WO2015032631A1 - Matrice d'échangeur de chaleur collée et procédé de collage correspondant - Google Patents

Matrice d'échangeur de chaleur collée et procédé de collage correspondant Download PDF

Info

Publication number
WO2015032631A1
WO2015032631A1 PCT/EP2014/067878 EP2014067878W WO2015032631A1 WO 2015032631 A1 WO2015032631 A1 WO 2015032631A1 EP 2014067878 W EP2014067878 W EP 2014067878W WO 2015032631 A1 WO2015032631 A1 WO 2015032631A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
components
glue
adhesive
stack
Prior art date
Application number
PCT/EP2014/067878
Other languages
English (en)
Inventor
Gaëtan Joël BERGUIN
Thierry Mazet
Salima BOUTI
Original Assignee
Fives Cryo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Cryo filed Critical Fives Cryo
Priority to US14/917,382 priority Critical patent/US20160216039A1/en
Priority to JP2016539465A priority patent/JP6487443B2/ja
Priority to DE112014004129.7T priority patent/DE112014004129T5/de
Priority to KR1020167006147A priority patent/KR20160058099A/ko
Priority to CN201480049711.6A priority patent/CN105705900B/zh
Publication of WO2015032631A1 publication Critical patent/WO2015032631A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/44Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • the invention relates to the field of metal heat exchangers, in particular of aluminum, of the type with engraved plates, of the type with separation plates, bars and waves, or comprising a combination of these two types.
  • heat exchangers are commonly used in air gas separation or natural gas liquefaction processes, due to their very good properties of energy performance, mechanical strength at very low temperature and lightness.
  • the matrix of these heat exchangers is brazed together and their fluid distribution heads are welded to the brazed matrix.
  • the heat exchangers thus formed are purely metallic in nature and susceptible to corrosion. Their scope is therefore limited to clean and slightly corrosive environments. In particular, they can not withstand seawater or a marine atmosphere.
  • Anti-corrosion coatings exist, but their implementation on this type of equipment remains problematic.
  • the anticorrosive coating can be applied either to the individual components of the matrix prior to the assembly and soldering step, or to the finished matrix after soldering.
  • the first method has the disadvantage of only being able to use anticorrosion coatings remaining stable at soldering temperatures and not disturbing soldering.
  • the second method does not allow to deposit the anticorrosion coating uniformly and throughout the brazed matrix because it has many crevices with access difficulties.
  • An object of the invention is therefore to provide a metal heat exchanger matrix which is more resistant to corrosion by remaining solid and good thermal conductor. Such a matrix must in particular be adapted to marine applications.
  • a metal matrix of heat exchanger characterized by a stack of components, in particular engraved plates or waves, separating plates and bars, or a combination of both types. in which at least a portion of said components are bonded to each other by a layer, preferably of a thickness of between 20 and 150 ⁇ , of epoxy resin-based structural adhesive containing a corrosion inhibitor and loaded with from 20 to 60% by weight of a thermal conductor providing a thermal conductivity of the adhesive of 2 to 5 W / m / K.
  • the brazing and the traditional filler metal which is susceptible to corrosion are overcome. Thanks to the chosen glue formulation, the matrix is protected against corrosion and retains its mechanical and thermal performance.
  • the matrix according to the invention finds a particularly advantageous application in heat exchangers placed in a corrosive environment, especially in a marine environment, whether the heat exchangers are immersed in water or in a marine atmosphere.
  • the matrix according to the invention comprises one, several or all of the following characteristics, in all technically possible combinations:
  • the thermal conductor of the glue is based on metal and / or ceramic
  • the corrosion inhibitor of the glue is based on zinc oxides
  • the components are coated with an adhesive glue, in particular with a conversion layer and / or with a primer layer of adhesive glue;
  • the conversion layer has a thickness of between 1 and 50 ⁇ and preferably between 5 and 20 ⁇ ;
  • the components are made of aluminum or an aluminum alloy, and the conversion layer is made of alumina;
  • the present invention also relates to a heat exchanger comprising a matrix as defined above, and preferably at least one fluid distribution head bonded to the matrix, in particular with said adhesive.
  • Another object of the invention is to provide a metal heat exchanger matrix assembly method adapted to corrosive environments.
  • this object is achieved by a method of assembling a metal matrix of heat exchanger, characterized by the steps of:
  • the method according to the invention comprises one, several or all of the following characteristics, in all the technically possible combinations:
  • the adhesive glue deposit comprises a first step of anodizing or phosphorization, and / or a second step of depositing a primer hung by dipping the component in the primary or projection of the primary component;
  • step b) comprises:
  • step d) comprises a first maintenance of the cell at a temperature of between 50 and 120 ° C. for a minimum duration of thirty minutes followed by a second holding of the cell at a temperature of between 150 and 250 ° C. for a period of minimum duration of one hour.
  • step d) comprises maintaining the battery in compression at a pressure greater than 100 kPa.
  • Figure 1 is a perspective and exploded view of a matrix being stacked according to an exemplary embodiment of the invention
  • Figure 2 is a detail 7 of the matrix of Figure 1 showing the gluing of the components of the matrix;
  • Figures 3 to 6 illustrate the processing of a separating plate of the matrix of Figure 1 according to the assembly method of the invention
  • Figures 7 to 9 illustrate the wave treatment of the matrix of Figure 1 according to the assembly method of the invention.
  • the matrix 2 consists of a stack 3 of components, namely waves 4, separation plates 5, and bars 6 of aluminum.
  • FIG. 2 An enlarged representation of the zone 7 of the matrix 2 indicated in FIG. A wave 4 is located between two separation plates 5 and connected thereto.
  • the two separation plates 5 have two opposite faces 8 and 9, and the wave 4 has two opposite faces 10 and 1 1.
  • the separating plates 5 and the wave 4 are covered on their two opposite faces 8, 9 and 10.1 1 of an adhesive glue 12.
  • the adhesive glue 12 is composed of two layers, that is to say a conversion layer 13 extending on the faces 8, 9, 10, 1 1, and a layer of adhesive hooking primer 14 deposited on the conversion layer 13.
  • the conversion layer 13 is made of alumina.
  • the primer layer 14 consists of a resin of the family of epoxy resins in which corrosion inhibitors, for example zinc salts, are integrated.
  • the conversion layer 13 has a thickness I between 1 and 50 ⁇ and preferably between 5 and 20 ⁇ .
  • the primer layer 14 preferably has a thickness d of a few micrometers.
  • An adhesive layer 15 deposited on the two opposite faces 8, 9 of the separating plates 5 ensures the connection between the separating plates 5 and the wave 4.
  • the thickness e of the adhesive layer 15 is between 20 and 100 ⁇ .
  • the adhesive 15 is a structural adhesive derived from the family of epoxy resins.
  • the glue 15 contains corrosion inhibiting elements, for example salts or oxides of zinc.
  • the adhesive 15 is also loaded with 20 to 60% by weight of addition elements which substantially increase its thermal conductivity, for example of metal or ceramic origin.
  • the thermal conductivity of the glue 15 is between 2 and 5 W / m / K.
  • the separating plates 5, of which an example is shown in FIG. 3, are made of aluminum, the waves 4, an example of which is shown in FIG. 7, and the bars 6 of the matrix 2.
  • the opposite faces 8, 9 of the separation plates 5, the opposite faces 10, 1 1 of the waves 4, as well as the bars 6 are anodized in order to grow the conversion layers 13 into alumina (Al 2 0 3 ).
  • the anodization is preferably a sulfuric or chromic anodization. The result is shown in Figures 4 and 8.
  • the anodization will then be replaced by a phosphating operation.
  • the conversion layers 13 are covered by the bonded primer layers 14.
  • this step is carried out by dipping the bars 6, waves 4 and separation sheets 5 in an aqueous solution of primer of hanging.
  • the components 4, 5, 6 are coated with hook primer 14.
  • the hook primer 14 is applied to the components 4, 5, 6 by projection.
  • connection between the hooking primer 14 and the anodized surfaces 13 is preferably obtained by a hot-air treatment carried out at a temperature of between 50 and 200.degree. C., for a duration which preferably ranges between 30 and 120.degree. min.
  • the anodized components 4, 5, 6 coated with bonded primer 14 are maintained at about 90 ° C for about 120 minutes.
  • the glue 15 is applied solely to the hooking primer 14 of the separating plates 5.
  • This can be done in the form of a glue paste uniformly deposited in layers by means of a scraper in order to succeed. at a sufficient and uniform thickness, or by application of a film which will be colaminated on the separating plates 5, or by any other means making it possible to bring the adhesive deposit 15 onto the separating plates 5.
  • the application of the adhesive 15 must respect as much as possible a residual thickness of about 20 to 150 microns to ensure both the role of binder and protection of the underlying partition plate 5.
  • the result of the fourth step is illustrated in Figure 6.
  • the sixth step consists of a stoving phase at a temperature below 150 ° C of the stack 3 in order to harden (polymerize) the glue 15.
  • a solid and resistant matrix 2 is obtained. corrosion.
  • Steaming consists, for example, in heating and maintaining the cell 3 for 90 hours at 90.degree. C., followed by heating and maintaining the cell 3 at 120.degree. C. for one hour. This can be done in a press furnace, in a forced convection oven or any other equivalent heating method.
  • a clamping device of the stack 3 is preferably used to optimize the bonding of the components 4, 5, 6 during the polymerization process.
  • the clamping device can for example hold the components 4, 5, 6 under a constant load exceeding 100 kPa.
  • the completed matrix 2 can then be provided with fluid distribution heads to form a heat exchanger.
  • the fluid distribution heads may be directly bonded to the surface of the matrix 2 with said adhesive 15.
  • the fluid distribution heads are welded to the die 2 by means of intermediate parts previously imbricated to the die 2 during its stacking in a male / female configuration.
  • Said intermediate parts can sufficiently distance the welding area of the matrix 2 to prevent degradation of the glue joints of the matrix 2 by the high temperatures prevailing during welding.
  • the sealing of the connection between the intermediate piece and the matrix 2 is provided by a silicone-based elastomer.
  • each metal component 4, 5, 6 is covered with multiple layers which act as barriers to the diffusion and propagation of sources of corrosion.
  • some components 4, 5, 6 of the matrix 2 are brazed and others glued.
  • fluid passages of the matrix 2 intended to receive corrosive fluid such as seawater are delimited by components 4, 5, 6 bonded, while the fluid passages of the die 2 for fluids whose operating pressure is outside the range of use of the glue 15, for example ammonia, are delimited by brazed components 4, 5, 6.
  • the components 4, 5, 6 to be soldered are according to the usual method of manufacturing a brazed heat exchanger.
  • Subassemblies of the matrix 2 are made with all of these components 4, 5, 6, knowing that solder is present only on the surfaces to be soldered.
  • the brazed subassemblies and the remaining components 4, 5, 6 are coated with adhesive 15 and stacked to form the cell 3.
  • the cell 3 is then subjected to the parboiling described above (step six). The low temperature of the parboiling makes it possible not to degrade the soldering made at first.
  • a bonded / brazed mixed matrix is assembled using low temperature solder (solder melting temperature below 200 ° C.). This allows first to assemble the entire stack 3 with its subassemblies coated with glue and solder, then to steam said battery 3 to thereby harden the glue and at the same time fuse the solder.
  • solder solder melting temperature below 200 ° C.
  • the proposed heat exchanger matrix can be implemented in corrosive environments while retaining the necessary thermal performance properties and pressure resistance.
  • the method according to the invention makes it possible to assemble heat exchanger matrices of large volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

Matrice métallique d'échangeur de chaleur, caractérisée par un empilement de composants (4, 5), notamment de plaques gravées ou d'ondes (4), de tôles de séparation (5) et de barres, ou une combinaison des deux types d'empilement, dans laquelle au moins une partie desdits composants (4, 5) sont liés entre eux par une couche (15), de préférence d'une épaisseur comprise entre 20 et 150 μm, de colle structurale à base de résine d'époxyde contenant un inhibiteur de corrosion et chargée de 20 à 60% en masse d'un conducteur thermique assurant une conductivité thermique de la colle de 2 à 5 W/m/K. Application préférée aux environnements corrosifs, notamment marins.

Description

Matrice d'échanqeur de chaleur collée et procédé de collage correspondant
L'invention concerne le domaine des échangeurs de chaleur métalliques, notamment en aluminium, du type à plaques gravées, du type à tôles de séparation, barres et ondes, ou comportant une combinaison de ces deux types.
Ces échangeurs de chaleur sont couramment utilisés dans des procédés de séparation des gaz de l'air ou de liquéfaction de gaz naturel, en raison de leurs très bonnes propriétés de performance énergétique, de tenue mécanique à très basse température et de légèreté.
De manière connue, la matrice de ces échangeurs de chaleur est assemblée par brasage et leurs têtes de distribution de fluide sont soudées sur la matrice brasée.
Les échangeurs de chaleur ainsi constitués sont de nature purement métallique et susceptibles à la corrosion. Leur champ d'application est donc limité à des environnements propres et peu corrosifs. Notamment, ils ne supportent ni l'eau de mer, ni une atmosphère marine.
L'origine de cette incompatibilité provient de phénomènes de diffusion intervenant à l'interface des composants constitutifs de l'échangeur et de la brasure, qui induisent des modifications métallurgiques de la matière initiale. Après refroidissement, la présence de précipités intermétalliques est supposée être une des causes majeures de l'apparition de piqûres de corrosion suite à la formation de piles électrochimiques favorisant l'attaque du métal de base adjacent.
Des revêtements anticorrosion existent, mais leur mise en œuvre sur ce type d'équipements reste problématique. On peut appliquer le revêtement anticorrosion soit sur les composants individuels de la matrice avant l'étape d'assemblage et de brasage, soit sur la matrice finie après brasage.
La première méthode a le désavantage de pouvoir uniquement employer des revêtements anticorrosion restant stables aux températures de brasage et ne perturbant pas le brasage. La deuxième méthode ne permet pas de déposer le revêtement anticorrosion de manière uniforme et dans l'ensemble de la matrice brasée car celle-ci comporte de nombreuses anfractuosités avec des difficultés d'accès.
Un but de l'invention est donc de réaliser une matrice métallique d'échangeur de chaleur qui résiste mieux à la corrosion en restant solide et bon conducteur thermique. Une telle matrice doit notamment être adaptée aux applications marines.
Selon l'invention, ce but est atteint par une matrice métallique d'échangeur de chaleur, caractérisée par un empilement de composants, notamment de plaques gravées ou d'ondes, de tôles de séparation et de barres, ou une combinaison des deux types d'empilement, dans laquelle au moins une partie desdits composants sont liés entre eux par une couche, de préférence d'une épaisseur comprise entre 20 et 150 μηι, de colle structurale à base de résine d'époxyde contenant un inhibiteur de corrosion et chargée de 20 à 60% en masse d'un conducteur thermique assurant une conductivité thermique de la colle de 2 à 5 W/m/K.
En liant au moins une partie des composants de la matrice à l'aide de ladite colle, on s'affranchit du brasage et du métal d'apport traditionnel qui est susceptible à la corrosion. Grâce à la formulation de colle choisie, la matrice est protégée contre la corrosion et conserve ses performances mécaniques et thermiques.
La matrice selon l'invention trouve une application particulièrement avantageuse dans les échangeurs de chaleur placés dans un environnement corrosif, notamment en milieu marin, que les échangeurs de chaleur soient en immersion dans l'eau ou en atmosphère marine.
Selon des modes de réalisation préférés, la matrice selon l'invention comprend l'une, plusieurs ou toutes les caractéristiques suivantes, dans toutes les combinaisons techniquement possibles :
- le conducteur thermique de la colle est à base de métal et/ou de céramique;
- l'inhibiteur de corrosion de la colle est à base d'oxydes de zinc;
- les composants sont revêtus d'un accrocheur de colle, notamment d'une couche de conversion et/ou d'une couche de primaire d'accroché de colle;
- la couche de conversion a une épaisseur comprise entre 1 et 50 μηι et de préférence comprise entre 5 et 20 μηι;
- les composants sont en aluminium ou un alliage d'aluminium, et la couche de conversion est en alumine;
- une partie des composants sont brasés entre eux.
La présente invention concerne également un échangeur de chaleur comportant une matrice telle que définie ci-dessus, et de préférence au moins une tête de distribution de fluide collée à la matrice, notamment avec ladite colle.
Un autre but de l'invention est de réaliser un procédé d'assemblage de matrice métallique d'échangeur de chaleur adaptée aux environnements corrosifs.
Selon l'invention, ce but est atteint par un procédé d'assemblage d'une matrice métallique d'échangeur de chaleur, caractérisé par les étapes consistant à :
a) fournir les composants de la matrice;
b) déposer une colle structurale à base de résine d'époxyde contenant un inhibiteur de corrosion et chargée de 20 à 60% en masse d'un conducteur thermique assurant une conductivité thermique de la colle de 2 à 5 W/m/K sur au moins une partie des composants;
c) empiler les composants de façon à obtenir une pile; et
d) étuver la pile de façon à durcir ladite colle et obtenir ainsi la matrice.
Selon des modes de réalisation préférés, le procédé selon l'invention comprend l'une, plusieurs ou toutes les caractéristiques suivantes, dans toutes les combinaisons techniquement possibles :
- l'étape consistant à déposer un accrocheur de colle sur les composants avant l'étape b);
- le dépôt d'accrocheur de colle comprend une première étape d'anodisation ou de phosphorisation, et/ou une deuxième étape de dépôt d'un primaire d'accroché par trempage du composant dans le primaire ou projection du primaire sur le composant;
- l'étape consistant à sécher et chauffer les composants recouverts de primaire d'accroché à une température comprise entre 50 et 200 °C pendant une durée comprise entre 30 et 120 mn. de façon à lier le primaire d'accroché au composant.
- l'étape b) comprend :
i) la prévision de la colle sous forme de pâte et son étalement sur le composant à l'aide d'un racloir, ou
ii) le colaminage de la colle sur le composant;
- l'étape d) comprend un premier maintien de la pile à une température comprise entre 50 et 120 ^ pendant une durée minimale de trente minutes suivi d'un second maintien de la pile à une température comprise entre 150 et 250 °C pendant une durée minimale d'une heure.
- l'étape d) comprend le maintien de la pile en compression à une pression supérieur à 100 kPa.
L'invention consiste, mise à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'exemples de réalisation décrit avec référence aux dessins annexés, mais qui ne sont nullement limitatifs. Parmi les dessins :
La figure 1 est une représentation en perspective et en vue éclatée d'une matrice en cours d'empilage selon un exemple de réalisation de l'invention ;
La figure 2 est un détail 7 de la matrice de la figure 1 montrant le collage des composants de la matrice ;
Les figures 3 à 6 illustrent le traitement d'une tôle de séparation de la matrice de la figure 1 selon le procédé d'assemblage de l'invention ; et Les figures 7 à 9 illustrent le traitement d'une onde de la matrice de la figure 1 selon le procédé d'assemblage de l'invention.
Par la suite, pour simplifier la description de l'invention, on fera référence à une matrice d'échangeur de chaleur à tôles de séparation, barres et ondes, sachant que l'invention s'applique également à un échangeur à plaques gravées, ou à un échangeur comprenant une combinaison de tôles de séparation, barres et ondes et de plaques gravées. En outre, on décrira par la suite une matrice en aluminium. Néanmoins, l'invention couvre également des matrices constituées d'autres métaux, tel que notamment l'acier.
En se reportant à la figure 1 , on peut voir schématiquement représenté un empilage d'une matrice 2 en cours de réalisation. De façon connue, la matrice 2 est constituée d'une pile 3 de composants, à savoir d'ondes 4, de tôles de séparation 5, et de barres 6 en aluminium.
La particularité de la matrice 2 est visible à la figure 2. On y distingue une représentation agrandie de la zone 7 de la matrice 2 indiquée à la figure 1 . Une onde 4 est située entre deux tôles de séparation 5 et liée à celles-ci. Les deux tôles de séparation 5 disposent de deux faces opposées 8 et 9, et l'onde 4 dispose de deux faces opposées 10 et 1 1 .
Selon l'invention, les tôles de séparation 5 et l'onde 4 sont recouverts sur leurs deux faces opposées 8, 9 et 10,1 1 d'un accrocheur de colle 12. L'accrocheur de colle 12 est composé de deux couches, à savoir d'une couche de conversion 13 s'étendant sur les faces 8, 9, 10, 1 1 , et d'une couche de primaire d'accroché de colle 14 déposée sur la couche de conversion 13. La couche de conversion 13 est constituée d'alumine. La couche de primaire 14 est constituée d'une résine de la famille des résines d'époxyde dans laquelle sont intégrés des inhibiteurs de corrosion, par exemple des sels de zinc. La couche de conversion 13 a une épaisseur I comprise entre 1 et 50 μηι et de préférence comprise entre 5 et 20 μηι. La couche de primaire 14 a de préférence une épaisseur d de quelques micromètres.
Une couche de colle 15 déposée sur les deux faces opposées 8, 9 des tôles de séparation 5 assure la liaison entre les tôles de séparation 5 et l'onde 4. De préférence, l'épaisseur e de la couche de colle 15 est comprise entre 20 et 100 μηι.
La colle 15 est une colle structurale issue de la famille des résines d'époxyde. La colle 15 contient des éléments inhibiteurs de corrosion, par exemple des sels ou oxydes de zinc. La colle 15 est également chargée de 20 à 60% en masse d'éléments d'addition qui augmentent sensiblement sa conductivité thermique, par exemple d'origine métallique ou céramique. Ainsi, la conductivité thermique de la colle 15 se situe entre 2 et 5 W/m/K. On va maintenant décrire le procédé d'assemblage de la matrice 2, en référence aux figures 3 à 9.
Dans une première étape, on réalise en aluminium les tôles de séparation 5, dont un exemple est montré à la figure 3, les ondes 4, dont un exemple est montré à la figure 7, et les barres 6 de la matrice 2.
Dans une deuxième étape, les faces opposées 8, 9 des tôles de séparation 5, les faces opposées 10, 1 1 des ondes 4, ainsi que les barres 6 sont anodisées afin d'y faire croître les couches de conversion 13 en alumine (Al203). L'anodisation est de préférence une anodisation sulfurique ou chromique. Le résultat est représenté aux figures 4 et 8.
Si la matrice 2 est assemblée à partir de composants en acier, l'anodisation sera alors remplacée par une opération de phosphatation.
Dans une troisième étape, les couches de conversion 13 sont recouvertes par les couches de primaire d'accroché 14. De préférence, cette étape est réalisée par trempage des barres 6, des ondes 4 et des tôles de séparation 5 dans une solution aqueuse de primaire d'accroché. Ainsi, les composants 4, 5, 6 sont enduits de primaire d'accroché 14. Dans une variante, le primaire d'accroché 14 est appliqué sur les composants 4, 5, 6 par projection.
On s'assurera que l'application du primaire d'accroché 14 se fait de manière homogène sur l'ensemble des surfaces, afin de garantir ultérieurement une bonne adhérence de l'ensemble des composants 4, 5, 6. Le résultat de la troisième étape est illustré aux figures 5 et 9.
L'application du primaire d'accroché 14 est suivie d'un séchage ponctué par un chauffage afin de lier le primaire d'accroché 14 chimiquement aux surfaces traitées. La liaison entre le primaire d'accroché 14 et les surfaces anodisées 13 est de préférence obtenue par un traitement sous air chaud pratiqué à une température comprise entre 50 et 200 °C, ceci pendant une durée qui s'échelonne de préférence entre 30 et 120 mn. De manière particulièrement préférée, on maintient les composants anodisés 4, 5, 6 revêtus de primaire d'accroché 14 à environ 90 °C pendant environ 120 mn.
Dans une quatrième étape, on applique la colle 15 uniquement sur le primaire d'accroché 14 des tôles de séparation 5. Cela peut être fait sous forme de pâte de colle uniformément déposée par couches à l'aide d'un racloir afin d'aboutir à une épaisseur suffisante et uniforme, ou bien par application d'un film qui sera colaminé sur les tôles de séparation 5, ou par tout autre moyen permettant d'apporter le dépôt de colle 15 sur les tôles de séparation 5. L'application de la colle 15 doit respecter autant que possible une épaisseur résiduelle d'environ 20 à 150 microns afin d'assurer à la fois le rôle de liant et de protection de la tôle de séparation 5 sous-jacente. Le résultat de la quatrième étape est illustré à la figure 6.
Le fait même de pouvoir effectuer les étapes deux à quatre sur des composants 4, 5, 6 individuels dont la surface est facilement accessible est un avantage certain. Le contrôle de paramètres prédéterminés comme l'épaisseur ou l'uniformité du dépôt est facilité en respectant cette méthodologie. Le procédé selon l'invention se distingue ainsi avantageusement de procédés dans lesquels la préparation des surfaces des composants 4, 5, 6 est faite a posteriori après assemblage de la pile 3.
Dans une cinquième étape, les composants 4, 5, 6 sont empilés afin d'obtenir la pile 3.
La sixième étape est constituée d'une phase d'étuvage à une température inférieure à 150 'C de la pile 3 afin de durcir (polymériser) la colle 15. A la fin de l'étuvage on obtient une matrice 2 solide et résistante à la corrosion. L'étuvage consiste par exemple en un chauffage et un maintien à 90 'C de la pile 3 pendant quatre heures, suivi d'un chauffage et d'un maintien à 120 'C de la pile 3 pendant une heure. Cela peut être effectué dans un four-presse, dans un four avec convection forcée ou toute autre méthode de chauffage équivalente. Un dispositif de bridage de la pile 3 est de préférence utilisé pour optimiser la liaison des composants 4, 5, 6 pendant le processus de polymérisation. Le dispositif de bridage peut par exemple maintenir les composants 4, 5, 6 sous une charge constante dépassant 100 kPa.
La matrice 2 terminée peut être alors munie de têtes de distribution de fluide afin de constituer un échangeur de chaleur. Les têtes de distribution de fluide peuvent être directement collées sur la surface de la matrice 2 avec ladite colle 15.
En variante, les têtes de distribution de fluide sont soudées à la matrice 2 par le biais de pièces intermédiaires préalablement imbriquées à la matrice 2 lors de son empilage selon une configuration mâle/femelle. Lesdites pièces intermédiaires permettent d'éloigner suffisamment la zone de soudage de la matrice 2 afin d'éviter une dégradation des joints de colle de la matrice 2 par les températures élevées régnant lors du soudage. Dans ce cas, l'étanchéité de la liaison entre la pièce intermédiaire et la matrice 2 est assurée par un élastomère à base de silicone.
Grâce au procédé d'assemblage selon l'invention, chaque composant métallique 4, 5, 6 est recouvert de couches multiples qui agissent comme barrières à la diffusion et à la propagation des sources de corrosion.
Selon une variante de réalisation de l'invention, certains composants 4, 5, 6 de la matrice 2 sont brasés et d'autres collés. Par exemple, des passages de fluide de la matrice 2 destinés à recevoir du fluide corrosif tel que l'eau de mer sont délimités par des composants 4, 5, 6 collés, alors que les passages de fluide de la matrice 2 destinés à des fluides dont la pression d'utilisation est hors du domaine d'utilisation de la colle 15, par exemple de l'ammoniac, sont délimités par des composants 4, 5, 6 brasés.
Pour obtenir cet assemblage mixte, dans un premier temps les composants 4, 5, 6 devant être brasés le sont selon le procédé habituel de fabrication d'un échangeur de chaleur brasé. Des sous-ensembles de la matrice 2 sont réalisés avec l'ensemble de ces composants 4, 5, 6, sachant que de la brasure n'est présente que sur les surfaces devant être brasées. Après brasage, les sous-ensembles brasés et les composants 4, 5, 6 restants sont revêtus de colle 15 et empilés pour former la pile 3. La pile 3 subit alors l'étuvage décrit ci-dessus (étape six). La faible température de l'étuvage permet de ne pas dégrader le brasage réalisé en un premier temps.
Selon une autre variante de réalisation de l'invention, on assemble une matrice mixte collée/brasée en utilisant de la brasure basse température (température de fusion de la brasure inférieure à 200 'Ό). Cela permet d'abord d'assembler toute la pile 3 avec ses sous-ensembles revêtus de colle et de brasure, puis d'étuver ladite pile 3 pour ainsi durcir la colle et en même temps fusionner la brasure.
Grâce au collage selon l'invention, la matrice d'échangeur de chaleur proposée peut être mise en œuvre dans des environnements corrosifs en conservant les propriétés de performance thermique et la résistance à la pression nécessaires. En outre, le procédé selon l'invention permet d'assembler des matrices d'échangeur de chaleur de volume important.

Claims

REVENDICATIONS
1 . - Matrice (2) métallique d'échangeur de chaleur, caractérisée par un empilement de composants (4, 5, 6), notamment de plaques gravées ou d'ondes (4), de tôles de séparation (5) et de barres (6), ou une combinaison des deux types d'empilement, dans laquelle au moins une partie desdits composants (4, 5, 6) sont liés entre eux par une couche (15), de préférence d'une épaisseur comprise entre 20 et 150 μηι, de colle structurale à base de résine d'époxyde contenant un inhibiteur de corrosion et chargée de 20 à 60% en masse d'un conducteur thermique assurant une conductivité thermique de la colle de 2 à 5 W/m/K.
2. - Matrice selon la revendication 1 , le conducteur thermique de la colle (15) étant à base de métal et/ou de céramique.
3.- Matrice selon l'une quelconque des revendications précédentes, l'inhibiteur de corrosion de la colle (15) étant à base d'oxydes de zinc.
4. - Matrice selon l'une quelconque des revendications précédentes, dans laquelle les composants (4, 5, 6) sont revêtus d'un accrocheur (12) de colle, notamment d'une couche de conversion (13) et/ou d'une couche de primaire (14) d'accroché de colle.
5. - Matrice selon la revendication 4, dans laquelle la couche de conversion (13) a une épaisseur comprise entre 1 et 50 μηι et de préférence comprise entre 5 et 20 μηι.
6.- Matrice selon la revendication 4 ou 5, dans laquelle les composants (4, 5, 6) sont en aluminium ou un alliage d'aluminium, et la couche de conversion (13) est en alumine.
7. - Matrice selon l'une quelconque des revendications précédentes, dans laquelle une partie des composants (4, 5, 6) sont brasés entre eux.
8. - Echangeur de chaleur comportant une matrice (2) selon l'une quelconque des revendications précédentes, et de préférence au moins une tête de distribution de fluide collée à la matrice (2), notamment avec ladite colle (15).
9.- Procédé d'assemblage d'une matrice (2) métallique d'échangeur de chaleur, caractérisé par les étapes consistant à : a) fournir les composants (4, 5, 6) de la matrice (2) ;
b) déposer une colle (15) structurale à base de résine d'époxyde contenant un inhibiteur de corrosion et chargée de 20 à 60% en masse d'un conducteur thermique assurant une conductivité thermique de la colle de 2 à 5 W/m/K sur au moins une partie des composants (4, 5, 6) ;
c) empiler les composants (4, 5, 6) de façon à obtenir une pile (3) ; et
d) étuver la pile (3) de façon à durcir ladite colle (15) et obtenir ainsi la matrice (2).
10.- Procédé selon la revendication 9, comprenant en outre l'étape consistant à déposer un accrocheur (12) de colle sur les composants (4, 5, 6) avant l'étape b).
1 1 . - Procédé selon la revendication 10, dans lequel le dépôt d'accrocheur (12) de colle comprend une première étape d'anodisation ou de phosphorisation, et/ou une deuxième étape de dépôt d'un primaire (14) d'accroché par trempage du composant dans le primaire ou projection du primaire sur le composant.
12. - Procédé selon la revendication 1 1 , comprenant en outre l'étape consistant à sécher et chauffer les composants (4, 5, 6) recouverts de primaire d'accroché (14) à une température comprise entre 50 et 200 'Ό pendant une durée comprise entre 30 et 120 mn. de façon à lier le primaire d'accroché (14) au composant.
13. - Procédé selon l'une quelconque des revendications 9 à 12, dans lequel l'étape b) comprend :
i) la prévision de la colle (15) sous forme de pâte et son étalement sur le composant à l'aide d'un racloir, ou
ii) le colaminage de la colle (15) sur le composant (5).
14. - Procédé selon l'une quelconque des revendications 9 à 13, dans lequel l'étape d) comprend un premier maintien de la pile (3) à une température comprise entre 50 et
120 ^ pendant une durée minimale de trente minutes suivi d'un second maintien de la pile (3) à une température comprise entre 150 et 250^ pendant une durée minimale d'une heure.
15.- Procédé selon l'une quelconque des revendications 9 à 14, dans lequel l'étape d) comprend le maintien de la pile (3) en compression à une pression supérieur à 100 kPa.
PCT/EP2014/067878 2013-09-09 2014-08-22 Matrice d'échangeur de chaleur collée et procédé de collage correspondant WO2015032631A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/917,382 US20160216039A1 (en) 2013-09-09 2014-08-22 Bonded heat exchanger matrix and corresponding bonding method
JP2016539465A JP6487443B2 (ja) 2013-09-09 2014-08-22 接着された熱交換器マトリックスとこれに対応した接着方法
DE112014004129.7T DE112014004129T5 (de) 2013-09-09 2014-08-22 Geklebte Wärmetauschermatrix und entsprechendes Klebeverfahren
KR1020167006147A KR20160058099A (ko) 2013-09-09 2014-08-22 결합된 열 교환기 매트릭스 및 대응하는 결합 방법
CN201480049711.6A CN105705900B (zh) 2013-09-09 2014-08-22 结合的热交换器基体以及相应的结合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1358657 2013-09-09
FR1358657A FR3010513B1 (fr) 2013-09-09 2013-09-09 Matrice d'echangeur de chaleur collee et procede de collage correspondant

Publications (1)

Publication Number Publication Date
WO2015032631A1 true WO2015032631A1 (fr) 2015-03-12

Family

ID=50478475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/067878 WO2015032631A1 (fr) 2013-09-09 2014-08-22 Matrice d'échangeur de chaleur collée et procédé de collage correspondant

Country Status (7)

Country Link
US (1) US20160216039A1 (fr)
JP (1) JP6487443B2 (fr)
KR (1) KR20160058099A (fr)
CN (1) CN105705900B (fr)
DE (1) DE112014004129T5 (fr)
FR (1) FR3010513B1 (fr)
WO (1) WO2015032631A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11499210B2 (en) * 2016-12-21 2022-11-15 Mitsubishi Electric Corporation Heat exchanger and method of manufacturing thereof, and refrigeration cycle apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10775054B2 (en) 2009-03-13 2020-09-15 Treau, Inc. Modular air conditioning system
US10533810B2 (en) 2015-05-20 2020-01-14 Other Lab, Llc Near-isothermal compressor/expander
CN107782181A (zh) * 2016-08-31 2018-03-09 航天海鹰(哈尔滨)钛业有限公司 一种新型换热器芯部
EP3473961B1 (fr) 2017-10-20 2020-12-02 Api Heat Transfer, Inc. Échangeur de chaleur
JP6888211B2 (ja) * 2018-07-13 2021-06-16 株式会社三井E&Sマシナリー 気化器
CN112424464B (zh) * 2018-07-13 2021-07-06 三井易艾斯机械有限公司 气化器
JP6740289B2 (ja) * 2018-07-13 2020-08-12 株式会社三井E&Sマシナリー 気化器
JP7166153B2 (ja) * 2018-11-30 2022-11-07 昭和電工パッケージング株式会社 熱交換器
JP7274325B2 (ja) * 2019-03-28 2023-05-16 株式会社レゾナック・パッケージング 熱交換器
JP7239370B2 (ja) * 2019-03-28 2023-03-14 株式会社レゾナック・パッケージング 熱交換器
JP7221136B2 (ja) * 2019-05-28 2023-02-13 株式会社レゾナック・パッケージング 熱交換器
CN113669892B (zh) * 2019-08-01 2022-10-14 浙江三花智能控制股份有限公司 换热器
US20210404749A1 (en) * 2020-06-30 2021-12-30 Treau, Inc. Multilayer sheets for heat exchangers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1551495A1 (de) * 1967-04-13 1970-03-05 Roggenkamp Hanns Th Leichtmetall-Waermetauscher
DE2611398A1 (de) * 1976-03-18 1977-09-22 M & D Klima System Ag Waermetauscher
WO1996012316A1 (fr) * 1994-10-12 1996-04-25 H Power Corporation Piles a combustible dans lesquelles on applique la technologie des plaquettes servant a la gestion integree du fluide

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101592U (ja) * 1983-12-15 1985-07-11 住友軽金属工業株式会社 積層型熱交換器コア
EP0288258A3 (fr) * 1987-04-24 1989-03-08 Alcan International Limited Procédé pour rendre hydrophiles des surfaces métalliques et produits ainsi obtenus
JPH02146497A (ja) * 1988-11-26 1990-06-05 Kajima Corp 可撓膜形熱交換器
US5490559A (en) * 1994-07-20 1996-02-13 Dinulescu; Horia A. Heat exchanger with finned partition walls
US20020144808A1 (en) * 2001-04-04 2002-10-10 Jones Bart R. Adhesively bonded radiator assembly
NL1020483C1 (nl) * 2002-04-26 2003-10-28 Oxycell Holding Bv Warmtewisselaar en werkwijze voor het vervaardigen daarvan.
JP4026503B2 (ja) * 2002-05-16 2007-12-26 株式会社デンソー 熱交換器の製造方法
JP2005316401A (ja) * 2004-03-30 2005-11-10 Furukawa Sky Kk コールドプレートおよびその製造方法
JP2006284009A (ja) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp 捩り管形熱交換器の製造方法
US7776963B2 (en) * 2005-05-03 2010-08-17 Illinois Tool Works Inc. Acrylic adhesives for metal bonding applications
JP5536971B2 (ja) * 2006-01-23 2014-07-02 ソマール株式会社 多層接着シート、熱交換器形成用材料及び熱交換器
US7510174B2 (en) * 2006-04-14 2009-03-31 Kammerzell Larry L Dew point cooling tower, adhesive bonded heat exchanger, and other heat transfer apparatus
CN201444005U (zh) * 2009-04-29 2010-04-28 刘哲 纳米覆膜技术的热交换器
JP5191961B2 (ja) * 2009-06-24 2013-05-08 大成プラス株式会社 1液性エポキシ接着剤及び接着方法
JP2012533723A (ja) * 2009-07-17 2012-12-27 ロッキード マーティン コーポレーション 熱交換器及びその製造方法
EP2456908B1 (fr) * 2009-07-23 2016-09-14 Carrier Corporation Procédé de formation d'une couche d'oxyde sur un article brasé
US20110284194A1 (en) * 2010-05-20 2011-11-24 Asish Sarkar Elastomeric Gasket
JP5727299B2 (ja) * 2010-05-31 2015-06-03 株式会社Uacj フィン・アンド・チューブ型熱交換器の製造方法
CN103429982B (zh) * 2011-02-04 2016-06-29 洛克希德马丁公司 具有泡沫翅片的换热器
US20140093723A1 (en) * 2011-05-27 2014-04-03 Masaki Takeuchi Substrate, method for producing same, heat-releasing substrate, and heat-releasing module
US20140262183A1 (en) * 2011-10-26 2014-09-18 Carrier Corporation Polymer tube heat exchanger
US9520378B2 (en) * 2012-12-21 2016-12-13 Intel Corporation Thermal matched composite die

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1551495A1 (de) * 1967-04-13 1970-03-05 Roggenkamp Hanns Th Leichtmetall-Waermetauscher
DE2611398A1 (de) * 1976-03-18 1977-09-22 M & D Klima System Ag Waermetauscher
WO1996012316A1 (fr) * 1994-10-12 1996-04-25 H Power Corporation Piles a combustible dans lesquelles on applique la technologie des plaquettes servant a la gestion integree du fluide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11499210B2 (en) * 2016-12-21 2022-11-15 Mitsubishi Electric Corporation Heat exchanger and method of manufacturing thereof, and refrigeration cycle apparatus
US11827957B2 (en) 2016-12-21 2023-11-28 Mitsubishi Electric Corporation Heat exchanger and method of manufacturing thereof, and refrigeration cycle apparatus

Also Published As

Publication number Publication date
CN105705900A (zh) 2016-06-22
FR3010513A1 (fr) 2015-03-13
DE112014004129T5 (de) 2016-05-25
US20160216039A1 (en) 2016-07-28
JP2016530477A (ja) 2016-09-29
CN105705900B (zh) 2017-11-14
KR20160058099A (ko) 2016-05-24
FR3010513B1 (fr) 2015-10-16
JP6487443B2 (ja) 2019-03-20

Similar Documents

Publication Publication Date Title
WO2015032631A1 (fr) Matrice d'échangeur de chaleur collée et procédé de collage correspondant
EP3363584B1 (fr) Procédé de fabrication d'une tole de brasage
EP1343605B1 (fr) Procede de brasure sous gaz inerte d'un produit plaque comportant une piece support en acier et un revetement metallique anti-corrosion
FR3080058A1 (fr) Tole de brasage multicouche
FR2967765A1 (fr) Composant brasable et echangeur de chaleur le comportant
EP2875164A1 (fr) Assemblage d'une pièce à base d'aluminium et d'une pièce en acier munie d'un revêtement à base d'un alliage znaimg
JPS583987A (ja) アルミニウム製熱交換器コアの製造方法
EP3212357B1 (fr) Procédé de fabrication d'une matrice d'échangeur de chaleur résistant à la corrosion
EP2036101B1 (fr) Procede de fabrication par brasage diffusion des connexions electriques d'un ensemble de stockage d'energie electrique
FR3064648B1 (fr) Piece de turbine en superalliage et procede de fabrication associe
JP2005343105A (ja) アルミニウムラミネート材
EP3619338A1 (fr) Piece de turbine en superalliage et procede de fabrication associe par bombardement de particules chargees
FR2460176A1 (fr) Procede pour assembler des pieces metalliques, par exemple en aluminium et assemblage ainsi obtenu
EP0793270B1 (fr) Boítier de composant(s) thermo-émissif(s) à transmission thermique améliorée, et son procédé de réalisation
WO2021069842A1 (fr) Piece d'aeronef en superalliage comprenant du rhenium et/ou du ruthenium et procede de fabrication associe
WO2021089945A1 (fr) Piece d'aeronef en superalliage comprenant un canal de refroidissement
FR2641494A1 (fr) Procede de fabrication de structure caoutchouc-metal a forte sollicitation mecanique
WO2011157935A1 (fr) Procede d'aluminisation d'une surface avec depot prealable d'une couche de platine et de nickel
FR2656632A1 (fr) Procede de revetement de surfaces comprenant un depot metallurgique prealable d'au moins une couche d'aluminium et son anodisation dure, pieces traitees suivant ce procede, et procede de collage desdites pieces.
FR3060109A1 (fr) Echangeur de chaleur avec une plaque collectrice en alliage d'aluminium et de carbure metallique
WO2015092285A1 (fr) Procede d'assemblage de pieces dont les faces a assembler sont en carbure de silicium, joint de brasage obtenu par ledit procede, composition de brasure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14755073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006147

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016539465

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14917382

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140041297

Country of ref document: DE

Ref document number: 112014004129

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14755073

Country of ref document: EP

Kind code of ref document: A1