WO2015037165A1 - 情報処理装置、予測制御方法及び記録媒体 - Google Patents

情報処理装置、予測制御方法及び記録媒体 Download PDF

Info

Publication number
WO2015037165A1
WO2015037165A1 PCT/JP2014/002441 JP2014002441W WO2015037165A1 WO 2015037165 A1 WO2015037165 A1 WO 2015037165A1 JP 2014002441 W JP2014002441 W JP 2014002441W WO 2015037165 A1 WO2015037165 A1 WO 2015037165A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
operation amount
information
prediction
control target
Prior art date
Application number
PCT/JP2014/002441
Other languages
English (en)
French (fr)
Inventor
義男 亀田
岳夫 野崎
森永 聡
学 楠本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/914,761 priority Critical patent/US10048658B2/en
Priority to JP2015536422A priority patent/JPWO2015037165A1/ja
Publication of WO2015037165A1 publication Critical patent/WO2015037165A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion

Definitions

  • the present invention relates to control of processes and the like, and more particularly, to predictive control for predicting a future state and determining an operation amount.
  • Predictive control is control that predicts the future controlled quantity based on the dynamic model of the process and determines the manipulated variable.
  • the features of predictive control are that multivariable control is easy, constraints are easily considered, and adjustment is easy and intuitive.
  • Predictive control has been used mainly for petrochemical industry plant control. Along with the recent improvement in computer capabilities, predictive control is applied not only to plant control in the petrochemical industry but also to mobile objects and robots with short control cycles (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 General predictive control including the technology described in Non-Patent Document 1 is based on the assumption that a predictive control model reflecting the real world is known and the predictive control model designer describes the predictive control model in advance. (For example, refer to Patent Document 1).
  • the model predictive control apparatus described in Patent Literature 1 has a known predictive control model, and performs control to follow the model based on an evaluation function. Note that the predictive control model is often expressed as a discrete-time linear function.
  • Patent Document 2 a control device that learns a predictive control model for control using a neural network is used (see, for example, Patent Document 2).
  • the control device described in Patent Literature 2 includes an identifier that obtains parameters of an identification model (corresponding to the predictive control model described above).
  • the control device described in Patent Document 2 is also based on the assumption that the predictive control model is known.
  • Patent Document 3 a method for learning the parameters of the predictive control model has been proposed (see, for example, Patent Document 3).
  • the method described in Patent Document 3 also has a known predictive control model, and estimates parameters based on the premise.
  • Patent Document 4 a system that operates by selecting a plurality of fixed control algorithms to match individual differences has been proposed (see, for example, Patent Document 4).
  • Patent Document 5 An apparatus using machine learning has been proposed (see, for example, Patent Document 5).
  • model predictive control technology described in Non-Patent Document 1 has a predictive control model. It is assumed that it is already known.
  • the predictive control designer described the predictive control model in advance based on physical laws such as the equation of motion, heat equation, mass conservation law, momentum conservation law, energy conservation law.
  • a plurality of operation variables such as an air conditioner temperature, an air conditioner air volume, a blind opening, and a window opening affect a plurality of control variables such as a room temperature and a room humidity.
  • control variables such as increasing temperature and decreasing humidity.
  • state variables such as outside air temperature and outside air humidity affect the control variables.
  • the predictive control has a problem that the followability of the control is low.
  • the predictive control model is greatly increased from the real world over time based on changes in the surrounding environment, changes in the performance of the control target over time, or structural changes in the control target based on modification of the control target. Separate. For this reason, the predictive control model of the predictive technique is an incomplete predictive control model. As a result, the predictive control has a problem that the followability of the control is lowered.
  • control using machine learning the control characteristics change every learning, so it is necessary to evaluate the characteristics of the control model each time. And it is determined whether it is appropriate control based on the evaluation. For this reason, the control using machine learning described in the literature has a problem that it is difficult to select an appropriate control based on the surrounding situation.
  • An object of the present invention is to provide an information processing apparatus and a predictive control method that solve the above problems.
  • An information processing apparatus includes an information storage unit that receives and stores control target information including information on a control target and a surrounding environment including the control target, and control target information stored in the information storage unit.
  • a predictive expression set learning generating means for learning and generating a predictive expression set used for determining the manipulated variable of the controlled object based on the input information necessary for determining the manipulated variable of the controlled object, and the predictive expression set And the control target information stored in the information storage means, the received control target information, and the input information, constructing a predictive control model of the control target, and an operation amount used for control of the control target And an operation amount determining means for determining.
  • a predictive control method receives control target information including information on a control target and surrounding environment including the control target, accumulates the control target information, and based on the accumulated control target information Learning and generating a prediction formula set used for determining the operation amount of the control target, receiving input information necessary for determining the operation amount of the control target, the prediction formula set, the accumulated control target information, and the Based on the received control target information and the input information, a predictive control model of the control target is constructed, and an operation amount that uses the control target for control is determined.
  • a computer-readable recording medium on which a program according to an aspect of the present invention is recorded is a process of receiving control target information including information on a control target and surrounding environment including the control target, and storing the control target information; A process for learning and generating a prediction equation set used for determining the operation amount of the control object based on the accumulated control object information, receiving input information necessary for determining the operation amount of the control object, and receiving the prediction equation A process of constructing a predictive control model of the control target based on the set, the accumulated control target information, the received control target information, and the input information, and determining an operation amount to use the control target for control And let the computer run.
  • An information processing apparatus includes an information storage unit that receives and stores control target information including information on a control target and a surrounding environment including the control target, and control target information stored in the information storage unit.
  • a predictive equation set learning generating means for learning and generating a predictive equation set used for determining an operation amount for the control object based on the input information, and receiving input information necessary for determining the operation amount of the control object;
  • the control target information stored in the information storage means and the prediction formula set, a predictive control model of the control target is constructed, and a first operation amount used for control of the control target is determined.
  • An operation amount determination unit, and a control unit that outputs the first operation amount, a control formula that is input in advance, and control target information that is stored in the information storage unit.
  • Fixed control means for determining and outputting a second manipulated variable used in the operation, and an manipulated variable for selecting one of the first manipulated variable of the manipulated variable determiner and the second manipulated variable of the fixed control means Selecting means.
  • the predictive control method receives and accumulates control target information including information related to a control target and a surrounding environment including the control target, and performs control on the control target based on the stored control target information. Learning and generating a prediction formula set used for determining an operation amount, receiving input information necessary for determining an operation amount of the control target, and receiving the input information, the accumulated control target information, and the prediction formula set.
  • a predictive control model of the control object is constructed, a first operation amount used for the control of the control object is determined, the first operation amount is output, and a formula inputted in advance and the accumulation Based on the controlled object information, a second operation amount used for controlling the control object is determined and output, and one of the first operation amount and the second operation amount is selected.
  • a computer-readable recording medium on which a program according to an aspect of the present invention is recorded is a process of receiving and storing control target information including information on a control target and surrounding environment including the control target, and the stored control target
  • learning data can be collected and controlled simultaneously.
  • FIG. 1 is a block diagram showing an example of the configuration of an information processing system including an information processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the first embodiment.
  • FIG. 3 is a block diagram illustrating an example of another configuration of the information processing system including the information processing apparatus according to the first embodiment.
  • FIG. 4 is a block diagram illustrating an example of another configuration of the information processing system including the information processing apparatus according to the first embodiment.
  • FIG. 5 is a block diagram illustrating an exemplary configuration of a modification of the information processing apparatus according to the first embodiment.
  • FIG. 6 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the second embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of an information processing system including an information processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the first embodiment.
  • FIG. 7 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the third embodiment.
  • FIG. 8 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the fourth embodiment.
  • FIG. 9 is a block diagram illustrating an example of a configuration of an operation amount determination unit according to the fifth embodiment.
  • FIG. 10 is a block diagram illustrating an example of a configuration of an operation amount calculation unit according to the fifth embodiment.
  • FIG. 11 is a block diagram illustrating an example of another configuration of the operation amount calculation unit according to the fifth embodiment.
  • FIG. 12 is a block diagram illustrating an example of a configuration of a mathematical programming problem formulation unit according to the fifth embodiment.
  • FIG. 13 is a diagram for explaining formulation in the mathematical programming problem formulation unit and calculation in the mathematical programming problem calculation unit.
  • FIG. 13 is a diagram for explaining formulation in the mathematical programming problem formulation unit and calculation in the mathematical programming problem calculation unit.
  • FIG. 14 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the sixth embodiment.
  • FIG. 15 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the sixth embodiment.
  • FIG. 16 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the sixth embodiment.
  • FIG. 17 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the sixth embodiment.
  • FIG. 18 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the sixth embodiment.
  • FIG. 19 is a block diagram illustrating an example of a configuration of an information processing device according to the sixth embodiment.
  • FIG. 20 is a block diagram illustrating an example of the configuration of the information processing apparatus according to the sixth embodiment.
  • FIG. 1 is a block diagram illustrating an example of a configuration of an information processing system 100 including the information processing apparatus 10000 according to the first embodiment of this invention.
  • the information processing system 100 includes an information processing device 10000, an input device 22000, and an output device 23000.
  • the information processing apparatus 10000 executes processing related to predictive control for the control target 21000 included in the surrounding environment 20000. Therefore, the information processing device 10000 receives information on the surrounding environment 20000 and the control target 21000. However, each information is subject to various disturbances when measuring the value. Here, the disturbance includes “measuring disturbance” that can be measured and “unmeasured disturbance” that cannot be measured. Therefore, the information processing device 10000 receives the following information as information related to the control target 21000 and the surrounding environment 20000 as shown in FIG.
  • the information processing device 10000 includes information obtained by adding measurement disturbance and unmeasured disturbance to information on the surrounding environment 20000, information obtained by adding measurement disturbance and unmeasured disturbance to information on the control target 21000, and measurement disturbance (hereinafter, Collectively referred to as “control target information 2100”).
  • the information of the control target 21000 is, for example, the state of the control target 21000, an operation applied to the control target 21000, or a cost for realizing the operation.
  • the information processing device 10000 is connected to the input device 22000 and receives information necessary for predictive control (for example, setting values, constraints, priority.
  • information necessary for predictive control for example, setting values, constraints, priority.
  • input information 2200 simply referred to as “input information 2200”
  • the input device 22000 is not particularly limited as long as the designer can input necessary information.
  • the input device 22000 may be a general PC (Personal Computer). Therefore, detailed description of the input device 22000 is omitted.
  • the information processing device 10000 is connected to the output device 23000 and outputs information for operating the determined control target 21000 (hereinafter simply referred to as “operation amount 2300”) to the output device 23000.
  • the output device 23000 is not particularly limited as long as the designer can confirm the operation amount 2300.
  • the output device 23000 may be a general display device. Therefore, detailed description of the output device 23000 is omitted.
  • the input device 22000 and the output device 23000 may be different devices or the same device.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the information processing apparatus 10000 according to the first embodiment.
  • the information processing apparatus 10000 includes an information storage unit 11000, a prediction formula set learning generation unit 12000, and an operation amount determination unit 14000.
  • the information storage unit 11000 receives the control target information 2100 and stores it.
  • the information accumulated by the information accumulation unit 11000 is referred to as “accumulated information 2600”.
  • the prediction formula set learning generation unit 12000 learns the prediction formula set 2500 used for controlling the control target 21000 based on the storage information 2600 stored in the information storage unit 11000, that is, the control target information 2100 from the past to the present ( Machine learning). And the prediction formula set learning production
  • the prediction formula set 2500 is a set of prediction formulas for predicting the future state or cost of the control target 21000, for example.
  • the operation amount determination unit 14000 receives information necessary for determining the operation amount 2300, that is, information necessary for predictive control (the input information 2200 described above). For example, the operation amount determination unit 14000 may receive the input information 2200 necessary for determining the operation amount 2300 from the input device 22000 as described above.
  • the input information 2200 is, for example, a set value, constraints, and priority.
  • the set value is a set of values set in a future point in time when the control object 21000 is in control and a variable (hereinafter referred to as a control variable) to be controlled by the predictive control model at the future point in time. At that time, control is performed so that the difference between the value of the control variable and the value set for the control variable to be controlled becomes small.
  • the constraints are constraints on a control variable of the predictive control model of the control target 21000, a variable indicating the state of the predictive control model (hereinafter referred to as a state variable), a variable indicating an operation of the predictive control model (hereinafter referred to as an operation variable), It is a constraint among control variables, state variables, and manipulated variables.
  • prediction formula can be said to be a function (function formula) having control variables, state variables, and operation variables as variables.
  • the priority represents the importance of the control variable of the predictive control model of the control target 21000.
  • a control variable having a high priority is preferentially controlled.
  • the operation amount determination unit 14000 constructs a predictive control model based on the following information, and determines the operation amount 2300 of the control target 21000 based on the predictive control model. That is, the information includes the prediction formula set 2500 learned and generated by the prediction formula set learning generation unit 12000, the received control target information 2100, the accumulated information 2600 accumulated in the information accumulation unit 11000, and the input information 2200. It is.
  • the operation amount 2300 is information used for controlling the control target 21000.
  • the operation amount 2300 is, for example, a specific value of the operation. However, it is assumed that the operation amount that is not a specific value such as an operation instruction of the operation is information appropriately replaced with a specific value.
  • the operation amount determination unit 14000 outputs the determined operation amount 2300 to the output device 23000.
  • the operator of the control target 21000 can appropriately operate the control target 21000 based on the output information (operation amount 2300).
  • the manipulated variable determination unit 14000 includes the independent variables and the dependent variables of the prediction formula set 2500 obtained based on the machine learning in the prediction formula set learning generation unit 12000, the control variables, the state variables, and the operation variables of the prediction control model. Specify the correspondence with. Then, the operation amount determination unit 14000 builds a prediction control model for control using the prediction formula set 2500 based on the definition. Furthermore, the information processing device 10000 may construct a predictive control model using the input information 2200 (for example, setting value, constraint, priority) received by the operation amount determination unit 14000. That is, the information processing apparatus 10000 can construct a predictive control model using the predictive formula set 2500 obtained based on machine learning.
  • the input information 2200 for example, setting value, constraint, priority
  • the operation of the operation amount determination unit 14000 including independent variables and dependent variables will be described later.
  • the designer elucidates the relationship between the control object 21000, its surrounding environment 20000, and measurement disturbances, establishes a prediction formula in consideration of physical laws, and constructs a prediction control model.
  • the prediction technique made the parameter of the prediction formula undecided and identified the parameter based on learning.
  • the information processing apparatus 10000 can obtain an effect that enables a designer to perform predictive control without constructing a predictive control model.
  • the prediction formula set learning generation unit 12000 automatically learns and generates the prediction formula set 2500 based on the accumulated information 2600 accumulated in the information accumulation unit 11000. To do.
  • the operation amount determination unit 14000 automatically constructs a predictive control model and determines the operation amount 2300 based on the control target information 2100, the input information 2200, the accumulated information 2600, and the prediction formula set 2500. is there.
  • the information processing apparatus 10000 can obtain an effect that enables predictive control without a designer constructing a predictive control model.
  • the information processing apparatus 10000 can construct a predictive control model using a predictive expression set 2500 obtained based on machine learning.
  • the predictive control described in the literature includes independent variables and dependent variables of prediction formulas obtained by simply applying machine learning, and operational variables, control variables, and control variables used in predictive control models for control. No association with state variables is specified. Therefore, the prediction technology cannot construct a predictive control model for control from the obtained prediction formula, and cannot construct a predictive control model for control by giving external setting values, constraints, priorities, etc. There was a problem.
  • the information processing apparatus 10000 includes an independent variable and a dependent variable of the prediction formula set 2500 obtained based on the machine learning of the prediction formula set learning generation unit 12000, a control variable of the control model, and Specify the association with the manipulated variable. This is because the information processing apparatus 10000 constructs a predictive control model for control using the predictive formula set 2500 based on the rules. Furthermore, the information processing apparatus 10000 uses the input information 2200 received by the operation amount determination unit 14000. Thereby, the above-mentioned problem is solved.
  • the information processing apparatus 10000 can perform predictive control for a control object 21000 that cannot be derived by a designer or a phenomenon that is not based on a physical law.
  • the prediction formula set learning generation unit 12000 of the information processing apparatus 10000 generates a prediction formula set 2500 based on the accumulated information 2600.
  • the operation amount determination unit 14000 can determine the operation amount 2300 based on the control target information 2100, the accumulated information 2600, and the prediction formula set 2500. That is, the information processing apparatus 10000 can determine the operation amount 2300 without using a physical law.
  • the information processing apparatus 10000 can perform predictive control corresponding to changes in the surrounding environment 20000 and the control target 21000.
  • the prediction formula set learning generation unit 12000 and the operation amount determination unit 14000 use the accumulated information 2600 that is the past control target information 2100 in addition to the control target information 2100. That is, in the information processing device 10000, the predictive formula set learning generation unit 12000 uses the machine learning to generate the predictive control model (predictive formula set 2500) so as to reduce the separation between the predictive control model and the real world. Build automatically. This is because the operation amount determination unit 14000 determines the operation amount 2300 of the prediction control using the constructed prediction control model (prediction formula set 2500).
  • the information processing apparatus 10000 can realize prediction control using a prediction formula.
  • prediction formula set learning generation unit 12000 learns and generates the prediction formula set 2500, and the operation amount determination unit 14000 uses the learned and generated prediction formula set 2500.
  • the information processing apparatus 10000 of the present embodiment can obtain an effect of improving the followability of the predictive control.
  • the number of control objects 21000 is not limited.
  • FIG. 3 is a block diagram showing an example of the configuration of the information processing system 101 according to this modification.
  • the information processing system 101 includes a plurality of control objects 21001 or control objects 2100n as control objects 21000.
  • the information processing apparatus 10000 may be provided for each control target 21000.
  • the information processing apparatus 10000 can operate even when there are a plurality of control objects 21000.
  • the information processing apparatus 10000 receives the control target information 2100 related to the plurality of control targets 21000 and determines the operation amount 2300 of the plurality of control targets 21000.
  • the information processing apparatus 10000 can centrally control the plurality of control objects 21000. That is, the information processing apparatus 10000 can easily realize control of the plurality of control objects 21000.
  • the information processing apparatus 10000 can improve the prediction accuracy of the prediction formula set 2500 generated by the prediction formula set learning generation unit 12000.
  • the information processing apparatus 10000 according to the present modification can control a plurality of control objects 21000 with the quantity of one control apparatus, a low quantity of the control apparatus can be realized.
  • the information processing apparatus 10000 of the present modification can obtain an effect of simplifying the control of the plurality of control objects 21000 in addition to the effect of the information processing apparatus 10000 of the first embodiment.
  • the reason is that the information processing apparatus 10000 can control a plurality of control objects 21000 in a centralized manner.
  • the information processing apparatus 10000 can improve the prediction accuracy of the prediction formula set 2500.
  • the reason is that the information processing apparatus 10000 can accumulate more information about the control target 21000.
  • the information processing apparatus 10000 can obtain the effect of reducing the amount of material required for control.
  • the reason is that the information processing apparatus 10000 can reduce the number of apparatuses required for the control target 21000.
  • the information processing system 100 may transmit the operation amount 2300 determined by the information processing apparatus 10000 to the control target 21000.
  • FIG. 4 is a block diagram showing an example of the configuration of the information processing system 102 according to this modification.
  • the information processing apparatus 10000 transmits the operation amount 2300 determined by the operation amount determination unit 14000 to the control target 21000.
  • the control target 21000 performs an operation based on the received operation amount 2300.
  • the information processing apparatus 10000 may automatically feed back the operation amount.
  • the information processing apparatus 10000 according to this modification has an effect of reducing the load on the operator in addition to the effect of the first embodiment.
  • the reason is that the information processing apparatus 10000 can automatically feed back the determined operation amount 2300 to the control target 21000.
  • the information processing apparatus 10000 of the present modification may output the operation amount 2300 of the output device 23000 in the same manner as in the first embodiment so that the operator can check the operation amount 2300.
  • the information processing apparatus 10000 according to the present modification may be connected to a plurality of control objects 21000 as in the first modification.
  • the configuration of the information processing device 10000 is not limited to the above description.
  • the information processing apparatus 10000 may divide each configuration into a plurality of configurations.
  • the information processing apparatus 10000 does not need to be configured by one apparatus.
  • the information processing apparatus 10000 may use an external storage device connected via a network or a bus as the information storage unit 11000.
  • At least a part of the configuration may be installed at a location different from the control target 21000.
  • the information storage unit 11000 and the predictive set learning generation unit 12000 of the information processing device 10000 may be installed in a building different from the building where the control target 21000 is installed.
  • the information storage unit 11000 and the predictive set learning generation unit 12000 of the information processing device 10000 may be installed in a country different from the country in which the control target 21000 is installed.
  • the information processing apparatus 10000 may be connected to a plurality of control objects 21000 installed in a distributed manner.
  • the information processing apparatus 10000 may have a plurality of configurations as one configuration.
  • the information processing device 10000 may be realized as a computer device including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the information processing apparatus 10000 may be realized as a computer apparatus including an input / output connection circuit (IOC: Input ⁇ ⁇ Output Circuit) and a network interface circuit (NIC: Network Interface Circuit) in addition to the above configuration.
  • IOC Input ⁇ ⁇ Output Circuit
  • NIC Network Interface Circuit
  • FIG. 5 is a block diagram illustrating an example of the configuration of the information processing apparatus 600 according to the third modification.
  • the information processing apparatus 600 includes a CPU 610, a ROM 620, a RAM 630, an internal storage device 640, an IOC 650, and a NIC 680, and constitutes a computer.
  • the CPU 610 reads a program from ROM 620.
  • the CPU 610 controls the RAM 630, the internal storage device 640, the IOC 650, and the NIC 680 based on the read program.
  • the CPU 610 controls these configurations and implements the functions as the prediction formula set learning generation unit 12000 and the operation amount determination unit 14000 shown in FIG.
  • the CPU 610 may use the RAM 630 or the internal storage device 640 as a temporary storage of a program when realizing each function.
  • the CPU 610 may read the program included in the storage medium 700 storing the program so as to be readable by a computer using a storage medium reading device (not shown). Alternatively, the CPU 610 may receive a program from an external device (not shown) via the NIC 680.
  • ROM 620 stores programs executed by CPU 610 and fixed data.
  • the ROM 620 is, for example, a P-ROM (Programmable-ROM) or a flash ROM.
  • the RAM 630 temporarily stores programs executed by the CPU 610 and data.
  • the RAM 630 is, for example, a D-RAM (Dynamic-RAM).
  • the internal storage device 640 stores data and programs stored in the information processing device 600 for a long period of time. Further, the internal storage device 640 may operate as a temporary storage device for the CPU 610.
  • the internal storage device 640 is, for example, a hard disk device, a magneto-optical disk device, an SSD (Solid State Drive), or a disk array device.
  • the RAM 630 or the internal storage device 640 implements a function as the information storage unit 11000.
  • the information processing apparatus 600 may realize the function of the information storage unit 11000 using both the RAM 630 and the internal storage device 640.
  • the information storage unit 11000 can be realized by using any one of a volatile memory and a nonvolatile memory.
  • the IOC 650 mediates data between the CPU 610, the input device 660, and the display device 670.
  • the IOC 650 is, for example, an IO interface card.
  • the input device 660 is a device that receives an input instruction from an operator of the information processing apparatus 600.
  • the input device 660 is, for example, a keyboard, a mouse, or a touch panel.
  • the input device 660 of the information processing apparatus 600 may operate as a part of the input apparatus 22000. That is, the information processing device 600 may include the function of the input device 22000.
  • the display device 670 is a device that displays information to the operator of the information processing apparatus 600.
  • the display device 670 is a liquid crystal display, for example.
  • the display device 670 of the information processing apparatus 600 may operate as a part of the output apparatus 23000. That is, the information processing device 600 may include the function of the output device 23000.
  • the NIC 680 relays data exchange with external devices (for example, the input device 22000 and the output device 23000) via the network.
  • the NIC 680 is, for example, a LAN (Local Area Network) card.
  • the information processing apparatus 600 configured in this way can obtain the same effects as the information processing apparatus 10000.
  • FIG. 6 is a block diagram illustrating an example of the configuration of the information processing apparatus 10010 according to the second embodiment.
  • the information processing apparatus 10010 of this embodiment includes a prediction formula set storage unit 13000 between the prediction formula set learning generation unit 12000 and the operation amount determination unit 14000 in addition to the configuration of the information processing device 10000 of the first embodiment. .
  • Other configurations of the information processing apparatus 10010 are the same as those of the information processing apparatus 10000. Therefore, in this embodiment, a configuration and operation different from those of the first embodiment will be described, and description of the same configuration and operation as those of the first embodiment will be omitted.
  • the prediction formula set storage unit 13000 stores the prediction formula set 2500 learned and generated by the prediction formula set learning generation unit 12000.
  • the prediction formula set 2500 including the input, output, and stored prediction formula set is referred to as a prediction formula set 2500.
  • the operation amount determination unit 14000 of the present embodiment is based on the prediction formula set 2500 stored in the prediction formula set storage unit 13000, the received control target information 2100, the accumulated information 2600, and the input information 2200.
  • the operation amount 2300 of the control target 21000 is determined.
  • the prediction formula set learning generation unit 12000 and the operation amount determination unit 14000 operate continuously.
  • the prediction formula set learning generation unit 12000 and the operation amount determination unit 14000 do not have to operate continuously.
  • the prediction equation set learning generation unit 12000 may operate at an interval longer than the operation interval of the operation amount determination unit 14000.
  • the operation interval of the operation amount determination unit 14000 may be set to 1 second, whereas the operation interval of the prediction formula set learning generation unit 12000 may be set to 1 day.
  • the prediction formula set storage unit 13000 absorbs the difference between the operation interval of the prediction formula set learning generation unit 12000 and the operation interval of the operation amount determination unit 14000 in the above case. Therefore, the prediction formula set storage unit 13000 receives the prediction formula set 2500 learned and generated by the prediction formula set learning generation unit 12000 and stores it.
  • the operation amount determination unit 14000 can use the prediction formula set 2500 stored in the prediction formula set storage unit 13000 when the operation amount 2300 is determined. Therefore, the prediction formula set learning generation unit 12000 of this embodiment does not need to learn and generate the prediction formula set 2500 every time the operation amount determination unit 14000 determines the operation amount 2300. That is, the prediction formula set learning generation unit 12000 of the present embodiment can reduce the amount of calculation.
  • the information processing apparatus 10010 can obtain an effect that the amount of calculation can be reduced in addition to the effect of the first embodiment.
  • the operation amount determination unit 14000 uses the prediction formula set 2500 stored in the prediction formula set storage unit 13000 in determining the operation amount 2300. Therefore, the prediction formula set learning generation unit 12000 of this embodiment does not need to learn and generate the prediction formula set 2500 every time the operation amount determination unit 14000 determines the operation amount 2300. That is, the prediction formula set learning generation unit 12000 of this embodiment can reduce the amount of calculation.
  • the information processing apparatus 10010 of this embodiment may correspond to a plurality of control objects 21000 as in the first embodiment.
  • the information processing apparatus 10010 of the present embodiment may be realized by a computer shown in FIG. 5 as in the first embodiment.
  • FIG. 7 is a block diagram illustrating an example of the configuration of the information processing apparatus 10020 according to the third embodiment.
  • the information processing apparatus 10020 of this embodiment includes a predicted value calculation unit 15000 in addition to the configuration of the information processing apparatus 10010 of the second embodiment.
  • Other configurations of the information processing apparatus 10020 are the same as those of the information processing apparatus 10010. Therefore, in this embodiment, a configuration and operation different from those of the second embodiment will be described, and description of the same configuration and operation as those of the second embodiment will be omitted. Note that the information processing apparatus 10020 does not need to include the prediction formula set storage unit 13000 as with the information processing apparatus 10000 of the first embodiment.
  • the predicted value calculation unit 15000 calculates a predicted value 2400 based on the predicted formula set 2500 stored in the predicted formula set storage unit 13000, the control target information 2100, and the operation amount 2300. For example, the predicted value calculation unit 15000 calculates the predicted value 2400 by applying the control target information 2100 and the operation amount 2300 to the prediction formula set 2500.
  • the predicted value calculation unit 15000 may use the accumulated information 2600 to calculate the predicted value 2400 as necessary.
  • the predicted value 2400 is a value predicted to shift the control target 21000 when the operation amount 2300 is applied to the control target 21000. That is, the predicted value 2400 is a value corresponding to the result for the operation amount 2300.
  • the predicted value calculation unit 15000 may output the calculated predicted value 2400 to the output device 23000, for example. Further, as already described, the operation amount determination unit 14000 may output the operation amount 2300 to the output device 23000. In this case, the operator can confirm both the operation amount 2300 and the predicted value 2400 with reference to the output device 23000.
  • the information processing apparatus 10020 can obtain a predicted value 2400 for the operation amount 2300 in addition to the effects of the second embodiment.
  • the reason is that the predicted value calculation unit 15000 calculates and outputs the predicted value 2400 based on the prediction formula set 2500, the control target information 2100, and the operation amount 2300.
  • the information processing apparatus 10020 of the present embodiment may correspond to a plurality of control objects 21000 as in the first embodiment.
  • the predicted value calculation unit 15000 calculates a plurality of predicted values 2400.
  • the predicted value calculation unit 15000 may calculate some predicted values 2400 instead of all predicted values 2400.
  • the predicted value calculation part 15000 may calculate the predicted value 2400 regarding the control variable designated from the input device 22000, for example.
  • the information processing apparatus 10020 of the present embodiment may be realized by a computer shown in FIG. 5 as in the first embodiment.
  • FIG. 8 is a block diagram illustrating an example of the configuration of the information processing apparatus 10030 according to the fourth embodiment.
  • the information processing apparatus 10030 of this embodiment includes a predicted value accumulation unit 16000, a prediction error calculation unit 17000, and a relearning determination unit 18000 in addition to the configuration of the information processing apparatus 10020 of the third embodiment.
  • Other configurations of the information processing apparatus 10030 are the same as those of the information processing apparatus 10020. Therefore, in this embodiment, a configuration and operation different from those of the third embodiment will be described, and description of the same configuration and operation as those of the third embodiment will be omitted. Note that the information processing apparatus 10030 does not need to include the prediction formula set storage unit 13000 as with the information processing apparatus 10000 of the first embodiment.
  • the prediction value storage unit 16000 receives the prediction value 2400 calculated by the prediction value calculation unit 15000 and stores it.
  • the predicted value 2400 including the input value, the output, and the stored predicted value 2400 is referred to as the predicted value 2400.
  • the prediction error calculation unit 17000 calculates a prediction error 2900 based on the storage information 2600 stored in the information storage unit 11000 and the prediction value 2400 stored in the prediction value storage unit 16000.
  • the prediction error 2900 is a difference (error) between a value set for the control target 21000 (control target information 2100) and the prediction value 2400.
  • the re-learning determination unit 18000 determines whether or not to re-learn in the prediction formula set learning generation unit 12000 based on the prediction error 2900 calculated by the prediction error calculation unit 17000.
  • the result of this determination is referred to as “determination result 3000”.
  • the relearning determination unit 18000 may refer to other information such as a threshold value in the determination process.
  • the prediction formula set learning generation unit 12000 receives the determination result 3000 of the relearning determination unit 18000. Then, when the determination result 3000 indicates relearning, the prediction formula set learning generation unit 12000 learns the prediction formula set 2500 again and regenerates it.
  • the relearning determination unit 18000 of the present embodiment outputs a determination result 3000 that relearning is performed when the prediction error 2900 is equal to or greater than a certain value (threshold value), for example.
  • a certain value for example.
  • the prediction formula set learning generation unit 12000 regenerates the prediction formula set 2500.
  • the information processing apparatus 10030 automatically relearns the prediction formula set 2500.
  • the information processing apparatus 10030 can maintain high prediction accuracy.
  • the information processing apparatus 10030 may execute relearning based on an instruction from the input apparatus 22000 or an external apparatus (not shown). For example, when the surrounding environment 20000 changes significantly and / or when the configuration of the control target 21000 changes significantly, the operator operates the input device 22000 to re-establish the prediction formula set 2500 in the information processing device 10030. Learning and regeneration may be instructed. Based on this instruction, the information processing apparatus 10030 may update the prediction formula set 2500 by causing the prediction formula set learning generation unit 12000 to operate again. As a result, the information processing apparatus 10030 can realize control adapted to changes in the surrounding environment 20000 and / or the control target 21000.
  • the information processing apparatus 10030 of the present embodiment can obtain an effect that higher prediction accuracy can be realized in addition to the effect of the third embodiment.
  • the prediction error calculation unit 17000 of this embodiment calculates a prediction error 2900 based on the accumulated information 2600 and the prediction value 2400.
  • the relearning determination unit 18000 instructs the prediction formula set learning generation unit 12000 to relearn and regenerate the prediction formula set 2500.
  • the information processing apparatus 10030 can generate an appropriate prediction formula set 2500.
  • the information processing apparatus 10030 of this embodiment may correspond to a plurality of control objects 21000, as in the first embodiment.
  • the information processing apparatus 10030 of the present embodiment may be realized by a computer shown in FIG. 5 as in the first embodiment.
  • FIG. 9 is a block diagram illustrating an example of the configuration of the operation amount determination unit 14000 according to the present embodiment.
  • the operation amount determination unit 14000 includes a prediction formula set conversion unit 14100 and an operation amount calculation unit 14200.
  • the prediction formula set conversion unit 14100 receives the prediction formula set 2500. Then, the prediction formula set conversion unit 14100 converts the prediction formula set 2500 into the prediction formula set 2501 according to a predetermined rule so that the operation amount 2300 can be easily calculated by the operation amount calculation unit 14200 described later. For example, the prediction formula set conversion unit 14100 may use a conversion process that simplifies the prediction formula set 2500. That is, the prediction formula set conversion unit 14100 deletes a variable related to the operation amount 2300 having a small change in the predicted value 2400 with respect to the change in the operation amount 2300 from the prediction formula set 2500, thereby simplifying the prediction formula set. You may convert into 2501. Specifically, for example, the prediction formula set conversion unit 14100 may delete a variable having a small coefficient in the prediction formula.
  • the prediction formula set conversion unit 14100 may convert the prediction formula set 2500 into the prediction formula set 2501 using the priority included in the input information 2200 input from the input device 22000. Specifically, for example, the prediction formula set conversion unit 14100 does not simplify the prediction formula set 2500 that predicts a control variable with a high priority, but simplifies the prediction formula set 2500 that predicts a control variable with a low priority. May be. Alternatively, the prediction formula set conversion unit 14100 may simplify many control variables with low priority and simplify the control variables with high priority.
  • the operation amount calculation unit 14200 constructs a prediction control model based on the prediction formula set 2501 converted by the prediction formula set conversion unit 14100, the control target information 2100, the accumulated information 2600, and the input information 2200, and operates The quantity 2300 is calculated.
  • FIG. 10 is a block diagram illustrating an example of the configuration of the operation amount calculation unit 14200 according to the present embodiment.
  • the manipulated variable calculation unit 14200 includes a mathematical programming problem formulation unit 14210 and a mathematical programming problem calculation unit 14220.
  • the mathematical programming problem formulation unit 14210 constructs a prediction control model based on the prediction formula set 2501 converted by the prediction formula set conversion unit 14100, the control target information 2100, the accumulated information 2600, and the input information 2200.
  • the mathematical programming problem 2800 is established (formulated).
  • the mathematical programming problem 2800 is a mathematical expression (description) of the predictive control model, and is, for example, a linear programming problem, a quadratic programming problem, a combinatorial optimization problem, a linear integer problem, or a mixed integer programming problem.
  • the mathematical programming problem calculation unit 14220 calculates (solves) the mathematical programming problem 2800 formulated by the mathematical programming problem formulation unit 14210 using an appropriate solver, and calculates the manipulated variable 2300.
  • the solver is a configuration for calculating an optimal solution of the formulated mathematical programming problem 2800.
  • the solver may be, for example, a dedicated computer or a program executed on a computer.
  • FIG. 11 is a block diagram illustrating an example of another configuration of the operation amount calculation unit 14200.
  • the operation amount calculation unit 14201 shown in FIG. 11 includes a mathematical programming problem formulation unit 14210, a mathematical programming problem calculation unit 14220, an operation amount good / bad determination unit 14230, and an operation amount selection unit 14240.
  • the mathematical programming problem formulation unit 14210 and the mathematical programming problem calculation unit 14220 are the same as the mathematical programming problem formulation unit 14210 and the mathematical programming problem calculation unit 14220 shown in FIG. However, the mathematical programming problem calculation unit 14220 may output a plurality of calculation results 2700.
  • the predicted value calculation unit 15000 calculates a predicted value 2400 based on the calculation result 2700 of the mathematical programming problem calculation unit 14220.
  • the prediction value calculation unit 15000 calculates a prediction value 2400 for each calculation result 2700. Then, for example, the calculation result 2700 of the mathematical programming problem calculation unit 14220 and the prediction value 2400 calculated by the prediction value calculation unit 15000 are output to the output device 23000.
  • the operation amount pass / fail determination unit 14230 calculates the calculation result 2700 (this is the operation amount 2300). Is determined).
  • the output device 23000 displays the calculation result 2700 and the predicted value 2400. Then, the operator refers to the value displayed on the output device 23000 and determines whether the calculation result 2700 (corresponding to the operation amount 2300) and the predicted value 2400 are appropriate. Then, using the input device 22000, the operator transmits “good / bad determination” to the operation amount calculation unit 14201.
  • the operation amount pass / fail determination unit 14230 may hold a reference value of “pass / fail determination” (for example, a threshold value or a range that is good) and determine pass / fail based on the reference value.
  • a reference value of “pass / fail determination” for example, a threshold value or a range that is good
  • the operation amount good / bad determination unit 14230 instructs the mathematical programming problem formulation unit 14210 to re-formulate the mathematical programming problem again.
  • the mathematical programming problem formulation unit 14210 receives new input information 2200 (for example, a set value, a constraint, or a priority) so that an appropriate operation amount 2300 can be calculated. . Therefore, the operation amount calculation unit 14201 may request the operator to input again via the output device 23000.
  • the operation amount good / bad determination unit 14230 sends the calculation result 2700 to the operation amount selection unit 14240.
  • the operation amount selection unit 14240 selects an appropriate operation amount 2300.
  • the operation amount selection unit 14240 selects the calculation result 2700 as the operation amount 2300.
  • the operation amount selection unit 14240 selects the calculation result 2700 as the operation amount 2300 based on the input information 2200 from the input device 22000.
  • the operation amount selection unit 14240 may select an appropriate calculation result 2700 as the operation amount 2300 according to a predetermined rule.
  • the predetermined rule is, for example, a rule that the difference from the previous operation amount 2300 is the smallest or a rule that the predicted cost is the smallest.
  • FIG. 12 is a block diagram showing an example of the configuration of the mathematical programming problem formulation unit 14210 according to this embodiment.
  • the mathematical programming problem formulation unit 14210 shown in FIG. 12 includes a constraint equation generation unit 14212, an objective function generation unit 14214, an allowable error register 14216, an error weight coefficient register 14217, and a cost coefficient register 14218.
  • the constraint expression generation unit 14212 is based on the prediction expression set 2501 converted by the prediction expression set conversion unit 14100, the control target information 2100, the accumulated information 2600, the input information 2200, or the allowable error described later. , Generate constraint expressions. However, the input information 2200 includes at least one of a setting value or a constraint.
  • the allowable error register 14216 holds an allowable error that is a maximum difference recognized between the set value and the predicted value 2400. For example, when a predicted value 2400 from 8 to 12 with respect to the setting value of 10 is recognized, the allowable error is “ ⁇ 2”.
  • the error weight coefficient register 14217 holds an error weight coefficient that is a coefficient for handling the priority provided for the plurality of control objects 21000 as an error weight. For example, it is assumed that there are two control objects A and B. Then, it is assumed that the control of the control target A has higher priority than the control of the control target B. In this case, the error weight coefficient register 14217 holds an error weight coefficient larger than the error weight coefficient for the control target B as the error weight coefficient for the control target A. Based on such an operation, the mathematical programming problem formulation unit 14210 enables formulation in consideration of priority. For example, the mathematical programming problem formulation unit 14210 can give a larger difference in priority as the difference in error weighting coefficient is larger.
  • the mathematical programming problem formulation unit 14210 may not receive the priority from the input device 22000. In that case, the error weight coefficient register 14217 may hold all error weight coefficients as the same value other than 0. Alternatively, in that case, the mathematical programming problem formulation unit 14210 may not use the error weight coefficient register 14217.
  • the cost coefficient register 14218 holds a cost coefficient that is a coefficient for uniformly handling a plurality of cost indexes.
  • the amount is a value that can be handled in a unified manner. Therefore, when the electricity usage amount and the gas usage amount are predicted as costs, the cost coefficient register 14218 converts each usage amount into a monetary amount by multiplying the usage amount by the unit price, and holds it. Then, the mathematical programming problem formulation unit 14210 can handle the cost indexes of the electric usage amount and the gas usage amount in a unified manner.
  • the objective function generation unit 14214 is based on the prediction formula set 2501 converted by the prediction formula set conversion unit 14100, the control target information 2100, the accumulated information 2600, the allowable error, the error weighting coefficient, and the cost coefficient. Generate an objective function.
  • the mathematical programming problem formulation unit 14210 may receive the allowable error and the cost coefficient from the input device 22000.
  • the first effect is that the amount of calculation can be reduced.
  • the reason is that the prediction formula set conversion unit 14100 simplifies the prediction formula set 2500 used for calculation.
  • the second effect can be predicted more accurately.
  • the reason is that the operation amount pass / fail judgment unit 14230 can instruct re-operation of the mathematical programming problem formulation unit 14210 based on the “pass / fail judgment”.
  • FIG. 14 is a block diagram illustrating an example of the configuration of the information processing apparatus 10040 according to the sixth embodiment.
  • the information processing apparatus 10040 of this embodiment includes an information storage unit 11000, a prediction control unit 30000, a fixed control unit 31000, and an operation amount selection unit 32000.
  • the information storage unit 11000 is the same as in the first to fifth embodiments.
  • the prediction control unit 30000 includes the prediction formula set learning generation unit 12000 and the operation amount determination unit 14000 of the first to fifth embodiments, and realizes the operation of the first to fifth embodiments.
  • Fixed control unit 31000 calculates an operation amount according to a preset control equation.
  • the operation amount selection unit 32000 selects and outputs one control amount from a plurality of control amounts.
  • the information storage unit 11000 and the prediction control unit 30000 perform the operations described in the first to fifth embodiments, and output an operation amount based on the prediction control.
  • This operation amount is the first operation amount.
  • control target information 2100 is not directly input to the operation amount determination unit 14000 but is used as the storage information 2600 via the information storage unit 11000.
  • this is an example of the information flow.
  • the control target information 2100 may be directly input.
  • the control target information 2100 may be input via the information storage unit 11000.
  • the fixed control unit 31000 calculates based on the control target information 2100 and the accumulated information 2600 based on the control formula input in advance by the designer, and outputs the operation amount. This operation amount is the second operation amount.
  • the fixed control unit 31000 configures a control expression by a relational expression of an input (information on surrounding environment and measurement target), a set value, and an output (operation amount).
  • the fixed control unit 31000 can take a formula of a control method such as feedback or feedforward obtained by proportional control, classical control of PID (Proportional Integral Derivative) control, or modern control obtained from a state equation. That's fine.
  • the prediction control unit 30000 and the fixed control unit 31000 are not limited to one and may include a plurality.
  • the prediction control unit 30000 may have different characteristics based on the randomness of the initial value. Therefore, based on the provision of a plurality of prediction control units 30000, the information processing apparatus 10040 can output an operation amount having different characteristics. Further, a plurality of fixed control units 31000 may be included when the designer prepares different control expressions in terms of followability or stability.
  • the operation amount selection unit 32000 selects which of the operation amount determination unit 14000 and the fixed control unit 31000 to use.
  • the information processing apparatus 10040 may select one of the control target information 2100, the accumulated information 2600, the operation amount output from the operation amount determination unit 14000, Alternatively, the display unit 33000 may be included. Then, the operation amount selection unit 32000 selects an operation amount of the prediction control unit 30000 or the fixed control unit 31000 based on an input (selection information) from the user, and outputs the operation amount.
  • the information processing apparatus 10040 may include a prediction error determination unit 34000 that uses the prediction value calculation unit 15000 described in the third embodiment.
  • the prediction error determination unit 34000 calculates a prediction value using the prediction value calculation unit 15000 and compares it with the information of the accumulated information 2600 to obtain a prediction error. Then, the operation amount selection unit 32000 determines which operation amount of the prediction control unit 30000 or the fixed control unit 31000 to use based on the magnitude of the error.
  • the prediction error determination unit 34000 selects, for example, the one with the smallest error from the prediction control unit 30000. Then, the operation amount selection unit 32000 selects the operation amount of the prediction control unit 30000 having the smallest error when the error is equal to or less than a certain value.
  • the operation amount selection unit 32000 selects the fixed control unit 31000.
  • the operation amount selection unit 32000 outputs the selection result. Based on this operation, when the prediction accuracy is sufficient, that is, when the accuracy of the prediction control unit 30000 is high, the prediction control unit 30000 is selected. Therefore, the information processing apparatus 10040 can perform highly accurate control.
  • the information processing apparatus 10040 evaluates the operation amount based on the operation amount of the operation amount determination unit 14000 or the fixed control unit 31000 and selects which operation amount to use.
  • the operation amount evaluation unit 35000 may be included.
  • the operation amount selection unit 32000 of the information processing apparatus 10040 may select the operation amount based on the selection result of the operation amount evaluation unit 35000.
  • the operation amount evaluation unit 35000 inputs the operation amount into an evaluation function input in advance to the operation amount evaluation unit 35000.
  • the operation amount evaluation unit 35000 outputs the operation amount that provides the best result as the selection result.
  • the evaluation function may be, for example, a function for obtaining the cost for the operation amount. In this case, the information processing apparatus 10040 can select the control with the lowest cost and can control the control target at a low cost.
  • the information processing apparatus 10040 evaluates the operation to be controlled based on the information of the accumulated information 2600 and the input information 2200 and outputs a selection result. May be included.
  • the operation amount selection unit 32000 of the information processing apparatus 10040 selects an operation amount based on the selection result of the motion evaluation unit 36000.
  • the operation evaluation unit 36000 compares the set value of the control target 21000 of the input information with the accumulated information 2600. Then, the motion evaluation unit 36000 evaluates whether or not the control target is operating within the set error range according to the set value. At this time, when the control target is moving according to the set value, the operation amount selection unit 32000 selects the operation amount of the prediction control unit 30000.
  • the operation amount selection unit 32000 selects the fixed control unit 31000. Based on this operation, when the control characteristics of the prediction control unit 30000 are not sufficient, the information processing apparatus 10040 can perform control based on the fixed control unit 31000, and stability can be increased.
  • the information processing apparatus 10040 includes a prediction formula set learning generation unit 12000, and evaluates the prediction formula based on the learning evaluation value of the prediction formula set learning generation unit 12000. You may select a result from the selection result of the prediction formula evaluation part 37000 to do.
  • the prediction formula evaluation unit 37000 operates as follows.
  • the prediction formula set learning generation unit 12000 has an evaluation value inside for learning.
  • An example of the evaluation value is an evaluation value based on an information amount.
  • the operation amount selection unit 32000 determines that the prediction formula is sufficient and selects the prediction control unit 30000 to be used. Further, the operation amount selection unit 32000 selects the fixed control unit 31000 in cases other than the above.
  • this embodiment can obtain the effect of realizing more accurate control.
  • the reason is that the operation amount selection unit 32000 of the information processing apparatus 10040 appropriately selects the first operation amount that is the output of the prediction control unit 30000 and the second operation amount that is the output of the fixed control unit 31000. Because.
  • the prediction formula set 2500 learned and generated by the prediction formula set learning generation unit 12000 is a set of discrete-time linear functions.
  • control variables of the control target 21000 is “n y ”, and the control variables are expressed as “y 1 , y 2 ,.
  • state variables representing the states of the peripheral environment 20000 and the controlled object 21000
  • n x The number of variables representing the states of the peripheral environment 20000 and the controlled object 21000
  • state variables are expressed as “x 1 , x 2 ,.
  • x 1 , x 2 there is a weather forecast as an example of a state variable.
  • the weather forecast obtained at the present time in the weather forecast is interpreted as a current state variable and not as a future state variable.
  • the state variable corresponds to the control target information 2100.
  • cost variables the number of variables related to the cost of the controlled object 21000 (hereinafter referred to as “cost variables”) among the state variables is “n c ”, and the cost variables are “c 1 , c 2 ,. Express.
  • operation variables representing the operation amount to be added to the control target 21000 is “n u ”, and the operation variables are expressed as “u 1 , u 2 ,.
  • Formula 1 has the following format. That is, first, Equation 1 multiplies the state variables from the past to the present from n steps before to k steps by the coefficient for each variable. Then, Equation 1 multiplies the operation variable from the past from the nth step to the first step before the kth step to immediately before the present by the coefficient for each variable. Then, Equation 1 multiplies the operation variables from the present to the future from the k-th step to one step before the i-step by a coefficient for each variable. Formula 1 is a form in which a constant is added to the result.
  • Equation 1 can be rewritten as Equation 2 using a matrix. [Equation 2]
  • T indicates a transposed matrix
  • Equation 3 can be simplified and described by Equation 4 below. [Equation 4]
  • the prediction formula set learning generation unit 12000 converts the prediction formula set 2500 having the cost variables “c 1 , c 2 ,...” After i steps at the k-th step as dependent variables into the matrix A x, c, i. , A u, c, i and B c, i can be generated by the following Equation 5. [Equation 5]
  • Equation 4 and Equation 5 do not include the following variables.
  • a non-zero element in a column of a matrix [A u, y, i A u, c, i ] T configured by connecting the matrix A u, y, i and the matrix A u, c, i Is 2 or more.
  • At least one of the elements is an element of a column of the matrix A u, y, i .
  • a non-zero element being an element of a column of the matrix A u, y, i means that an operation variable having the element as a coefficient can change a control variable.
  • the presence of a plurality of such non-zero elements means that a plurality of control variables can be changed simultaneously based on a single manipulated variable. That is, the relationship between the control variables can be described.
  • the non-zero element is an element of the column of the matrix A u, c, i means that the manipulated variable also affects the cost variable. That is, the relationship between the control variable and the cost variable can be described.
  • the prediction formula set 2500 includes Formula 4 and Formula 5.
  • the prediction formula set conversion unit 14100 (FIG. 9) may simplify the prediction formula set 2500 (create a prediction formula set 2501) as appropriate.
  • the mathematical programming problem formulation unit 14210 (FIGS. 10 to 12) can construct a predictive control model using the predictive formula set 2501.
  • Equation 6 information (set value (Y SV (k + i))) input from the input device 22000 for the future control variables “y 1 , y 2 ,... This is described by Equation 6. However, in the present invention, it is not necessary to give the corresponding set values (y 1, SV (k + i), y 2, SV (k + i), etc To all control variables, and some set values are given. Also good. [Equation 6]
  • Equation 7 When a set value is given to the control variable “y 1 , y 2 ,...” After the i-th step in the k-th step, the allowable error (E (k + i)) is described by the following Equation 7. The However, according to the present invention, it is not necessary to provide tolerances (e 1 (k + i), e 2 (k + i), etc Corresponding to all control variables, and some tolerances may be given. [Equation 7]
  • Equation 8 The error weighting coefficient (W e (k + i)) with respect to the allowable error described by Equation 7 is described by Equation 8 below.
  • the error weighting coefficient is determined based on the input information 2200 (priority) from the input device 22000.
  • Corresponding to the control variable is set large for the control variable having a high priority.
  • the mathematical programming problem formulation unit 14210 can determine an operation variable in consideration of the priority. [Equation 8]
  • the cost coefficient (W c (k + i)) is described by the following mathematical formula 9.
  • the cost coefficient is a coefficient (w C1 (k + i), w C2 (k + i),...)
  • w C1 (k + i) For handling a plurality of cost variables “c 1 , c 2 ,.
  • the input information 2200 (constraint) input from the input device 22000 with respect to the control variable “y 1 , y 2 ,.
  • the minimum-side constraint is “Y MIN (k + i)”
  • the maximum-side constraint is “Y MAX (k + i)”.
  • Constraints corresponding to control variables ("y1 , MIN (k + i), y2 , MIN (k + i), ## and "y1 , MAX (k + i), y2 , MAX (k + i), ##) are necessary.
  • minus infinity may be set as the lower limit, or plus infinity may be set as the upper limit. [Equation 10]
  • Equation 11 the input information 2200 (constraint) input from the input device 22000 for the operation variables “u 1 , u 2 ,... Described.
  • the minimum-side constraint is “U MIN (k, k + i ⁇ 1)”
  • the maximum-side constraint is “U MAX (k, k + i ⁇ 1)”.
  • constraints corresponding to the control variables (“u 1, MIN (k), u 1, MIN (k + 1), etc.
  • And“ u 1, MAX (k), u 1, MAX (k + 1),. )) May have a lower limit of minus infinity or an upper limit of plus infinity.
  • the magnitude relationship represented using the matrix in Formula 12 indicates the magnitude relationship between each element of the matrix.
  • the first element of the first magnitude relation equation of Equation 12 is “y 1, SV (k + i) ⁇ e 1 (k + i) ⁇ y 1 (k + i) ⁇ y 1, SV (k + i) + e 1 (k + i). ) ”.
  • Mathematical programming problem calculation unit 14220 may obtain a vector U (k, k + i ⁇ 1) of operation variables that minimizes the objective function of Expression 13 using Expression 12 as a constraint expression.
  • Equation 6 the setting value after i step at the k step is given.
  • the set values from the 1st step of the k-th step to the i-th step may be given continuously or intermittently.
  • the mathematical programming problem formulation unit 14210 uses the prediction formula set 2500 learned and generated by the prediction formula set learning generation unit 12000 to construct a prediction control model for control.
  • the information processing apparatus 10000 can perform predictive control corresponding to the input information 2200 (for example, set values, constraints, and priorities).
  • FIG. 13 shows specific values of these equations.
  • the matrix [A u, y, 1 A u, c, 1 ] T [1 ⁇ 2 1] T column formed by connecting the matrix Au, y, 1 and the matrix A u, c, 1
  • the elements of are all non-zero elements.
  • the operation variable u 1 (k) can change all of the two control variables “y 1 (k + 1), y 2 (k + 1)” and one cost variable c 1 (k + 1).
  • These formulas are examples of the prediction formula set 2500 in which the operation variable can be determined in consideration of the cost.
  • the prediction formula and objective function described above are merely examples.
  • the present invention is not limited to these.
  • the prediction formula may be a nonlinear function.
  • the objective function may be a nonlinear function.
  • the mathematical programming problem calculation unit 14220 of the present invention may solve the problem by using the solving method and solver of the mathematical programming problem 2800 that matches the properties of the formulated mathematical programming problem 2800.
  • Information storage means for receiving and storing control target information including information on the control target and the surrounding environment including the control target; and Prediction formula set learning generating means for learning and generating a prediction formula set used for determining an operation amount for the control target based on the control target information stored in the information storage means;
  • the input information necessary for determining the operation amount of the control target is received, based on the prediction formula set, the control target information stored in the information storage unit, the received control target information, and the input information,
  • An operation amount determination means for constructing a predictive control model of the control object and determining an operation amount used for the control of the control object; Including information processing apparatus.
  • the prediction formula set is Including two or more prediction formulas having a state variable representing a state of a future predictive control model or a control variable to be controlled by a future predictive control model as a dependent variable,
  • the information processing apparatus according to claim 1, further comprising: a second prediction formula that uses an operation variable representing an operation of at least one prediction control model after the present as a common independent variable with the first prediction formula.
  • the manipulated variable determining means is The information processing apparatus according to claim 1 or 2, wherein as the input information, one or both of a set value and a constraint for a control variable to be controlled in the predictive control model is received.
  • a prediction formula set storage unit that stores the prediction formula set generated by the prediction set learning generation unit;
  • the manipulated variable determining means is The information processing apparatus according to any one of Supplementary Note 1 to Supplementary Note 4, wherein a prediction formula set stored in the prediction formula set storage unit is used to determine an operation amount to the control target.
  • Appendix 6 Further including prediction value calculation means for calculating a prediction value of the control object based on the prediction expression set stored in the prediction expression set storage means, the received control target information, and the manipulated variable The information processing apparatus according to any one of appendix 5.
  • the predicted value calculation means The information processing apparatus according to appendix 6, wherein the control target information stored in the information storage unit is used for calculating the predicted value.
  • Predicted value storage means for storing the predicted value
  • a prediction error calculation means for calculating a prediction error based on the prediction value stored in the prediction value storage means and the control target information stored in the information storage means
  • Re-learning determination means for determining whether to re-learn in the prediction formula set learning generation means using the prediction error
  • the prediction formula set learning generation means includes: The information processing apparatus according to appendix 6 or appendix 7, wherein the prediction formula set is relearned and regenerated based on a determination result of the relearning determination unit.
  • the information storage means receives and stores a plurality of pieces of control target information;
  • the information processing apparatus according to any one of attachments 1 to 8, wherein the operation amount determination unit determines operation amounts of the plurality of control targets.
  • the manipulated variable determining means is Prediction formula set conversion means for converting the prediction formula set according to a predetermined rule; Based on the prediction formula set converted by the prediction formula set conversion unit, the control target information stored in the information storage unit, the received control target information, and the input information, the operation amount to the control target is calculated.
  • the information processing apparatus according to any one of appendices 1 to 9, further comprising:
  • the operation amount calculation means is A mathematical programming problem representing the predictive control model based on the predictive formula set converted by the predictive formula set converting means, the control target information stored in the information storing means, the received control target information, and the input information.
  • Mathematical programming problem formulation means to formulate The information processing apparatus according to claim 10, further comprising: a mathematical programming problem calculation unit that calculates the mathematical programming problem formulated and determines the calculation result as the operation amount.
  • Appendix 12 An operation amount pass / fail judgment means for judging pass / fail of the calculation result of the mathematical programming problem calculation means;
  • the information processing apparatus according to appendix 11, further comprising: an operation amount selection unit that determines the calculation result as the operation amount when the determination result of the operation amount determination unit is good.
  • the operation amount selection means is When the operation amount determination means determines that a plurality of calculation results are good, The information processing apparatus according to claim 12, wherein the operation amount is selected from the calculation result based on the input information or a predetermined rule.
  • Appendix 14 The information processing apparatus according to appendix 12 or 13, wherein when the manipulated variable quality determination unit determines that all of the calculation results are NO, the mathematical programming problem formulation unit instructs the formulation again.
  • the prediction formula set learning generation means includes: As the prediction formula set, Including multiple functions with future state variables or future control variables as dependent variables, One function is that the dependent variable is a future control variable, the independent variable does not include the future state variable and the future control variable,
  • the information processing apparatus according to any one of Supplementary Note 1 to Supplementary Note 15, including another function that uses the one function and at least one operation variable after the present as a common independent variable.
  • Control target information including information on the control target and the surrounding environment including the control target, storing the control target information; Learning and generating a set of prediction formulas used to determine the operation amount of the control target based on the accumulated control target information, Receiving input information necessary for determining the manipulated variable of the control target, and predicting the control target based on the prediction formula set, the accumulated control target information, the received control target information, and the input information
  • Appendix 18 A process of receiving control target information including information on a control target and surrounding environment including the control target, and storing the control target information; Learning and generating a prediction formula set used for determining the operation amount of the control target based on the accumulated control target information; Receiving input information necessary for determining the manipulated variable of the control target, and predicting the control target based on the prediction formula set, the accumulated control target information, the received control target information, and the input information
  • the computer-readable recording medium which recorded the program which builds a control model and makes a computer perform the process which determines the operation amount which uses the said control object for control.
  • Information storage means for receiving and storing control target information including information on the control target and the surrounding environment including the control target; and Necessary for determining the manipulated variable of the control object, and the predictive expression set learning generating means for learning and generating the predictive expression set used for determining the manipulated variable for the controlled object based on the control object information accumulated in the information accumulating means
  • Input control information constructing a predictive control model of the control target based on the input information, the control target information stored in the information storage means, and the prediction formula set, to control the control target
  • An operation amount determining means for determining an operation amount to be used;
  • a fixed control means for determining an operation amount used for controlling the control object based on a predictive control means including a formula inputted in advance and control target information stored in the information storage means, and the operation amount determination means
  • An operation amount selecting unit that selects any one of the operation amount and the operation amount of the fixed control unit.
  • the operation amount selection means is The information processing apparatus according to claim 19, wherein one of the operation amounts output from the one or more prediction control means and the fixed control means is selected.
  • Appendix 21 Display means for displaying control target information stored by the information storage means, and operation amounts output from the operation amount determination means and the fixed control means, to the user;
  • the information processing apparatus according to appendix 19 or appendix 20, wherein the operation amount selection unit outputs an operation amount selected by a user.
  • (Appendix 22) Means for calculating a prediction value based on a prediction expression set output by the prediction expression set learning generation means and control target information stored by the information storage means; Prediction error determination means for determining a prediction error based on a difference between the predicted value and control target information stored in the information storage means; The information according to appendix 19 or appendix 20, wherein the operation amount selection unit selects one of the operation amounts output from the prediction control unit and the fixed control unit based on the result of the prediction error determination unit. Processing equipment.
  • the evaluation value is calculated based on a previously input evaluation function, and includes a control evaluation unit that determines the control amount with the highest evaluation value,
  • control evaluation unit determines based on an amount of deviation of an operation amount of the operation amount determination unit from a control amount of the fixed control unit.
  • An operation evaluation unit that evaluates an operation based on a difference between control target information stored in the information storage unit and a target value of input information, and the operation amount selection unit is configured to perform the control evaluation based on the evaluation of the operation evaluation unit.
  • the information processing apparatus according to appendix 19 or appendix 20, wherein one of the operation amounts output from the prediction control unit and the fixed control unit is selected based on a result of the unit.
  • Appendix 27 Based on the learning evaluation value calculated by the prediction formula set learning generation unit, including a prediction formula evaluation means for performing an evaluation, The information according to appendix 19 or appendix 20, wherein the operation amount selection unit selects one of the operation amounts output from the prediction control unit and the fixed control unit based on a result of the prediction formula evaluation unit. Processing equipment.
  • Appendix 28 28.
  • a prediction expression set evaluation unit that evaluates the prediction expression set based on whether or not the prediction expression set output from the prediction expression set learning generation unit is a controllable prediction expression;
  • the information processing apparatus according to appendix 19 or appendix 20, wherein one of the operation amounts output from the prediction control unit and the fixed control unit is selected based on a result of the expression set evaluation unit.
  • (Appendix 31) Receiving and accumulating control object information including information on the control object and the surrounding environment including the control object; Learning and generating a set of prediction formulas used to determine an operation amount for the control object based on the accumulated control object information, Receiving input information necessary for determining the manipulated variable of the control target, based on the input information, the accumulated control target information and the prediction formula set, construct a predictive control model of the control target, Determining a first operation amount used for controlling the control object; Outputting the first operation amount; Based on the formula inputted in advance and the accumulated control target information, the second operation amount used for the control of the control target is determined and output, A prediction control method that selects one of the first operation amount and the second operation amount.
  • (Appendix 32) Processing for receiving and storing control target information including information on the control target and the surrounding environment including the control target; and A process of learning and generating a prediction formula set used for determining an operation amount for the control target based on the accumulated control target information; Receiving input information necessary for determining the manipulated variable of the control target, based on the input information, the accumulated control target information and the prediction formula set, construct a predictive control model of the control target, A process of determining a first operation amount used for controlling the control object; Processing for outputting the first manipulated variable; A process of determining and outputting a second operation amount used for control of the control object based on a formula inputted in advance and the accumulated control object information; A computer-readable recording medium storing a program for causing a computer to execute a process of selecting one of the first operation amount and the second operation amount.
  • the information processing apparatus of the present invention can be applied not only to industrial process control, but also to environmental control of buildings and living spaces, and environmental control of agriculture, forestry and fisheries, livestock industry, and the like.
  • the information processing apparatus of the present invention can also be applied to actuation control of manipulators, land mobile bodies, water / underwater mobile bodies, air mobile bodies, and the like.
  • the information processing apparatus of the present invention can be applied to uses such as communication, traffic, ordering, and financial transactions.
  • Information processing system 101 Information processing system 102
  • Information processing system 600 Information processing apparatus 610 CPU 620 ROM 630 RAM 640 Internal storage device 650 IOC 660 Input device 670 Display device 680 NIC 700 Storage medium 2100 Control target information 2200 Input information 2300 Manipulated amount 2400 Predicted value 2500 Prediction formula set 2501 Prediction formula set 2600 Accumulated information 2700 Calculation result 2800 Mathematical programming problem 2900 Prediction error 3000 Determination result 10000 Information processing device 10010 Information processing device 10020 Information Processing device 10030 Information processing device 11000 Information accumulation unit 12000 Prediction formula set learning generation unit 13000 Prediction formula set storage unit 14000 Operation amount determination unit 14100 Prediction formula set conversion unit 14200 Operation amount calculation unit 14201 Operation amount calculation unit 14210 Mathematical programming problem formulation Unit 14212 Constraint expression generation unit 14214 Objective function generation unit 14216 Allowable error register 14217 Error weight coefficient register 14218 Cost coefficient register 14220 Number Planning problem calculation unit 14230 Opera

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

 設計者が予測制御モデルを構築せずに予測制御が可能とするため、本発明の情報処理装置は、制御対象及び制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する情報蓄積手段と、情報蓄積手段に蓄積された制御対象情報を基に制御対象に対する操作量の決定に用いる予測式集合を学習及び生成する予測式集合学習生成手段と、制御対象の操作量の決定に必要な入力情報を受信し、予測式集合と情報蓄積手段に蓄積された制御対象情報と受信した制御対象情報と入力情報とを基に、制御対象の予測制御モデルを構築して、制御対象の制御に用いられる操作量を決定する操作量決定手段と含む。

Description

[規則37.2に基づきISAが決定した発明の名称] 情報処理装置、予測制御方法及び記録媒体
 本発明は、プロセスなどの制御に関し、特に、将来の状態を予測して操作量を決定する予測制御に関する。
 予測制御は、プロセスの動的モデルに基づいて将来の被制御量を予測し、操作量を決定する制御である。予測制御の特徴は、多変数の制御が容易であること、制約の考慮が容易であること、及び、調整が容易で直感的であることである。
 予測制御は、石油化学産業のプラント制御を中心に利用されてきた。近年の計算機の能力向上に伴い、予測制御は、石油化学産業のプラント制御に限らず、制御サイクルが短い移動体及びロボットにも応用されている(例えば、非特許文献1を参照)。
 非特許文献1の記載された技術を含め、一般的な予測制御は、現実世界を反映した予測制御モデルが既知であり、予測制御モデルの設計者が予測制御モデルを予め記述することを、前提としている(例えば、特許文献1を参照)。特許文献1に記載のモデル予測制御装置は、予測制御モデルが既知であり、評価関数に基づいてそのモデルに追従する制御を行う。なお、予測制御モデルは、離散時間の線形関数で表現されることが多い。
 また、制御のための予測制御モデルを、ニューラルネットワークを用いて学習する制御装置が、用いられている(例えば、特許文献2を参照)。特許文献2に記載の制御装置は、同定モデル(上記の予測制御モデルに相当)のパラメータを求める同定器を備えている。ただし、特許文献2に記載の制御装置も、予測制御モデルが既知であることを前提としている。
 また、予測制御モデルのパラメータを学習する方法が、提案されている(例えば、特許文献3を参照)。特許文献3に記載の方法も、予測制御モデルが既知であり、その前提を元に、パラメータを推定する。
 また、パワーアシストシステムなどにおいて、個人差などに合わせるために複数の固定された制御アルゴリズムを選択して動作するシステムが提案されている(例えば、特許文献4を参照)。
 また、機械学習を用いた装置が、提案されている(例えば、特許文献5を参照)。
特開平5-120256号公報 特開平5-324007号公報 特開平11-053005号公報 特開2005-118959号公報 特開2011-118786号公報
Jan M. Maciejowski (原著者), 足立 修一 (翻訳), 管野 政明 (翻訳) 「モデル予測制御―制約のもとでの最適制御」東京電機大学出版局 、2005年1月([原著] Jan M. Maciejowski, "Predictive Control with Constraints", Prentice Hall, August 27, 2000)
 このように、非特許文献1、及び、特許文献1乃至特許文献3及び特許文献5に記載のモデル予測制御技術(以下、「文献に記載された予測制御」と言う)は、予測制御モデルが既知であることを前提としている。
 予測制御においては、予測制御の設計者が、予め、運動方程式、熱方程式、質量保存則、運動量保存則、エネルギー保存則等の物理法則に基づき、予測制御モデルを記述していた。
 しかし、設計者が、全ての物理法則を考慮して、現実世界の複雑な相関関係を完全に反映するように予測制御モデルを導出することは、困難である。そのため、予測制御モデルと現実世界との間にかい離が生じる。その結果、記述された予測制御モデルは、不完全な予測制御モデルとなる。
 例えば、部屋の空調制御の場合、空調機の温度、空調機の風量、ブラインド開度、及び、窓開度という複数の操作変数が、室内温度、室内湿度という複数の制御変数に影響を与える。また、一般的に、温度を上げると湿度が下がるというように、制御変数間に、干渉が、存在する。さらに、外気温度、外気湿度という状態変数は、制御変数に影響を与える。このように、設計者が、操作変数、制御変数、及び、状態変数の間で相互に影響を与え合う関係性を完全にモデル化することは、困難である。その結果、予測制御は、制御の追従性が低いという問題点があった。
 また、文献に記載された予測制御は、人の挙動や振る舞い、経済状況のように、そもそも物理法則に基づかない現象の予測制御モデルを導出することができず、予測制御を行うこと自体が不可能であるという問題点があった。
 さらに、その予測制御では、周辺環境の変化、経年に伴う制御対象の性能変化、又は、制御対象の改修等に基づく制御対象の構造変化に基づき、経時的に予測制御モデルが、現実世界から大きくかい離する。そのため、予測技術の予測制御モデルは、不完全な予測制御モデルとなる。その結果、予測制御は、制御の追従性が低下するという問題点があった。
 また、機械学習を用いて予測制御モデルを構築する方法の場合、学習開始時などの学習ができる前に学習データを集めることが、重要である。
 また、機械学習を用いた制御は、学習毎に制御の特性が変化するため、制御モデルの特性の評価をその都度行う必要がある。そして、その評価に基づいて適切な制御であるかどうかが決定される。このため、文献に記載された機械学習を用いた制御は、周囲の状況を基に適切な制御を選択することが困難であるとの問題点があった。
 本発明の目的は、上記問題点を解決する情報処理装置及び予測制御方法を提供することにある。
 本発明の一形態における情報処理装置は、制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する情報蓄積手段と、前記情報蓄積手段に蓄積された制御対象情報を基に前記制御対象の操作量の決定に用いる予測式集合を学習及び生成する予測式集合学習生成手段と、前記制御対象の操作量の決定に必要な入力情報を受信し、前記予測式集合と前記情報蓄積手段に蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる操作量を決定する操作量決定手段と含む。
 本発明の一形態における予測制御方法は、制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、前記制御対象情報を蓄積し、前記蓄積された制御対象情報を基に前記制御対象の操作量の決定に用いる予測式集合を学習及び生成し、前記制御対象の操作量の決定に必要な入力情報を受信し、前記予測式集合と前記蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象を制御に用いる操作量を決定する。
 本発明の一形態におけるプログラムを記録したコンピュータ読み取り可能な記録媒体は、制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、前記制御対象情報を蓄積する処理と、前記蓄積された制御対象情報を基に前記制御対象の操作量の決定に用いる予測式集合を学習及び生成する処理と、前記制御対象の操作量の決定に必要な入力情報を受信し、前記予測式集合と前記蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象を制御に用いる操作量を決定する処理とをコンピュータに実行させる。
 本発明の一形態における情報処理装置は、制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する情報蓄積手段と、前記情報蓄積手段に蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成する予測式集合学習生成手段、および、前記制御対象の操作量の決定に必要な入力情報を受信し、前記入力情報と前記情報蓄積手段に蓄積された制御対象情報と前記予測式集合とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる第1の操作量を決定する操作量決定手段と、を含み前記第1の操作量を出力する予測制御手段とあらかじめ入力された式と前記情報蓄積手段に蓄積された制御対象情報とを元に、前記制御対象の制御に用いられる第2の操作量を決定し出力する固定制御手段と、前記操作量決定手段の第1の操作量と前記固定制御手段の第2の操作量のいずれか一つを選択する操作量選択手段とを含む。
 本発明の一形態のおける予測制御方法は、制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積し、前記蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成し、前記制御対象の操作量の決定に必要な入力情報を受信し、前記入力情報と前記蓄積された制御対象情報と前記予測式集合とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる第1の操作量を決定し、前記第1の操作量を出力し、あらかじめ入力された式と前記蓄積された制御対象情報とを元に、前記制御対象の制御に用いられる第2の操作量を決定し出力し、前記第1の操作量と前記第2の操作量のいずれか一つを選択する。
 本発明の一形態におけるプログラムを記録したコンピュータ読み取り可能な記録媒体は、制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する処理と、前記蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成する処理と、前記制御対象の操作量の決定に必要な入力情報を受信し、前記入力情報と前記蓄積された制御対象情報と前記予測式集合とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる第1の操作量を決定する処理と、前記第1の操作量を出力する処理と、あらかじめ入力された式と前記蓄積された制御対象情報とを元に、前記制御対象の制御に用いられる第2の操作量を決定し出力する処理と、前記第1の操作量と前記第2の操作量のいずれか一つを選択する処理とをコンピュータに実行させる。
 本発明に基づけば、予測制御モデルと現実世界との間のかい離を小さくするように、予測制御モデルを自動的に構築する効果を得ることができる。
 また、本発明に基づけば、学習データの収集と制御が同時に行える。
図1は、本発明における第1の実施形態に係る情報処理装置を含む情報処理システムの構成の一例を示すブロック図である。 図2は、第1の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図3は、第1の実施形態に係る情報処理装置を含む情報処理システムの別の構成の一例を示すブロック図である。 図4は、第1の実施形態に係る情報処理装置を含む情報処理システムの別の構成の一例を示すブロック図である。 図5は、第1の実施形態に係る情報処理装置の変形例の構成の一例を示すブロック図である。 図6は、第2の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図7は、第3の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図8は、第4の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図9は、第5の実施形態に係る操作量決定部の構成の一例を示すブロック図である。 図10は、第5の実施形態に係る操作量算出部の構成の一例を示すブロック図である。 図11は、第5の実施形態に係る操作量算出部の他の構成の一例を示すブロック図である。 図12は、第5の実施形態に係る数理計画問題定式化部の構成の一例を示すブロック図である。 図13は、数理計画問題定式化部における定式化と数理計画問題計算部における計算を説明するための図である。 図14は、第6の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図15は、第6の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図16は、第6の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図17は、第6の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図18は、第6の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図19は、第6の実施形態に係る情報処理装置の構成の一例を示すブロック図である。 図20は、第6の実施形態に係る情報処理装置の構成の一例を示すブロック図である。
 次に、本発明の実施形態について図面を参照して説明する。
 なお、各図面は、本発明の実施形態を説明するものである。そのため、本発明は、各図面の記載に限られるわけではない。また、各図面の同様の構成には、同じ番号を付し、その繰り返しの説明を、省略する場合がある。
 また、以下の説明に用いる図面において、本発明の説明に関係しない部分の構成については、記載を省略し、図示しない場合もある。
 [第1の実施形態]
 図1は、本発明における第1の実施形態の情報処理装置10000を含む情報処理システム100の構成の一例を示すブロック図である。
 情報処理システム100は、情報処理装置10000と、入力装置22000と、出力装置23000とを含む。
 情報処理装置10000は、周辺環境20000に含まれる制御対象21000に対する予測制御に関する処理を実行する。そのため、情報処理装置10000は、周辺環境20000と、制御対象21000とに関する情報とを受信する。ただし、各情報は、値の測定時に各種の外乱が加わる。ここで、外乱は、測定可能な「測定外乱」と、測定できない「未測定外乱」とが含まれる。そのため、情報処理装置10000は、制御対象21000と周辺環境20000に関連する情報として、図1に示すように、次の情報を受信する。すなわち、情報処理装置10000は、周辺環境20000の情報に測定外乱と未測定外乱が加わった情報と、制御対象21000の情報に測定外乱と未測定外乱が加わった情報と、測定外乱と(以下、まとめて「制御対象情報2100」と言う)を受信する。
 ここで、制御対象21000の情報とは、例えば、制御対象21000の状態、制御対象21000に加えられた操作、又は、その操作を実現するためのコストである。
 また、情報処理装置10000は、入力装置22000と接続し、入力装置22000から予測制御に必要な情報(例えば、設定値、制約、優先度。以下、単に「入力情報2200」と言う)を受信する。入力装置22000は、設計者が、必要な情報を入力可能な装置なら特に制限はない。例えば、入力装置22000は、一般的なPC(Personal Computer)でも良い。そのため、入力装置22000の詳細な説明を省略する。
 また、情報処理装置10000は、出力装置23000と接続し、決定した制御対象21000を操作するための情報(以下、単に「操作量2300」と言う)を出力装置23000に出力する。出力装置23000は、設計者が、操作量2300を確認できれば特に制限はない。例えば、出力装置23000は、一般的なディスプレイ装置でも良い。そのため、出力装置23000の詳細な説明を省略する。
 なお、入力装置22000と出力装置23000は、異なる装置でも、同じ装置でも良い。
 次に、本実施形態の情報処理装置10000について、図面を参照して、詳細に説明する。
 図2は、第1の実施形態に係る情報処理装置10000の構成の一例を示すブロック図である。
 情報処理装置10000は、情報蓄積部11000と、予測式集合学習生成部12000と、操作量決定部14000とを含む。
 情報蓄積部11000は、制御対象情報2100を受信し、それを蓄積する。以下、情報蓄積部11000が蓄積した情報を「蓄積情報2600」と言う。
 予測式集合学習生成部12000は、情報蓄積部11000に蓄積された蓄積情報2600、つまり、過去から現在までの制御対象情報2100に基づいて、制御対象21000の制御に用いる予測式集合2500を学習(機械学習)する。そして、予測式集合学習生成部12000は、学習に基づいて、予測式集合2500を生成する。ここで、予測式集合2500とは、例えば、制御対象21000の将来の状態又はコストを予測する予測式の集合である。
 なお、予測式集合学習生成部12000の動作については、後ほど説明する。
 操作量決定部14000は、操作量2300を決定するために必要な情報、つまり、予測制御に必要な情報(上記の入力情報2200)を受信する。例えば、操作量決定部14000は、上記のとおり、入力装置22000から操作量2300の決定に必要な入力情報2200を受信しても良い。
 ここで、入力情報2200は、例えば、設定値、制約、優先度である。
 設定値とは、制御対象21000が制御において、将来のある時点と、その将来の時点で予測制御モデルの制御対象となる変数(以下、制御変数と呼ぶ)に設定される値の組である。その将来の時点において、制御変数の値と、制御対象となる制御変数に設定された値との差が小さくなるように、制御される。
 制約は、制御対象21000の予測制御モデルの制御変数、予測制御モデルの状態を表す変数(以下、状態変数と呼ぶ)、予測制御モデルの操作を表す変数(以下、操作変数と呼ぶ)における制約、制御変数、状態変数、操作変数の間における制約である。
 なお、予測式は、制御変数、状態変数、操作変数を変数とする関数(関数式)とも言える。
 優先度は、制御対象21000の予測制御モデルの制御変数の重要性を表す。優先度が高い制御変数が、優先的に制御対象となる。
 そして、操作量決定部14000は、次の情報を基に、予測制御モデルを構築し、予測制御モデルを基に制御対象21000の操作量2300を決定する。すなわち、その情報とは、予測式集合学習生成部12000で学習及び生成された予測式集合2500と、受信した制御対象情報2100と、情報蓄積部11000に蓄積された蓄積情報2600と、入力情報2200とである。ここで、操作量2300とは、制御対象21000の制御に用いられる情報である。操作量2300は、例えば、操作の具体的な値である。ただし、操作の動作指示のような具体的な値でない操作量は、適宜、具体的な値に置き換えた情報となっているものとする。
 そして、操作量決定部14000は、決定した操作量2300を、出力装置23000に出力する。
 そのため、例えば、制御対象21000の操作者は、出力された情報(操作量2300)に基づいて、適切に制御対象21000を操作できる。
 なお、操作量決定部14000は、予測式集合学習生成部12000での機械学習を基に得られた予測式集合2500の独立変数と従属変数と、予測制御モデルの制御変数、状態変数及び操作変数との対応付けを規定する。そして、操作量決定部14000は、その規定を基に、予測式集合2500を利用した制御のための予測制御モデルを構築する。さらに、情報処理装置10000は、操作量決定部14000が受信した入力情報2200(例えば、設定値、制約、優先度)を用いて予測制御モデルを構築しても良い。つまり、情報処理装置10000は、機械学習を基に得られる予測式集合2500を利用した予測制御モデルの構築できる。
 なお、独立変数や従属変数を含め、操作量決定部14000の動作についても、後ほど説明する。
 次に、本実施形態の効果について説明する。
 文献に記載された予測技術では、設計者が、制御対象21000とその周辺環境20000と測定外乱との関係性を解明し、物理法則を考慮して予測式を立て、予測制御モデルを構築する。そして、文献に記載された予測技術では、設計者が、そのモデルに基づいて制御対象21000の操作量2300を決定することが必要であった。あるいは、その予測技術は、予測式のパラメータを未定とし、学習に基づいてパラメータを同定した。
 一方、本実施形態の情報処理装置10000は、設計者が予測制御モデルを構築することなく予測制御が可能となる効果を得ることができる。
 その理由は、本実施形態の情報処理装置10000において、予測式集合学習生成部12000が、情報蓄積部11000に蓄積された蓄積情報2600に基づいて、自動的に、予測式集合2500を学習及び生成する。そして、操作量決定部14000が、制御対象情報2100、入力情報2200、蓄積情報2600、及び、予測式集合2500に基づいて、予測制御モデルを自動的に構築し、操作量2300を決定するためである。
 このように、本実施形態の情報処理装置10000は、設計者が予測制御モデルを構築しなくても、予測制御が可能となる効果を得ることができる。
 また、本発明の実施形態に基づくと、情報処理装置10000は、機械学習を基に得られる予測式集合2500を利用した予測制御モデルを構築することができる。
 また、文献に記載された予測制御は、機械学習を単純に適用して得られた予測式の独立変数及び従属変数と、制御のための予測制御モデルで利用される操作変数、制御変数、及び、状態変数との対応付けが規定されていない。そのため、その予測技術は、得られた予測式から制御のための予測制御モデルを構築できない、及び、外部からの設定値、制約、優先度等を与えて制御のための予測制御モデルを構築できないという問題点があった。
 本発明の実施の形態に基づくと、情報処理装置10000が、予測式集合学習生成部12000の機械学習を基に得られた予測式集合2500の独立変数及び従属変数と、制御モデルの制御変数及び操作変数との対応付けを規定する。そして、情報処理装置10000が、その規定を基に、予測式集合2500を利用した制御のための予測制御モデルを構築するためである。さらに、情報処理装置10000は、操作量決定部14000が受信した、入力情報2200を用いるためである。これにより、上述の問題点は解決される。
 また、情報処理装置10000は、設計者が導出できない制御対象21000又は物理法則に基づかない現象に対しても予測制御が可能となる。
 その理由は、情報処理装置10000の予測式集合学習生成部12000が、蓄積情報2600を基に予測式集合2500を生成する。そして、操作量決定部14000が、制御対象情報2100と、蓄積情報2600と、予測式集合2500とを基に、操作量2300を決定できるためである。つまり、情報処理装置10000は、物理法則を用いなくても、操作量2300を決定できるためである。
 また、情報処理装置10000は、周辺環境20000及び制御対象21000の変化に対応した予測制御が可能となる。
 その理由は、予測式集合学習生成部12000及び操作量決定部14000が、制御対象情報2100に加え、過去の制御対象情報2100である蓄積情報2600を用いるためである。つまり、情報処理装置10000において、予測式集合学習生成部12000が、予測制御モデルと現実世界との間のかい離を小さくするように、機械学習を利用して予測制御モデル(予測式集合2500)を自動的に構築する。そして、操作量決定部14000が、構築された予測制御モデル(予測式集合2500)を用いて、予測制御の操作量2300を決定するためである。
 また、情報処理装置10000は、予測式を利用した予測制御を実現できる。
 その理由は、予測式集合学習生成部12000が、予測式集合2500を学習及び生成し、操作量決定部14000が、学習及び生成された予測式集合2500を用いるためである。
 その結果、本実施形態の情報処理装置10000は、予測制御の追従性を高める効果を得ることができる。
 <変形例1>
 本実施形態の情報処理装置10000は、制御対象21000の数に制限はない。
 図3は、本変形例に係る情報処理システム101の構成の一例を示すブロック図である。
 情報処理システム101は、制御対象21000として、複数の制御対象21001、乃至、制御対象2100nを含む。
 情報処理装置10000は、制御対象21000毎に設けられても良い。
 しかし、情報処理装置10000は、制御対象21000が複数でも、動作可能である。
 そこで、本変形例の情報処理装置10000は、複数の制御対象21000に関する制御対象情報2100を受信し、複数の制御対象21000の操作量2300を決定する。
 一台の情報処理装置100000が、複数の制御対象21000を制御すると、情報処理装置10000は、複数の制御対象21000を集中的に制御できる。つまり、情報処理装置10000は、複数の制御対象21000の制御を容易に実現できる。
 また、多くの制御対象21000の情報を情報蓄積部11000に蓄積できるため、情報処理装置10000は、予測式集合学習生成部12000が生成する予測式集合2500の予測精度を向上できる。
 さらに、本変形例の情報処理装置10000は、一台の制御装置の物量で複数の制御対象21000を制御できるため、制御装置の低物量を実現できる。
 本変形例の効果を説明する。
 本変形例の情報処理装置10000は、第1の実施形態の情報処理装置10000の効果に加え、複数の制御対象21000の制御を簡単にする効果を得ることができる。
 その理由は、情報処理装置10000が、複数の制御対象21000を集中的に制御できるためである。
 また、情報処理装置10000は、予測式集合2500の予測精度を向上できる。
 その理由は、情報処理装置10000が、より多くの制御対象21000の情報を蓄積できるためである。
 さらに、情報処理装置10000は、制御に必要となる物量を低減する効果を得ることができる。
 その理由は、情報処理装置10000が、制御対象21000に必要な装置の数を低減できるためである。
 <変形例2>
 情報処理システム100は、情報処理装置10000が決定した操作量2300を、制御対象21000に送信しても良い。
 図4は、本変形例に係る情報処理システム102の構成の一例を示すブロック図である。
 情報処理装置10000は、操作量決定部14000で決定した操作量2300を、制御対象21000に送信する。
 制御対象21000は、受信した操作量2300に基づく操作を実施する。
 このように、情報処理装置10000は、操作量を自動的にフィードバックしても良い。
 本変形例の効果を説明する。
 本変形例の情報処理装置10000は、第1の実施形態の効果に加え、操作者の負荷を軽減できる効果がある。
 その理由は、情報処理装置10000が、自動的に、決定した操作量2300を、制御対象21000にフィードバックできるためである。
 なお、本変形例の情報処理装置10000は、操作者が操作量2300を確認できるように、第1の実施の形態と同様にして出力装置23000の操作量2300を出力してもよい。
 また、本変形例の情報処理装置10000は、変形例1と同様に、複数の制御対象21000と接続しても良い。
 <変形例3>
 情報処理装置10000構成は、これまでの説明に限らない。
 また、情報処理装置10000は、各構成を複数の構成に分けても良い。
 また、情報処理装置10000は、1つの装置で構成される必要はない。例えば、情報処理装置10000は、ネットワーク又はバスを介して接続した外部の記憶装置を、情報蓄積部11000としても用いても良い。
 さらに情報処理装置10000において、構成の少なくとも一部は、制御対象21000と別の場所に設置されても良い。
 例えば、情報処理装置10000の情報蓄積部11000と予測式集合学習生成部12000とが、制御対象21000が設置された建物と、別の建物に設置されても良い。
 また、情報処理装置10000の情報蓄積部11000と予測式集合学習生成部12000とが、制御対象21000が設置された国と、別の国に設置されても良い。
 あるいは、情報処理装置10000は、分散されて設置された複数の制御対象21000と接続しても良い。
 また、情報処理装置10000は、複数の構成を1つの構成としても良い。
 例えば、情報処理装置10000は、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)とを含むコンピュータ装置として実現しても良い。さらに、情報処理装置10000は、上記構成に加え、入出力接続回路(IOC:Input Output Circuit)と、ネットワークインターフェース回路(NIC:Network Interface Circuit)とを含むコンピュータ装置として実現しても良い。
 図5は、変形例3に係る情報処理装置600の構成の一例を示すブロック図である。
 情報処理装置600は、CPU610と、ROM620と、RAM630と、内部記憶装置640と、IOC650と、NIC680とを含み、コンピュータを構成している。
 CPU610は、ROM620からプログラムを読み込む。そして、CPU610は、読み込んだプログラムに基づいて、RAM630と、内部記憶装置640と、IOC650と、NIC680とを制御する。そして、CPU610は、これらの構成を制御し、図2に示す、予測式集合学習生成部12000と操作量決定部14000としての各機能を実現する。CPU610は、各機能を実現する際に、RAM630又は内部記憶装置640を、プログラムの一時記憶として使用しても良い。
 また、CPU610は、コンピュータで読み取り可能にプログラムを記憶した記憶媒体700が含むプログラムを、図示しない記憶媒体読み取り装置を用いて読み込んでも良い。あるいは、CPU610は、NIC680を介して、図示しない外部の装置からプログラムを受け取っても良い。
 ROM620は、CPU610が実行するプログラム及び固定的なデータを記憶する。ROM620は、例えば、P-ROM(Programmable-ROM)又はフラッシュROMである。
 RAM630は、CPU610が実行するプログラム及びデータを一時的に記憶する。RAM630は、例えば、D-RAM(Dynamic-RAM)である。
 内部記憶装置640は、情報処理装置600が長期的に保存するデータ及びプログラムを記憶する。また、内部記憶装置640は、CPU610の一時記憶装置として動作しても良い。内部記憶装置640は、例えば、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)又はディスクアレイ装置である。
 RAM630又は内部記憶装置640が、情報蓄積部11000としての機能を実現する。
 なお、情報処理装置600は、RAM630及び内部記憶装置640の両方を用いて、情報蓄積部11000の機能を実現しても良い。
 このように、情報蓄積部11000は、揮発性のメモリ又は不揮発性のメモリのいずれのメモリを用いても、実現できる。
 IOC650は、CPU610と、入力機器660及び表示機器670とのデータを仲介する。IOC650は、例えば、IOインターフェースカードである。
 入力機器660は、情報処理装置600の操作者からの入力指示を受け取る機器である。入力機器660は、例えば、キーボード、マウス又はタッチパネルである。
 なお、情報処理装置600の入力機器660は、入力装置22000の一部として動作しても良い。つまり、情報処理装置600は、入力装置22000の機能を含んでも良い。
 表示機器670は、情報処理装置600の操作者に情報を表示する機器である。表示機器670は、例えば、液晶ディスプレイである。
 なお、情報処理装置600の表示機器670は、出力装置23000の一部として、動作しても良い。つまり、情報処理装置600は、出力装置23000の機能を含んでも良い。
 NIC680は、ネットワークを介した外部の装置(例えば、入力装置22000及び出力装置23000)とのデータのやり取りを中継する。NIC680は、例えば、LAN(Local Area Network)カードである。
 このように構成された情報処理装置600は、情報処理装置10000と同様の効果を得ることができる。
 その理由は、情報処理装置600のCPU610が、プログラムに基づいて情報処理装置10000と同様の機能を実現できるためである。
 [第2の実施形態]
 図6は、第2の実施形態に係る情報処理装置10010の構成の一例を示すブロック図である。
 本実施形態の情報処理装置10010は、第1の実施形態の情報処理装置10000の構成に加え、予測式集合学習生成部12000と操作量決定部14000との間に予測式集合格納部13000を含む。情報処理装置10010のその他の構成は、情報処理装置10000と同様である。そのため、本実施形態において、第1の実施形態とは異なる構成及び動作を説明し、第1の実施形態と同様の構成及び動作の説明を省略する。
 予測式集合格納部13000は、予測式集合学習生成部12000で学習及び生成された予測式集合2500を、格納する。以下、予測式集合格納部13000が入力、出力、及び、格納した予測式集合を含め、予測式集合2500と言う。
 そして、本実施形態の操作量決定部14000は、予測式集合格納部13000に格納された予測式集合2500と、受信した制御対象情報2100と、蓄積情報2600と、入力情報2200とを基に、制御対象21000の操作量2300を決定する。
 第1の実施形態の情報処理装置10000では、予測式集合学習生成部12000と操作量決定部14000とは、連続して動作した。
 これに対し、本実施形態の情報処理装置10010では、予測式集合学習生成部12000と操作量決定部14000とは、連続して動作しなくても良い。
 例えば、予測式集合の更新に比べて操作量の決定が高頻度で発生する場合、予測式集合学習生成部12000は、操作量決定部14000の動作間隔よりも長い間隔で動作しても良い。
 例えば、操作量決定部14000の動作間隔が、1秒に設定されるのに対して、予測式集合学習生成部12000の動作間隔が、1日に設定される場合がある。予測式集合格納部13000は、上記のような場合において、予測式集合学習生成部12000の動作間隔と、操作量決定部14000の動作間隔との差を吸収する。そのため、予測式集合格納部13000は、予測式集合学習生成部12000で学習及び生成された予測式集合2500を受信し、それを格納する。
 操作量決定部14000は、操作量2300の決定の際に、予測式集合格納部13000に格納された予測式集合2500を利用できる。そのため、本実施形態の予測式集合学習生成部12000は、操作量決定部14000の操作量2300の決定のたびに、予測式集合2500を学習及び生成する必要がない。つまり、本実施形態の予測式集合学習生成部12000は、計算量を低減できる。
 本実施形態の効果について説明する。
 本実施形態の情報処理装置10010は、第1の実施形態の効果に加え、計算量を低減できるとの効果を得ることができる。
 その理由は、次のとおりである。
 操作量決定部14000は、操作量2300の決定において、予測式集合格納部13000に格納された予測式集合2500を利用する。そのため、本実施形態の予測式集合学習生成部12000は、操作量決定部14000が操作量2300を決定のたびに、予測式集合2500を学習及び生成する必要がないためである。つまり、本実施形態の予測式集合学習生成部12000は、計算量を低減できるためである。
 なお、本実施形態の情報処理装置10010は、第1の実施形態と同様に、複数の制御対象21000に対応しても良い。
 また、本実施形態の情報処理装置10010は、第1の実施形態と同様に、図5に示すコンピュータで実現されても良い。
 [第3の実施形態]
 図7は、第3の実施形態に係る情報処理装置10020の構成の一例を示すブロック図である。
 本実施形態の情報処理装置10020は、第2の実施形態の情報処理装置10010の構成に加え、予測値算出部15000を含む。情報処理装置10020のその他の構成は、情報処理装置10010と同様である。そのため、本実施形態において、第2の実施形態とは異なる構成及び動作を説明し、第2の実施形態と同様の構成及び動作の説明を省略する。なお、情報処理装置10020は、第1の実施形態の情報処理装置10000と同様に、予測式集合格納部13000を含まなくても良い。
 予測値算出部15000は、予測式集合格納部13000に格納された予測式集合2500と、制御対象情報2100と、操作量2300とを基に、予測値2400を算出する。例えば、予測値算出部15000は、予測式集合2500に、制御対象情報2100と、操作量2300を適用して、予測値2400を算出する。
 ただし、予測値算出部15000は、必要に応じて、予測値2400の算出に、蓄積情報2600を用いても良い。ここで、予測値2400とは、操作量2300が制御対象21000に適用された場合に、制御対象21000が移行すると予測される値である。つまり、予測値2400は、操作量2300に対する結果に相当する値である。
 なお、予測値算出部15000は、例えば、算出した予測値2400を、出力装置23000に出力しても良い。また、既に説明した通り、操作量決定部14000は、操作量2300を出力装置23000に出力しても良い。この場合、操作者は、出力装置23000を参照して、操作量2300と予測値2400との両方を確認できる。
 本実施形態の効果について説明する。
 本実施形態の情報処理装置10020は、第2の実施形態の効果に加え、操作量2300に対する予測値2400を得ることができる。
 その理由は、予測値算出部15000が、予測式集合2500と、制御対象情報2100と、操作量2300とを基に、予測値2400を算出し、出力するためである。
 なお、本実施形態の情報処理装置10020は、第1の実施形態と同様に、複数の制御対象21000に対応しても良い。この場合、予測値算出部15000は、複数の予測値2400を算出する。ただし、予測値算出部15000は、全ての予測値2400ではなく、一部の予測値2400を算出しても良い。あるいは、予測値算出部15000は、例えば、入力装置22000から指定された制御変数に関する予測値2400を算出しても良い。
 また、本実施形態の情報処理装置10020は、第1の実施形態と同様に、図5に示すコンピュータで実現されても良い。
 [第4の実施の形態]
 図8は、第4の実施形態に係る情報処理装置10030の構成の一例を示すブロック図である。
 本実施形態の情報処理装置10030は、第3の実施形態の情報処理装置10020の構成に加え、予測値蓄積部16000と、予測誤差算出部17000と、再学習判定部18000とを含む。情報処理装置10030のその他の構成は、情報処理装置10020と同様である。そのため、本実施形態において、第3の実施形態とは異なる構成及び動作を説明し、第3の実施形態と同様の構成及び動作の説明を省略する。なお、情報処理装置10030は、第1の実施形態の情報処理装置10000と同様に、予測式集合格納部13000を含まなくても良い。
 予測値蓄積部16000は、予測値算出部15000で算出された予測値2400を受信し、これを蓄積する。以下、予測値蓄積部16000が入力、出力、及び、蓄積した予測値2400を含め、予測値2400と言う。
 予測誤差算出部17000は、情報蓄積部11000に蓄積された蓄積情報2600と、予測値蓄積部16000に蓄積された予測値2400とを基に、予測誤差2900を算出する。ここで予測誤差2900とは、制御対象21000に設定されている値(制御対象情報2100)と、予測値2400との差(誤差)である。
 再学習判定部18000は、予測誤差算出部17000で算出された予測誤差2900を基に、予測式集合学習生成部12000において、再学習するか否かを判定する。以下、この判定の結果を、「判定結果3000」と言う。なお、再学習判定部18000は、判定の処理において、閾値など他の情報を参照しても良い。
 予測式集合学習生成部12000は、再学習判定部18000の判定結果3000を受け取る。そして、予測式集合学習生成部12000は、判定結果3000が再学習を示す場合、予測式集合2500を再度学習し、再生成する。
 本実施形態の再学習判定部18000は、例えば、予測誤差2900が、ある一定の値(閾値)以上になった場合、再学習するとの判定結果3000を出力する。その結果、予測式集合学習生成部12000は、予測式集合2500を再生成する。このように、情報処理装置10030は、自動的に、予測式集合2500を再学習する。その結果、情報処理装置10030は、高い予測精度を維持できる。
 なお、情報処理装置10030は、入力装置22000又は図示しない外部の装置からの指示を基に、再学習を実行しても良い。例えば、周辺環境20000が大きく変化した場合、及び/又は、制御対象21000の構成が大きく変化された場合、操作者は、入力装置22000を操作して、情報処理装置10030に予測式集合2500の再学習と再生成とを指示しても良い。この指示を基に、情報処理装置10030は、予測式集合学習生成部12000を再動作させ、予測式集合2500を更新しても良い。その結果、情報処理装置10030は、周辺環境20000及び/又は制御対象21000の変化に適応した制御を実現できる。
 本実施形態の効果を説明する。
 本実施形態の情報処理装置10030は、第3の実施形態の効果に加え、より高い予測精度を実現できるとの効果を得ることができる。
 その理由は、次のとおりである。
 本実施形態の予測誤差算出部17000は、蓄積情報2600と、予測値2400とを基に、予測誤差2900を算出する。そして、予測誤差2900が所定の閾値より大きい場合、再学習判定部18000が、予測式集合学習生成部12000に、予測式集合2500の再学習及び再生成を指示する。その結果、情報処理装置10030は、適切な予測式集合2500を生成できるためである。
 なお、本実施形態の情報処理装置10030は、第1の実施形態と同様に、複数の制御対象21000に対応しても良い。
 また、本実施形態の情報処理装置10030は、第1の実施形態と同様に、図5に示すコンピュータで実現されても良い。
 [第5の実施形態]
 次に、操作量決定部14000のより詳細な実施形態について、第5の実施形態として、図面を参照して説明する。
 図9は、本実施形態に係る操作量決定部14000の構成の一例を示すブロック図である。
 操作量決定部14000は、予測式集合変換部14100と操作量算出部14200とを含む。
 予測式集合変換部14100は、予測式集合2500を受信する。そして、予測式集合変換部14100は、後ほど説明する操作量算出部14200での操作量2300の算出が容易になるように、所定の規則に従って、予測式集合2500を予測式集合2501に変換する。例えば、予測式集合変換部14100は、予測式集合2500を簡略化する変換処理を用いても良い。すなわち、予測式集合変換部14100は、操作量2300の変化に対して予測値2400の変化が小さい操作量2300に関連した変数を、予測式集合2500から削除することで、簡略化した予測式集合2501に変換しても良い。具体的には、例えば、予測式集合変換部14100は、予測式において係数の小さい変数を削除しても良い。
 あるいは、予測式集合変換部14100は、入力装置22000から入力される入力情報2200に含まれる優先度を用いて、予測式集合2500を予測式集合2501に変換してもよい。具体的には、例えば、予測式集合変換部14100は、優先度が高い制御変数を予測する予測式集合2500を簡略化せず、優先度の低い制御変数を予測する予測式集合2500を簡略化しても良い。あるいは、予測式集合変換部14100は、優先度の低い制御変数を多く簡略化し、優先度の高い制御変数を少なく簡略化しても良い。
 操作量算出部14200は、予測式集合変換部14100で変換された予測式集合2501と、制御対象情報2100と、蓄積情報2600と、入力情報2200とを基に、予測制御モデルを構築し、操作量2300を算出する。
 図10は、本実施形態に係る操作量算出部14200の構成の一例を示すブロック図である。
 操作量算出部14200は、数理計画問題定式化部14210と数理計画問題計算部14220とを含む。
 数理計画問題定式化部14210は、予測式集合変換部14100で変換された予測式集合2501と、制御対象情報2100と、蓄積情報2600と、入力情報2200とを基に、予測制御モデルを構築し、数理計画問題2800を立てる(定式化する)。数理計画問題2800は、予測制御モデルを数学的に表現(記載)したものであり、例えば、線形計画問題、二次計画問題、組み合わせ最適化問題、線形整数問題、混合整数計画問題である。
 なお、数理計画問題定式化部14210の動作についても、後ほど説明する。
 数理計画問題計算部14220は、数理計画問題定式化部14210で定式化された数理計画問題2800を適切なソルバー(solver)を使って計算し(解き)、操作量2300を算出する。ここで、ソルバーとは、定式化された数理計画問題2800の最適な解を算出する構成である。ソルバーは、例えば、専用計算機でもよく、コンピュータで実行されるプログラムでも良い。
 なお、操作量算出部14200の構成は、図10の構成に限る必要はない。
 図11は、操作量算出部14200の他の構成の一例を示すブロック図である。
 図11に示す操作量算出部14201は、数理計画問題定式化部14210と、数理計画問題計算部14220と、操作量良否判定部14230と、操作量選択部14240とを含む。
 数理計画問題定式化部14210及び数理計画問題計算部14220は、図10に示す数理計画問題定式化部14210及び数理計画問題計算部14220と同様のため、詳細な説明を省略する。ただし、数理計画問題計算部14220は、複数の計算結果2700を出力してもよい。
 図11に示すように、予測値算出部15000は、数理計画問題計算部14220の計算結果2700を基に予測値2400を計算する。数理計画問題計算部14220が複数の計算結果2700を出力する場合、予測値算出部15000は、各計算結果2700に対して予測値2400を計算する。そして、例えば、数理計画問題計算部14220の計算結果2700及び予測値算出部15000で計算された予測値2400が、出力装置23000に出力される。
 操作量良否判定部14230は、数理計画問題計算部14220の計算結果2700と、入力装置22000からの入力情報2200に含まれる「良否判定」の情報を基に、計算結果2700(これは操作量2300となる)の良否を判定する。
 例えば、出力装置23000は、計算結果2700と予測値2400とを表示する。そして、操作者は、出力装置23000に表示された値を参考にして、計算結果2700(操作量2300に相当する)と予測値2400が妥当であるか否かを判断する。そして、操作者は、入力装置22000を用いて、操作量算出部14201に「良否判定」を送信する。
 あるいは、操作量良否判定部14230は、予め「良否判定」の基準値(例えば、閾値又は良となる範囲)を保持し、その基準値を基に良否を判定しても良い。
 「良否判定」が否の場合、操作量良否判定部14230は、数理計画問題定式化部14210に、再度、数理計画問題の再定式化を指示する。なお、再定式化において、数理計画問題定式化部14210は、適切な操作量2300を算出できるように、新しい入力情報2200(例えば、設定値、制約、又は、優先度)を受信することが望ましい。そのため、操作量算出部14201は、出力装置23000を介して、操作者に再入力を依頼しても良い。
 「良否判定」が良の場合、操作量良否判定部14230は、計算結果2700を操作量選択部14240に送る。
 操作量選択部14240は、適切な操作量2300を選択する。操作量選択部14240は、数理計画問題計算部14220の計算結果2700が単数の場合、操作量2300として、その計算結果2700を選択する。
 また、数理計画問題計算部14220の計算結果2700が複数の場合、操作量選択部14240は、操作量2300として、入力装置22000からの入力情報2200を基に、計算結果2700を選択する。あるいは、操作量選択部14240は、所定の規則に従って、操作量2300として、適切な計算結果2700を選択してもよい。ここで、所定の規則とは、例えば、前回の操作量2300との差分が最も小さいという規則、又は、予測したコストが最も小さいという規則である。
 図12は、本実施形態に係る数理計画問題定式化部14210の構成の一例を示すブロック図である。
 図12に示す数理計画問題定式化部14210は、制約式生成部14212と、目的関数生成部14214と、許容誤差レジスタ14216と、誤差重み係数レジスタ14217と、コスト係数レジスタ14218とを含む。
 制約式生成部14212は、予測式集合変換部14100で変換された予測式集合2501と、制御対象情報2100と、蓄積情報2600と、入力情報2200又は後ほど説明する許容誤差の少なくとも一つを基に、制約式を生成する。ただし、入力情報2200は、設定値又は制約の少なくとも一つを含む。
 許容誤差レジスタ14216は、設定値と予測値2400との間に認められる最大の差である許容誤差を保持する。例えば、設定値が10に対して8から12までの予測値2400を認める場合、許容誤差は、「±2」である。
 誤差重み係数レジスタ14217は、複数の制御対象21000に対して設けられた優先度を、誤差重みとして扱うための係数である誤差重み係数を保持する。例えば、二つの制御対象A及びBがあるとする。そして、制御対象Aの制御の方が、制御対象Bの制御より優先度が高いとする。この場合、誤差重み係数レジスタ14217は、制御対象Aに対する誤差重み係数として、制御対象Bに対する誤差重み係数より大きな誤差重み係数を保持する。このような動作を基に、数理計画問題定式化部14210は、優先度を考慮した定式化を可能とする。例えば、数理計画問題定式化部14210は、誤差重み係数の差が大きいほど、優先度に大きな差を付けることができる。
 なお、優先度を指定しない場合、数理計画問題定式化部14210は、入力装置22000から優先度を受信しなくても良い。その場合、誤差重み係数レジスタ14217は、全ての誤差重み係数を0以外の同値として保持すれば良い。あるいは、その場合、数理計画問題定式化部14210は、誤差重み係数レジスタ14217を用いなくても良い。
 コスト係数レジスタ14218は、複数のコスト指標を統一的に扱うための係数であるコスト係数を保持する。例えば、一般的に金額は、統一的に扱うことができる値である。そこで、電気使用量とガス使用量とがコストとして予測される場合、コスト係数レジスタ14218は、それぞれの使用量を、使用量に単価を乗じて金額に変換し、保持する。すると、数理計画問題定式化部14210は、電気使用量とガス使用量のコスト指標を、統一的に扱うことができる。
 目的関数生成部14214は、予測式集合変換部14100で変換された予測式集合2501と、制御対象情報2100と、蓄積情報2600と、許容誤差と、誤差重み係数と、コスト係数とを基に、目的関数を生成する。
 なお、数理計画問題定式化部14210は、許容誤差とコスト係数とを、入力装置22000から受信してもよい。
 本実施形態の効果について説明する。
 第1の効果は、計算量を削減することができる。
 その理由は、予測式集合変換部14100が、計算に用いる予測式集合2500を簡略化するためである。
 第2の効果は、より正確な予測が可能になる。
 その理由は、操作量良否判定部14230が、「良否判定」を基に、数理計画問題定式化部14210の再動作を指示できるためである。
 [第6の実施の形態]
 図14は、第6の実施形態に係る情報処理装置10040の構成の一例を示すブロック図である。
 本実施形態の情報処理装置10040は、情報蓄積部11000と、予測制御部30000と、固定制御部31000と、操作量選択部32000とを含む。
 情報蓄積部11000は、第1~5の実施形態と同様である。予測制御部30000は、第1~第5の実施形態の予測式集合学習生成部12000及び操作量決定部14000を含み、第1~5の実施形態の動作を実現する。固定制御部31000は、予め設定された制御式に従い操作量を計算する。操作量選択部32000は、複数の制御量から一つの制御量を選択し出力する。
 情報蓄積部11000と予測制御部30000は、第1~5の実施形態で説明した動作を行い、予測制御に基づく操作量を出力する。この操作量は、第1の操作量である。
 また、本実施形態では、制御対象情報2100は、直接的に、操作量決定部14000に入力されず、情報蓄積部11000を経由して蓄積情報2600として用いられている。ただし、これは、情報の流れの一例である。第1~5の実施形態のように、制御対象情報2100は、直接入力されてもよい。あるいは、逆に、第1~5の実施形態において、制御対象情報2100の入力は、情報蓄積部11000を経由してもよい。
 固定制御部31000は、あらかじめ設計者が入力した制御式を基に、制御対象情報2100及び蓄積情報2600を基に計算し、操作量を出力する。この操作量は、第2の操作量である。
 固定制御部31000は、制御式を、入力(周囲環境及び測定対象の情報)と設定値と出力(操作量)との関係式で構成する。この時、固定制御部31000は、関係式として、比例制御、PID(Proportional Integral Derivative)制御の古典制御、又は、状態方程式から求まる現代制御で得られるフィードバック若しくはフィードフォワードなどの制御方法の式を取ればよい。
 また、図15に示すように、予測制御部30000及び固定制御部31000は、それぞれ、1つに限らず、複数含まれてもよい。予測制御部30000は、初期値のランダム性などに基づき異なる特性を持つことがある。そのため、予測制御部30000を複数用意することに基づき、情報処理装置10040は、違った特性を持った操作量を出力することができる。また、固定制御部31000は、設計者が、追従性又は安定性などの観点で異なる制御式を用意した場合、複数含まれてもよい。
 操作量選択部32000は、操作量決定部14000と固定制御部31000とのどちらを利用するか選択する。
 この時、情報処理装置10040は、例えば、図16に示すように、制御対象情報2100、蓄積情報2600、操作量決定部14000が出力する操作量、又は、固定制御部が出力する操作量のいずれかを、ユーザに表示する表示部33000を含んでも良い。そして、操作量選択部32000は、ユーザからの入力(選択情報)に基づいて、予測制御部30000又は固定制御部31000のいずれかの操作量を選択し、その操作量を出力する。
 また、他の一例として、図17に示すように、情報処理装置10040は、第3の実施形態で示した予測値算出部15000を用いる予測誤差判定部34000を含んでも良い。予測誤差判定部34000は、予測値算出部15000を用いて予測値を計算し、蓄積情報2600の情報と比較し予測の誤差を求める。そして、操作量選択部32000は、誤差の大小を基に予測制御部30000又は固定制御部31000のどの操作量を用いるかを決定する。予測誤差判定部34000は、例えば、予測制御部30000の中から最も誤差の少ないものを選択する。そして、操作量選択部32000は、その誤差が一定値以下である場合、最も誤差の小さい予測制御部30000の操作量を選択する。また、操作量選択部32000は、誤差が大きい場合、固定制御部31000を選択する。このように、操作量選択部32000は、選択結果を出力する。この動作を基に、予測精度が十分な場合、つまり、予測制御部30000の精度が高い場合、予測制御部30000が選ばれる。そのため、情報処理装置10040は、精度の高い制御を行うことができる。
 また、他の一例として、図18に示すように、情報処理装置10040は、操作量決定部14000又は固定制御部31000の操作量を元に、操作量を評価し、どの操作量を用いるか選択する操作量評価部35000を含んでも良い。そして、情報処理装置10040の操作量選択部32000は、操作量評価部35000の選択結果に基づき操作量を選択してもよい。操作量評価部35000は、操作量を操作量評価部35000にあらかじめ入力された評価関数に入力する。そして、操作量評価部35000は、最も良い結果となる操作量を、選択結果として出力する。ここで、評価関数は、例えば、操作量にかかるコストを求める関数でもよい。この場合、情報処理装置10040は、最も低コストの制御を選択でき、制御対象を低コストで制御できる。
 また、他の一例として、図19に示すように、情報処理装置10040は、蓄積情報2600及び入力情報2200の情報を基に、制御対象の動作を評価し、選択結果を出力する動作評価部36000を含んでもよい。この場合、情報処理装置10040の操作量選択部32000は、動作評価部36000の選択結果に基づき、操作量を選択する。動作評価部36000は、入力情報の制御対象21000の設定値と、蓄積情報2600とを比較する。そして、動作評価部36000は、設定値通り制御対象が設定された誤差範囲で動作しているか否かを評価する。このとき、設定値通り制御対象が動いている場合、操作量選択部32000は、予測制御部30000の操作量を選択する。また、設定値通り動いていない場合、操作量選択部32000は、固定制御部31000を選択する。この動作を基に、予測制御部30000の制御特性が十分でない場合、情報処理装置10040は、固定制御部31000を基に制御でき、安定性が増すことができる。
 また、他の一例として、図20に示すように、情報処理装置10040は、予測式集合学習生成部12000を含み、予測式集合学習生成部12000の学習の評価値を基に、予測式を評価する予測式評価部37000の選択結果から結果を選択してもよい。予測式評価部37000は、次のように動作する。予測式集合学習生成部12000は、学習にあたり内部にその評価値を持つ。評価値の一例は、情報量基準の評価値である。操作量選択部32000は、この評価値が、設定された値より良い値となったとき、予測式が十分だと判断し、予測制御部30000を利用するように選択する。また、操作量選択部32000は、上記以外の場合、固定制御部31000を選択する。
 本実施形態の効果について説明する。
 本実施形態は、第1~第5の実施形態の効果に加え、より精度の高い制御を実現する効果を得ることができる。
 その理由は、情報処理装置10040の操作量選択部32000が、予想制御部30000の出力である第1の操作量と、固定制御部31000の出力である第2の操作量とを適切に選択するためである。
 [予測式集合の形式と数理計画問題の定式化]
 次に、第1乃至第5の実施形態における予測式集合学習生成部12000で学習及び生成する予測式集合2500を生成するための動作例と、操作量決定部14000の動作例について説明する。ここで、操作量決定部140000の動作例は、図9乃至図12に示す第5の実施形態における数理計画問題定式化部14210における定式化の例を、数式を用いて説明する。
 まず、説明の前提として、予測式集合学習生成部12000で学習及び生成する予測式集合2500は、離散時間線形関数の集合とする。
 また、制御対象21000の制御変数の個数を「n」個とし、制御変数を「y、y、…」と表現する。
 周辺環境20000と制御対象21000との状態を表す変数(以下、「状態変数」と言う)の個数を「n」個とし、状態変数を「x、x、…」と表現する。例えば、状態変数の一例として気象予報がある。ここで、気象予報において現時点で得られる気象予報は、現在の状態変数として解釈し、未来の状態変数として解釈しない。なお、状態変数は、制御対象情報2100に相当する。
 また、特に、状態変数の中で制御対象21000のコストにかかわる変数(以下、「コスト変数」と言う)の個数を「n」個とし、コスト変数を「c、c、…」と表現する。
 制御対象21000に加える操作量を表す変数(以下、「操作変数」と言う)の個数を「n」個とし、操作変数を「u、u、…」と表現する。
 すると、予測式集合学習生成部12000において、kステップ目におけるiステップ後の未来の制御変数「y」を従属変数とする予測式は、以下の数式1で表される。
すなわち、数式1は、次の形式である。すなわち、まず、数式1は、nステップ前からkステップ目までの過去から現在までの状態変数に変数ごとの係数を乗じる。そして、数式1は、nステップ前からkステップ目の1ステップ前までの過去から現在の直前までの操作変数に変数ごとの係数を乗じる。そして、数式1は、kステップ目からiステップの1ステップ前までの現在から未来までの操作変数に変数ごとの係数を乗じる。そして、数式1は、その結果に定数を加えた形式である。
 なお、「a」は、制御変数「y」に対する所定の係数である。
[数1]
Figure JPOXMLDOC01-appb-I000001
 数式1は、行列を用いて数式2のように書き換えることができる。
[数2]
Figure JPOXMLDOC01-appb-I000002
 Tは、転置行列を示す。
 同様に、kステップ目におけるiステップ後の制御変数「y、…」の予測式が、記述できる。また、予測式集合学習生成部12000は、制御変数「y、y、…」を従属変数とする予測式集合2500を、行列を用いて以下の数式3で生成できる。
[数3]
Figure JPOXMLDOC01-appb-I000003
 数式3は、簡略化して以下の数式4で記述できる。
[数4]
Figure JPOXMLDOC01-appb-I000004
ただし、数式4の各値は、次のとおりである。

Figure JPOXMLDOC01-appb-I000005
 同様にして、予測式集合学習生成部12000は、kステップ目におけるiステップ後のコスト変数「c、c、…」を従属変数とする予測式集合2500を、行列Ax,c,i、Au,c,i及びBc,iを用いて以下の数式5で生成できる。
[数5]
Figure JPOXMLDOC01-appb-I000006
 数式4と数式5との独立変数は、次の変数を含まない。
 (1)未来の状態変数「x(k+l) (j=1、…、n、l=1、…、i)」
 (2)未来のコスト変数「c(k+l) (j=1、…、n、l=1、…、i)」
 (3)未来の制御変数「y(k+l) (j=1、…、n、l=1、…、i)」
 つまり、ある未来の制御変数と未来のコスト変数とは、他の未来の状態変数、未来のコスト変数、及び、未来の制御変数に依存しない。このことは、後述の制約(数式12)を簡潔に記述できる効果がある。その結果、数理計画問題2800の解法処理が、容易になる。
 更に、行列Au,y,iと行列Au,c,iとを連結して構成される行列[Au,y,i Au,c,iの列の要素で、零でない要素の数は、2以上である。
 その要素の少なくとも一つは、行列Au,y,iの列の要素であることを条件とする。
 零でない要素が行列Au,y,iの列の要素であることは、その要素を係数とする操作変数が、制御変数を変化可能であることを意味する。そのような零でない要素が複数あることは、ある一つの操作変数に基づいて複数の制御変数を同時に変化可能であることを意味する。すなわち、制御変数間の関係性の記述が、可能となる。
 また、零でない要素が行列Au,c,iの列の要素であることは、その操作変数がコスト変数にも影響を与えることを意味する。すなわち、制御変数とコスト変数との間の関係性の記述が、可能となる。
 更に、後述の目的関数(数式13)で与えられるように、コスト変数を目的関数の独立変数として用いると、コストを考慮した操作変数の決定が、可能となる。結果として、最小コストで目的を達成する操作変数の決定が、可能となる。
 予測式集合2500は、数式4と数式5とで構成される。予測式集合変換部14100(図9)は、適宜、これらの予測式集合2500を簡略化(予測式集合2501を作成)しても良い。数理計画問題定式化部14210(図10乃至図12)は、予測式集合2501を用いて予測制御モデルを構築できる。
 次に、kステップ目におけるiステップ後の未来の制御変数「y、y、…」に対して、入力装置22000から入力される情報(設定値(YSV(k+i)))は、以下の数式6で記述される。ただし、本発明において、すべての制御変数に対して対応する設定値(y1、SV(k+i)、y2,SV(k+i)、…)を与える必要はなく、一部の設定値を与えても良い。
[数6]
Figure JPOXMLDOC01-appb-I000007
 また、kステップ目におけるiステップ後の制御変数「y、y、…」に対して設定値が与えられている場合、許容誤差(E(k+i))は、以下の数式7で記述される。ただし、本発明は、すべての制御変数に対応する許容誤差(e(k+i)、e(k+i)、…)を与える必要はなく、一部の許容誤差を与えてもよい。
[数7]
Figure JPOXMLDOC01-appb-I000008
 この数式7で記述された許容誤差に対して、誤差重み係数(W(k+i))は、以下の数式8で記述される。誤差重み係数は、入力装置22000からの入力情報2200(優先度)に基づいて決定される。優先度が高い制御変数には、制御変数に対応する誤差重み係数(we1(k+i)、we2(k+i)、…)が大きく設定される。この動作を基に、数理計画問題定式化部14210は、優先度を考慮した操作変数の決定できる。
[数8]
Figure JPOXMLDOC01-appb-I000009
 また、kステップ目におけるiステップ後のコスト変数「c、c、…」に対して、コスト係数(W(k+i))は、以下の数式9で記述される。コスト係数は、複数のコスト変数「c、c、…」を統一的に扱うための係数(wC1(k+i)、wC2(k+i)、…)である。
[数9]
Figure JPOXMLDOC01-appb-I000010
 更に、kステップ目におけるiステップ後の制御変数「y、y、…」に対して、入力装置22000から入力された入力情報2200(制約)は、以下の数式10で記述される。数式10において、最小側の制約が、「YMIN(k+i)」であり、最大側の制約が、「YMAX(k+i)」である。制御変数に対応する制約(「y1,MIN(k+i)、y2,MIN(k+i)、…」及び「y1,MAX(k+i)、y2、MAX(k+i)、…」)は、必要に応じて、マイナス無限大を下限としたり、プラス無限大を上限としたりしてもよい。
[数10]
Figure JPOXMLDOC01-appb-I000011
 同様に、kステップ目からiステップの1ステップ前までの操作変数「u、u、…」に対して、入力装置22000から入力された入力情報2200(制約)は、以下の数式11で記述される。数式11において、最小側の制約が、「UMIN(k,k+i-1)」であり、最大側の制約が、「UMAX(k,k+i-1)」である。必要に応じて、制御変数に対応する制約(「u1,MIN(k)、u1,MIN(k+1)、…」及び「u1,MAX(k)、u1、MAX(k+1)、…」)は、マイナス無限大を下限としたり、プラス無限大を上限としたりしてもよい。
[数11]
Figure JPOXMLDOC01-appb-I000012
 数式6、数式7、数式10、数式11の制約を用いて、制約式生成部14212で生成される制約式は、以下の数式12で記述できる。
[数12]
Figure JPOXMLDOC01-appb-I000013
 なお、数式12において行列を用いて表した大小関係は、行列の各要素の間における大小関係を示している。例えば、数式12の最初の大小関係の式の第1の要素は、「y1,SV(k+i)-e(k+i)≦y(k+i)≦y1,SV(k+i)+e(k+i)」となる。
 また、数式8、数式9を用いて目的関数生成部14214で生成される目的関数は、以下の数式13で記述できる。
[数13]
Figure JPOXMLDOC01-appb-I000014
 数理計画問題計算部14220は、数式12を制約式として、数式13の目的関数を最小にする操作変数のベクトルU(k,k+i-1)を求めればよい。
 なお、数式6では、kステップ目におけるiステップ後の設定値が与えられた。しかし、kステップ目の1ステップ後からiステップ後までの設定値が、連続的に、又は、断続的に与えてもよい。
 このようにして、数理計画問題定式化部14210は、予測式集合学習生成部12000で学習及び生成された予測式集合2500を利用して、制御のための予測制御モデルを構築する。その結果、情報処理装置10000は、入力情報2200(例えば、設定値、制約、優先度)に対応した予測制御が可能となる。
 次に、図13を参照し、具体的な値を用いて、数理計画問題定式化部14210における定式化と、数理計画問題計算部14220における計算とを説明する。
 まず、数式4~数式11は、以下に示す数式14~数式21で記述できたとする。
[数14]
Figure JPOXMLDOC01-appb-I000015
[数15]
Figure JPOXMLDOC01-appb-I000016
[数16]
Figure JPOXMLDOC01-appb-I000017
[数17]
Figure JPOXMLDOC01-appb-I000018
[数18]
Figure JPOXMLDOC01-appb-I000019
[数19]
Figure JPOXMLDOC01-appb-I000020
[数20]
Figure JPOXMLDOC01-appb-I000021
[数21]
Figure JPOXMLDOC01-appb-I000022
 図13は、これらの式の具体的な値を示す。
 これらの数式を基に、数式12と数式13は、以下の数式22と数式23となる。
[数22]
Figure JPOXMLDOC01-appb-I000023
[数23]
Figure JPOXMLDOC01-appb-I000024
 数式14より、行列Au,y,1は、行列Au,y,1=[1 -2]となる。また、数式15より、行列Au,c,1は、行列Au,c,1=[1]である。
 よって、行列Au,y,1と行列Au,c,1とを連結して構成される行列[Au,y,1 Au,c,1=[1 -2 1]の列の要素は、すべて零でない要素である。
 よって、操作変数u(k)は、二つの制御変数「y(k+1)、y(k+1)」と一つのコスト変数c(k+1)とのすべてを、変化可能である。これらの数式は、コストを考慮した操作変数の決定が可能である予測式集合2500の例となっている。
 数式22を制約式として、数式23の目的関数を最小にする操作変数u(k)を求めると、数理計画問題定式化部14210は、「u(k)=3」を得る。このように、数理計画問題定式化部14210は、実際に、目的関数の独立変数であるコスト変数c(k+1)を最小にする操作変数を得ることができる。
 以上に説明した予測式及び目的関数は、単なる例示である。本発明は、これらに限定されるものではない。例えば、予測式は、非線形関数でも良い。また、目的関数は、非線形関数でも良い。本発明の数理計画問題計算部14220は、定式化された数理計画問題2800の性質に合った数理計画問題2800の解法及びソルバーを利用して問題を解けばよい。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成及び詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2013年 9月12日に出願された日本出願特願2013-189500を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する情報蓄積手段と、
 前記情報蓄積手段に蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成する予測式集合学習生成手段と、
 前記制御対象の操作量の決定に必要な入力情報を受信し、前記予測式集合と前記情報蓄積手段に蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる操作量を決定する操作量決定手段と、
 含む情報処理装置。
 (付記2)
 前記予測式集合が、
 未来の予測制御モデルの状態を表す状態変数又は未来の予測制御モデルの制御対象となる制御変数を従属変数とする二つ以上の予測式を含み、
 前記予測式として、
 独立変数が現在以降の予測制御モデルの操作を表す操作変数を含み、未来の状態変数及び未来の制御変数を含まず、従属変数が未来の制御変数である第一の予測式と、
 少なくとも一つの現在以降の予測制御モデルの操作を表す操作変数を前記第一の予測式と共通の独立変数とする第二の予測式と
 を含む付記1に記載の情報処理装置。
 (付記3)
 前記操作量決定手段が、
 前記入力情報として、前記予測制御モデルにおいて制御の対象となる制御変数に対する設定値又は制約のいずれか又は両方を受信する
 付記1又は2に記載の情報処理装置。
 (付記4)
 前記操作量決定手段が
 前記入力情報として、
 さらに、複数の前記制御変数における重要性を表す優先度を受信する
 付記3に記載の情報処理装置。
 (付記5)
 前記予測集合学習生成手段が生成した予測式集合を格納する予測式集合格納手段をさらに含み、
 前記操作量決定手段が、
 前記制御対象への操作量を決定に、前記予測式集合格納手段に格納された予測式集合を用いる
 付記1乃至付記4のいずれか1つに記載の情報処理装置。
 (付記6)
 前記予測式集合格納手段に格納された予測式集合と、前記受信した制御対象情報と、前記操作量とを基に、前記制御対象の予測値を算出する予測値算出手段をさらに含む
 付記1乃至付記5のいずれか1つに記載の情報処理装置。
 (付記7)
 前記予測値算出手段が、
 前記予測値の算出に前記情報蓄積手段に蓄積された制御対象情報を用いる
 付記6に記載の情報処理装置。
 (付記8)
 前記予測値を蓄積する予測値蓄積手段と、
 前記予測値蓄積手段に蓄積された予測値と前記情報蓄積手段に蓄積された制御対象情報とを基に予測誤差を算出する予測誤差算出手段と、
 前記予測誤差を用いて前記予測式集合学習生成手段において再学習するか否か判定する再学習判定手段と
 をさらに含み、
 前記予測式集合学習生成手段が、
 前記再学習判定手段の判定結果に基づいて前記予測式集合を再学習及び再生成する
 付記6又は付記7に記載の情報処理装置。
 (付記9)
 前記情報蓄積手段が、複数の制御対象情報を受信し、蓄積し、
 前記操作量決定手段が、前記複数の制御対象の操作量を決定する
 付記1乃至8のいずれか1つに記載の情報処理装置。
 (付記10)
 前記操作量決定手段が、
 前記予測式集合を所定の規則に従い変換する予測式集合変換手段と、
 前記予測式集合変換手段で変換された予測式集合と前記情報蓄積手段に蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象への操作量を算出する操作量算出手段と
 を含む付記1乃至9のいずれか1つに記載の情報処理装置。
 (付記11)
 前記操作量算出手段が、
 前記予測式集合変換手段で変換された予測式集合と前記情報蓄積手段に蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に前記予測制御モデルを表す数理計画問題を定式化する数理計画問題定式化手段と、
 定式化された前記数理計画問題を計算し、計算結果を前記操作量と決定する数理計画問題計算手段と
 を含む付記10に記載の情報処理装置。
 (付記12)
 前記数理計画問題計算手段の計算結果の良否を判定する操作量良否判定手段と、
 前記操作量良否判定手段の判定結果が良の場合に前記計算結果を前記操作量と決定する操作量選択手段とを含む付記11に記載の情報処理装置。
 (付記13)
 前記操作量選択手段が、
 前記操作量判定手段が複数の計算結果を良と判定した場合に、
 前記入力情報又は所定の規則を基に前記計算結果から前記操作量を選択する
 付記12に記載の情報処理装置。
 (付記14)
 前記操作量良否判定手段が
 前記計算結果をすべて否と判定した場合に、前記数理計画問題定式化手段に再度の定式化を指示する
 付記12又は13に記載の情報処理装置。
 (付記15)
 前記予測式集合学習生成手段が
 前記操作量決定手段が前記操作量を決定する間隔より長い間隔で前記予測式集合を学習及び生成する
 付記1乃至付記14のいずれが1つに記載の情報処理装置。
 (付記16)
 前記予測式集合学習生成手段が、
 前記予測式集合として、
 未来の状態変数又は未来の制御変数を従属変数とする複数の関数を含み、
 一の関数は、従属変数が未来の制御変数であり、独立変数に未来の状態変数及び未来の制御変数を含まず、
 前記一の関数と少なくとも一つの現在以降の操作変数を共通の独立変数とする他の関数を含む
 付記1乃至付記15のいずれか1つに記載の情報処理装置。
 (付記17)
 制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、前記制御対象情報を蓄積し、
 前記蓄積された制御対象情報を基に前記制御対象の操作量の決定に用いる予測式集合を学習及び生成し、
 前記制御対象の操作量の決定に必要な入力情報を受信し、前記予測式集合と前記蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象を制御に用いる操作量を決定する
 予測制御方法。
 (付記18)
 制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、前記制御対象情報を蓄積する処理と、
 前記蓄積された制御対象情報を基に前記制御対象の操作量の決定に用いる予測式集合を学習及び生成する処理と、
 前記制御対象の操作量の決定に必要な入力情報を受信し、前記予測式集合と前記蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象を制御に用いる操作量を決定する処理と
 をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
 (付記19)
 制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する情報蓄積手段と、
 前記情報蓄積手段に蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成する予測式集合学習生成手段、および
 前記制御対象の操作量の決定に必要な入力情報を受信し、前記入力情報と前記情報蓄積手段に蓄積された制御対象情報と前記予測式集合とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる操作量を決定する操作量決定手段と、
 を含む予測制御手段と
 あらかじめ入力された式と前記情報蓄積手段に蓄積された制御対象情報とを元に、前記制御対象の制御に用いられる操作量を決定する固定制御手段と
 前記操作量決定手段の操作量と前記固定制御手段の操作量のいずれか一つを選択する操作量選択手段と
 を含む情報処理装置。
 (付記20)
 前記予測制御手段及び前記固定制御手段のいずれか、又は、両方を複数含み、
 前記操作量選択手段が、
 前記一つ又は複数の予測制御手段及び固定制御手段から出力される操作量からいずれか一つを選択する
 付記19に記載の情報処理装置。
 (付記21)
 前記情報蓄積手段が蓄積する制御対象情報、並びに、前記操作量決定手段及び前記固定制御手段の出力する操作量をユーザに表示する表示手段と、
 前記操作量選択手段が、ユーザが選択した操作量を出力する
 付記19又は付記20に記載の情報処理装置。
  (付記22)
 前記予測式集合学習生成手段が出力する予測式集合と、前記情報蓄積手段が蓄積する制御対象情報とに基づいて予測値を算出する手段と、
 前記予測値と前記情報蓄積手段が蓄積する制御対象情報との差に基づいて予測の誤差を判定する予測誤差判定手段とを含み、
 前記操作量選択手段が、前記予測誤差判定手段の結果を基に、前記予測制御手段と前記固定制御手段から出力される操作量からいずれか一つを選択する
 付記19又は付記20に記載の情報処理装置。
 (付記23)
 前記予測制御手段及び前記操作量決定手段が出力する操作量を基に、あらかじめ入力された評価関数に基づいて評価値を計算し、最も評価値の高い制御量を判断する制御評価手段を含み、
 前記操作量選択手段が、前記制御評価手段の判断の結果を基に前記予測制御手段と固定制御手段から出力される操作量からいずれか一つを選択する
 付記19又は付記20に記載の情報処理装置。
 (付記24)
 前記制御評価手段が、操作に必要なコストを基に判定する
 付記23に記載の情報処理装置。
 (付記25)
 前記制御評価手段が、前記操作量決定手段の操作量の前記固定制御手段の制御量からの外れの量を基に判定する
 付記23に記載の情報処理装置。
 (付記26)
 前記情報蓄積手段が蓄積する制御対象情報と入力情報の目標値との差に基づいて動作を評価する動作評価手段を含み
 前記操作量選択手段が、前記動作評価手段の評価に基づき、前記制御評価手段の結果を基に前記予測制御手段と前記固定制御手段から出力される操作量からいずれか一つを選択する
 付記19又は付記20に記載の情報処理装置。
 (付記27)
 前記予測式集合学習生成部で計算される学習の評価値を基に、評価を行う予測式評価手段を含み、
 前記操作量選択手段部が、前記予測式評価手段の結果に基づいて前記予測制御手段及び前記固定制御手段から出力される操作量からいずれか一つを選択する
 付記19又は付記20に記載の情報処理装置。
 (付記28)
 前記予測式評価手段が、学習の尤もらしさを表す情報量基準を基に評価する
 付記27に記載の情報処理装置。
 (付記29)
 前記予測式集合学習生成部より出力される予測式集合が制御可能な予測式か否かを基に、前記予測式集合を評価する予測式集合評価手段を含み
 前記操作量選択手段が、前記予測式集合評価手段の結果を基に、前記予測制御手段及び前記固定制御手段から出力される操作量からいずれか一つを選択する
 付記19又は付記20に記載の情報処理装置。
 (付記30)
 前記予測式集合評価手段が、予測式に制御量の変数が含まれる数に基づいて評価する
 付記29に記載の情報処理装置。
 (付記31)
 制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積し、
 前記蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成し、
 前記制御対象の操作量の決定に必要な入力情報を受信し、前記入力情報と前記蓄積された制御対象情報と前記予測式集合とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる第1の操作量を決定し、
 前記第1の操作量を出力し、
 あらかじめ入力された式と前記蓄積された制御対象情報とを元に、前記制御対象の制御に用いられる第2の操作量を決定し出力し、
 前記第1の操作量と前記第2の操作量のいずれか一つを選択する
 予測制御方法。
 (付記32)
 制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する処理と、
 前記蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成する処理と、
 前記制御対象の操作量の決定に必要な入力情報を受信し、前記入力情報と前記蓄積された制御対象情報と前記予測式集合とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる第1の操作量を決定する処理と、
 前記第1の操作量を出力する処理と、
 あらかじめ入力された式と前記蓄積された制御対象情報とを元に、前記制御対象の制御に用いられる第2の操作量を決定し出力する処理と、
 前記第1の操作量と前記第2の操作量のいずれか一つを選択する処理と
 をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
 本発明の情報処理装置は、産業プロセスの制御に限らず、建物や居住空間等の環境制御、及び、農林水産業や畜産業等の環境制御に適用できる。また、本発明の情報処理装置は、マニピュレータ、陸上移動体、水上・水中移動体、空中移動体等のアクチュエーションの制御にも適用できる。更に、本発明の情報処理装置は、通信、交通、受発注、金融取引といった用途にも適用可能である。
 100 情報処理システム
 101 情報処理システム
 102 情報処理システム
 600 情報処理装置
 610 CPU
 620 ROM
 630 RAM
 640 内部記憶装置
 650 IOC
 660 入力機器
 670 表示機器
 680 NIC
 700 記憶媒体
 2100 制御対象情報
 2200 入力情報
 2300 操作量
 2400 予測値
 2500 予測式集合
 2501 予測式集合
 2600 蓄積情報
 2700 計算結果
 2800 数理計画問題
 2900 予測誤差
 3000 判定結果
 10000 情報処理装置
 10010 情報処理装置
 10020 情報処理装置
 10030 情報処理装置
 11000 情報蓄積部
 12000 予測式集合学習生成部
 13000 予測式集合格納部
 14000 操作量決定部
 14100 予測式集合変換部
 14200 操作量算出部
 14201 操作量算出部
 14210 数理計画問題定式化部
 14212 制約式生成部
 14214 目的関数生成部
 14216 許容誤差レジスタ
 14217 誤差重み係数レジスタ
 14218 コスト係数レジスタ
 14220 数理計画問題計算部
 14230 操作量良否判定部
 14240 操作量選択部
 15000 予測値算出部
 16000 予測値蓄積部
 17000 予測誤差算出部
 18000 再学習判定部
 20000 周辺環境
 21000 制御対象
 21001 制御対象
 2100n 制御対象
 22000 入力装置
 23000 出力装置
 30000 予測制御部
 31000 固定制御部
 32000 操作量選択部
 33000 表示部
 34000 予測誤差判定部
 35000 操作量評価部
 36000 動作評価部
 37000 予測式評価部

Claims (32)

  1.  制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する情報蓄積手段と、
     前記情報蓄積手段に蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成する予測式集合学習生成手段と、
     前記制御対象の操作量の決定に必要な入力情報を受信し、前記予測式集合と前記情報蓄積手段に蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる操作量を決定する操作量決定手段と、
     含む情報処理装置。
  2.  前記予測式集合が、
     未来の予測制御モデルの状態を表す状態変数又は未来の予測制御モデルの制御対象となる制御変数を従属変数とする二つ以上の予測式を含み、
     前記予測式として、
     独立変数が現在以降の予測制御モデルの操作を表す操作変数を含み、未来の状態変数及び未来の制御変数を含まず、従属変数が未来の制御変数である第一の予測式と、
     少なくとも一つの現在以降の予測制御モデルの操作を表す操作変数を前記第一の予測式と共通の独立変数とする第二の予測式と
     を含む請求項1に記載の情報処理装置。
  3.  前記操作量決定手段が、
     前記入力情報として、前記予測制御モデルにおいて制御の対象となる制御変数に対する設定値又は制約のいずれか又は両方を受信する
     請求項1又は2に記載の情報処理装置。
  4.  前記操作量決定手段が
     前記入力情報として、
     さらに、複数の前記制御変数における重要性を表す優先度を受信する
     請求項3に記載の情報処理装置。
  5.  前記予測集合学習生成手段が生成した予測式集合を格納する予測式集合格納手段をさらに含み、
     前記操作量決定手段が、
     前記制御対象への操作量を決定に、前記予測式集合格納手段に格納された予測式集合を用いる
     請求項1乃至請求項4のいずれか1項に記載の情報処理装置。
  6.  前記予測式集合格納手段に格納された予測式集合と、前記受信した制御対象情報と、前記操作量とを基に、前記制御対象の予測値を算出する予測値算出手段をさらに含む
     請求項1乃至請求項5のいずれか1項に記載の情報処理装置。
  7.  前記予測値算出手段が、
     前記予測値の算出に前記情報蓄積手段に蓄積された制御対象情報を用いる
     請求項6に記載の情報処理装置。
  8.  前記予測値を蓄積する予測値蓄積手段と、
     前記予測値蓄積手段に蓄積された予測値と前記情報蓄積手段に蓄積された制御対象情報とを基に予測誤差を算出する予測誤差算出手段と、
     前記予測誤差を用いて前記予測式集合学習生成手段において再学習するか否か判定する再学習判定手段と
     をさらに含み、
     前記予測式集合学習生成手段が、
     前記再学習判定手段の判定結果に基づいて前記予測式集合を再学習及び再生成する
     請求項6又は請求項7に記載の情報処理装置。
  9.  前記情報蓄積手段が、複数の制御対象情報を受信し、蓄積し、
     前記操作量決定手段が、前記複数の制御対象の操作量を決定する
     請求項1乃至8のいずれか1項に記載の情報処理装置。
  10.  前記操作量決定手段が、
     前記予測式集合を所定の規則に従い変換する予測式集合変換手段と、
     前記予測式集合変換手段で変換された予測式集合と前記情報蓄積手段に蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象への操作量を算出する操作量算出手段と
     を含む請求項1乃至9のいずれか1項に記載の情報処理装置。
  11.  前記操作量算出手段が、
     前記予測式集合変換手段で変換された予測式集合と前記情報蓄積手段に蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に前記予測制御モデルを表す数理計画問題を定式化する数理計画問題定式化手段と、
     定式化された前記数理計画問題を計算し、計算結果を前記操作量と決定する数理計画問題計算手段と
     を含む請求項10に記載の情報処理装置。
  12.  前記数理計画問題計算手段の計算結果の良否を判定する操作量良否判定手段と、
     前記操作量良否判定手段の判定結果が良の場合に前記計算結果を前記操作量と決定する操作量選択手段とを含む請求項11に記載の情報処理装置。
  13.  前記操作量選択手段が、
     前記操作量判定手段が複数の計算結果を良と判定した場合に、
     前記入力情報又は所定の規則を基に前記計算結果から前記操作量を選択する
     請求項12に記載の情報処理装置。
  14.  前記操作量良否判定手段が
     前記計算結果をすべて否と判定した場合に、前記数理計画問題定式化手段に再度の定式化を指示する
     請求項12又は13に記載の情報処理装置。
  15.  前記予測式集合学習生成手段が
     前記操作量決定手段が前記操作量を決定する間隔より長い間隔で前記予測式集合を学習及び生成する
     請求項1乃至請求項14のいずれが1項に記載の情報処理装置。
  16.  前記予測式集合学習生成手段が、
     前記予測式集合として、
     未来の状態変数又は未来の制御変数を従属変数とする複数の関数を含み、
     一の関数は、従属変数が未来の制御変数であり、独立変数に未来の状態変数及び未来の制御変数を含まず、
     前記一の関数と少なくとも一つの現在以降の操作変数を共通の独立変数とする他の関数を含む
     請求項1乃至請求項15のいずれか1項に記載の情報処理装置。
  17.  制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、前記制御対象情報を蓄積し、
     前記蓄積された制御対象情報を基に前記制御対象の操作量の決定に用いる予測式集合を学習及び生成し、
     前記制御対象の操作量の決定に必要な入力情報を受信し、前記予測式集合と前記蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象を制御に用いる操作量を決定する
     予測制御方法。
  18.  制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、前記制御対象情報を蓄積する処理と、
     前記蓄積された制御対象情報を基に前記制御対象の操作量の決定に用いる予測式集合を学習及び生成する処理と、
     前記制御対象の操作量の決定に必要な入力情報を受信し、前記予測式集合と前記蓄積された制御対象情報と前記受信した制御対象情報と前記入力情報とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象を制御に用いる操作量を決定する処理と
     をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
  19.  制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する情報蓄積手段と、
     前記情報蓄積手段に蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成する予測式集合学習生成手段、および、
     前記制御対象の操作量の決定に必要な入力情報を受信し、前記入力情報と前記情報蓄積手段に蓄積された制御対象情報と前記予測式集合とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる第1の操作量を決定する操作量決定手段と、
     を含み前記第1の操作量を出力する予測制御手段と
     あらかじめ入力された式と前記情報蓄積手段に蓄積された制御対象情報とを元に、前記制御対象の制御に用いられる第2の操作量を決定し出力する固定制御手段と、
     前記操作量決定手段の第1の操作量と前記固定制御手段の第2の操作量のいずれか一つを選択する操作量選択手段と
     を含む情報処理装置。
  20.  前記予測制御手段及び前記固定制御手段のいずれか、又は、両方を複数含み、
     前記操作量選択手段が、
     前記一つ又は複数の予測制御手段から出力される第1の操作量及び固定制御手段から出力される第2の操作量の中からいずれか一つを選択する
     請求項19に記載の情報処理装置。
  21.  前記情報蓄積手段が蓄積する制御対象情報、並びに、前記操作量決定手段及び前記固定制御手段の出力する操作量をユーザに表示する表示手段と、
     前記操作量選択手段が、前記予測制御手段から出力される第1の操作量及び前記固定制御手段から出力される第2の操作量の中からユーザが選択した操作量を選択して出力する
     請求項19又は請求項20に記載の情報処理装置。
  22.  前記予測式集合学習生成手段が出力する予測式集合と、前記情報蓄積手段が蓄積する制御対象情報とに基づいて予測値を算出する手段と、
     前記予測値と前記情報蓄積手段が蓄積する制御対象情報との差に基づいて予測の誤差を判定する予測誤差判定手段とを含み、
     前記操作量選択手段が、前記予測誤差判定手段の結果を基に、前記予測制御手段から出力される第1の操作量及び前記固定制御手段から出力される第2の操作量の中からいずれか一つを選択する
     請求項19又は請求項20に記載の情報処理装置。
  23.  前記予測制御手段及び前記操作量決定手段が出力する操作量を基に、あらかじめ入力された評価関数に基づいて評価値を計算し、最も評価値の高い制御量を判断する制御評価手段を含み、
     前記操作量選択手段が、前記制御評価手段の判断の結果を基に前記予測制御手段から出力される第1の操作量及び前記固定制御手段から出力される第2の操作量の中からいずれか一つを選択する
     請求項19又は請求項20に記載の情報処理装置。
  24.  前記制御評価手段が、操作に必要なコストを基に判定する
     請求項23に記載の情報処理装置。
  25.  前記制御評価手段が、前記操作量決定手段から出力される第1の操作量の前記固定制御手段の制御量からの外れの量を基に判定する
     請求項23に記載の情報処理装置。
  26.  前記情報蓄積手段が蓄積する制御対象情報と入力情報の目標値との差に基づいて動作を評価する動作評価手段を含み
     前記操作量選択手段が、前記動作評価手段の評価に基づき、前記制御評価手段の結果を基に前記予測制御手段から出力される第1の操作量と前記固定制御手段から出力される第2の操作量の中からいずれか一つを選択する
     請求項19又は請求項20に記載の情報処理装置。
  27.  前記予測式集合学習生成手段で計算される学習の評価値を基に、評価を行う予測式評価手段を含み、
     前記操作量選択手段が、前記予測式評価手段の結果に基づいて前記予測制御手段から出力される第1の操作量及び前記固定制御手段から出力される第2の操作量の中からいずれか一つを選択する
     請求項19又は請求項20に記載の情報処理装置。
  28.  前記予測式評価手段が、学習の尤もらしさを表す情報量基準を基に評価する
     請求項27に記載の情報処理装置。
  29.  前記予測式集合学習生成手段より出力される予測式集合が制御可能な予測式か否かを基に、前記予測式集合を評価する予測式集合評価手段を含み
     前記操作量選択手段が、前記予測式集合評価手段の結果を基に、前記予測制御手段から出力される第1の操作量及び前記固定制御手段から出力される第2の操作量の中からいずれか一つを選択する
     請求項19又は請求項20に記載の情報処理装置。
  30.  前記予測式集合評価手段が、予測式に制御量の変数が含まれる数に基づいて評価する
     請求項29に記載の情報処理装置。
  31.  制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積し、
     前記蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成し、
     前記制御対象の操作量の決定に必要な入力情報を受信し、前記入力情報と前記蓄積された制御対象情報と前記予測式集合とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる第1の操作量を決定し、
     前記第1の操作量を出力し、
     あらかじめ入力された式と前記蓄積された制御対象情報とを元に、前記制御対象の制御に用いられる第2の操作量を決定し出力し、
     前記第1の操作量と前記第2の操作量のいずれか一つを選択する
     予測制御方法。
  32.  制御対象及び前記制御対象を含む周辺環境に関する情報を含む制御対象情報を受信し、蓄積する処理と、
     前記蓄積された制御対象情報を基に前記制御対象に対する操作量の決定に用いる予測式集合を学習及び生成する処理と、
     前記制御対象の操作量の決定に必要な入力情報を受信し、前記入力情報と前記蓄積された制御対象情報と前記予測式集合とを基に、前記制御対象の予測制御モデルを構築して、前記制御対象の制御に用いられる第1の操作量を決定する処理と、
     前記第1の操作量を出力する処理と、
     あらかじめ入力された式と前記蓄積された制御対象情報とを元に、前記制御対象の制御に用いられる第2の操作量を決定し出力する処理と、
     前記第1の操作量と前記第2の操作量のいずれか一つを選択する処理と
     をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2014/002441 2013-09-12 2014-05-08 情報処理装置、予測制御方法及び記録媒体 WO2015037165A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/914,761 US10048658B2 (en) 2013-09-12 2014-05-08 Information processing device, predictive control method, and recording medium
JP2015536422A JPWO2015037165A1 (ja) 2013-09-12 2014-05-08 情報処理装置、予測制御方法、及び、プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-189500 2013-09-12
JP2013189500 2013-09-12

Publications (1)

Publication Number Publication Date
WO2015037165A1 true WO2015037165A1 (ja) 2015-03-19

Family

ID=52665302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002441 WO2015037165A1 (ja) 2013-09-12 2014-05-08 情報処理装置、予測制御方法及び記録媒体

Country Status (3)

Country Link
US (1) US10048658B2 (ja)
JP (1) JPWO2015037165A1 (ja)
WO (1) WO2015037165A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030137A (ja) * 2015-07-31 2017-02-09 ファナック株式会社 人の行動パターンを学習する機械学習装置、ロボット制御装置、ロボットシステム、および機械学習方法
JP2020194453A (ja) * 2019-05-29 2020-12-03 メタウォーター株式会社 モデル予測制御システム、情報処理装置、プログラム、及びモデル予測制御方法
JP2020197967A (ja) * 2019-06-04 2020-12-10 メタウォーター株式会社 モデル予測制御システム、情報処理装置、プログラム、及びモデル予測制御方法
US11216733B2 (en) 2017-11-20 2022-01-04 Electronics And Telecommunications Research Institute Self-evolving agent-based simulation system and method thereof
JP2022065773A (ja) * 2020-10-16 2022-04-28 横河電機株式会社 制御装置、コントローラ、制御システム、制御方法、および制御プログラム
US11400954B2 (en) 2016-06-09 2022-08-02 Nec Corporation Vehicle control system, vehicle control method, and program recording medium
US11780095B2 (en) 2015-07-31 2023-10-10 Fanuc Corporation Machine learning device, robot system, and machine learning method for learning object picking operation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517762B2 (ja) * 2016-08-23 2019-05-22 ファナック株式会社 人とロボットが協働して作業を行うロボットの動作を学習するロボットシステム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05120256A (ja) * 1991-10-29 1993-05-18 Toshiba Corp モデル予測制御装置
JPH05303406A (ja) * 1992-04-28 1993-11-16 Hitachi Ltd 定性推論予測制御方法
JPH05324007A (ja) * 1992-05-18 1993-12-07 Yokogawa Electric Corp プロセス制御装置
JPH1153005A (ja) * 1997-08-04 1999-02-26 Nippon Steel Corp 制御系におけるモデルパラメータの学習方法
JP2005118959A (ja) * 2003-10-17 2005-05-12 Toyoda Mach Works Ltd 作業支援装置、作業支援方法、位置決め作業支援装置およびパワーアシスト作業支援装置
JP2011118786A (ja) * 2009-12-04 2011-06-16 Sony Corp 情報処理装置、観測値予測方法、及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663703A (en) * 1985-10-02 1987-05-05 Westinghouse Electric Corp. Predictive model reference adaptive controller
US5519605A (en) * 1994-10-24 1996-05-21 Olin Corporation Model predictive control apparatus and method
EP2297618B1 (en) * 2008-06-12 2019-12-11 Valmet Automation, Inc. Method and apparatus for reel building and roll runnability in moving web manufacturing
US8504175B2 (en) * 2010-06-02 2013-08-06 Honeywell International Inc. Using model predictive control to optimize variable trajectories and system control
US8711211B2 (en) * 2010-06-14 2014-04-29 Howard Hughes Medical Institute Bessel beam plane illumination microscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05120256A (ja) * 1991-10-29 1993-05-18 Toshiba Corp モデル予測制御装置
JPH05303406A (ja) * 1992-04-28 1993-11-16 Hitachi Ltd 定性推論予測制御方法
JPH05324007A (ja) * 1992-05-18 1993-12-07 Yokogawa Electric Corp プロセス制御装置
JPH1153005A (ja) * 1997-08-04 1999-02-26 Nippon Steel Corp 制御系におけるモデルパラメータの学習方法
JP2005118959A (ja) * 2003-10-17 2005-05-12 Toyoda Mach Works Ltd 作業支援装置、作業支援方法、位置決め作業支援装置およびパワーアシスト作業支援装置
JP2011118786A (ja) * 2009-12-04 2011-06-16 Sony Corp 情報処理装置、観測値予測方法、及びプログラム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030137A (ja) * 2015-07-31 2017-02-09 ファナック株式会社 人の行動パターンを学習する機械学習装置、ロボット制御装置、ロボットシステム、および機械学習方法
US10807235B2 (en) 2015-07-31 2020-10-20 Fanuc Corporation Machine learning device, robot controller, robot system, and machine learning method for learning action pattern of human
US11780095B2 (en) 2015-07-31 2023-10-10 Fanuc Corporation Machine learning device, robot system, and machine learning method for learning object picking operation
US11904469B2 (en) 2015-07-31 2024-02-20 Fanuc Corporation Machine learning device, robot controller, robot system, and machine learning method for learning action pattern of human
US11400954B2 (en) 2016-06-09 2022-08-02 Nec Corporation Vehicle control system, vehicle control method, and program recording medium
US11216733B2 (en) 2017-11-20 2022-01-04 Electronics And Telecommunications Research Institute Self-evolving agent-based simulation system and method thereof
JP2020194453A (ja) * 2019-05-29 2020-12-03 メタウォーター株式会社 モデル予測制御システム、情報処理装置、プログラム、及びモデル予測制御方法
JP7287835B2 (ja) 2019-05-29 2023-06-06 メタウォーター株式会社 モデル予測制御システム、情報処理装置、プログラム、及びモデル予測制御方法
JP2020197967A (ja) * 2019-06-04 2020-12-10 メタウォーター株式会社 モデル予測制御システム、情報処理装置、プログラム、及びモデル予測制御方法
JP7353804B2 (ja) 2019-06-04 2023-10-02 メタウォーター株式会社 モデル予測制御システム、情報処理装置、プログラム、及びモデル予測制御方法
JP2022065773A (ja) * 2020-10-16 2022-04-28 横河電機株式会社 制御装置、コントローラ、制御システム、制御方法、および制御プログラム
JP7342833B2 (ja) 2020-10-16 2023-09-12 横河電機株式会社 制御装置、コントローラ、制御システム、制御方法、および制御プログラム

Also Published As

Publication number Publication date
US10048658B2 (en) 2018-08-14
JPWO2015037165A1 (ja) 2017-03-02
US20160209817A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
WO2015037165A1 (ja) 情報処理装置、予測制御方法及び記録媒体
Mustafaraj et al. Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office
Li et al. Predication control for indoor temperature time-delay using Elman neural network in variable air volume system
Kumar et al. A novel hybrid model based on particle swarm optimisation and extreme learning machine for short-term temperature prediction using ambient sensors
EP3200038A1 (en) Model evaluation device, model evaluation method, and program recording medium
Zou et al. Model predictive control based on particle swarm optimization of greenhouse climate for saving energy consumption
Yiu et al. Multiple ARMAX modeling scheme for forecasting air conditioning system performance
Özbek et al. Design of an optimal fractional fuzzy gain-scheduled Smith Predictor for a time-delay process with experimental application
CN104049598B (zh) 线性和非线性系统的基于确定性优化的控制系统及方法
Han et al. A review of reinforcement learning methodologies on control systems for building energy
Ellis Machine learning enhanced grey-box modeling for building thermal modeling
Di Natale et al. Lessons learned from data-driven building control experiments: Contrasting gaussian process-based mpc, bilevel deepc, and deep reinforcement learning
Homod et al. Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent
Stoffel et al. Real-life data-driven model predictive control for building energy systems comparing different machine learning models
Wang et al. Globally optimal nonlinear model predictive control based on multi-parametric disaggregation
WO2016203757A1 (ja) 制御装置、それを使用する情報処理装置、制御方法、並びにコンピュータ・プログラムが格納されているコンピュータ読み取り可能な記憶媒体
Revati et al. Facilitating energy-efficient operation of smart building using data-driven approaches
Lee et al. On-policy learning-based deep reinforcement learning assessment for building control efficiency and stability
Kontes et al. Adaptive-fine tuning of building energy management systems using co-simulation
Tan et al. Performance-based control system design automation via evolutionary computing
Schepers et al. Autonomous building control using offline reinforcement learning
Ji et al. Identification and predictive control for a circulation fluidized bed boiler
Dey et al. Reinforcement Learning Building Control: An Online Approach With Guided Exploration Using Surrogate Models
JP7060130B1 (ja) 運用支援装置、運用支援方法及びプログラム
Javed et al. Modelling and optimization of residential heating system using random neural networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536422

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914761

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844330

Country of ref document: EP

Kind code of ref document: A1