JP2011164042A - Physical quantity sensor - Google Patents

Physical quantity sensor Download PDF

Info

Publication number
JP2011164042A
JP2011164042A JP2010029771A JP2010029771A JP2011164042A JP 2011164042 A JP2011164042 A JP 2011164042A JP 2010029771 A JP2010029771 A JP 2010029771A JP 2010029771 A JP2010029771 A JP 2010029771A JP 2011164042 A JP2011164042 A JP 2011164042A
Authority
JP
Japan
Prior art keywords
vibrator
strain
physical quantity
quantity sensor
vibrating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010029771A
Other languages
Japanese (ja)
Other versions
JP5696285B2 (en
Inventor
Michihiro Miyauchi
美智博 宮内
Tsutomu Nakanishi
努 中西
Komei Fujita
孔明 藤田
Yoshimitsu Ikeyama
佳光 池山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010029771A priority Critical patent/JP5696285B2/en
Publication of JP2011164042A publication Critical patent/JP2011164042A/en
Application granted granted Critical
Publication of JP5696285B2 publication Critical patent/JP5696285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a physical quantity sensor which can be used for substantially all objects to be measured and which can accurately measure a strain or load on the objects to be measured regardless of changes in temperature. <P>SOLUTION: The physical quantity sensor includes: a strain element 28 that produces a strain by external force; and first and second vibrators 22a and 22b having first and second beam-shaped vibration part 23a and 23b, respectively. The first beam-shaped vibration part 23a of the first vibrator 22a has a long side substantially orthogonal to a long side of the second beam-shaped vibration part 23b of the second vibrator 22b, and by detecting a difference in vibration frequency between the two vibrators 22a and 22b, a mechanical quantity acting on the strain element 28 is detected. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、物体に働く歪や荷重を検出する物理量センサに関するものである。   The present invention relates to a physical quantity sensor that detects strain and load acting on an object.

一般に、物体に働く歪や荷重を検出する物理量センサとしては、図5(a)(b)に示すようなものが知られている(特許文献1参照)。図5(a)は従来の物理量センサの斜視図である。この図5(a)において、1は水晶片2からなる振動子で、座標軸X、Y、ZのX−Z面を主面とするZ方向の両端部両主面にそれぞれ対をなす電極3,3´と電極4,4´を形成して、これらをそれぞれ第1の振動部、第2の振動部としているものである。そして、この振動子1は厚み、すなわちY方向を一定として略正方形状に加工され、かつ電極3,3´と電極4,4´はそれぞれ厚みすべり振動の主振動が励起されるX軸方向に長く形成されている。従って、第1の振動部と第2の振動部は同一の振動周波数で振動することになる。図5(b)はこの物理量センサを使用した圧力センサシステムの構成を示すブロック図を示したもので、この図5(b)において、5は被測定体、6は前記第1の振動部と接続した第1の発振回路、7は前記第2の振動部と接続した第2の発振回路、8はミキサ、9は演算回路、10は表示器である。   In general, as physical quantity sensors for detecting strain and load acting on an object, those shown in FIGS. 5A and 5B are known (see Patent Document 1). FIG. 5A is a perspective view of a conventional physical quantity sensor. In FIG. 5 (a), reference numeral 1 denotes a vibrator composed of a crystal piece 2, and electrodes 3 that form pairs on both principal surfaces in both ends in the Z direction with the XZ plane of coordinate axes X, Y, and Z as the principal surface. , 3 'and electrodes 4 and 4' are formed, and these are used as a first vibrating part and a second vibrating part, respectively. The vibrator 1 is processed into a substantially square shape with a constant thickness, that is, the Y direction, and the electrodes 3, 3 ′ and the electrodes 4, 4 ′ are each in the X-axis direction where the main vibration of thickness shear vibration is excited. It is formed long. Therefore, the first vibration part and the second vibration part vibrate at the same vibration frequency. FIG. 5B is a block diagram showing the configuration of a pressure sensor system using this physical quantity sensor. In FIG. 5B, 5 is a measured object, 6 is the first vibrating section, and The connected first oscillation circuit, 7 is a second oscillation circuit connected to the second vibration unit, 8 is a mixer, 9 is an arithmetic circuit, and 10 is a display.

図5(a)(b)において、被測定体5に装着した振動子1における第1の振動部にX方向の外力Q1が加わったとすると、第1の振動部には外力Q1と同方向の圧縮力q1が作用する。これと同時に振動子1における第2の振動部に前記外力Q1と反対方向の外力Q2が加わったとすると、第2の振動部には外力Q2と同方向の伸長力q2が作用する。これにより、第1の振動部には圧縮力q1による歪が発生し、第1の振動部を含む第1の発振回路6の発振周波数が例えば、f0からf0−f1に変化する。また、第2の振動部には伸長力q2による歪が発生し、第2の振動部を含む第2の発振回路7の発振周波数がf0からf0+f2に変化する。これら2つの発振回路の出力をミキサ8に入力すると、ミキサ8からこれら2つの発振回路の発振周波数の差△=(f0+f2)−(f0−f1)=f1+f2の周波数を有する信号が出力される。演算回路9はこの信号の周波数を重量値に換算して表示器10にデジタル値として表示させる。これにより、第1の振動部または第2の振動部のみを有する物理量センサを使用する場合よりも、大きな周波数差を得ることができるため、測定感度を高めることができる。さらに、温度変化による発振周波数の変動をキャンセルできるため、温度変化にかかわらず歪や荷重を正確に測定できるものである。 In FIG. 5 (a) (b), an external force to Q 1 X direction is applied to the first vibrating portion in the vibrator 1 attached to the object to be measured 5, the first vibrating portion and the external force Q 1 the A compressive force q 1 in the direction acts. At the same time, if an external force Q 2 in the direction opposite to the external force Q 1 is applied to the second vibration portion of the vibrator 1, an extension force q 2 in the same direction as the external force Q 2 acts on the second vibration portion. . As a result, distortion due to the compressive force q 1 occurs in the first vibration part, and the oscillation frequency of the first oscillation circuit 6 including the first vibration part changes from, for example, f 0 to f 0 −f 1 . . Further, the second vibrating part distortion occurs by extension force q 2, the oscillation frequency of the second oscillator circuit 7 including a second vibrating section changes from f 0 to f 0 + f 2. When the outputs of these two oscillation circuits are input to the mixer 8, the difference between the oscillation frequencies of the two oscillation circuits from the mixer 8 is Δ = (f 0 + f 2 ) − (f 0 −f 1 ) = f 1 + f 2 Is output. The arithmetic circuit 9 converts the frequency of this signal into a weight value and displays it on the display 10 as a digital value. Thereby, since a larger frequency difference can be obtained than in the case of using a physical quantity sensor having only the first vibration part or the second vibration part, measurement sensitivity can be increased. Furthermore, since fluctuations in the oscillation frequency due to temperature changes can be canceled, strain and load can be accurately measured regardless of temperature changes.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.

特開昭61−57823号公報JP-A 61-57823

しかしながら、図5(a)(b)に示した従来の物理量センサにおいては、第1の振動部と第2の振動部が互いに平行に配置されているため、この物理量センサを適用できる範囲がきわめて限定されるという問題点があった。図6(a)〜(c)を用いてこの問題点について説明する。図6(a)は図5(a)に示した従来の物理量センサの振動子1を、一端が固定され、かつ他端に鉛直上向きの外力が加えられている梁11の側面上に接続した状態を示す。このとき、前記振動子1は梁の中立面12を跨ぐように配置されているものとする。このような場合には、前記振動子1における第1の振動部には圧縮力が働くとともに、第2の振動部には伸長力が働くため、第1の振動部を含む第1の発振回路6の発振周波数は例えば、f0からf0−f1に変化する。また、第2の振動部を含む第2の発振回路7の発振周波数はf0からf0+f2に変化する。これら2つの発振回路の出力の差をとることにより、第1の振動部または第2の振動部のみを有する物理量センサを使用する場合よりも、大きな周波数差を得ることができるため、測定感度を高めることができる。さらに、温度変化による発振周波数の変動をキャンセルできるため、温度変化にかかわらず歪や荷重を正確に測定できるものである。 However, in the conventional physical quantity sensor shown in FIGS. 5A and 5B, the first vibration part and the second vibration part are arranged in parallel to each other. There was a problem of being limited. This problem will be described with reference to FIGS. FIG. 6 (a) connects the vibrator 1 of the conventional physical quantity sensor shown in FIG. 5 (a) on the side surface of the beam 11 having one end fixed and a vertical upward external force applied to the other end. Indicates the state. At this time, it is assumed that the vibrator 1 is disposed so as to straddle the neutral surface 12 of the beam. In such a case, since the compressive force acts on the first vibration part in the vibrator 1 and the extension force acts on the second vibration part, the first oscillation circuit including the first vibration part oscillation frequency of 6, for example, changes from f 0 to f 0 -f 1. The oscillation frequency of the second oscillator circuit 7 including a second vibrating section changes from f 0 to f 0 + f 2. By taking the difference between the outputs of these two oscillation circuits, it is possible to obtain a larger frequency difference than when using a physical quantity sensor having only the first vibration part or the second vibration part. Can be increased. Furthermore, since fluctuations in the oscillation frequency due to temperature changes can be canceled, strain and load can be accurately measured regardless of temperature changes.

図6(b)は従来の物理量センサの振動子1が、図6(a)に示した梁11の側面上で中立面12の上方に配置された状態を示す。このとき、前記振動子1における第1の振動部と第2の振動部の両方に圧縮力が働くため、第1の振動部を含む第1の発振回路6の発振周波数は例えば、f0からf0−f1に、第2の振動部を含む第2の発振回路7の発振周波数はf0からf0−f1´に変化する。しかしながら、これら2つの発振回路の出力の差は△=(f0−f1´)−(f0−f1)=f1−f1´となるため、第1の振動部または第2の振動部のみを有する物理量センサを使用する場合よりも、周波数差が小さくなり、測定感度は低下することになる。 FIG. 6B shows a state in which the vibrator 1 of the conventional physical quantity sensor is disposed above the neutral surface 12 on the side surface of the beam 11 shown in FIG. At this time, since the compressive force acts on both the first vibrating portion and the second vibrating portion in the vibrator 1, the oscillation frequency of the first oscillation circuit 6 including the first vibrating portion is, for example, from f 0. to f 0 -f 1, the oscillation frequency of the second oscillator circuit 7 including a second vibrating section changes from f 0 to f 0 -f 1 '. However, since the difference between the outputs of these two oscillation circuits is Δ = (f 0 −f 1 ′) − (f 0 −f 1 ) = f 1 −f 1 ′, the first vibrating section or the second The frequency difference is smaller than when a physical quantity sensor having only a vibrating part is used, and the measurement sensitivity is lowered.

図6(c)は図5(a)に示した従来の物理量センサの振動子1を、一端が固定され、かつ他端に鉛直下向きの外力が加えられている柱13の側面上に配置した状態を示す。このとき、前記振動子1における第1の振動部と第2の振動部の両方にほぼ同一の圧縮力が働くため、第1の振動部を含む第1の発振回路6の発振周波数は例えば、f0からf0−f1に、第2の振動部を含む第2の発振回路7の発振周波数もf0からf0−f1に変化する。よって、これら2つの発振回路の出力の差は△=(f0−f1)−(f0−f1)=0となるため、外力の測定が不可能になってしまう。このように、従来の物理量センサの振動子1は互いに平行に配置された第1、第2の振動部の各々に互いに逆方向の外力が働くという特殊な場合以外では、歪や荷重の測定感度が低下したり、測定が可能になったりするため、この物理量センサを適用できる範囲がきわめて限定されるという問題点があった。 FIG. 6C shows the vibrator 1 of the conventional physical quantity sensor shown in FIG. 5A arranged on the side surface of the column 13 with one end fixed and a vertical downward external force applied to the other end. Indicates the state. At this time, since substantially the same compressive force acts on both the first vibrating portion and the second vibrating portion in the vibrator 1, the oscillation frequency of the first oscillation circuit 6 including the first vibrating portion is, for example, from f 0 to f 0 -f 1, changes the oscillation frequency of the second oscillator circuit 7 including a second vibrating section from f 0 to f 0 -f 1. Therefore, since the difference between the outputs of these two oscillation circuits is Δ = (f 0 −f 1 ) − (f 0 −f 1 ) = 0, the external force cannot be measured. As described above, the transducer 1 of the conventional physical quantity sensor has a sensitivity for measuring strain and load, except in a special case where external forces acting in opposite directions act on the first and second vibrating parts arranged in parallel to each other. However, the range in which this physical quantity sensor can be applied is extremely limited.

本発明は上記従来の問題点を解決するもので、実質的にすべての被測定体に適用して、被測定体に働く歪や荷重を温度変化にかかわらず高感度で、かつ高精度に測定することができる物理量センサを提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, and is applied to virtually all measured objects to measure the strain and load acting on the measured objects with high sensitivity and high accuracy regardless of temperature changes. It is an object of the present invention to provide a physical quantity sensor that can be used.

上記目的を達成するために、本発明は以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、外力により歪を生ずる起歪体と、前記起歪体上に配置され、かつ歪量に応じて振動周波数が変化する第1の梁状の振動部を有する第1の振動子と、前記起歪体上に配置され、かつ歪量に応じて振動周波数が変化する第2の梁状の振動部を有する第2の振動子とを備え、前記第1の振動子における第1の梁状の振動部の長手方向と第2の振動子における第2の梁状の振動部の長手方向を略直交させるとともに、前記第1の振動子の振動周波数と前記第2の振動子の振動周波数との差を検出することにより、前記起歪体に作用する力学量を検出するようにしたもので、この構成によれば、第1の振動子における第1の梁状の振動部の長手方向と第2の振動子における第2の梁状の振動部の長手方向を略直交させているため、起歪体に外力が加えられたとき、第1の振動子に働く力と第2の振動子に働く力の方向は常に逆方向となるものであり、そして、第1の振動子の振動周波数と第2の振動子の振動周波数との差を検出することにより、前記起歪体に作用する力学量を検出するようにしているため、実質的にすべての被測定体に適用することができ、これにより、被測定体に働く歪や荷重を温度変化にかかわらず高感度で、かつ高精度に測定することができるという作用効果を有するものである。   The invention according to claim 1 of the present invention includes a strain generating body that generates strain due to an external force, and a first beam-shaped vibrating section that is disposed on the strain generating body and has a vibration frequency that changes in accordance with the amount of strain. And a second vibrator having a second beam-like vibrating portion that is arranged on the strain generating body and has a vibration frequency that changes in accordance with the amount of strain. The longitudinal direction of the first beam-like vibration part in one vibrator and the longitudinal direction of the second beam-like vibration part in the second vibrator are substantially orthogonal, and the vibration frequency of the first vibrator A mechanical quantity acting on the strain generating body is detected by detecting a difference from the vibration frequency of the second vibrator. According to this configuration, the first vibrator in the first vibrator is detected. The longitudinal direction of the beam-like vibrating portion of the second vibrator and the longitudinal direction of the second beam-like vibrating portion of the second vibrator are substantially orthogonal to each other. Therefore, when an external force is applied to the strain generating body, the direction of the force acting on the first vibrator and the force acting on the second vibrator are always opposite to each other, and the first vibrator By detecting the difference between the vibration frequency of the second vibrator and the vibration frequency of the second vibrator, the mechanical quantity acting on the strain generating body is detected, so that the present invention is applied to substantially all measured objects. Thus, the strain and load acting on the measurement object can be measured with high sensitivity and high accuracy regardless of temperature change.

本発明の請求項2に記載の発明は、特に、第1の振動子と第2の振動子とを単一の半導体基板上に形成したもので、この構成によれば、物理量センサを小形化できるとともに、2つの振動子の実装ばらつきをなくすことができ、これにより、被測定体の微小部分に働く歪や荷重を温度変化にかかわらず高感度で、かつ高精度に測定することができるという作用効果を有するものである。   According to the second aspect of the present invention, the first vibrator and the second vibrator are formed on a single semiconductor substrate. According to this configuration, the physical quantity sensor can be miniaturized. In addition, the mounting variation of the two vibrators can be eliminated, and this makes it possible to measure the strain and load acting on the minute part of the measured object with high sensitivity and high accuracy regardless of temperature changes. It has a working effect.

以上のように本発明の物理量センサは、外力により歪を生ずる起歪体と、前記起歪体上に配置され、かつ歪量に応じて振動周波数が変化する第1の梁状の振動部を有する第1の振動子と、前記起歪体上に配置され、かつ歪量に応じて振動周波数が変化する第2の梁状の振動部を有する第2の振動子とを備え、前記第1の振動子における第1の梁状の振動部の長手方向と第2の振動子における第2の梁状の振動部の長手方向を略直交させるとともに、前記第1の振動子の振動周波数と前記第2の振動子の振動周波数との差を検出することにより、前記起歪体に作用する力学量を検出するようにしたもので、前記第1の振動子における第1の梁状の振動部の長手方向と第2の振動子における第2の梁状の振動部の長手方向を略直交させているため、前記起歪体に外力が加えられたとき、第1の振動子に働く力と第2の振動子に働く力の方向は常に逆方向となるものであり、そして、第1の振動子の振動周波数と第2の振動子の振動周波数との差を検出することにより、前記起歪体に作用する力学量を検出するようにしているため、実質的にすべての被測定体に適用することができ、これにより、被測定体に働く歪や荷重を温度変化にかかわらず高感度で、かつ高精度に測定することができるという優れた効果を奏するものである。   As described above, the physical quantity sensor of the present invention includes a strain generating body that generates strain due to an external force, and a first beam-shaped vibrating section that is arranged on the strain generating body and whose vibration frequency changes according to the strain amount. A first vibrator having a second beam-like vibrating portion that is disposed on the strain generating body and has a vibration frequency that changes according to the amount of strain. The longitudinal direction of the first beam-like vibration part in the vibrator of FIG. 5 and the longitudinal direction of the second beam-like vibration part in the second vibrator are substantially orthogonal, and the vibration frequency of the first vibrator and the A mechanical quantity acting on the strain-generating body is detected by detecting a difference from the vibration frequency of the second vibrator, and the first beam-like vibrating portion of the first vibrator. And the longitudinal direction of the second beam-like vibrating portion of the second vibrator are substantially orthogonal to each other. When an external force is applied to the strain generating body, the direction of the force acting on the first vibrator and the force acting on the second vibrator are always in opposite directions, and the vibration of the first vibrator Since the mechanical quantity acting on the strain generating body is detected by detecting the difference between the frequency and the vibration frequency of the second vibrator, it can be applied to substantially all measured objects. Thus, the strain and load acting on the measurement object can be measured with high sensitivity and high accuracy regardless of the temperature change.

(a)本発明の実施の形態1における物理量センサの上面図、(b)(a)のA部拡大図、(c)(b)のB−B線断面図(A) Top view of physical quantity sensor according to Embodiment 1 of the present invention, (b) A-part enlarged view of (a), (c) (b) BB sectional view (a)第1,第2の振動子における梁状の振動部が弦振動している状態で、被測定体に外力が働いた時の第1,第2の振動子の振動周波数の変化を示した図、(b)被測定体に外力が働いた時の第1,第2の振動子の振動周波数差の変化を示した図(A) Changes in the vibration frequency of the first and second vibrators when an external force is applied to the object to be measured in a state where the beam-like vibration parts of the first and second vibrators are vibrating in a string. The figure shown, (b) The figure which showed the change of the vibration frequency difference of the 1st, 2nd vibrator when external force acted on the to-be-measured body (a)本発明の実施の形態2における物理量センサの上面図、(b)(a)のC部拡大図、(c)(b)のD−D線断面図(A) Top view of physical quantity sensor according to Embodiment 2 of the present invention, (b) Enlarged view of part C of (a), (c) Cross sectional view along line DD of (b) (a)本発明の実施の形態3における物理量センサの上面図、(b)(a)のE部拡大図、(c)(b)のG−G線断面図(A) Top view of physical quantity sensor in Embodiment 3 of the present invention, (b) Enlarged view of E part of (a), (c) (b) GG cross-sectional view (a)従来の物理量センサの斜視図、(b)同物理量センサを使用した圧力センサシステムの構成を示すブロック図(A) Perspective view of conventional physical quantity sensor, (b) Block diagram showing the configuration of a pressure sensor system using the physical quantity sensor (a)同物理量センサの振動子を、一端が固定され、かつ他端に鉛直上向きの外力が加えられている梁の側面上に中立面を跨いで適用した状態を示す図、(b)同物理量センサの振動子を、一端が固定され、かつ他端に鉛直上向きの外力が加えられている梁の側面上に中立面の上方に位置して配置した状態を示す図、(c)同物理量センサの振動子を、一端が固定され、かつ他端に鉛直下向きの外力が加えられている柱の側面上に配置した状態を示す図(A) The figure which shows the state which applied the vibrator | oscillator of the same physical quantity sensor across the neutral surface on the side of the beam where one end is fixed and the vertical upward external force is applied to the other end, (b) The figure which shows the state which has arrange | positioned the vibrator | oscillator of the physical quantity sensor located on the side surface of the beam where one end is fixed and the external force is applied to the other end above the neutral plane. The figure which shows the state which has arrange | positioned the vibrator | oscillator of the same physical quantity sensor on the side surface of the pillar to which one end is fixed and the external force perpendicular | vertical downward is applied to the other end.

(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1に記載の発明について説明する。図1(a)は本発明の実施の形態1における物理量センサの上面図、図1(b)は図1(a)のA部拡大図、図1(c)は図1(b)のB−B線断面図である。図1(a)〜(c)において、21は物理量センサ、22aは第1の振動子で、この第1の振動子22aはシリコン等の半導体基板をエッチング処理して形成され、かつ力学量の作用により固有振動数が変化する第1の梁状の振動部23aと、前記第1の梁状の振動部23aを取り囲み、前記第1の梁状の振動部23aの両端を支持している固定部24aとにより構成されている。また、前記第1の梁状の振動部23aの表面の中央部には順に下部電極、PZT等からなる圧電体層、上部電極からなる駆動素子25aが形成され、かつ前記第1の梁状の振動部23aの端部には同じく順に下部電極、PZT等からなる圧電体層、上部電極からなる検出素子26aが形成され、そして、前記駆動素子25a、検出素子26aは配線パターン(図示せず)によりランド27aに電気的に接続されている。
(Embodiment 1)
Hereinafter, the first aspect of the present invention will be described with reference to the first embodiment. 1A is a top view of the physical quantity sensor according to Embodiment 1 of the present invention, FIG. 1B is an enlarged view of a portion A in FIG. 1A, and FIG. 1C is B in FIG. FIG. 1A to 1C, reference numeral 21 denotes a physical quantity sensor, 22a denotes a first vibrator, and the first vibrator 22a is formed by etching a semiconductor substrate such as silicon and has a mechanical quantity. The first beam-like vibrating portion 23a whose natural frequency changes by the action and the first beam-like vibrating portion 23a are surrounded and fixed to support both ends of the first beam-like vibrating portion 23a. Part 24a. In addition, a lower electrode, a piezoelectric layer made of PZT or the like, and a driving element 25a made of an upper electrode are formed in the center of the surface of the first beam-like vibrating portion 23a, and the first beam-like vibrating portion 23a is formed. Similarly, a lower electrode, a piezoelectric layer made of PZT or the like, and a detection element 26a made of an upper electrode are formed in order at the end of the vibration part 23a, and the drive element 25a and the detection element 26a have wiring patterns (not shown). Is electrically connected to the land 27a.

上記と同様にして、22bは第2の振動子で、この第2の振動子22bはシリコン等の半導体基板をエッチング処理して形成され、かつ力学量の作用により固有振動数が変化する第2の梁状の振動部23bと、前記第2の梁状の振動部23bを取り囲み、前記第2の梁状の振動部23bの両端を支持している固定部24bとにより構成されている。また、前記第2の梁状の振動部23bの表面の中央部には順に下部電極、PZT等からなる圧電体層、上部電極からなる駆動素子25bが形成され、かつ前記第2の梁状の振動部23bの端部には同じく順に下部電極、PZT等からなる圧電体層、上部電極からなる検出素子26bが形成され、そして、前記駆動素子25b、検出素子26bは配線パターン(図示せず)によりランド27bに電気的に接続されている。   In the same manner as described above, 22b is a second vibrator, and this second vibrator 22b is formed by etching a semiconductor substrate such as silicon, and the second vibration frequency is changed by the action of a mechanical quantity. The beam-like vibrating portion 23b and a fixing portion 24b surrounding the second beam-like vibrating portion 23b and supporting both ends of the second beam-like vibrating portion 23b. Further, a lower electrode, a piezoelectric layer made of PZT or the like, and a drive element 25b made of an upper electrode are formed in the center of the surface of the second beam-like vibrating portion 23b, and the second beam-like vibrating portion 23b is formed. Similarly, a lower electrode, a piezoelectric layer made of PZT or the like, and a detection element 26b made of an upper electrode are formed in order at the end of the vibration part 23b, and the drive element 25b and the detection element 26b are formed with a wiring pattern (not shown). Is electrically connected to the land 27b.

そして、前記第1の振動子22aの底面は、起歪体28に発生する歪が第1の振動子22aに伝達されるようにAu−Au接合等の金属系接合材やエポキシ樹脂等の剛性を有する物質29aで接続固定されている。このとき、前記第1の振動子22aにおける梁状の振動部23aの長さ方向は前記起歪体28の長さ方向と略平行に配置されている。   The bottom surface of the first vibrator 22a is rigid such as a metal-based bonding material such as an Au-Au bond or an epoxy resin so that the strain generated in the strain generating body 28 is transmitted to the first vibrator 22a. It is fixedly connected by a substance 29a having At this time, the length direction of the beam-like vibrating portion 23 a in the first vibrator 22 a is arranged substantially parallel to the length direction of the strain generating body 28.

上記と同様にして、前記第2の振動子22bの底面は、起歪体28に発生する歪が第2の振動子22bに伝達されるようにAu−Au接合等の金属系接合材やエポキシ樹脂等の剛性を有する物質29bで接続固定されている。このとき、前記第2の振動子22bにおける梁状の振動部23bの長さ方向は前記起歪体28の幅方向と略平行に配置されているものである。   In the same manner as described above, the bottom surface of the second vibrator 22b is made of a metal-based bonding material such as an Au-Au joint or epoxy so that the strain generated in the strain generating body 28 is transmitted to the second vibrator 22b. It is connected and fixed by a substance 29b having rigidity such as resin. At this time, the length direction of the beam-like vibrating portion 23b in the second vibrator 22b is arranged substantially parallel to the width direction of the strain generating body 28.

30は配線パターン(図示せず)により前記第1,第2の振動子22a,22bと電気的に接続された信号処理基板で、この信号処理基板30は前記起歪体28上に配置されている。このとき、前記起歪体28上に発生する歪が信号処理基板30に伝達されて信号処理基板30の機能が損なわれることのないように、信号処理基板30はシリコーン樹脂等の可撓性の大きい物質で起歪体28に接続されている。このように構成された物理量センサ21の起歪体28を被測定体(図示せず)に固定配置する。   Reference numeral 30 denotes a signal processing board electrically connected to the first and second vibrators 22a and 22b by a wiring pattern (not shown). The signal processing board 30 is disposed on the strain generating body 28. Yes. At this time, the signal processing board 30 is made of a flexible material such as silicone resin so that the distortion generated on the strain generating body 28 is not transmitted to the signal processing board 30 and the function of the signal processing board 30 is not impaired. A large substance is connected to the strain body 28. The strain body 28 of the physical quantity sensor 21 configured as described above is fixedly arranged on a measurement object (not shown).

上記構成において、信号処理基板30から第1の振動子22aの駆動素子25aに第1の梁状の振動部23aの固有振動数faに近接した周波数を持つ交流電圧が印加されると、駆動素子25aは第1の梁状の振動部23aの長手方向に伸縮振動を開始する。この伸縮振動によって第1の梁状の振動部23aは自身が持つ固有振動数faで上下に弦振動を開始する。この弦振動は検出素子26aによって受信され、そして、この検出素子26aから第1の梁状の振動部23aの固有振動数faと等しい周波数を持つ交流信号が発生する。この交流信号は信号処理基板30内で位相調整、増幅されて駆動素子25aにフィードバックされる。これにより、第1の梁状の振動部23aはその固有振動数faに等しい周波数で弦振動を持続する。同様にして、信号処理基板30の信号処理により、第2の梁状の振動部23bはその固有振動数fbに等しい周波数で弦振動を持続することになる。 In the above structure, when an AC voltage having a frequency close from the signal processing board 30 to the natural frequency f a of the first beam-like vibrating portion 23a to the driving element 25a of the first vibrator 22a is applied, the drive The element 25a starts stretching vibration in the longitudinal direction of the first beam-like vibrating portion 23a. The first beam-like vibrating portion 23a by the stretching vibration starts string vibrates vertically at the natural frequency f a with itself. The string vibration is received by the detection element 26a, and AC signals from the detecting elements 26a having a frequency equal to the natural frequency f a of the first beam-like vibrating portion 23a is generated. This AC signal is phase-adjusted and amplified in the signal processing board 30 and fed back to the drive element 25a. Thus, the first beam-like vibrating portion 23a lasts string vibration at a frequency equal to the natural frequency f a. Similarly, the signal processing of the signal processing board 30, the second beam-like vibrating portion 23b will be to sustain the string vibration at a frequency equal to the natural frequency f b.

図2(a)は、上記第1,第2の振動子22a,22bにおける第1,第2の梁状の振動部23a,23bが上下に弦振動している状態で、被測定体に外力が働いた時の第1,第2の振動子22a,22bの振動周波数の変化を示した図である。   FIG. 2A shows an external force applied to the measured object in a state where the first and second beam-like vibrating portions 23a and 23b of the first and second vibrators 22a and 22b vibrate vertically. It is the figure which showed the change of the vibration frequency of the 1st, 2nd vibrator | oscillators 22a, 22b when is working.

今、起歪体28に長手方向の引張り力Fが印加されたとすると、起歪体28は長手方向に伸びるとともに、起歪体28のポアソン比に相当する長さだけ幅方向に縮む。これにより、前記第1の振動子22aにおける第1の梁状の振動部23aに伸張力が働くため、第1の振動子22aの振動周波数31aはfaからfa+fa´に上昇する。これと同時に、前記第2の振動子22bにおける第2の梁状の振動部23bには圧縮力が働くため、第2の振動子22bの振動周波数31bはfbからfb−fb´に低下することになる。上記とは逆に、起歪体28に長手方向の圧縮力−Fが印加されたとすると、起歪体28は長手方向に縮むとともに、起歪体28のポアソン比に相当する長さだけ幅方向に伸びることになる。これにより、前記第1の振動子22aにおける第1の梁状の振動部23aに圧縮力が働くため、第1の梁状の振動部23aの振動周波数はfaからfa−fa´に低下する。これと同時に、前記第2の振動子22bにおける第2の梁状の振動部23bに張力が働くため、第2の梁状の振動部23bの振動周波数はfbからfb+fb´に上昇することになる。 Assuming that a tensile force F in the longitudinal direction is applied to the strain body 28, the strain body 28 extends in the longitudinal direction and contracts in the width direction by a length corresponding to the Poisson's ratio of the strain body 28. Accordingly, since the stretching force to the first beam-like vibrating portion 23a acts in the first vibrator 22a, the vibration frequency 31a of the first vibrator 22a increases to f a + f a 'from f a. At the same time, since the compressive force to the second beam-like vibrating portion 23b acts in the second vibrator 22b, the vibration frequency 31b of the second vibrator 22b to f b -f b 'from f b Will be reduced. On the contrary, if a compressive force −F in the longitudinal direction is applied to the strain generating body 28, the strain generating body 28 contracts in the longitudinal direction, and the width direction is the length corresponding to the Poisson's ratio of the strain generating body 28. Will grow. Thus, since the compressive force to the first beam-like vibrating portion 23a acts in the first vibrator 22a, the vibration frequency of the first beam-like vibrating portion 23a to f a -f a 'from f a descend. At the same time, since the tension acting on the second beam-like vibrating portion 23b of the second vibrator 22b, the vibration frequency of the second beam-like vibrating portion 23b is increased to f b + f b 'from f b Will do.

図2(a)において、第1の振動子22aの振動周波数31aと第2の振動子22bの振動周波数31bとが交差する、すなわちこれら2つの振動周波数が一致すると、前記第1の振動子22aの振動と、第2の振動子22bの振動とが互いに干渉することになり、これにより、外力や歪の測定精度が低下してしまうという問題が発生するものである。そのため、本発明の実施の形態1では、外力または歪を測定しようとする範囲内で、第1の振動子22aの振動周波数31aと第2の振動子22bの振動周波数31bとが交差しないように、第1の振動子22aの振動周波数faと、第2の振動子22bの振動周波数fbとに差を設けたものである。 In FIG. 2A, when the vibration frequency 31a of the first vibrator 22a and the vibration frequency 31b of the second vibrator 22b intersect, that is, when these two vibration frequencies match, the first vibrator 22a. And the vibration of the second vibrator 22b interfere with each other, which causes a problem that the measurement accuracy of external force and strain is lowered. Therefore, in the first embodiment of the present invention, the vibration frequency 31a of the first vibrator 22a and the vibration frequency 31b of the second vibrator 22b do not intersect within the range in which the external force or strain is to be measured. it is obtained by providing a vibration frequency f a of the first resonator 22a, the difference between the oscillation frequency f b of the second vibrator 22b.

第1と第2の振動子22a,22bの第1と第2の梁状の振動部23a,23bから発生する交流信号は信号処理基板30内で処理され、これら2つの交流信号の振動周波数差△を有する信号が出力される。   The AC signals generated from the first and second beam-like vibrating portions 23a and 23b of the first and second vibrators 22a and 22b are processed in the signal processing board 30, and the difference in vibration frequency between these two AC signals. A signal having Δ is output.

図2(b)は、被測定体に外力が働いた時の第1,第2の振動子22a,22bの振動周波数差32の変化を示した図である。たとえば、起歪体28に長手方向の引張り力Fが印加されたとすると、振動周波数差△は△=(fa+fa´)−(fb−fb´)=(fa−fb)+(fa´+fb´)となる。外力により変化するこの式の第2項を信号処理基板30内で処理することにより、第1の振動部または第2の振動部のみを有する物理量センサを使用する場合よりも、大きな周波数差を得ることができる。このようにして、出力される固有振動数差を測定することにより起歪体28に働く歪や荷重を高感度で測定できるものである。そして、前記起歪体28に外力が加えられたとき、第1の振動子22aに働く力と第2の振動子22bに働く力の方向は、ポアソン比により常に逆方向となるため、実質的にすべての被測定体に適用することができるものである。一方、第1,第2の振動子22a,22bは同一素材の半導体基板から形成しているため、温度変化に対する振動周波数の変化の方向と変化率は同一となる。これにより、温度変化による振動周波数の変動をキャンセルできるため、温度変化にかかわらず歪や荷重を正確に測定できるものである。 FIG. 2B is a diagram showing a change in the vibration frequency difference 32 between the first and second vibrators 22a and 22b when an external force is applied to the object to be measured. For example, if the longitudinal direction of the tensile force F is applied to the strain body 28, the vibration frequency difference △ is △ = (f a + f a ') - (f b -f b') = (f a -f b) + (F a ′ + f b ′). By processing the second term of this equation that changes due to an external force in the signal processing board 30, a larger frequency difference is obtained than when a physical quantity sensor having only the first vibration part or the second vibration part is used. be able to. In this way, by measuring the output natural frequency difference, the strain and load acting on the strain generating body 28 can be measured with high sensitivity. When an external force is applied to the strain body 28, the direction of the force acting on the first vibrator 22a and the force acting on the second vibrator 22b is always opposite due to the Poisson's ratio. It can be applied to all measured objects. On the other hand, since the first and second vibrators 22a and 22b are formed from the same material semiconductor substrate, the direction and rate of change of the vibration frequency with respect to the temperature change are the same. As a result, fluctuations in the vibration frequency due to temperature changes can be canceled, so that strain and load can be accurately measured regardless of temperature changes.

(実施の形態2)
以下、実施の形態2を用いて、本発明の特に請求項2に記載の発明について説明する。図3(a)は本発明の実施の形態2における物理量センサの上面図、図3(b)は図3(a)のC部拡大図、図3(c)は図3(b)のD−D線断面図である。なお、この実施の形態2においては、上記した実施の形態1の構成と同様の構成を有するものについては、同一符号を付しており、その説明は省略する。
(Embodiment 2)
The second aspect of the present invention will be described below with reference to the second embodiment. 3A is a top view of the physical quantity sensor according to the second embodiment of the present invention, FIG. 3B is an enlarged view of a portion C in FIG. 3A, and FIG. 3C is D in FIG. 3B. FIG. In the second embodiment, components having the same configurations as those of the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.

