WO2015033522A1 - Strain sensor - Google Patents

Strain sensor Download PDF

Info

Publication number
WO2015033522A1
WO2015033522A1 PCT/JP2014/004251 JP2014004251W WO2015033522A1 WO 2015033522 A1 WO2015033522 A1 WO 2015033522A1 JP 2014004251 W JP2014004251 W JP 2014004251W WO 2015033522 A1 WO2015033522 A1 WO 2015033522A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
vibrating beam
strain sensor
vibrating
sensor according
Prior art date
Application number
PCT/JP2014/004251
Other languages
French (fr)
Japanese (ja)
Inventor
佳光 池山
中西 努
昌也 競
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015033522A1 publication Critical patent/WO2015033522A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/30Measuring arrangements characterised by the use of mechanical techniques for measuring the deformation in a solid, e.g. mechanical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/10Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements

Definitions

  • the present invention relates to a strain sensor that detects strain and load acting on an object.
  • sensors that detect strain, load, and pressure acting on an object are used for various control devices, home appliances, information devices, automobile engines, suspension control, and the like.
  • a conventional pressure sensor includes a pressure sensor element including a piezoelectric vibration piece in a bending vibration mode and a pressure receiving member such as a diaphragm for receiving pressure from the outside, and the pressure sensor element is disposed at both ends in the longitudinal direction of the piezoelectric vibration piece.
  • a pressure sensor element including a piezoelectric vibration piece in a bending vibration mode and a pressure receiving member such as a diaphragm for receiving pressure from the outside
  • the pressure sensor element is disposed at both ends in the longitudinal direction of the piezoelectric vibration piece.
  • Patent Document 1 In the pressure sensor supported by the base end, vibration leakage to the outside of the piezoelectric vibrating piece is suppressed.
  • a strain sensor includes a support substrate having a fixed portion, a vibrating beam connected to the fixed portion, a first arm and a second arm connected to the vibrating beam, and a first arm in the first arm. One end is connected to the first surface of the vibrating beam, the first arm is spaced from the support substrate, the first end of the second arm is connected to the second surface of the vibrating beam, The second arm is separated from the support substrate.
  • the vibrating beam has the first arm and the second arm that are separated from the support substrate, productivity can be improved by adopting a simple configuration. Moreover, vibration leakage can be reduced.
  • Top view of the strain sensor of the first embodiment A-A 'sectional view of the strain sensor shown in FIG. 1A B-B 'sectional view of the strain sensor shown in FIG. 1A
  • Top view of the strain sensor of the second embodiment A-A 'sectional view of the strain sensor shown in FIG. 3A B-B 'sectional view of the strain sensor shown in FIG. 3A
  • Top view of strain sensor of embodiment 3 A-A 'sectional view of the strain sensor shown in FIG. 5A B-B 'sectional view of the strain sensor shown in FIG.
  • FIG. 5A Top view of strain sensor of embodiment 4 A-A 'sectional view of the strain sensor shown in FIG. 6A B-B 'sectional view of the strain sensor shown in FIG. 6A
  • Top view of strain sensor of embodiment 5 A-A 'sectional view of the strain sensor shown in FIG. 7A B-B 'sectional view of the strain sensor shown in FIG. 7A
  • Top view of the strain sensor according to the sixth embodiment A-A 'sectional view of the strain sensor shown in FIG. 8A B-B 'sectional view of the strain sensor shown in FIG. 8A C-C 'sectional view of the strain sensor shown in FIG. 8A
  • FIGS. 1A to 1C are diagrams showing a strain sensor 31 according to the first embodiment.
  • the strain sensor 31 is formed by etching a semiconductor substrate such as silicon and the like, and includes fixed portions 33a and 33b connected to the support substrate 32, and a vibrating beam 34 whose longitudinal ends are supported by the fixed portions 33a and 33b.
  • the first arm 36 having one end (first end) connected to one surface (first surface) 35 in the lateral direction of the vibrating beam 34 and the other side of the vibrating beam 34 in the lateral direction.
  • a second arm 38 having one end (first end) connected to the surface (second surface) 37 is provided.
  • the first arm 36 is perpendicular to the extending direction of the vibrating beam 34 and has a first portion connected to the vibrating beam 34, and the first arm 36 is parallel to the extending direction of the vibrating beam 34, A second portion connected to the first portion;
  • the second arm 38 has the same configuration as that of the first arm 36.
  • “Symmetry” includes “substantially symmetric” including a range of design errors. The same applies hereinafter.
  • the fixing portions 33a and 33b are provided at both ends of the vibrating beam 34.
  • the fixing portions 33a and 33b are not limited to this, and may be formed in a rectangular shape so as to surround the vibrating beam 34. May be.
  • a drive unit 40 is provided at the end of a surface 39 different from one surface (first surface) 35 and the other surface (second surface) 37 of the vibration beam 34, and a detection unit 41 is provided at the center. ing.
  • the drive part 40 and the detection part 41 are arrange
  • the drive part 40 is arrange
  • the drive unit 40 is disposed between a first connection point where the first arm 36 and the vibrating beam 34 are connected and a second connection point where the second arm 38 and the vibrating beam 34 are connected.
  • the drive unit 40 is provided on a lower electrode formed of a metal material such as platinum, a piezoelectric layer provided on the lower electrode and formed of a piezoelectric material such as lead zirconate titanate, and the piezoelectric layer.
  • the upper electrode is made of a metal material such as gold.
  • the detection unit 41 includes a lower electrode formed of a metal material such as platinum, a piezoelectric layer provided on the lower electrode and formed of a piezoelectric material such as lead zirconate titanate,
  • the upper electrode is provided on the body layer and is formed of a metal material such as gold.
  • the strain When strain is generated by an external force applied to the support substrate 32 provided with the strain sensor 31, the strain is transmitted to the vibrating beam 34 through the fixing portions 33a and 33b.
  • a tensile force F is applied to the support substrate 32 in the direction in which the vibrating beam 34 expands and contracts, the stretching force acts on the vibrating beam 34 to develop a stress stiffening effect and the vibrating beam 34 is cured.
  • the vibration frequency of the sensor 31 increases from f to f + ⁇ f. In this way, by measuring the output natural frequency difference ⁇ f, the strain and load acting on the support substrate 32 can be measured with high sensitivity.
  • a compressive force ⁇ F in the longitudinal direction of the vibrating beam 34 is applied to the support substrate 32, a stress stiffening effect that softens the vibrating beam 34 appears in contrast to when a tensile force is applied.
  • the vibration frequency of the sensor 31 decreases from f to f ⁇ f.
  • the strain sensor 31 configured as described above measures a strain generated by an external force applied to the support substrate 32 while applying a voltage to the drive unit 40 and vibrating the vibrating beam 34. For this reason, although the vibration of the vibrating beam 34 leaks from the connecting portion between the vibrating beam 34 and the fixing portions 33a and 33b to the support substrate 32 via the fixing portions 33a and 33b, the detection accuracy is lowered.
  • the first arm 36 and the second arm 38 are provided on the vibration beam 34, whereby vibration leakage to the support substrate 32 can be reduced.
  • FIG. 2 shows the movement of the first arm 36 and the second arm 38 when the vibrating beam 34 is vibrating.
  • the first arm 36 and the second arm 38 are arranged on the concave side of the bending of the vibrating beam 34 which is curved by vibrating according to the vibration of the vibrating beam 34.
  • the arm 38 swings. As shown in FIG. 2, when the vibrating beam 34 is displaced upward, the first arm 36 and the second arm 38 are displaced downward, and when the vibrating beam 34 is displaced downward, the first arm 36 is displaced.
  • the second arm 38 is displaced upward, and the first arm 36 and the second arm 38 vibrate in an opposite phase to the vibration direction of the vibrating beam 34.
  • the vibration of the vibrating beam 34 and the vibrations of the first arm 36 and the second arm 38 cancel each other, so that the vibration of the vibrating beam 34 is not transmitted to the fixed portions 33a and 33b, but is transmitted to the fixed portions 33a and 33b. Vibration leakage can be reduced.
  • the first arm 36 and the second arm 38 are provided in a direction substantially orthogonal to the longitudinal direction of the vibrating beam 34 without bending the central portion of the vibrating beam 34.
  • the effects of the first embodiment can be obtained if the first arm 36 and the second arm 38 vibrate with a component opposite to the direction of movement of the vibrating beam 34.
  • the amplitude of the vibrating beam 34 is maximum at the central portion, and the amplitude becomes smaller as it is closer to the connecting portion to the fixing portions 33a and 33b. Therefore, when the first arm 36 and the second arm 38 are provided at the central portion, Large energy is required to vibrate the first arm 36 and the second arm 38.
  • the first arm 36 and the second arm 38 can be vibrated with less energy by providing the first arm 36 and the second arm 38 in the vicinity of the connecting portion having a small amplitude of the vibrating beam 34. Further, since the first arm 36 and the second arm 38 can be bent, the size can be reduced.
  • a weight may be provided at the other end of the first arm 36 and the second arm 38 of the first embodiment that are not connected to the vibrating beam 34.
  • the same reference numerals as those in the first embodiment may be attached to the same structures as those in the first embodiment. In the following description, differences from the first embodiment will be mainly described.
  • the strain sensor according to the second embodiment is different from the first embodiment in that the third arm and the fourth arm are further provided on the vibrating beam 34.
  • the strain sensor 51 is formed by etching a semiconductor substrate such as silicon, and has a rectangular fixed portion 53 connected to the support substrate 32, a vibrating beam 34 supported at both ends by the fixed portion 53, and the vibrating beam 34.
  • the first arm 36 is connected to one surface (first surface) 35 of the first, and the second arm 38 is connected to the other surface (second surface) 37 of the vibrating beam.
  • a third arm 54 and a fourth arm 55 are provided on the opposite side of the vibrating beam 34 from the side where the first arm 36 and the second arm 38 are provided.
  • the third arm 54 and the fourth arm 55 are separated from the support substrate 32, and the end not connected to the vibrating beam 34 is a free end. It has become.
  • the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 are preferably separated from the fixing portion 53.
  • the fixing portion 53 has a first part connected to both ends of the vibrating beam 34 and a second part parallel to the extending direction of the vibrating beam 34. The second part is connected to the first part via the slit.
  • the arm 36 and the second arm 38 are preferably located outside. The distance between the free end of the first arm 36 and the free end of the third arm 54 is the same as the distance between the free end of the second arm 38 and the free end of the fourth arm 55.
  • first arm 36 and the fourth arm 55 are arranged so as to be point-symmetric with respect to the center of the vibrating beam 34, and the second arm 38 and the third arm 54 are set with respect to the center of the vibrating beam 34. Are preferably arranged so as to be point-symmetric.
  • the first arm 36, the third arm 54, the second arm 38, and the fourth arm 55 are preferably arranged so as to be line symmetric with respect to the extending direction of the vibrating beam 34.
  • the vibration leakage is reduced by providing the first arm 36 and the second arm 38, but the strain sensor 51 of the second embodiment has a configuration as shown in FIGS. 3A to 3C.
  • the strain sensor 51 of the second embodiment has a configuration as shown in FIGS. 3A to 3C.
  • the third arm 54 and the fourth arm 55 vibration leakage is further reduced.
  • FIGS. 3A to 3C by providing the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 in the vicinity of both ends of the vibrating beam 34, both ends of the vibrating beam 34 are provided. Since the arm is provided, vibration leakage from both ends of the vibration beam 34 to the fixed portion 53 can be reduced.
  • vibration leakage to the fixed portion 53 is free from the bent portions of the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 with respect to the vibration beam 34.
  • the length L to the other end, which is the end, was changed with respect to the length of the vibrating beam 34, and evaluation was performed using a dynamic analysis (for example, modal analysis) of the finite element method.
  • the arm length L when the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 are not provided is set to 0, and vibration leakage to the fixed portion is reduced to L.
  • the length L of the arm is about 22% of the length of the vibrating beam 34.
  • the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 provide the leakage vibration from the vibrating beam 34 to the fixed portion 53.
  • the reduction effect could be confirmed.
  • the leakage vibration is 0.25, and when the arm length L is about 28%, the leakage vibration is 0.21, which is particularly effective. The effect was greatest when L was about 26%, and vibration leakage to the fixed portion 53 was 0.01 or less. Further, the leakage vibration is about 0.39 when the length L is about 30%.
  • the length L of the arm is preferably about 20% or more and about 30% or less of the length of the vibrating beam 34. Furthermore, the length L of the arm is preferably not less than about 24% and not more than about 28% of the length of the vibrating beam 34.
  • the vibration beam The balance in the longitudinal direction of 34 is improved. If the balance of the weight in the longitudinal direction of the vibrating beam 34 is poor, the vibrating beam 34 vibrates in the rotational direction in addition to the vertical vibration, so that the detection accuracy of the strain sensor 51 is reduced. The vibration leakage can be reduced without lowering.
  • the same structure as that of the first and second embodiments may be denoted by the same reference numerals as those of the first and second embodiments. In the following, differences from the first embodiment and the second embodiment will be mainly described.
  • the strain sensor 61 according to the third embodiment is different from the first embodiment in that both ends of the first arm and the second arm are connected to the vibrating beam.
  • the strain sensor 61 is formed by etching a semiconductor substrate such as silicon, and includes a rectangular fixed portion 53 connected to the support substrate 32, a vibrating beam 34 supported at both ends by the fixed portion 53, and the vibrating beam 34. It has a first arm 66 connected to one surface (first surface) 35 and a second arm 68 connected to the other surface (second surface) 37 of the vibrating beam. The first arm 66 and the second arm 68 are respectively connected to the vibrating beam 34 at both ends, and the central portion is separated from the support substrate 32 and the vibrating beam 34.
  • the third embodiment is different from the first and second embodiments in that both ends are connected to the vibrating beam 34, and therefore both ends of the first arm 66 and the second arm 68 are fixed ends.
  • the strain sensor 61 When the strain is applied to the support substrate 32, the strain sensor 61 expands and contracts in the longitudinal direction, so that the vibration frequency f of the vibration beam 34 changes to f ⁇ ⁇ f. The magnitude of distortion applied to the is detected.
  • the strain sensor 61 according to the third embodiment has both ends connected to the vibrating beam 34. Therefore, strain is applied to the support substrate 32, the vibrating beam 34 expands and contracts, and the natural frequency changes. In this case, both the first arm 66 and the second arm 68 extend and contract in the longitudinal direction of the vibrating beam 34 in the same manner as the vibrating beam 34.
  • the natural frequencies of the first arm 66 and the second arm 68 are designed in accordance with the natural frequency of the vibrating beam 34, the amplitude decreases when the natural frequency deviates greatly from this natural frequency, and the effect of reducing the leakage vibration is obtained. Although it becomes smaller, the natural frequency also changes in the same manner as that of the vibrating beam 34 as the first arm 66 and the second arm 68 expand and contract in the same manner as the vibrating beam 34. For this reason, even when a large strain is applied to the support substrate 32 and the natural frequency of the vibrating beam 34 changes greatly, the amplitude of the first arm 66 and the second arm 68 is not reduced, and the leakage vibration reducing effect is obtained. Obtainable.
  • the same structure as in the first to third embodiments may be assigned the same reference numeral as in the first to third embodiments.
  • parts different from the first to third embodiments will be mainly described.
  • the strain sensor according to the fourth embodiment is different from the first embodiment in that one end (first end) of the vibrating beam 34 is connected to the fixed portion 53 via a slit 75 at a plurality of locations. 3 and different.
  • the strain sensor 61 is formed by etching a semiconductor substrate such as silicon, and both ends of the first arm 66 and the second arm 68 are connected to the side surface of the vibrating beam 34.
  • the first arm 66 and the second arm 68 have the same thickness over the entire length, and are separated from the vibrating beam 34 through the slit 75.
  • one end (first end) of the vibrating beam 34 is connected to the fixed portion 53 through a slit 75 at a plurality of locations. More specifically, since both ends of the vibrating beam 34 are connected to the fixing portion 53 via the slits 75, the end of the vibrating beam 34 is supported at two points. With this configuration, there is an effect that the amount of strain of the vibrating beam 34 can be increased and the sensitivity can be improved.
  • the drive unit 40 is disposed only on one end (first end) side of the first arm 66 and the second arm 68, but the drive unit 40 includes the first arm 66 and the second arm 68. 66 and the second arm 68 may be disposed at both ends.
  • the same reference numerals as those in the first to fourth embodiments may be attached to the same structures as those in the first to fourth embodiments. In the following, parts different from the first to fourth embodiments will be mainly described.
  • the strain sensor according to the fifth embodiment is different from the third embodiment in that both ends of the first arm and the second arm are connected to the side surface of the vibrating beam 34 and the fixing portion 53. Yes.
  • the strain sensor 71 is formed by etching a semiconductor substrate such as silicon, and both ends of the first arm 76 and the second arm 78 are connected to the side surface of the vibrating beam 34 and the fixing portion 53.
  • the first arm 76 and the second arm 78 have the same thickness over the entire length, and are separated from the vibrating beam 34 via the slit 75. With this configuration, there is an effect that the amount of strain of the vibrating beam 34, the first arm 76, and the second arm 78 can be increased, and the sensitivity can be improved.
  • the driving unit 40 is arranged at the center of the vibrating beam 34 and the detecting unit 41 is arranged at the end of the vibrating beam 34. Note that the lead-out wiring of the drive unit 40 may extend toward the fixed unit 53.
  • the drive unit 40 is disposed at the end of the first arm 76 and the detection unit 41 is disposed at the center of the first arm 76. Note that the lead-out wiring of the detection unit 41 may extend toward the fixed unit 53.
  • the drive unit 40 is disposed at the end of the second arm 78 and the detection unit 41 is disposed at the center of the second arm 78. Note that the lead-out wiring of the detection unit 41 may extend toward the fixed unit 53.
  • the arrangement relationship between the drive unit 40 and the detection unit 41 may be reversed. That is, the drive unit 40 is disposed at the end of the vibrating beam 34, the center of the first arm, and the center of the second arm, the detection unit 41 is disposed at the center of the vibrating beam 34, the end of the first arm, It may be arranged at the end of the two arms.
  • the same reference numerals as those of the first to fifth embodiments may be attached to the same structures as those of the first to fifth embodiments. In the following, parts different from the first to fifth embodiments will be mainly described.
  • the strain sensor according to the sixth embodiment has a structure in which a fixing portion 53 parallel to the first arm and the second arm is arranged side by side with the first arm and the second arm. This is different from the fifth embodiment.
  • the strain sensor 71 is formed by etching a semiconductor substrate such as silicon, and both ends of the first arm 76 and the second arm 78 are connected to the side surface of the vibrating beam 34 and the fixing portion 53. It is preferable that the first arm 76 and the second arm 78 have the same thickness over the entire length, and are separated from the vibrating beam 34 via the slit 75.
  • the fixing portion 53 parallel to the first arm 76 and the second arm 78 is arranged side by side with the first arm 76 and the second arm 78.
  • the fixing portion 53 is preferably disposed outside the first arm 76 and the second arm 78 through the slit 75.
  • the fixing portion parallel to the first arm 76 and the second arm 78 in terms of increasing the amount of strain of the vibrating beam 34 and improving the sensitivity.
  • the driving unit 40 is arranged at the center of the vibrating beam 34 and the detecting unit 41 is arranged at the end of the vibrating beam 34. Note that the lead-out wiring of the drive unit 40 may extend toward the fixed unit 53.
  • the drive unit 40 is disposed at the end of the first arm 76 and the detection unit 41 is disposed at the center of the first arm 76. Note that the lead-out wiring of the detection unit 41 may extend toward the fixed unit 53.
  • the drive unit 40 is disposed at the end of the second arm 78 and the detection unit 41 is disposed at the center of the second arm 78. Note that the lead-out wiring of the detection unit 41 may extend toward the fixed unit 53.
  • the arrangement relationship between the drive unit 40 and the detection unit 41 may be reversed. That is, the drive unit 40 is disposed at the end of the vibrating beam 34, the center of the first arm, and the center of the second arm, the detection unit 41 is disposed at the center of the vibrating beam 34, the end of the first arm, It may be arranged at the end of the two arms.
  • the strain sensor of the present invention reduces the leakage of vibration from the vibrating beam to the fixed part of the support substrate, and can detect the stress applied to the support substrate with high accuracy. It is useful for various control equipment, information equipment control, automobile engine control, suspension control, and the like.

Abstract

In the present invention, a first strain sensor has: a support substrate having a stationary section; an oscillating beam connected to the stationary section; and a first arm and second arm connected to the oscillating beam. The first end of the first arm is connected to the first surface of the oscillating beam, the first arm is separated from the support substrate, the first end of the second arm is connected to the second surface of the oscillating beam, and the second arm is separated from the support substrate. Also, a second strain sensor has: an oscillating beam; a stationary section connected to the oscillating beam; a first arm of which the first end is connected to the first surface of the oscillating beam and the second end is a free end; and a second arm of which the first end is connected to the second surface of the oscillating beam and the second end is a free end.

Description

歪センサStrain sensor
 本発明は、物体に働く歪や荷重を検出する歪センサに関する。 The present invention relates to a strain sensor that detects strain and load acting on an object.
 一般的に、各種制御機器や家電製品、情報機器、自動車エンジン、サスペンションの制御等に物体に働く歪や荷重、圧力を検出するセンサが用いられている。 Generally, sensors that detect strain, load, and pressure acting on an object are used for various control devices, home appliances, information devices, automobile engines, suspension control, and the like.
 従来の圧力センサは、屈曲振動モードの圧電振動片からなる圧力センサ素子と、外部から圧力等を受けるためのダイヤフラムのような受圧部材とを備え、圧力センサ素子を圧電振動片の長手方向両端の基端部で支持する圧力センサにおいて、圧電振動片の外部への振動漏れを抑制している(特許文献1)。他にも、特許文献2~5のような技術が開示されている。 A conventional pressure sensor includes a pressure sensor element including a piezoelectric vibration piece in a bending vibration mode and a pressure receiving member such as a diaphragm for receiving pressure from the outside, and the pressure sensor element is disposed at both ends in the longitudinal direction of the piezoelectric vibration piece. In the pressure sensor supported by the base end, vibration leakage to the outside of the piezoelectric vibrating piece is suppressed (Patent Document 1). In addition, techniques such as Patent Documents 2 to 5 are disclosed.
特開2011-95188号公報JP 2011-95188 A 特開2012-177619号公報JP 2012-177619 A 特開2011-217348号公報JP 2011-217348 A 特開2010-243468号公報JP 2010-243468 A 特開昭61-30735号公報JP 61-30735 A
 本発明による歪センサは、固定部を有する支持基板と、固定部に接続された振動梁と、振動梁に接続する第1のアーム及び第2のアームとを有し、第1のアームにおける第1の端が振動梁における第1の面に接続され、第1のアームは、支持基板から離間しており、第2のアームにおける第1の端が振動梁における第2の面に接続され、第2のアームは、支持基板から離間している。 A strain sensor according to the present invention includes a support substrate having a fixed portion, a vibrating beam connected to the fixed portion, a first arm and a second arm connected to the vibrating beam, and a first arm in the first arm. One end is connected to the first surface of the vibrating beam, the first arm is spaced from the support substrate, the first end of the second arm is connected to the second surface of the vibrating beam, The second arm is separated from the support substrate.
 上記のように、振動梁が支持基板から離間した第1のアームと第2のアームを有していることにより、簡易な構成としたことで生産性を向上させることができる。また、振動漏れを低減することができる。 As described above, since the vibrating beam has the first arm and the second arm that are separated from the support substrate, productivity can be improved by adopting a simple configuration. Moreover, vibration leakage can be reduced.
実施の形態1の歪センサの上面図Top view of the strain sensor of the first embodiment 図1Aに示す歪センサのA-A’断面図A-A 'sectional view of the strain sensor shown in FIG. 1A 図1Aに示す歪センサのB-B’断面図B-B 'sectional view of the strain sensor shown in FIG. 1A 実施の形態1の歪センサの駆動を示す図The figure which shows the drive of the distortion sensor of Embodiment 1. 実施の形態2の歪センサの上面図Top view of the strain sensor of the second embodiment 図3Aに示す歪センサのA-A’断面図A-A 'sectional view of the strain sensor shown in FIG. 3A 図3Aに示す歪センサのB-B’断面図B-B 'sectional view of the strain sensor shown in FIG. 3A 実施の形態2の歪センサの振動漏れの効果を示すグラフThe graph which shows the effect of the vibration leak of the distortion sensor of Embodiment 2 実施の形態3の歪センサの上面図Top view of strain sensor of embodiment 3 図5Aに示す歪センサのA-A’断面図A-A 'sectional view of the strain sensor shown in FIG. 5A 図5Aに示す歪センサのB-B’断面図B-B 'sectional view of the strain sensor shown in FIG. 5A 実施の形態4の歪センサの上面図Top view of strain sensor of embodiment 4 図6Aに示す歪センサのA-A’断面図A-A 'sectional view of the strain sensor shown in FIG. 6A 図6Aに示す歪センサのB-B’断面図B-B 'sectional view of the strain sensor shown in FIG. 6A 実施の形態5の歪センサの上面図Top view of strain sensor of embodiment 5 図7Aに示す歪センサのA-A’断面図A-A 'sectional view of the strain sensor shown in FIG. 7A 図7Aに示す歪センサのB-B’断面図B-B 'sectional view of the strain sensor shown in FIG. 7A 実施の形態6の歪センサの上面図Top view of the strain sensor according to the sixth embodiment 図8Aに示す歪センサのA-A’断面図A-A 'sectional view of the strain sensor shown in FIG. 8A 図8Aに示す歪センサのB-B’断面図B-B 'sectional view of the strain sensor shown in FIG. 8A 図8Aに示す歪センサのC-C’断面図C-C 'sectional view of the strain sensor shown in FIG. 8A
 本発明の実施の形態の説明に先立ち、従来の歪センサにおける課題を説明する。特許文献1に示される従来の歪センサでは、十分に振動漏れを低減することが出来ていない。また、薄肉部を設けることにより複雑な構成となり、生産工程が増えるため、生産性が低下する。 Prior to the description of the embodiment of the present invention, problems in the conventional strain sensor will be described. The conventional strain sensor disclosed in Patent Document 1 cannot sufficiently reduce vibration leakage. In addition, providing a thin portion results in a complicated configuration and increases the number of production steps, thus reducing productivity.
 以下、振動漏れを十分低減し、生産性を向上させた本発明の実施の形態による歪センサについて説明する。 Hereinafter, a strain sensor according to an embodiment of the present invention that sufficiently reduces vibration leakage and improves productivity will be described.
 (実施の形態1)
 実施の形態1における歪センサ31について、図面を用いながら説明をする。
(Embodiment 1)
The strain sensor 31 according to the first embodiment will be described with reference to the drawings.
 図1A~図1Cは、実施の形態1における歪センサ31を示す図である。歪センサ31はシリコン等の半導体基板などをエッチング処理して形成され、支持基板32に接続された固定部33a、33bと、固定部33a、33bに長手方向の両端が支持された振動梁34と、振動梁34の短手方向の側面の一方の面(第1の面)35に一端(第1の端)が接続された第1のアーム36と、振動梁34の短手方向の他方の面(第2の面)37に一端(第1の端)が接続された第2のアーム38を有している。なお、第1のアーム36は振動梁34の延伸方向に垂直であり、振動梁34に接続する第1の部分を有し、第1のアーム36は振動梁34の延伸方向に平行であり、第1の部分と接続する第2の部分を有している。そして、第2のアーム38においても、第1のアーム36と同様の構成である。ここで、実施の形態1において、第1のアーム36と第2のアーム38を振動梁34に対し対称的な位置に振動梁34に対して対向するように設けることが好ましい。より具体的には、第1のアーム36と第2のアーム38は、振動梁34の延伸方向に対して線対称となるように配置されていることが好ましい。なお、「対称」とは、設計誤差の範囲を含む「実質的に対称」であることを含む。以下、本明細書において同様である。該構成により、振動梁34の短手方向における第1のアーム36(第1のアーム36における第1の部分)と第2のアーム38(第2のアーム38における第1の部分)のバランスをとることができ、振動梁34の振動を安定させることができる。実施の形態1において固定部33a、33bは振動梁34の両端に夫々設けられているが、これに限らず、振動梁34を囲むように矩形状に形成されていても良く、楕円状に形成されても良い。 1A to 1C are diagrams showing a strain sensor 31 according to the first embodiment. The strain sensor 31 is formed by etching a semiconductor substrate such as silicon and the like, and includes fixed portions 33a and 33b connected to the support substrate 32, and a vibrating beam 34 whose longitudinal ends are supported by the fixed portions 33a and 33b. The first arm 36 having one end (first end) connected to one surface (first surface) 35 in the lateral direction of the vibrating beam 34 and the other side of the vibrating beam 34 in the lateral direction. A second arm 38 having one end (first end) connected to the surface (second surface) 37 is provided. The first arm 36 is perpendicular to the extending direction of the vibrating beam 34 and has a first portion connected to the vibrating beam 34, and the first arm 36 is parallel to the extending direction of the vibrating beam 34, A second portion connected to the first portion; The second arm 38 has the same configuration as that of the first arm 36. Here, in the first embodiment, it is preferable to provide the first arm 36 and the second arm 38 at positions symmetrical to the vibrating beam 34 so as to face the vibrating beam 34. More specifically, the first arm 36 and the second arm 38 are preferably arranged so as to be line symmetric with respect to the extending direction of the vibrating beam 34. “Symmetry” includes “substantially symmetric” including a range of design errors. The same applies hereinafter. With this configuration, the balance between the first arm 36 (the first portion of the first arm 36) and the second arm 38 (the first portion of the second arm 38) in the short direction of the vibrating beam 34 is balanced. The vibration of the vibrating beam 34 can be stabilized. In the first embodiment, the fixing portions 33a and 33b are provided at both ends of the vibrating beam 34. However, the fixing portions 33a and 33b are not limited to this, and may be formed in a rectangular shape so as to surround the vibrating beam 34. May be.
 振動梁34の一方の面(第1の面)35と他方の面(第2の面)37とは異なる面39の端部に駆動部40が設けられ、中央部に検出部41が設けられている。このように、駆動部40と検出部41が同一面(第3の面)上に配置されていることが好ましいが、これに限定されない。例えば、それぞれが異なる面に配置されていても構わない。ここで、駆動部40は振動梁34と固定部33bの接続部付近に配置されていることが好ましい。例えば、駆動部40は第1のアーム36と振動梁34とが接続する第1の接続点と第2のアーム38と振動梁34とが接続する第2の接続点との間に配置されていることなどが考えられる。駆動部40は、白金等の金属材料で形成された下部電極と、下部電極の上に設けられチタン酸ジルコン酸鉛等の圧電材料で形成された圧電体層と、圧電体層の上に設けられ金等の金属材料で形成された上部電極で構成されている。駆動部40に電圧を印加すると、圧電体層が逆圧電効果によって伸縮し、圧電体が面と垂直な方向に曲げ変位し、振動梁34は厚み方向に弦振動する。 A drive unit 40 is provided at the end of a surface 39 different from one surface (first surface) 35 and the other surface (second surface) 37 of the vibration beam 34, and a detection unit 41 is provided at the center. ing. Thus, although it is preferable that the drive part 40 and the detection part 41 are arrange | positioned on the same surface (3rd surface), it is not limited to this. For example, they may be arranged on different surfaces. Here, it is preferable that the drive part 40 is arrange | positioned in the connection part vicinity of the vibrating beam 34 and the fixing | fixed part 33b. For example, the drive unit 40 is disposed between a first connection point where the first arm 36 and the vibrating beam 34 are connected and a second connection point where the second arm 38 and the vibrating beam 34 are connected. It can be considered. The drive unit 40 is provided on a lower electrode formed of a metal material such as platinum, a piezoelectric layer provided on the lower electrode and formed of a piezoelectric material such as lead zirconate titanate, and the piezoelectric layer. The upper electrode is made of a metal material such as gold. When a voltage is applied to the drive unit 40, the piezoelectric layer expands and contracts due to the inverse piezoelectric effect, the piezoelectric body is bent and displaced in a direction perpendicular to the surface, and the vibrating beam 34 vibrates in the thickness direction.
 検出部41は駆動部40と同様に、白金等の金属材料で形成された下部電極と、下部電極の上に設けられチタン酸ジルコン酸鉛等の圧電材料で形成された圧電体層と、圧電体層の上に設けられ金等の金属材料で形成された上部電極で構成されている。駆動部40に電圧が印加され振動梁34が振動すると、圧電効果により振動梁34の固有振動数fに応じた交流信号が、検出部41に接続された処理回路(図示せず)に入力される。処理回路に入力された交流信号は、処理回路において位相調整、増幅されて駆動部にフィードバックされる。これにより、振動梁34は固有振動数fに等しい周波数で弦振動を持続する。 Similarly to the driving unit 40, the detection unit 41 includes a lower electrode formed of a metal material such as platinum, a piezoelectric layer provided on the lower electrode and formed of a piezoelectric material such as lead zirconate titanate, The upper electrode is provided on the body layer and is formed of a metal material such as gold. When a voltage is applied to the driving unit 40 and the vibrating beam 34 vibrates, an AC signal corresponding to the natural frequency f of the vibrating beam 34 is input to a processing circuit (not shown) connected to the detecting unit 41 by the piezoelectric effect. The The AC signal input to the processing circuit is phase-adjusted and amplified in the processing circuit and fed back to the drive unit. Thereby, the vibrating beam 34 continues the string vibration at a frequency equal to the natural frequency f.
 歪センサ31が設けられた支持基板32に働いた外力により歪が生じると、固定部33a、33bを介して振動梁34に歪が伝達される。ここで、支持基板32に振動梁34の伸縮する方向に引張力Fが印加された場合、振動梁34に伸張力が働くことによりストレススティッフニング効果が発現し振動梁34が硬化するため、歪センサ31の振動周波数はfからf+Δfに上昇する。このようにして、出力される固有振動数差Δfを測定することにより支持基板32に働く歪や荷重を高感度で測定できる。 When strain is generated by an external force applied to the support substrate 32 provided with the strain sensor 31, the strain is transmitted to the vibrating beam 34 through the fixing portions 33a and 33b. Here, when a tensile force F is applied to the support substrate 32 in the direction in which the vibrating beam 34 expands and contracts, the stretching force acts on the vibrating beam 34 to develop a stress stiffening effect and the vibrating beam 34 is cured. The vibration frequency of the sensor 31 increases from f to f + Δf. In this way, by measuring the output natural frequency difference Δf, the strain and load acting on the support substrate 32 can be measured with high sensitivity.
 また、支持基板32に振動梁34の長手方向の圧縮力-Fが印加されたとすると、引張力が印加された場合とは逆に振動梁34が軟化するストレススティッフニング効果が発現するため、歪センサ31の振動周波数はfからf-Δfに低下する。 Further, if a compressive force −F in the longitudinal direction of the vibrating beam 34 is applied to the support substrate 32, a stress stiffening effect that softens the vibrating beam 34 appears in contrast to when a tensile force is applied. The vibration frequency of the sensor 31 decreases from f to f−Δf.
 上記の様に構成された歪センサ31は、駆動部40に電圧を印加して振動梁34を振動した状態で支持基板32に加えられた外力により生じた歪を測定している。このため、振動梁34と固定部33a、33bとの接続部分から振動梁34の振動が固定部33a、33bを介して支持基板32に振動が漏れることにより検出精度が低下してしまうが、実施の形態1における歪センサ31では、振動梁34に第1のアーム36と第2のアーム38が設けられていることにより、支持基板32への振動漏れを低減することができる。 The strain sensor 31 configured as described above measures a strain generated by an external force applied to the support substrate 32 while applying a voltage to the drive unit 40 and vibrating the vibrating beam 34. For this reason, although the vibration of the vibrating beam 34 leaks from the connecting portion between the vibrating beam 34 and the fixing portions 33a and 33b to the support substrate 32 via the fixing portions 33a and 33b, the detection accuracy is lowered. In the strain sensor 31 according to the first embodiment, the first arm 36 and the second arm 38 are provided on the vibration beam 34, whereby vibration leakage to the support substrate 32 can be reduced.
 第1のアーム36と第2のアーム38は支持基板32から離間しており、振動梁34と接続されていない側の端は自由端となっている。図2に振動梁34が振動しているときの第1のアーム36と第2のアーム38の動きを示す。第1のアーム36、第2のアーム38は図2に示すように振動梁34の振動に応じて、振動することにより湾曲した振動梁34の湾曲の凹側に第1のアーム36と第2のアーム38が振れる。図2に示すように、振動梁34が上方向に変位したとき第1のアーム36と第2のアーム38は下方向に変位し、振動梁34が下方向に変位したとき第1のアーム36と第2のアーム38は上方向に変位し、第1のアーム36と第2のアーム38は振動梁34の振動方向に対して逆位相で振動をする。このため、振動梁34と第1のアーム36、第2のアーム38の接続部において、振動梁34の運動量と第1のアーム36、第2のアーム38の運動量の和が等しくなるように構成することにより、振動梁34の振動と第1のアーム36、第2のアーム38の振動が打ち消しあうため、振動梁34の振動が固定部33a、33bに伝わらず、固定部33a、33bへの振動漏れを低減することができる。 The first arm 36 and the second arm 38 are separated from the support substrate 32, and the end on the side not connected to the vibrating beam 34 is a free end. FIG. 2 shows the movement of the first arm 36 and the second arm 38 when the vibrating beam 34 is vibrating. As shown in FIG. 2, the first arm 36 and the second arm 38 are arranged on the concave side of the bending of the vibrating beam 34 which is curved by vibrating according to the vibration of the vibrating beam 34. The arm 38 swings. As shown in FIG. 2, when the vibrating beam 34 is displaced upward, the first arm 36 and the second arm 38 are displaced downward, and when the vibrating beam 34 is displaced downward, the first arm 36 is displaced. The second arm 38 is displaced upward, and the first arm 36 and the second arm 38 vibrate in an opposite phase to the vibration direction of the vibrating beam 34. For this reason, in the connection part of the vibrating beam 34, the 1st arm 36, and the 2nd arm 38, it is comprised so that the sum of the momentum of the vibrating beam 34 and the momentum of the 1st arm 36 and the 2nd arm 38 may become equal. As a result, the vibration of the vibrating beam 34 and the vibrations of the first arm 36 and the second arm 38 cancel each other, so that the vibration of the vibrating beam 34 is not transmitted to the fixed portions 33a and 33b, but is transmitted to the fixed portions 33a and 33b. Vibration leakage can be reduced.
 なお、実施の形態1と同じ構造ではなく、例えば、第1のアーム36、第2のアーム38を振動梁34の中央部分に屈曲させずに振動梁34の長手方向と略直交する方向に設けても、第1のアーム36、第2のアーム38が振動梁34の動作方向と逆方向の成分を持って振動をすれば実施の形態1の効果を得ることができる。しかしながら、振動梁34の振幅は中央部で最大となり、固定部33a、33bとの接続部に近いほど振幅が小さくなるため、第1のアーム36、第2のアーム38を中央部に設けると第1のアーム36、第2のアーム38を振動させるために大きなエネルギーが必要となってしまう。一方で、第1のアーム36、第2のアーム38を振動梁34の振幅の小さい接続部近傍に設けることにより小さいエネルギーで第1のアーム36、第2のアーム38を振動させることができる。また、第1のアーム36、第2のアーム38を屈曲させることができるため小型化することができる。 It is not the same structure as that of the first embodiment, and for example, the first arm 36 and the second arm 38 are provided in a direction substantially orthogonal to the longitudinal direction of the vibrating beam 34 without bending the central portion of the vibrating beam 34. However, the effects of the first embodiment can be obtained if the first arm 36 and the second arm 38 vibrate with a component opposite to the direction of movement of the vibrating beam 34. However, the amplitude of the vibrating beam 34 is maximum at the central portion, and the amplitude becomes smaller as it is closer to the connecting portion to the fixing portions 33a and 33b. Therefore, when the first arm 36 and the second arm 38 are provided at the central portion, Large energy is required to vibrate the first arm 36 and the second arm 38. On the other hand, the first arm 36 and the second arm 38 can be vibrated with less energy by providing the first arm 36 and the second arm 38 in the vicinity of the connecting portion having a small amplitude of the vibrating beam 34. Further, since the first arm 36 and the second arm 38 can be bent, the size can be reduced.
 また、実施の形態1の第1のアーム36、第2のアーム38の振動梁34と接続されていない他端に錘を設けてもよい。第1のアーム36、第2のアーム38の他端に錘を設けることにより、第1のアーム36、第2のアーム38の固有振動数の調整が容易になり、さらに小型化することができる。 Further, a weight may be provided at the other end of the first arm 36 and the second arm 38 of the first embodiment that are not connected to the vibrating beam 34. By providing weights at the other ends of the first arm 36 and the second arm 38, the natural frequencies of the first arm 36 and the second arm 38 can be easily adjusted, and the size can be further reduced. .
 (実施の形態2)
 実施の形態2における歪センサ51について、図面を用いて説明する。
(Embodiment 2)
The strain sensor 51 according to the second embodiment will be described with reference to the drawings.
 なお、実施の形態2の歪センサにおいて実施の形態1と同様の構造については実施の形態1と同じ符号を付すことがある。以下では、実施の形態1と異なる部分について、主に説明する。なお、実施の形態2における歪センサは、第3のアームと第4のアームが振動梁34に更に設けられた構造となっている点で実施の形態1と異なっている。 In the strain sensor according to the second embodiment, the same reference numerals as those in the first embodiment may be attached to the same structures as those in the first embodiment. In the following description, differences from the first embodiment will be mainly described. The strain sensor according to the second embodiment is different from the first embodiment in that the third arm and the fourth arm are further provided on the vibrating beam 34.
 図3A~図3Cに実施の形態2の歪センサ51を示す。歪センサ51はシリコン等の半導体基板などをエッチング処理して形成され、支持基板32に接続された矩形状の固定部53と、固定部53に両端が支持された振動梁34と、振動梁34の一方の面(第1の面)35に接続された第1のアーム36と、振動梁の他方の面(第2の面)37に接続された第2のアーム38を有している。また、振動梁34の第1のアーム36と第2のアーム38が設けられている側と反対側に第3のアーム54と第4のアーム55が設けられている。第3のアーム54と第4のアーム55は、第1のアーム36と第2のアーム38と同様に支持基板32から離間しており、振動梁34と接続されていない側の端は自由端になっている。また、第1のアーム36、第2のアーム38、第3のアーム54、第4のアーム55は固定部53から離間していることが好ましい。また、固定部53は、振動梁34の両端と接続する第1の部位と振動梁34の延伸方向に平行な第2の部位を有し、第2の部位は、スリットを介して第1のアーム36、第2のアーム38の外側に位置していることが好ましい。また、第1のアーム36の自由端と第3のアーム54の自由端との間の距離は、第2のアーム38の自由端と第4のアーム55の自由端との間の距離と同じであることが好ましい。ここで、「同じ」とは、設計誤差の範囲内である「実質的に同じ」であることを含む。また、第1のアーム36と第4のアーム55は振動梁34の中心に対して点対称となるように配置され、第2のアーム38と第3のアーム54は振動梁34の中心に対して点対称となるように配置されていることが好ましい。また、第1のアーム36及び第3のアーム54と第2のアーム38と第4のアーム55は、振動梁34の延伸方向に対して線対称となるように配置されていることが好ましい。 3A to 3C show the strain sensor 51 of the second embodiment. The strain sensor 51 is formed by etching a semiconductor substrate such as silicon, and has a rectangular fixed portion 53 connected to the support substrate 32, a vibrating beam 34 supported at both ends by the fixed portion 53, and the vibrating beam 34. The first arm 36 is connected to one surface (first surface) 35 of the first, and the second arm 38 is connected to the other surface (second surface) 37 of the vibrating beam. A third arm 54 and a fourth arm 55 are provided on the opposite side of the vibrating beam 34 from the side where the first arm 36 and the second arm 38 are provided. Similarly to the first arm 36 and the second arm 38, the third arm 54 and the fourth arm 55 are separated from the support substrate 32, and the end not connected to the vibrating beam 34 is a free end. It has become. The first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 are preferably separated from the fixing portion 53. The fixing portion 53 has a first part connected to both ends of the vibrating beam 34 and a second part parallel to the extending direction of the vibrating beam 34. The second part is connected to the first part via the slit. The arm 36 and the second arm 38 are preferably located outside. The distance between the free end of the first arm 36 and the free end of the third arm 54 is the same as the distance between the free end of the second arm 38 and the free end of the fourth arm 55. It is preferable that Here, “same” includes “substantially the same” within the range of the design error. Further, the first arm 36 and the fourth arm 55 are arranged so as to be point-symmetric with respect to the center of the vibrating beam 34, and the second arm 38 and the third arm 54 are set with respect to the center of the vibrating beam 34. Are preferably arranged so as to be point-symmetric. The first arm 36, the third arm 54, the second arm 38, and the fourth arm 55 are preferably arranged so as to be line symmetric with respect to the extending direction of the vibrating beam 34.
 実施の形態1において、第1のアーム36と第2のアーム38を設けることにより振動漏れを低減しているが、実施の形態2の歪センサ51は、図3A~図3Cに示すように、第3のアーム54と第4のアーム55を設けることにより、さらに振動漏れを低減している。図3A~図3Cに示すように振動梁34の両端近傍に第1のアーム36、第2のアーム38、第3のアーム54、第4のアーム55を設けることにより、振動梁34の両端にアームが設けられているため振動梁34の両端どちらからも固定部53への振動漏れを低減することができる。上記実施の形態2の歪センサ51において固定部53への振動漏れを振動梁34に対する第1のアーム36、第2のアーム38、第3のアーム54、第4のアーム55の屈曲部分から自由端になっている他端までの長さLを振動梁34の長さに対して変えて有限要素法の動解析(例えば、モーダル解析など)を用いて評価した。この評価結果を第1のアーム36、第2のアーム38、第3のアーム54、第4のアーム55を設けていないときのアームの長さLを0とし、固定部への振動漏れをL=0のときを1として規格化したグラフを図4に示す。図4より、第1のアーム36、第2のアーム38、第3のアーム54、第4のアーム55を設けた場合、アームの長さLが振動梁34の長さの約22%のときに漏れ振動が0.53であり、第1のアーム36、第2のアーム38、第3のアーム54、第4のアーム55を設けたことにより固定部53に対する振動梁34からの漏れ振動の低減効果を確認することができた。また、アームの長さLが振動梁34の長さに対して約24%のときに漏れ振動が0.25、約28%のときに漏れ振動が0.21と特に効果が大きく、長さLが約26%のときに最も効果が大きく固定部53への振動漏れは0.01以下であった。また、長さLが約30%のときに漏れ振動が約0.39となっている。従って、アームの長さLが振動梁34の長さの約20%以上約30%以下であることが好ましい。さらには、アームの長さLが振動梁34の長さの約24%以上約28%以下であることが好ましい。 In the first embodiment, the vibration leakage is reduced by providing the first arm 36 and the second arm 38, but the strain sensor 51 of the second embodiment has a configuration as shown in FIGS. 3A to 3C. By providing the third arm 54 and the fourth arm 55, vibration leakage is further reduced. As shown in FIGS. 3A to 3C, by providing the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 in the vicinity of both ends of the vibrating beam 34, both ends of the vibrating beam 34 are provided. Since the arm is provided, vibration leakage from both ends of the vibration beam 34 to the fixed portion 53 can be reduced. In the strain sensor 51 of the second embodiment, vibration leakage to the fixed portion 53 is free from the bent portions of the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 with respect to the vibration beam 34. The length L to the other end, which is the end, was changed with respect to the length of the vibrating beam 34, and evaluation was performed using a dynamic analysis (for example, modal analysis) of the finite element method. As a result of this evaluation, the arm length L when the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 are not provided is set to 0, and vibration leakage to the fixed portion is reduced to L. FIG. 4 shows a graph normalized with 1 when = 0. As shown in FIG. 4, when the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 are provided, the length L of the arm is about 22% of the length of the vibrating beam 34. And the first arm 36, the second arm 38, the third arm 54, and the fourth arm 55 provide the leakage vibration from the vibrating beam 34 to the fixed portion 53. The reduction effect could be confirmed. Further, when the arm length L is about 24% of the length of the vibrating beam 34, the leakage vibration is 0.25, and when the arm length L is about 28%, the leakage vibration is 0.21, which is particularly effective. The effect was greatest when L was about 26%, and vibration leakage to the fixed portion 53 was 0.01 or less. Further, the leakage vibration is about 0.39 when the length L is about 30%. Therefore, the length L of the arm is preferably about 20% or more and about 30% or less of the length of the vibrating beam 34. Furthermore, the length L of the arm is preferably not less than about 24% and not more than about 28% of the length of the vibrating beam 34.
 また、第3のアーム54と第4のアーム55を、振動梁34の長手方向の中心部分に対して第1のアーム36と第2のアーム38と対称になる位置に設けることにより、振動梁34の長手方向のバランスが良くなる。振動梁34の長手方向の重量のバランスが悪いと振動梁34が上下方向の振動の他に回転方向の振動をするため、歪センサ51の検出精度が低下するが、対称に設けることにより検出精度を低下させることなく、振動漏れを低減することができる。 Further, by providing the third arm 54 and the fourth arm 55 at positions that are symmetrical with the first arm 36 and the second arm 38 with respect to the longitudinal center portion of the vibration beam 34, the vibration beam The balance in the longitudinal direction of 34 is improved. If the balance of the weight in the longitudinal direction of the vibrating beam 34 is poor, the vibrating beam 34 vibrates in the rotational direction in addition to the vertical vibration, so that the detection accuracy of the strain sensor 51 is reduced. The vibration leakage can be reduced without lowering.
 (実施の形態3)
 実施の形態3における歪センサ61について、図面を用いて説明する。
(Embodiment 3)
A strain sensor 61 according to Embodiment 3 will be described with reference to the drawings.
 なお、実施の形態3の歪センサ61において実施の形態1、実施の形態2と同様の構造については実施の形態1、実施の形態2と同じ符号を付すことがある。以下では、実施の形態1、実施の形態2と異なる部分について、主に説明する。なお、実施の形態3における歪センサ61は、第1のアームと第2のアームの両端が振動梁に接続された構造となっている点で実施の形態1と異なっている。 In the strain sensor 61 of the third embodiment, the same structure as that of the first and second embodiments may be denoted by the same reference numerals as those of the first and second embodiments. In the following, differences from the first embodiment and the second embodiment will be mainly described. The strain sensor 61 according to the third embodiment is different from the first embodiment in that both ends of the first arm and the second arm are connected to the vibrating beam.
 図5A~図5Cは実施の形態3の歪センサ61を示す図である。歪センサ61はシリコン等の半導体基板をエッチング処理して形成され、支持基板32に接続された矩形状の固定部53と、固定部53に両端が支持された振動梁34と、振動梁34の一方の面(第1の面)35に接続された第1のアーム66と、振動梁の他方の面(第2の面)37に接続された第2のアーム68を有している。第1のアーム66と第2のアーム68は夫々、両端で振動梁34と接続され、中央部分が支持基板32、振動梁34と離間している。実施の形態3は実施の形態1、実施の形態2と異なり、両端が振動梁34と接続されているため、第1のアーム66と第2のアーム68の両端が固定端となっている。 5A to 5C are diagrams showing the strain sensor 61 according to the third embodiment. The strain sensor 61 is formed by etching a semiconductor substrate such as silicon, and includes a rectangular fixed portion 53 connected to the support substrate 32, a vibrating beam 34 supported at both ends by the fixed portion 53, and the vibrating beam 34. It has a first arm 66 connected to one surface (first surface) 35 and a second arm 68 connected to the other surface (second surface) 37 of the vibrating beam. The first arm 66 and the second arm 68 are respectively connected to the vibrating beam 34 at both ends, and the central portion is separated from the support substrate 32 and the vibrating beam 34. The third embodiment is different from the first and second embodiments in that both ends are connected to the vibrating beam 34, and therefore both ends of the first arm 66 and the second arm 68 are fixed ends.
 歪センサ61は支持基板32に歪が加えられたとき、振動梁34が長手方向に伸縮することにより、振動梁34の振動周波数fがf±Δfに変化し、この周波数の変化から支持基板32に加えられた歪の大きさを検出する。実施の形態3の歪センサ61は、図4に示すように両端が振動梁34に接続されているため、支持基板32へ歪が加えられて振動梁34が伸縮し、固有振動数が変化した場合に、第1のアーム66、第2のアーム68はどちらも振動梁34の長手方向に振動梁34と同様に伸縮する。第1のアーム66と第2のアーム68の固有振動数は振動梁34の固有振動数に合わせて設計されているため、この固有振動数から大きくずれると振幅が低減し、漏れ振動低減効果が小さくなってしまうが、第1のアーム66、第2のアーム68が振動梁34と同様に伸縮することにより、固有振動数も振動梁34と同様に変化する。このため、支持基板32に大きな歪が加えられ振動梁34の固有振動数が大きく変化したときでも、第1のアーム66と第2のアーム68の振幅が低減することがなく漏れ振動低減効果を得ることができる。 When the strain is applied to the support substrate 32, the strain sensor 61 expands and contracts in the longitudinal direction, so that the vibration frequency f of the vibration beam 34 changes to f ± Δf. The magnitude of distortion applied to the is detected. As shown in FIG. 4, the strain sensor 61 according to the third embodiment has both ends connected to the vibrating beam 34. Therefore, strain is applied to the support substrate 32, the vibrating beam 34 expands and contracts, and the natural frequency changes. In this case, both the first arm 66 and the second arm 68 extend and contract in the longitudinal direction of the vibrating beam 34 in the same manner as the vibrating beam 34. Since the natural frequencies of the first arm 66 and the second arm 68 are designed in accordance with the natural frequency of the vibrating beam 34, the amplitude decreases when the natural frequency deviates greatly from this natural frequency, and the effect of reducing the leakage vibration is obtained. Although it becomes smaller, the natural frequency also changes in the same manner as that of the vibrating beam 34 as the first arm 66 and the second arm 68 expand and contract in the same manner as the vibrating beam 34. For this reason, even when a large strain is applied to the support substrate 32 and the natural frequency of the vibrating beam 34 changes greatly, the amplitude of the first arm 66 and the second arm 68 is not reduced, and the leakage vibration reducing effect is obtained. Obtainable.
 (実施の形態4)
 実施の形態4における歪センサ61について、図面を用いて説明する。
(Embodiment 4)
A strain sensor 61 according to Embodiment 4 will be described with reference to the drawings.
 なお、実施の形態4の歪センサにおいて実施の形態1~3と同様の構造については実施の形態1~3と同じ符号を付すことがある。以下では、実施の形態1~3と異なる部分について、主に説明する。なお、実施の形態4における歪センサは、振動梁34の一端(第1の端)は、スリット75を介して固定部53と複数個所で接続されている構造となっている点で実施の形態3と異なっている。 In the strain sensor of the fourth embodiment, the same structure as in the first to third embodiments may be assigned the same reference numeral as in the first to third embodiments. In the following, parts different from the first to third embodiments will be mainly described. The strain sensor according to the fourth embodiment is different from the first embodiment in that one end (first end) of the vibrating beam 34 is connected to the fixed portion 53 via a slit 75 at a plurality of locations. 3 and different.
 図6A~図6Cに実施の形態4の歪センサ61を示す。歪センサ61はシリコン等の半導体基板をエッチング処理して形成され、第1のアーム66と第2のアーム68の両端が振動梁34の側面に接続されている。なお、第1のアーム66と第2のアーム68はそれぞれ、全長にわたって厚さが同じであり、スリット75を介して振動梁34と隔たれている。 6A to 6C show the strain sensor 61 of the fourth embodiment. The strain sensor 61 is formed by etching a semiconductor substrate such as silicon, and both ends of the first arm 66 and the second arm 68 are connected to the side surface of the vibrating beam 34. The first arm 66 and the second arm 68 have the same thickness over the entire length, and are separated from the vibrating beam 34 through the slit 75.
 また、図6A~図6Cにおいては、振動梁34の一端(第1の端)は、スリット75を介して固定部53と複数個所で接続されている構造となっている。より具体的には、振動梁34の両端がスリット75を介して固定部53に接続しているため、振動梁34の端は、2点で支えられる構造となっている。該構成とすることにより、振動梁34の歪量を増大させることができ、感度を向上させることができるという効果がある。 6A to 6C, one end (first end) of the vibrating beam 34 is connected to the fixed portion 53 through a slit 75 at a plurality of locations. More specifically, since both ends of the vibrating beam 34 are connected to the fixing portion 53 via the slits 75, the end of the vibrating beam 34 is supported at two points. With this configuration, there is an effect that the amount of strain of the vibrating beam 34 can be increased and the sensitivity can be improved.
 なお、図6A~図6Cにおいては、駆動部40を第1のアーム66と第2のアーム68の一端(第1の端)側にのみ配置しているが、駆動部40は第1のアーム66と第2のアーム68の両端に配置されていても構わない。 In FIGS. 6A to 6C, the drive unit 40 is disposed only on one end (first end) side of the first arm 66 and the second arm 68, but the drive unit 40 includes the first arm 66 and the second arm 68. 66 and the second arm 68 may be disposed at both ends.
 (実施の形態5)
 実施の形態5における歪センサ71について、図面を用いて説明する。
(Embodiment 5)
A strain sensor 71 according to Embodiment 5 will be described with reference to the drawings.
 なお、実施の形態5の歪センサにおいて実施の形態1~4と同様の構造については実施の形態1~4と同じ符号を付すことがある。以下では、実施の形態1~4と異なる部分について、主に説明する。なお、実施の形態5における歪センサは、第1のアームと第2のアームの両端が振動梁34の側面及び固定部53に接続される構造となっている点で実施の形態3と異なっている。 In the strain sensor according to the fifth embodiment, the same reference numerals as those in the first to fourth embodiments may be attached to the same structures as those in the first to fourth embodiments. In the following, parts different from the first to fourth embodiments will be mainly described. The strain sensor according to the fifth embodiment is different from the third embodiment in that both ends of the first arm and the second arm are connected to the side surface of the vibrating beam 34 and the fixing portion 53. Yes.
 図7A~図7Cに実施の形態5の歪センサ71を示す。歪センサ71はシリコン等の半導体基板をエッチング処理して形成され、第1のアーム76と第2のアーム78の両端が振動梁34の側面及び固定部53に接続されている。なお、第1のアーム76と第2のアーム78はそれぞれ、全長にわたって厚さが同じであり、スリット75を介して振動梁34と隔たれている。該構成とすることにより、振動梁34、第1のアーム76、及び第2のアーム78の歪量を増大させることができ、感度を向上させることができるという効果がある。 7A to 7C show the strain sensor 71 of the fifth embodiment. The strain sensor 71 is formed by etching a semiconductor substrate such as silicon, and both ends of the first arm 76 and the second arm 78 are connected to the side surface of the vibrating beam 34 and the fixing portion 53. The first arm 76 and the second arm 78 have the same thickness over the entire length, and are separated from the vibrating beam 34 via the slit 75. With this configuration, there is an effect that the amount of strain of the vibrating beam 34, the first arm 76, and the second arm 78 can be increased, and the sensitivity can be improved.
 また、図7A~図7Cに示すように、駆動部40を振動梁34の中心に配置し、検出部41を振動梁34の端に配置することが好ましい。なお、駆動部40の引き出し配線が固定部53に向かって延びていても構わない。 Further, as shown in FIGS. 7A to 7C, it is preferable that the driving unit 40 is arranged at the center of the vibrating beam 34 and the detecting unit 41 is arranged at the end of the vibrating beam 34. Note that the lead-out wiring of the drive unit 40 may extend toward the fixed unit 53.
 また、図7A~図7Cに示すように、駆動部40を第1のアーム76の端に配置し、検出部41を第1のアーム76の中心に配置することが好ましい。なお、検出部41の引き出し配線が固定部53に向かって延びていても構わない。 Further, as shown in FIGS. 7A to 7C, it is preferable that the drive unit 40 is disposed at the end of the first arm 76 and the detection unit 41 is disposed at the center of the first arm 76. Note that the lead-out wiring of the detection unit 41 may extend toward the fixed unit 53.
 また、図7A~図7Cに示すように、駆動部40を第2のアーム78の端に配置し、検出部41を第2のアーム78の中心に配置することが好ましい。なお、検出部41の引き出し配線が固定部53に向かって延びていても構わない。 Further, as shown in FIGS. 7A to 7C, it is preferable that the drive unit 40 is disposed at the end of the second arm 78 and the detection unit 41 is disposed at the center of the second arm 78. Note that the lead-out wiring of the detection unit 41 may extend toward the fixed unit 53.
 なお、駆動部40と検出部41の配置関係は逆でも構わない。つまり、駆動部40を振動梁34の端、第1のアームの中心、第2のアームの中心に配置し、検出部41を振動梁34の中心に配置し、第1のアームの端、第2のアームの端に配置しても構わない。 The arrangement relationship between the drive unit 40 and the detection unit 41 may be reversed. That is, the drive unit 40 is disposed at the end of the vibrating beam 34, the center of the first arm, and the center of the second arm, the detection unit 41 is disposed at the center of the vibrating beam 34, the end of the first arm, It may be arranged at the end of the two arms.
 (実施の形態6)
 実施の形態6における歪センサ71について、図面を用いて説明する。
(Embodiment 6)
A strain sensor 71 according to the sixth embodiment will be described with reference to the drawings.
 なお、実施の形態6の歪センサにおいて実施の形態1~5と同様の構造については実施の形態1~5と同じ符号を付すことがある。以下では、実施の形態1~5と異なる部分について、主に説明する。なお、実施の形態6における歪センサは、第1のアームと第2のアームに平行な固定部53が、第1のアームと第2のアームと並んで配置されている構造となっている点で実施の形態5と異なっている。 In the strain sensor of the sixth embodiment, the same reference numerals as those of the first to fifth embodiments may be attached to the same structures as those of the first to fifth embodiments. In the following, parts different from the first to fifth embodiments will be mainly described. The strain sensor according to the sixth embodiment has a structure in which a fixing portion 53 parallel to the first arm and the second arm is arranged side by side with the first arm and the second arm. This is different from the fifth embodiment.
 図8A~図8Dに実施の形態5の歪センサ71を示す。歪センサ71はシリコン等の半導体基板をエッチング処理して形成され、第1のアーム76と第2のアーム78の両端が振動梁34の側面及び固定部53に接続されている。なお、第1のアーム76と第2のアーム78はそれぞれ、全長にわたって厚さが同じであり、スリット75を介して振動梁34と隔たれていることが好ましい。そして、第1のアーム76と第2のアーム78に平行な固定部53が、第1のアーム76と第2のアーム78と並んで配置されている構造となっている。ここで、固定部53は、スリット75を介して第1のアーム76、第2のアーム78の外側に配置されていることが好ましい。 8A to 8D show the strain sensor 71 of the fifth embodiment. The strain sensor 71 is formed by etching a semiconductor substrate such as silicon, and both ends of the first arm 76 and the second arm 78 are connected to the side surface of the vibrating beam 34 and the fixing portion 53. It is preferable that the first arm 76 and the second arm 78 have the same thickness over the entire length, and are separated from the vibrating beam 34 via the slit 75. The fixing portion 53 parallel to the first arm 76 and the second arm 78 is arranged side by side with the first arm 76 and the second arm 78. Here, the fixing portion 53 is preferably disposed outside the first arm 76 and the second arm 78 through the slit 75.
 ここで、第1のアーム76と第2のアーム78に平行である該固定部を設けない方が振動梁34の歪量を増大させて、感度を向上させるという点においては好ましい。しかし、振動梁34、第1のアーム76、第2のアーム78全体の強度を補強するという点では、該固定部がある方が好ましい。 Here, it is preferable not to provide the fixing portion parallel to the first arm 76 and the second arm 78 in terms of increasing the amount of strain of the vibrating beam 34 and improving the sensitivity. However, in terms of reinforcing the strength of the vibration beam 34, the first arm 76, and the second arm 78 as a whole, it is preferable to have the fixing portion.
 また、図8A~図8Dに示すように、駆動部40を振動梁34の中心に配置し、検出部41を振動梁34の端に配置することが好ましい。なお、駆動部40の引き出し配線が固定部53に向かって延びていても構わない。 Further, as shown in FIGS. 8A to 8D, it is preferable that the driving unit 40 is arranged at the center of the vibrating beam 34 and the detecting unit 41 is arranged at the end of the vibrating beam 34. Note that the lead-out wiring of the drive unit 40 may extend toward the fixed unit 53.
 また、図8A~図8Dに示すように、駆動部40を第1のアーム76の端に配置し、検出部41を第1のアーム76の中心に配置することが好ましい。なお、検出部41の引き出し配線が固定部53に向かって延びていても構わない。 Also, as shown in FIGS. 8A to 8D, it is preferable that the drive unit 40 is disposed at the end of the first arm 76 and the detection unit 41 is disposed at the center of the first arm 76. Note that the lead-out wiring of the detection unit 41 may extend toward the fixed unit 53.
 また、図8A~図8Dに示すように、駆動部40を第2のアーム78の端に配置し、検出部41を第2のアーム78の中心に配置することが好ましい。なお、検出部41の引き出し配線が固定部53に向かって延びていても構わない。 Further, as shown in FIGS. 8A to 8D, it is preferable that the drive unit 40 is disposed at the end of the second arm 78 and the detection unit 41 is disposed at the center of the second arm 78. Note that the lead-out wiring of the detection unit 41 may extend toward the fixed unit 53.
 なお、駆動部40と検出部41の配置関係は逆でも構わない。つまり、駆動部40を振動梁34の端、第1のアームの中心、第2のアームの中心に配置し、検出部41を振動梁34の中心に配置し、第1のアームの端、第2のアームの端に配置しても構わない。 The arrangement relationship between the drive unit 40 and the detection unit 41 may be reversed. That is, the drive unit 40 is disposed at the end of the vibrating beam 34, the center of the first arm, and the center of the second arm, the detection unit 41 is disposed at the center of the vibrating beam 34, the end of the first arm, It may be arranged at the end of the two arms.
 本発明の歪センサは、支持基板に振動梁から固定部への振動漏れを低減し、高精度に支持基板に加えられた応力を検出することができるため、物体に働く歪や荷重を検出し、各種制御機器や情報機器制御、自動車エンジン制御、サスペンション制御等に有用である。 The strain sensor of the present invention reduces the leakage of vibration from the vibrating beam to the fixed part of the support substrate, and can detect the stress applied to the support substrate with high accuracy. It is useful for various control equipment, information equipment control, automobile engine control, suspension control, and the like.
31,51,61,71  歪センサ
32  支持基板
33a,33b,53  固定部
34  振動梁
35,37,39  面
36,66,76  第1のアーム
38,68,78  第2のアーム
40  駆動部
41  検出部
54  第3のアーム
55  第4のアーム
75  スリット
31, 51, 61, 71 Strain sensor 32 Support substrates 33a, 33b, 53 Fixed portion 34 Vibration beams 35, 37, 39 Surfaces 36, 66, 76 First arm 38, 68, 78 Second arm 40 Drive portion 41 Detection unit 54 Third arm 55 Fourth arm 75 Slit

Claims (21)

  1. 固定部を有する支持基板と、
    前記固定部に接続された振動梁と、
    前記振動梁に接続する第1のアーム及び第2のアームとを有し、
    前記第1のアームにおける第1の端が前記振動梁における第1の面に接続され、
    前記第1のアームは、前記支持基板から離間しており、
    前記第2のアームにおける第1の端が前記振動梁における第2の面に接続され、
    前記第2のアームは、前記支持基板から離間していることを特徴とする歪センサ。
    A support substrate having a fixed portion;
    A vibrating beam connected to the fixed portion;
    A first arm and a second arm connected to the vibrating beam;
    A first end of the first arm is connected to a first surface of the vibrating beam;
    The first arm is spaced apart from the support substrate;
    A first end of the second arm is connected to a second surface of the vibrating beam;
    The strain sensor, wherein the second arm is separated from the support substrate.
  2. 前記第1のアームと前記第2のアームは、前記振動梁の延伸方向に対して線対称となるように配置されていることを特徴とする請求項1に記載の歪センサ。 2. The strain sensor according to claim 1, wherein the first arm and the second arm are arranged so as to be line-symmetric with respect to an extending direction of the vibrating beam.
  3. 前記振動梁に接続する第3のアーム及び第4のアームとを有し、
    前記第3のアームにおける第1の端が前記振動梁における第1の面に接続され、
    前記第3のアームは、前記支持基板から離間しており、
    前記第4のアームにおける第1の端が前記振動梁における第2の面に接続され、
    前記第4のアームは、前記支持基板から離間していることを特徴とする請求項1又は2に記載の歪センサ。
    A third arm and a fourth arm connected to the vibrating beam;
    A first end of the third arm is connected to a first surface of the vibrating beam;
    The third arm is spaced apart from the support substrate;
    A first end of the fourth arm is connected to a second surface of the vibrating beam;
    The strain sensor according to claim 1, wherein the fourth arm is separated from the support substrate.
  4. 前記第1のアームと前記第4のアームは前記振動梁の中心に対して点対称となるように配置され、
    前記第2のアームと前記第3のアームは前記振動梁の中心に対して点対称となるように配置されていることを特徴とする請求項3に記載の歪センサ。
    The first arm and the fourth arm are arranged to be point-symmetric with respect to the center of the vibrating beam,
    4. The strain sensor according to claim 3, wherein the second arm and the third arm are arranged so as to be point-symmetric with respect to the center of the vibrating beam.
  5. 前記第1のアームにおける第2の端が前記振動梁の第1の面と接続され、
    前記第2のアームにおける第2の端が前記振動梁の第2の面と接続されていることを特徴とする請求項1~3のいずれか1つに記載の歪センサ。
    A second end of the first arm is connected to a first surface of the vibrating beam;
    The strain sensor according to any one of claims 1 to 3, wherein a second end of the second arm is connected to a second surface of the vibrating beam.
  6. 前記第1のアームは前記振動梁の延伸方向に垂直であり、前記振動梁に接続する第1の部分を有し、
    前記第1のアームは前記振動梁の延伸方向に平行であり、前記第1の部分と接続する第2の部分を有していることを特徴とする請求項1~5のいずれか1つに記載の歪センサ。
    The first arm is perpendicular to the extending direction of the vibrating beam and has a first portion connected to the vibrating beam;
    The first arm according to any one of claims 1 to 5, wherein the first arm includes a second portion that is parallel to an extending direction of the vibrating beam and is connected to the first portion. The strain sensor described.
  7. 前記第2の部分における前記振動梁の延伸方向の長さは、前記振動梁における前記振動梁の延伸方向の長さの20%以上30%以下であることを特徴とする請求項6に記載の歪センサ。 The length in the extending direction of the vibrating beam in the second portion is 20% or more and 30% or less of the length in the extending direction of the vibrating beam in the vibrating beam. Strain sensor.
  8. 前記第2の部分における前記振動梁の延伸方向の長さは、前記振動梁における前記振動梁の延伸方向の長さの24%以上28%以下であることを特徴とする請求項6に記載の歪センサ。 The length in the extending direction of the vibrating beam in the second portion is 24% or more and 28% or less of the length in the extending direction of the vibrating beam in the vibrating beam. Strain sensor.
  9. 前記第1のアームと前記第2のアームは、前記振動梁の動作方向と逆方向の成分を持って振動する請求項1~8のいずれか1つに記載の歪センサ。 The strain sensor according to any one of claims 1 to 8, wherein the first arm and the second arm vibrate with a component in a direction opposite to an operation direction of the vibrating beam.
  10. 前記振動梁の中央には、前記振動梁の固有振動数に対応した信号が入力される第1の検出部が配置され、
    前記振動梁の端部には、前記振動梁を前記振動梁の厚み方向に伸縮動作させるための電圧が印加される第1の駆動部が配置され、
    前記第1の検出部と前記第1の駆動部は前記振動梁における第3の面上に配置されることを特徴とする請求項1~9のいずれか1つに記載の歪センサ。
    In the center of the vibrating beam, a first detection unit to which a signal corresponding to the natural frequency of the vibrating beam is input is disposed,
    A first driving unit to which a voltage for causing the vibrating beam to extend and contract in the thickness direction of the vibrating beam is applied to an end of the vibrating beam,
    The strain sensor according to any one of claims 1 to 9, wherein the first detection unit and the first drive unit are arranged on a third surface of the vibrating beam.
  11. 前記第1の駆動部は、前記第1のアームと前記振動梁とが接続する第1の接続点と前記第2のアームと前記振動梁とが接続する第2の接続点との間に配置されていることを特徴とする請求項10に記載の歪センサ。 The first driving unit is disposed between a first connection point where the first arm and the vibrating beam are connected and a second connection point where the second arm and the vibrating beam are connected. The strain sensor according to claim 10, wherein the strain sensor is provided.
  12. 前記第1のアームの端部には、前記振動梁の固有振動数に対応した信号が入力される第2の検出部が配置され、
    前記第1のアームの中央には、前記振動梁を前記振動梁の厚み方向に伸縮動作させるための電圧が印加される第2の駆動部が配置され、
    前記第2の検出部と前記第2の駆動部は前記第1のアームにおける第1の面上に配置されることを特徴とする請求項10又は11に記載の歪センサ。
    A second detection unit to which a signal corresponding to the natural frequency of the vibrating beam is input is disposed at the end of the first arm,
    In the center of the first arm, a second drive unit to which a voltage for extending and contracting the vibrating beam in the thickness direction of the vibrating beam is applied is disposed.
    The strain sensor according to claim 10 or 11, wherein the second detection unit and the second drive unit are disposed on a first surface of the first arm.
  13. 前記検出部は、下部電極、圧電体層、上部電極の積層構造から構成され、
    前記駆動部は、下部電極、圧電体層、上部電極の積層構造から構成されていることを特徴とする請求項10~12のいずれか1つに記載の歪センサ。
    The detection unit is composed of a laminated structure of a lower electrode, a piezoelectric layer, and an upper electrode,
    The strain sensor according to any one of claims 10 to 12, wherein the driving unit includes a laminated structure of a lower electrode, a piezoelectric layer, and an upper electrode.
  14. 前記第1のアームにおける前記第1の端及び前記第2のアームにおける前記第1の端は前記固定部から離間していることを特徴とする請求項1~13のいずれか1つに記載の歪センサ。 The first end of the first arm and the first end of the second arm are spaced apart from the fixing portion. Strain sensor.
  15. 前記第1のアームにおける前記第1の端及び前記第2のアームにおける前記第1の端は前記固定部と接触していることを特徴とする請求項1~13のいずれか1つに記載の歪センサ。 The first end of the first arm and the first end of the second arm are in contact with the fixing portion. Strain sensor.
  16. 前記振動梁の第1の端は、スリットを介して前記固定部と複数個所で接続されていることを特徴とする請求項1~15のいずれか1つに記載の歪センサ。 The strain sensor according to any one of claims 1 to 15, wherein the first end of the vibrating beam is connected to the fixed portion at a plurality of positions via a slit.
  17. 前記固定部は、前記振動梁の第1の端及び第2の端と接続する第1の部位と前記振動梁の延伸方向に平行な第2の部位を有し、
    前記第2の部位は、スリットを介して前記第1のアーム及び前記第2のアームの外側に位置していることを特徴とする請求項1~16のいずれか1つに記載の歪センサ。
    The fixing portion has a first portion connected to the first end and the second end of the vibrating beam, and a second portion parallel to the extending direction of the vibrating beam,
    The strain sensor according to any one of claims 1 to 16, wherein the second portion is located outside the first arm and the second arm via a slit.
  18. 前記固定部は半導体基板から構成されていることを特徴とする請求項1~17のいずれか1つに記載の歪センサ。 The strain sensor according to any one of claims 1 to 17, wherein the fixing portion is made of a semiconductor substrate.
  19. 振動梁と、
    前記振動梁と接続された固定部と、
    前記振動梁の第1の面に第1の端が接続され第2の端が自由端である第1のアームと、
    前記振動梁の第2の面に第1の端が接続され第2の端が自由端である第2のアームを有していることを特徴とする歪センサ。
    A vibrating beam;
    A fixed portion connected to the vibrating beam;
    A first arm having a first end connected to the first surface of the vibrating beam and a second end being a free end;
    A strain sensor comprising a second arm having a first end connected to a second surface of the vibrating beam and a second end being a free end.
  20. 前記振動梁は、
    前記振動梁の前記第1の面に第1の端が接続され第2の端が自由端である第3のアームと、
    前記振動梁の前記第2の面に第1の端が接続され第2の端が自由端である第4のアームを有していることを特徴とする請求項19に記載の歪センサ。
    The vibrating beam is
    A third arm having a first end connected to the first surface of the vibrating beam and a second end being a free end;
    20. The strain sensor according to claim 19, further comprising a fourth arm having a first end connected to the second surface of the vibrating beam and a second end being a free end.
  21. 前記第1のアームの自由端と前記第3のアームの自由端との間の距離は、前記第2のアームの自由端と前記第4のアームの自由端との間の距離と同じであることを特徴とする請求項20に記載の歪センサ。 The distance between the free end of the first arm and the free end of the third arm is the same as the distance between the free end of the second arm and the free end of the fourth arm. The strain sensor according to claim 20.
PCT/JP2014/004251 2013-09-06 2014-08-20 Strain sensor WO2015033522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013184636 2013-09-06
JP2013-184636 2013-09-06

Publications (1)

Publication Number Publication Date
WO2015033522A1 true WO2015033522A1 (en) 2015-03-12

Family

ID=52628024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004251 WO2015033522A1 (en) 2013-09-06 2014-08-20 Strain sensor

Country Status (1)

Country Link
WO (1) WO2015033522A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114688951A (en) * 2022-03-30 2022-07-01 湖南腾智机电有限责任公司 Diaphragm pump diaphragm maximum deformation location frock
WO2022266780A1 (en) * 2021-06-23 2022-12-29 Digi Sens Holding Ag Vibrating bridge for a vibrating-wire sensor, and vibrating-wire sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763625A (en) * 1993-08-20 1995-03-10 Mettler Toledo Ag String for power measurement
JP2006518846A (en) * 2003-02-05 2006-08-17 ブルーネル ユニバーシティ Resonant sensor assembly
JP2011164042A (en) * 2010-02-15 2011-08-25 Panasonic Corp Physical quantity sensor
JP2012057999A (en) * 2010-09-07 2012-03-22 Panasonic Corp Strain sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763625A (en) * 1993-08-20 1995-03-10 Mettler Toledo Ag String for power measurement
JP2006518846A (en) * 2003-02-05 2006-08-17 ブルーネル ユニバーシティ Resonant sensor assembly
JP2011164042A (en) * 2010-02-15 2011-08-25 Panasonic Corp Physical quantity sensor
JP2012057999A (en) * 2010-09-07 2012-03-22 Panasonic Corp Strain sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266780A1 (en) * 2021-06-23 2022-12-29 Digi Sens Holding Ag Vibrating bridge for a vibrating-wire sensor, and vibrating-wire sensor
CN114688951A (en) * 2022-03-30 2022-07-01 湖南腾智机电有限责任公司 Diaphragm pump diaphragm maximum deformation location frock

Similar Documents

Publication Publication Date Title
JP5713737B2 (en) Noise sensor with reduced noise
WO2009087858A1 (en) Angular velocity sensor
TWI391662B (en) Vibration type sensor
WO2013076942A1 (en) Angular velocity sensor and detection element used therein
US9383205B2 (en) Vibrator and vibrating gyroscope
WO2015033522A1 (en) Strain sensor
JP5093405B2 (en) Vibrating gyro element
USRE46514E1 (en) Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
JP2012149961A (en) Vibration gyro
JP5407259B2 (en) Angular velocity sensor element
JP5816707B2 (en) Angular velocity detector
JP2011209270A (en) Angular velocity sensor element
JP5976893B1 (en) Sensor
JP2010266321A (en) Multiaxial angular speed sensor
JP6074629B2 (en) Angular velocity sensor element and angular velocity sensor
JP2006153481A (en) Dynamic quantity sensor
JP5287760B2 (en) Angular velocity sensor unit
JP5481545B2 (en) Angular velocity detector
JP2016102649A (en) Strain detector
WO2014030492A1 (en) Inertial force sensor
JP5849190B2 (en) Angular velocity sensor element
JP5471217B2 (en) Angular velocity sensor unit and signal detection method thereof
JP5786141B2 (en) Angular velocity sensor element
JP5849243B2 (en) Angular velocity sensor element
JP5321812B2 (en) Physical quantity sensor and physical quantity measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP