WO2015035845A1 - 一种锆基非晶合金及其制备方法 - Google Patents

一种锆基非晶合金及其制备方法 Download PDF

Info

Publication number
WO2015035845A1
WO2015035845A1 PCT/CN2014/084500 CN2014084500W WO2015035845A1 WO 2015035845 A1 WO2015035845 A1 WO 2015035845A1 CN 2014084500 W CN2014084500 W CN 2014084500W WO 2015035845 A1 WO2015035845 A1 WO 2015035845A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
amorphous alloy
based amorphous
atomic percentage
preparation
Prior art date
Application number
PCT/CN2014/084500
Other languages
English (en)
French (fr)
Inventor
黄利敏
Original Assignee
Huang Limin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Limin filed Critical Huang Limin
Priority to EP14843474.9A priority Critical patent/EP3045557B1/en
Publication of WO2015035845A1 publication Critical patent/WO2015035845A1/zh
Priority to US15/065,807 priority patent/US20160186293A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/022Casting heavy metals, with exceedingly high melting points, i.e. more than 1600 degrees C, e.g. W 3380 degrees C, Ta 3000 degrees C, Mo 2620 degrees C, Zr 1860 degrees C, Cr 1765 degrees C, V 1715 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent

Definitions

  • the invention belongs to the technical field of metal materials and metallurgy, and relates to an amorphous alloy material, in particular to a zirconium-based amorphous alloy and a preparation method thereof.
  • Amorphous alloy materials have superior properties such as high strength, high hardness, wear resistance, corrosion resistance, large elastic limit and high electrical resistance due to long-range disorder and short-range order. Excellent superconductivity and low magnetic loss, so amorphous alloy materials are considered to be the most promising new structural materials, which are widely used in machinery, medical, IT electronics, military and other fields.
  • the traditional amorphous alloy requires high purity and preparation conditions.
  • zirconium-based amorphous alloys have excellent amorphous forming ability, and the compositional control can reduce the purity of raw materials and the preparation conditions.
  • the purity of the raw material is required to be 99.9% (mass ratio) or more.
  • a high vacuum environment is required, and the smelting atmosphere is required to reach a high vacuum of 10 to 4 to 10 to 3 Pa. A small amount of oxygen or other impurities will greatly reduce the amorphous forming ability of the alloy.
  • the purpose of the invention is to satisfy the limitation of the production conditions of the prior art zirconium-based amorphous alloy, and to relax the requirements on raw material purity, smelting vacuum degree, smelting atmosphere oxygen content and cooling rate under the condition of maintaining good mechanical properties.
  • a zirconium-based amorphous alloy satisfying the above requirements and a preparation method thereof, which solve the above problems in the prior art.
  • the present invention provides a zirconium-based amorphous alloy in which the composition of the zirconium-based amorphous alloy is as shown in the following formula:
  • a, b, c, d, e are atomic numbers, 30 ⁇ a ⁇ 90, 15 ⁇ b ⁇ 60, 5 ⁇ c ⁇ 35, 0.1 ⁇ d ⁇ 20, 0.1 ⁇ e ⁇ 5, and a, b, c
  • the sum of d, e, and 100, x, y, m, and n represent the atomic fractions of Ti, Hf, Cu, and NI, respectively, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.05, and 0.2 ⁇ m / n ⁇ 5.
  • M is at least one selected from the group consisting of Y and Sc
  • N is at least one selected from the group consisting of Si and C;
  • the volume fraction of the crystalline phase is 5-50%, and the volume fraction of the amorphous phase may be 50-95%.
  • the number of atoms of the a, b, c, d, e, wherein 50 ⁇ a ⁇ 75, 20 ⁇ b ⁇ 55, 5 ⁇ c ⁇ 20, 0.1 ⁇ d ⁇ 10, 0.1 ⁇ e ⁇ 2, and a, b , c, d, e and mouth are 100, the x, y, m, n respectively represent the atomic fraction of Ti, Hf, Cu, NI, 0 ⁇ x ⁇ 0.15, 0 ⁇ y ⁇ 0.03, 0.4 ⁇ m / n ⁇ 4.5 ; the volume fraction of the crystalline phase may be 10 to 25%, and the volume fraction of the amorphous phase may be 75 to 90%.
  • the invention also provides a preparation method of the zirconium-based amorphous alloy, which comprises smelting and cooling forming a zirconium-based amorphous alloy raw material under the protection of an inert gas or under vacuum, wherein the raw material of the amorphous alloy Including Zr, Ti, Hf, Cu, Ni, Al, M, N, the amount of each substance added is such that the composition of the obtained alloy is: (Zr 1QQ ⁇ x ⁇ y Ti x Hf y ) a (Cu m Ni n ) b Al c M d Ne.
  • the method for preparing a zirconium-based amorphous alloy according to the present invention is further characterized in that
  • the inert gas is one or more of krypton, neon, argon, neon, xenon, and xenon, and the purity of the gas is not less than 94% by volume;
  • the vacuum condition is below 100°a, expressed as absolute pressure
  • the smelting temperature is 1000 ⁇ 3000 °C ;
  • the smelting time is 0.5 to 10 minutes.
  • the vacuum condition is less than 100 Pa; the melting temperature is 1200 2700 ° C; and the melting time is 2 to 5 minutes.
  • the vacuum condition is 0.1 to 50 Pa.
  • the zirconium-based amorphous alloy of the present invention can reduce the preparation requirement of the amorphous alloy by adjusting the atomic percentage of each component in the zirconium-based amorphous alloy and adding the non-metal elements Y and Sc to the zirconium-based amorphous alloy. More importantly, under the premise of not maintaining the overall performance, the high purity of raw materials is greatly reduced, and a certain amount of impurity elements are retained in the raw materials.
  • the bulk zirconium-based amorphous alloy having a critical dimension of 3 mm or more can also be obtained by the preparation method of the present invention.
  • the zirconium-based amorphous alloy not only has excellent mechanical properties, but also requires low purity of raw materials and content of impurity elements, and is allowed to have A metal impurity element of less than or equal to 5% (atomic percent) and a non-metallic impurity element of less than or equal to 1% (atomic percent) are present.
  • the present invention provides a zirconium-based amorphous alloy in which the composition of the zirconium-based amorphous alloy is as shown in the following formula:
  • the volume fraction of the crystalline phase may be 5 to 50%, and the volume fraction of the amorphous phase may be 50 to 95%.
  • the number of atoms of the a, b, c, d, e, wherein 50 ⁇ a ⁇ 75, 20 ⁇ b ⁇ 55, 5 ⁇ c ⁇ 20, 0.1 ⁇ d ⁇ 10, 0.1 ⁇ e ⁇ 2, And a, b, c, d, e and the mouth are 100, the x, y, m, n respectively represent atomic fractions of Ti, Hf, Cu, NI, 0 ⁇ x ⁇ 0.15, 0 ⁇ y ⁇ 0.03, 0.4 ⁇ m/n ⁇ 4.5;
  • the volume fraction of the crystalline phase may be 10 to 25%, and the volume fraction of the amorphous phase may be 75 to 90%.
  • the resulting zirconium-based amorphous alloy contains some metal element impurities such as Mg, Ca, Co, and the like, as well as some non-metallic elements. 0, N, B, P, etc., but for the present invention, the presence of a certain amount of impurity metal elements does not affect the properties of the zirconium-based amorphous alloy obtained by the present invention, such as: Based on the total amount of the amorphous alloy, the zirconium-based amorphous alloy may contain a non-metallic impurity element having an atomic percentage of less than or equal to 5% of a metal impurity element and an atomic percentage of less than or equal to 1%, when the impurity content is in the present invention. When it is within the above range, there is no influence on the smelting and preparation of the zirconium-based amorphous alloy provided by the present invention.
  • M is at least one selected from the group consisting of Y and Sc
  • N is at least one selected from the group consisting of Si and C.
  • the purity of each of the raw materials for preparing the zirconium-based amorphous alloy according to the present invention is preferably 98% by mass or more as long as it satisfies the conventional requirements.
  • the method for preparing a zirconium-based amorphous alloy of the present invention can be controlled by controlling the zirconium-based amorphous
  • the composition of the alloy and the conditions of the cooling forming are controlled in accordance with conventional methods in the art to achieve different ratios of the crystalline phase and the amorphous phase in the zirconium-based amorphous alloy.
  • the conditions for the cooling forming include cooling rate, pressure, mold material, and mold thermal conductivity. Among them, one of the key factors in the control of the crystalline phase and the amorphous phase in the zirconium-based amorphous alloy at the cooling rate, and the selection range of pressure, mold material and thermal conductivity of the mold is wide, and the matching selection is guaranteed.
  • the cooling forming conditions described above can be satisfied by obtaining a suitable cooling rate.
  • the volume fraction of the crystalline phase is usually just washed in inverse proportion to the cooling rate.
  • the cooling rate can be selected within the range of conventional conditions, such as above lOK/s, preferably 10-10 4 K/so
  • the method for preparing a zirconium-based amorphous alloy according to the present invention wherein the inert gas is one or more of gases of ruthenium, osmium, argon, krypton, xenon, and krypton, and the purity of the gas is not less than 94% by volume;
  • the vacuum condition is below 100 OOPa, expressed as absolute pressure;
  • the smelting temperature is 1000 ⁇ 3000 °C ;
  • the smelting time is 0.5 to 10 minutes.
  • the smelting time in the present invention may be 2 to 5 minutes.
  • the smelting apparatus employed may be a conventional smelting apparatus such as a vacuum arc melting furnace, a vacuum induction furnace or a vacuum resistance furnace.
  • the zirconium-based amorphous alloy provided by the present invention has high ability to form. Therefore, the cooling molding can be carried out by various conventional pressure casting molding methods in the art, such as stainless steel and copper alloy.
  • the mold cooling can be performed by means of water cooling or oil cooling.
  • zirconium-based amorphous alloy raw materials having a purity of 99% by mass are put into an arc melting furnace, the arc melting furnace is evacuated to 10 Pa, and then argon gas having a purity of 99.9% by volume is introduced as a shielding gas at 1500 °. At C, it was smelted for 3 minutes to sufficiently melt the zirconium-based amorphous alloy material.
  • the type of the zirconium-based amorphous alloy material and the atomic percentage are 50% Zr, ⁇ with an atomic percentage of 2%, Cu with a 15% atomic percentage, ⁇ with an atomic percentage of 10%, Al with an atomic percentage of 15%, and an atomic percentage of 4% Y, Sc with an atomic percentage of 2%, and Si with an atomic percentage of 2%.
  • the molten sample is cast into a copper alloy mold by pressure casting to form a zirconium-based amorphous alloy (Zr xy Ti x Hf y ) a (Cu m Ni n ) b Al c M d N e .
  • zirconium-based amorphous alloy raw materials having a purity of 99% by mass are put into an arc melting furnace, and the arc melting furnace is evacuated to 10 - ipa, and then argon gas having a purity of 99.9% by volume is introduced as a shielding gas.
  • the molten material of the zirconium-based amorphous alloy was sufficiently melted at 1650 ° C for 3 minutes.
  • the molten sample is cast into a copper alloy mold by pressure casting to form a zirconium-based amorphous alloy (Zr xy Ti x Hf y ) a (Cu m Ni n ) b Al c M d N e .
  • a variety of zirconium-based amorphous alloy raw materials having a purity of 99% by mass are put into an arc melting furnace, and the arc melting furnace is evacuated to 10 - ipa, and then argon gas having a purity of 99.9% by volume is introduced as a shielding gas. The mixture was smelted at 1600 ° C for 3 minutes to sufficiently melt the zirconium-based amorphous alloy material.
  • the molten sample is cast into a copper alloy mold by pressure casting to be cooled Type, that is, a zirconium-based amorphous alloy (Zr xy Ti x Hf y ) a (Cu m Ni n ) b Al c M d N e .
  • Type that is, a zirconium-based amorphous alloy (Zr xy Ti x Hf y ) a (Cu m Ni n ) b Al c M d N e .
  • the molten sample is cast into a copper alloy mold by pressure casting to form a zirconium-based amorphous alloy (Zr xy Ti x Hf y ) a (Cu m Ni n ) b Al c M d N e .
  • the molten sample is cast into a copper alloy mold by pressure casting to form a zirconium-based amorphous alloy (Zr xy Ti x Hf y ) a (Cu m Ni n ) b Al c M d N e .
  • the zirconium-based amorphous alloy was prepared in accordance with the preparation method of Example 1, except that the purity of the zirconium-based amorphous alloy raw material was 99.8%.
  • zirconium-based amorphous alloy raw materials with a purity of 99.8% by mass were put into an arc melting furnace, and the arc melting furnace was evacuated to 10 Pa, and then the purity was 99.9% by volume.
  • the argon gas was used as a shielding gas and smelted at 1500 ° C for 3 minutes to sufficiently melt the zirconium-based amorphous alloy material.
  • the type and amount of the zirconium-based amorphous alloy raw material are Zr having an atomic percentage of 50.9%, Cu having an atomic percentage of 29.9%, and ⁇ having an atomic percentage of 7.4%, and an atomic percentage of 9.8%. Al, ⁇ with an atomic percentage of 2%.
  • zirconium-based amorphous alloy raw materials having a purity of 99.7% by weight were put into an arc melting furnace, the arc melting furnace was evacuated to 10 Pa, and then an argon gas having a volume percentage of 99.9% was introduced as a shielding gas at 1800 °. At C, it was smelted for 3 minutes to sufficiently melt the zirconium-based amorphous alloy material.
  • Al having an atomic percentage of 9.6%
  • Y having an atomic percentage of 0.4%
  • Nb having an atomic percentage of 3%.
  • the amorphous alloy prepared according to the ratio and the method of the present invention can obtain an amorphous alloy excellent in performance with low raw material purity and low preparation conditions.
  • the crystalline phase of the amorphous alloy obtained by the present invention is controlled within 10-25%, and the oxygen content is between 600 and 1200 ppm, which can obtain better mechanics than the conventional zirconium-based amorphous alloy represented by the comparative example. performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种锆基非晶合金及其制备方法。通过调整锆基非晶合金中各组分的原子百分含量,以及在锆基非晶合金中加入元素Y、Sc、Si、C,使该锆基非晶合金不仅具有优良的力学性能,同时大大降低了合金的制备要求。

Description

说 明 书
一种锆基非晶合金及其制备方法 技术领域
本发明属于金属材料和冶金技术领域, 涉及一种非晶合金材料, 具体涉及一种锆基非晶合金及其制备方法。
背景技术
非晶合金材料由于具有长程无序而短程有序的特殊结构, 因而具 有高强度、 高硬度、 耐磨性、 耐蚀性、 较大的弹性极限和高电阻性等 优越的性能, 而且还表现出优良的超导性和低磁损耗等特点, 因此非 晶合金材料被认为是最具有潜力的新型结构材料, 从而广泛应用到机 械、 医疗、 IT电子、 军工等领域。
为保持非晶态结构的完整性, 传统的非晶合金对原材料纯度、 制 备条件等因素要求较高。 经过多年的研究, 人们发现锆基非晶合金具 有优良的非晶形成能力, 通过成分的控制, 可以对原材料纯度和制备 条件的限制有所降低。 比如原材料纯度要求在 99. 9% (质量比) 以上。 在制备过程中, 需要很高的真空度环境, 熔炼气氛要求达到高真空度 10~4~10~3Pa, 少量的氧或者别的杂质都将极大地降低合金的非晶形成 能力。 在常规的非晶合金制备过程中, 由于降低的幅度有限, 苛刻的 生产过程大大增加了非晶合金制品的生产成本, 使得这类锆基非晶合 金依然停留在实验室里, 无法批量生产, 从而限制了非晶合金的广泛 应用。
发明内容
经过本发明人研究发现, 通过在锆基非晶合金中同时添加 Y、 Sc 中的至少一种元素以及 Si、 C中的至少一种元素, 并保证合金中 Y、 Sc以及 Si、 C的含量比例, 不仅大大降低了合金的制备要求, 同时还 提高了得到的锆基非晶合金的综合性能和稳定性,
本发明的目的在于客服现有技术的锆基非晶合金对生产条件的限 制, 在保持良好的力学性能的条件下, 放宽对原材料纯度、 熔炼真空 度、 熔炼气氛氧含量、 冷却速度的要求, 提供一种满足以上要求的锆 基非晶合金及其制备方法, 解决了现有技术中存在的上述问题。
本发明提供了一种锆基非晶合金, 其中, 该锆基非晶合金的组成 如下述通式所示:
(Zr100~ x~ yTixHfy)a(CumNin)bAlcMdNe
其中 a、b、c、d、e为原子数, 30≤a≤90, 15≤b≤60, 5<c<35 , 0.1≤d≤20, 0.1≤e≤5, 并且 a、 b、 c、 d、 e之和为 100, x, y, m, n分别表示 Ti、 Hf、 Cu、 NI的原子分数, 0≤x≤0.2, 0<y<0.05 , 0.2≤m/n≤5。 M选自 Y、 Sc中的至少一种, N选自 Si、 C中的至少一种;
以所述锆基非晶合金的总体积为基准, 所述晶态相的体积分数为 5-50%, 非晶态相的体积分数可以为 50~95%。
本发明所述的锆基非晶合金, 其特征还在于,
所述 a、 b、 c、 d、 e的原子数, 其中 50≤a≤75, 20<b<55 , 5<c<20, 0.1≤d≤10, 0.1<e<2, 并且 a、 b、 c、 d、 e之禾口为 100, 所述 x, y, m, n分别表示 Ti、Hf、Cu、NI的原子分数, 0≤x≤0.15, 0≤y≤0.03, 0.4≤m/n≤4.5; 所述晶态相的体积分数可以为 10~25%,非晶态相的体积分数可以 为 75~90%。
本发明还提供了该锆基非晶合金的制备方法, 该方法包括在惰性 气体保护下或真空条件下, 将锆基非晶合金原材料进行熔炼并冷却成 型, 其中, 所述非晶合金的原材料包括 Zr、 Ti、 Hf、 Cu、 Ni、 Al、 M、 N, 各物质的加入量使所得的合金的组成为: (Zr1QQ~ x~ yTixHfy)a(CumNin)bAlcMdNe。 本发明所述锆基非晶合金的制备方法, 其特征还在于,
所述惰性气体为氦、 氖、 氩、 氪、 氙、 氡气体中的一种或几种, 气体的纯度不低于体积百分比的 94%;
所述真空条件为 lOOOPa以下, 以绝对压力表示;
所述熔炼温度为 1000~3000°C ;
所述熔炼时间为 0.5~10分钟。
优选的,所述真空条件小于 lOOPa;所述熔炼温度为 1200 2700 °C ; 所述熔炼时间为 2~5分钟。
更优选的, 所述真空条件为 0.1~50Pa。
本发明锆基非晶合金, 通过调整锆基非晶合金中各组分的原子百 分含量, 以及在锆基非晶合金中加入非金属元素 Y、 Sc, 可以降低该 非晶合金的制备要求, 更重要的是在保持综合性能不下降的前提下, 大大降低了对原材料纯度的高要求, 同时允许原材料中保留一定量的 杂质元素。 因此, 通过适当调整非晶合金中 Si、 C等非金属元素的比 例, 不但不会影响锆基非晶合金的综合性能, 反而可以降低工业化批 量生产时原材料成本的压力, 推动非晶合金量产的歩伐。
通过本发明制备方法还可以得到临界尺寸在 3mm以上的大块锆基 非晶合金, 该锆基非晶合金不仅具有优良的力学性能, 同时对原料纯 度及杂质元素的含量要求较低, 允许有小于或等于 5% (原子百分比) 的金属杂质元素, 以及小于或等于 1% (原子百分比) 的非金属杂质元 素存在。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明提供了一种锆基非晶合金, 其中, 该锆基非晶合金的组成 如下述通式所示:
(Zr100~ x~ yTixHfy)a(CumNin)bAlcMdNe 其中 a、b、c、d、e为原子数, 30≤a≤90, 15≤b≤60, 5<c<35 , 0.1≤d≤20, 0.1≤e≤5, 并且 a、 b、 c、 d、 e之和为 100, x, y, m, n分别表示 Ti、 Hf、 Cu、 NI的原子分数, 0≤x≤0.2, 0<y<0.05 , 0.2≤m/n≤5。 M选自 Y、 Sc中的至少一种, N选自 Si、 C中的至少一种。
以所述锆基非晶合金的总体积为基准, 所述晶态相的体积分数可 以为 5~50%, 非晶态相的体积分数可以为 50~95%。
优选情况下,所述 a、 b、 c、 d、 e的原子数,其中 50≤a≤75, 20<b<55 , 5<c<20, 0.1≤d≤10, 0.1<e<2 , 并且 a、 b、 c、 d、 e之禾口为 100, 所述 x, y, m, n分别表示 Ti、 Hf、 Cu、 NI的原子分数, 0≤x≤0.15, 0<y<0.03 , 0.4<m/n<4.5;
所述晶态相的体积分数可以为 10~25%,非晶态相的体积分数可以 为 75~90%。
由于工业化生产一般采用价格更为低廉的中间合金作为原料, 因 而会使得到的锆基非晶合金中含有一些金属元素杂质, 如 Mg、 Ca、 Co等, 以及一些非金属元素, 如。、 0、 N、 B、 P等, 但是对于本发 明来说, 一定量的杂质金属元素的存在并不会影响本发明所得到的的 锆基非晶合金的性能, 如: 以所属的锆基非晶合金的总量为基准, 所 述锆基非晶合金可以含有原子百分比小于或等于 5%的金属杂质元素 的, 原子百分比小于或等于 1%的非金属杂质元素, 当杂质含量在本发 明上述范围内时, 对本发明提供的锆基非晶合金的熔炼及制备没有影 响。
本发明当 M选自 Y、 Sc中的至少一种, N选自 Si、 C中的至少一 种时。 锆基非晶合金的综合性能更加优异。
用于制备本发明所述的锆基非晶合金的各种原料的纯度只要满足 常规的要求即可优选为质量百分比 98%以上。
本发明锆基非晶合金的制备方法, 可以通过控制所述的锆基非晶 合金的组成并按照本领域常规的方法控制冷却成型的条件得以实现调 整所述锆基非晶合金中晶态相和非晶态相的不同比例。 所述冷却成型 的条件包括冷却速度、 压力、 模具材质以及模具导热系数等。 其中, 冷却速度时锆基非晶合金中晶态相和非晶态相比例控制的关键因素之 一, 而压力、 模具材质以及模具导热系数等条件的选择范围较宽, 其 配合选择子要保证能够得到合适的冷却速度即可满足所述的冷却成型 条件。 在公知的铸造成型方式中, 晶态相的体积分数通常与冷却速度 呈反比例刚洗。 按照本发明, 所述冷却速度可以在常规条件范围内选 择, 如 lOK/s以上, 优选为 10-104K/so
本发明锆基非晶合金的制备方法, 所述的惰性气体为氦、 氖、 氩、 氪、氙、氡气体中的一种或几种,气体的纯度不低于体积百分比的 94%; 所述真空条件为 lOOOPa以下, 以绝对压力表示;
所述熔炼温度为 1000~3000°C ;
所述熔炼时间为 0.5~10分钟。
优选情况下, 本发明中所述熔炼时间可以 2 ~5分钟。
采用的熔炼设备可以为常规的熔炼设备, 例如真空电弧熔炼炉、 真空感应炉或者真空电阻炉。
本发明提供的锆基非晶合金的成性能力强, 因此, 所述冷却成型 可以采用本领域各种常规的压力铸造成型方法, 不锈钢、 铜合金等材 料。 模具冷却可以采用水冷、 油冷等方式。
实施例
实施例 1
将纯度为质量比 99%的各种锆基非晶合金原材料投入电弧熔炼炉 内, 将电弧熔炼炉抽真空至 10Pa, 然后通入纯度为体积百分数 99.9% 的氩气作为保护气体, 在 1500°C下, 熔炼 3分钟, 使锆基非晶合金原 料充分熔融。 该锆基非晶合金原料的种类以及原子百分含量为 50%的 Zr, 原子百分含量为 2%的 Τι, 原子百分含量为 15%的 Cu, 原子百分 含量为 10%的 Νι, 原子百分含量为 15%的 Al, 原子百分含量为 4%的 Y, 原子百分含量为 2%的 Sc, 原子百分含量为 2%的 Si。
将熔融的样品通过压力铸造的方法铸造到铜合金模具中冷却成 型, 即得到锆基非晶合金 (Zr x-yTixHfy)a(CumNin)bAlcMdNe
实施例 2
将纯度为质量比 99%的各种锆基非晶合金原材料投入电弧熔炼炉 内, 将电弧熔炼炉抽真空至 10— ipa, 然后通入纯度为体积百分数 99.9% 的氩气作为保护气体, 在 1650°C下, 熔炼 3分钟, 使锆基非晶合金原 料充分熔融。 该锆基非晶合金原料的种类以及原子百分含量为 60%的 Zr, 原子百分含量为 3%的 Τι, 原子百分含量为 2%的 Hf, 原子百分含 量为 12.5%的 Cu, 原子百分含量为 7.5%的 Ni, 原子百分含量为 5%的 Al, 原子百分含量为 5%的 Y, 原子百分含量为 3%的 Sc, 原子百分含 量为 1.5%的 Si, 原子百分含量为 0.5%的 C。
将熔融的样品通过压力铸造的方法铸造到铜合金模具中冷却成 型, 即得到锆基非晶合金 (Zr x-yTixHfy)a(CumNin)bAlcMdNe
实施例 3
将纯度为质量比 99%的各种锆基非晶合金原材料投入电弧熔炼炉 内, 将电弧熔炼炉抽真空至 10— ipa, 然后通入纯度为体积百分数 99.9% 的氩气作为保护气体, 在 1600°C下, 熔炼 3分钟, 使锆基非晶合金原 料充分熔融。 该锆基非晶合金原料的种类以及原子百分含量为 60%的 Zr, 原子百分含量为 1.5%的 Τι, 原子百分含量为 0.5%的 Hf, 原子百 分含量为 10.5%的 Cu, 原子百分含量为 9.5%的 Νι, 原子百分含量为 8%的 Al, 原子百分含量为 0.5%的 Y, 原子百分含量为 1.2%的 Sc, 原 子百分含量为 0.3%的 Si。
将熔融的样品通过压力铸造的方法铸造到铜合金模具中冷却成 型, 即得到锆基非晶合金 (Zr x-yTixHfy)a(CumNin)bAlcMdNe
实施例 4
将纯度为质量比 98%的各种锆基非晶合金原材料投入电弧熔炼炉 内, 将电弧熔炼炉抽真空至 200Pa, 然后通入纯度为体积百分数 99% 的氩气作为保护气体, 在 1500 °C下, 熔炼 3分钟, 使锆基非晶合金原 料充分熔融。 该锆基非晶合金原料的种类以及原子百分含量为 50.5% 的 Zr, 原子百分含量为 0.5%的 Hf, 原子百分含量为 30%的 Cu, 原子 百分含量为 7.5%的 Νι, 原子百分含量为 10%的 Al, 原子百分含量为 0.8%的 Y, 原子百分含量为 0.8%的 Si。
将熔融的样品通过压力铸造的方法铸造到铜合金模具中冷却成 型, 即得到锆基非晶合金 (Zr x-yTixHfy)a(CumNin)bAlcMdNe
实施例 5
将纯度为质量比 98%的各种锆基非晶合金原材料投入电弧熔炼炉 内, 将电弧熔炼炉抽真空至 50Pa, 然后通入纯度为体积百分数 99%的 氩气作为保护气体, 在 1600 °C下, 熔炼 3分钟, 使锆基非晶合金原料 充分熔融。 该锆基非晶合金原料的种类以及原子百分含量为 57.5%的 Zr, 原子百分含量为 2.3%的 Τι, 原子百分含量为 1.2%的 Hf, 原子百 分含量为 23%的 Cu,原子百分含量为 6.3%的 Νι,原子百分含量为 9.2% 的 Al, 原子百分含量为 0.2%的 Y, 原子百分含量为 0.3%的 Si。
将熔融的样品通过压力铸造的方法铸造到铜合金模具中冷却成 型, 即得到锆基非晶合金 (Zr x-yTixHfy)a(CumNin)bAlcMdNe
对比实例 1
按照实施例 1 的制备方法锆基非晶合金, 不同的是, 锆基非晶合 金原料的纯度为 99.8%。
将纯度为质量比 99.8%的各种锆基非晶合金原材料投入电弧熔炼 炉内,将电弧熔炼炉抽真空至 10Pa,然后通入纯度为体积百分数 99.9% 的氩气作为保护气体, 在 1500°C下, 熔炼 3分钟, 使锆基非晶合金原 料充分熔融。 该锆基非晶合金原料的种类以及用量为原子百分含量为 50.9%的 Zr, 原子百分含量为 29.9% 的 Cu, 原子百分含量为 7.4%的 Νι, 原子百分含量为 9.8%的 Al, 原子百分含量为 2%的¥。
对比实例 2
将纯度为重量百分比 99.7%的各种锆基非晶合金原材料投入到电 弧熔炼炉中, 将电弧熔炼炉抽真空至 10Pa, 然后通入体积百分比为 99.9%的氩气作为保护气体, 在 1800°C下, 熔炼 3分钟, 使锆基非晶合 金原料充分熔融。 此锆基非晶合金原料的种类以及用量为原子百分含 量为 55%的 Zr, 原子百分含量为 2%的 Τι, 原子百分含量为 16.5% 的 Cu, 原子百分含量为 13.5%的 Νι, 原子百分含量为 9.6%的 Al, 原子百 分含量为 0.4%的 Y, 原子百分含量为 3%的 Nb。
最后通过金相显微分析、 抗弯强度测试、 氧含量检测三种方法进 行检测, 检测结果见下表:
Figure imgf000009_0001
由表中可以看出, 按照本发明所述配比及方法制备的非晶合金, 可以在低原料纯度、 低制备条件的情况下获得性能优异的非晶合金。 采用本发明获得的非晶合金的晶态相比例控制在 10-25%之内, 氧含量 在 600-1200ppm之间, 与对比例代表的传统锆基非晶合金相比可以获 得更好的力学性能。
上述实施方式只是本发明的一个实例, 不是用来限制本发明的实 施与权利范围, 凡依据本发明申请专利保护范围所述的内容做出的等 效变化和修饰, 均应包括在本发明申请专利范围。

Claims

权 利 要 求 书
1、 一种锆基非晶合金, 其中, 该锆基非晶合金的组成如下述通式所示: (Zr100~ x~ yTixHfy)a(CumNin)bAlcMdNe
其中 a、 b、 c、 d、 e为原子数, 30≤a≤90, 15≤b≤60, 5<c<35, 0.1≤d≤20, 0.1≤e≤5, 并且 a、 b、 c、 d、 e之和为 100, x, y, m, n分别表示 Ti、 Hf、 Cu、 NI的原子分数, 0≤x≤0.2, 0<y<0.05, 0.2≤m/n≤5。 M选自 Y、 Sc中的 至少一种, N选自 Si、 C中的至少一种;
以所述锆基非晶合金的总体积为基准, 所述晶态相的体积分数为 5-50%, 非晶态相的体积分数可以为 50~95%。
2、 根据权利要求 1所述的锆基非晶合金, 其特征在于, 所述 a、 b、 c、 d、 e的原子数, 其中 50<a<75, 20<b<55, 5<c<20, 0.1≤d≤10, 0.1<e<2, 并 且3、 b、 c、 d、 e之和为 100, 所述 x, y, m, n分别表示 Ti、 Hf、 Cu、 NI 的原子分数, 0≤x≤0.15, 0<y<0.03 , 0.4<m/n<4.5;
所述晶态相的体积分数可以为 10~25%, 非晶态相的体积分数可以为 75~90%。
3、 一种权利要求 1所述锆基非晶合金的制备方法, 其特征在于, 该方 法包括在惰性气体保护下或真空条件下,将锆基非晶合金原材料进行熔炼并 冷却成型, 其中, 所述非晶合金的原材料包括 Zr、 Ti、 Hf、 Cu、 Ni、 Al、 M、 N, 各物质的加入量使所得的合金的组成为:
(Zr100~ x~ yTixHfy)a(CumNin)bAlcMdNe
4、 根据权利要求 3所述的锆基非晶合金的制备方法, 其特征在于, 所 述惰性气体为氦、 氖、 氩、 氪、 氙、 氡气体中的一种或几种, 气体的纯度不 低于体积百分比的 94 %;
所述真空条件为 lOOOPa以下, 以绝对压力表示;
5、 根据权利要求 3所述的锆基非晶合金的制备方法, 其特征在于, 所 述真空条件小于 lOOPa;所述熔炼温度为 1200~2700°C ;所述熔炼时间为 2〜5 分钟。
6、 根据权利要求 3所述的锆基非晶合金的制备方法, 其特征在于, 所 述真空条件为 0.1~50Pa。
PCT/CN2014/084500 2013-09-10 2014-08-15 一种锆基非晶合金及其制备方法 WO2015035845A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14843474.9A EP3045557B1 (en) 2013-09-10 2014-08-15 Zirconium-based amorphous alloy and preparation method therefor
US15/065,807 US20160186293A1 (en) 2013-09-10 2016-03-09 Zirconium-based amorphous alloy and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310410770.9 2013-09-10
CN201310410770.9A CN103484800B (zh) 2013-09-10 2013-09-10 一种锆基非晶合金及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/065,807 Continuation-In-Part US20160186293A1 (en) 2013-09-10 2016-03-09 Zirconium-based amorphous alloy and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2015035845A1 true WO2015035845A1 (zh) 2015-03-19

Family

ID=49825387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084500 WO2015035845A1 (zh) 2013-09-10 2014-08-15 一种锆基非晶合金及其制备方法

Country Status (4)

Country Link
US (1) US20160186293A1 (zh)
EP (1) EP3045557B1 (zh)
CN (1) CN103484800B (zh)
WO (1) WO2015035845A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9353428B2 (en) * 2012-03-29 2016-05-31 Washington State University Zirconium based bulk metallic glasses with hafnium
CN103484800B (zh) * 2013-09-10 2015-12-09 黄利敏 一种锆基非晶合金及其制备方法
CN105132837B (zh) * 2015-08-27 2017-04-12 常州世竟液态金属有限公司 一种低成本块体非晶合金
CN105132834B (zh) * 2015-09-10 2017-08-25 深圳市锆安材料科技有限公司 一种高强度非晶合金及其制备方法
CN105112817B (zh) * 2015-09-10 2017-03-29 深圳市锆安材料科技有限公司 一种耐磨耐蚀的非晶合金及其制备方法
CN110129690A (zh) * 2018-01-19 2019-08-16 东莞市坚野材料科技有限公司 一种非晶合金支架及其制备方法
CN108193147B (zh) * 2018-02-07 2020-11-27 瑞声精密制造科技(常州)有限公司 一种高韧性的锆基非晶合金材料及其制备方法
CN109548765B (zh) * 2019-01-04 2024-01-02 鄱阳县黑金刚钓具有限责任公司 一种鱼钩及其制造方法
CN109786338B (zh) * 2019-01-21 2021-07-09 盘星新型合金材料(常州)有限公司 一种非晶合金柔性基板
CN116288077A (zh) * 2022-09-07 2023-06-23 三祥新材股份有限公司 一种锆基非晶合金压铸件废料的回收方法
CN115637395A (zh) * 2022-09-19 2023-01-24 盘星新型合金材料(常州)有限公司 具有塑性变形的高硬度大尺寸锆基非晶合金及其制备方法
CN116005083B (zh) * 2023-03-23 2023-06-27 松诺盟科技有限公司 一种用于扭矩轴的非晶材料、扭矩轴及扭矩传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701027B1 (ko) * 2005-04-19 2007-03-29 연세대학교 산학협력단 연성이 우수한 단일상 비정질 합금
CN102061429A (zh) * 2009-11-13 2011-05-18 比亚迪股份有限公司 一种锆基非晶复合材料及其制备方法
CN103484800A (zh) * 2013-09-10 2014-01-01 黄利敏 一种锆基非晶合金及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131336C (zh) * 2000-11-01 2003-12-17 中国科学院金属研究所 一种高形成能力的锆基非晶合金
US6682611B2 (en) * 2001-10-30 2004-01-27 Liquid Metal Technologies, Inc. Formation of Zr-based bulk metallic glasses from low purity materials by yttrium addition
CN100569985C (zh) * 2007-01-10 2009-12-16 北京航空航天大学 一种锆基非晶态合金
CN100447287C (zh) * 2007-02-01 2008-12-31 北京航空航天大学 一种锆基非晶态合金
CN102041461B (zh) * 2009-10-22 2012-03-07 比亚迪股份有限公司 一种锆基非晶合金及其制备方法
CN102041462B (zh) * 2009-10-26 2012-05-30 比亚迪股份有限公司 一种锆基非晶合金及其制备方法
CN102051533A (zh) * 2009-10-29 2011-05-11 鸿富锦精密工业(深圳)有限公司 锆基非晶合金、眼镜架及其制造方法
CN102534437A (zh) * 2011-12-15 2012-07-04 比亚迪股份有限公司 一种非晶合金及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701027B1 (ko) * 2005-04-19 2007-03-29 연세대학교 산학협력단 연성이 우수한 단일상 비정질 합금
CN102061429A (zh) * 2009-11-13 2011-05-18 比亚迪股份有限公司 一种锆基非晶复合材料及其制备方法
CN103484800A (zh) * 2013-09-10 2014-01-01 黄利敏 一种锆基非晶合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3045557A4 *

Also Published As

Publication number Publication date
EP3045557A1 (en) 2016-07-20
EP3045557B1 (en) 2019-04-17
CN103484800B (zh) 2015-12-09
US20160186293A1 (en) 2016-06-30
EP3045557A4 (en) 2016-08-31
CN103484800A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
WO2015035845A1 (zh) 一种锆基非晶合金及其制备方法
CN108504890B (zh) 一种有基高熵合金复合材料及其制备方法
CN112725678B (zh) 一种含NiCoCr的非等原子比中/高熵合金及其制备方法
Liu et al. Microstructure and the properties of FeCoCuNiSnx high entropy alloys
Zhang et al. Recent progress in high-entropy alloys
CN110229991B (zh) 一种强塑性匹配优良的五元高熵合金及其制备方法
US9616495B2 (en) Amorphous alloy and method for manufacturing the same
CN102154596A (zh) 一种锆基非晶合金及其制备方法
WO2014059769A1 (zh) 一种锆基非晶合金
CN110938769B (zh) 一种共晶中熵合金及其制备方法
US20160237538A1 (en) Zirconium based bulk metallic glasses with hafnium
CN102719769B (zh) 一种高强度铝基大块非晶复合材料
US11655529B2 (en) Zr-based amorphous alloy and manufacturing method thereof
Lu et al. Bulk Glass Formation in an Fe-Based Fe–Y–Zr–M (M= Cr, Co, Al)–Mo–B System
Bian et al. Influence of yttrium and vacuum degree on the purification of K417 superalloy
Li et al. Tune the mechanical properties of Ti-based metallic glass composites by additions of nitrogen
CN112813330B (zh) 一种多主元碳化物弥散型高熵合金材料及其制备方法
WO2017067183A1 (zh) 一种高强度非晶合金及其制备方法和应用
CN105132834B (zh) 一种高强度非晶合金及其制备方法
CN115354246B (zh) 稀土改性的轻质块体非晶合金及其制备方法、应用
CN103668010A (zh) 一系列具有胞状微观结构的Zr-Al-Ni-Cu块体非晶合金
CN104911513A (zh) 一种大尺寸ZrTi基准晶材料及其制备方法
CN108504970B (zh) 一种低脆性锆基非晶合金及其制备方法
CN108504969B (zh) 一种耐腐蚀锆基非晶合金及其制备方法
CN102477519A (zh) 一种低氧含量块体金属玻璃的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014843474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014843474

Country of ref document: EP