JP5471217B2 - Angular velocity sensor unit and signal detection method thereof - Google Patents

Angular velocity sensor unit and signal detection method thereof Download PDF

Info

Publication number
JP5471217B2
JP5471217B2 JP2009211401A JP2009211401A JP5471217B2 JP 5471217 B2 JP5471217 B2 JP 5471217B2 JP 2009211401 A JP2009211401 A JP 2009211401A JP 2009211401 A JP2009211401 A JP 2009211401A JP 5471217 B2 JP5471217 B2 JP 5471217B2
Authority
JP
Japan
Prior art keywords
electrode
vibration
angular velocity
drive
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009211401A
Other languages
Japanese (ja)
Other versions
JP2011059040A (en
Inventor
康展 小林
朋弘 三谷
洋平 足森
孝士 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009211401A priority Critical patent/JP5471217B2/en
Priority to EP09818962A priority patent/EP2330381A4/en
Priority to US14/804,642 priority patent/USRE46514E1/en
Priority to PCT/JP2009/005177 priority patent/WO2010041422A1/en
Priority to US13/122,445 priority patent/US8561467B2/en
Publication of JP2011059040A publication Critical patent/JP2011059040A/en
Application granted granted Critical
Publication of JP5471217B2 publication Critical patent/JP5471217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

本発明は、コリオリ力を利用した角速度センサユニットおよびその信号検出方法に関する。   The present invention relates to an angular velocity sensor unit using Coriolis force and a signal detection method thereof.

角速度センサユニットは、図1に示すように角速度を検出するセンサ素子1および制御用のIC2をパッケージ3の内部に収容した構造であり、角速度センサユニットの低背化のため、センサ素子1をX軸方向に基本振動させ、検出軸(Z軸)回りに角速度が印加されることでセンサ素子1にコリオリ力が働きY軸方向の振動が励起されるというように、基本振動と検出振動が同一平面となる構造が検討されている。   The angular velocity sensor unit has a structure in which a sensor element 1 for detecting an angular velocity and a control IC 2 are housed in a package 3 as shown in FIG. The basic vibration and the detection vibration are the same, such as when the basic vibration is applied in the axial direction and the angular velocity is applied around the detection axis (Z-axis), the Coriolis force acts on the sensor element 1 to excite the vibration in the Y-axis direction. Planar structures are being studied.

そして、このようなセンサ素子1の素子構造としては、図9に示すように、検出軸4を中心として左右対称につづら折れ形状の駆動アーム5を配置するとともに、この駆動アーム5の一主面に駆動アーム5をつづら折れ方向(X軸方向)に基本振動させるドライブ電極6と、駆動アーム5の基本振動状態を検出するためのモニタ電極7と、コリオリ力による検出振動から検出信号を形成するセンス電極8を適宜設けた構造としている。   As an element structure of such a sensor element 1, as shown in FIG. 9, a drive arm 5 that is bent in a bilaterally symmetrical manner about the detection axis 4 is disposed, and one main surface of the drive arm 5 is arranged. A detection signal is formed from a drive electrode 6 that fundamentally vibrates the drive arm 5 in the folding direction (X-axis direction), a monitor electrode 7 for detecting the fundamental vibration state of the drive arm 5, and a detection vibration caused by Coriolis force. The sense electrode 8 is appropriately provided.

なお、センサ素子1の検出信号は基本振動の振幅に比例するため、この振幅を一定に保つことが重要であることから、この振幅の制御はセンサ素子1の基本振動状態を検出するモニタ電極7から出力されるモニタ信号を基にドライブ電極6に印加する駆動信号の信号レベルを制御している。   Since the detection signal of the sensor element 1 is proportional to the amplitude of the basic vibration, it is important to keep this amplitude constant. Therefore, the control of this amplitude controls the monitor electrode 7 for detecting the basic vibration state of the sensor element 1. The signal level of the drive signal applied to the drive electrode 6 is controlled based on the monitor signal output from.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開2006−275878号公報JP 2006-275878 A

そして、駆動アーム5に設けられる各電極は図10に示すように圧電体層9を上部電極10と下部電極11で挟んだ積層電極構造であり、下部電極11を接地し上部電極10に正電圧を印加することで積層電極に積層方向の圧縮力12が発生して積層電極に伸びが生じ、これとは逆に負電圧を印加することで積層電極に積層方向の引張力13が発生して積層電極に縮みが生じるもので、この伸縮作用を利用して図9に示すセンサ素子1の駆動アーム5をX軸方向に基本振動させている。   Each electrode provided on the drive arm 5 has a laminated electrode structure in which the piezoelectric layer 9 is sandwiched between the upper electrode 10 and the lower electrode 11 as shown in FIG. 10, and the lower electrode 11 is grounded and a positive voltage is applied to the upper electrode 10. Is applied to the laminated electrode to generate a compressive force 12 in the laminating direction, and the laminated electrode is stretched. On the contrary, applying a negative voltage generates a tensile force 13 in the laminated electrode to the laminated electrode. Shrinkage occurs in the laminated electrode, and the drive arm 5 of the sensor element 1 shown in FIG. 9 is fundamentally oscillated in the X-axis direction by utilizing this expansion and contraction action.

しかしながら、このX軸方向の基本振動を得るためにドライブ電極6の伸縮作用を利用するのであるが、この場合、ドライブ電極6に対して積層方向の力である圧縮力12や引張力13が同時に働くため、X軸方向の基本振動の他にZ軸方向(検出軸方向)に不要な振動(以下、Z軸振動と称す)を励起してしまう。   However, in order to obtain the fundamental vibration in the X-axis direction, the expansion and contraction action of the drive electrode 6 is used. In this case, the compressive force 12 and the tensile force 13 that are forces in the stacking direction are simultaneously applied to the drive electrode 6. Therefore, unnecessary vibration (hereinafter referred to as Z-axis vibration) is excited in the Z-axis direction (detection axis direction) in addition to the basic vibration in the X-axis direction.

そして、このZ軸振動は、駆動アーム5の基本振動を検出するするモニタ電極7にも不要な信号を形成してしまうことから、モニタ電極7から出力されるモニタ信号の出力レベルを変動させてしまい、基本振動を制御する駆動信号のレベル制御に悪影響を及ぼし、結果として角速度センサユニットの検出精度を劣化させてしまうという問題があった。   This Z-axis vibration also forms an unnecessary signal on the monitor electrode 7 that detects the basic vibration of the drive arm 5, so that the output level of the monitor signal output from the monitor electrode 7 is changed. As a result, the level control of the drive signal for controlling the fundamental vibration is adversely affected, and as a result, the detection accuracy of the angular velocity sensor unit is deteriorated.

そこで、本発明はこのような問題を解決し、角速度センサユニットの検出精度の劣化を抑制することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve such problems and suppress deterioration in detection accuracy of an angular velocity sensor unit.

そして、この目的を達成するために本発明は、角速度を検出する振動型のセンサ素子およびそれを制御するICを内蔵するパッケージとからなる角速度センサユニットにおいて、センサ素子は駆動アームにドライブ電極、モニタ電極、センス電極を設けるとともに、駆動アームを支持する支持アームに設けられたモニタ電極の配線電極に補正電極を設け、Z軸振動によりモニタ電極に形成された不要信号を、同じZ軸振動により補正電極に形成された補正信号で減衰させる構造としたのである。   In order to achieve this object, the present invention provides an angular velocity sensor unit comprising a vibration type sensor element for detecting an angular velocity and a package incorporating an IC for controlling the sensor element. In addition to providing an electrode and sense electrode, a correction electrode is provided on the wiring electrode of the monitor electrode provided on the support arm that supports the drive arm, and the unnecessary signal formed on the monitor electrode by the Z-axis vibration is corrected by the same Z-axis vibration. The structure is such that it is attenuated by a correction signal formed on the electrode.

この構造により本発明は、角速度センサユニットの検出精度の劣化を抑制することが出来るのである。   With this structure, the present invention can suppress deterioration in detection accuracy of the angular velocity sensor unit.

角速度センサユニットを示す分解斜視図Exploded perspective view showing angular velocity sensor unit 本発明の角速度センサユニットを構成するセンサ素子を示す上面図The top view which shows the sensor element which comprises the angular velocity sensor unit of this invention. 同センサ素子の基本振動状態を示す模式図Schematic diagram showing the basic vibration state of the sensor element 同センサ素子の検出振動状態を示す模式図Schematic diagram showing the detection vibration state of the sensor element 同基本振動に対するドライブ電極の動作状態を示す模式図Schematic showing the operating state of the drive electrode against the same basic vibration 同基本振動に対するモニタ電極の検出状態を示す模式図Schematic diagram showing the detection state of the monitor electrode for the same basic vibration 同検出振動に対するセンス電極の検出状態を示す模式図Schematic diagram showing the detection state of the sense electrode for the same detection vibration 同センサ素子のZ軸振動を示す模式図Schematic showing the Z-axis vibration of the sensor element 従来のセンサ素子を示す上面図Top view showing a conventional sensor element センサ素子に設ける電極の動作原理を示す模式図Schematic diagram showing the operating principle of the electrodes provided on the sensor element

以下、本発明の角速度センサユニットについて図を用いて説明する。なお上述した従来のものと同様の構成については同じ符号を付して説明する。   Hereinafter, the angular velocity sensor unit of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and demonstrated about the structure similar to the conventional thing mentioned above.

図1は角速度センサユニットを示したものであり、その基本構造はパッケージ3の内部に角速度を検出する振動型のセンサ素子1と、このセンサ素子1に駆動信号を印加する駆動制御回路およびセンサ素子1から出力された検出信号を処理する検出回路を包含するIC2を配置し、パッケージ3の開口をリッド14で封口した構造となっている。   FIG. 1 shows an angular velocity sensor unit, and its basic structure is a vibration type sensor element 1 for detecting an angular velocity inside a package 3, a drive control circuit and a sensor element for applying a drive signal to the sensor element 1. An IC 2 including a detection circuit for processing a detection signal output from 1 is arranged, and the opening of the package 3 is sealed with a lid 14.

また、センサ素子1は図2に示すように、外部接続部15およびその中央部分からセンサ素子1の中心部分に向けて延出された支持アーム16と、この支持アーム16を挟むよう錘部17を対称配置し、それぞれの錘部17を一対の駆動アーム5で接続した形状としており、駆動アーム5上には後述するドライブ電極6、センス電極8及びモニタ電極7を配置し、外部接続部15に設けた電極パッド18と配線電極19を介して接続している。なお、支持アーム16の先端部分と錘部17を接続する各駆動アーム5は、Y軸方向に延びる複数のアーム辺5a,5bを折り返し接続したつづら折れ構造としている。   As shown in FIG. 2, the sensor element 1 includes an external connection portion 15 and a support arm 16 extending from the central portion thereof toward the center portion of the sensor element 1, and a weight portion 17 so as to sandwich the support arm 16. Are arranged so that the respective weight portions 17 are connected by a pair of drive arms 5. A drive electrode 6, a sense electrode 8 and a monitor electrode 7, which will be described later, are arranged on the drive arm 5, and the external connection portion 15. The electrode pad 18 and the wiring electrode 19 are connected to each other. Each drive arm 5 connecting the distal end portion of the support arm 16 and the weight portion 17 has a zigzag structure in which a plurality of arm sides 5a and 5b extending in the Y-axis direction are connected in a folded manner.

そして、IC2から出力された駆動信号を電極パッド18、配線電極19を介してドライブ電極6に駆動信号を印加することで、図3に示すように錘部17をX軸方向に伸縮するように基本振動させ、この基本振動の状態においてZ軸方向回りの角速度を受けることでコリオリ力が生じ、このコリオリ力により駆動アーム5が図4に示すようにY軸方向に振動するようになる。そして、このY軸方向の振動による駆動アーム5の変形をセンス電極8で検知し電気信号に変換し、この検出信号を配線電極19、電極パッド18を介してIC2に出力する構造としている。また、モニタ電極7は駆動アーム5の振幅や駆動周期を検出してその情報をIC2にフィードバックして駆動信号を制御するために設けている。   Then, by applying the drive signal output from the IC 2 to the drive electrode 6 via the electrode pad 18 and the wiring electrode 19, the weight portion 17 is expanded and contracted in the X-axis direction as shown in FIG. A basic vibration is generated, and a Coriolis force is generated by receiving an angular velocity about the Z-axis direction in the state of the basic vibration, and the Coriolis force causes the drive arm 5 to vibrate in the Y-axis direction as shown in FIG. The deformation of the drive arm 5 due to the vibration in the Y-axis direction is detected by the sense electrode 8 and converted into an electrical signal, and this detection signal is output to the IC 2 via the wiring electrode 19 and the electrode pad 18. The monitor electrode 7 is provided for detecting the amplitude and driving cycle of the driving arm 5 and feeding back the information to the IC 2 to control the driving signal.

なお、センサ素子1はSiからなる基板上に上述したドライブ電極6、センス電極8、モニタ電極7を設けられた構造であり、各電極の構造は図10を用いて説明したように基板上に設けられたPtからなる下部電極11と、この下部電極11上に設けられたPZTからなる圧電体層9と、この圧電体層9上に設けられたAuからなる上部電極10とからなる積層電極構造であり、下部電極11をグランド接続した状態で上部電極10に正電圧を印加すると積層方向に圧縮力12が働き積層電極に伸びが生じ、上部電極10に負電圧を印加すると積層方向に引張力13が働き積層電極に縮みが生じる。また、これとは逆に駆動アーム5を撓ませて積層電極を縮ませれば負電圧が生じ、積層電極を伸ばせば正電圧が生じる。   The sensor element 1 has a structure in which the drive electrode 6, the sense electrode 8, and the monitor electrode 7 described above are provided on a substrate made of Si. The structure of each electrode is on the substrate as described with reference to FIG. A laminated electrode composed of a lower electrode 11 made of Pt, a piezoelectric layer 9 made of PZT provided on the lower electrode 11, and an upper electrode 10 made of Au provided on the piezoelectric layer 9. The structure is such that when a positive voltage is applied to the upper electrode 10 with the lower electrode 11 connected to the ground, a compressive force 12 is exerted in the stacking direction and the stacked electrode is stretched, and when a negative voltage is applied to the upper electrode 10, a tensile force is applied in the stacking direction. The force 13 works and shrinkage occurs in the laminated electrode. On the contrary, if the driving arm 5 is bent to contract the stacked electrode, a negative voltage is generated, and if the stacked electrode is extended, a positive voltage is generated.

そして、このセンサ素子1を基本振動させるドライブ電極6は、図5に示すように駆動アーム5の錘部17の側に配置されたアーム辺5bを一点鎖線で示すように撓みの変曲点を中心として4分割して錘部17に近接する側とその対角位置に配置し、これら一対のドライブ電極6に対して共に正電圧を印加することで共に圧縮力が発生し伸びが生じてアーム辺5bがS字状に撓もうとし、共に負電圧を印加することで共に引張力が発生し縮みが生じてアーム辺5bが逆に撓もうとするので、この動作を繰り返すことで錘部17をX軸方向に基本振動させることが出来る。   And the drive electrode 6 which fundamentally vibrates this sensor element 1 has the bending inflection point so that the arm edge | side 5b arrange | positioned at the weight part 17 side of the drive arm 5 may be shown with a dashed-dotted line, as shown in FIG. The arm is divided into four as a center and arranged on the side close to the weight portion 17 and the diagonal position thereof. When a positive voltage is applied to both the pair of drive electrodes 6, a compressive force is generated and the arm is stretched. The side 5b tries to bend in an S-shape, and when a negative voltage is applied to both sides, a tensile force is generated and shrinkage occurs, and the arm side 5b tries to bend in the opposite direction. Can be fundamentally oscillated in the X-axis direction.

また、駆動アーム5の基本振動を検出するモニタ電極7は、アーム辺5aが基本振動に対して撓み方向が反転する撓みの変曲点を有するため、図6に示すようにこの撓み変曲点を跨がないようアーム辺5aを一点鎖線で示すように撓みの変曲点を中心として4分割した内の1つの領域に形成しており、基本振動によるアーム辺5aの撓みに応じ起電することによりモニタ信号を形成する。   Further, since the monitor electrode 7 for detecting the fundamental vibration of the drive arm 5 has a bending inflection point at which the arm side 5a reverses the bending direction with respect to the fundamental vibration, as shown in FIG. The arm side 5a is formed in one area divided into four around the inflection point of bending as shown by the alternate long and short dash line so as not to straddle, and generates electricity according to the bending of the arm side 5a due to the fundamental vibration. As a result, a monitor signal is formed.

また、このセンサ素子1に生じる検出振動から検出信号を形成するセンス電極8は、図7で示したようにコリオリ力によりアーム辺5aの全体が弓なりに撓むので、この弓なりの撓みに対して検出信号を形成するため、センス電極8をアーム辺5aの中心軸より右側半分に偏芯させて設けており、アーム辺5aが図中において左側に撓む場合にはアーム辺5aの右半分に設けたセンス電極8に対して伸びの力が加わり正電圧が生じ、アーム辺5aが図中において右側に撓む場合にはアーム辺5aの右半分に設けたセンス電極8に対して縮みの力が加わり負電圧が生じるというようにして検出信号を形成する。   Further, as shown in FIG. 7, the sense electrode 8 that forms a detection signal from the detection vibration generated in the sensor element 1 is bent in a bow shape by the Coriolis force. In order to form a detection signal, the sense electrode 8 is eccentrically provided on the right half of the central axis of the arm side 5a. When the arm side 5a bends to the left side in the drawing, the sense electrode 8 is provided on the right half of the arm side 5a. When an extension force is applied to the provided sense electrode 8 to generate a positive voltage and the arm side 5a bends to the right side in the drawing, a contraction force is applied to the sense electrode 8 provided on the right half of the arm side 5a. Is added to generate a negative voltage to form a detection signal.

そして、この角速度センサユニットで角速度を検出するにあたっては、センサ素子1の基本振動がXY平面内で行われることが基本となるのであるが、駆動アーム5に基本振動を励起させるドライブ電極6が図10で説明したように上部電極10、下部電極11と圧電体層9の積層電極構造であり、駆動信号により積層方向に生じる圧縮力12、引張力13を利用しているため積層電極の積層方向にもZ軸振動が励起されてしまい、モニタ電極7から出力される検出信号にZ軸振動により励起された不要信号が付加されてしまい、結果的に角速度センサユニットの検出精度の劣化に繋がっていた。   When the angular velocity is detected by the angular velocity sensor unit, the basic vibration of the sensor element 1 is basically performed in the XY plane. The drive electrode 6 that excites the basic vibration in the drive arm 5 is illustrated in FIG. 10, the laminated electrode structure of the upper electrode 10, the lower electrode 11, and the piezoelectric layer 9 uses the compressive force 12 and the tensile force 13 generated in the laminating direction by the drive signal, and thus the laminating direction of the laminated electrodes. In addition, the Z-axis vibration is excited, and an unnecessary signal excited by the Z-axis vibration is added to the detection signal output from the monitor electrode 7, resulting in deterioration of the detection accuracy of the angular velocity sensor unit. It was.

そこで、この一実施形態の角速度センサユニットにおいては、支持アーム16に設けられたモニタ電極7と電極パッド18を接続する配線電極19に補正電極20を設け、Z軸振動時にモニタ電極7に生じる不要信号を同じZ軸振動で補正電極20に生じる補正信号で減衰させ、モニタ電極7に対するZ軸振動の影響を抑制する構成としている。   Therefore, in the angular velocity sensor unit of this embodiment, the correction electrode 20 is provided on the wiring electrode 19 that connects the monitor electrode 7 provided on the support arm 16 and the electrode pad 18, and is unnecessary in the monitor electrode 7 during Z-axis vibration. The signal is attenuated by a correction signal generated in the correction electrode 20 by the same Z-axis vibration, and the influence of the Z-axis vibration on the monitor electrode 7 is suppressed.

すなわち、補正電極20によりZ軸振動で生じる不要信号を減衰させる条件としては、補正電極20が基本振動に対して信号の形成を行わず、且つ、Z軸振動でモニタ電極7に生じる不要信号に対して逆電位の信号を形成することであるから、補正電極20は、基本振動の対称軸となりその影響を受けにくい支持アーム16上で、且つ、Z軸振動においてモニタ電極7の撓みと逆方向の撓みが生じる部分としている。   That is, as a condition for attenuating the unnecessary signal generated by the Z-axis vibration by the correction electrode 20, the correction electrode 20 does not form a signal with respect to the basic vibration, and the unnecessary signal generated in the monitor electrode 7 by the Z-axis vibration. On the other hand, since the signal of the reverse potential is formed, the correction electrode 20 is on the support arm 16 which becomes an axis of symmetry of the basic vibration and is not easily affected, and in the direction opposite to the deflection of the monitor electrode 7 in the Z-axis vibration. This is the part where bending occurs.

具体的には、図2に示すようにモニタ電極7をアーム辺5aの外部接続部15側に配置し、補助電極20を支持アーム16の外部接続部15側に配置することで、図8に示すようにZ軸振動により錘部17が下方に振動した場合、モニタ電極7が設けられた部分はアーム辺5aが凹状に撓みモニタ電極7に対して縮みの力が働くためモニタ電極7に負電圧が生じる。また、補正電極20が設けられた部分は支持アーム16が凸状に撓み補正電極20に対して伸びの力が働くため補正電極20に正電圧が生じる。   Specifically, as shown in FIG. 2, the monitor electrode 7 is arranged on the external connection portion 15 side of the arm side 5a, and the auxiliary electrode 20 is arranged on the external connection portion 15 side of the support arm 16, so that FIG. As shown in the figure, when the weight portion 17 vibrates downward due to the Z-axis vibration, the arm side 5a is bent in a concave shape in the portion where the monitor electrode 7 is provided, so that the contraction force acts on the monitor electrode 7, and thus the monitor electrode 7 is negatively affected. A voltage is generated. Further, in the portion where the correction electrode 20 is provided, the support arm 16 is bent in a convex shape and an extension force acts on the correction electrode 20, so that a positive voltage is generated in the correction electrode 20.

従って、Z軸振動によりモニタ電極7に生じる不要信号と補正電極20で生じる補正信号は逆電位の信号となり、これらの信号を図2に示すよう配線電極19を介して同じ電極パッド18に接続するので、電極パッド18から出力されるモニタ信号はZ軸振動による不要信号が補正信号により減衰される。   Therefore, the unnecessary signal generated at the monitor electrode 7 due to the Z-axis vibration and the correction signal generated at the correction electrode 20 are signals of opposite potentials, and these signals are connected to the same electrode pad 18 via the wiring electrode 19 as shown in FIG. Therefore, the monitor signal output from the electrode pad 18 is attenuated by an unnecessary signal due to the Z-axis vibration.

さらに、Z軸振動に対して不要信号を形成する要素としては上述したモニタ電極7の他に配線電極19においても同様に不要信号を形成するため、補正電極20で形成する補正信号はこの配線電極19による不要信号を含め減衰させるように電極設計することで、より角速度センサユニットの検出精度を向上させることができる。   Further, as an element for forming an unnecessary signal with respect to the Z-axis vibration, an unnecessary signal is similarly formed in the wiring electrode 19 in addition to the monitor electrode 7 described above. Therefore, the correction signal formed in the correction electrode 20 is the wiring electrode. The detection accuracy of the angular velocity sensor unit can be further improved by designing the electrodes so as to attenuate including unnecessary signals due to the number 19.

このように、このセンサ素子1では基本振動に対して補正電極20が不要な信号を生成せず、Z軸振動が生じた際にモニタ電極7に生じる不要信号を減衰させる補正信号を補正電極20で生成するので、センサ素子1からIC2に出力されるモニタ信号の検出精度が高まり、この検出精度の高いモニタ信号によりセンサ素子1の基本振動を制御することができ、結果として角速度センサユニットの検出精度を高めることができる。   Thus, in this sensor element 1, the correction electrode 20 does not generate an unnecessary signal for the basic vibration, and a correction signal for attenuating the unnecessary signal generated in the monitor electrode 7 when the Z-axis vibration is generated is corrected electrode 20. Therefore, the detection accuracy of the monitor signal output from the sensor element 1 to the IC 2 is increased, and the basic vibration of the sensor element 1 can be controlled by the monitor signal having a high detection accuracy. As a result, the angular velocity sensor unit is detected. Accuracy can be increased.

なお、このようにZ軸振動に対する不要信号を抑制出来ることから、センサ素子1をパッケージ3に組み付ける際にZ軸方向の外乱振動対策としてのTABテープ等の防振手段を排除することが可能となる。   Since unnecessary signals for Z-axis vibration can be suppressed in this way, it is possible to eliminate vibration isolation means such as TAB tape as a countermeasure against disturbance vibration in the Z-axis direction when the sensor element 1 is assembled to the package 3. Become.

本発明は、角速度センサユニットの検出精度を高めるという効果を有し、特にナビゲーションシステムなどの小型で高感度な特性を要求する電子機器に用いる角速度センサにおいて有用となるものである。   The present invention has an effect of improving the detection accuracy of the angular velocity sensor unit, and is particularly useful in an angular velocity sensor used for electronic devices that require small and highly sensitive characteristics such as a navigation system.

1 センサ素子
2 IC
3 パッケージ
5 駆動アーム
6 ドライブ電極
7 モニタ電極
8 センス電極
15 外部接続部
16 支持アーム
17 錘部
18 電極パッド
19 配線電極
20 補正電極
1 Sensor element 2 IC
3 Package 5 Drive Arm 6 Drive Electrode 7 Monitor Electrode 8 Sense Electrode 15 External Connection 16 Support Arm 17 Weight 18 Electrode Pad 19 Wiring Electrode 20 Correction Electrode

Claims (3)

角速度を検出する振動型のセンサ素子と、前記センサ素子の基本振動および検出信号の処理を行うICと、これらセンサ素子およびICを内蔵するパッケージとからなる角速度センサユニットにおいて、
前記センサ素子は、前記パッケージに接続する外部接続部と、この外部接続部から延出された支持アームと、一端が前記支持アームの先端部分に接続され他端が錘部に接続されたつづら折れ状の駆動アームと、前記駆動アームに設けられ前記ICから出力される駆動信号に応じて前記駆動アームをつづら折れ方向に基本振動させるドライブ電極と、前記駆動アームに設けられ前記基本振動により電荷を形成し前記ICに出力するモニタ電極と、角速度の印加により前記駆動アームが側方に振動することで電荷を形成し前記ICに出力するセンス電極と、前記外部接続部に設けられ複数の電極パッドと、前記電極パッドと前記ドライブ電極、前記センス電極または前記モニタ電極を接続する配線電極を備え、前記モニタ電極と電極パッドを接続する配線電極における前記支持アーム部分に補正電極を設け、前記基本振動および前記角速度の検出振動と直交する方向の撓み振動により前記モニタ電極に生じる不要信号を前記撓み振動により前記補正電極に生じる補正信号で減衰させることを特徴とした角速度センサユニットの信号検出方法。
In an angular velocity sensor unit comprising a vibration-type sensor element that detects angular velocity, an IC that performs basic vibration and detection signal processing of the sensor element, and a package incorporating these sensor element and IC,
The sensor element is folded in such a manner that an external connection portion connected to the package, a support arm extending from the external connection portion, one end connected to a tip portion of the support arm and the other end connected to a weight portion. Drive arm, a drive electrode provided in the drive arm for fundamental vibration in the folding direction according to a drive signal output from the IC, and a charge provided in the drive arm for charging by the fundamental vibration A monitor electrode that is formed and output to the IC; a sense electrode that forms a charge when the drive arm vibrates laterally by application of angular velocity; and outputs to the IC; and a plurality of electrode pads provided at the external connection portion And a wiring electrode for connecting the electrode pad and the drive electrode, the sense electrode or the monitor electrode, and connecting the monitor electrode and the electrode pad A correction electrode is provided on the support arm portion of the wiring electrode, and an unnecessary signal generated in the monitor electrode due to bending vibration in a direction orthogonal to the basic vibration and the detection vibration of the angular velocity is generated in the correction electrode due to the bending vibration. A method for detecting a signal of an angular velocity sensor unit, characterized in that the signal is attenuated by a sensor.
撓み振動により、モニタ電極に接続された配線電極に生じる不要信号を補正電極に生じる補正信号で減衰させることを特徴とした請求項1に記載の角速度センサユニットの信号検出方法。 2. The signal detection method for an angular velocity sensor unit according to claim 1, wherein an unnecessary signal generated in the wiring electrode connected to the monitor electrode due to flexural vibration is attenuated by a correction signal generated in the correction electrode. 角速度を検出する振動型のセンサ素子と、前記センサ素子の基本振動および検出信号の処理を行うICと、これらセンサ素子およびICを内蔵するパッケージとからなる角速度センサユニットにおいて、
前記センサ素子は、前記パッケージに接続する外部接続部と、この外部接続部から延出された支持アームと、一端が前記支持アームの先端部分に接続され他端が錘部に接続されたつづら折れ状の駆動アームと、前記駆動アームに設けられ前記ICから出力される駆動信号に応じて前記駆動アームをつづら折れ方向に基本振動させるドライブ電極と、前記駆動アームに設けられ前記基本振動を検出し前記ICに出力するモニタ電極と、前記駆動アームに設けられ角速度の検出信号を前記ICに出力するセンス電極と、前記外部接続部に設けられた複数の電極パッドと、前記電極パッドと前記ドライブ電極、前記センス電極または前記モニタ電極を接続する配線電極を備え、前記モニタ電極と前記電極パッドを接続する前記配線電極の前記支持アーム部分に前記基本振動および前記角速度の検出振動と直交する方向の撓み振動により前記モニタ電極に生じる不要信号を前記撓み振動により生じる補正信号で減衰させるための補正電極を設けたことを特徴とする角速度センサユニット。
In an angular velocity sensor unit comprising a vibration-type sensor element that detects angular velocity, an IC that performs basic vibration and detection signal processing of the sensor element, and a package incorporating these sensor element and IC,
The sensor element is folded in such a manner that an external connection portion connected to the package, a support arm extending from the external connection portion, one end connected to a tip portion of the support arm and the other end connected to a weight portion. Drive arm, a drive electrode provided in the drive arm for fundamental vibration in the folding direction according to a drive signal output from the IC, and provided in the drive arm for detecting the fundamental vibration. A monitor electrode that outputs to the IC; a sense electrode that is provided in the drive arm and outputs an angular velocity detection signal to the IC; a plurality of electrode pads that are provided in the external connection; and the electrode pad and the drive electrode A wiring electrode that connects the sense electrode or the monitor electrode, and the support electrode of the wiring electrode that connects the monitor electrode and the electrode pad. Characterized in that a correcting electrode for attenuating the correction signal by the fundamental vibration and detecting vibration in the direction orthogonal to the bending vibration of the angular velocity beam portion caused by the flexural vibration of the unwanted signals generated in the monitor electrodes Angular velocity sensor unit.
JP2009211401A 2008-10-07 2009-09-14 Angular velocity sensor unit and signal detection method thereof Expired - Fee Related JP5471217B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009211401A JP5471217B2 (en) 2009-09-14 2009-09-14 Angular velocity sensor unit and signal detection method thereof
EP09818962A EP2330381A4 (en) 2008-10-07 2009-10-06 Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
US14/804,642 USRE46514E1 (en) 2008-10-07 2009-10-06 Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
PCT/JP2009/005177 WO2010041422A1 (en) 2008-10-07 2009-10-06 Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
US13/122,445 US8561467B2 (en) 2008-10-07 2009-10-06 Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211401A JP5471217B2 (en) 2009-09-14 2009-09-14 Angular velocity sensor unit and signal detection method thereof

Publications (2)

Publication Number Publication Date
JP2011059040A JP2011059040A (en) 2011-03-24
JP5471217B2 true JP5471217B2 (en) 2014-04-16

Family

ID=43946831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211401A Expired - Fee Related JP5471217B2 (en) 2008-10-07 2009-09-14 Angular velocity sensor unit and signal detection method thereof

Country Status (1)

Country Link
JP (1) JP5471217B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180107A (en) * 1985-02-06 1986-08-12 Matsushita Electric Ind Co Ltd Manufacture of angular velocity sensor element
JPH10141961A (en) * 1996-11-14 1998-05-29 Murata Mfg Co Ltd Vibrator
JP2001027529A (en) * 1999-07-13 2001-01-30 Matsushita Electric Ind Co Ltd Angular velocity sensor
FR2798993B1 (en) * 1999-09-28 2001-12-07 Thomson Csf Sextant DIAPASON TYPE GYROMETER
EP2899502B1 (en) * 2006-01-24 2017-04-05 Panasonic Corporation Inertial force sensor
JP5023708B2 (en) * 2007-01-17 2012-09-12 Tdk株式会社 Angular velocity sensor element and angular velocity sensor device

Also Published As

Publication number Publication date
JP2011059040A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US9835641B2 (en) Angular velocity detection device and angular velocity sensor including the same
US10119821B2 (en) Angular velocity sensor
JP6031682B2 (en) Angular velocity sensor and detection element used therefor
JP2008076153A (en) Mechanical quantity sensor
JP6620243B2 (en) Angular velocity sensor, sensor element and multi-axis angular velocity sensor
JP2000199714A (en) Angular velocity sensor
WO2010041422A1 (en) Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
WO2018003692A1 (en) Physical quantity sensor
US9726492B2 (en) Angular velocity detection element
JP5407259B2 (en) Angular velocity sensor element
JP5471217B2 (en) Angular velocity sensor unit and signal detection method thereof
US11054260B2 (en) Vibration type angular velocity sensor
JP6733621B2 (en) Vibration type angular velocity sensor
JP2012112819A (en) Vibration gyro
JP2010266321A (en) Multiaxial angular speed sensor
JP6074629B2 (en) Angular velocity sensor element and angular velocity sensor
JP2012163386A (en) Angular velocity sensor unit and signal detection method for the same
JP6450059B1 (en) Sensor element and angular velocity sensor
WO2016067543A1 (en) Vibration-type angular velocity sensor
JP2011209270A (en) Angular velocity sensor element
WO2020241629A1 (en) Angular velocity sensor and sensor element
JP5849243B2 (en) Angular velocity sensor element
JP5786141B2 (en) Angular velocity sensor element
JP5849190B2 (en) Angular velocity sensor element
WO2017204057A1 (en) Gyro sensor and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5471217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees