548A (en) * 1944-10-17 Combustion method
US4654001A (en) * 1986-01-27 1987-03-31 The Babcock & Wilcox Company Flame stabilizing/NOx reduction device for pulverized coal burner
JPH07260106A (ja) * 1994-03-18 1995-10-13 Hitachi Ltd 微粉炭燃焼バーナ及び微粉炭燃焼装置
JPH08296815A (ja) * 1995-04-25 1996-11-12 Mitsubishi Heavy Ind Ltd 微粉炭焚きバーナ
JPH11281009A (ja) * 1998-03-26 1999-10-15 Mitsubishi Heavy Ind Ltd 微粉炭バーナ
JP2002267109A (ja) * 2001-03-12 2002-09-18 Mitsubishi Heavy Ind Ltd 微粉炭バーナー及び角型ノズルにおける混合気送給方法
JP2003240227A (ja) * 2002-02-14 2003-08-27 Hitachi Ltd 固体燃料バーナと固体燃料バーナの燃焼方法
JP2004183984A (ja) * 2002-12-03 2004-07-02 Mitsubishi Heavy Ind Ltd 微粉固体燃料焚きバーナ、微粉固体燃料の燃焼方法およびボイラ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2360548A (en) * 1944-10-17 Combustion method
US4654001A (en) * 1986-01-27 1987-03-31 The Babcock & Wilcox Company Flame stabilizing/NOx reduction device for pulverized coal burner
JPH07260106A (ja) * 1994-03-18 1995-10-13 Hitachi Ltd 微粉炭燃焼バーナ及び微粉炭燃焼装置
JPH08296815A (ja) * 1995-04-25 1996-11-12 Mitsubishi Heavy Ind Ltd 微粉炭焚きバーナ
JPH11281009A (ja) * 1998-03-26 1999-10-15 Mitsubishi Heavy Ind Ltd 微粉炭バーナ
JP2002267109A (ja) * 2001-03-12 2002-09-18 Mitsubishi Heavy Ind Ltd 微粉炭バーナー及び角型ノズルにおける混合気送給方法
JP2003240227A (ja) * 2002-02-14 2003-08-27 Hitachi Ltd 固体燃料バーナと固体燃料バーナの燃焼方法
JP2004183984A (ja) * 2002-12-03 2004-07-02 Mitsubishi Heavy Ind Ltd 微粉固体燃料焚きバーナ、微粉固体燃料の燃焼方法およびボイラ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212256A1 (en) * 2016-06-08 2017-12-14 Doosan Babcock Limited Burner
WO2018142772A1 (ja) * 2017-01-31 2018-08-09 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
JP2018124012A (ja) * 2017-01-31 2018-08-09 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
CN110848672A (zh) * 2018-08-20 2020-02-28 三菱日立电力系统株式会社 固体燃料喷烧器
IT201900020506A1 (it) * 2019-11-06 2021-05-06 Ac Boilers S P A Gruppo bruciatore, metodo per operare detto gruppo bruciatore e impianto comprendente detto gruppo bruciatore
EP3819541A1 (en) 2019-11-06 2021-05-12 AC Boilers S.p.A. Burner assembly, method for operating said burner assembly and plant comprising said burner assembly

Similar Documents

Publication Publication Date Title
JP4896143B2 (ja) バーナ、バーナを備えた燃焼装置及びボイラ
KR100201678B1 (ko) 미세분말상 연료연소 버너
US7914279B2 (en) Method and apparatus for injecting a gas into a two-phase stream
KR101615064B1 (ko) 고체연료 버너
CN102235666B (zh) 一种煤粉燃烧器及包括该煤粉燃烧器的煤粉锅炉
WO2015037589A1 (ja) 固体燃料バーナ
CN108351100B (zh) 固体燃料燃烧器
JPH01305206A (ja) バーナー
EP2208934A1 (en) Burner of a gas turbine for a reactive fuel air mixture
US9194579B2 (en) Aerodynamic radiant wall burner tip
RU2550294C2 (ru) Горелка промежуточного подогрева
CN106224949A (zh) 一种非同轴水平浓淡低NOx直流煤粉燃烧器
TWI712761B (zh) 固體燃料噴燃器
RU2587020C2 (ru) Горелка для топлива в форме частиц
ES2841931T3 (es) Aparato quemador asimétrico de baja emisión de NOx y método
JP6382733B2 (ja) 固体燃料バーナ
JP2012255600A (ja) 固体燃料バーナ及びそれを備えた燃焼装置
CN105992913B (zh) 流内燃烧器模块
JP6871422B2 (ja) 固体燃料バーナおよび固体燃料バーナ用保炎器
CN104100971B (zh) 一种一次风浓淡分离的旋流燃烧器
JP3670752B2 (ja) 微粉炭セパレータ装置
CN201688400U (zh) 一种煤粉燃烧器及包括该煤粉燃烧器的煤粉锅炉
WO2016179822A1 (en) A system for burning pulverized solid fuel and a method thereof
US9046265B2 (en) Reheat burner
KR20200041940A (ko) 낮은 증기 소비 및 높은 무연 용량 폐가스 플레어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP