WO2015036717A1 - Joint d'étanchéité à grande amplitude de déplacement - Google Patents

Joint d'étanchéité à grande amplitude de déplacement Download PDF

Info

Publication number
WO2015036717A1
WO2015036717A1 PCT/FR2014/052291 FR2014052291W WO2015036717A1 WO 2015036717 A1 WO2015036717 A1 WO 2015036717A1 FR 2014052291 W FR2014052291 W FR 2014052291W WO 2015036717 A1 WO2015036717 A1 WO 2015036717A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
tubular body
lip
turbojet engine
protrusion
Prior art date
Application number
PCT/FR2014/052291
Other languages
English (en)
Inventor
Fabrice Provost
Original Assignee
Aircelle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle filed Critical Aircelle
Publication of WO2015036717A1 publication Critical patent/WO2015036717A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/021Sealings between relatively-stationary surfaces with elastic packing
    • F16J15/022Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material
    • F16J15/024Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material the packing being locally weakened in order to increase elasticity
    • F16J15/027Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material the packing being locally weakened in order to increase elasticity and with a hollow profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings

Definitions

  • the invention relates to a large displacement gasket intended to be interposed between a turbojet engine and a nacelle of an aircraft.
  • An aircraft is propelled by one or more turbojet engines each housed in a nacelle; each nacelle also houses a set of ancillary actuating devices related to its operation and providing various functions when the turbojet engine is in operation or stopped.
  • a nacelle generally has a tubular structure comprising:
  • a rear section 20 which may possibly carry thrust reverser means and intended to surround the combustion chamber of the turbojet engine 14, and
  • Modern nacelles are often intended to house a turbofan engine capable of generating through the blades of the rotating fan a flow of hot air (also called primary flow) from the combustion chamber of the turbojet engine.
  • a nacelle generally has an external structure, called Outer Fixed Structure (OFS), which defines, with a concentric internal structure, called Inner Fixed Structure (IFS), comprising a cover surrounding the structure of the turbojet itself behind the fan, a annular flow channel, also called vein, for channeling a cold air flow, said secondary, which circulates outside the turbojet engine.
  • OFS Outer Fixed Structure
  • IFS Inner Fixed Structure
  • the primary and secondary flows are ejected from the turbojet engine from the rear of the nacelle.
  • Each propulsion unit of the aircraft is thus formed by a nacelle and a turbojet, and is suspended from a fixed structure of the aircraft, for example under a wing or on the fuselage, by means of a pylon or a mast attached to the turbojet engine or to the nacelle.
  • the rear section of the external structure of the nacelle is usually formed of two covers (reference 24 in Figure 1 of this request) of substantially semicylindrical shape, on either side of a longitudinal vertical plane of symmetry of the nacelle, and movably mounted so as to be able to deploy between an operating position and a maintenance position which gives access to the turbojet engine.
  • the two covers are generally pivotally mounted about a longitudinal hinge axis in the upper part of the inverter (upper connecting line, 12 hours).
  • the covers are held in the closed position by means of locks arranged along a junction line located at the bottom (at 6 o'clock).
  • a propulsion unit incorporates functional units that have relative motions and between which the tightness must be managed.
  • the nacelle is designed and dimensioned for a secondary ducted channel that exerts pressure on its internal structure.
  • the nacelle is not designed to cope with a scooping of the flow constituting the secondary vein towards the turbojet engine. Significant scooping can lead to tearing of the internal structure of the nacelle.
  • the two covers are each animated axial and radial movements relative to the turbojet engine.
  • a seal interposed between a hood and the turbojet must therefore create a sealing barrier regardless of the relative position of a hood relative to the turbojet engine.
  • this type of omega seal should have a diameter incompatible with the space defined between the hoods and the turbojet engine.
  • the seal described in FR-2920215-A1 comprises a generally cylindrical radial section body and two flexible lips which extend radially from a generatrix of the cylindrical body.
  • the lips make it possible to extend the amplitude of the joint without the body of the latter being oversized.
  • this type of seal for turbojet engine nacelle is generally made of elastically deformable material, such as silicone, reinforced with glass fabric, to withstand the significant stresses and high temperatures to which the seal is subjected.
  • the manufacture of such a seal can be achieved by means of a core on which layers of fiberglass cloth are arranged to obtain the desired shape of the seal.
  • a disadvantage of this type of joint is the difficulty of manufacturing the two lips protruding radially according to the method described above.
  • the lips are draped at the same time as the tubular portion of the seal.
  • the draping operations of these lips are complex to implement, and often result in imperfections of draping at the end of the lips, or a poor behavior of the joint fire.
  • the present invention aims to remedy all or part of the disadvantages mentioned above.
  • An object of the present invention is to improve the seal between a hood of a rear part of a nacelle and of a turbojet engine in an aircraft propulsion unit when these are likely to experience relatively large displacements. amplitudes.
  • the invention aims to provide a seal whose manufacture has limited difficulties.
  • the invention proposes a seal designed to be interposed between a hood of a rear section of a nacelle and a turbojet engine of a propulsion unit of an aircraft, the seal comprising:
  • tubular body which extends axially and which delimits a first internal cavity
  • a fixation sole which is integral with the tubular body, said seal being remarkable that it comprises an outgrowth which extends generally radially from the tubular body and which forms a first lip and a second lip, the outgrowth delimiting a second internal cavity.
  • Such a design allows the seal to form a sealed barrier between the hood and the turbojet engine in case of large relative displacement of these two elements.
  • the seal is obtained by crushing the seal, in particular by crushing both lips.
  • the second cavity delimited by the protrusion makes it possible to improve the crushing of the two lips which are formed by the protuberance.
  • the coefficient of stiffness of the outgrowth of said seal is lower than the coefficient of stiffness of the tubular body of said seal.
  • the seal according to the invention can have a ratio of maximum bulk / material thickness greater than 10, or even greater than 15.
  • the maximum size is defined by the distance between the end of the two lips and the bearing surface of the sole, and the thickness of material is defined by the thickness of the seal, at its tubular body or at the level from his lips.
  • many seals of the prior art have a material thickness important for a maximum size that can be of the same order of magnitude as that of the joint according to the invention, so that the ratio cited above, for the joints of the prior art, is generally of the order of 5.
  • this high ratio of the seal according to the invention allows a very strong crushing said seal.
  • the second internal cavity delimited by the outgrowth and the first internal cavity delimited by the tubular body communicate with each other to form a single volume.
  • Such a design allows the protrusion and the tubular body of the seal around a core during a single operation of embedding the core or molding.
  • the first lip and the second lip each have a substantially triangular cross section decreasing towards the outside of the seal.
  • This characteristic makes it possible to create a double sealing barrier.
  • tubular body and the protrusion are delimited by an envelope that has a generally constant thickness, which promotes the realization of the seal around a core.
  • the seal has a plane of symmetry of general design, the first lip and the second lip being arranged symmetrically on either side of said plane of symmetry.
  • the protrusion is diametrically opposed to the sole.
  • the tubular body has a radial section of generally circular shape.
  • the sole has a generally rectilinear radial section.
  • the seal is made of elastically deformable material of the silicone type armed with fibers.
  • the present invention also relates to a propulsion unit for an aircraft comprising a nacelle surrounding a turbojet, said nacelle comprising:
  • FIG. 1 is an exploded perspective view, which illustrates an aircraft propulsion system comprising a nacelle and a turbojet engine;
  • FIG. 2 is a partial perspective view, which illustrates a rear half section of a nacelle, showing the locations of the joints according to the invention
  • FIG. 3 is an enlarged view of detail of the window III of FIG. 2;
  • FIG. 4 is a cross-sectional view of an embodiment of a seal according to the invention.
  • FIG. 5 is a cross-sectional view which illustrates a first alternative embodiment of the seal according to the invention.
  • FIG. 6 is a cross-sectional view which illustrates a second embodiment of the seal according to the invention.
  • FIG. 1 shows an aircraft propulsion unit 10 comprising a nacelle 12 and a turbojet engine 14.
  • the nacelle 12 comprises from upstream to downstream in the direction of flow of the air, an air inlet 16 arranged in front of the turbojet engine 14, a median section 18 intended to surround a fan of the turbojet engine 14, a rear section 20 designed to surround the chamber of combustion of the turbojet engine 14 and an exhaust nozzle 22 whose output is arranged downstream of the turbojet engine 14.
  • the rear section 20 of the nacelle 12 comprises two mobile covers 24 which are each equipped with a seal 26 according to the invention.
  • the seal 26 comprises a tubular body 28 which extends axially along a longitudinal axis A and which defines a first internal cavity 30.
  • the seal 26 has a plane P of symmetry of general design which extends vertically, with reference to FIG. 4.
  • the tubular body 28 has a radial section of generally circular shape at rest, the tubular body 28 being designed to deform by crushing by adopting a substantially ovoid radial section.
  • seal 26 is equipped with a sole 32 of transverse attachment which is integral with the tubular body 28 and which has a generally straight radial section.
  • the sole 32 is intended to be fixed, for example by gluing, to a bearing surface 44 of each rear cover 24 of the rear section 20 of the nacelle 12.
  • the seal 26 comprises an outgrowth 34 which extends generally radially from the tubular body 28.
  • the protrusion 34 is diametrically opposed to the sole 32, as shown in FIG. 4. It should however be noted that the joint according to the invention is not limited to this embodiment of the protrusion. For this purpose, the protrusion 34 may not be diametrically opposed to sole 32.
  • the protrusion 34 forms a first lip 36a and a second lip 36b which are arranged symmetrically on either side of the plane P of symmetry. According to an alternative not shown in the figures, the first and second lips are not symmetrical with respect to the plane P.
  • Each lip 36a, 36b extends generally radially protruding from the tubular body 28 so as to cooperate with a sealing face of the casing of the turbocharger 14.
  • the first lip 36a and the second lip 36b each have a substantially triangular cross-section decreasing outwardly of the gasket 26.
  • the first and second lips 36a and 36b may have any other form of cross section, not exactly triangular.
  • the protrusion 34 delimits a second internal cavity 38.
  • the second internal cavity 38 delimited by the protrusion 34 and the first internal cavity 30 delimited by the tubular body 28 communicate with each other to form a single volume.
  • tubular body 28 and the protrusion 34 of the seal 26 are delimited by a casing 40 which has a generally constant thickness.
  • Such a design makes it possible to simultaneously manufacture the lips 36a, 36b and the tubular body 28 of the seal 26 by molding, for example by means of a core (not shown) covered by an elastically deformable material.
  • the material used to make the seal is of the fiber-reinforced silicone type, such as glass or aramid fibers, for example.
  • the second internal cavity 38 delimited by the protrusion 34 and the first internal cavity 30 delimited by the tubular body 28 are separated from each other by a membrane 42.
  • the tubular body 28 has a radial section of generally complex accordion-type shape, comprising two outgoing sharp angles 43 arranged on either side of the plane P of symmetry.
  • the tubular body 28 according to the second embodiment of the invention can form a succession of sharp angles 43 to form an accordion body.
  • the seal 26 is provided to be reported and glued on a bearing surface 44 of each rear cover 24 of the rear section 20 of the nacelle 12.
  • each of the two hoods 24 can experience large amplitude movements in a radial direction but also in an axial direction with respect to the turbojet engine 14.
  • the seal 26 according to the invention therefore makes it possible in any circumstance to maintain a contact and thus to create a tight barrier between the casing of the turbojet engine 14 and the associated hood 24, even when the radial amplitude is maximum.
  • the stiffness coefficient of the protrusion 34 is smaller than the stiffness coefficient of the tubular body 28 of said seal.
  • the seal 16 has a maximum space ratio / material thickness greater than 10, or even greater than 15.
  • the maximum size is defined by the distance between the end of the lips 36a, 36b and the bearing face of the sole 32, and the thickness of material is defined by the thickness of the seal, at its tubular body or at its lips.
  • the seal 26 offers a high crushing capacity which is reflected, at first, by a radial bending of the two lips 36a, 36b; in a second step, when the radial amplitude increases as a result of the movement of the cover 24 relative to the turbojet engine 14, the body 28 of the seal 26 is liable to collapse.
  • the seal 26 maintains the seal with its two lips 36a, 36b which are likely to follow the movements of the cover 24 associated.
  • the invention thus provides a seal 26 which makes it possible to maintain a tight barrier between two elements which are capable of experiencing relative displacements of great amplitude, the envelope of this seal 26, ie the volume within which the seal 26 is likely to evolve, however remains limited.
  • the seal according to the invention thus makes it possible to prevent scooping of the secondary vein towards the turbojet engine 14.
  • the geometric shape of the protrusion 34 may vary, the protrusion may adopt a radial section with more rounded contours for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Gasket Seals (AREA)

Abstract

La présente invention concerne un joint d'étanchéité (26) conçu pour être interposé entre un capot d'une section arrière d'une nacelle et un turboréacteur d'un ensemble propulsif d'un aéronef, le joint d'étanchéité (26) comportant un corps tubulaire (28) qui s'étend axialement et qui délimite une première cavité interne (30), et une semelle (32) de fixation qui est solidaire du corps tubulaire(28). Le joint d'étanchéité (26) selon l'invention est remarquable en ce qu'il comporte une excroissance (34) qui s'étend globalement radialement depuis le corps tubulaire (28) et qui forme une première lèvre (36a) et une seconde lèvre (36b), l'excroissance (34) délimitant une seconde cavité interne (38).

Description

Joint d'étanchéité à grande amplitude de déplacement
L'invention concerne un joint d'étanchéité à grande amplitude de déplacement destiné à être interposé entre un turboréacteur et une nacelle d'un aéronef.
Un aéronef est propulsé par un ou plusieurs turboréacteurs logés chacun dans une nacelle ; chaque nacelle abrite également un ensemble de dispositifs d'actionnement annexes liés à son fonctionnement et assurant diverses fonctions lorsque le turboréacteur est en fonctionnement ou à l'arrêt.
Comme le montre la figure 1 , une nacelle présente généralement une structure tubulaire comprenant :
- une entrée d'air 16 en avant d'un turboréacteur 14,
- une section médiane 18 destinée à entourer une soufflante du turboréacteur 14,
- une section arrière 20 pouvant éventuellement embarquer des moyens d'inversion de poussée et destinée à entourer la chambre de combustion du turboréacteur 14, et
- une tuyère d'éjection 22 dont la sortie est située en aval du turboréacteur.
Les nacelles modernes sont souvent destinées à abriter un turboréacteur double flux apte à générer par l'intermédiaire des pales de la soufflante en rotation un flux d'air chaud (également appelé flux primaire) issu de la chambre de combustion du turboréacteur. Une nacelle présente généralement une structure externe, dite Outer Fixed Structure (OFS), qui définit, avec une structure interne concentrique, dite Inner Fixed Structure (IFS), comportant un capot entourant la structure du turboréacteur proprement dite en arrière de la soufflante, un canal annulaire d'écoulement, encore appelé veine, visant à canaliser un flux d'air froid, dit secondaire, qui circule à l'extérieur du turboréacteur. Les flux primaire et secondaire sont éjectés du turboréacteur par l'arrière de la nacelle.
Chaque ensemble propulsif de l'avion est ainsi formé par une nacelle et un turboréacteur, et est suspendu à une structure fixe de l'avion, par exemple sous une aile ou sur le fuselage, par l'intermédiaire d'un pylône ou d'un mât rattaché au turboréacteur ou à la nacelle.
La section arrière de la structure externe de la nacelle est usuellement formée de deux capots (référence 24 sur la figure 1 de la présente demande) de forme sensiblement hémicylindrique, de part et d'autre d'un plan vertical longitudinal de symétrie de la nacelle, et montés mobiles de manière à pouvoir se déployer entre une position de fonctionnement et une position de maintenance qui donne accès au turboréacteur.
Les deux capots sont généralement montés pivotants autour d'un axe longitudinal formant charnière en partie supérieure de l'inverseur (ligne de jonction supérieure, à 12 heures).
Les capots sont maintenus en position de fermeture au moyen de verrous disposés le long d'une ligne de jonction située en partie inférieure (à 6 heures).
On constate donc qu'un ensemble propulsif d'avion intègre des sous ensembles fonctionnels qui possèdent des mouvements relatifs et entre lesquels il convient de gérer l'étanchéité.
En particulier, il importe que les deux capots qui entourent le turboréacteur et qui délimitent la veine secondaire sur une partie de son parcours canalisent cette veine secondaire sans fuite vers le turboréacteur.
Il est particulièrement important de créer une barrière d'étanchéité entre la partie amont de chaque capot et le turboréacteur pour prévenir toute fuite de la veine secondaire vers le turboréacteur. Une telle fuite est particulièrement néfaste.
En effet, la nacelle est conçue et dimensionnée pour une veine secondaire canalisée qui exerce une pression sur sa structure interne. En revanche, la nacelle n'est pas conçue pour faire face à un écopage du flux constituant la veine secondaire vers le turboréacteur. Un écopage important peut conduire à un arrachement de la structure interne de la nacelle.
Cependant, l'étanchéité entre les deux capots et le turboréacteur présente une problématique particulière.
Tout d'abord, les deux capots sont chacun animés de mouvements axiaux et radiaux par rapport au turboréacteur.
Ensuite, compte tenu de la grande dimension des pièces, les deux capots peuvent en fonctionnement connaître des déplacements importants. Un joint interposé entre un capot et le turboréacteur doit donc créer une barrière d'étanchéité quelle que soit la position relative d'un capot par rapport au turboréacteur.
Or, compte tenu du coefficient d'écrasement des joints connus et de l'amplitude du déplacement dont il convient d'assurer l'étanchéité, il s'avère que les joints connus à section transversale tubulaire généralement en oméga ne peuvent pas valablement assurer cette étanchéité.
En effet, ce type de joint en oméga devrait présenter un diamètre incompatible avec l'espace délimité entre les capots et le turboréacteur.
On connaît un type de joint à grande amplitude de déplacement, décrit et représenté dans le document FR-2920215-A1 , qui permet d'assurer une étanchéité efficace.
A cet effet, le joint décrit dans le document FR-2920215-A1 comporte un corps de section radiale globalement cylindrique et deux lèvres souples qui s'étendent radialement depuis une génératrice du corps cylindrique.
Les lèvres permettent d'étendre l'amplitude du joint sans que le corps de ce dernier soit surdimensionné.
Toutefois, ce type de joint d'étanchéité pour nacelle de turboréacteur est généralement réalisé en matière déformable élastiquement, comme du silicone, armé de tissu de verre, pour résister aux contraintes importantes et aux températures élevées auxquelles le joint est soumis.
La fabrication d'un tel joint d'étanchéité peut être réalisée au moyen d'un noyau sur lequel des couches de tissus de fibres de verre sont disposées pour obtenir la forme désirée du joint d'étanchéité.
Un inconvénient de ce type de joint est la difficulté de fabrication des deux lèvres saillantes radialement selon la méthode décrite ci-dessus.
En effet, les lèvres sont drapées en même temps que la partie tubulaire du joint. Toutefois, les opérations de drapage de ces lèvres sont complexes à mettre en œuvre, et entraînent fréquemment des imperfections de drapage au niveau de l'extrémité des lèvres, ou encore une mauvaise tenue du joint au feu.
La présente invention a pour but de remédier à tout ou partie des inconvénients évoqués précédemment.
Un but de la présente invention est d'améliorer l'étanchéité entre un capot d'une partie arrière d'une nacelle et d'un turboréacteur dans un ensemble propulsif d'aéronef lorsque ceux-ci sont susceptibles de connaître des déplacements relatifs de grandes amplitudes.
De plus, l'invention vise à proposer un joint d'étanchéité dont la fabrication présente des difficultés limitées. A cet effet, l'invention propose un joint d'étanchéité conçu pour être interposé entre un capot d'une section arrière d'une nacelle et un turboréacteur d'un ensemble propulsif d'un aéronef, le joint d'étanchéité comportant :
- un corps tubulaire qui s'étend axialement et qui délimite une première cavité interne, et
- une semelle de fixation qui est solidaire du corps tubulaire, ledit joint d'étanchéité étant remarquable qu'il comporte une excroissance qui s'étend globalement radialement depuis le corps tubulaire et qui forme une première lèvre et une seconde lèvre, l'excroissance délimitant une seconde cavité interne.
Une telle conception permet au joint d'étanchéité de former une barrière étanche entre le capot et le turboréacteur en cas de déplacement relatif de grande amplitude de ces deux éléments.
L'étanchéité est obtenue par l'écrasement du joint, notamment par l'écrasement des deux lèvres.
Avantageusement, la seconde cavité délimitée par l'excroissance permet d'améliorer l'écrasement des deux lèvres qui sont formées par l'excroissance.
Selon une caractéristique particulièrement intéressante du joint selon l'invention, le coefficient de raideur de l'excroissance dudit joint est inférieur au coefficient de raideur du corps tubulaire dudit joint.
Cela permet d'obtenir un écrasement du joint en deux temps et limitant sensiblement l'écrasement du corps tubulaire du joint par rapport aux joints de l'art antérieur. En limitant de la sorte l'écrasement du corps tubulaire du joint lorsque le joint est soumis à compression, on évite que le joint n'atteigne sa déformation plastique, ce qui permet de conserver les propriétés d'étanchéité du joint.
De plus, de façon tout à fait avantageuse, le joint selon l'invention peut posséder un ratio encombrement maximum/épaisseur de matière supérieur à 10, voire même supérieur à 15.
L'encombrement maximum est défini par la distance entre l'extrémité des deux lèvres et la face d'appui de la semelle, et l'épaisseur de matière est définie par l'épaisseur du joint, au niveau de son corps tubulaire ou au niveau de ses lèvres. A l'inverse, de nombreux joints de l'art antérieur présentent une épaisseur de matière importante pour un encombrement maximum pouvant être du même ordre de grandeur que celui du joint selon l'invention, si bien que le ratio précité, pour les joints de l'art antérieur, est généralement de l'ordre de 5. Ainsi, ce ratio élevé du joint selon l'invention permet un très fort écrasement dudit joint. Selon une autre caractéristique, la seconde cavité interne délimitée par l'excroissance et la première cavité interne délimitée par le corps tubulaire communiquent entre elles pour former un volume unique.
Une telle conception permet de réaliser l'excroissance et le corps tubulaire du joint autour d'un noyau au cours d'une unique opération d'enrobage du noyau ou de moulage.
Selon une disposition préférée de l'invention, la première lèvre et la seconde lèvre présentent chacune une section transversale sensiblement triangulaire décroissante vers l'extérieur du joint d'étanchéité.
Cette caractéristique permet de créer une double barrière d'étanchéité.
Aussi, le corps tubulaire et l'excroissance sont délimités par une enveloppe qui présente une épaisseur globalement constante, ce qui favorise la réalisation du joint autour d'un noyau.
De préférence, le joint d'étanchéité présente un plan de symétrie de conception générale, la première lèvre et la seconde lèvre étant agencées symétriquement de part et d'autre dudit plan de symétrie.
En outre, l'excroissance est diamétralement opposée à la semelle. Selon un exemple de réalisation préféré, le corps tubulaire présente une section radiale de forme globalement circulaire.
De même, la semelle présente une section radiale globalement rectiligne.
Enfin, le joint d'étanchéité est réalisé en matière déformable élastiquement du type silicone armé de fibres.
La présente invention concerne également un ensemble propulsif pour aéronef comprenant une nacelle entourant un turboréacteur, ladite nacelle comprenant :
- une entrée d'air en avant du turboréacteur,
une section médiane entourant une soufflante du turboréacteur, une section arrière abritant des moyens d'inversion de poussée, comprenant au moins un capot mobile et entourant la chambre de combustion du turboréacteur, ledit ensemble étant remarquable en ce qu'il comprend au moins un joint d'étanchéité selon l'une quelconque des revendications 1 à 10, interposé entre ledit capot et ledit turboréacteur. D'autres caractéristiques, buts et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :
- la figure 1 est une vue éclatée en perspective, qui illustre un ensemble propulsif d'aéronef comprenant une nacelle et un turboréacteur ;
- la figure 2 est une vue partielle en perspective, qui illustre une demi section arrière d'une nacelle, montrant les emplacements des joints selon l'invention ;
- la figure 3 est une vue agrandie de détail de la fenêtre III de la figure 2 ;
- la figure 4 est une vue en coupe transversale d'une forme de réalisation d'un joint d'étanchéité selon l'invention ;
- la figure 5 est une vue en coupe transversale qui illustre une première variante de réalisation du joint selon l'invention ;
- la figure 6 est une vue en coupe transversale qui illustre une seconde variante de réalisation du joint selon l'invention.
Dans la description et les revendications, on utilisera à titre non limitatif la terminologie longitudinal, vertical et transversal en référence au trièdre L, V, T indiqué aux figures.
A noter que dans la présente demande de brevet, les termes
« axial » et «radial » doivent s'entendre par rapport à l'axe A longitudinal du joint d'étanchéité représenté aux figures 4 à 6.
Pour les différentes variantes de réalisation, les mêmes références pourront être utilisées pour des éléments identiques ou assurant la même fonction, par souci de simplification de la description.
On a représenté à la figure 1 un ensemble propulsif 10 d'aéronef comprenant une nacelle 12 et un turboréacteur 14.
La nacelle 12 comporte d'amont en aval selon le sens d'écoulement de l'air, une entrée d'air 16 agencée en avant du turboréacteur 14, une section médiane 18 destinée à entourer une soufflante du turboréacteur 14, une section arrière 20 conçue pour entourer la chambre de combustion du turboréacteur 14 et une tuyère d'éjection 22 dont la sortie est agencée en aval du turboréacteur 14.
La section arrière 20 de la nacelle 12 comporte deux capots 24 mobiles qui sont équipés chacun d'un joint d'étanchéité 26 selon l'invention.
Comme on peut le voir à la figure 4, le joint d'étanchéité 26 comporte un corps tubulaire 28 qui s'étend axialement suivant un axe A longitudinal et qui délimite une première cavité 30 interne.
Le joint d'étanchéité 26 présente un plan P de symétrie de conception générale qui s'étend verticalement, en référence à la figure 4.
Le corps tubulaire 28 présente une section radiale de forme globalement circulaire au repos, le corps tubulaire 28 étant conçu pour se déformer par écrasement en adoptant une section radiale sensiblement ovoïde.
De plus, le joint d'étanchéité 26 est équipé d'une semelle 32 de fixation transversale qui est solidaire du corps tubulaire 28 et qui présente une section radiale globalement rectiligne.
La semelle 32 est destinée à être fixée, par collage par exemple, sur une surface d'appui 44 de chaque capot arrière 24 de la section arrière 20 de la nacelle 12.
Aussi, le joint d'étanchéité 26 comporte une excroissance 34 qui s'étend globalement radialement depuis le corps tubulaire 28. L'excroissance 34 est diamétralement opposée à la semelle 32, comme représenté sur la figure 4. Il convient toutefois de noter que le joint selon l'invention n'est pas limité à cette réalisation de l'excroissance. A cet effet, l'excroissance 34 peut tout à fait ne pas être diamétralement opposée à la semelle 32.
L'excroissance 34 forme une première lèvre 36a et une seconde lèvre 36b qui sont agencées symétriquement de part et d'autre du plan P de symétrie. Selon une alternative non représentée sur les figures, les première et seconde lèvres ne sont pas symétriques par rapport au plan P.
Chaque lèvre 36a, 36b s'étend globalement radialement en saillie par rapport au corps tubulaire 28 de façon à coopérer avec une face d'étanchéité du carter du turbocompresseur 14.
La première lèvre 36a et la seconde lèvre 36b présentent chacune une section transversale sensiblement triangulaire décroissante vers l'extérieur du joint d'étanchéité 26. Bien sûr, les première et seconde lèvres 36a et 36b peuvent présenter toute autre forme de section transversale, non exactement triangulaire.
Selon un autre aspect, l'excroissance 34 délimite une seconde cavité interne 38.
Comme on peut le voir à la figure 4, la seconde cavité interne 38 délimitée par l'excroissance 34 et la première cavité interne 30 délimitée par le corps tubulaire 28 communiquent entre elles pour former un volume unique.
De plus, le corps tubulaire 28 et l'excroissance 34 du joint d'étanchéité 26 sont délimités par une enveloppe 40 qui présente une épaisseur globalement constante.
Une telle conception permet de fabriquer simultanément les lèvres 36a, 36b et le corps tubulaire 28 du joint d'étanchéité 26 par moulage, par exemple au moyen d'un noyau (non représenté) recouvert par une matière déformable élastiquement.
De préférence, la matière utilisée pour réaliser le joint d'étanchéité est du type silicone armé de fibres, comme des fibres de verre ou d'aramide par exemple.
Selon une première variante de réalisation de l'invention, représentée à la figure 5, la seconde cavité interne 38 délimitée par l'excroissance 34 et la première cavité interne 30 délimitée par le corps tubulaire 28 sont séparées entre elles par une membrane 42.
Selon une seconde variante de réalisation de l'invention, représentée à la figure 6, le corps tubulaire 28 présente une section radiale de forme globalement complexe du type en accordéon, comportant deux angles vifs 43 sortants agencés de part et d'autre du plan P de symétrie.
A titre non limitatif, le corps tubulaire 28 selon la seconde variante de réalisation de l'invention peut former une succession d'angles vifs 43 pour former un corps en accordéon.
En référence à la figure 2, le joint d'étanchéité 26 est prévu pour être rapporté et collé sur une surface d'appui 44 de chaque capot arrière 24 de la section arrière 20 de la nacelle 12.
En fonctionnement, le joint d'étanchéité 26 qui est embarqué sur chacun des capots 24, vient en contact du turboréacteur 14 et, plus spécialement, vient en contact d'un carter qui entoure le compresseur du turboréacteur 14. Le joint d'étanchéité 26 est alors écrasé entre le capot 24 sur lequel il est embarqué et le carter du turboréacteur 14.
Lors du fonctionnement du turboréacteur 14, chacun des deux capots 24 peut connaître des mouvements d'amplitude importante dans une direction radiale mais également dans une direction axiale par rapport au turboréacteur 14.
A titre indicatif, on peut constater des déplacements entre un capot 24 et le turboréacteur 14 dont l'amplitude peut être de l'ordre de 20 millimètres.
Le joint d'étanchéité 26 selon l'invention permet donc de conserver en toute circonstance un contact et donc de créer une barrière étanche entre le carter du turboréacteur 14 et le capot 24 associé et ce même lorsque l'amplitude radiale est maximale.
Selon une caractéristique du joint d'étanchéité 26, le coefficient de raideur de l'excroissance 34 est inférieur au coefficient de raideur du corps tubulaire 28 dudit joint.
Cela permet d'obtenir un écrasement du joint en deux temps et limitant sensiblement l'écrasement du corps tubulaire du joint par rapport aux joints de l'art antérieur.
De plus, de façon tout à fait avantageuse, le joint d'étanchéité 16 possède un ratio encombrement maximum/épaisseur de matière supérieur à 10, voire même supérieur à 15. L'encombrement maximum est défini par la distance entre l'extrémité des lèvres 36a, 36b et la face d'appui de la semelle 32, et l'épaisseur de matière est définie par l'épaisseur du joint, au niveau de son corps tubulaire ou au niveau de ses lèvres. Ce ratio élevé du joint selon l'invention permet un très fort écrasement dudit joint.
Ainsi, le joint d'étanchéité 26 selon l'invention offre une importante capacité d'écrasement qui se traduit, dans un premier temps, par une flexion radiale des deux lèvres 36a, 36b ; dans un second temps, lorsque l'amplitude radiale s'accroît suite au mouvement du capot 24 par rapport au turboréacteur 14, le corps 28 du joint d'étanchéité 26 est susceptible de s'écraser.
En limitant de la sorte l'écrasement du corps tubulaire du joint lorsque le joint est soumis à compression, on évite que la déformation plastique du joint ne soit atteinte, ce qui permet de conserver les propriétés d'étanchéité du joint.
En cas de mouvement relatif d'un capot 24 de la nacelle 12 par rapport au turboréacteur 14 dans une direction axiale, le joint d'étanchéité 26 maintient l'étanchéité grâce à ses deux lèvres 36a, 36b qui sont susceptibles de suivre les mouvements du capot 24 associé.
L'invention fournit ainsi un joint d'étanchéité 26 qui permet de maintenir une barrière étanche entre deux éléments qui sont susceptibles de connaître des déplacements relatifs de grande amplitude, l'enveloppe de ce joint d'étanchéité 26, c'est à dire le volume à l'intérieur duquel le joint d'étanchéité 26 est susceptible d'évoluer, reste cependant limitée.
Le joint selon l'invention permet ainsi de prévenir un écopage de la veine secondaire vers le turboréacteur 14.
La présente description de l'invention est donnée à titre d'exemple non limitatif.
On comprendra que la forme géométrique du corps tubulaire 28 du joint d'étanchéité 26 n'est pas limitée aux exemples décrits précédemment.
De même, la forme géométrique de l'excroissance 34 peut varier, l'excroissance pouvant adopter une section radiale aux contours plus arrondis par exemple.

Claims

REVENDICATIONS
1 . Joint d'étanchéité (26) conçu pour être interposé entre un capot (24) d'une section arrière (20) d'une nacelle (12) et un turboréacteur (14) d'un ensemble propulsif (10) d'un aéronef, le joint d'étanchéité (26) comportant :
- un corps tubulaire (28) qui s'étend axialement et qui délimite une première cavité interne (30), et
- une semelle (32) de fixation qui est solidaire du corps tubulaire (28),
ledit joint d'étanchéité (26) étant caractérisé en ce qu'il comporte une excroissance (34) qui s'étend globalement radialement depuis le corps tubulaire (28) et qui forme une première lèvre (36a) et une seconde lèvre (36b), l'excroissance (34) délimitant une seconde cavité interne (38).
2. Joint d'étanchéité (26) selon la revendication 1 , caractérisé en ce que le coefficient de raideur de l'excroissance (34) dudit joint est inférieur au coefficient de raideur du corps tubulaire (28) dudit joint.
3. Joint d'étanchéité (26) selon l'une des revendications 1 ou 2, caractérisé en ce que le ratio encombrement maximum/épaisseur de matière est au moins supérieur à 10.
4. Joint d'étanchéité (26) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la seconde cavité interne (38) délimitée par l'excroissance (34) et la première cavité interne (30) délimitée par le corps tubulaire (28) communiquent entre elles pour former un volume unique.
5. Joint d'étanchéité (26) selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la première lèvre (36a) et la seconde lèvre (36b) présentent chacune une section transversale sensiblement triangulaire décroissante vers l'extérieur du joint d'étanchéité (26).
6. Joint d'étanchéité (26) selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le corps tubulaire (28) et l'excroissance (34) sont délimités par une enveloppe (40) qui présente une épaisseur globalement constante.
7. Joint d'étanchéité (26) selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le joint d'étanchéité (26) présente un plan (P) de symétrie de conception générale, la première lèvre (36a) et la seconde lèvre (36b) étant agencées symétriquement de part et d'autre dudit plan (P) de symétrie.
8. Joint d'étanchéité (26) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'excroissance (34) est diamétralement opposée à la semelle (32).
9. Joint d'étanchéité (26) selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le corps tubulaire (28) présente une section radiale de forme globalement circulaire.
10. Joint d'étanchéité (26) selon l'une quelconque des revendications
1 à 9, caractérisé en ce qu'il est réalisé en matière déformable élastiquement du type silicone armé de fibres.
1 1 . Ensemble propulsif (10) pour aéronef comprenant une nacelle (12) entourant un turboréacteur (14), ladite nacelle comprenant :
- une entrée d'air (16) en avant du turboréacteur,
une section médiane (18) entourant une soufflante du turboréacteur,
une section arrière (20) abritant des moyens d'inversion de poussée, comprenant au moins un capot (24) mobile et entourant la chambre de combustion du turboréacteur,
ledit ensemble étant caractérisé en ce qu'il comprend au moins un joint d'étanchéité (26) selon l'une quelconque des revendications 1 à 10, interposé entre ledit capot (24) et ledit turboréacteur (14).
PCT/FR2014/052291 2013-09-13 2014-09-15 Joint d'étanchéité à grande amplitude de déplacement WO2015036717A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR13/58870 2013-09-13
FR1358870A FR3010698B1 (fr) 2013-09-13 2013-09-13 Joint d'etancheite a grande amplitude de deplacement

Publications (1)

Publication Number Publication Date
WO2015036717A1 true WO2015036717A1 (fr) 2015-03-19

Family

ID=50069034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/052291 WO2015036717A1 (fr) 2013-09-13 2014-09-15 Joint d'étanchéité à grande amplitude de déplacement

Country Status (2)

Country Link
FR (1) FR3010698B1 (fr)
WO (1) WO2015036717A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020094972A1 (fr) * 2018-11-09 2020-05-14 Safran Nacelles Joint d'étanchéité pour nacelle de turboréacteur d'aéronef
WO2021014085A1 (fr) 2019-07-22 2021-01-28 Safran Nacelles Joint d'étanchéité pour aéronef
CN113167177A (zh) * 2018-12-05 2021-07-23 赛峰飞机发动机公司 用于插入在飞行器双流涡轮发动机壳体元件和机舱元件之间的改进的空气密封设备
FR3135502A1 (fr) * 2022-05-12 2023-11-17 Safran Nacelles Joint d’étanchéité aux fluides et résistant au feu
US11821322B2 (en) 2020-11-13 2023-11-21 Eaton Intelligent Power Limited Additive manufactured seal rotor; and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205442A1 (de) * 1991-05-18 1992-11-26 Technoprofil Breidenbach & Bla Dichtungsprofil
EP1103461A1 (fr) * 1999-11-17 2001-05-30 GKN Westland Helicopters Limited Dispositifs d'étanchéité améliorés
DE202005014894U1 (de) * 2005-09-21 2006-01-26 Blau, Dieter Kantenschutzdichtprofil mit dauerhaftem Anpressdruck zur Verwendung als Kofferraumklappendichtung in Kraftfahrzeugen
FR2920215A1 (fr) 2007-08-20 2009-02-27 Aircelle Sa Joint d'etancheite a grande amplitude d'ecrasement
US20110037228A1 (en) * 2009-08-14 2011-02-17 Thomas Jr Philip M Blade seal with improved blade seal profile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205442A1 (de) * 1991-05-18 1992-11-26 Technoprofil Breidenbach & Bla Dichtungsprofil
EP1103461A1 (fr) * 1999-11-17 2001-05-30 GKN Westland Helicopters Limited Dispositifs d'étanchéité améliorés
DE202005014894U1 (de) * 2005-09-21 2006-01-26 Blau, Dieter Kantenschutzdichtprofil mit dauerhaftem Anpressdruck zur Verwendung als Kofferraumklappendichtung in Kraftfahrzeugen
FR2920215A1 (fr) 2007-08-20 2009-02-27 Aircelle Sa Joint d'etancheite a grande amplitude d'ecrasement
US20110037228A1 (en) * 2009-08-14 2011-02-17 Thomas Jr Philip M Blade seal with improved blade seal profile

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020094972A1 (fr) * 2018-11-09 2020-05-14 Safran Nacelles Joint d'étanchéité pour nacelle de turboréacteur d'aéronef
FR3088373A1 (fr) * 2018-11-09 2020-05-15 Safran Nacelles Joint d’etancheite pour nacelle de turboreacteur d’aeronef
US11952964B2 (en) 2018-11-09 2024-04-09 Safran Nacelles Sealing joint for aircraft turbojet engine nacelle
CN113167177A (zh) * 2018-12-05 2021-07-23 赛峰飞机发动机公司 用于插入在飞行器双流涡轮发动机壳体元件和机舱元件之间的改进的空气密封设备
CN113167177B (zh) * 2018-12-05 2023-12-22 赛峰飞机发动机公司 插入涡轮发动机壳体元件和机舱元件之间的空气密封设备
WO2021014085A1 (fr) 2019-07-22 2021-01-28 Safran Nacelles Joint d'étanchéité pour aéronef
FR3099221A1 (fr) 2019-07-22 2021-01-29 Safran Nacelles Joint d’étanchéité pour aéronef
US20220145830A1 (en) * 2019-07-22 2022-05-12 Safran Nacelles Aircraft seal
US11821322B2 (en) 2020-11-13 2023-11-21 Eaton Intelligent Power Limited Additive manufactured seal rotor; and method
FR3135502A1 (fr) * 2022-05-12 2023-11-17 Safran Nacelles Joint d’étanchéité aux fluides et résistant au feu

Also Published As

Publication number Publication date
FR3010698A1 (fr) 2015-03-20
FR3010698B1 (fr) 2017-01-13

Similar Documents

Publication Publication Date Title
EP2179202B1 (fr) Joint d'étanchéité à grande amplitude d'écrasement
WO2015036717A1 (fr) Joint d'étanchéité à grande amplitude de déplacement
FR3099221A1 (fr) Joint d’étanchéité pour aéronef
CA2985826A1 (fr) Moyeu de carter intermediaire pour turboreacteur d'aeronef comportant un conduit de decharge composite
EP2234886B1 (fr) Nacelle pour turboreacteur
FR3052838B1 (fr) Joint d'etancheite presentant une ou plusieurs portions localement surelevees
WO2015132541A1 (fr) Joint de type bulle intégrant au moins une butée rigide
EP3215358B1 (fr) Procédé pour la réparation d'une peau perforée d'un panneau au moyen d'un doubleur
EP3793902B1 (fr) Dispositif de resistance au feu ameliore destine a etre interpose entre une extremite de mat d'accrochage de turbomachine d'aeronef, et un capotage de la turbomachine delimitant un compartiment inter-veine
FR2975970A1 (fr) Ensemble pour une nacelle d'aeronef
EP2776319B1 (fr) Panneau composite à écope de prélèvement intégrée
EP2463197B1 (fr) Entrée d'air pour ensemble propulsif d'aéronef à structure résistante aux surpressions et procédé de réparation d'une entrée d'air d'ensemble propulsif d'aéronef
FR3023260A1 (fr) Ensemble propulsif d'aeronef
EP3735528B1 (fr) Dispositif de resistance au feu destine a etre interpose entre une extremite amont de mat d'accrochage de turbomachine d'aeronef, et un capotage de la turbomachine delimitant un compartiment inter-veine
WO2020120863A1 (fr) Dispositif de resistance au feu ameliore destine a etre interpose entre une extremite de mat d'accrochage de turbomachine d'aeronef, et un capotage de la turbomachine delimitant un compartiment inter-veine
CA2696229C (fr) Joint d'etancheite a appui integre
FR3010443A1 (fr) Ensemble formant joint d'etancheite pour une turbomachine comportant un joint a brosse et au moins une lechette
FR3072128B1 (fr) Conduit de decharge d'un moyeu de carter intermediaire pour turboreacteur d'aeronef comportant une nervure interne
FR3028881A1 (fr) Dispositif formant joint d’etancheite pour une vanne de decharge dans une turbomachine
EP3613956A1 (fr) Dispositif anti-feu de fermeture d'espaces au niveau de jointures d'une nacelle et nacelle comprenant un tel dispositif
FR3081512A1 (fr) Dispositif d'etancheite a grand deplacement pour un moteur d'aeronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14784291

Country of ref document: EP

Kind code of ref document: A1