WO2015033870A1 - ユーザ装置、基地局、情報通知方法、及びリソース割り当て方法 - Google Patents

ユーザ装置、基地局、情報通知方法、及びリソース割り当て方法 Download PDF

Info

Publication number
WO2015033870A1
WO2015033870A1 PCT/JP2014/072739 JP2014072739W WO2015033870A1 WO 2015033870 A1 WO2015033870 A1 WO 2015033870A1 JP 2014072739 W JP2014072739 W JP 2014072739W WO 2015033870 A1 WO2015033870 A1 WO 2015033870A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification information
user
user apparatus
area
base station
Prior art date
Application number
PCT/JP2014/072739
Other languages
English (en)
French (fr)
Inventor
聡 永田
勝利 楠目
リアン フウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP14842278.5A priority Critical patent/EP3043613A4/en
Priority to US14/916,146 priority patent/US20160198449A1/en
Publication of WO2015033870A1 publication Critical patent/WO2015033870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present invention relates to inter-terminal communication (D2D communication, device-to-device communication), and particularly relates to a technique for allocating radio resources (hereinafter referred to as resources) for transmitting discovery signals in inter-terminal communication. is there.
  • D2D communication device-to-device communication
  • resources radio resources
  • a terminal hereinafter referred to as a user apparatus UE
  • a base station eNB In mobile communication, it is common for a terminal (hereinafter referred to as a user apparatus UE) and a base station eNB to communicate with each other by performing communication between the user apparatuses UE.
  • Various techniques for performing communication have been studied.
  • each user apparatus UE When performing communication between user apparatuses UE, one user apparatus UE needs to discover the other user apparatus UE in the vicinity.
  • a technique for discovering the user apparatus UE there is a technique in which each user apparatus UE transmits (broadcasts) a discovery signal (discovery signal) including its own ID.
  • FIG. 1 is a diagram illustrating an example of resources for transmitting a discovery signal.
  • a discovery period in which the user apparatus UE is discovered (discovered) by performing transmission / reception of discovery signals is periodically set, and a predetermined number of discovery periods are detected in each discovery period.
  • Resources for discovery signal transmission (and reception) time-frequency resources, called discovery resources) are defined.
  • Each user apparatus UE transmits a discovery signal using a discovery resource in the discovery period.
  • the user apparatus UE1 of FIG. 2 transmits a discovery signal using the discovery resource indicated by UE1 of FIG. 1, and the user apparatus UE2 of FIG. 2 uses the discovery resource indicated by UE2 of FIG. Send.
  • the user apparatus UE3 in FIG. 2 discovers the user apparatus UE1 by receiving the discovery signal transmitted by the user apparatus UE1, and the user apparatus UE4 receives the discovery signal transmitted by the user apparatus UE2 to detect the user apparatus UE2. Discover.
  • each user apparatus UE arbitrarily selects one discovery resource from available discovery resources. This method is referred to as a distributed type (Distributed discovery).
  • the other is a method in which the base station eNB allocates individual discovery resources to the user apparatus UE. This method is called centralized discovery.
  • FIG. 3 is a diagram showing an example of discovery signal transmission / reception in a distributed type.
  • each user apparatus UE shall use the discovery resource shown with each code
  • the user apparatus UE1 and the user apparatus UE2 transmit a discovery signal using the discovery resource indicated by A in the resource diagram on the right side.
  • discovery signal collision occurs.
  • the user apparatus UE3 cannot find any of the user apparatuses UE1 and UE2. Since the user apparatus UE3 and the user apparatus UE4 are at a long distance, they can use the same discovery resource D (spatial reuse, resource spatial reuse).
  • Patent Document 1 As a prior art document related to communication between terminals. Further, for example, there are Non-Patent Documents 1 to 3 as prior art documents relating to a radio fingerprint (RFP) to be described later.
  • RFID radio fingerprint
  • the base station eNB transmits a UE group A and a UE group B, which are groups of user apparatuses UE, and individual user apparatuses UE1 to UE3 to FIG.
  • a UE group A and a UE group B which are groups of user apparatuses UE, and individual user apparatuses UE1 to UE3 to FIG.
  • the base station eNB performs resource reuse between the UE group A and the UE group B, and can allocate, for example, six resources indicated by shading in FIG. 4B to each of the UE group A and the UE group B. . That is, UE group A and UE group B can use the same six resources simultaneously. The remaining three resources are allocated to user apparatuses UE1 to UE3.
  • the base station eNB confirms that the UE group A and the UE group B are sufficiently separated from each other, or that the discovery signal cannot be transmitted and received between the UE group A and the UE group B. I need to know.
  • the base station eNB In order for the base station eNB to know the radio wave propagation state between the UEs, for example, the user apparatus UE transmits its position to the base station eNB by GPS, and the base station eNB calculates the distance between the UEs. It is conceivable to estimate the radio wave propagation state based on the above.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technology that enables appropriate spatial reuse of resources in resource allocation for inter-terminal communication.
  • a user device having a function of performing device-to-device communication wirelessly, A data storage unit for storing identification information corresponding to the user device; An identification information acquisition unit that receives a discovery signal including identification information corresponding to the other user device from another user device, and acquires identification information corresponding to the other user device from the discovery signal; There is provided a user apparatus including a control signal transmission unit that transmits a control signal including identification information corresponding to the other user apparatus to a base station.
  • a base station that communicates with a user apparatus having a function of performing device-to-device communication wirelessly, Spatial coupling information reception for receiving, from each of a plurality of user devices, spatial coupling information including identification information included in the discovery signal received by the user device and including identification information corresponding to another user device. And A resource that determines whether or not discovery signal communication is possible between areas where user devices exist based on the spatial coupling information, and allocates resources for discovery signal transmission to the user devices based on whether or not discovery signal communication is possible A base station comprising an allocator is provided.
  • FIG. 5 is a diagram showing a specific example of step 400.
  • FIG. 5 is a diagram showing a specific example of step 500.
  • FIG. 5 shows a specific example of step 600.
  • an area ID is used as “identification information corresponding to a user apparatus” according to the present invention, but this is only an example, and an ID other than the area ID is used as the identification information. It may be used.
  • FIG. 5 shows a configuration example of a communication system in the present embodiment.
  • the communication system in the present embodiment is a cellular communication system in which a plurality of user apparatuses UE exist under the base station eNB.
  • the base station eNB there are a plurality of base stations eNB in the vicinity, but FIG. 5 shows one base station eNB.
  • the cellular communication system is, for example, compliant with LTE, but is not limited to LTE.
  • LTE is not only a communication system corresponding to Release 8 or 9 of 3GPP but also a communication system corresponding to Release 10, 11 or 12 of 3GPP or later. Is used to include
  • FIG. 6 is a diagram for explaining an example of a resource configuration related to the discovery resource in the present embodiment.
  • 4 ⁇ 4 16 discovery resources (discovery resources (discovery period)) in one discovery signal transmission opportunity (discovery period).
  • DR discovery resource
  • one discovery resource DR is a minimum unit resource used for the user apparatus UE to transmit a discovery signal, and includes, for example, a plurality of RBs (resource blocks) defined by LTE.
  • a plurality of resource group (RG: Resource Group) patterns are introduced.
  • One RG pattern has one or a plurality of resource groups RG.
  • One resource group RG has one or a plurality of discovery resources DR.
  • the user apparatus UE is assigned an RG pattern and a resource group RG to be used in the RG pattern. This allocation is performed by signaling from the base station eNB, for example. Further, the resource group RG may be allocated as a hopping pattern for the resource group RG.
  • the user apparatus UE arbitrarily (for example, randomly) selects one of the one or more discovery resources DR in the allocated resource group RG and uses it for discovery signal transmission.
  • the resource group RG includes only one discovery resource DR
  • the allocation of the resource group RG becomes the allocation of the discovery resource DR as it is.
  • FIG. 6 shows three RG patterns as an example.
  • the RG pattern shown in FIG. 6B is a pattern in which each resource group RG constituting the RG pattern is one discovery resource DR. As described above, this pattern is a case where each resource group RG includes only one discovery resource DR, and the allocation of the resource group RG becomes the allocation of the discovery resource DR as it is.
  • FIG. 6B illustrates an example of assignment of the user apparatuses UE1 to UE5 illustrated in FIG. 5 as an example. In the case of this pattern, since the assignment is the same as that of the centralized type described above, this pattern can be called a fully centralized type.
  • the RG pattern shown in FIG. 6C is a pattern in which the entire discovery resource area is divided into two resource groups (RG1 and RG2). As illustrated in FIG. 6C, user apparatuses UE1 and UE2 are allocated to RG1, and user apparatuses UE3, UE4, and UE5 are allocated to RG2. In the case of the assignment shown in FIG. 6C, for example, for the user apparatus UE1, the RG pattern shown in FIG. 6C is assigned, and further RG1 in the RG pattern is assigned. .
  • the RG pattern shown in FIG. 6C is centralized in that one RG is allocated to the user apparatus UE from among the plurality of RGs, but the user apparatus UE is based on a plurality of discovery resources DR included in the RG. Since this is a distributed type in that one discovery resource DR is arbitrarily selected, such an RG pattern can be referred to as a partially distributed type.
  • the RG pattern shown in FIG. 6D is a pattern in which there is only one resource group RG (RG1) included in the RG pattern.
  • RG1 resource group RG
  • 16 discovery resources DR illustrated in FIG. 6A are included in RG1
  • each user apparatus UE selects one discovery resource DR from among the 16 discovery resources DR and selects a discovery signal.
  • this pattern since the assignment is the same as that of the distributed type described above, this pattern can be called a fully distributed type.
  • the RG pattern is not limited to the specific pattern described above, and any RG pattern can be introduced.
  • An example of a plurality of RG patterns including the example of the RG pattern shown in FIG. 6 is shown in FIG.
  • the base station eNB determines that from a spatial coupling matrix described later, and the same RG (eg, RG1) is assigned to each user apparatus UE in the UE1 to UE2 group and the UE3 to UE5 group Can be assigned.
  • RG2 can be assigned to another user apparatus UE, and effective utilization of resources is realized.
  • the base station eNB uses a radio fingerprint (RFP) technique in order to determine an area ID associated with the position of the user apparatus UE.
  • RFID radio fingerprint
  • FIG. 8 is a diagram illustrating that base stations (macro base stations) eNB1 to eNB4 exist in the vicinity of the user apparatus UE-A, and the user apparatus UE-A obtains an RFP.
  • each user apparatus UE calculates the RFP
  • FIG. 8 is a diagram particularly focusing on the user apparatus UE-A.
  • the user apparatus UE-A measures the received power of a signal such as a reference signal (RSRP: Reference : Signal Received Power) in each of the base stations eNB1 to eNB4. Further, the user apparatus UE-A receives the cell ID from each base station eNB, generates information associating the cell ID and RSRP as RFP, as shown in the figure, and the RFP Send to eNB.
  • a signal such as a reference signal (RSRP: Reference : Signal Received Power) in each of the base stations eNB1 to eNB4.
  • RSRP Reference : Reference : Signal Received Power
  • the base station eNB Based on the RFP received from each user apparatus UE, the base station eNB creates and holds an RFP / area mapping table in which the RFP and the area ID are associated as shown in FIG. After creating the RFP / area mapping table, for example, when the base station eNB receives an RFP from a certain user apparatus UE, the base station eNB, if there is an entry corresponding to this RFP (row of the RFP / area mapping table), It is determined that the area ID in the row is the area ID of the user apparatus UE. In addition, since RFP is linked
  • Matching an entry means that the RSRP constituting the RFP received from the user apparatus UE is compared with the RSRP in the RFP / area mapping table for each cell, and the RSRP constituting the RFP in each cell is the RFP / area mapping table. Is within a predetermined range (offset) with respect to RSRP. In FIG. 9, the offset is denoted by ⁇ .
  • the method of determining ⁇ is not limited to a specific method. For example, it may be a predetermined constant, or may be obtained by an expression shown in FIG. In the said formula, (alpha) is a predetermined
  • FIG. 10 is a diagram showing each area corresponding to the area ID shown in FIG.
  • each base station eNB performs inter-base station communication with the neighboring base station eNB, and each base station eNB exchanges an RFP / area mapping table with the neighboring base station eNB, thereby The station eNB can maintain a common RFP / area mapping table.
  • each base station eNB holds a common RFP / area mapping table.
  • the user apparatus UE reports an RFP (RSRP vector) to the base station eNB, and the base station eNB performs a comparison between the RFP and the RFP / area mapping table. An entry of area ID and RFP is added, and if it is an existing RFP, the area ID corresponding to the RFP received from the user apparatus UE is notified to the user apparatus UE. Moreover, in order to maintain the accuracy of the report of RFP from the user apparatus UE, the base station eNB may notify the user apparatus UE of the number of neighboring base stations to be measured, for example.
  • RFP RSRP vector
  • FIG. 11 shows the area ID of each area.
  • the area ID held by the user apparatus UE-A is 1, and the area ID held by the user apparatus UE-B is 2.
  • the base station eNB grasps whether or not a discovery signal is transmitted / received between the user apparatuses UE between the areas by a report from the user apparatus UE, thereby indicating whether or not the discovery signal communication between the areas is possible.
  • a ring matrix (spatial coupling matrix) is created, and resource allocation including resource spatial reuse is performed based on the information.
  • the outline of the processing in the operation 2 is as follows.
  • Each user apparatus UE includes its own area ID in the discovery signal and transmits the discovery signal.
  • the discovery signal is received by another user apparatus UE.
  • the user apparatus UE-A illustrated in FIG. 11 transmits a discovery signal including 1 as the area ID
  • the user apparatus UE-C receives the discovery signal. This indicates that communication is possible between an area having an area ID of 1 and an area having an area ID of 3.
  • Information including its own area ID and the area ID included in the received discovery signal is referred to as spatial coupling information.
  • information including the area ID included in the area ID included in the received discovery signal may be referred to as spatial coupling information. .
  • Step 2 Each user UE device transmits spatial coupling information to the base station eNB.
  • the user apparatus UE does not necessarily need to transmit both its own area ID and the area ID included in the received discovery signal as the spatial coupling information.
  • space coupling information it is good also as transmitting area ID contained in the received discovery signal, and not transmitting own area ID.
  • the base station eNB can grasp the area ID of the user apparatus UE that is the transmission source of the spatial coupling information by holding the area ID notified in operation 1 for each user apparatus UE that is the notification destination.
  • Step 3 The base station eNB constructs a spatial coupling matrix using the spatial coupling information received from each user UE device.
  • FIG. 12A An example of the spatial coupling matrix is shown in FIG. In the example of FIG. 12A, 1 is set between areas where discovery signal communication is performed, and 0 is set between areas where discovery signal communication is not performed. For example, in the example of FIG. 12A, it is shown that discovery signal communication is performed from area 1 to area 2 and further discovery signal communication is performed from area 2 to area 1.
  • discovery signal communication is performed from area 1 to area 2 and further discovery signal communication is performed from area 2 to area 1.
  • the spatial coupling matrix when it can be determined from the spatial coupling matrix that the discovery signal transmitted from one area has been received in the other area, it may be determined that communication is possible between the areas, When a discovery signal transmitted from one area is received in the other area and a discovery signal transmitted from the other area is received in the one area can be determined from the spatial coupling matrix, the area It may be determined that communication is possible.
  • FIG. 12 (b) shows an example of the connection relation between areas obtained from the spatial coupling matrix.
  • the base station eNB assigns the same resource as the resource (DR, RG, etc.) allocated to the user apparatus UE belonging to the area 2 to the area.
  • the decision to assign to 3 can be made. That is, the same resource can be allocated between areas where discovery signals are not communicated.
  • Each base station eNB can construct a more accurate spatial coupling matrix particularly in the cell edge area by exchanging the spatial coupling matrix with the neighboring base station eNB via, for example, the X2 interface.
  • the area ID obtained based on the operation 1 on the transmission side is included in the discovery signal and transmitted as identification information, and the information including the identification information is transmitted to the base station on the reception side.
  • the identification information transmitted in the discovery signal and transmitted to the base station eNB on the receiving side is not limited to the area ID.
  • identification information it is good also as using ID of the cell which exists, or ID corresponding to the other user apparatus UE.
  • FIG. 13 is a sequence diagram showing an example of the overall operation of the system, and shows a situation where the user apparatus UE-A newly located in the base station eNB and other user apparatuses UE exist.
  • the processing content of each procedure is demonstrated along the procedure shown in FIG.
  • FIGS. 14 to 18 will be referred to as appropriate.
  • Step 100 of FIG. 13 the user apparatus UE-A measures the RSRP of signals from a predetermined number of base stations eNB, and notifies the value and the cell ID to the base station eNB as RFP.
  • RFP for example, an uplink signaling channel (control signal) specific to the user apparatus UE such as PUSCH or PUCCH can be used.
  • FIG. 14 shows the processing contents in step 100 when the number of measurement target base stations eNB is four.
  • FIG. 14 shows that each user apparatus UE reports an RFP to the base station eNB, but for convenience, the user apparatus UE-A indicates that the number of base stations eNB to perform measurement is four. Has been.
  • the user apparatus UE-A measures the RSRP of the signal from each base station eNB, and bases the RSRP vector including these four values as an RFP. Notify the station eNB.
  • a signal (frame) for notification is composed of 2 ⁇ 4 bits for cell ID and 2 ⁇ 4 bits for RSRP, for example.
  • step 100 when the user apparatus UE moves An operation example in step 100 when the user apparatus UE moves will be described with reference to FIG.
  • an event in which the user apparatus UE moves from area 1 to area 2 is defined as event 1, and the user apparatus UE moves from cell A of the base station eNB-A to cell B of the base station eNB-B. Let the event be event 2.
  • the user apparatus UE In event 1 in which the user apparatus UE moves from area 1 to area 2, the user apparatus UE periodically measures RSRP and periodically reports RFP to the base station eNB-A. Then, the base station eNB-A determines whether the user apparatus UE is in the area 1 or the area 2 from the RFP, and notifies the user apparatus UE.
  • the user apparatus UE in the stage where the cell in which the user apparatus UE is located is changed (when the cell is located at the cell edge of the cell A and the cell B), the user apparatus UE has the base station eNB-A and the base station eNB-B. Report RFP to both.
  • the base station eNB determines whether or not the received RFP matches an entry in the RFP / area mapping table. When matching the entry, the base station eNB allocates the first resource for discovery signal transmission to the user apparatus UE. As resource allocation, for example, RG is allocated.
  • the same resource as the resource allocated to the area not communicating with the area of the user apparatus UE can be allocated by referring to the already created spatial coupling matrix. Further, the resource to be allocated is different from the resource allocated to the area communicating with the area of the user apparatus UE. Such an assignment can be solved by formulating, for example, a graph coloring problem.
  • the base station eNB holds an allocation table in which area IDs are associated with resources allocated to user apparatuses UE in the area.
  • the base station eNB updates the RFP / area mapping table by adding an entry including the received RFP and a new area ID to the RFP / area mapping table, and allocates resources to the user apparatus UE.
  • the user apparatus UE other than the user apparatus UE-A also periodically transmits the RFP to the base station eNB, for example, the base station eNB determines the area ID, performs resource allocation, and notifies the user apparatus UE Yes.
  • the base station eNB notifies the user apparatus UE-A (and other user apparatus UE) of the area ID and the allocated resource ID.
  • the area ID and the assigned resource ID may be notified separately.
  • downlink signaling for each user apparatus UE such as downlink RRC signaling is used.
  • Each user apparatus UE holds the received area ID.
  • Resource IDs are, for example, RG ID, DR ID, etc., and each user apparatus UE uses which resource (eg, RB) to use for discovery signal transmission from RG ID, DR ID, etc. And has a function of transmitting a discovery signal using the resource.
  • Step 400 the user apparatus UE-A includes its own area ID in the discovery signal and transmits (broadcasts) the discovery signal. Transmission is performed periodically.
  • FIG. 16 is a diagram more specifically showing the processing contents in step 400.
  • a signal obtained by adding an area ID to an existing discovery signal is shown as a discovery signal in the present embodiment.
  • the user apparatus UE-A transmits the discovery signal
  • other user apparatuses UE existing in various places receive the discovery signal.
  • the user apparatus UE-A receives the discovery signal from the other user apparatus UE and detects that the area ID included in the discovery signal is different from its own area ID. And that other areas can communicate with each other. That is, it is detected that the areas are coupled (coupled).
  • step 500 is shown in FIG.
  • the user apparatus UE-A in the public area whose area ID is area 5 receives the discovery signal including the area ID from the plurality of user apparatuses UE in different areas.
  • the user apparatus UE-A can decode the area ID included in the discovery signal.
  • the area ID is different from its own area ID, the area ID, the area, and the area of its own area ID are combined (communicable) Is determined). Note that it is not always necessary for the user apparatus UE-A to make this determination, and only the base station eNB needs to make the determination.
  • the fact that the area ID of the discovery signal has been decoded means that the RSSI (Received Signal Strength Indicator, received signal strength) of the received discovery signal is larger than a predetermined threshold value.
  • RSSI Receiveived Signal Strength Indicator, received signal strength
  • accurate spatial coupling information based on the received signal strength can be acquired without measuring or estimating the received signal strength between areas.
  • the user apparatus UE-A notifies the base station eNB of the spatial coupling information (its own area ID and the area ID of another area included in the discovery signal). In addition, as mentioned above, it is not essential to notify its own area ID. For the notification, for example, an uplink signaling channel dedicated to the user apparatus UE such as PUSCH or PUCCH is used. An example in which the user apparatus UE notifies the base station eNB of the spatial coupling information is shown in FIG.
  • FIG. 18 shows an example of spatial coupling information.
  • the spatial coupling information illustrated in FIG. 18 includes its own area ID (eg, area 4) and 2 ⁇ N (N is the number of area IDs) matrix.
  • area ID e.g. 4
  • 2 ⁇ N N is the number of area IDs
  • 1 is entered when the user apparatus UE-A receives a discovery signal from the user apparatus UE in the area of the area ID, and 0 is entered when the discovery signal is not received.
  • Step 700 of FIG. 13 the base station eNB updates the spatial coupling matrix (eg, FIG. 12A) based on the received spatial coupling information, updates the resource allocation for each user apparatus UE, and notifies To do.
  • the resource allocation notification is performed, for example, by downlink signaling specific to the user apparatus UE, such as downlink RRC signaling.
  • Step 800> The base station eNB exchanges the spatial coupling matrix with the neighboring base station eNB through the X2 interface to obtain a more accurate spatial coupling matrix.
  • FIG. 19 shows a functional configuration example of the user apparatus UE in the present embodiment.
  • FIG. 19 shows a configuration related to the present embodiment, and the user apparatus UE includes an existing function (not shown) for performing an operation as a mobile terminal compliant with LTE, for example.
  • the user apparatus UE includes a reception unit 101, a control signal acquisition unit 102, a discovery signal acquisition unit 103, a data storage unit 104, an RSRP measurement unit 105, an RFP report signal generation unit 106, and a discovery signal generation unit 107.
  • a spatial coupling information report signal generation unit 108 and a transmission unit 109 are provided.
  • the receiving unit 101 receives a signal wirelessly from the base station eNB or another user apparatus UE.
  • the control signal acquisition unit 102 acquires a control signal (eg, UE individual downlink signaling signal) from the signal received by the reception unit 101, acquires an area ID, resource ID, cell ID, and the like from the control signal, and a data storage unit It stores in 104.
  • a control signal eg, UE individual downlink signaling signal
  • the discovery signal acquisition unit 103 acquires the discovery signal from the received signal, extracts (decodes) the area ID included in the discovery signal, and stores it in the data storage unit 104. Further, the RSRP measurement unit 105 measures the RSRP of the reference signal received by the reception unit 101 and stores the measured RSRP in the data storage unit 104 in association with the cell ID.
  • the RFP report signal generation unit 106 generates a report signal (control signal) including an RFP (RSRP vector) using the cell ID and RSRP stored in the data storage unit 104.
  • the discovery signal generation unit 107 generates a discovery signal including the area ID of the own area stored in the data storage unit 104.
  • the spatial coupling information report signal generation unit 108 creates spatial coupling information including the area ID and the own area ID included in the reception discovery signal stored in the data storage unit 104, and a report signal including the spatial coupling information Is generated.
  • the own area ID may not be included in the spatial coupling information.
  • the transmission unit 109 transmits the signals generated by the RFP report signal generation unit 106, the discovery signal generation unit 107, and the spatial coupling information report signal generation unit 108. When transmitting the discovery signal, the transmission unit 109 performs transmission using a resource corresponding to the resource ID specified by the base station eNB.
  • the configuration of the user apparatus UE is not limited to the above configuration, and may be any configuration as long as the processing described in the present embodiment can be executed.
  • the user device UE is a user device having a function of performing device-to-device communication wirelessly, and includes a data storage unit that stores identification information corresponding to the user device, and another user device from the other user
  • An identification information acquisition unit that receives a discovery signal including identification information corresponding to a device, acquires identification information corresponding to the other user device from the discovery signal, and a control including identification information corresponding to the other user device It is comprised as a user apparatus provided with the control signal transmission part which transmits a signal to a base station.
  • the identification information corresponding to the user device is area identification information for identifying an area where the user device exists
  • the identification information corresponding to the other user device is an area where the other user device exists.
  • Area identification information to be identified the base station can obtain information used to determine whether communication between areas is possible, for example, so that resources can be appropriately reused in resource allocation for communication between terminals. It becomes.
  • control signal may include identification information corresponding to the user device and identification information corresponding to the other user device. Moreover, it is good also as providing the discovery signal transmission part which transmits the discovery signal containing the identification information corresponding to the said user apparatus to the said user apparatus.
  • the user apparatus UE is a user apparatus having a function of performing apparatus-to-apparatus communication wirelessly, and includes a data storage unit that stores area identification information for identifying an area where the user apparatus exists, and other user apparatuses Receiving the discovery signal including the area identification information of the other user device, obtaining the area identification information of the other user device from the discovery signal, the area identification information of the user device, and the It is good also as providing the control signal transmission part which transmits the control signal containing the area identification information of another user apparatus to a base station.
  • the base station can determine whether or not communication is possible between areas using the area identification information of the user apparatus and the area identification information of another user apparatus. Therefore, in resource allocation for communication between terminals, Spatial reuse of resources can be performed appropriately.
  • the area identification information is not limited to specific information, but may be an area ID determined from the RFP as described in the present embodiment, or a cell ( It may be an ID for identifying an example of an area.
  • the user apparatus may include a discovery signal transmission unit that transmits a discovery signal including area identification information of the user apparatus.
  • the area identification information of the user apparatus may be determined from information regarding the position of the user apparatus in the base station, and the user apparatus may receive the area identification information from the base station.
  • the information regarding the position is, for example, RFP. Further, the information regarding the position may be information acquired by GPS.
  • the user device can easily acquire the area identification information.
  • the user apparatus measures received power of signals received from a plurality of base stations for each base station, and transmits the received power of the plurality of base stations to the base station as information on the position of the user apparatus. It is good also as providing a transmission part. With this configuration, it is possible to notify information related to the position without using GPS.
  • the base station determines whether or not discovery signal communication between areas is possible according to information including area identification information of the user device and area identification information of the other user device, and based on whether or not discovery signal communication between the areas is possible
  • the resource for discovery signal transmission may be allocated to the user apparatus, and the user apparatus may transmit the discovery signal using the resource.
  • the base station can accurately perform spatial reuse of resources, reduce collision of discovery signals in the user apparatus, and improve resource utilization efficiency.
  • FIG. 20 shows a functional configuration example of the base station eNB in the present embodiment.
  • FIG. 20 shows a configuration related to the present embodiment, and the base station eNB includes an existing function (not shown) for performing an operation as a base station eNB compliant with LTE, for example.
  • the base station eNB includes a reception unit 201, an RFP information acquisition unit 202, an area ID determination unit 203, a data storage unit 204, a resource allocation unit 205, a control signal generation unit 206, a transmission unit 207, and a base station.
  • the data storage unit 204 stores an RFP / area mapping table, a spatial coupling matrix, a table in which the user apparatus UE is associated with an area ID and an allocated resource ID, free resource information, and the like.
  • the receiving unit 201 wirelessly receives a signal transmitted from the user apparatus UE.
  • the RFP information acquisition unit 202 acquires the RFP from the signal received from the user apparatus UE and passes it to the area ID determination unit 203.
  • the area ID determination unit 203 compares the received RFP (each RFRP value) with the entry stored in the RFP / area mapping table, determines the area ID corresponding to the RFP, Add an entry.
  • the resource allocation unit 205 allocates resources to the user apparatus UE based on the spatial coupling matrix, the area ID of the user apparatus UE, the already allocated resource, the unallocated resource, and the like.
  • the spatial coupling information processing unit 209 acquires spatial coupling information from the signal received by the receiving unit 201, and generates and updates a spatial coupling matrix using the spatial coupling information.
  • the control signal generation unit 206 generates a control signal including an area ID, a resource ID, and the like.
  • the transmission unit 207 transmits a control signal, a reference signal, and the like to the user apparatus UE wirelessly.
  • the inter-base station communication processing unit 208 exchanges information such as an RFP / area mapping table and a spatial coupling matrix with other base stations by performing inter-base station communication using, for example, an X2 interface, and other base stations.
  • the RFP / area mapping table and the spatial coupling matrix stored in the data storage 204 are updated using the RFP / area mapping table and the spatial coupling matrix received from the station.
  • the configuration of the base station eNB is not limited to the above configuration, and may be any configuration as long as the processing described in the present embodiment can be performed.
  • the base station eNB is a base station that communicates with a user apparatus having a function of performing apparatus-to-apparatus communication wirelessly, and is included in a discovery signal received by the user apparatus from each of a plurality of user apparatuses
  • Spatial coupling information receiving unit for receiving spatial coupling information including identification information corresponding to other user devices, and between areas where user devices exist based on the spatial coupling information
  • a resource allocation unit that determines whether discovery signal communication is possible and allocates resources for discovery signal transmission to the user apparatus based on the discovery signal communication availability may be provided.
  • the base station receives information related to the position of the user apparatus from each of the plurality of user apparatuses, determines identification information corresponding to each user apparatus based on the information related to the position, and the identification information May be provided with an identification information transmitting unit that transmits the information to the corresponding user device.
  • the user apparatus can acquire identification information corresponding to the user apparatus by signaling from the base station.
  • the identification information corresponding to the user device is, for example, area identification information that identifies an area where the user device exists.
  • the base station eNB is a base station that communicates with a user apparatus having a function of performing apparatus-to-apparatus communication wirelessly, and receives the area identification information of the user apparatus and the user apparatus from each of the plurality of user apparatuses.
  • a spatial coupling information receiving unit that receives spatial coupling information including area identification information included in the discovered discovery signal, and discovery signal communication between areas where user devices exist based on the spatial coupling information
  • a resource allocating unit that allocates resources for transmission of discovery signals to user devices based on the availability of discovery signal communication.
  • the base station receives information on the position of the user apparatus from each of the plurality of user apparatuses, determines area identification information of each user apparatus based on the information on the position, and determines the area identification information. May be provided with an area identification information transmitting unit that transmits the information to the corresponding user device.
  • the user apparatus can acquire area identification information by signaling from the base station.
  • the information related to the position of the user apparatus is, for example, information on received power for a plurality of base stations.
  • the base station can acquire information on the position without the user apparatus using GPS.
  • the user apparatus may use GPS.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the user apparatus and the base station have been described using functional block diagrams, but each of such apparatuses may be implemented by hardware, software, or a combination thereof.
  • Software that executes an operation corresponding to the processing described in the embodiment of the present invention that is, software executed by a processor included in a user apparatus and software executed by a processor included in a base station are both random access memories. (RAM), flash memory, read only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • RAM random access memories
  • ROM read only memory
  • EPROM EPROM
  • EEPROM electrically erasable programmable read only memory
  • register hard disk
  • removable disk CD-ROM
  • database database
  • server or any other suitable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線により装置対装置通信を行う機能を有するユーザ装置において、前記ユーザ装置に対応する識別情報を格納するデータ記憶部と、他のユーザ装置から、当該他のユーザ装置に対応する識別情報を含む発見信号を受信し、当該発見信号から当該他のユーザ装置に対応する識別情報を取得する識別情報取得部と、前記他のユーザ装置の識別情報を含む制御信号を基地局に送信する制御信号送信部とを備える。

Description

ユーザ装置、基地局、情報通知方法、及びリソース割り当て方法
 本発明は、端末間通信(D2D通信、装置対装置通信)に関するものであり、特に、端末間通信において、発見信号を送信する無線リソース(以下、リソース)を割り当てるための技術に関連するものである。
 移動体通信では、端末(以下、ユーザ装置UEと呼ぶ)と基地局eNBが通信を行うことによりユーザ装置UE間で通信を行うことが一般的であるが、近年、ユーザ装置UE間で直接に通信を行うことについての種々の技術が検討されている。
 ユーザ装置UE間で通信を行う際に、一方のユーザ装置UEは、近隣の他方のユーザ装置UEを発見することが必要である。ユーザ装置UEを発見する手法として、各ユーザ装置UEが、自身のIDを含む発見信号(discovery signal)を送信(ブロードキャスト)する手法がある。
 図1は、発見信号を送信するためのリソースの一例を示す図である。図1の例では、発見信号の送受信を行うことでユーザ装置UEの発見(被発見)を行う発見期間(discovery period)が周期的に訪れるように定めてあり、各発見期間において所定数個の発見信号送信(及び受信)のためのリソース(時間-周波数リソースであり、発見リソースと呼ぶ)が定められている。各ユーザ装置UEは、発見期間において発見リソースを用いて発見信号の送信を行う。
 例えば、図2のユーザ装置UE1は、図1のUE1で示される発見リソースを用いて発見信号を送信し、図2のユーザ装置UE2は、図1のUE2で示される発見リソースを用いて発見信号を送信する。
 図2におけるユーザ装置UE3は、ユーザ装置UE1が送信した発見信号を受信することでユーザ装置UE1を発見し、ユーザ装置UE4は、ユーザ装置UE2が送信した発見信号を受信することでユーザ装置UE2を発見する。
 各ユーザ装置UEにおける発見リソースの選択方法には、大きく2つの方法がある。1つは、各ユーザ装置UEが、使用可能な発見リソースの中から任意に1つの発見リソースを選択する方法である。この方法を分散型(Distributed discovery)と呼ぶ。もう1つは、基地局eNBがユーザ装置UEに対して個々の発見リソースを割り当てる方法である。この方法を集中型(Centralized discovery)と呼ぶ。
 図3は、分散型における発見信号送受信の例を示す図である。図3において、各ユーザ装置UEは、各符号で示される発見リソースを用いるものとする。例えば、ユーザ装置UE1、ユーザ装置UE2は、右側のリソース図におけるAで示す発見リソースで発見信号を送信する。
 図3に示すとおり、ユーザ装置UE1、UE2、UE3は互いに近い距離にあり、ユーザ装置UE1、UE2は同じ発見リソースAを用いて発見信号を送信するため、発見信号の衝突(collision)が発生し、ユーザ装置UE3は、ユーザ装置UE1、UE2のいずれも発見できない。ユーザ装置UE3とユーザ装置UE4は遠い距離にあるため、これらは同じ発見リソースDを用いることができる(spatial reuse、リソースの空間的再利用)。
 なお、端末間通信に関する先行技術文献として特許文献1がある。また、後述する無線フィンガープリント(Radio FingerPrint:RFP)に関する先行技術文献として例えば非特許文献1~3がある。
特開2012-209893号公報
H. Laitinen et al., "Experimental Evaluation of Location Methods Based on Signal-Strength Measurements," IEEE Trans. Vehic. Tech., vol. 56, no. 1, Jan. 2007, pp. 287-96. J. Johansson et al., "Minimization of Drive Tests in 3GPP Release 11," IEEE Commun. Mag Nov. 2012. Athul Prasad et al, " Energy Efficient Small-Cell Discovery Using Received Signal Strength Based Radio Maps", IEEE VTC, June 2013
 集中型の場合、上記の衝突等が発生しないように集中的にリソース割り当てを行うことができる反面、ユーザ装置UEの位置等に関する情報がなければリソース空間的再利用ができないという問題がある。
 一例として、図4(a)に示す無線環境において、基地局eNBが、ユーザ装置UEのグループであるUEグループAとUEグループB、及び、個々のユーザ装置UE1~3に、図4(b)に示すリソース1~9を割り当てる場合を考える。
 仮に、UEグループAとUEグループB間が十分に離れており、グループに属するいずれのユーザ装置UEから送信された発見信号も他のグループにおけるいずれのユーザ装置UEにより受信することができないとすると、基地局eNBは、UEグループAとUEグループB間でリソース再利用を行い、例えば図4(b)に網掛けで示した6つのリソースをUEグループAとUEグループBのそれぞれに割り当てることができる。つまり、UEグループAとUEグループBは同じ6つのリソースを同時に使用することができる。残りの3つのリソースはユーザ装置UE1~3に割り当てられる。
 上記のような割り当てを行うためには、基地局eNBは、UEグループAとUEグループB間が十分に離れていること、あるいは、UEグループAとUEグループB間では発見信号が送受信できないことを知っている必要がある。基地局eNBがこのようなUE間での電波伝搬状態を知るために、例えば、ユーザ装置UEがGPSで自身の位置を基地局eNBに伝え、基地局eNBがUE間の距離を算出し、距離に基づき電波伝搬状態を推定することが考えられる。しかし、GPSを用いてユーザ装置UEの位置に基づき電波伝搬状態を推定する手法では、例えばユーザ装置UEがビル内にいる場合に、当該ユーザ装置UEと、そのビル外にいるユーザ装置UEとの間の電波伝搬状態を正確に推定できない等の問題がある。そのため、このような距離に基づく手法では、例えば、リソースの空間的再利用ができるのに空間的再利用をしないでリソースを割り当ててしまうといったように、リソースの空間的再利用を効率的に行えない場合がある。
 本発明は上記の点に鑑みてなされたものであり、端末間通信のためのリソース割り当てにおいて、リソースの空間的再利用を適切に行うことを可能とする技術を提供することを目的とする。
 本発明の一実施形態によれば、無線により装置対装置通信を行う機能を有するユーザ装置であって、
 前記ユーザ装置に対応する識別情報を格納するデータ記憶部と、
 他のユーザ装置から、当該他のユーザ装置に対応する識別情報を含む発見信号を受信し、当該発見信号から当該他のユーザ装置に対応する識別情報を取得する識別情報取得部と、
 前記他のユーザ装置に対応する識別情報を含む制御信号を基地局に送信する制御信号送信部と、を備えるユーザ装置が提供される。
 また、本発明の一実施形態によれば、無線により装置対装置通信を行う機能を有するユーザ装置と通信する基地局であって、
 複数のユーザ装置の各々から、当該ユーザ装置が受信した発見信号に含まれていた識別情報であって、他のユーザ装置に対応する識別情報を含む空間カップリング情報を受信する空間カップリング情報受信部と、
 前記空間カップリング情報に基づいて、ユーザ装置が存在するエリア間での発見信号通信の可否を決定し、当該発見信号通信の可否に基づいて、発見信号送信のためのリソースをユーザ装置に割り当てるリソース割り当て部とを備える基地局が提供される。
 本発明の一実施形態によれば、端末間通信のためのリソース割り当てにおいて、リソースの空間的再利用を適切に行うことを可能とする技術が提供される。
発見信号を送信するためのリソースの一例を示す図である。 D2D通信を説明するための図である。 発見信号送受信の例を示す図である。 リソース割り当ての例を説明するための図である。 本発明の実施の形態における通信システムの構成例を示す図である。 リソースの構成例を説明するための図である。 RGパターンの例を示す図である。 ユーザ装置UE-AがRFPを求めることを示す図である。 RFP・エリアマッピングテーブルの例を示す図である。 エリアIDに対応する各エリアを示した図である。 動作の概要を説明するための図である。 空間カップリングマトリックスの一例を示す図である。 本発明の実施の形態における処理手順を示すシーケンス図である。 測定対象の基地局eNBの数が4つとした場合のステップ100における処理内容を説明するための図である。 ユーザ装置UEが移動する場合におけるステップ100での動作例を説明するための図である。 ステップ400の具体例を示した図である。 ステップ500の具体例を示した図である。 ステップ600の具体例を示した図である。 ユーザ装置UEの機能構成例を示す図である。 基地局eNBの機能構成例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、以下の実施の形態では、本発明に係る「ユーザ装置に対応する識別情報」として、エリアIDを使用しているが、これは一例に過ぎず、当該識別情報としてエリアID以外のIDを用いてもよい。
 (全体構成例)
 まず、図5、図6を参照して、本発明の実施の形態における通信システムの全体構成例を説明する。図5は、本実施の形態における通信システムの構成例を示す。図5に示すように、本実施の形態における通信システムは、基地局eNBの配下に複数のユーザ装置UEが存在するセルラー通信システムである。実際には周辺に複数の基地局eNBが存在するが、図5では1つの基地局eNBを示している。当該セルラー通信システムは、例えばLTEに準拠したものであるが、LTEに限られるわけではない。なお、本明細書及び特許請求の範囲において、「LTE」は、3GPPのリリース8、又は9に対応する通信方式のみならず、3GPPのリリース10、11、又は12もしくはそれ以降に対応する通信方式も含む意味で使用する。
 図6は、本実施の形態における発見リソースに関わるリソース構成の例を説明するための図である。図6に示す例では、説明を分かり易くするための一例として、図6(a)に示すように、1回の発見信号送信機会(発見期間)において、4×4=16個の発見リソース(DR: discovery resource)が使用可能であるとする。ここで、1個の発見リソースDRは、ユーザ装置UEが発見信号を送信するために用いる最小単位のリソースであり、例えば、LTEで規定された複数のRB(リソースブロック)からなる。
 図6に示す例では、複数のリソースグループ(RG: Resource Group)パターン(pattern)が導入される。1つのRGパターンは、1つ又は複数のリソースグループRGを有する。1つのリソースグループRGは、1つ又は複数の発見リソースDRを有する。ユーザ装置UEには、RGパターン及び当該RGパターンにおいて使用すべきリソースグループRGが割り当てられる。この割り当ては、例えば基地局eNBからのシグナリングにより行われる。また、リソースグループRGの割り当ては、リソースグループRGのホッピングパターンの割り当てとして行われる場合もある。
 そして、ユーザ装置UEは、割り当てられたリソースグループRG内の1つ又は複数の発見リソースDRのうちの1つを任意に(例えばランダムに)選択して発見信号送信のために使用する。なお、リソースグループRGが1つの発見リソースDRのみを含む場合は、リソースグループRGの割り当てがそのまま発見リソースDRの割り当てとなる。
 図6には、例として3つのRGパターンが示されている。図6(b)に示すRGパターンは、RGパターンを構成するリソースグループRGの各々が1つの発見リソースDRであるパターンである。このパターンは、上述したように、各リソースグループRGが1つの発見リソースDRのみを含む場合であり、リソースグループRGの割り当てがそのまま発見リソースDRの割り当てとなる。図6(b)には、例として、図5に示したユーザ装置UE1~UE5の割り当て例が記載されている。このパターンの場合、結果的に前述した集中型と同様の割り当てになることから、このパターンを完全集中型(fully centralized)と呼ぶことができる。
 図6(c)に示すRGパターンは、発見リソース全体領域を2つのリソースグループ(RG1とRG2)に分けたパターンである。図6(c)に示すように、RG1にユーザ装置UE1とUE2が割り当てられ、RG2にユーザ装置UE3、UE4、UE5が割り当てられている。なお、図6(c)に示す割り当ての場合、例えば、ユーザ装置UE1にとっては、図6(c)に示すRGパターンが割り当てられ、更に、当該RGパターンの中のRG1が割り当てられたことになる。
 図6(c)に示すRGパターンは、複数のRGの中から1つのRGがユーザ装置UEに割り当てられるという点では集中型であるが、ユーザ装置UEはRGに含まれる複数の発見リソースDRから1つの発見リソースDRを任意に選択するという点では分散型であるので、このようなRGパターンを部分的集中型(partially distributed)と呼ぶことができる。
 図6(d)に示すRGパターンは、RGパターンに含まれるリソースグループRGが1つ(RG1)のみであるパターンである。この場合、RG1の中に図6(a)に示す16個の発見リソースDRが含まれ、各ユーザ装置UEは、16個の発見リソースDRの中から1つの発見リソースDRを選択して発見信号の送信を行う。このパターンの場合、結果的に前述した分散型と同様の割り当てになることから、このパターンを完全分散型(fully distributed)と呼ぶことができる。
 RGパターンは上述した特定のパターンに限定されるわけではなく、どのようなRGパターンでも導入することができる。図6に示したRGパターンの例を含む複数のRGパターンの例を図7に示す。
 本実施の形態では、リソースの空間的再利用が行われるから、例えば、図6(c)に示す例において、仮に、UE1~UE2のグループとUE3~UE5のグループ間で発見信号の送受信がなされない電波伝搬環境である場合、基地局eNBは後述する空間カップリングマトリックスからそのことを判別し、UE1~UE2のグループとUE3~UE5のグループの各ユーザ装置UEに、同じRG(例:RG1)を割り当てることができる。この場合、RG2を他のユーザ装置UEに割り当てることができることになり、リソースの有効活用が実現される。
 (本発明の実施の形態の概要)
 以下、実施の形態の概要について説明する。
  <無線フィンガープリントについて>
 本実施の形態では、基地局eNBが、ユーザ装置UEの位置に関連付けられるエリアIDを決定するために無線フィンガープリント(RFP)技術を用いる。最初に、本実施の形態で用いる無線フィンガープリント技術の概要を図8、図9を用いて説明する。
 図8は、ユーザ装置UE-Aの周辺に基地局(マクロ基地局)eNB1~eNB4が存在し、ユーザ装置UE-AがRFPを求めることを示す図である。なお、本実施の形態では、各ユーザ装置UEがRFPを算出するが、図8は特にユーザ装置UE-Aに着目した図である。
 図8に示すように、ユーザ装置UE-Aは、基地局eNB1~eNB4毎に、参照信号等の信号の受信電力(本実施の形態では、RSRP:Reference Signal Received Power)を測定する。また、ユーザ装置UE-Aは、各基地局eNBからセルIDを受信し、図示するように、セルIDとRSRPとを対応付けた情報をRFPとして生成し、当該RFPを、在圏する基地局eNBに送信する。
 基地局eNBは、各ユーザ装置UEから受信したRFPに基づき、図9に示すように、RFPと、エリアIDとを対応付けたRFP・エリアマッピングテーブルを作成し、保持する。基地局eNBは、このRFP・エリアマッピングテーブルを作成した後、例えば、あるユーザ装置UEからRFPを受信したときに、このRFPに該当するエントリ(RFP・エリアマッピングテーブルの行)があれば、当該行におけるエリアIDが当該ユーザ装置UEのエリアIDであると判定する。なお、RFPはユーザ装置UEの位置に関連付けられるため、RFPから識別されるものを便宜上「エリア」と呼んでいる。
 エントリにマッチするとは、ユーザ装置UEから受信したRFPを構成するRSRPと、RFP・エリアマッピングテーブルにおけるRSRPとをセル毎に比較し、各セルにおいて、RFPを構成するRSRPが、RFP・エリアマッピングテーブルにおけるRSRPに対して所定の範囲(オフセット)内にある場合である。図9では、当該オフセットはεで示されている。εの決め方は、特定の方法に限定されない。例えば、所定の定数であってもよいし、図9に示す式で求めてもよい。当該式において、αは所定の定数であり、Rは該当セルの基地局eNBとユーザ装置UE間の距離であり、rはエリアの半径である。なお、Rとrの例は図10にも示される。図10は、図9に示したエリアIDに対応する各エリアを示した図である。
 なお、例えば、各基地局eNBが周辺基地局eNBとの間で基地局間通信を行い、各基地局eNBが周辺基地局eNBとの間でRFP・エリアマッピングテーブルを交換することで、各基地局eNBは、共通のRFP・エリアマッピングテーブルを保持できる。以下では、各基地局eNBは、共通のRFP・エリアマッピングテーブルを保持しているものとする。
  <動作の概要>
 次に、本実施の形態に係るシステムの動作の概要を説明する。本実施の形態における動作は、RFP・エリアマッピングテーブル構築、及びエリアID通知のための動作1と、空間カップリングマトリックス構築、及びリソース割り当てのための動作2に分けられる。
 (動作1)動作1において、ユーザ装置UEはRFP(RSRPベクトル)を基地局eNBに報告し、基地局eNBは、RFPとRFP・エリアマッピングテーブルの照合を行って、新規のRFPである場合はエリアIDとRFPのエントリを追加し、既存のRFPである場合はユーザ装置UEから受信したRFPに対応するエリアIDをユーザ装置UEに通知する。また、基地局eNBは、ユーザ装置UEからのRFPの報告の正確性を保つために、例えば、測定すべき周辺基地局の数をユーザ装置UEに通知することとしてもよい。
 (動作2)動作2については、図11を適宜参照して説明する。図11には、各エリアのエリアIDが示されている。例えば、ユーザ装置UE-Aが保持するエリアIDは1であり、ユーザ装置UE-Bが保持するエリアIDは2である。
 動作2では、基地局eNBが、エリア間においてユーザ装置UE間で発見信号の送受信がなされたかどうかをユーザ装置UEからの報告により把握することで、エリア間での発見信号通信可否を示す空間カップリングマトリックス(spatial coupling matrix)を作成し、その情報に基づき、リソース空間的再利用を含むリソース割り当てを行うこととしている。動作2での処理の概要は以下のとおりである。
 ステップ1)各ユーザ装置UEは自身のエリアIDを発見信号に含め、当該発見信号を送信する。当該発見信号は他のユーザ装置UEにより受信される。例えば、図11に示すユーザ装置UE-Aは、エリアIDとして1を含む発見信号を送信し、ユーザ装置UE-Cが当該発見信号を受信する。このことは、エリアIDが1のエリアとエリアIDが3のエリア間で通信可能であることを示している。自身のエリアID及び受信した発見信号に含まれるエリアIDを含む情報を空間カップリング情報と呼ぶ。なお、自身のエリアIDと受信した発見信号に含まれるエリアIDとが異なる場合に、自身のエリアID及び受信した発見信号に含まれるエリアIDを含む情報を空間カップリング情報と呼ぶこととしてもよい。
 ステップ2)各ユーザUE装置は、空間カップリング情報を基地局eNBに送信する。なお、ユーザ装置UEは、空間カップリング情報として、自身のエリアID及び受信した発見信号に含まれるエリアIDの両方を送信することは必ずしも必要ではない。空間カップリング情報として、受信した発見信号に含まれるエリアIDを送信し、自身のエリアIDを送信しないこととしてもよい。この場合、例えば、基地局eNBは、動作1で通知したエリアIDを、通知先のユーザ装置UE毎に保持することで、空間カップリング情報の送信元のユーザ装置UEのエリアIDを把握できる。
 ステップ3)基地局eNBは、各ユーザUE装置から受信した空間カップリング情報を用いて空間カップリングマトリックスを構築する。
 空間カップリングマトリックスの一例を図12(a)に示す。図12(a)の例では、発見信号の通信が行われたエリア間を1とし、発見信号の通信が行われていないエリア間を0としている。例えば、図12(a)の例では、エリア1からエリア2へ発見信号通信が行われ、更に、エリア2からエリア1への発見信号通信も行われたことが示されている。本実施の形態では、一方のエリアから送信された発見信号を他方のエリアで受信したことが空間カップリングマトリックスから判定できる場合に、当該エリア間で通信可能であると判断してもよいし、一方のエリアから送信された発見信号を他方のエリアで受信し、更に当該他方のエリアから送信された発見信号を当該一方のエリアで受信したことが空間カップリングマトリックスから判定できる場合に、当該エリア間で通信可能であると判断してもよい。
 図12(b)に、空間カップリングマトリックスから得られるエリア間の接続関係例を示す。図12(b)に示す例では、例えば、エリア2とエリア3間は通信できないので、基地局eNBは、エリア2に属するユーザ装置UEに割り当てたリソース(DR,RG等)と同じリソースをエリア3に割り当てる判断を行うことができる。つまり、発見信号の通信がされていないエリア間では、同じリソースを割り当てることができる。
 各基地局eNBは、例えばX2インターフェースを介して、周辺基地局eNBと空間カップリングマトリックスを交換することで、特にセル端のエリアでのより正確な空間カップリングマトリックスを構築できる。
 なお、本実施の形態に係る上記の動作2では、送信側で動作1に基づき求められたエリアIDを識別情報として発見信号に含めて送信し、受信側で当該識別情報を含む情報を基地局eNBに送信することとしているが、発見信号に含めて送信し、受信側で基地局eNBに送信する識別情報は当該エリアIDに限定されるわけではない。例えば、識別情報として、在圏するセルのID、もしくはその他のユーザ装置UEに対応するIDを用いることとしてもよい。
 (実施の形態における処理手順の詳細)
 以下、本発明の実施の形態における処理手順を詳細に説明する。図13は、システムの全体の動作例を示すシーケンス図であり、基地局eNBに新たに在圏したユーザ装置UE-Aとその他のユーザ装置UEが存在する状況を示している。図13に示す手順に沿って、各手順の処理内容を説明する。説明において、適宜図14~図18を参照する。
  <ステップ100:RSRP測定、報告>
 図13のステップ100において、ユーザ装置UE-Aは、所定数の基地局eNBからの信号のRSRPを測定し、その値とセルIDとをRFPとして基地局eNBに通知する。通知には、例えば、PUSCH、PUCCHのようなユーザ装置UE個別の上りシグナリングチャネル(制御信号)を用いることができる。また、LTEのハンドオーバで規定されている既存のRRCシグナリングを用いてRFPを基地局eNBに通知することとしてもよい。
 測定対象の基地局eNBの数が4つとした場合のステップ100における処理内容を図14に示す。図14では、各ユーザ装置UEが基地局eNBにRFPを報告することが示されているが、便宜上、ユーザ装置UE-Aについて、測定を行う基地局eNBの数が4つであることが示されている。
 ユーザ装置UE-Aは、図14上でユーザ装置UE-Aの下の表に示すように、各基地局eNBからの信号のRSRPを測定し、これら4つの値を含むRSRPベクトルをRFPとして基地局eNBに通知する。
 通知のための信号(フレーム)は、例えば、セルID用に2×4ビット、及びRSRP用に2×4ビットで構成される。
 ユーザ装置UEが移動する場合におけるステップ100での動作例を図15を参照して説明する。
 図15に示すように、ユーザ装置UEがエリア1からエリア2に移動するイベントをイベント1とし、ユーザ装置UEが、基地局eNB-AのセルAから基地局eNB-BのセルBに移動するイベントをイベント2とする。
 ユーザ装置UEがエリア1からエリア2に移動するイベント1において、ユーザ装置UEは、RSRPを定期的に測定し、RFPを定期的に基地局eNB-Aに報告する。そして、基地局eNB-Aは、RFPからユーザ装置UEがエリア1にいるのかエリア2にいるのかを判定し、ユーザ装置UEに通知を行う。
 イベント2において、ユーザ装置UEの在圏するセルが変更になる段階(セルA及びセルBのセル端に位置する場合)では、ユーザ装置UEは、基地局eNB-Aと基地局eNB-Bの両方にRFPを報告する。
  <ステップ200>
 図13のステップ200において、基地局eNBは、受信したRFPがRFP・エリアマッピングテーブルにおけるエントリにマッチするかどうか判定する。エントリにマッチする場合、基地局eNBは、当該ユーザ装置UEに発見信号送信のための最初のリソースを割り当てる。リソースの割り当てとしては、例えばRGを割り当てる。
 その際、例えば、既に作成されている空間カップリングマトリックスを参照し、当該ユーザ装置UEのエリアと通信しないエリアに割り当てたリソースと同じリソースを割り当てることができる。また、割り当てるリソースは、当該ユーザ装置UEのエリアと通信するエリアに割り当てたリソースとは異なるリソースとする。このような割り当ては例えばグラフ彩色問題として定式化して解決できる。なお、このような割り当てを可能とするために、基地局eNBは、エリアIDと、当該エリアのユーザ装置UEに割り当てたリソースとを対応付けた割り当てテーブルを保持している。
 エントリにマッチしない場合、基地局eNBは、受信したRFPと新たなエリアIDからなるエントリをRFP・エリアマッピングテーブルに追加することによりRFP・エリアマッピングテーブルを更新し、リソースをユーザ装置UEに割り当てる。
 なお、ユーザ装置UE-A以外のユーザ装置UEも例えば定期的にRFPを基地局eNBに送信し、基地局eNBがエリアIDを決定し、リソース割り当てを行って、当該ユーザ装置UEに通知している。
  <ステップ300>
 基地局eNBは、エリアIDと割り当てたリソースのIDとをユーザ装置UE-A(及び他のユーザ装置UE)に通知する。なお、エリアIDと割り当てたリソースのIDは別々に通知してもよい。通知には、下りRRCシグナリング等のユーザ装置UE個別の下りシグナリングが用いられる。各ユーザ装置UEは、受信したエリアIDを保持する。リソースのIDは、例えばRGのID、DRのID等であり、各ユーザ装置UEは、RGのID、DRのID等から、発見信号送信のためにどのリソース(例:RB)を使用するかを決定し、当該リソースを用いて発見信号を送信する機能を有している。
  <ステップ400>
 ステップ400において、ユーザ装置UE-Aは、自身のエリアIDを発見信号に含め、当該発見信号を送信(ブロードキャスト)する。送信は定期的に行われる。
 図16は、ステップ400における処理内容をより具体的に示した図である。図16に示す例では、既存の発見信号に、エリアIDが付加された信号が本実施の形態での発見信号として示されている。図16に示すとおり、ユーザ装置UE-Aが当該発見信号を送信することで、様々な場所に存在する他のユーザ装置UEが発見信号を受信する。
  <ステップ500>
 図13のステップ500において、ユーザ装置UE-Aは、他のユーザ装置UEから発見信号を受信し、当該発見信号に含まれるエリアIDが自身のエリアIDと異なることを検出することにより、自エリアと他エリア間が通信可能であることを検出する。つまり、エリア間が結合(カップリング)されていることを検出する。
 ステップ500の具体例を図17に示す。図17の例では、エリアIDがエリア5である公共エリアのユーザ装置UE-Aが、異なるエリアの複数のユーザ装置UEからエリアIDを含む発見信号を受信する。ユーザ装置UE-Aは、発見信号に含まれるエリアIDをデコードでき、それが自身のエリアIDと異なる場合に、当該エリアIDとエリアと自身のエリアIDのエリアとが結合している(通信可能である)と判断する。なお、ユーザ装置UE-Aがこの判断を行うことは必ずしも必要ではなく、基地局eNBのみが判断を行えば足りる。
 発見信号のエリアIDをデコードできたということは、受信した発見信号のRSSI(Received Signal Strength Indicator、受信信号強度)が所定の閾値よりも大きいことを意味する。本実施の形態の手法では、エリア間で受信信号強度を測定したり推定することなく、受信信号強度に基づく正確な空間カップリング情報を取得できる。
  <ステップ600>
 ユーザ装置UE-Aは、空間カップリング情報(自身のエリアIDと、発見信号に含まれた他エリアのエリアID)を基地局eNBに通知する。なお、前述したように、自身のエリアIDを通知することは必須ではない。通知には、例えば、PUSCH、PUCCH等のユーザ装置UE個別の上りシグナリングチャネルを使用する。ユーザ装置UEが基地局eNBに空間カップリング情報を通知する場合の例を図18に示す。
 図18には、空間カップリング情報の例が示されている。図18に示す空間カップリング情報は、自身のエリアID(例:エリア4)と2×N(NはエリアIDの数)マトリックスからなる。2×Nマトリックスは、エリアID毎に、ユーザ装置UE-Aが、当該エリアIDのエリアのユーザ装置UEから発見信号を受信した場合に1が入り、受信していない場合に0が入る。また、空間カップリング情報として、自エリアIDと、自エリア以外から受信した発見信号に含まれていたエリアIDを送信することとしてもよい。
 <ステップ700>
 図13のステップ700において、基地局eNBは、受信した空間カップリング情報に基づいて空間カップリングマトリックス(例:図12(a))を更新し、各ユーザ装置UEに対するリソース割り当てを更新し、通知する。リソース割り当ての通知は、例えば、下りRRCシグナリングのようなユーザ装置UE個別の下りシグナリングにより行われる。
  <ステップ800>
 基地局eNBは、空間カップリングマトリックスをX2インターフェースにより周辺基地局eNBと交換し、より正確な空間カップリングマトリックスを得る。
 (装置構成)
  <ユーザ装置UEの構成例>
 図19に、本実施の形態におけるユーザ装置UEの機能構成例を示す。なお、図19は、本実施の形態に関係する構成を示すものであり、当該ユーザ装置UEは、例えばLTEに準拠した携帯端末としての動作を行うための図示しない既存機能を含む。
 図19に示すように、ユーザ装置UEは、受信部101、制御信号取得部102、発見信号取得部103、データ記憶部104、RSRP測定部105、RFP報告信号生成部106、発見信号生成部107、空間カップリング情報報告信号生成部108、送信部109を備える。
 受信部101は、基地局eNBもしくは他のユーザ装置UEから無線で信号を受信する。制御信号取得部102は、受信部101により受信した信号から制御信号(例:UE個別下りシグナリング信号)を取得し、制御信号からエリアID、リソースID、セルID等を取得して、データ記憶部104に格納する。
 発見信号取得部103は受信した信号から発見信号を取得し、発見信号に含まれるエリアIDを抽出(デコード)してデータ記億部104に格納する。また、RSRP測定部105は、受信部101が受信した参照信号のRSRPを測定し、測定したRSRPをセルIDに対応付けてデータ記億部104に格納する。
 RFP報告信号生成部106は、データ記億部104に格納されているセルIDとRSRPを用いてRFP(RSRPベクトル)を含む報告信号(制御信号)を生成する。発見信号生成部107は、データ記億部104に格納されている自エリアのエリアIDを含む発見信号を生成する。空間カップリング情報報告信号生成部108は、データ記憶部104に格納されている、受信発見信号に含まれていたエリアIDと自エリアIDを含む空間カップリング情報を作成し、それを含む報告信号を生成する。なお、自エリアIDは空間カップリング情報に含めなくてもよい。送信部109は、RFP報告信号生成部106、発見信号生成部107、空間カップリング情報報告信号生成部108により生成された信号を送信する。送信部109は、発見信号を送信する際には、基地局eNBから指定されたリソースIDに対応するリソースを用いて送信を行う。
 なお、ユーザ装置UEの構成は、上記の構成に限られるわけではなく、本実施の形態で説明した処理を実行できる構成であればどのような構成でもよい。例えば、ユーザ装置UEは、無線により装置対装置通信を行う機能を有するユーザ装置であって、前記ユーザ装置に対応する識別情報を格納するデータ記憶部と、他のユーザ装置から、当該他のユーザ装置に対応する識別情報を含む発見信号を受信し、当該発見信号から当該他のユーザ装置に対応する識別情報を取得する識別情報取得部と、前記他のユーザ装置に対応する識別情報を含む制御信号を基地局に送信する制御信号送信部とを備えるユーザ装置として構成される。
 例えば、前記ユーザ装置に対応する識別情報は、当該ユーザ装置が存在するエリアを識別するエリア識別情報であり、前記他のユーザ装置に対応する識別情報は、当該他のユーザ装置が存在するエリアを識別するエリア識別情報である。この構成により、基地局は、例えばエリア間での通信可否を決定するために用いる情報を得られるため、端末間通信のためのリソース割り当てにおいて、リソースの空間的再利用を適切に行うことが可能となる。
 また、前記制御信号は、前記ユーザ装置に対応する識別情報と前記他のユーザ装置に対応する識別情報とを含むようにしてもよい。また、前記ユーザ装置に、前記ユーザ装置に対応する識別情報を含む発見信号を送信する発見信号送信部を備えることとしてもよい。
 また、ユーザ装置UEは、無線により装置対装置通信を行う機能を有するユーザ装置であって、前記ユーザ装置が存在するエリアを識別するエリア識別情報を格納するデータ記憶部と、他のユーザ装置から、当該他のユーザ装置のエリア識別情報を含む発見信号を受信し、当該発見信号から当該他のユーザ装置のエリア識別情報を取得するエリア識別情報取得部と、前記ユーザ装置のエリア識別情報と前記他のユーザ装置のエリア識別情報とを含む制御信号を基地局に送信する制御信号送信部とを備えることとしてもよい。
 上記の構成により、基地局は、ユーザ装置のエリア識別情報と他のユーザ装置のエリア識別情報とを用いて、エリア間での通信可否を決定できるため、端末間通信のためのリソース割り当てにおいて、リソースの空間的再利用を適切に行うことが可能となる。
 上記のエリア識別情報は、特定のものに限定されるわけではなく、本実施の形態で説明したようにRFPから決定されたエリアIDであってもよいし、また、セルIDのようにセル(エリアの一例)を識別するIDであってもよい。
 前記ユーザ装置は、前記ユーザ装置のエリア識別情報を含む発見信号を送信する発見信号送信部を備えてもよい。また、前記ユーザ装置のエリア識別情報は、前記基地局において前記ユーザ装置の位置に関する情報から決定され、前記ユーザ装置は、当該エリア識別情報を前記基地局から受信するようにしてもよい。位置に関する情報とは、例えば、RFPである。また、位置に関する情報はGPSで取得した情報であってもよい。
 上記のような構成を採用することで、ユーザ装置は、エリア識別情報を容易に取得することができる。
 また、前記ユーザ装置は、複数の基地局から受信する信号の受信電力を基地局毎に測定し、当該複数の基地局の受信電力を前記ユーザ装置の位置に関する情報として前記基地局に送信する情報送信部を備えることとしてもよい。この構成により、GPSを使用することなく、位置に関する情報を通知できる。
 また、前記基地局は、前記ユーザ装置のエリア識別情報と前記他のユーザ装置のエリア識別情報を含む情報に従ってエリア間の発見信号通信可否を決定し、当該エリア間の発見信号通信可否に基づいて、発見信号送信のためのリソースを前記ユーザ装置に割り当て、前記ユーザ装置は、当該リソースを用いて前記発見信号の送信を行うようにしてもよい。このような構成により、例えば、基地局は、リソースの空間的再利用を的確に行うことができ、ユーザ装置において発見信号の衝突を低減させ、なおかつ、リソースの利用効率を向上させることができる。
  <基地局eNBの構成例>
 図20に、本実施の形態における基地局eNBの機能構成例を示す。なお、図20は、本実施の形態に関係する構成を示すものであり、当該基地局eNBは、例えばLTEに準拠した基地局eNBとしての動作を行うための図示しない既存機能を含む。
 図20に示すように、基地局eNBは、受信部201、RFP情報取得部202、エリアID決定部203、データ記憶部204、リソース割り当て部205、制御信号生成部206、送信部207、基地局間通信処理部208、空間カップリング情報処理部209を備える。
 データ記憶部204には、RFP・エリアマッピングテーブル、空間カップリングマトリックス、ユーザ装置UEとエリアIDと割り当てリソースIDとを対応付けたテーブル、空きリソース情報等が格納される。
 受信部201はユーザ装置UEから送信された信号を無線で受信する。RFP情報取得部202は、ユーザ装置UEから受信した信号からRFPを取得し、エリアID決定部203に渡す。エリアID決定部203は、受信したRFP(各RFRP値)と、RFP・エリアマッピングテーブルに格納されたエントリとの照合を行い、RFPに該当するエリアIDの決定や、RFP・エリアマッピングテーブルへのエントリの追加等を行う。
 リソース割り当て部205は、空間カップリングマトリックス、ユーザ装置UEのエリアID、既に割り当てられたリソース、及び未割り当てのリソース等に基づいて、当該ユーザ装置UEにリソースを割り当てる。
 空間カップリング情報処理部209は、受信部201により受信した信号から空間カップリング情報を取得し、当該空間カップリング情報を用いて空間カップリングマトリックスを生成・更新する。制御信号生成部206は、エリアID、リソースID等を含む制御信号を生成する。送信部207は制御信号、参照信号等を無線でユーザ装置UEに送信する。
 基地局間通信処理部208は、例えばX2インターフェースを用いて基地局間通信を行うことで、RFP・エリアマッピングテーブル、空間カップリングマトリックス等の情報を他の基地局と交換するとともに、他の基地局から受信したRFP・エリアマッピングテーブル、及び空間カップリングマトリックス等を用いて、データ記憶204に記憶されているRFP・エリアマッピングテーブル、及び空間カップリングマトリックス等の更新を行う。
 なお、基地局eNBの構成は、上記の構成に限られるわけではなく、本実施の形態で説明した処理を実行できる構成であればどのような構成でもよい。例えば、基地局eNBは、無線により装置対装置通信を行う機能を有するユーザ装置と通信する基地局であって、複数のユーザ装置の各々から、当該ユーザ装置が受信した発見信号に含まれていた識別情報であって、他のユーザ装置に対応する識別情報を含む空間カップリング情報を受信する空間カップリング情報受信部と、前記空間カップリング情報に基づいて、ユーザ装置が存在するエリア間での発見信号通信の可否を決定し、当該発見信号通信の可否に基づいて、発見信号送信のためのリソースをユーザ装置に割り当てるリソース割り当て部とを備える構成とすることができる。
 また、前記基地局は、前記複数のユーザ装置の各々から、当該ユーザ装置の位置に関する情報を受信し、当該位置に関する情報に基づいて、各ユーザ装置に対応する識別情報を決定し、当該識別情報を該当のユーザ装置に送信する識別情報送信部を備えてもよい。この構成により、ユーザ装置はユーザ装置に対応する識別情報を基地局からのシグナリングで取得することができる。前記ユーザ装置に対応する識別情報は、例えば、当該ユーザ装置が存在するエリアを識別するエリア識別情報である。
 また、基地局eNBは、無線により装置対装置通信を行う機能を有するユーザ装置と通信する基地局であって、複数のユーザ装置の各々から、当該ユーザ装置のエリア識別情報と当該ユーザ装置が受信した発見信号に含まれていたエリア識別情報とを含む空間カップリング情報を受信する空間カップリング情報受信部と、前記空間カップリング情報に基づいて、ユーザ装置が存在するエリア間での発見信号通信の可否を決定し、当該発見信号通信の可否に基づいて、発見信号送信のためのリソースをユーザ装置に割り当てるリソース割り当て部とを備えることとしてもよい。
 また、前記基地局は、前記複数のユーザ装置の各々から、当該ユーザ装置の位置に関する情報を受信し、当該位置に関する情報に基づいて、各ユーザ装置のエリア識別情報を決定し、当該エリア識別情報を該当のユーザ装置に送信するエリア識別情報送信部を備えてもよい。この構成により、ユーザ装置はエリア識別情報を基地局からのシグナリングで取得することができる。
 前記ユーザ装置の位置に関する情報は、例えば複数の基地局についての受信電力の情報である。この構成により、ユーザ装置がGPSを使用することなく、基地局は位置に関する情報を取得できる。ただし、基地局が位置に関する情報を取得するために、ユーザ装置がGPSを使用することとしてもよい。
 以上、本発明の各実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。説明の便宜上、ユーザ装置及び基地局は機能的なブロック図を用いて説明されたが、そのような各装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態で説明した処理に対応する動作を実行するソフトウェア、すなわち、ユーザ装置が備えるプロセッサにより実行されるソフトウェア、及び基地局が備えるプロセッサにより実行されるソフトウェアはいずれも、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。本発明は上記実施形態に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が本発明に包含される。
 本国際特許出願は2013年9月6日に出願した日本国特許出願第2013-184950号、及び2013年12月11日に出願した日本国特許出願第2013-256309号に基づきその優先権を主張するものであり、日本国特許出願第2013-184950号及び日本国特許出願第2013-256309号の全内容を本願に援用する。
UE ユーザ装置
eNB 基地局
101 受信部
102 制御信号取得部
103 発見信号取得部
104 データ記憶部
105 RSRP測定部
106 RFP報告信号生成部
107 発見信号生成部
108 空間カップリング情報報告信号生成部
109 送信部
201 受信部
202 RFP情報取得部
203 エリアID決定部
204 データ記憶部
205 リソース割り当て部
206 制御信号生成部
207 送信部
208 基地局間通信処理部
209 空間カップリング情報処理部

Claims (10)

  1.  無線により装置対装置通信を行う機能を有するユーザ装置であって、
     前記ユーザ装置に対応する識別情報を格納するデータ記憶部と、
     他のユーザ装置から、当該他のユーザ装置に対応する識別情報を含む発見信号を受信し、当該発見信号から当該他のユーザ装置に対応する識別情報を取得する識別情報取得部と、
     前記他のユーザ装置に対応する識別情報を含む制御信号を基地局に送信する制御信号送信部と
     を備えることを特徴とするユーザ装置。
  2.  前記識別情報はエリア識別情報であることを特徴とする請求項1に記載のユーザ装置。
  3.  前記ユーザ装置に対応する識別情報は、当該ユーザ装置が存在するエリアを識別するエリア識別情報であり、前記他のユーザ装置に対応する識別情報は、当該他のユーザ装置が存在するエリアを識別するエリア識別情報である
     ことを特徴とする請求項2に記載のユーザ装置。
  4.  前記制御信号は、前記ユーザ装置に対応する識別情報と前記他のユーザ装置に対応する識別情報とを含む
     ことを特徴とする請求項1ないし3のうちいずれか1項に記載のユーザ装置。
  5.  前記ユーザ装置に対応する識別情報を含む発見信号を送信する発見信号送信部を備えることを特徴とする請求項1ないし4のうちいずれか1項に記載のユーザ装置。
  6.  無線により装置対装置通信を行う機能を有するユーザ装置と通信する基地局であって、
     複数のユーザ装置の各々から、当該ユーザ装置が受信した発見信号に含まれていた識別情報であって、他のユーザ装置に対応する識別情報を含む空間カップリング情報を受信する空間カップリング情報受信部と、
     前記空間カップリング情報に基づいて、ユーザ装置が存在するエリア間での発見信号通信の可否を決定し、当該発見信号通信の可否に基づいて、発見信号送信のためのリソースをユーザ装置に割り当てるリソース割り当て部と
     を備えることを特徴とする基地局。
  7.  前記複数のユーザ装置の各々から、当該ユーザ装置の位置に関する情報を受信し、当該位置に関する情報に基づいて、各ユーザ装置に対応する識別情報を決定し、当該識別情報を該当のユーザ装置に送信する識別情報送信部
     を備えることを特徴とする請求項6に記載の基地局。
  8.  前記ユーザ装置に対応する識別情報は、当該ユーザ装置が存在するエリアを識別するエリア識別情報である
     ことを特徴とする請求項6又は7に記載の基地局。
  9.  無線により装置対装置通信を行う機能を有するユーザ装置が実行する情報通知方法であって、
     他のユーザ装置から、当該他のユーザ装置に対応する識別情報を含む発見信号を受信し、当該発見信号から当該他のユーザ装置に対応する識別情報を取得する識別情報取得ステップと、
     前記他のユーザ装置に対応する識別情報を含む制御信号を基地局に送信する制御信号送信ステップと
     を備えることを特徴とする情報通知方法。
  10.  無線により装置対装置通信を行う機能を有するユーザ装置と通信する基地局が実行するリソース割り当て方法であって、
     複数のユーザ装置の各々から、当該ユーザ装置が受信した発見信号に含まれていた識別情報であって、他のユーザ装置に対応する識別情報を含む空間カップリング情報を受信する空間カップリング情報受信ステップと、
     前記空間カップリング情報に基づいて、ユーザ装置が存在するエリア間での発見信号通信の可否を決定し、当該発見信号通信の可否に基づいて、発見信号送信のためのリソースをユーザ装置に割り当てるリソース割り当てステップと
     を備えることを特徴とするリソース割り当て方法。
PCT/JP2014/072739 2013-09-06 2014-08-29 ユーザ装置、基地局、情報通知方法、及びリソース割り当て方法 WO2015033870A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14842278.5A EP3043613A4 (en) 2013-09-06 2014-08-29 USER EQUIPMENT, BASE STATION, INFORMATION NOTIFICATION METHOD, AND RESOURCE ALLOCATION METHOD
US14/916,146 US20160198449A1 (en) 2013-09-06 2014-08-29 User equipment, base station, information notification method, and resource allocation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-184950 2013-09-06
JP2013184950 2013-09-06
JP2013-256309 2013-12-11
JP2013256309A JP2015073258A (ja) 2013-09-06 2013-12-11 ユーザ装置、基地局、情報通知方法、及びリソース割り当て方法

Publications (1)

Publication Number Publication Date
WO2015033870A1 true WO2015033870A1 (ja) 2015-03-12

Family

ID=52628344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072739 WO2015033870A1 (ja) 2013-09-06 2014-08-29 ユーザ装置、基地局、情報通知方法、及びリソース割り当て方法

Country Status (4)

Country Link
US (1) US20160198449A1 (ja)
EP (1) EP3043613A4 (ja)
JP (1) JP2015073258A (ja)
WO (1) WO2015033870A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9756490B2 (en) * 2015-06-05 2017-09-05 Ping4 Inc. Tag based filtering on geographic regions, digital assets, messages, and anonymous user profiles
US10194336B2 (en) * 2015-08-17 2019-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Activation of cells
CN112600645A (zh) * 2017-03-17 2021-04-02 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
JP7099844B2 (ja) * 2018-03-27 2022-07-12 株式会社Kddi総合研究所 移動通信ネットワーク及び基地局
US11463963B2 (en) 2019-01-10 2022-10-04 Qualcomm Incorporated Path loss estimation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524722A (ja) * 2008-06-16 2011-09-01 クゥアルコム・インコーポレイテッド ジャミンググラフ、およびネットワークリソース割当てにおけるその応用
JP2012209893A (ja) 2011-03-30 2012-10-25 Ntt Docomo Inc 無線通信端末
JP2013017153A (ja) * 2011-06-06 2013-01-24 Panasonic Corp マルチホップ通信方法、マルチホップ通信システム、および通信端末

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4252476B2 (ja) * 2004-03-08 2009-04-08 株式会社エヌ・ティ・ティ・ドコモ エリア管理サーバ、携帯型通信端末、コンテンツ配信方法、及び、コンテンツ配信システム
CN101983518B (zh) * 2008-04-04 2015-10-07 诺基亚公司 用于为切换提供多跳密码分离的方法、设备和计算机程序产品
WO2011050519A1 (en) * 2009-10-28 2011-05-05 Nokia Corporation An interference suppression mechanism in communication networks
EP3110227B1 (en) * 2010-03-11 2018-10-03 Nokia Technologies Oy Method and apparatus for device-to-device communication setup
WO2013120267A1 (en) * 2012-02-17 2013-08-22 Renesas Mobile Corporation Control of device-to-device communication
WO2015020641A1 (en) * 2013-08-06 2015-02-12 Nokia Corporation Distributed small-cell search

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524722A (ja) * 2008-06-16 2011-09-01 クゥアルコム・インコーポレイテッド ジャミンググラフ、およびネットワークリソース割当てにおけるその応用
JP2012209893A (ja) 2011-03-30 2012-10-25 Ntt Docomo Inc 無線通信端末
JP2013017153A (ja) * 2011-06-06 2013-01-24 Panasonic Corp マルチホップ通信方法、マルチホップ通信システム、および通信端末

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATHUL PRASAD ET AL.: "Energy Efficient Small-Cell Discovery Using Received Signal Strength Based Radio Maps", IEEE VTC, June 2013 (2013-06-01)
H. LAITINEN ET AL.: "Experimental Evaluation of Location Methods Based on Signal-Strength Measurements", IEEE TRANS. VEHIC. TECH., vol. 56, no. 1, January 2007 (2007-01-01), pages 287 - 296, XP011157585, DOI: doi:10.1109/TVT.2006.883785
J. JOHANSSON ET AL.: "Minimization of Drive Tests in 3GPP Release 11", IEEE COMMUN. MAG, November 2012 (2012-11-01)
NTT DOCOMO: "Initial Views on Unified Approach for D2D Discovery", 3GPP TSG-RAN WG1#73 R1- 132371, XP055264819, Retrieved from the Internet <URL:http://www.3gpp.org/ ftp/tsg_ran/WG1_RL1/TSGR1_73/Docs/R1-132371. zip> *
See also references of EP3043613A4

Also Published As

Publication number Publication date
EP3043613A1 (en) 2016-07-13
JP2015073258A (ja) 2015-04-16
EP3043613A4 (en) 2016-08-24
US20160198449A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US10999823B2 (en) Device and method in a public land mobile network including direct communications between terminals
JP6484338B2 (ja) モビリティ信号を送信するための方法並びに関連するネットワーク・ノード及び無線デバイス
JP5973967B2 (ja) ユーザ装置、基地局、発見信号受信方法、及び発見信号送信方法
US20170325243A1 (en) User equipment apparatus and d2d communication method
WO2015002123A1 (ja) ユーザ装置、通信システム、及びバックオフ制御方法
JP6258613B2 (ja) 基地局、ユーザ装置、リソース割り当て方法、及びリソース決定方法
US20170244501A1 (en) User apparatus and distance estimation method
KR20170131554A (ko) 포지셔닝 레퍼런스 시그널의 전송
WO2015033870A1 (ja) ユーザ装置、基地局、情報通知方法、及びリソース割り当て方法
KR20160052981A (ko) D2d 링크의 자원 할당 및 데이터 송수신 방법
JP6247022B2 (ja) ユーザ装置、通信システム、及び無線リソース選択方法
TWI609598B (zh) 基於位置資訊的通信控制方法和系統
KR20160081810A (ko) 이동 통신 시스템에서의 랜덤 접속 처리 방법 및 장치
JP6910292B2 (ja) 通信端末
KR20190027876A (ko) 2-레벨 모빌리티 레퍼런스 신호 구성
JP6101473B2 (ja) 移動局及び無線基地局
JP7505586B2 (ja) 通信装置及び通信装置の方法
WO2016002060A1 (ja) 無線通信システム、無線機器、基地局、無線機器の制御方法、及び、基地局の制御方法
JP7111512B2 (ja) ユーザ装置
US20160174269A1 (en) Methods and Apparatus for Device to Device Communication
WO2015194016A1 (ja) 無線通信システム、無線通信方法、無線基地局、及び、無線機器
WO2024034452A1 (en) Method, user equipment and access network node
JP5893205B2 (ja) ポータブル・ロング・ターム・エボリューション・ローカル・エリア・ネットワーク間干渉に関わるセル間干渉検出

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14916146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842278

Country of ref document: EP