WO2015033850A1 - Gas barrier film laminate and electronic component using same - Google Patents

Gas barrier film laminate and electronic component using same Download PDF

Info

Publication number
WO2015033850A1
WO2015033850A1 PCT/JP2014/072573 JP2014072573W WO2015033850A1 WO 2015033850 A1 WO2015033850 A1 WO 2015033850A1 JP 2014072573 W JP2014072573 W JP 2014072573W WO 2015033850 A1 WO2015033850 A1 WO 2015033850A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier film
film layer
film laminate
laminate according
Prior art date
Application number
PCT/JP2014/072573
Other languages
French (fr)
Japanese (ja)
Inventor
正志 橋本
敦子 藤田
國信 隆史
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Publication of WO2015033850A1 publication Critical patent/WO2015033850A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to a gas barrier film laminate.
  • the present invention relates to a gas barrier film laminate that can effectively suppress water vapor permeation to electronic components.
  • OLED elements organic electroluminescent elements
  • OPV elements organic solar cell elements
  • liquid crystal elements and the like.
  • the glass substrate has the disadvantages that it is heavy, easily broken, and difficult to increase in area.
  • a gas barrier film laminate in which a resin composition film in which an inorganic filler is mixed / dispersed on a plastic film or a metal oxide thin film is formed may be used as the substrate.
  • plasma chemical vapor deposition As a method for forming a thin film such as a metal oxide on the surface of a plastic film, plasma chemical vapor deposition (CVD) is particularly known.
  • the plasma CVD method has a problem of a rapid compressive stress generated during the formation of the gas barrier film and the occurrence of curling due to this.
  • Patent Document 1 discloses that a gas barrier layer is an adhesive layer for a first film and a second film in which a gas barrier layer is formed on one surface of a substrate.
  • a gas barrier film laminate having one or more units of a laminated structure formed by bonding with an adhesive layer made of an ultraviolet curable resin is disclosed.
  • the technique of this document is a laminated structure in which a first film and a second film are symmetrically bonded to balance stress.
  • the gas barrier film laminate would inevitably become thick.
  • the present invention has been made in view of the above-described problems of the prior art.
  • the residual stress is relaxed while maintaining flexibility and curling is performed.
  • An object of the present invention is to provide a gas barrier film laminate having a sufficient gas barrier property while being reduced.
  • the inventors of the present invention formed a gas barrier film laminate having low curl and high gas barrier properties by combining a resin film, an organic film layer, and a gas barrier film layer. The present inventors have found that this can be done and have completed the present invention.
  • the gas barrier film laminate according to the first aspect of the present invention includes, for example, as shown in FIG. 1, a resin film 11 as a substrate; at least one organic film layer 12 and at least one on at least one surface of the resin film 11.
  • Two gas barrier film layers 13 are provided; the gas barrier film layer 13 is a film formed by a plasma CVD method and containing an organic component mainly composed of a metal oxide.
  • the “main component” means that the composition constituting the gas barrier film layer contains 50% by weight or more of a portion corresponding to a metal oxide.
  • the gas barrier film laminate according to the second aspect of the present invention is obtained by photopolymerizing the photocurable resin composition in the gas barrier film laminate according to the first aspect of the present invention. Film.
  • the gas barrier film laminate according to the third aspect of the present invention is the gas barrier film laminate according to the second aspect of the present invention, wherein the photocurable resin composition includes an acrylic resin.
  • an organic film layer having excellent transparency can be formed.
  • an acrylic resin having photocurability is preferable because it has excellent curl prevention properties due to its hardness.
  • the gas barrier film laminate according to the fourth aspect of the present invention is the gas barrier film laminate according to any one of the first to third aspects of the present invention, wherein the organic film layer is a coating method. Are stacked.
  • the organic film layer can be uniformly coated, and excellent smoothness can be obtained.
  • the gas barrier film laminate according to the fifth aspect of the present invention is the gas barrier film laminate according to any one of the first to fourth aspects of the present invention, wherein the plasma CVD method comprises a roll, Performed on a two-roll basis.
  • the gas barrier film laminate according to the sixth aspect of the present invention is the gas barrier film laminate according to any one of the first to fifth aspects of the present invention, wherein the thickness of the organic film layer is: 1 to 20 ⁇ m.
  • the gas barrier film laminate according to the seventh aspect of the present invention is the gas barrier film laminate according to any one of the first to sixth aspects of the present invention, wherein the thickness of the gas barrier film layer is: 0.2-2 ⁇ m.
  • the thickness uniformity is improved and the gas barrier performance is improved.
  • production of the crack by bending can be suppressed by setting it as 2 micrometers or less.
  • the gas barrier film laminate according to the eighth aspect of the present invention is the gas barrier film laminate according to any one of the first to seventh aspects of the present invention, wherein the gas barrier film layer is the resin. Provide only on one side of the film.
  • the gas barrier film layer is a gas barrier film laminate provided only on one side of the resin film, the gas barrier film layer has a sufficiently high barrier property and can be made thinner.
  • the gas barrier film laminate according to the ninth aspect of the present invention is the gas barrier film laminate according to any one of the first to eighth aspects of the present invention, wherein the resin film and the organic film are provided. And a curl height of 15 mm or less.
  • the curl height is 15 mm or less, so that the gas barrier film laminate can exhibit good processability.
  • the gas barrier film laminate can exhibit good processability.
  • cracks and film peeling due to curling are suppressed, good gas barrier properties can be maintained.
  • the gas barrier film laminate according to the tenth aspect of the present invention is the gas barrier film laminate according to any one of the first to ninth aspects of the present invention, wherein the organic film layer is the resin film. And the gas barrier film layer.
  • the organic film layer can flatten the irregularities on the surface of the substrate.
  • the gas barrier film laminate according to the eleventh aspect of the present invention is the gas barrier film laminate according to any one of the first to tenth aspects of the present invention, wherein water vapor at 40 ° C. and 90% RH is used.
  • the transmittance is 0.005 g / m 2 / d or less.
  • a gas barrier film laminate according to a twelfth aspect of the present invention is the gas barrier film laminate according to any one of the first to eleventh aspects of the present invention, wherein the resin film is a polyethylene phthalate. , Polyethylene naphthalate, cycloolefin polymer, polycarbonate, polyimide, or a mixture of these as a main component.
  • a resin film can be formed from a resin that is easily available, and a resin suitable for the application, such as being transparent, can be selected as appropriate.
  • An electronic component according to a thirteenth aspect of the present invention is, for example, as shown in FIG. 2B, an electronic element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes; And the gas barrier film laminate 10 according to any one of the first to twelfth aspects of the present invention.
  • a gas barrier film laminated body is excellent in gas-barrier property, it can control that water vapor
  • An electronic component according to a fourteenth aspect of the present invention is the electronic component according to the thirteenth aspect of the present invention, wherein the gas barrier film laminate is transparent and the element is an OLED element or an OPV element.
  • the present invention it is possible to provide a gas barrier film laminate having a sufficient gas barrier property while reducing the curl by relaxing the residual stress of the gas barrier film layer formed by the plasma CVD method. Furthermore, the gas barrier film laminate can be used to protect electronic elements such as OLED elements and OPV elements from intrusion of water vapor.
  • FIG. 2A is a cross-sectional view of an electronic component having an OLED element in a solid sealing method.
  • FIG.2 (b) is sectional drawing of the electronic component using the gas barrier film laminated body of this invention as an alternative. It is sectional drawing of the other electronic component using the gas barrier film laminated body of this invention.
  • FIG. 4A is a cross-sectional view of an electronic component having an OLED element with a conventional hollow structure.
  • FIG.4 (b) is sectional drawing of the electronic component using the gas barrier film laminated body of this invention as an alternative. It is the schematic of a roll-to-roll system.
  • the gas barrier film laminate according to the first embodiment of the present invention includes a resin film as a base material, and at least one organic film layer and at least one gas barrier film layer on at least one surface of the resin film.
  • the gas barrier film laminate 10 has an organic film layer 12 directly on the resin film 11, and further has a gas barrier film layer 13 directly on the organic film layer 12.
  • the gas barrier film layer is formed by a plasma CVD method, contains a metal oxide as a main component, and contains an organic component.
  • the gas barrier film layer may be a single film or a composite film.
  • the thickness of the organic film layer is preferably 1 to 20 ⁇ m, more preferably 1.2 to 10 ⁇ m, still more preferably 2 to 8 ⁇ m.
  • the thickness is preferably 1 to 20 ⁇ m, more preferably 1.2 to 10 ⁇ m, still more preferably 2 to 8 ⁇ m.
  • the surface roughness of the organic film layer is preferably an arithmetic average roughness Sa of 5 nm or less, more preferably 3 nm or less, and even more preferably 2 nm or less.
  • the thermal expansion coefficient of the organic film layer is preferably 10 to 150 ⁇ 10 ⁇ 6 / ° C., more preferably 21 to 100 ⁇ 10 ⁇ 6 / ° C., and further preferably 21 to 80 ⁇ 10 ⁇ 6 / ° C. ° C. Although the reason is not clear, curling of the gas barrier film laminate that occurs during the production process of the gas barrier film laminate can be suppressed when it is in the above range.
  • thermal expansion coefficient was measured with a tensile load of 5 g using a thermomechanical test apparatus TMA / SS6100 manufactured by SII Corporation as a measuring apparatus.
  • the temperature range is 25 ° C. to 100 ° C. (temperature increase rate 5 ° C./min, measurement environment: 23 ° C.).
  • the coefficient of thermal expansion was determined from the average value obtained by measuring two samples, approximating the temperature-elongation relationship in a straight line in the above temperature range on the apparatus.
  • Thermal expansion coefficient (linear expansion coefficient) ⁇ ⁇ L / (L ⁇ ⁇ T) ( ⁇ L: sample elongation, L: sample length, ⁇ T: temperature rise)
  • the organic film layer of the present invention is preferably a film obtained by photopolymerizing a photocurable resin composition.
  • the photocurable resin composition is preferably composed of a composition containing an acrylic resin.
  • the “photocurable resin composition” may be a composition that is photocured as a whole, and the photocurable resin does not necessarily have to be a main component.
  • Examples of the photocurable resin that is a precursor of the organic film layer include acrylic resins that can be cured by light such as ultraviolet irradiation.
  • examples thereof include resins having an unsaturated bond capable of radical polymerization, such as (meth) acrylate monomers, unsaturated polyester resins, polyester (meth) acrylate resins, epoxy (meth) acrylate resins, and urethane (meth) acrylate resins. .
  • These acrylic resins can be used alone or in admixture of two or more. Among them, polyester (meth) acrylate resin, urethane (meth) acrylate resin, (meth) acrylate monomer and the like alone or a mixture thereof are preferable.
  • Examples of the (meth) acrylate monomer include compounds obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid.
  • the condensation product (unsaturated polyester) by esterification reaction of a polyhydric alcohol and unsaturated polybasic acid (and saturated polybasic acid as needed) was melt
  • the unsaturated polyester can be produced by polycondensation of an unsaturated acid such as maleic anhydride and a diol such as ethylene glycol.
  • a polybasic acid having a polymerizable unsaturated bond such as fumaric acid, maleic acid, and itaconic acid or its anhydride is used as an acid component, and ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1, 2 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, cyclohexane
  • Polyhydric alcohols such as 1,4-dimethanol, ethylene oxide adduct of bisphenol A and propylene oxide adduct of bisphenol A are reacted as alcohol components, and phthalic acid, isophthalic acid, terephthalic acid, Such as tetrahydrophthalic acid, adipic acid, sebacic acid Polymerizable not have an unsaturated bond
  • polyester (meth) acrylate resin (1) a terminal carboxyl group polyester obtained from a saturated polybasic acid and / or an unsaturated polybasic acid and a polyhydric alcohol contains an ⁇ , ⁇ -unsaturated carboxylic ester group.
  • saturated polybasic acid used as a raw material for polyester (meth) acrylate examples include polybasic compounds having no polymerizable unsaturated bond such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, and sebacic acid. Examples thereof include acids or anhydrides thereof and polymerizable unsaturated polybasic acids such as fumaric acid, maleic acid and itaconic acid or anhydrides thereof. Further, the polyhydric alcohol component is the same as the unsaturated polyester.
  • the epoxy (meth) acrylate resin includes a polymerizable unsaturated bond formed by a ring-opening reaction between a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid.
  • the vinyl ester is produced by a known method, and includes an epoxy (meth) acrylate obtained by reacting an epoxy resin with an unsaturated monobasic acid such as acrylic acid or methacrylic acid.
  • epoxy resins may be reacted with bisphenol (for example, A type) or dibasic acid such as adipic acid, sebacic acid, dimer acid (Haridimer 270S: Harima Kasei Co., Ltd.) to impart flexibility.
  • bisphenol for example, A type
  • dibasic acid such as adipic acid, sebacic acid, dimer acid (Haridimer 270S: Harima Kasei Co., Ltd.
  • examples of the epoxy resin as a raw material include bisphenol A diglycidyl ether and its high molecular weight homologues, novolak glycidyl ethers, and the like.
  • urethane (meth) acrylate resin for example, after reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol, a hydroxyl group-containing (meth) acrylic compound and, if necessary, a hydroxyl group-containing allyl ether compound are reacted. And a radical-polymerizable unsaturated group-containing oligomer that can be obtained.
  • polyisocyanates include 2,4-tolylene diisocyanate and its isomers, diphenylmethane diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, triphenyl.
  • Methane triisocyanate Bannock D-750, Crisbon NK (trade name; manufactured by DIC Corporation), Desmodur L (trade name; manufactured by Sumitomo Bayer Urethane Co., Ltd.), Coronate L (trade name; Nippon Polyurethane Industry Co., Ltd.) Manufactured), Takenate D102 (trade name; manufactured by Mitsui Takeda Chemical Co., Ltd.), Isonate 143L (trade name; manufactured by Mitsubishi Chemical Corporation), and the like.
  • the polyhydroxy compound include polyester polyol and polyether polyol.
  • glycerin-ethylene oxide adduct examples include oxide adducts.
  • polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, and 1,3-butane.
  • the hydroxyl group-containing (meth) acrylic compound is not particularly limited, but a hydroxyl group-containing (meth) acrylic acid ester is preferable, and specific examples thereof include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl.
  • (Meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) An acrylate etc. are mentioned.
  • the photocurable resin composition contains a photopolymerization initiator.
  • a photoinitiator if it is a compound which generate
  • Photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, -Benzyl-2-dimethylamino-1- (4-
  • These compounds may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used in the above addition polymerization is preferably about 0.01 to 10 mol% based on the total number of moles of monomers. These photopolymerization initiators can be used alone or in combination of two or
  • a chain transfer agent may be used.
  • the molecular weight can be appropriately controlled by using the chain transfer agent.
  • chain transfer agents include thio- ⁇ -naphthol, thiophenol, butyl mercaptan, ethyl thioglycolate, mercaptoethanol, mercaptoacetic acid, isopropyl mercaptan, t-butyl mercaptan, dodecanethiol, thiomalic acid, pentaerythritol tetra (3 -Mercaptans such as mercaptopropionate) and pentaerythritol tetra (3-mercaptoacetate); disulfides such as diphenyl disulfide, diethyl dithioglycolate and diethyl disulfide; and the like, toluene, methyl isobutyrate, Carbon tetrachloride, isopropylbenzene, dieth
  • Solvents used when preparing a coating solution in which a photocurable resin is dissolved or dispersed in a solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, ⁇ - or ⁇ - Terpenes such as terpineol, etc., ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aroma such as toluene, xylene, tetramethylbenzene Aromatic hydrocarbons, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glyco
  • a coating solution in which a photocurable resin is dissolved or dispersed in a solvent improves the surface fluidity and leveling properties of the coating solution applied at the time of coating, and prevents pinholes and defects in the coating film due to poor wetting and repellency.
  • a surface conditioner leveling agent, wettability improving agent, interfacial slipping agent, etc.
  • the surface conditioner include polysiloxane, polyacrylate and wax.
  • an additive such as an antifoaming agent for preventing the generation of bubbles in the coating solution may be used.
  • antifoaming agents include mineral oil compounds and polysiloxane compounds.
  • the method for forming the organic film layer is not particularly limited, but it is preferable to use a wet coating method (coating method) in order to uniformly coat the photocurable resin composition.
  • a wet coating method coating method
  • excellent surface smoothness can be obtained.
  • the coating methods when a small amount is prepared, a spin coating method capable of simple and uniform film formation is preferable. In the case of roll-to-roll, where productivity is important, gravure coating method, die coating method, reverse coating method, roll coating method, slit coating method, dipping method, spray coating method, kiss coating method, reverse kiss coating method, air A knife coating method, a curtain coating method, a rod coating method and the like are preferable.
  • the coating method can be appropriately selected from these methods according to the required film thickness, viscosity, curing conditions, and the like.
  • the applied coating solution can be dried with hot air or the like in an environment of room temperature to about 200 ° C.
  • a photoactive energy beam or an electron beam is irradiated and cured by an active energy beam source.
  • an active energy beam source there is no particular limitation as a photoactive energy ray source, depending on the nature of the photopolymerization initiator used, for example, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, a xenon arc, a gas laser, a solid laser, An electron beam irradiation apparatus etc. are mentioned.
  • the drying furnace passage time for drying differs depending on the line speed, the type of coating liquid, the coating thickness, and the apparatus capacity (air volume, area, etc.). For example, 1 to 105 minutes can be mentioned. Similarly, the amount of irradiation for curing varies depending on the material and thickness. For example, when a high-pressure mercury lamp is used, about 200 to 700 mJ / cm 2 can be mentioned.
  • the gas barrier film layer included in the gas barrier film laminate is a film containing metal oxide as a main component, formed by a plasma CVD method, and is a single film or a composite film. Note that a film mainly containing a metal nitride or a mixture of a metal oxide and a metal nitride may be used instead of the metal oxide.
  • the thickness of the gas barrier film layer is preferably 0.2 to 2 ⁇ m, more preferably 0.3 to 1.5 ⁇ m, still more preferably 0.5 to 1.5 ⁇ m.
  • the thickness is 0.2 ⁇ m or more, the film thickness uniformity is good and the gas barrier performance is excellent. If it is 2 ⁇ m or less, cracks due to bending are less likely to occur.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the vacuum deposition method is widely used as a highly productive process, but the gas barrier performance is inferior.
  • a dense film can be formed by sputtering, the film formation rate is low and sufficient productivity cannot be obtained.
  • the film formed by the PVD method is inorganic and brittle, defects and peeling are likely to occur, and high barrier properties cannot be imparted.
  • the plasma CVD method has an advantage in terms of productivity as compared with the sputtering method, and further has a good gas barrier performance as compared with the vacuum evaporation method and the sputtering method.
  • the plasma CVD method can be preferably used as the method for forming the gas barrier film layer. More preferably, a roll-to-roll type plasma CVD method can be used in terms of productivity and quality stability.
  • CVD Chemical Vapor Deposition
  • one or more source gases of a compound containing a constituent element of a thin film material to be manufactured are supplied onto a film formation target (for example, a substrate), and the gas phase or the surface of the substrate is supplied.
  • the plasma CVD method is a method in which a reactive gas is brought into a plasma state, active radicals and ions are generated, and a chemical reaction is performed in an active environment.
  • the roll-to-roll means that a film-forming object wound in a roll shape is sent out from a feed roll 31, and a target substance is formed on a surface and printed, and another roll (winding is wound again).
  • This is a production method in which a take-up reel 32) is wound up and collected.
  • Japanese Patent Publication No. 2005-504880 includes a pair of film forming rolls that wind and convey a film to be formed, forms a magnetic field across the rolls, and the two film forming rolls are the same.
  • HMDSO hexamethyldisiloxane
  • Japanese Patent No. 2587507 discloses a pair of film forming rolls (metal drums) arranged facing each other in a vacuum chamber, an AC power source in which one and the other electrode are connected to one and the other film forming rolls, respectively.
  • a plasma CVD film forming apparatus having a discharge chamber disposed in an opposing space between film forming rolls and having a surface facing the film forming roll opened, and a monomer (raw material) gas supply means connected to the discharge chamber is described. Has been.
  • a pulse voltage accompanied by alternating current or polarity reversal is applied to the film forming rolls arranged to face each other under reduced pressure, and a facing space (film forming zone) between the film forming rolls arranged opposite to each other.
  • a device for generating a film by plasma CVD on a belt-like base material wound around facing a facing space of a film forming roll As an example, a plasma CVD apparatus (Roll coater W35) manufactured by Kobe Steel, Ltd. can be preferably used.
  • Examples of the metal oxide that is the main component of the gas barrier film layer include silicon oxide, aluminum oxide, and titanium oxide. In applications where transparency is required for the gas barrier film laminate, silicon oxide is more preferable.
  • the source gas used for forming the gas barrier film layer is preferably an organometallic compound.
  • an organosilicon compound containing silicon, an organoaluminum compound containing aluminum, or the like can be used.
  • these raw material gases it is more preferable to use an organosilicon compound from the viewpoints of handling of the compound and imparting flexibility and high gas barrier properties to the resulting gas barrier film layer.
  • organosilicon compounds include HMDSO, 1.1.3.3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethoxysilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyl Examples include triethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, and octamethylcyclotetrasiloxane.
  • organosilicon compounds HMDSO, 1.1.3.3-tetramethyldisiloxane, and tetraethoxysilane are particularly preferable from the viewpoints of properties such as compound handling properties and gas barrier properties of the obtained thin film layer.
  • These raw materials such as organosilicon compounds can be used singly or in combination of two or more.
  • the organoaluminum compound include trimethylaluminum.
  • a reactive gas can be used.
  • a gas that reacts with the raw material gas and its radical to become a compound such as an oxide or a nitride can be used.
  • the reaction gas for example, oxygen, nitrogen, ammonia, ozone, or the like can be used. These reaction gases can be used alone or in combination of two or more.
  • a carrier gas may be used as necessary.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, and for example, rare gases such as helium, argon, neon, xenon, and the like can be used.
  • Such gases for film formation gases used during film formation (gases used during film formation such as source gas, reaction gas, carrier gas, discharge gas) are collectively referred to as “film formation gas”.
  • the mixing ratio of the reaction gas to the raw material gas is such that the molar amount of the reaction gas used is A ⁇ when the molar ratio of the reaction gas that is theoretically necessary for complete reaction with 1 mol of the raw material gas is A.
  • a range of (0.2 to 1.5) is preferable, and a range of A ⁇ (0.3 to 1.25) is more preferable.
  • a gas barrier film layer is formed by reacting a film forming gas containing HMDSO as a source gas and oxygen (O 2 ) as a reaction gas by plasma CVD, the reaction is described in the following reaction formula (1).
  • the ratio of the reaction gas is too low, an organic component derived from the source gas in the formed barrier film (for example, when HMDSO is used as the source gas, a component containing carbon due to the methyl group contained in the source material) ) And a high barrier property cannot be obtained, and if the ratio of the reaction gas is too high, the reaction proceeds too much and the barrier film becomes brittle and the flexibility and durability are poor.
  • the pressure (degree of vacuum) in the vacuum chamber of the plasma CVD apparatus can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.1 Pa to 50 Pa.
  • the electric power applied for discharging can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.2 to 10 kW.
  • the applied power is equal to or higher than the lower limit, the reaction of the raw material gas is not insufficient and the barrier property is not lowered. As a result, wrinkles are not generated on the object of film formation, and irregularities are generated on the film surface and the appearance is not impaired.
  • the conveyance speed of the film forming target can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.1 to 50 m / min, preferably 0.3 to 20 m. / Min is more preferable.
  • the line speed is equal to or higher than the lower limit, wrinkles due to heat tend not to occur in the resin film being conveyed.
  • the line speed is equal to or lower than the upper limit, the thickness of the formed thin film layer does not become too thin.
  • the gas barrier film layer contains an organic component.
  • a thin film is formed by a plasma CVD method from a film forming gas (mixed gas of HMDSO as a source gas and oxygen gas as a reaction gas (also functioning as a discharge gas)) and a gas barrier film layer is formed, the following reaction formula is obtained.
  • the formed film contains Cy (a trace amount of carbon component) as an organic component. (CH 3 ) 3 Si—O—Si (CH 3 ) 3 + O 2 ⁇ SiOxCy (2)
  • Resin film used as a base material of a gas barrier film laminated body will not be specifically limited if it is formed with the organic material which can hold
  • polyethylene terephthalate PET
  • polybutylene terephthalate polyethylene naphthalate
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • nylon Ny
  • cycloolefin polymer aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, acrylic ester polymer, methacrylic ester polymer, polyimide, polyetherimide, etc.
  • the thickness of the resin film is not particularly limited, but is preferably 20 to 500 ⁇ m, more preferably 30 to 300 ⁇ m.
  • the thickness is 20 ⁇ m or more, the rigidity as a base material is insufficient, and stability does not decrease during film formation on a roll-to-roll basis. Moreover, if it is 500 micrometers or less, it can avoid that a flexibility falls and it becomes cost up.
  • the resin film when the resin film is transparent, the organic film layer and the gas barrier film layer formed on the resin film are also transparent, so that a transparent gas barrier film laminate can be obtained. Therefore, a transparent substrate such as an OLED element or an OPV element can be used, which is more preferable.
  • the surface (resin film surface, organic film layer surface, gas barrier film layer surface) of the gas barrier film laminate according to the present invention is subjected to surface modification treatment such as corona treatment or plasma treatment for the purpose of improving adhesion. Also good.
  • the gas barrier film laminate of the present invention has at least one organic film layer and at least one gas barrier film layer on at least one side of the resin film, and the resin film and the organic film layer are preferably in contact with each other. More preferably, as shown in FIG. 1, a gas barrier film laminate 10 having a structure in which an organic film layer 12 and a gas barrier film layer 13 are laminated only on one side of a resin film 11.
  • a gas barrier film laminate 10 having a structure in which an organic film layer 12 and a gas barrier film layer 13 are laminated only on one side of a resin film 11.
  • the gas barrier film layer has a structure that is laminated only on one side of the resin film, so that the weight of the gas barrier film laminate is improved, the light transmittance is improved, and the manufacturing process is simplified compared to the case where it is laminated on both sides. It is possible to achieve the above and more preferable.
  • the gas barrier film laminate formed by the configuration of the present invention has a high gas barrier with a water vapor transmission rate (temperature: 40 ⁇ 0.5 ° C., relative humidity: 90 ⁇ 5% RH) of 0.005 g / m 2 / d or less. Expresses sex. By optimizing the film formation conditions, 0.001 g / m 2 / d or less can be developed, and by optimizing the thickness of the organic film layer and gas barrier film layer, 0.0001 g / m 2 / d or less Is achieved.
  • the gas barrier film laminate of the present invention is preferably composed of only a transparent material when used for applications such as a photoelectric element, an OLED element, or an OPV element, and has a total light transmission measured according to the JIS 7105 method.
  • the rate is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
  • an opaque gas barrier film laminate may be produced.
  • the gas barrier film laminate of the present invention suppresses the internal stress that tends to curl in the use environment as much as possible, and exhibits good curl prevention properties. Thereby, after manufacturing the said gas barrier film laminated body, when passing through other processes, such as an assembly process to a device, favorable workability is exhibited. Further, there is no crack or film peeling due to curling, and good gas barrier properties can be maintained.
  • the gas barrier film laminate of the present invention laminated on a 125 ⁇ m-thick PET film is cut to 100 mm ⁇ 100 mm and placed on a surface plate, and from a surface plate surface using a height measuring instrument such as a ruler.
  • the curl height is preferably 15 mm or less, more preferably 10 mm or less, and particularly preferably 5 mm or less.
  • the “curl height” is an average of the heights of the four corners of a square film.
  • the gas barrier film laminate of the present invention can be used for applications that require blocking of various gases such as water vapor and oxygen. Particularly preferably, it can be usefully used for blocking various gases such as OLED elements or OPV elements.
  • a gas barrier film laminated body is transparent, when it uses for a photoelectric element like an OPV element, it can comprise so that sunlight reception may be performed from the gas barrier film laminated body side. Further, when used in an OLED element, light emission from the element is not hindered, so that the light emission efficiency is not deteriorated.
  • FIG. 2A shows a schematic diagram of an electronic component having an OLED element in a solid sealing system.
  • An OLED element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes is disposed on a glass substrate 21, and the OLED element 22 is entirely covered with a solid sealing agent 23.
  • the gas barrier film laminate 10 of the present application can be used instead of the glass substrate 21 as shown in FIG. Or as shown in FIG. 3, it is good also as a sandwich structure which pinched
  • FIG. 4A shows a schematic diagram of an electronic component having an OLED element with a conventional hollow structure.
  • An OLED element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes is disposed on the glass substrate 21 and covered with a glass sealing material 28 that is present at a distance.
  • the glass substrate 21 and the glass sealing material 28 are bonded (sealed) with an adhesive 25 on both sides.
  • a getter 26 that adsorbs moisture is disposed inside the hollow and is filled with N 2 gas 27.
  • the gas barrier film laminate 10 of the present application can be used as an alternative to the glass base material 21 and the glass sealing material 28 as shown in FIG.
  • the gas barrier film laminate of the present application can be similarly used as an alternative to a glass substrate.
  • the gas barrier film laminate of the present invention when used as a transparent substrate for OLED elements, OPV elements, liquid crystal elements, etc., it is possible to meet the demands for weight reduction and size increase. Furthermore, roll-to-roll (feeding a substrate such as a resin film wound in a roll shape, processing the target substance on the surface of the substrate, etc., and then winding it up again to collect it In place of glass substrates that are heavy, easy to break, and difficult to increase in area. Can be satisfied.
  • film base materials such as transparent plastics have a problem that gas barrier properties are inferior to glass, but when the gas barrier film laminate of the present invention is used, for example, electronic components such as OLED elements and OPV elements When used as a material, the substrate having excellent gas barrier properties can prevent water (water vapor) or oxygen from permeating and degrading components constituting the device, thereby reducing performance.
  • the present invention mainly includes display elements typified by organic electroluminescence elements (OLED elements) and liquid crystal elements, photoelectric elements typified by organic solar cell elements (OPV elements), illumination using OLED elements, and the like. It is a gas barrier film laminated body which can be used for the product.
  • the gas barrier film laminate of the present invention is characterized by good productivity, low curl, and good gas barrier properties.
  • the produced gas barrier film laminate was evaluated for bending resistance based on JIS K5600-5-1 (cylindrical mandrel method).
  • ⁇ Curl test> The produced gas barrier film laminate was allowed to stand for 1 day or longer in an environment of 23 ⁇ 2 ° C. and 50 ⁇ 10% RH while being wound into a roll. Then, it cut
  • JIS 1 grade metal ruler JIS 1 grade metal ruler
  • the method for measuring the water vapor transmission rate is not particularly limited, but in the present invention, evaluation was performed by the method described in ISO 15106-3 or the Ca corrosion method described below.
  • Measurement method 1 ISO 15106-3 method
  • Evaluation apparatus Illinois water vapor permeability measuring apparatus Model 7002
  • Temperature and humidity 40 ° C, 90% RH ⁇
  • Measurement method 2 Ca corrosion method
  • the measurement method 1 was below the measurement limit, the measurement was performed by the following method.
  • the water vapor transmission rate is calculated from the corrosion area and the time to reach the corrosion area.
  • the evaluation was performed by the method described in Japanese Patent No. 3958235 and the following conditions.
  • -Ca method used for evaluation of the present invention Vapor deposition apparatus: Electron beam vacuum deposition apparatus SVC-700LEB manufactured by Sanyu Electronics Co., Ltd. Constant temperature and humidity chamber: Espec Co., Ltd.
  • LHL-113 Metal that reacts with water and corrodes Calcium (granular) Water vapor impermeable metal for Ca sealing: Aluminum ( ⁇ 3-5mm, granular) Sealing material: mixture of paraffin (melting point 60-62 ° C) / beeswax (melting point 61-65 ° C) in a weight ratio of 1: 1 Observation device: Calcium corrosion observation device MFB-1000 manufactured by Mitsuwa Frontec Co., Ltd.
  • Example 1 -Base material
  • PET polyethylene terephthalate
  • COSMO SHINE A4300 manufactured by Toyobo Co., Ltd.
  • Example 2 Preparation of coating solution for photocurable resin composition
  • a gas barrier film laminate was prepared in the same manner as in Example 1 except that the coating liquid for the photocurable resin composition was prepared.
  • Example 3 A gas barrier film laminate was prepared in the same manner as in Example 2 except that the gas barrier film layer formed by plasma CVD was processed to have the thickness shown in Table 1.
  • Example 4 A gas barrier film laminate was prepared in the same manner as in Example 2 except that the organic film layer by the gravure coater was processed so that the thickness after drying was as shown in Table 1.
  • Example 5 Example 2 except that a polyethylene naphthalate (PEN) film (trade name “Teonex Q65FA” manufactured by Teijin DuPont Films Ltd.) wound in a roll shape with a thickness of 125 ⁇ m and a width of 550 mm was used as the substrate. Similarly, a gas barrier film laminate was prepared.
  • PEN polyethylene naphthalate
  • the gas barrier film laminate of the present invention has high barrier properties while curling is reduced.
  • the present invention mainly relates to a gas barrier film laminate used for an electronic component having an OLED element, an OPV element, a liquid crystal element, and the like, and an electronic component including the gas barrier film laminate.

Abstract

The present invention is capable of relaxing residual stress and reducing curling, while maintaining flexibility during the formation of a gas barrier film by a plasma CVD method, and enables achievement of a gas barrier film laminate that has sufficient gas barrier properties. A gas barrier film laminate according to the present invention is provided with: a resin film (11) that serves as a base; and at least one organic film layer (12) and at least one gas barrier film layer (13), that are arranged on at least one surface of the resin film (11). The gas barrier film layer (13) is a film which is formed by a plasma CVD method and which is mainly composed of a metal oxide, while containing an organic component.

Description

ガスバリアフィルム積層体とそれを用いた電子部品Gas barrier film laminate and electronic component using the same
 本発明は、ガスバリアフィルム積層体に関する。特に電子部品への水蒸気透過を有効に抑制することができるガスバリアフィルム積層体に関する。 The present invention relates to a gas barrier film laminate. In particular, the present invention relates to a gas barrier film laminate that can effectively suppress water vapor permeation to electronic components.
 従来から、有機エレクトロルミネッセンス素子(以下、OLED素子ともいう)、有機太陽電池素子(以下、OPV素子ともいう)、液晶素子などでは、基板にバリア性の高いガラスが利用されてきた。しかしガラス基板は、重く、割れやすく、大面積化が困難であるという欠点がある。そのようなガラス基板に代えて、プラスチックフィルム上に無機フィラーを混合/分散した樹脂組成物膜または金属酸化物の薄膜を形成した、ガスバリアフィルム積層体を基板とすることがある。金属酸化物等の薄膜をプラスチックフィルムの表面上に成膜する方法としては、特にプラズマ化学気相成長法(CVD)が知られている。しかし、プラズマCVD法は、ガスバリア膜の成膜時に生じる急激な圧縮応力と、これに起因するカール発生が問題であった。 Conventionally, glass having a high barrier property has been used for substrates in organic electroluminescent elements (hereinafter also referred to as OLED elements), organic solar cell elements (hereinafter also referred to as OPV elements), liquid crystal elements, and the like. However, the glass substrate has the disadvantages that it is heavy, easily broken, and difficult to increase in area. Instead of such a glass substrate, a gas barrier film laminate in which a resin composition film in which an inorganic filler is mixed / dispersed on a plastic film or a metal oxide thin film is formed may be used as the substrate. As a method for forming a thin film such as a metal oxide on the surface of a plastic film, plasma chemical vapor deposition (CVD) is particularly known. However, the plasma CVD method has a problem of a rapid compressive stress generated during the formation of the gas barrier film and the occurrence of curling due to this.
 カール発生を抑える技術として、特開2011-121347号公報(特許文献1)には、基材の一方の面にガスバリア層が形成された第一フィルムと第二フィルムについて、ガスバリア層を互いに粘着層または紫外線硬化樹脂からなる接着層で貼り合わせ、形成された積層構造を1単位以上有することを特徴とするガスバリアフィルム積層体が開示されている。該文献の技術は、応力のバランスを取るために第一フィルムと第二フィルムを対称的に貼り合わせた積層構造とするものである。しかし、必然的にガスバリアフィルム積層体が厚くなってしまうという課題を抱えたものであった。 As a technique for suppressing the occurrence of curling, Japanese Patent Application Laid-Open No. 2011-121347 (Patent Document 1) discloses that a gas barrier layer is an adhesive layer for a first film and a second film in which a gas barrier layer is formed on one surface of a substrate. Alternatively, a gas barrier film laminate having one or more units of a laminated structure formed by bonding with an adhesive layer made of an ultraviolet curable resin is disclosed. The technique of this document is a laminated structure in which a first film and a second film are symmetrically bonded to balance stress. However, there was a problem that the gas barrier film laminate would inevitably become thick.
特開2011-121347号公報JP 2011-121347 A
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、有機金属化合物を原料として用いるプラズマCVD法によるガスバリア膜の形成において、可撓性を保持しつつ残留応力を緩和しカールを低減させるとともに、十分なガスバリア性を有するガスバリアフィルム積層体を提供することを課題とする。 The present invention has been made in view of the above-described problems of the prior art. In the formation of a gas barrier film by a plasma CVD method using an organometallic compound as a raw material, the residual stress is relaxed while maintaining flexibility and curling is performed. An object of the present invention is to provide a gas barrier film laminate having a sufficient gas barrier property while being reduced.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、樹脂フィルムと有機膜層とガスバリア膜層を組み合わせることにより、カールが少なく、高いガスバリア性を兼ね備えたガスバリアフィルム積層体を形成できることを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above-mentioned problems, the inventors of the present invention formed a gas barrier film laminate having low curl and high gas barrier properties by combining a resin film, an organic film layer, and a gas barrier film layer. The present inventors have found that this can be done and have completed the present invention.
 本発明の第1の態様に係るガスバリアフィルム積層体は、例えば図1に示すように、基材となる樹脂フィルム11と;樹脂フィルム11の少なくとも片面に、少なくとも一つの有機膜層12と少なくとも一つのガスバリア膜層13を備え;ガスバリア膜層13が、プラズマCVD法により製膜された、金属酸化物を主成分とする、有機成分を含有する膜である。
 「主成分」とは、ガスバリア膜層を構成する組成物のうち、金属酸化物に相当する部分を50重量%以上含むことを言う。
The gas barrier film laminate according to the first aspect of the present invention includes, for example, as shown in FIG. 1, a resin film 11 as a substrate; at least one organic film layer 12 and at least one on at least one surface of the resin film 11. Two gas barrier film layers 13 are provided; the gas barrier film layer 13 is a film formed by a plasma CVD method and containing an organic component mainly composed of a metal oxide.
The “main component” means that the composition constituting the gas barrier film layer contains 50% by weight or more of a portion corresponding to a metal oxide.
 このように構成すると、有機膜層を設けることにより、有機膜層より下層の表面の凹凸を平坦化することができる。さらに、有機膜層は、ガスバリア膜層の膜形成過程で生じる残留応力に起因したガスバリアフィルム積層体のカール発生を抑えることができる。
 ガスバリア膜層は、プラズマCVD法により製膜されるため、緻密で柔軟な膜を形成できる。そのため、欠陥や剥離が生じ難く、高いバリア性を付与することができる。
If comprised in this way, the unevenness | corrugation of the surface below an organic film layer can be planarized by providing an organic film layer. Further, the organic film layer can suppress the curling of the gas barrier film laminate due to the residual stress generated in the film formation process of the gas barrier film layer.
Since the gas barrier film layer is formed by a plasma CVD method, a dense and flexible film can be formed. Therefore, defects and peeling are hardly caused and high barrier properties can be imparted.
 本発明の第2の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様に係るガスバリアフィルム積層体において、前記有機膜層が、光硬化性樹脂組成物を光重合させて得られた膜である。 The gas barrier film laminate according to the second aspect of the present invention is obtained by photopolymerizing the photocurable resin composition in the gas barrier film laminate according to the first aspect of the present invention. Film.
 このように構成すると、光硬化性樹脂組成物を用いているため、製造が容易で生産効率を上げることができる。 If constituted in this way, since the photocurable resin composition is used, the production is easy and the production efficiency can be increased.
 本発明の第3の態様に係るガスバリアフィルム積層体は、上記本発明の第2の態様に係るガスバリアフィルム積層体において、前記光硬化性樹脂組成物が、アクリル系樹脂を含む組成物である。 The gas barrier film laminate according to the third aspect of the present invention is the gas barrier film laminate according to the second aspect of the present invention, wherein the photocurable resin composition includes an acrylic resin.
 このように構成すると、透明性に優れた有機膜層を形成することができる。さらに、光硬化性を有するアクリル系樹脂は、その硬さによりカール防止性に優れているため好ましい。 With this configuration, an organic film layer having excellent transparency can be formed. Furthermore, an acrylic resin having photocurability is preferable because it has excellent curl prevention properties due to its hardness.
 本発明の第4の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第3の態様のいずれか1の態様に係るガスバリアフィルム積層体において、前記有機膜層が、塗布法により積層される。 The gas barrier film laminate according to the fourth aspect of the present invention is the gas barrier film laminate according to any one of the first to third aspects of the present invention, wherein the organic film layer is a coating method. Are stacked.
 このように構成すると、有機膜層を均一にコーティングすることができ、優れた平面滑性を得ることができる。 With such a configuration, the organic film layer can be uniformly coated, and excellent smoothness can be obtained.
 本発明の第5の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第4の態様のいずれか1の態様に係るガスバリアフィルム積層体において、前記プラズマCVD法が、ロール・ツー・ロール方式で行われる。 The gas barrier film laminate according to the fifth aspect of the present invention is the gas barrier film laminate according to any one of the first to fourth aspects of the present invention, wherein the plasma CVD method comprises a roll, Performed on a two-roll basis.
 このように構成すると、プラズマCVD法とロール・ツー・ロール方式とを組み合わせることにより、生産性が向上し品質の安定性を得ることができる。 With this configuration, by combining the plasma CVD method and the roll-to-roll method, productivity can be improved and quality stability can be obtained.
 本発明の第6の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第5の態様のいずれか1の態様に係るガスバリアフィルム積層体において、前記有機膜層の厚みが、1~20μmである。 The gas barrier film laminate according to the sixth aspect of the present invention is the gas barrier film laminate according to any one of the first to fifth aspects of the present invention, wherein the thickness of the organic film layer is: 1 to 20 μm.
 このように構成すると、1μm以上にすることにより、充分な平滑性の確保とカール発生を抑えることが可能となる。また、20μm以下にすることにより、折り曲げによる割れが防止し易くなるとともに、ガスバリアフィルム積層体の光学特性のバランスが調整し易くなる。 With this configuration, when the thickness is 1 μm or more, sufficient smoothness can be ensured and curling can be suppressed. Moreover, by setting it as 20 micrometers or less, while being easy to prevent the crack by bending, it becomes easy to adjust the balance of the optical characteristic of a gas barrier film laminated body.
 本発明の第7の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第6の態様のいずれか1の態様に係るガスバリアフィルム積層体において、前記ガスバリア膜層の厚みが、0.2~2μmである。 The gas barrier film laminate according to the seventh aspect of the present invention is the gas barrier film laminate according to any one of the first to sixth aspects of the present invention, wherein the thickness of the gas barrier film layer is: 0.2-2 μm.
 このように構成すると、0.2μm以上とすることにより、膜厚均一性が良好となり、ガスバリア性能が優れるようになる。また、2μm以下にすることにより、屈曲によるクラックの発生を抑制することができる。 With this configuration, by setting the thickness to 0.2 μm or more, the film thickness uniformity is improved and the gas barrier performance is improved. Moreover, generation | occurrence | production of the crack by bending can be suppressed by setting it as 2 micrometers or less.
 本発明の第8の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第7の態様のいずれか1の態様に係るガスバリアフィルム積層体において、前記ガスバリア膜層を、前記樹脂フィルムの片面側にのみ備える。 The gas barrier film laminate according to the eighth aspect of the present invention is the gas barrier film laminate according to any one of the first to seventh aspects of the present invention, wherein the gas barrier film layer is the resin. Provide only on one side of the film.
 このように構成すると、ガスバリア膜層が樹脂フィルムの片面側にのみ備えるガスバリアフィルム積層体であっても、十分に高いバリア性を有し、さらにガスバリアフィルム積層体を薄くすることができる。 With such a configuration, even if the gas barrier film layer is a gas barrier film laminate provided only on one side of the resin film, the gas barrier film layer has a sufficiently high barrier property and can be made thinner.
 本発明の第9の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第8の態様のいずれか1の態様に係るガスバリアフィルム積層体において、前記樹脂フィルムと、前記有機膜層と、前記ガスバリア膜層の3層からなり、カール高さが15mm以下である。 The gas barrier film laminate according to the ninth aspect of the present invention is the gas barrier film laminate according to any one of the first to eighth aspects of the present invention, wherein the resin film and the organic film are provided. And a curl height of 15 mm or less.
 このように構成すると、3層からなるガスバリアフィルム積層体であっても、カール高さが15mm以下であるため、ガスバリアフィルム積層体は良好な加工性を発揮することができる。また、カールに起因したクラックや膜剥がれも抑制されるため、良好なガスバリア性を維持することができる。 If constituted in this way, even if it is a gas barrier film laminate comprising three layers, the curl height is 15 mm or less, so that the gas barrier film laminate can exhibit good processability. In addition, since cracks and film peeling due to curling are suppressed, good gas barrier properties can be maintained.
 本発明の第10の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第9の態様のいずれか1の態様に係るガスバリアフィルム積層体において、前記有機膜層を前記樹脂フィルムと前記ガスバリア膜層との間に備える。 The gas barrier film laminate according to the tenth aspect of the present invention is the gas barrier film laminate according to any one of the first to ninth aspects of the present invention, wherein the organic film layer is the resin film. And the gas barrier film layer.
 このように構成すると、有機膜層が基材表面の凹凸を平坦化することができる。 With this configuration, the organic film layer can flatten the irregularities on the surface of the substrate.
 本発明の第11の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第10の態様のいずれか1の態様に係るガスバリアフィルム積層体において、40℃、90%RHにおける水蒸気透過率が0.005g/m/d以下である。 The gas barrier film laminate according to the eleventh aspect of the present invention is the gas barrier film laminate according to any one of the first to tenth aspects of the present invention, wherein water vapor at 40 ° C. and 90% RH is used. The transmittance is 0.005 g / m 2 / d or less.
 このように構成すると、OLED素子やOPV素子のような電子素子に用いるガスバリアフィルムとして十分に利用可能となる。 If constituted in this way, it can be sufficiently utilized as a gas barrier film used for an electronic element such as an OLED element or an OPV element.
 本発明の第12の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第11の態様のいずれか1の態様に係るガスバリアフィルム積層体において、前記樹脂フィルムが、ポリエチレンレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリカーボネート、ポリイミド、またはこれらの混合物である樹脂を主成分としたフィルムである。 A gas barrier film laminate according to a twelfth aspect of the present invention is the gas barrier film laminate according to any one of the first to eleventh aspects of the present invention, wherein the resin film is a polyethylene phthalate. , Polyethylene naphthalate, cycloolefin polymer, polycarbonate, polyimide, or a mixture of these as a main component.
 このように構成すると、入手が容易な樹脂で樹脂フィルムを形成することができるとともに、例えば透明にする等の、用途に応じた樹脂を適宜選択することができる。 With this configuration, a resin film can be formed from a resin that is easily available, and a resin suitable for the application, such as being transparent, can be selected as appropriate.
 本発明の第13の態様に係る電子部品は、例えば図2(b)に示すように、正負電極と、前記正負電極に挟まれた有機材料とを有する電子素子22と;前記電子素子を水蒸気から保護する、上記本発明の第1の態様~第12の態様のいずれか1の態様のガスバリアフィルム積層体10とを備える。 An electronic component according to a thirteenth aspect of the present invention is, for example, as shown in FIG. 2B, an electronic element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes; And the gas barrier film laminate 10 according to any one of the first to twelfth aspects of the present invention.
 このように構成すると、ガスバリアフィルム積層体がガスバリア性に優れているため、水蒸気や酸素が電子素子内部に浸透して電子素子を構成する成分が劣化し、性能が低下するのを抑制することができる。 If comprised in this way, since a gas barrier film laminated body is excellent in gas-barrier property, it can control that water vapor | steam and oxygen osmose | permeate the inside of an electronic device, the component which comprises an electronic device deteriorates, and a performance falls. it can.
 本発明の第14の態様に係る電子部品は、上記本発明の第13の態様に係る電子部品において、前記ガスバリアフィルム積層体が透明であり、前記素子がOLED素子またはOPV素子である。 An electronic component according to a fourteenth aspect of the present invention is the electronic component according to the thirteenth aspect of the present invention, wherein the gas barrier film laminate is transparent and the element is an OLED element or an OPV element.
 このように構成すると、OLED素子に用いた場合に、素子からの発光を妨げないため発光効率を劣化させることがない。また、OPV素子のような光電素子に用いた場合に、ガスバリアフィルム積層体の側から太陽光の受光を行うように構成できる。 When configured in this manner, when used in an OLED element, light emission from the element is not hindered, and the light emission efficiency is not deteriorated. Moreover, when it uses for a photoelectric element like an OPV element, it can comprise so that sunlight reception may be performed from the gas barrier film laminated body side.
 本発明により、プラズマCVD法により製膜されたガスバリア膜層の残留応力を緩和してカールを低減させるとともに、十分なガスバリア性を有するガスバリアフィルム積層体を提供することができる。さらに、そのガスバリアフィルム積層体を使用して、OLED素子やOPV素子などの電子素子を水蒸気の侵入から保護することができる。 According to the present invention, it is possible to provide a gas barrier film laminate having a sufficient gas barrier property while reducing the curl by relaxing the residual stress of the gas barrier film layer formed by the plasma CVD method. Furthermore, the gas barrier film laminate can be used to protect electronic elements such as OLED elements and OPV elements from intrusion of water vapor.
本発明のガスバリアフィルム積層体の一実施例を示す図である。It is a figure which shows one Example of the gas barrier film laminated body of this invention. 図2(a)は、OLED素子を固体封止方式で有する電子部品の断面図である。図2(b)は代替として本発明のガスバリアフィルム積層体を用いた電子部品の断面図である。FIG. 2A is a cross-sectional view of an electronic component having an OLED element in a solid sealing method. FIG.2 (b) is sectional drawing of the electronic component using the gas barrier film laminated body of this invention as an alternative. 本発明のガスバリアフィルム積層体を用いた他の電子部品の断面図である。It is sectional drawing of the other electronic component using the gas barrier film laminated body of this invention. 図4(a)は、OLED素子を従来の中空構造で有する電子部品の断面図である。図4(b)は代替として本発明のガスバリアフィルム積層体を用いた電子部品の断面図である。FIG. 4A is a cross-sectional view of an electronic component having an OLED element with a conventional hollow structure. FIG.4 (b) is sectional drawing of the electronic component using the gas barrier film laminated body of this invention as an alternative. ロール・ツー・ロール方式の概略図である。It is the schematic of a roll-to-roll system.
 この出願は、日本国で2013年9月3日に出願された特願2013-182610号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明および特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。 This application is based on Japanese Patent Application No. 2013-182610 filed on September 3, 2013 in Japan, the contents of which form part of the present application. The present invention will be more fully understood from the following detailed description. Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, the detailed description and specific examples are preferred embodiments of the present invention and are described for illustrative purposes only. From this detailed description, various changes and modifications will be apparent to those skilled in the art within the spirit and scope of the invention. The applicant does not intend to contribute any of the described embodiments to the public, and modifications and alternatives that may not be included in the scope of the claims within the scope of the claims are also subject to equivalence. As part of the invention.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same or similar reference numerals, and redundant description is omitted. Further, the present invention is not limited to the following embodiments.
1.ガスバリアフィルム積層体
 本発明の第1の実施の形態に係るガスバリアフィルム積層体は、基材となる樹脂フィルムと、樹脂フィルムの少なくとも片面に、少なくとも一つの有機膜層と少なくとも一つのガスバリア膜層を備える。特に好ましくは、例えば図1に示すように、ガスバリアフィルム積層体10が、樹脂フィルム11上に直接有機膜層12を有し、さらに有機膜層12上に直接ガスバリア膜層13を有する。
 なお、ガスバリア膜層は、プラズマCVD法により製膜され、金属酸化物を主成分とし、有機成分を含有する。ガスバリア膜層は、単独膜であっても複合膜であってもよい。
1. Gas barrier film laminate The gas barrier film laminate according to the first embodiment of the present invention includes a resin film as a base material, and at least one organic film layer and at least one gas barrier film layer on at least one surface of the resin film. Prepare. Particularly preferably, for example, as shown in FIG. 1, the gas barrier film laminate 10 has an organic film layer 12 directly on the resin film 11, and further has a gas barrier film layer 13 directly on the organic film layer 12.
The gas barrier film layer is formed by a plasma CVD method, contains a metal oxide as a main component, and contains an organic component. The gas barrier film layer may be a single film or a composite film.
2.有機膜層
 ガスバリアフィルム積層体に有機膜層を設けることで、基材表面の凹凸を平坦化し、さらに、ガスバリア膜層の膜形成過程で発生する残留応力に起因したガスバリアフィルム積層体のカール発生を抑えることができる。
2. Organic film layer By providing an organic film layer on the gas barrier film laminate, unevenness on the surface of the substrate is flattened, and curling of the gas barrier film laminate is caused by residual stress generated during the film formation process of the gas barrier film layer. Can be suppressed.
 有機膜層の厚みは、1~20μmが好ましく、より好ましくは1.2~10μm、更に好ましくは2~8μmである。1μm以上にすることにより、充分な平滑性の確保とカール発生を抑えることを可能とする。また、20μm以下にすることにより、折り曲げによる割れが防止し易くなるとともに、ガスバリアフィルム積層体の光学特性のバランスが調整し易くなる。 The thickness of the organic film layer is preferably 1 to 20 μm, more preferably 1.2 to 10 μm, still more preferably 2 to 8 μm. By setting the thickness to 1 μm or more, sufficient smoothness can be ensured and curling can be suppressed. Moreover, by setting it as 20 micrometers or less, while being easy to prevent the crack by bending, it becomes easy to adjust the balance of the optical characteristic of a gas barrier film laminated body.
 有機膜層の表面粗さは、算術平均粗さSaが5nm以下が好ましく、より好ましくは3nm以下、更に好ましくは2nm以下である。5nm以下にすることにより、有機膜層上に積層する薄膜のガスバリア膜層を均一に処理することが可能となりガスバリアフィルム積層体のバリア性が向上する。 The surface roughness of the organic film layer is preferably an arithmetic average roughness Sa of 5 nm or less, more preferably 3 nm or less, and even more preferably 2 nm or less. By setting the thickness to 5 nm or less, a thin gas barrier film layer laminated on the organic film layer can be uniformly treated, and the barrier property of the gas barrier film laminate is improved.
 有機膜層の熱膨張係数は、10~150×10-6/℃であることが好ましく、より好ましくは21~100×10-6/℃であり、更に好ましくは21~80×10-6/℃である。理由は定かではないが、上記の範囲にあるとガスバリアフィルム積層体の製造過程で生じるガスバリアフィルム積層体のカール発生を抑えることができる。 The thermal expansion coefficient of the organic film layer is preferably 10 to 150 × 10 −6 / ° C., more preferably 21 to 100 × 10 −6 / ° C., and further preferably 21 to 80 × 10 −6 / ° C. ° C. Although the reason is not clear, curling of the gas barrier film laminate that occurs during the production process of the gas barrier film laminate can be suppressed when it is in the above range.
熱膨張係数の測定
 熱膨張係数の測定は、測定装置としてSII株式会社製熱機械試験装置TMA/SS6100を用いて、引っ張り荷重5gで測定した。温度範囲は25℃~100℃(昇温速度5℃/分、測定環境:23℃)である。熱膨張係数としては、2個の試料を測定し上記温度範囲において温度-伸びの関係が直線となる近似を装置上で実施し、その平均値より求めた。
     熱膨張係数(線膨張率)α=ΔL/(L・ΔT)
     (ΔL:試料の伸び、L:試料の長さ、ΔT:温度上昇)
Measurement of thermal expansion coefficient The thermal expansion coefficient was measured with a tensile load of 5 g using a thermomechanical test apparatus TMA / SS6100 manufactured by SII Corporation as a measuring apparatus. The temperature range is 25 ° C. to 100 ° C. (temperature increase rate 5 ° C./min, measurement environment: 23 ° C.). The coefficient of thermal expansion was determined from the average value obtained by measuring two samples, approximating the temperature-elongation relationship in a straight line in the above temperature range on the apparatus.
Thermal expansion coefficient (linear expansion coefficient) α = ΔL / (L · ΔT)
(ΔL: sample elongation, L: sample length, ΔT: temperature rise)
 本発明の有機膜層は、光硬化性樹脂組成物を光重合させて得られた膜であることが好ましい。光硬化性樹脂組成物は、アクリル系樹脂を含む組成物からなるものであることが好ましい。なお、「光硬化性樹脂組成物」は、全体として光硬化する組成物であればよく、必ずしも光硬化性樹脂が主成分である必要はない。 The organic film layer of the present invention is preferably a film obtained by photopolymerizing a photocurable resin composition. The photocurable resin composition is preferably composed of a composition containing an acrylic resin. The “photocurable resin composition” may be a composition that is photocured as a whole, and the photocurable resin does not necessarily have to be a main component.
 有機膜層の前駆体である光硬化性樹脂としては、紫外線照射などの光による硬化が可能なアクリル系樹脂が挙げられる。例えば(メタ)アクリレートモノマー、不飽和ポリエステル樹脂、ポリエステル(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂などのラジカル重合が可能な不飽和結合を有する樹脂を挙げることができる。これらアクリル系樹脂は単独でも、または2種類以上混合して使用することもできる。中でも、ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂、(メタ)アクリレートモノマー等の単独またはこれらの混合物が好ましい。 Examples of the photocurable resin that is a precursor of the organic film layer include acrylic resins that can be cured by light such as ultraviolet irradiation. Examples thereof include resins having an unsaturated bond capable of radical polymerization, such as (meth) acrylate monomers, unsaturated polyester resins, polyester (meth) acrylate resins, epoxy (meth) acrylate resins, and urethane (meth) acrylate resins. . These acrylic resins can be used alone or in admixture of two or more. Among them, polyester (meth) acrylate resin, urethane (meth) acrylate resin, (meth) acrylate monomer and the like alone or a mixture thereof are preferable.
 前記(メタ)アクリレートモノマーとしては、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物が挙げられる。例えば、ポリアルキレングリコールジ(メタ)アクリレート、エチレングリコール(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、ポリエチレンポリトリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンジエトキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート、トリメチロールプロパンテトラエトキシトリ(メタ)アクリレート、トリメチロールプロパンペンタエトキシトリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。また、シルセスキオキサン骨格を有する化合物で、官能基に(メタ)アクリレート基を有する化合物も挙げられる。 Examples of the (meth) acrylate monomer include compounds obtained by reacting a polyhydric alcohol with an α, β-unsaturated carboxylic acid. For example, polyalkylene glycol di (meth) acrylate, ethylene glycol (meth) acrylate, propylene glycol (meth) acrylate, polyethylene polytrimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (Meth) acrylate, trimethylolpropane diethoxytri (meth) acrylate, trimethylolpropane triethoxytri (meth) acrylate, trimethylolpropanetetraethoxytri (meth) acrylate, trimethylolpropane pentaethoxytri (meth) acrylate, tetra Methylolmethane tetra (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, pentaerythritol Tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate. Moreover, the compound which has a silsesquioxane skeleton and has a (meth) acrylate group in a functional group is also mentioned.
 前記不飽和ポリエステル樹脂としては、多価アルコールと不飽和多塩基酸(および必要に応じて飽和多塩基酸)とのエステル化反応による縮合生成物(不飽和ポリエステル)を、重合性モノマーに溶解したものが挙げられる。
 不飽和ポリエステルは、無水マレイン酸などの不飽和酸とエチレングリコールなどのジオールとを重縮合させて製造できる。具体的にはフマル酸、マレイン酸、イタコン酸などの重合性不飽和結合を有する多塩基酸またはその無水物を酸成分とし、これとエチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物などの多価アルコールをアルコール成分として反応させ、また、必要に応じてフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバシン酸などの重合性不飽和結合を有していない多塩基酸またはその無水物も酸成分として加えて製造されるものが挙げられる。
As said unsaturated polyester resin, the condensation product (unsaturated polyester) by esterification reaction of a polyhydric alcohol and unsaturated polybasic acid (and saturated polybasic acid as needed) was melt | dissolved in the polymerizable monomer. Things.
The unsaturated polyester can be produced by polycondensation of an unsaturated acid such as maleic anhydride and a diol such as ethylene glycol. Specifically, a polybasic acid having a polymerizable unsaturated bond such as fumaric acid, maleic acid, and itaconic acid or its anhydride is used as an acid component, and ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1, 2 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, cyclohexane Polyhydric alcohols such as 1,4-dimethanol, ethylene oxide adduct of bisphenol A and propylene oxide adduct of bisphenol A are reacted as alcohol components, and phthalic acid, isophthalic acid, terephthalic acid, Such as tetrahydrophthalic acid, adipic acid, sebacic acid Polymerizable not have an unsaturated bond or a polybasic acid anhydrides may include those prepared by adding as an acid component.
 前記ポリエステル(メタ)アクリレート樹脂としては、(1)飽和多塩基酸および/または不飽和多塩基酸と多価アルコールから得られる末端カルボキシル基のポリエステルにα,β-不飽和カルボン酸エステル基を含有するエポキシ化合物を反応して得られる(メタ)アクリレート、(2)飽和多塩基酸および/または不飽和多塩基酸と多価アルコールから得られる末端カルボキシル基のポリエステルに水酸基含有アクリレートを反応させて得られる(メタ)アクリレート、(3)飽和多塩基酸および/または不飽和多塩基酸と多価アルコールから得られる末端水酸基のポリエステルに(メタ)アクリル酸を反応して得られる(メタ)アクリレートが挙げられる。
 ポリエステル(メタ)アクリレートの原料として用いられる飽和多塩基酸としては、例えばフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバチン酸などの重合性不飽和結合を有していない多塩基酸またはその無水物と、フマル酸、マレイン酸、イタコン酸などの重合性不飽和多塩基酸またはその無水物が挙げられる。さらに多価アルコール成分としては、前記不飽和ポリエステルと同様である。
As the polyester (meth) acrylate resin, (1) a terminal carboxyl group polyester obtained from a saturated polybasic acid and / or an unsaturated polybasic acid and a polyhydric alcohol contains an α, β-unsaturated carboxylic ester group. (Meth) acrylate obtained by reacting an epoxy compound, (2) obtained by reacting a hydroxyl group-containing acrylate with a polyester having a terminal carboxyl group obtained from a saturated polybasic acid and / or unsaturated polybasic acid and a polyhydric alcohol (Meth) acrylates obtained, (3) (meth) acrylates obtained by reacting (meth) acrylic acid with polyesters of terminal hydroxyl groups obtained from saturated polybasic acids and / or unsaturated polybasic acids and polyhydric alcohols It is done.
Examples of the saturated polybasic acid used as a raw material for polyester (meth) acrylate include polybasic compounds having no polymerizable unsaturated bond such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, and sebacic acid. Examples thereof include acids or anhydrides thereof and polymerizable unsaturated polybasic acids such as fumaric acid, maleic acid and itaconic acid or anhydrides thereof. Further, the polyhydric alcohol component is the same as the unsaturated polyester.
 前記エポキシ(メタ)アクリレート樹脂としては、グリシジル基(エポキシ基)を有する化合物と、アクリル酸などの重合性不飽和結合を有するカルボキシル化合物のカルボキシル基との開環反応により生成する重合性不飽和結合を持った化合物(ビニルエステル)を、重合性モノマーに溶解したものが挙げられる。
 ビニルエステルとしては、公知の方法により製造されるものであり、エポキシ樹脂に不飽和一塩基酸、例えばアクリル酸またはメタクリル酸を反応させて得られるエポキシ(メタ)アクリレートが挙げられる。
 また、各種エポキシ樹脂をビスフェノール(例えばA型)またはアジピン酸、セバシン酸、ダイマー酸(ハリダイマー270S:ハリマ化成(株))などの二塩基酸で反応させ、可撓性を付与してもよい。
 原料としてのエポキシ樹脂としては、ビスフェノールAジグリシジルエーテルおよびその高分子量同族体、ノボラック型グリシジルエーテル類などが挙げられる。
The epoxy (meth) acrylate resin includes a polymerizable unsaturated bond formed by a ring-opening reaction between a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid. A compound having a compound (vinyl ester) dissolved in a polymerizable monomer.
The vinyl ester is produced by a known method, and includes an epoxy (meth) acrylate obtained by reacting an epoxy resin with an unsaturated monobasic acid such as acrylic acid or methacrylic acid.
Further, various epoxy resins may be reacted with bisphenol (for example, A type) or dibasic acid such as adipic acid, sebacic acid, dimer acid (Haridimer 270S: Harima Kasei Co., Ltd.) to impart flexibility.
Examples of the epoxy resin as a raw material include bisphenol A diglycidyl ether and its high molecular weight homologues, novolak glycidyl ethers, and the like.
 前記ウレタン(メタ)アクリレート樹脂としては、例えば、ポリイソシアネートとポリヒドロキシ化合物あるいは多価アルコール類とを反応させた後、更に水酸基含有(メタ)アクリル化合物および必要に応じて水酸基含有アリルエーテル化合物を反応させることによって得ることができるラジカル重合性不飽和基含有オリゴマーが挙げられる。
 ポリイソシアネートとしては、具体的には2,4-トリレンジイソシアネートおよびその異性体、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート、バノックD-750、クリスボンNK(商品名;DIC(株)製)、デスモジュールL(商品名;住友バイエルウレタン(株)製)、コロネートL(商品名;日本ポリウレタン工業(株)製)、タケネートD102(商品名;三井武田ケミカル(株)製)、イソネート143L(商品名;三菱化学(株)製)などが挙げられる。
 ポリヒドロキシ化合物としては、ポリエステルポリオール、ポリエーテルポリオールなどが挙げられる。具体的にはグリセリン-エチレンオキシド付加物、グリセリン-プロピレンオキシド付加物、グリセリン-テトラヒドロフラン付加物、グリセリン-エチレンオキシド-プロピレンオキシド付加物、トリメチロールプロパン-エチレンオキシド付加物、トリメチロールプロパン-プロピレンオキシド付加物、トリメチロールプロパン-テトラヒドロフラン付加物、トリメチロールプロパン-エチレンオキシド-プロピレンオキシド付加物、ジペンタエリスリトール-エチレンオキシド付加物、ジペンタエリスリトール-プロピレンオキシド付加物、ジペンタエリスリトール-テトラヒドロフラン付加物、ジペンタエリスリトール-エチレンオキシド-プロピレンオキシド付加物などが挙げられる。
 多価アルコール類としては、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドとの付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,3-ブタンジオール、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、パラキシレングリコール、ビシクロヘキシル-4,4-ジオール、2,6-デカリングリコール、2,7-デカリングリコールなどが挙げられる。
 水酸基含有(メタ)アクリル化合物としては、特に限定されるものではないが、水酸基含有(メタ)アクリル酸エステルが好ましく、具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌル酸のジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。
As the urethane (meth) acrylate resin, for example, after reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol, a hydroxyl group-containing (meth) acrylic compound and, if necessary, a hydroxyl group-containing allyl ether compound are reacted. And a radical-polymerizable unsaturated group-containing oligomer that can be obtained.
Specific examples of polyisocyanates include 2,4-tolylene diisocyanate and its isomers, diphenylmethane diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, triphenyl. Methane triisocyanate, Bannock D-750, Crisbon NK (trade name; manufactured by DIC Corporation), Desmodur L (trade name; manufactured by Sumitomo Bayer Urethane Co., Ltd.), Coronate L (trade name; Nippon Polyurethane Industry Co., Ltd.) Manufactured), Takenate D102 (trade name; manufactured by Mitsui Takeda Chemical Co., Ltd.), Isonate 143L (trade name; manufactured by Mitsubishi Chemical Corporation), and the like.
Examples of the polyhydroxy compound include polyester polyol and polyether polyol. Specifically, glycerin-ethylene oxide adduct, glycerin-propylene oxide adduct, glycerin-tetrahydrofuran adduct, glycerin-ethylene oxide-propylene oxide adduct, trimethylolpropane-ethylene oxide adduct, trimethylolpropane-propylene oxide adduct, tri Methylolpropane-tetrahydrofuran adduct, trimethylolpropane-ethylene oxide-propylene oxide adduct, dipentaerythritol-ethylene oxide adduct, dipentaerythritol-propylene oxide adduct, dipentaerythritol-tetrahydrofuran adduct, dipentaerythritol-ethylene oxide-propylene Examples include oxide adducts.
Specific examples of polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, and 1,3-butane. Diol, adduct of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,3-butanediol, 1,2-cyclohexane glycol, 1,3- Examples include cyclohexane glycol, 1,4-cyclohexane glycol, paraxylene glycol, bicyclohexyl-4,4-diol, 2,6-decalin glycol, and 2,7-decalin glycol.
The hydroxyl group-containing (meth) acrylic compound is not particularly limited, but a hydroxyl group-containing (meth) acrylic acid ester is preferable, and specific examples thereof include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl. (Meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) An acrylate etc. are mentioned.
 光硬化性樹脂組成物は、光重合開始剤を含有する。光重合開始剤の具体例としては、紫外線や可視光線の照射によりラジカルを発生する化合物であれば特に限定しない。光重合開始剤として用いられる化合物としては、ベンゾフェノン、ミヒラーズケトン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4′-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4′-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4′-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2′-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4′-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3′-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2-クロロフェニル)-4,4′,5,5′-テトラキス(4-エトキシカルボニルフェニル)-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジブロモフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4,6-トリクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、などである。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することも有効である。3,3′,4,4′-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3′,4,4′-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3′-ジ(メトキシカルボニル)-4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4′-ジ(メトキシカルボニル)-4,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4′-ジ(メトキシカルボニル)-3,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノンなどが好ましい。
 上記の付加重合において用いられる重合開始剤の量は、単量体の総モル数に対して約0.01~10mol%が好ましい。また、これら光重合開始剤は単独でも、または2種以上を混合しても使用することができる。
The photocurable resin composition contains a photopolymerization initiator. As a specific example of a photoinitiator, if it is a compound which generate | occur | produces a radical by irradiation of an ultraviolet-ray or visible light, it will not specifically limit. Compounds used as photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di (t-butylperoxycarbonyl) Benzophenone, 3,4,4'-tri (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4'-methoxystyryl) -4,6-bis (trichloromethyl) ) -S-triazine, 2- (3 ', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6- Bis (trichloromethyl) -s-triazine, 2- (2'-methoxystyryl) -4,6-bis (trichlorome ) -S-triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [pN, N-di (ethoxycarbonylmethyl)]-2 , 6-Di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2'-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (4 '-Methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis (7- Diethylaminocoumarin), 2- (o-chlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2' Bis (2-chlorophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4, 4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dibromophenyl) -4,4', 5,5'-tetraphenyl-1,2 '-Biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 3- (2-methyl- 2-dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenyl ketone, bis (η5-2,4-cyclope) Tajien-1-yl) - bis (2,6-difluoro-3-(1H-pyrrol-1-yl) - phenyl) titanium, and the like. These compounds may be used alone or in combination of two or more. 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3', 4,4'-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4'-di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxy) Carbonyl) -3,3′-di (t-butylperoxycarbonyl) benzophenone is preferred.
The amount of the polymerization initiator used in the above addition polymerization is preferably about 0.01 to 10 mol% based on the total number of moles of monomers. These photopolymerization initiators can be used alone or in combination of two or more.
 また前記付加重合において、連鎖移動剤を用いてもよい。連鎖移動剤を用いることで、分子量を適切に制御することができる。連鎖移動剤の例には、チオ-β-ナフトール、チオフェノール、ブチルメルカプタン、エチルチオグリコレート、メルカプトエタノール、メルカプト酢酸、イソプロピルメルカプタン、t-ブチルメルカプタン、ドデカンチオール、チオリンゴ酸、ペンタエリスリトールテトラ(3-メルカプトプロピオネート)、ペンタエリスリトールテトラ(3-メルカプトアセテート)などのメルカプタン類;ジフェニルジサルファイド、ジエチルジチオグリコレート、ジエチルジサルファイドなどのジサルファイド類;などのほか、トルエン、メチルイソブチレート、四塩化炭素、イソプロピルベンゼン、ジエチルケトン、クロロホルム、エチルベンゼン、塩化ブチル、s-ブチルアルコール、メチルエチルケトン、メチルイソブチルケトン、塩化プロピレン、メチルクロロホルム、t-ブチルベンゼン、ブチルアルコール、イソブチルアルコール、酢酸、酢酸エチル、アセトン、ジオキサン、四塩化エタン、クロロベンゼン、メチルシクロヘキサン、t-ブチルアルコール、ベンゼンなどが含まれる。特にメルカプト酢酸は、重合体の分子量を下げて、分子量分布を均一にさせ得る。これら連鎖移動剤は単独でも、または2種以上を混合しても使用することができる。 In the addition polymerization, a chain transfer agent may be used. The molecular weight can be appropriately controlled by using the chain transfer agent. Examples of chain transfer agents include thio-β-naphthol, thiophenol, butyl mercaptan, ethyl thioglycolate, mercaptoethanol, mercaptoacetic acid, isopropyl mercaptan, t-butyl mercaptan, dodecanethiol, thiomalic acid, pentaerythritol tetra (3 -Mercaptans such as mercaptopropionate) and pentaerythritol tetra (3-mercaptoacetate); disulfides such as diphenyl disulfide, diethyl dithioglycolate and diethyl disulfide; and the like, toluene, methyl isobutyrate, Carbon tetrachloride, isopropylbenzene, diethyl ketone, chloroform, ethylbenzene, butyl chloride, sec-butyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, chloride Pyrene, methyl chloroform, t- butyl benzene, butyl alcohol, isobutyl alcohol, acetic acid, ethyl acetate, acetone, dioxane, tetrachloroethane, chlorobenzene, cyclohexane, t- butyl alcohol, benzene and the like. In particular, mercaptoacetic acid can lower the molecular weight of the polymer and make the molecular weight distribution uniform. These chain transfer agents can be used alone or in admixture of two or more.
 光硬化性樹脂を溶媒に溶解または分散させた塗布液を調製する際に使用する溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α-もしくはβ-テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン、ジエチルケトン、2-ヘプタノン、4-ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2-メトキシエチルアセテート、シクロヘキシルアセテート、2-エトキシエチルアセテート、3-メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3-エトキシプロピオン酸エチル、安息香酸メチル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等を挙げることができる。これら溶媒は単独でも、または2種以上を混合しても使用することができる。 Solvents used when preparing a coating solution in which a photocurable resin is dissolved or dispersed in a solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, α- or β- Terpenes such as terpineol, etc., ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aroma such as toluene, xylene, tetramethylbenzene Aromatic hydrocarbons, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether Ter, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether and other glycol ethers, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carb Acetic esters such as tall acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-methoxyethyl acetate, cyclohexyl acetate, 2-ethoxyethyl acetate, 3-methoxybutyl acetate Diethylene glycol dialkyl ether, dipropy Glycol dialkyl ethers, ethyl 3-ethoxypropionate, methyl benzoate, N, N- dimethylacetamide, N, may be mentioned N- dimethylformamide. These solvents can be used alone or in admixture of two or more.
 また、光硬化性樹脂を溶媒に溶解または分散させた塗布液には、塗布時に塗布した塗布液の表面流動性やレベリング性などを改善し、濡れ不良やハジキによる塗布膜のピンホールや欠陥の発生などを防止するための表面調整剤(レベリング剤、濡れ性改良剤、界面滑性剤など)を含有してもよい。表面調整剤としては、ポリシロキサン、ポリアクリレートおよびワックス等が例示される。
 また、塗布液中への気泡の発生を防止するための消泡剤などの添加剤を使用してもよい。消泡剤としては、ミネラルオイル系化合物、ポリシロキサン系化合物などが例示される。
 更に、必要に応じて可塑剤、紫外線吸収剤、酸化防止剤、シランカップリング剤等の添加剤を含有してもよい。
In addition, a coating solution in which a photocurable resin is dissolved or dispersed in a solvent improves the surface fluidity and leveling properties of the coating solution applied at the time of coating, and prevents pinholes and defects in the coating film due to poor wetting and repellency. A surface conditioner (leveling agent, wettability improving agent, interfacial slipping agent, etc.) for preventing generation may be contained. Examples of the surface conditioner include polysiloxane, polyacrylate and wax.
In addition, an additive such as an antifoaming agent for preventing the generation of bubbles in the coating solution may be used. Examples of antifoaming agents include mineral oil compounds and polysiloxane compounds.
Furthermore, you may contain additives, such as a plasticizer, a ultraviolet absorber, antioxidant, and a silane coupling agent, as needed.
 有機膜層の形成方法は特に制限はないが、光硬化性樹脂組成物を均一にコーティングするためにウェットコーティング法(塗布法)を用いることが好ましい。塗布法を用いることにより、優れた表面平滑性が得られる。塗布法のうち、少量を作成する場合には簡便で均質な製膜が可能であるスピンコート法が好ましい。生産性を重視するロール・ツー・ロールの場合には、グラビアコート法、ダイコート法、リバースコート法、ロールコート法、スリットコート法、ディッピング法、スプレーコート法、キスコート法、リバースキスコート法、エアーナイフコート法、カーテンコート法、ロッドコート法などが好ましい。塗布法は、これらの方法の中から必要とする膜厚、粘度や硬化条件等に応じて適宜選択することができる。 The method for forming the organic film layer is not particularly limited, but it is preferable to use a wet coating method (coating method) in order to uniformly coat the photocurable resin composition. By using the coating method, excellent surface smoothness can be obtained. Among the coating methods, when a small amount is prepared, a spin coating method capable of simple and uniform film formation is preferable. In the case of roll-to-roll, where productivity is important, gravure coating method, die coating method, reverse coating method, roll coating method, slit coating method, dipping method, spray coating method, kiss coating method, reverse kiss coating method, air A knife coating method, a curtain coating method, a rod coating method and the like are preferable. The coating method can be appropriately selected from these methods according to the required film thickness, viscosity, curing conditions, and the like.
 塗布された塗布液の乾燥は、室温~約200℃の環境下で熱風などにより行うことができる。塗布乾燥後に、活性エネルギー線源により、光活性エネルギー線または電子線を照射して硬化させる。光活性エネルギー線源としては特に制限はないが、用いる光重合開始剤の性質に応じて、例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク、気体レーザー、固体レーザー、電子線照射装置などが挙げられる。
 乾燥のための乾燥炉通過時間は、ライン速度、および塗布液の種類や塗工厚み、および装置能力(風量・面積など)により異なる。例えば、1分~105分を挙げることができる。硬化のための照射量も同様に、材料や厚みにより異なる。例えば、高圧水銀灯を用いる場合には、200~700mJ/cm程度を挙げることができる。
The applied coating solution can be dried with hot air or the like in an environment of room temperature to about 200 ° C. After the coating and drying, a photoactive energy beam or an electron beam is irradiated and cured by an active energy beam source. Although there is no particular limitation as a photoactive energy ray source, depending on the nature of the photopolymerization initiator used, for example, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, a xenon arc, a gas laser, a solid laser, An electron beam irradiation apparatus etc. are mentioned.
The drying furnace passage time for drying differs depending on the line speed, the type of coating liquid, the coating thickness, and the apparatus capacity (air volume, area, etc.). For example, 1 to 105 minutes can be mentioned. Similarly, the amount of irradiation for curing varies depending on the material and thickness. For example, when a high-pressure mercury lamp is used, about 200 to 700 mJ / cm 2 can be mentioned.
3.ガスバリア膜層
 ガスバリアフィルム積層体が有するガスバリア膜層は、プラズマCVD法により製膜された、金属酸化物を主成分とする膜であり、単独膜または複合膜である。
 なお、金属酸化物の替わりに金属窒化物、または金属酸化物と金属窒化物の混合物を主成分とする膜であってもよい。
3. Gas Barrier Film Layer The gas barrier film layer included in the gas barrier film laminate is a film containing metal oxide as a main component, formed by a plasma CVD method, and is a single film or a composite film.
Note that a film mainly containing a metal nitride or a mixture of a metal oxide and a metal nitride may be used instead of the metal oxide.
 ガスバリア膜層の厚みは、0.2~2μmが好ましく、より好ましくは0.3~1.5μm、更に好ましくは0.5~1.5μmである。0.2μm以上とすると膜厚均一性が良好となり、ガスバリア性能に優れる。2μm以下にすると、屈曲によるクラックが発生し難くなる。 The thickness of the gas barrier film layer is preferably 0.2 to 2 μm, more preferably 0.3 to 1.5 μm, still more preferably 0.5 to 1.5 μm. When the thickness is 0.2 μm or more, the film thickness uniformity is good and the gas barrier performance is excellent. If it is 2 μm or less, cracks due to bending are less likely to occur.
 金属酸化物の薄膜をプラスチック基材の表面上に成膜する方法としては、真空蒸着法、スパッタ法、イオンプレーティング法等の物理気相成長法(PVD)、熱化学気相成長法、プラズマ化学気相成長法等の化学気相成長法(CVD)がある。しかし、真空蒸着法は、生産性の高いプロセスとして広く使われているが、ガスバリア性能が劣る。スパッタ法では緻密な皮膜を形成することができるが、成膜速度が低く十分な生産性を得ることができない。さらに、PVD法で形成した皮膜は無機質で脆いため、欠陥や剥離が生じ易く、高いバリア性を付与することができない。
 これらに対して、プラズマCVD法では、スパッタ法に比較して生産性の面で優位性があり、更に真空蒸着法やスパッタ法に比較して良好なガスバリア性能を有している。
As a method of forming a metal oxide thin film on the surface of a plastic substrate, physical vapor deposition (PVD) such as vacuum deposition, sputtering, ion plating, thermochemical vapor deposition, plasma, etc. There is chemical vapor deposition (CVD) such as chemical vapor deposition. However, the vacuum deposition method is widely used as a highly productive process, but the gas barrier performance is inferior. Although a dense film can be formed by sputtering, the film formation rate is low and sufficient productivity cannot be obtained. Furthermore, since the film formed by the PVD method is inorganic and brittle, defects and peeling are likely to occur, and high barrier properties cannot be imparted.
On the other hand, the plasma CVD method has an advantage in terms of productivity as compared with the sputtering method, and further has a good gas barrier performance as compared with the vacuum evaporation method and the sputtering method.
 このように、ガスバリア膜層の成膜方法としては、プラズマCVD法を好ましく用いることができる。更に好ましくは、生産性や品質の安定性などの面からロール・ツー・ロール式プラズマCVD法を用いることができる。
 なお、CVD(Chemical Vapor Deposition,化学蒸着)は、作製したい薄膜材料の構成元素を含む化合物の、1種類以上の原料ガスを製膜対象(例えば基板)上に供給し、気相または基板表面での化学反応により薄膜を作製する方法であり、プラズマCVD法は、反応ガスをプラズマ状態にし、活性なラジカルやイオンを生成させ、活性環境下で化学反応を行わせる方法である。また、ロール・ツー・ロールとは、図5に示すように、ロール状に巻いた製膜対象を送り出しロール31から送り出して、表面に目的物質を成膜・印刷し、再び別のロール(巻き取りリール32)に巻き取って回収する生産方法である。
As described above, the plasma CVD method can be preferably used as the method for forming the gas barrier film layer. More preferably, a roll-to-roll type plasma CVD method can be used in terms of productivity and quality stability.
In CVD (Chemical Vapor Deposition), one or more source gases of a compound containing a constituent element of a thin film material to be manufactured are supplied onto a film formation target (for example, a substrate), and the gas phase or the surface of the substrate is supplied. The plasma CVD method is a method in which a reactive gas is brought into a plasma state, active radicals and ions are generated, and a chemical reaction is performed in an active environment. In addition, as shown in FIG. 5, the roll-to-roll means that a film-forming object wound in a roll shape is sent out from a feed roll 31, and a target substance is formed on a surface and printed, and another roll (winding is wound again). This is a production method in which a take-up reel 32) is wound up and collected.
 プラズマCVD法による成膜装置としては種々のタイプがあるが、本発明の目的をそこなわない限り何ら制限されるものではない。
 例えば、特表2005-504880号公報には、成膜を行うフィルムを巻き掛けて搬送する一対の成膜ロールを備え、前記ロールをまたぐように磁場を形成するとともに、二つの成膜ロールが同じ極性になるように高周波電源に接続し、同時に数十から数百kHzの高周波電力を供給し、ロール間の対向空間(放電領域)でベニング放電を発生させてプラズマを閉じ込めると共に前記対向空間に酸素とヘキサメチルジシロキサン(HMDSO)などの原料ガスを供給し、放電領域の両側の成膜ロール上のフィルムに同時に成膜を行うものが記載されている。
There are various types of film forming apparatuses using the plasma CVD method, but the film forming apparatus is not limited as long as the object of the present invention is not impaired.
For example, Japanese Patent Publication No. 2005-504880 includes a pair of film forming rolls that wind and convey a film to be formed, forms a magnetic field across the rolls, and the two film forming rolls are the same. It is connected to a high-frequency power source so as to be polar, and simultaneously, high-frequency power of several tens to several hundreds of kHz is supplied, and Benning discharge is generated in the opposing space (discharge region) between the rolls to confine plasma and oxygen in the opposing space And a material gas such as hexamethyldisiloxane (HMDSO) is supplied to form a film on a film on a film forming roll on both sides of the discharge region at the same time.
 また、特許2587507号公報には、真空チャンバー内に対向して配置した一対の成膜ロール(金属ドラム)と、一方と他方の成膜ロールにそれぞれ一方と他方の電極を接続した交流電源と、成膜ロールの間の対向空間に配置され、成膜ロールに対向する面が解放された放電室と、前記放電室に接続されたモノマー(原料)ガス供給手段を有するプラズマCVD成膜装置が記載されている。 Japanese Patent No. 2587507 discloses a pair of film forming rolls (metal drums) arranged facing each other in a vacuum chamber, an AC power source in which one and the other electrode are connected to one and the other film forming rolls, respectively. A plasma CVD film forming apparatus having a discharge chamber disposed in an opposing space between film forming rolls and having a surface facing the film forming roll opened, and a monomer (raw material) gas supply means connected to the discharge chamber is described. Has been.
 さらに、特許4268195号公報には、減圧下において、対向して配置した成膜ロールに交流あるいは極性反転を伴うパルス電圧を印加し、対向配置された成膜ロールの間の対向空間(成膜ゾーン)にグロー放電を発生させ、成膜ロールの対向空間に面して巻き掛けた帯状の基材にプラズマCVDによる成膜を行う装置が記載されている。
 一例として、(株)神戸製鋼所製プラズマCVD装置(ロールコーターW35)などを好ましく用いることができる。
Further, in Japanese Patent No. 4268195, a pulse voltage accompanied by alternating current or polarity reversal is applied to the film forming rolls arranged to face each other under reduced pressure, and a facing space (film forming zone) between the film forming rolls arranged opposite to each other. ) Describes a device for generating a film by plasma CVD on a belt-like base material wound around facing a facing space of a film forming roll.
As an example, a plasma CVD apparatus (Roll coater W35) manufactured by Kobe Steel, Ltd. can be preferably used.
 ガスバリア膜層の主成分となる金属酸化物の例としては、酸化珪素、酸化アルミニウム、酸化チタン等が挙げられる。ガスバリアフィルム積層体に透明性が求められる用途においては、酸化珪素がより好ましい。 Examples of the metal oxide that is the main component of the gas barrier film layer include silicon oxide, aluminum oxide, and titanium oxide. In applications where transparency is required for the gas barrier film laminate, silicon oxide is more preferable.
 ガスバリア膜層の形成に用いる原料ガスとしては、有機金属化合物が好ましく、例えば、珪素を含有する有機珪素化合物、アルミニウムを含有する有機アルミニウム化合物等を用いることができる。これら原料ガスの中でも、化合物の取り扱い性、および得られるガスバリア膜層に柔軟性や高いガスバリア性を付与できる等の観点から、有機珪素化合物を用いることがより好ましい。
 有機珪素化合物としては、例えば、HMDSO、1.1.3.3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメトキシシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。
 これらの有機珪素化合物の中でも、化合物の取り扱い性、および得られる薄膜層のガスバリア性等の特性の観点から、HMDSO、1.1.3.3-テトラメチルジシロキサン、テトラエトキシシランが特に好ましい。
 これらの有機珪素化合物等の原料は、1種を単独でまたは2種以上を組み合わせて使用することができる。
 有機アルミニウム化合物の例としては、トリメチルアルミニウムなどが挙げられる。
The source gas used for forming the gas barrier film layer is preferably an organometallic compound. For example, an organosilicon compound containing silicon, an organoaluminum compound containing aluminum, or the like can be used. Among these raw material gases, it is more preferable to use an organosilicon compound from the viewpoints of handling of the compound and imparting flexibility and high gas barrier properties to the resulting gas barrier film layer.
Examples of organosilicon compounds include HMDSO, 1.1.3.3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethoxysilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyl Examples include triethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, and octamethylcyclotetrasiloxane.
Among these organosilicon compounds, HMDSO, 1.1.3.3-tetramethyldisiloxane, and tetraethoxysilane are particularly preferable from the viewpoints of properties such as compound handling properties and gas barrier properties of the obtained thin film layer.
These raw materials such as organosilicon compounds can be used singly or in combination of two or more.
Examples of the organoaluminum compound include trimethylaluminum.
 前記原料ガスに加えて反応ガスを用いることができる。反応ガスとしては、前記原料ガスおよびそのラジカルと反応して酸化物、窒化物等の化合物となるガスを使用することができる。反応ガスとしては、例えば、酸素、窒素、アンモニア、オゾン等を用いることができる。これらの反応ガスは、1種を単独でまたは2種以上を組み合わせて使用することができる。 In addition to the raw material gas, a reactive gas can be used. As the reaction gas, a gas that reacts with the raw material gas and its radical to become a compound such as an oxide or a nitride can be used. As the reaction gas, for example, oxygen, nitrogen, ammonia, ozone, or the like can be used. These reaction gases can be used alone or in combination of two or more.
 成膜のためのガスとして、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、成膜のためのガスとして、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスなどを用いることができる。 In order to supply the raw material gas into the vacuum chamber as a film forming gas, a carrier gas may be used as necessary. Furthermore, as a gas for film formation, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, and for example, rare gases such as helium, argon, neon, xenon, and the like can be used.
 このような成膜のためのガス(原料ガス、反応ガス、キャリアガス、放電用ガス等の成膜時に使用するガス)をまとめて「成膜ガス」と呼ぶ。中の原料ガスに対する反応ガスの混合比率は、原料ガス1モルと完全に反応させるために理論上必要となる反応ガスのモル比をAとした場合に、使用する反応ガスのモル量がA×(0.2~1.5)の範囲であることが好ましく、A×(0.3~1.25)の範囲がより好ましい。
 例えば、原料ガスとしてのHMDSOと、反応ガスとしての酸素(O)とを含有する成膜ガスをプラズマCVDにより反応させてガスバリア膜層を成膜する場合は、下記反応式(1)に記載のような反応が起こる。
   (CH)SiO+12O→2SiO+6CO+9HO   (1)
 原料ガスであるHMDSO1モルに対する反応ガスである酸素の理論量は12モルである。したがってこの場合は、HMDSO1モルに対して好ましい酸素のモル比は12×(0.2~1.5)=2.4~18モルであり、より好ましいモル比は3.6~15モルである。
 反応ガスの比率が低すぎると、成膜したバリア膜中に原料ガスに起因する有機成分(例えば原料ガスにHMDSOを使用した場合には、原料中に含まれるメチル基に起因する炭素を含む成分)が多くなり、高いバリア性が得られず、また、反応ガスの比率が高すぎると反応が進行しすぎてバリア膜がもろくなり屈曲性や耐久性が劣る。
Such gases for film formation (gases used during film formation such as source gas, reaction gas, carrier gas, discharge gas) are collectively referred to as “film formation gas”. The mixing ratio of the reaction gas to the raw material gas is such that the molar amount of the reaction gas used is A × when the molar ratio of the reaction gas that is theoretically necessary for complete reaction with 1 mol of the raw material gas is A. A range of (0.2 to 1.5) is preferable, and a range of A × (0.3 to 1.25) is more preferable.
For example, when a gas barrier film layer is formed by reacting a film forming gas containing HMDSO as a source gas and oxygen (O 2 ) as a reaction gas by plasma CVD, the reaction is described in the following reaction formula (1). The following reaction occurs.
(CH 3) 6 Si 2 O + 12O 2 → 2SiO 2 + 6CO 2 + 9H 2 O (1)
The theoretical amount of oxygen which is a reaction gas with respect to 1 mol of HMDSO which is a raw material gas is 12 mol. Therefore, in this case, a preferable molar ratio of oxygen to 1 mol of HMDSO is 12 × (0.2 to 1.5) = 2.4 to 18 mol, and a more preferable molar ratio is 3.6 to 15 mol. .
If the ratio of the reaction gas is too low, an organic component derived from the source gas in the formed barrier film (for example, when HMDSO is used as the source gas, a component containing carbon due to the methyl group contained in the source material) ) And a high barrier property cannot be obtained, and if the ratio of the reaction gas is too high, the reaction proceeds too much and the barrier film becomes brittle and the flexibility and durability are poor.
 プラズマCVD装置の真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.1Pa~50Paの範囲とすることが好ましい。 The pressure (degree of vacuum) in the vacuum chamber of the plasma CVD apparatus can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.1 Pa to 50 Pa.
 放電するために印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.2~10kWの範囲とすることが好ましい。印加電力が前記下限以上では、原料ガスの反応が不十分でバリア性が低くなることがなく、前記上限以下であると、成膜時の製膜対象(例えば基材)表面の温度が上昇してしまい、製膜対象に皺が発生したり、フィルム表面に凹凸が発生して外観が損なわれる、ということがない。 The electric power applied for discharging can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.2 to 10 kW. When the applied power is equal to or higher than the lower limit, the reaction of the raw material gas is not insufficient and the barrier property is not lowered. As a result, wrinkles are not generated on the object of film formation, and irregularities are generated on the film surface and the appearance is not impaired.
 製膜対象の搬送速度は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.1~50m/minの範囲とすることが好ましく、0.3~20m/minの範囲とすることがより好ましい。ライン速度が前記下限以上では、搬送中の樹脂フィルムに熱に起因する皺が発生しにくくなる傾向にあり、前記上限以下であると、形成される薄膜層の厚みが薄くなりすぎることがない。 The conveyance speed of the film forming target can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.1 to 50 m / min, preferably 0.3 to 20 m. / Min is more preferable. When the line speed is equal to or higher than the lower limit, wrinkles due to heat tend not to occur in the resin film being conveyed. When the line speed is equal to or lower than the upper limit, the thickness of the formed thin film layer does not become too thin.
 ガスバリア膜層は、有機成分を含有する。例えば、成膜ガス(原料ガスとしてのHMDSOと反応ガスとしての酸素ガス(放電ガスとしても機能する)の混合ガス)からプラズマCVD法による薄膜形成を行い、ガスバリア膜層を形成すると、下記反応式(2)に記載のように、形成された膜には有機成分としてのCy(微量の炭素成分)が含まれる。
   (CH)Si-O-Si(CH) + O → SiOxCy   (2)
The gas barrier film layer contains an organic component. For example, when a thin film is formed by a plasma CVD method from a film forming gas (mixed gas of HMDSO as a source gas and oxygen gas as a reaction gas (also functioning as a discharge gas)) and a gas barrier film layer is formed, the following reaction formula is obtained. As described in (2), the formed film contains Cy (a trace amount of carbon component) as an organic component.
(CH 3 ) 3 Si—O—Si (CH 3 ) 3 + O 2 → SiOxCy (2)
4.樹脂フィルム
 ガスバリアフィルム積層体の基材となる樹脂フィルムは、ガスバリア膜層を保持することができる有機材料で形成されたものであれば特に限定されるものではない。
4). Resin film The resin film used as a base material of a gas barrier film laminated body will not be specifically limited if it is formed with the organic material which can hold | maintain a gas barrier film layer.
 例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、シクロオレフィンポリマー、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、アクリル酸エステルポリマー、メタクリル酸エステルポリマー、ポリイミド、ポリエーテルイミド等の樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、JNC株式会社製)、更には前記プラスチックを2層以上積層して成る樹脂フィルムや、ガラスクロスに樹脂を含浸した複合フィルム等を挙げることができる。コストや入手の容易性の点で、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリカーボネート、ポリイミド樹脂を主成分としたフィルムを好ましく用いることができる。 For example, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), cycloolefin polymer, aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, acrylic ester polymer, methacrylic ester polymer, polyimide, polyetherimide, etc. Heat-resistant transparent film based on sesquioxane (product name Sila-DEC, manufactured by JNC Co., Ltd.), resin films made by laminating two or more layers of the above plastics, The composite film of resin-impregnated glass cloth and the like. From the viewpoint of cost and availability, a film mainly composed of polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polycarbonate, or polyimide resin can be preferably used.
 樹脂フィルムの厚みは特に限定されないが、厚み20~500μmが好ましく、より好ましくは30~300μmである。厚みが20μm以上では、基材としての剛性が不足して、ロール・ツー・ロールでの成膜の際に安定性が低下することがない。また、500μm以下では、屈曲性が低下すると共にコストupになることを回避することができる。 The thickness of the resin film is not particularly limited, but is preferably 20 to 500 μm, more preferably 30 to 300 μm. When the thickness is 20 μm or more, the rigidity as a base material is insufficient, and stability does not decrease during film formation on a roll-to-roll basis. Moreover, if it is 500 micrometers or less, it can avoid that a flexibility falls and it becomes cost up.
 さらに、樹脂フィルムが透明であると、樹脂フィルム上に形成する有機膜層およびガスバリア膜層も透明であることにより、透明なガスバリアフィルム積層体とすることが可能となる。そのため、OLED素子、またはOPV素子等の透明基板とすることも可能となるため、より好ましい。 Furthermore, when the resin film is transparent, the organic film layer and the gas barrier film layer formed on the resin film are also transparent, so that a transparent gas barrier film laminate can be obtained. Therefore, a transparent substrate such as an OLED element or an OPV element can be used, which is more preferable.
 また、本発明に係るガスバリアフィルム積層体の表面(樹脂フィルム表面、有機膜層表面、ガスバリア膜層表面)に、密着性を向上する目的でコロナ処理、プラズマ処理等の表面改質処理を施してもよい。 In addition, the surface (resin film surface, organic film layer surface, gas barrier film layer surface) of the gas barrier film laminate according to the present invention is subjected to surface modification treatment such as corona treatment or plasma treatment for the purpose of improving adhesion. Also good.
 本発明のガスバリアフィルム積層体は、樹脂フィルムの少なくとも片面に、少なくとも一つの有機膜層と、少なくとも一つのガスバリア膜層を有し、好ましくは樹脂フィルムと有機膜層が接するものである。さらに好ましくは、図1に示すように、有機膜層12とガスバリア膜層13が樹脂フィルム11の片面にのみに積層された構造からなるガスバリアフィルム積層体10である。
 樹脂フィルム上への有機膜層およびガスバリア膜層の積層順序を樹脂フィルム/有機膜層/ガスバリア膜層にすることで、樹脂フィルム/ガスバリア膜層/有機膜層の順に積層した場合に較べて、有機膜層とガスバリア膜層との密着性を向上させることができより好ましい。
 また、ガスバリア膜層が樹脂フィルムの片面にのみに積層された構造とすることで、両面に積層した場合と比べて、ガスバリアフィルム積層体の軽量化、光線透過率の向上および製造プロセスの簡略化等を図ることができより好ましい。
The gas barrier film laminate of the present invention has at least one organic film layer and at least one gas barrier film layer on at least one side of the resin film, and the resin film and the organic film layer are preferably in contact with each other. More preferably, as shown in FIG. 1, a gas barrier film laminate 10 having a structure in which an organic film layer 12 and a gas barrier film layer 13 are laminated only on one side of a resin film 11.
By stacking the organic film layer and the gas barrier film layer on the resin film in the order of resin film / organic film layer / gas barrier film layer, compared to the case of stacking in the order of resin film / gas barrier film layer / organic film layer, The adhesion between the organic film layer and the gas barrier film layer can be improved, which is more preferable.
In addition, the gas barrier film layer has a structure that is laminated only on one side of the resin film, so that the weight of the gas barrier film laminate is improved, the light transmittance is improved, and the manufacturing process is simplified compared to the case where it is laminated on both sides. It is possible to achieve the above and more preferable.
 本発明の構成によって形成されるガスバリアフィルム積層体は、水蒸気透過率(温度:40±0.5℃、相対湿度:90±5%RH)が、0.005g/m/d以下の高いガスバリア性を発現する。成膜条件等を最適化することで0.001g/m/d以下を発現でき、更に有機膜層、ガスバリア膜層の厚みなどを最適化することで、0.0001g/m/d以下が達成される。 The gas barrier film laminate formed by the configuration of the present invention has a high gas barrier with a water vapor transmission rate (temperature: 40 ± 0.5 ° C., relative humidity: 90 ± 5% RH) of 0.005 g / m 2 / d or less. Expresses sex. By optimizing the film formation conditions, 0.001 g / m 2 / d or less can be developed, and by optimizing the thickness of the organic film layer and gas barrier film layer, 0.0001 g / m 2 / d or less Is achieved.
 本発明のガスバリアフィルム積層体は、光電素子、OLED素子、またはOPV素子等の用途に用いる場合には、好ましくは透明な材料のみにより構成されたものであり、JIS 7105法に従って測定した全光線透過率が80%以上であることが好ましく、更に好ましくは85%以上であり、特に好ましくは88%以上である。
 しかしながら、可視光線や紫外線の透過を遮断させたい場合や、透明性がそれほど要求されない場合は、不透明なガスバリアフィルム積層体として作製してもよい。
The gas barrier film laminate of the present invention is preferably composed of only a transparent material when used for applications such as a photoelectric element, an OLED element, or an OPV element, and has a total light transmission measured according to the JIS 7105 method. The rate is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
However, when it is desired to block transmission of visible light or ultraviolet light, or when transparency is not so required, an opaque gas barrier film laminate may be produced.
 本発明のガスバリアフィルム積層体は、使用環境において発生するカールしようとする内部応力を極力抑えたものであり、良好なカール防止性が発揮される。これにより、当該ガスバリアフィルム積層体を製造した後、デバイスへの組み込み工程等、別工程を経る場合において、良好な加工性が発揮される。また、カールに起因したクラックや膜剥がれも無く、良好なガスバリア性を維持できる。
 例えば、厚み125μmのPETフィルム上に積層した本発明のガスバリアフィルム積層体を、100mm×100mmに裁断して定盤上に載置し、定規などの高さ測定器を用いて、定盤表面からカールして反っている箇所の高さ(定盤表面からの距離)の平均値をカール高さとすると、カール高さは15mm以下であることが好ましく、更に好ましくは10mm以下であり、特に好ましくは5mm以下である。なお「カール高さ」とは、四角いフィルムの4隅の高さの平均である。
The gas barrier film laminate of the present invention suppresses the internal stress that tends to curl in the use environment as much as possible, and exhibits good curl prevention properties. Thereby, after manufacturing the said gas barrier film laminated body, when passing through other processes, such as an assembly process to a device, favorable workability is exhibited. Further, there is no crack or film peeling due to curling, and good gas barrier properties can be maintained.
For example, the gas barrier film laminate of the present invention laminated on a 125 μm-thick PET film is cut to 100 mm × 100 mm and placed on a surface plate, and from a surface plate surface using a height measuring instrument such as a ruler. When the average value of the height (distance from the surface of the platen) of the curled and warped portion is the curl height, the curl height is preferably 15 mm or less, more preferably 10 mm or less, and particularly preferably 5 mm or less. The “curl height” is an average of the heights of the four corners of a square film.
5.用途
 本発明のガスバリアフィルム積層体は、水蒸気や酸素等の各種ガスの遮断を必要とする用途に用いることができる。特に好ましくは、OLED素子またはOPV素子等の各種ガスの遮断に有用に用いることができる。また、ガスバリアフィルム積層体が透明である場合には、OPV素子のような光電素子に用いた場合に、ガスバリアフィルム積層体の側から太陽光の受光を行うように構成できる。また、OLED素子に用いた場合に、素子からの発光を妨げないため発光効率を劣化させることがない。
5. Applications The gas barrier film laminate of the present invention can be used for applications that require blocking of various gases such as water vapor and oxygen. Particularly preferably, it can be usefully used for blocking various gases such as OLED elements or OPV elements. Moreover, when a gas barrier film laminated body is transparent, when it uses for a photoelectric element like an OPV element, it can comprise so that sunlight reception may be performed from the gas barrier film laminated body side. Further, when used in an OLED element, light emission from the element is not hindered, so that the light emission efficiency is not deteriorated.
 図2(a)にOLED素子を固体封止方式で有する電子部品の概略図を示す。正負電極と当該正負電極に挟まれた有機材料とを有するOLED素子22がガラス基材21上に配置され、さらにOLED素子22はその全体を固体封止剤23で覆われている。このような構成の電子部品において、図2(b)に示すように、ガラス基材21の替わりに本願のガスバリアフィルム積層体10を用いることができる。
 または、図3に示すように、OLED素子22を本願のガスバリアフィルム積層体10で挟んだサンドイッチ構造としてもよい。その場合は、接着剤25によりガスバリアフィルム積層体10を接着させるとよい。
FIG. 2A shows a schematic diagram of an electronic component having an OLED element in a solid sealing system. An OLED element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes is disposed on a glass substrate 21, and the OLED element 22 is entirely covered with a solid sealing agent 23. In the electronic component having such a configuration, the gas barrier film laminate 10 of the present application can be used instead of the glass substrate 21 as shown in FIG.
Or as shown in FIG. 3, it is good also as a sandwich structure which pinched | interposed OLED element 22 with the gas barrier film laminated body 10 of this application. In that case, the gas barrier film laminate 10 may be adhered by the adhesive 25.
 図4(a)にOLED素子を従来の中空構造で有する電子部品の概略図を示す。正負電極と当該正負電極に挟まれた有機材料とを有するOLED素子22がガラス基材21上に配置され、離間して存在するガラス封止材28に覆われている。ガラス基材21とガラス封止材28は、両側を接着剤25で接着(封止)されている。中空内部には水分を吸着するゲッター26が配置され、Nガス27で満たされている。このような構成の従来から存在する電子部品において、図4(b)に示すように、ガラス基材21とガラス封止材28の代替として、本願のガスバリアフィルム積層体10を用いることもできる。 FIG. 4A shows a schematic diagram of an electronic component having an OLED element with a conventional hollow structure. An OLED element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes is disposed on the glass substrate 21 and covered with a glass sealing material 28 that is present at a distance. The glass substrate 21 and the glass sealing material 28 are bonded (sealed) with an adhesive 25 on both sides. A getter 26 that adsorbs moisture is disposed inside the hollow and is filled with N 2 gas 27. In the conventional electronic component having such a configuration, the gas barrier film laminate 10 of the present application can be used as an alternative to the glass base material 21 and the glass sealing material 28 as shown in FIG.
 正負電極と当該正負電極に挟まれた半導体材料とを有するOPV素子においても、同様にガラス基板の代替として本願のガスバリアフィルム積層体を用いることができる。 Also in an OPV element having positive and negative electrodes and a semiconductor material sandwiched between the positive and negative electrodes, the gas barrier film laminate of the present application can be similarly used as an alternative to a glass substrate.
 このように、OLED素子、OPV素子、液晶素子などへの透明基板として、本発明のガスバリアフィルム積層体を用いると、軽量化、大型化という要求に答えることができる。さらに、ロール・ツー・ロール(ロール状に巻いた樹脂フィルム等の基材を送り出して、基材の表面に目的物質を成膜する等の加工を行った後、再びロール状に巻き取って回収する方法)での生産が可能であること、形状の自由度が高いこと、曲面表示が可能であること等の高度な要求を、重くて割れやすく大面積化が困難なガラス基板に替わって、満たすことができる。
 なお、従来から透明プラスチック等のフィルム基材は、ガラスに比してガスバリア性が劣るという問題があるが、本発明のガスバリアフィルム積層体を用いると、例えば、OLED素子やOPV素子等の電子部品の材料として用いた場合、ガスバリア性に優れた基板として、水(水蒸気)や酸素が浸透してデバイスを構成する成分が劣化し、性能が低下することを抑制することができる。
As described above, when the gas barrier film laminate of the present invention is used as a transparent substrate for OLED elements, OPV elements, liquid crystal elements, etc., it is possible to meet the demands for weight reduction and size increase. Furthermore, roll-to-roll (feeding a substrate such as a resin film wound in a roll shape, processing the target substance on the surface of the substrate, etc., and then winding it up again to collect it In place of glass substrates that are heavy, easy to break, and difficult to increase in area. Can be satisfied.
Conventionally, film base materials such as transparent plastics have a problem that gas barrier properties are inferior to glass, but when the gas barrier film laminate of the present invention is used, for example, electronic components such as OLED elements and OPV elements When used as a material, the substrate having excellent gas barrier properties can prevent water (water vapor) or oxygen from permeating and degrading components constituting the device, thereby reducing performance.
 以上のとおり本発明は、主に有機エレクトロルミネッセンス素子(OLED素子)や液晶エレメントに代表される表示素子、有機太陽電池素子(OPV素子)に代表される光電素子、あるいはOLED素子を用いた照明等の製品に用いることができるガスバリアフィルム積層体である。本発明のガスバリアフィルム積層体は、生産性が良好でカールが少なく、ガスバリア特性が良好であることを特長とする。 As described above, the present invention mainly includes display elements typified by organic electroluminescence elements (OLED elements) and liquid crystal elements, photoelectric elements typified by organic solar cell elements (OPV elements), illumination using OLED elements, and the like. It is a gas barrier film laminated body which can be used for the product. The gas barrier film laminate of the present invention is characterized by good productivity, low curl, and good gas barrier properties.
 以下に本発明を、実施例を用いて詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to the contents described in the following examples.
<ガスバリア層と有機膜層の膜厚測定>
 走査型電子顕微鏡(SEM)を用いて、下記条件にてガスバリアフィルム積層体の断層面観察を行い、膜厚を測定した。
・SEM観察
 装置:日立製作所製SU-70
 加速電圧:10kV
<Measurement of film thickness of gas barrier layer and organic film layer>
Using a scanning electron microscope (SEM), the tomographic plane of the gas barrier film laminate was observed under the following conditions, and the film thickness was measured.
・ SEM observation equipment: SU-70 manufactured by Hitachi, Ltd.
Acceleration voltage: 10 kV
<耐屈曲性>
 作製したガスバリアフィルム積層体を、JIS K5600-5-1(円筒形マンドレル法)に基づいて耐屈曲性を評価した。
<Flexibility>
The produced gas barrier film laminate was evaluated for bending resistance based on JIS K5600-5-1 (cylindrical mandrel method).
<密着性>
 作製したガスバリアフィルム積層体を、JIS K5600-5-6(付着性[クロスカット法])に基づいて密着性を評価した。
 切込間隔:1mm
 カット数:10×10個
 判定: ○:剥離面積≦5%
     △:5%<剥離面積≦30%
     ×:30%<剥離面積
<Adhesion>
The prepared gas barrier film laminate was evaluated for adhesion based on JIS K5600-5-6 (adhesiveness [cross-cut method]).
Cutting interval: 1mm
Number of cuts: 10 × 10 Judgment: ○: Peeling area ≦ 5%
Δ: 5% <peeling area ≦ 30%
×: 30% <peeling area
<カール性試験>
 作製したガスバリアフィルム積層体を、ロール状に巻き取られた状態のまま23±2℃、50±10%RHの環境で1日以上放置した。その後、100mm×100mmに裁断し、23±2℃、50±10%RHの環境で定盤上に載置し、24h放置した。その後、長さ測定器(JIS1級の金尺)を用いて、定盤表面からカールして反っている箇所の高さ(定盤表面からの距離)を測定した。すなわち、サンプルの四隅についてそれぞれカールの高さを測定し、それらの平均値をカール高さとした。
<Curl test>
The produced gas barrier film laminate was allowed to stand for 1 day or longer in an environment of 23 ± 2 ° C. and 50 ± 10% RH while being wound into a roll. Then, it cut | judged to 100 mm x 100 mm, mounted on the surface plate in the environment of 23 +/- 2 degreeC and 50 +/- 10% RH, and left to stand for 24 hours. Then, the height (distance from the surface of the surface plate) of the part curled and warped from the surface of the surface plate was measured using a length measuring device (JIS 1 grade metal ruler). That is, the curl height was measured for each of the four corners of the sample, and the average value thereof was taken as the curl height.
<水蒸気透過率(WVTR)の測定>
 水蒸気透過率の測定方法は特に限定するところではないが、本発明に於いてはISO15106-3記載の方法、または以下に記載するCa腐食法により評価を行った。
・測定法1(ISO15106-3法)
 評価装置:イリノイ製水蒸気透過率測定装置Model7002
 温湿度:40℃、90%RH
・測定法2(Ca腐食法)
 上記測定法1で測定限界以下となる場合には、以下の方法にて測定した。ガスバリアフィルム積層体の片面に金属カルシウムを蒸着し、CaをAlおよび蝋で封止し該フィルムを透過した水分で金属Caが腐食される現象を利用する方法。腐食面積とそこに到達する時間から水蒸気透過率を算出する。本発明においては、特許第3958235号に記載された方法および以下に示す条件にて評価を行った。
・本発明評価に用いたCa法
 蒸着装置:サンユー電子(株)製電子ビーム真空蒸着装置SVC-700LEB
 恒温恒湿器:エスペック(株)製恒温恒湿器LHL-113
 水分と反応して腐食する金属:カルシウム(粒状)
 Ca封止用水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 封止材:パラフィン(融点60~62℃)/蜜蝋(融点61~65℃)を重量比1:1の混合物
 観察装置:(株)三ツワフロンテック製カルシウム腐食観察装置MFB-1000
<Measurement of water vapor transmission rate (WVTR)>
The method for measuring the water vapor transmission rate is not particularly limited, but in the present invention, evaluation was performed by the method described in ISO 15106-3 or the Ca corrosion method described below.
Measurement method 1 (ISO 15106-3 method)
Evaluation apparatus: Illinois water vapor permeability measuring apparatus Model 7002
Temperature and humidity: 40 ° C, 90% RH
・ Measurement method 2 (Ca corrosion method)
When the measurement method 1 was below the measurement limit, the measurement was performed by the following method. A method that utilizes the phenomenon that metal calcium is vapor-deposited on one side of a gas barrier film laminate, Ca is sealed with Al and wax, and the metal Ca is corroded by moisture that has passed through the film. The water vapor transmission rate is calculated from the corrosion area and the time to reach the corrosion area. In the present invention, the evaluation was performed by the method described in Japanese Patent No. 3958235 and the following conditions.
-Ca method used for evaluation of the present invention Vapor deposition apparatus: Electron beam vacuum deposition apparatus SVC-700LEB manufactured by Sanyu Electronics Co., Ltd.
Constant temperature and humidity chamber: Espec Co., Ltd. constant temperature and humidity chamber LHL-113
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal for Ca sealing: Aluminum (φ3-5mm, granular)
Sealing material: mixture of paraffin (melting point 60-62 ° C) / beeswax (melting point 61-65 ° C) in a weight ratio of 1: 1 Observation device: Calcium corrosion observation device MFB-1000 manufactured by Mitsuwa Frontec Co., Ltd.
<実施例1>
・基材
 基材として、両面に易接着加工された厚さ125μm、幅550mmのロール状に巻き取られたポリエチレンテレフタレート(PET)フィルム(東洋紡株式会社製、商品名「コスモシャインA4300」)を用いた。
<Example 1>
-Base material As the base material, use is made of polyethylene terephthalate (PET) film (trade name "COSMO SHINE A4300", manufactured by Toyobo Co., Ltd.) wound in a roll shape with a thickness of 125 μm and a width of 550 mm that is easily bonded on both sides. It was.
・光硬化性樹脂組成物の塗布液の調製
 ユニディックV-4000BA(商品名、ウレタンアクリレート/酢酸ブチル=75~85重量部/15~25重量部の混合物、DIC株式会社製UV硬化性樹脂) 36重量部
 酢酸ブチル(和光純薬製 溶剤) 63重量部
 IC184(商品名、BASF社製 光重合開始剤) 1重量部
を調製した。
-Preparation of coating solution of photo-curable resin composition Unidic V-4000BA (trade name, urethane acrylate / butyl acetate = 75 to 85 parts by weight / 15 to 25 parts by weight, DIC Corporation UV curable resin) 36 parts by weight butyl acetate (solvent manufactured by Wako Pure Chemical Industries) 63 parts by weight IC184 (trade name, photopolymerization initiator manufactured by BASF) 1 part by weight was prepared.
・有機膜層の形成
 ロール・ツー・ロール式グラビアコーターを用いて、上記基材上に、上記塗布液を乾燥後の平均膜厚が5μmになるように塗布した後、温度85℃、風量20m/秒、乾燥炉内滞留時間50秒で乾燥した。その後、窒素雰囲気下で高圧水銀ランプを用いて、照射量300mJ/cmで光硬化を行い、有機膜層を形成した。
-Formation of an organic film layer Using a roll-to-roll gravure coater, the coating solution was applied on the substrate so that the average film thickness after drying was 5 µm, and then the temperature was 85 ° C and the air volume was 20 m. / Sec., Drying time in the drying furnace was 50 seconds. Thereafter, photocuring was performed at a dose of 300 mJ / cm 2 using a high-pressure mercury lamp in a nitrogen atmosphere to form an organic film layer.
・ガスバリア膜層の形成
 前記、有機膜層を処理した基材の表面に、ロール・ツー・ロールで成膜可能な(株)神戸製鋼所製プラズマCVD装置(型番W35型)PE-CVDを用いて、ガスバリア膜層を形成した。
 以下に示す条件にて、放電電極間にプラズマを発生させ、この放電領域に、成膜ガス(原料ガスとしてのHMDSOと反応ガスとしての酸素ガス(放電ガスとしても機能する)の混合ガス)を供給して、特開2012-81632記載の方法にてプラズマCVD法による薄膜形成を行い、表1に示す厚みのガスバリア膜層を有するガスバリアフィルム積層体を得た。
 原料ガス:HMDSO(アズマックス株式会社製 商品名「SIH6115.0」)
 反応ガス:酸素ガス(鈴木商館株式会社製 高純度酸素、純度≧99.999%)
・ Formation of gas barrier film layer Using the plasma CVD apparatus (model number W35 type) PE-CVD manufactured by Kobe Steel Co., Ltd., capable of forming a film roll-to-roll on the surface of the base material treated with the organic film layer. Thus, a gas barrier film layer was formed.
Under the conditions shown below, plasma is generated between the discharge electrodes, and a film forming gas (mixed gas of HMDSO as a source gas and oxygen gas (which also functions as a discharge gas) as a reaction gas) is formed in this discharge region. Then, a thin film was formed by plasma CVD using the method described in JP 2012-81632 A, and a gas barrier film laminate having a gas barrier film layer having the thickness shown in Table 1 was obtained.
Source gas: HMDSO (trade name “SIH6115.0” manufactured by Asmax Co., Ltd.)
Reaction gas: oxygen gas (manufactured by Suzuki Shokan Co., Ltd., high-purity oxygen, purity ≧ 99.999%)
<実施例2>
・光硬化性樹脂組成物の塗布液の調製
 ユニディックV-6841(商品名、(メタ)アクリル酸エステルポリマー/アクリレートモノマー/メチルイソブチルケトン=25~35重量部/25~35重量部/35~45重量部の混合物、DIC株式会社製 UV硬化型コーティング剤) 55重量部
 メチルイソブチルケトン(和光純薬製 溶剤) 43重量部
 IC184(商品名、BASF社製 光重合開始剤) 2重量部
を調製した。
 光硬化性樹脂組成物の塗布液の調製以外は、実施例1と同様にしてガスバリアフィルム積層体を作成した。
<Example 2>
Preparation of coating solution for photocurable resin composition Unidic V-6841 (trade name, (meth) acrylate polymer / acrylate monomer / methyl isobutyl ketone = 25 to 35 parts by weight / 25 to 35 parts by weight / 35 to 45 parts by weight of mixture, DIC Corporation UV curable coating agent) 55 parts by weight Methyl isobutyl ketone (solvent made by Wako Pure Chemical Industries) 43 parts by weight IC184 (trade name, photopolymerization initiator manufactured by BASF) 2 parts by weight did.
A gas barrier film laminate was prepared in the same manner as in Example 1 except that the coating liquid for the photocurable resin composition was prepared.
<実施例3>
 プラズマCVDによるガスバリア膜層を表1に示す厚みになるよう処理した以外は、実施例2と同様にしてガスバリアフィルム積層体を作成した。
<Example 3>
A gas barrier film laminate was prepared in the same manner as in Example 2 except that the gas barrier film layer formed by plasma CVD was processed to have the thickness shown in Table 1.
<実施例4>
 グラビアコーターによる有機膜層を乾燥後の厚みが表1に示すように処理した以外は、実施例2と同様にしてガスバリアフィルム積層体を作成した。
<Example 4>
A gas barrier film laminate was prepared in the same manner as in Example 2 except that the organic film layer by the gravure coater was processed so that the thickness after drying was as shown in Table 1.
<実施例5>
 基材として、厚さ125μm、幅550mmのロール状に巻き取られたポリエチレンナフタレート(PEN)フィルム(帝人デュポンフィルム株式会社製、商品名「テオネックスQ65FA」)を用いた以外は、実施例2と同様にしてガスバリアフィルム積層体を作成した。
<Example 5>
Example 2 except that a polyethylene naphthalate (PEN) film (trade name “Teonex Q65FA” manufactured by Teijin DuPont Films Ltd.) wound in a roll shape with a thickness of 125 μm and a width of 550 mm was used as the substrate. Similarly, a gas barrier film laminate was prepared.
<比較例1>
 光硬化性樹脂組成物を塗布しなかったこと以外は、実施例1と同様にしてガスバリアフィルム積層体を作製した。
<Comparative Example 1>
A gas barrier film laminate was produced in the same manner as in Example 1 except that the photocurable resin composition was not applied.
<比較例2>
・光硬化性樹脂組成物の塗布液の調製
 PMMA(ポリメチルメタクリレート/トルエン/メチルエチルケトン=9~11重量部/40~50重量部/40~50重量部の混合物 株式会社三和研究所製 商品名「ATOM BOND MA-830-M50」 熱硬化型コーティング剤) 60重量部
 メチルエチルケトン(和光純薬製 溶剤) 20重量部
 トルエン(和光純薬製 溶剤) 20重量部
 光硬化性樹脂組成物の塗布液の調製、および塗布後の乾燥温度を110℃にしたこと、および高圧水銀ランプの照射(光硬化)を行わなかったこと以外は、実施例1と同様にしてガスバリアフィルム積層体を作成した。
 得られたガスバリア膜積層体は、ガスバリア膜層と有機膜層との密着性が悪く、層間で剥離が生じた。
<Comparative example 2>
・ Preparation of coating solution for photocurable resin composition PMMA (Polymethylmethacrylate / Toluene / Methylethylketone = 9-11 parts by weight / 40-50 parts by weight / 40-50 parts by weight) "ATOM BOND MA-830-M50" Thermosetting coating agent) 60 parts by weight Methyl ethyl ketone (Wako Pure Chemicals solvent) 20 parts by weight Toluene (Wako Pure Chemicals solvent) 20 parts by weight Photo-curable resin composition coating solution A gas barrier film laminate was prepared in the same manner as in Example 1 except that the drying temperature after preparation and application was 110 ° C., and that irradiation (photocuring) of a high-pressure mercury lamp was not performed.
The obtained gas barrier film laminate had poor adhesion between the gas barrier film layer and the organic film layer, and peeling occurred between the layers.
<比較例3>・ガスバリア膜層の厚みが薄い場合
 プラズマCVDによるガスバリア膜層を表2に示す厚みになるよう処理した以外は、実施例2と同様にしてガスバリアフィルム積層体を作成した。
<Comparative example 3>-When the thickness of a gas barrier film layer is thin Except having processed the gas barrier film layer by plasma CVD so that it might become thickness shown in Table 2, the gas barrier film laminated body was created like Example 2. FIG.
<比較例4>・ガスバリア膜層の厚みが厚い場合
 プラズマCVDによるガスバリア膜層を表2に示す厚みになるよう処理した以外は、実施例2と同様にしてガスバリアフィルム積層体を作成した。
 成膜後、ロール状態からサンプリングの際にガスバリア膜層のひび割れが確認された。
<Comparative example 4> When the thickness of the gas barrier film layer is thick A gas barrier film laminate was prepared in the same manner as in Example 2 except that the gas barrier film layer formed by plasma CVD was processed to have the thickness shown in Table 2.
After film formation, cracking of the gas barrier film layer was confirmed during sampling from the roll state.
<比較例5>・有機膜層の厚みが薄い場合
 グラビアコーターによる有機膜層を乾燥後の厚みが表2に示すように処理した以外は、実施例2と同様にしてガスバリアフィルム積層体を作成した。
<Comparative Example 5> When the thickness of the organic film layer is thin A gas barrier film laminate is prepared in the same manner as in Example 2 except that the organic film layer by the gravure coater is processed as shown in Table 2 after the thickness is dried. did.
<比較例6>・有機膜層の厚みが厚い場合
 グラビアコーターによる有機膜層を乾燥後の厚みが表2に示すように処理した以外は、実施例2と同様にしてガスバリアフィルム積層体を作成した。
<Comparative Example 6> When the thickness of the organic film layer is thick A gas barrier film laminate is prepared in the same manner as in Example 2 except that the organic film layer by the gravure coater is processed as shown in Table 2 after the thickness is dried. did.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、本発明のガスバリアフィルム積層体はカールが低減されると共に、高いバリア性を有することが分かる。 As is clear from Table 1, it can be seen that the gas barrier film laminate of the present invention has high barrier properties while curling is reduced.
 本発明は、主にOLED素子、OPV素子、液晶素子等を有する電子部品に用いられるガスバリアフィルム積層体、および該ガスバリアフィルム積層体を備える電子部品に関する。 The present invention mainly relates to a gas barrier film laminate used for an electronic component having an OLED element, an OPV element, a liquid crystal element, and the like, and an electronic component including the gas barrier film laminate.
 本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ限度で、ここで参照して組み込む。 All publications, including publications, patent applications and patents cited herein are specifically incorporated by reference with reference to each reference individually, and the entire contents thereof are described herein. To the same extent, reference here is incorporated.
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞および同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限定しない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、本発明の実施に不可欠である、請求項に記載されていない要素を示すものとは解釈されないものとする。 The use of nouns and similar directives used in connection with the description of the invention (especially in connection with the claims below) is not specifically pointed out herein or clearly contradicted by context. , And construed to cover both singular and plural. The phrases “comprising”, “having”, “including” and “including” are to be interpreted as open-ended terms (ie, including but not limited to) unless otherwise specified. The use of numerical ranges in this specification is intended only to serve as a shorthand for referring individually to each value falling within that range, unless otherwise indicated herein. Each value is incorporated into the specification as if it were individually listed herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. Any examples or exemplary phrases used herein (eg, “etc.”) are intended only to better describe the invention, unless otherwise stated, and to limit the scope of the invention. is not. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読んだ上で、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを期待しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組み合わせも本発明に包含される。 In this specification, preferred embodiments of the present invention are described, including the best mode known to the inventors for carrying out the invention. Variations of these preferred embodiments will become apparent to those skilled in the art after reading the above description. The present inventor expects skilled workers to apply such modifications as appropriate, and intends to implement the present invention in a manner other than that specifically described herein. . Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
10  ガスバリアフィルム積層体
11  樹脂フィルム
12  有機膜層
13  ガスバリア膜層
21  ガラス基板
22  OLED素子
23  固体封止材
25  接着剤
26  ゲッター
27  Nガス
28  ガラス封止材
31  送り出しロール
32  巻き取りロール
33  ローラ
10 Gas barrier film laminate 11 resin film 12 organic film layer 13 barrier layer 21 of glass substrate 22 OLED element 23 solid sealing material 25 adhesive 26 getter 27 N 2 gas 28 glass sealing material 31 feed roll 32 winding roll 33 roller

Claims (14)

  1.  基材となる樹脂フィルムと;
     前記樹脂フィルムの少なくとも片面に、少なくとも一つの有機膜層と少なくとも一つのガスバリア膜層を備え;
     前記ガスバリア膜層が、プラズマCVD法により製膜された、金属酸化物を主成分とする、有機成分を含有する膜である、
     ガスバリアフィルム積層体。
    A resin film as a substrate;
    Comprising at least one organic film layer and at least one gas barrier film layer on at least one surface of the resin film;
    The gas barrier film layer is a film formed by a plasma CVD method, containing a metal oxide as a main component and containing an organic component.
    Gas barrier film laminate.
  2.  前記有機膜層が、光硬化性樹脂組成物を光重合させて得られた膜である、
     請求項1に記載のガスバリアフィルム積層体。
    The organic film layer is a film obtained by photopolymerizing a photocurable resin composition.
    The gas barrier film laminate according to claim 1.
  3.  前記光硬化性樹脂組成物が、アクリル系樹脂を含む組成物である、
     請求項2に記載のガスバリアフィルム積層体。
    The photocurable resin composition is a composition containing an acrylic resin.
    The gas barrier film laminate according to claim 2.
  4.  前記有機膜層が、塗布法により積層された、
     請求項1~3のいずれか1項に記載のガスバリアフィルム積層体。
    The organic film layer was laminated by a coating method,
    The gas barrier film laminate according to any one of claims 1 to 3.
  5.  前記プラズマCVD法が、ロール・ツー・ロール方式で行われた、
     請求項1~4のいずれか1項に記載のガスバリアフィルム積層体。
    The plasma CVD method was performed in a roll-to-roll manner,
    The gas barrier film laminate according to any one of claims 1 to 4.
  6.  前記有機膜層の厚みが、1~20μmである、
     請求項1~5のいずれか1項に記載のガスバリアフィルム積層体。
    The organic film layer has a thickness of 1 to 20 μm.
    The gas barrier film laminate according to any one of claims 1 to 5.
  7.  前記ガスバリア膜層の厚みが、0.2~2μmである、
     請求項1~6のいずれか1項に記載のガスバリアフィルム積層体。
    The gas barrier film layer has a thickness of 0.2 to 2 μm.
    The gas barrier film laminate according to any one of claims 1 to 6.
  8.  前記ガスバリア膜層を、前記樹脂フィルムの片面側にのみ備える、
     請求項1~7のいずれか1項に記載のガスバリアフィルム積層体。
    The gas barrier film layer is provided only on one side of the resin film,
    The gas barrier film laminate according to any one of claims 1 to 7.
  9.  前記樹脂フィルムと、前記有機膜層と、前記ガスバリア膜層の3層からなり、カール高さが15mm以下である、
     請求項1~8のいずれか1項に記載のガスバリアフィルム積層体。
    It consists of three layers of the resin film, the organic film layer, and the gas barrier film layer, and the curl height is 15 mm or less.
    The gas barrier film laminate according to any one of claims 1 to 8.
  10.  前記有機膜層を前記樹脂フィルムと前記ガスバリア膜層との間に備える、
     請求項1~9のいずれか1項に記載のガスバリアフィルム積層体。
    The organic film layer is provided between the resin film and the gas barrier film layer,
    The gas barrier film laminate according to any one of claims 1 to 9.
  11.  40℃、90%RHにおける水蒸気透過率が、0.005g/m/d以下である、
     請求項1~10のいずれか1項に記載のガスバリアフィルム積層体。
    The water vapor transmission rate at 40 ° C. and 90% RH is 0.005 g / m 2 / d or less,
    The gas barrier film laminate according to any one of claims 1 to 10.
  12.  前記樹脂フィルムが、ポリエチレンレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリカーボネート、ポリイミド、またはこれらの混合物である樹脂を主成分としたフィルムである、
     請求項1~11のいずれか1項に記載のガスバリアフィルム積層体。
    The resin film is a film mainly composed of a resin that is polyethylene phthalate, polyethylene naphthalate, cycloolefin polymer, polycarbonate, polyimide, or a mixture thereof.
    The gas barrier film laminate according to any one of claims 1 to 11.
  13.  正負電極と、前記正負電極に挟まれた有機材料とを有する電子素子と;
     前記電子素子を水蒸気から保護する、請求項1~12のいずれか1項に記載のガスバリアフィルム積層体とを備える;
     電子部品。
    An electronic device having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes;
    The gas barrier film laminate according to any one of claims 1 to 12, which protects the electronic device from water vapor;
    Electronic components.
  14.  前記ガスバリアフィルム積層体が、透明であり、
     前記電子素子が、OLED素子またはOPV素子である、
     請求項13に記載の電子部品。
     
    The gas barrier film laminate is transparent,
    The electronic element is an OLED element or an OPV element;
    The electronic component according to claim 13.
PCT/JP2014/072573 2013-09-03 2014-08-28 Gas barrier film laminate and electronic component using same WO2015033850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013182610A JP6409258B2 (en) 2013-09-03 2013-09-03 Gas barrier film laminate and electronic component using the same
JP2013-182610 2013-09-03

Publications (1)

Publication Number Publication Date
WO2015033850A1 true WO2015033850A1 (en) 2015-03-12

Family

ID=52628325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072573 WO2015033850A1 (en) 2013-09-03 2014-08-28 Gas barrier film laminate and electronic component using same

Country Status (3)

Country Link
JP (1) JP6409258B2 (en)
TW (1) TW201511944A (en)
WO (1) WO2015033850A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319613B2 (en) 2020-08-18 2022-05-03 Enviro Metals, LLC Metal refinement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201941962A (en) * 2018-03-27 2019-11-01 日商住友化學股份有限公司 Laminate film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044231A (en) * 2004-06-28 2006-02-16 Dainippon Printing Co Ltd Gas barrier film, substrate for display using the same and display
JP2008235165A (en) * 2007-03-23 2008-10-02 Konica Minolta Holdings Inc Method of manufacturing roll-like resin film having transparent conductive film
JP2011116124A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Method for manufacturing laminated film
JP2012097354A (en) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd Method for producing laminate
WO2012067186A1 (en) * 2010-11-19 2012-05-24 コニカミノルタホールディングス株式会社 Manufacturing method for gas barrier film, and gas barrier film
JP2013086445A (en) * 2011-10-21 2013-05-13 Konica Minolta Advanced Layers Inc Gas barrier film, method of manufacturing gas barrier film, and electronic device with gas barrier film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003232920A (en) * 2002-02-07 2003-08-22 Konica Corp Optical film and method for manufacturing the same
JP2012084306A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Organic el device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044231A (en) * 2004-06-28 2006-02-16 Dainippon Printing Co Ltd Gas barrier film, substrate for display using the same and display
JP2008235165A (en) * 2007-03-23 2008-10-02 Konica Minolta Holdings Inc Method of manufacturing roll-like resin film having transparent conductive film
JP2011116124A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Method for manufacturing laminated film
JP2012097354A (en) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd Method for producing laminate
WO2012067186A1 (en) * 2010-11-19 2012-05-24 コニカミノルタホールディングス株式会社 Manufacturing method for gas barrier film, and gas barrier film
JP2013086445A (en) * 2011-10-21 2013-05-13 Konica Minolta Advanced Layers Inc Gas barrier film, method of manufacturing gas barrier film, and electronic device with gas barrier film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319613B2 (en) 2020-08-18 2022-05-03 Enviro Metals, LLC Metal refinement
US11578386B2 (en) 2020-08-18 2023-02-14 Enviro Metals, LLC Metal refinement

Also Published As

Publication number Publication date
TW201511944A (en) 2015-04-01
JP2015047823A (en) 2015-03-16
JP6409258B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
KR101495482B1 (en) Gas barrier film and method for producing same
JP4589128B2 (en) Gas barrier film that prevents bending
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
KR102255614B1 (en) Gas barrier film
JP2014151571A (en) Gas barrier film, production method of the same and electronic device including the gas barrier film
JP6424671B2 (en) Gas barrier film laminate and electronic component using the same
TWI624363B (en) Laminated body, manufacturing method thereof, member for electronic device, and electronic device
WO2015060394A1 (en) Gas barrier film
JP5983454B2 (en) Gas barrier film
WO2016043141A1 (en) Gas barrier film
WO2015190572A1 (en) Gas barrier film laminate and electronic component employing same
JP6409258B2 (en) Gas barrier film laminate and electronic component using the same
WO2014103756A1 (en) Gas-barrier film
JP2014141055A (en) Gas barrier film
WO2015115510A1 (en) Gas-barrier film and method for manufacturing same
WO2015083706A1 (en) Gas barrier film and method for producing same
WO2014097997A1 (en) Electronic device
JP5874975B2 (en) Gas barrier film
JP5895855B2 (en) Method for producing gas barrier film
KR102355268B1 (en) Gas barrier film
WO2014125877A1 (en) Gas barrier film
JP6354302B2 (en) Gas barrier film
JPWO2015053189A1 (en) Gas barrier film and method for producing the same
WO2015029732A1 (en) Gas barrier film and process for manufacturing gas barrier film
JP2015168238A (en) Method of producing composite laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841641

Country of ref document: EP

Kind code of ref document: A1