図3(a)〜(c)において、33は物理量センサであり、そして、本発明の実施の形態2が上記した本発明の実施の形態1と相違する点は、単一の半導体基板34上に第1の梁状の振動部23aと、第2の梁状の振動部23bと、前記第1,第2の梁状の振動部23a,23bを取り囲み、かつ前記第1,第2の梁状の振動部23a,23bの両端を支持している固定部35を形成し、そして、駆動素子25a,25b、検出素子26a,26bを配線パターン(図示せず)によりランド36に電気的に接続するとともに、前記半導体基板34の底面を、起歪体28に発生する歪が第1の振動子22aに伝達されるようにAu−Au接合等の金属系接合材やエポキシ樹脂等の剛性を有する物質37で接続固定した点である。このとき、本発明の実施の形態2においても、上記した本発明の実施の形態1の場合と同様に、前記第1の梁状の振動部23aの長さ方向は前記起歪体28の長さ方向と略平行に配置され、そして、前記第2の梁状の振動部23bの長さ方向は前記起歪体28の幅方向と略平行に配置されているものである。   3A to 3C, reference numeral 33 denotes a physical quantity sensor, and the second embodiment of the present invention is different from the first embodiment of the present invention described above on a single semiconductor substrate 34. Surrounding the first beam-like vibrating portion 23a, the second beam-like vibrating portion 23b, and the first and second beam-like vibrating portions 23a, 23b, and the first and second beams. The fixed portions 35 that support both ends of the oscillating portions 23a and 23b are formed, and the drive elements 25a and 25b and the detection elements 26a and 26b are electrically connected to the land 36 by a wiring pattern (not shown). In addition, the bottom surface of the semiconductor substrate 34 has rigidity such as metal-based bonding material such as Au-Au bonding or epoxy resin so that strain generated in the strain generating body 28 is transmitted to the first vibrator 22a. This is the point where the material 37 is connected and fixed. At this time, also in the second embodiment of the present invention, the length direction of the first beam-like vibrating portion 23a is the length of the strain generating body 28, as in the first embodiment of the present invention. The length direction of the second beam-like vibrating part 23b is arranged substantially parallel to the width direction of the strain generating body 28.

このような構成とすることにより、物理量センサ33を小形化できるとともに、第1の梁状の振動部23aに対して第2の梁状の振動部23bを実装ばらつきなく正確に直交配置することができ、これにより、被測定体の微小部分に働く歪や荷重を温度変化にかかわらず高感度で、かつ高精度に測定することができるという効果が得られるものである。   With such a configuration, the physical quantity sensor 33 can be reduced in size, and the second beam-shaped vibrating portion 23b can be accurately and orthogonally arranged without mounting variation with respect to the first beam-shaped vibrating portion 23a. Thus, it is possible to obtain an effect that the strain and the load acting on the minute portion of the measurement object can be measured with high sensitivity and high accuracy regardless of the temperature change.

(実施の形態3)
図4(a)は本発明の実施の形態3における物理量センサの上面図、図4(b)は図4(a)のE部拡大図、図4(c)は図4(b)のG−G線断面図である。なお、この実施の形態3においては、上記した実施の形態1の構成と同様の構成を有するものについては、同一符号を付しており、その説明は省略する。
(Embodiment 3)
4A is a top view of the physical quantity sensor according to Embodiment 3 of the present invention, FIG. 4B is an enlarged view of a portion E in FIG. 4A, and FIG. 4C is G in FIG. 4B. FIG. In the third embodiment, components having the same configurations as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図4(a)〜(c)において、40は物理量センサであり、そして、本発明の実施の形態3が上記した本発明の実施の形態2と相違する点は、単一の半導体基板41上に第1の梁状の振動部23aと、第2の梁状の振動部23bと、前記第1,第2の梁状の振動部23a,23bを取り囲み、かつ前記第1,第2の梁状の振動部23a,23bの両端を支持している固定部42を形成し、そして、駆動素子25a,25b、検出素子26a,26bを配線パターン(図示せず)によりランド36に電気的に接続するとともに、前記半導体基板41の底面の外周部のみを、起歪体28に発生する歪が第1の振動子22aに伝達されるようにAu−Au接合等の金属系接合材やエポキシ樹脂等の剛性を有する物質37で接続固定した点である。このとき、前記第1の梁状の振動部23aの長さ方向は前記起歪体28の幅方向と略平行に配置され、そして、前記第2の梁状の振動部23bの長さ方向は前記起歪体28の長さ方向と略平行に配置されているものである。   4A to 4C, reference numeral 40 denotes a physical quantity sensor, and the third embodiment of the present invention is different from the second embodiment of the present invention described above on a single semiconductor substrate 41. Surrounding the first beam-like vibrating portion 23a, the second beam-like vibrating portion 23b, and the first and second beam-like vibrating portions 23a, 23b, and the first and second beams. The fixed portions 42 that support both ends of the vibrating portions 23a and 23b are formed, and the drive elements 25a and 25b and the detection elements 26a and 26b are electrically connected to the land 36 by a wiring pattern (not shown). At the same time, only on the outer peripheral portion of the bottom surface of the semiconductor substrate 41, metal-based bonding material such as Au-Au bonding, epoxy resin, or the like so that the strain generated in the strain generating body 28 is transmitted to the first vibrator 22a. This is the point where the material 37 having the following rigidity is connected and fixed. At this time, the length direction of the first beam-like vibrating portion 23a is arranged substantially parallel to the width direction of the strain body 28, and the length direction of the second beam-like vibrating portion 23b is The strain body 28 is disposed substantially parallel to the length direction.

このような構成とすることにより、物理量センサ40をさらに小形化できるとともに、第1の梁状の振動部23aに対して第2の梁状の振動部23bを実装ばらつきなく正確に直交配置することができ、これにより、被測定体の微小部分に働く歪や荷重を温度変化にかかわらず高感度で、かつ高精度に測定することができるという効果が得られるものである。   With such a configuration, the physical quantity sensor 40 can be further reduced in size, and the second beam-shaped vibrating portion 23b can be accurately arranged orthogonal to the first beam-shaped vibrating portion 23a without mounting variation. As a result, it is possible to obtain an effect that the strain and load acting on the minute portion of the measurement object can be measured with high sensitivity and high accuracy regardless of the temperature change.

本発明に係る物理量センサは、起歪体に外力が加えられたとき、第1の振動子に働く力と第2の振動子に働く力の方向とを常に逆方向とすることができ、これにより、実質的にすべての被測定体に適用して、被測定体に働く歪や荷重を温度変化にかからわず高感度で、かつ高精度に測定することができるという効果を有するものであり、特に、物体に働く歪や荷重を検出する物理量センサとして有用なものである。   The physical quantity sensor according to the present invention can always reverse the direction of the force acting on the first vibrator and the force acting on the second vibrator when an external force is applied to the strain generating body. By applying to virtually all measured objects, the strain and load acting on the measured objects can be measured with high sensitivity and high accuracy regardless of temperature changes. In particular, it is useful as a physical quantity sensor for detecting strain and load acting on an object.

21,33,40 物理量センサ
22a 第1の振動子
22b 第2の振動子
23a 第1の梁状の振動部
23b 第2の梁状の振動部
28 起歪体
34,41 単一の半導体基板
21, 33, 40 Physical quantity sensor 22a First vibrator 22b Second vibrator 23a First beam-like vibration part 23b Second beam-like vibration part 28 Strain body 34, 41 Single semiconductor substrate

Claims (2)

外力により歪を生ずる起歪体と、前記起歪体上に配置され、かつ歪量に応じて振動周波数が変化する第1の梁状の振動部を有する第1の振動子と、前記起歪体上に配置され、かつ歪量に応じて振動周波数が変化する第2の梁状の振動部を有する第2の振動子とを備え、前記第1の振動子における第1の梁状の振動部の長手方向と第2の振動子における第2の梁状の振動部の長手方向を略直交させるとともに、前記第1の振動子の振動周波数と前記第2の振動子の振動周波数との差を検出することにより、前記起歪体に作用する力学量を検出するようにした物理量センサ。 A strain generating body that generates strain due to an external force, a first vibrator that is disposed on the strain generating body and has a first beam-shaped vibrating section that changes a vibration frequency according to the amount of strain, and the strain generating And a second vibrator having a second beam-like vibrating portion that is arranged on the body and whose vibration frequency changes according to the amount of strain, and the first beam-like vibration in the first vibrator The longitudinal direction of the first portion and the longitudinal direction of the second beam-like vibrating portion of the second vibrator are substantially orthogonal, and the difference between the vibration frequency of the first vibrator and the vibration frequency of the second vibrator A physical quantity sensor that detects a mechanical quantity acting on the strain-generating body by detecting the strain. 第1の梁状の振動部と第2の梁状の振動部とを単一の半導体基板上に形成した請求項1記載の物理量センサ。 The physical quantity sensor according to claim 1, wherein the first beam-like vibrating portion and the second beam-like vibrating portion are formed on a single semiconductor substrate.
JP2010029771A 2010-02-15 2010-02-15 Physical quantity sensor Expired - Fee Related JP5696285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029771A JP5696285B2 (en) 2010-02-15 2010-02-15 Physical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029771A JP5696285B2 (en) 2010-02-15 2010-02-15 Physical quantity sensor

Publications (2)

Publication Number Publication Date
JP2011164042A true JP2011164042A (en) 2011-08-25
JP5696285B2 JP5696285B2 (en) 2015-04-08

Family

ID=44594877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029771A Expired - Fee Related JP5696285B2 (en) 2010-02-15 2010-02-15 Physical quantity sensor

Country Status (1)

Country Link
JP (1) JP5696285B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190850A1 (en) * 2012-06-22 2013-12-27 パナソニック株式会社 Information apparatus
WO2015033522A1 (en) * 2013-09-06 2015-03-12 パナソニックIpマネジメント株式会社 Strain sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081787A (en) * 1973-11-24 1975-07-02
JPS52150085A (en) * 1976-06-08 1977-12-13 Toray Industries Method of measuring force
JPS6157823A (en) * 1984-08-30 1986-03-24 Nippon Dempa Kogyo Co Ltd Piezoelectric sensor
JPH033370A (en) * 1989-05-31 1991-01-09 Honda Motor Co Ltd Semiconductor sensor
JPH05157647A (en) * 1991-12-10 1993-06-25 Yokogawa Electric Corp Vibration-type sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081787A (en) * 1973-11-24 1975-07-02
JPS52150085A (en) * 1976-06-08 1977-12-13 Toray Industries Method of measuring force
JPS6157823A (en) * 1984-08-30 1986-03-24 Nippon Dempa Kogyo Co Ltd Piezoelectric sensor
JPH033370A (en) * 1989-05-31 1991-01-09 Honda Motor Co Ltd Semiconductor sensor
JPH05157647A (en) * 1991-12-10 1993-06-25 Yokogawa Electric Corp Vibration-type sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190850A1 (en) * 2012-06-22 2013-12-27 パナソニック株式会社 Information apparatus
US9250737B2 (en) 2012-06-22 2016-02-02 Panasonic Intellectual Property Management Co., Ltd. Information apparatus
JPWO2013190850A1 (en) * 2012-06-22 2016-02-08 パナソニックIpマネジメント株式会社 Information equipment
WO2015033522A1 (en) * 2013-09-06 2015-03-12 パナソニックIpマネジメント株式会社 Strain sensor

Also Published As

Publication number Publication date
JP5696285B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
US5585562A (en) Vibration-sensing gyro
EP2012087B1 (en) Vibration gyro
JP5807344B2 (en) Angular velocity sensor and electronic device
US10823569B1 (en) Multiple axis sensing device based on frequency modulation and method of operation
JP6031682B2 (en) Angular velocity sensor and detection element used therefor
US20110100125A1 (en) Acceleration sensor
JP5578176B2 (en) Physical quantity sensor
JP5696285B2 (en) Physical quantity sensor
JPH08152328A (en) Angular speed sensor and its using method
US20110179869A1 (en) Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
JP2017020977A (en) Sensor device
JP2008224627A (en) Angular velocity sensor, method of manufacturing the same, and electronic apparatus
JP2010181210A (en) Acceleration sensor
JP2012242188A (en) Physical quantity sensor
JP2012112819A (en) Vibration gyro
JP2013088272A (en) Physical quantity sensor
JP2007187463A (en) Acceleration sensor
JP4784436B2 (en) Acceleration sensor
JP5939037B2 (en) Pressure sensor element and electronic device
JP2010169498A (en) Angular velocity sensor element
JP4905925B2 (en) Acceleration sensor
JP5321812B2 (en) Physical quantity sensor and physical quantity measuring device
JP3028999B2 (en) Vibrating gyro
JP2008076076A (en) Acceleration sensor
JP2011127913A (en) Vibration gyro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R151 Written notification of patent or utility model registration

Ref document number: 5696285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees