WO2015032356A1 - 网络保护方法、装置、下环节点及系统 - Google Patents

网络保护方法、装置、下环节点及系统 Download PDF

Info

Publication number
WO2015032356A1
WO2015032356A1 PCT/CN2014/086097 CN2014086097W WO2015032356A1 WO 2015032356 A1 WO2015032356 A1 WO 2015032356A1 CN 2014086097 W CN2014086097 W CN 2014086097W WO 2015032356 A1 WO2015032356 A1 WO 2015032356A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower ring
node
ring node
service data
another
Prior art date
Application number
PCT/CN2014/086097
Other languages
English (en)
French (fr)
Inventor
蔡亨光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016539412A priority Critical patent/JP6308534B2/ja
Priority to EP14841528.4A priority patent/EP3029883B1/en
Publication of WO2015032356A1 publication Critical patent/WO2015032356A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration

Definitions

  • the present invention relates to the field of communications, and in particular, to a network protection method, apparatus, lower ring node, and system.
  • the service data usually starts from the source node and is transmitted to the sink node through a number of network elements and links between adjacent network elements.
  • the ring network protection and/or dual-homing protection is usually used for network protection.
  • FIG. 1 shows a schematic structural diagram of a transmission network that uses both ring network protection and dual-homing protection.
  • the transmission network includes a base station 102, an access network element A, a transmission network element B, a transmission network element C, a lower ring node D, a lower ring node E, and an RNC (Radio Network Controller) 104.
  • the base station 102 and the access network element A are connected by the access link 1; the access network element A and the transport network element B are connected by the transmission link 2, and the access network element A and the transmission network element C are connected.
  • the transmission network element B and the transmission network element C are connected by transmission links 4 and 5, and the transmission network element B and the lower ring node D are connected by the transmission link 6; the transmission network element C
  • the lower ring node D and the lower ring node E pass through the transmission link 8; the lower ring node D and the RNC 104 pass the AC (Attachment circuit) chain.
  • the path 9 is connected, and the lower ring node E and the RNC 104 are connected by an AC link 10.
  • the access network element, the transport network element, the transmission link, and the lower ring node belong to the network side, and the network side may be a MPLS (Multi-Protocol Label Switching) network; the AC link and the RNC belong to the AC side.
  • MPLS Multi-Protocol Label Switching
  • Access network element A, transmission link 2, transmission network element B, transmission link 5, transmission network element C and transmission link 3 constitute the first ring network; transmission network element B, transmission link 4, transmission network Element C, transmission link 7, lower ring node E, transmission link 8, lower ring node D and transmission link 6 form a second ring network.
  • the clockwise direction is the normal working direction and the counterclockwise direction is the working direction. That is, in the normal working state, the transmission path of the service data is “base station->A->B->D->RNC”, but when one transmission network element or transmission link on the ring network fails, the ring The working direction of the network will be reversed.
  • the two ring networks will be switched.
  • the transmission path of the service data is "Base Station->A->C->E->D ->RNC".
  • the ring network protection cannot solve the problem that the lower ring node or the AC link is faulty.
  • the lower ring node refers to the service data that does not need to continue to be forwarded on the network side after reaching the node, and needs to jump out from the network side to the AC side. node.
  • the RNC 104 is connected to the two lower ring nodes at the same time to form dual-homing protection.
  • the dual-homing protection needs to be implemented by the network-side dual-homing technique to which the lower-loop node D and the lower-loop node E belong (indicated by the dotted line in the figure) and the AC-side dual-homing technology to which the AC link belongs.
  • the following ring node D is the master node
  • the lower ring node E is the standby node as an example.
  • a PW (Pseudo Wire) channel is established between the access network element A and the lower ring node D and E, and OAM is provided.
  • the transmission path of the service data is “base station->A->B->D->RNC.
  • the active/standby switchover occurs.
  • the service data is transmitted to the RNC 104 by the lower ring node E and the AC link 10 between the AEs.
  • the transmission path of the service data is "base station->A->C->E- >RNC".
  • the foregoing transmission network needs to be configured with a holdoff time, which is a manually set delay time for coordinating dual-homing protection and ring network protection.
  • a holdoff time which is a manually set delay time for coordinating dual-homing protection and ring network protection.
  • the ring protection and dual-homing protection on the network side may be reversed, which may cause the entire transmission network to be unnecessary.
  • the disorder causes the dual-homing protection to occur when the fault message is received and the fault has not been eliminated after the delay time.
  • the holdoff time is usually greater than 100 ms, it is impossible to meet the requirement that the delay time is less than 50 ms in the telecommunication network;
  • dual-homing protection requires two OAMs to detect faults in dual-homed nodes.
  • the OAM resources and bandwidth are very expensive. For example, if there are 1000 services, it will cost 2000 channels. OAM resources.
  • the embodiment of the present invention provides a network protection method, device, and lower ring node. system.
  • the technical solution is as follows:
  • a network protection method for setting any one of two lower ring nodes connected to a same access device on a ring network protected by a ring network, the method comprising:
  • the policy for determining the service ring includes:
  • the current lower ring node performs the lower ring operation on the service data, and/or sends the service data to the another lower ring node to perform a lower ring operation.
  • the acquiring service configuration information of another downlink node includes:
  • the obtaining, by the another lower ring node, the service configuration information of the another lower ring node including:
  • the service configuration information of the another downlink node sent by the another downlink node is received by the extended message of the operation, management, and maintenance of the OAM mechanism on the ring network.
  • the policy includes: in a case where the current node performs the downlink operation of the service data, the downlink policy of the service data is determined to include the service data at the current lower ring node Before performing the ring operation, the method further includes:
  • the performing the downlink policy for determining the service data includes the step of performing the lower ring operation on the service data by the current lower ring node.
  • the method further includes:
  • the service data is sent to the another lower ring node to perform a lower ring operation.
  • the policy includes: when the service data is sent to the another lower ring node for a lower ring operation, the lower ring policy for determining the service data includes: sending the service data to the another lower ring node Before performing the ring operation, the method further includes:
  • performing the decision that the lower ring policy includes the step of sending the service data to the another lower ring node for a lower ring operation.
  • the detecting whether the another lower ring node is reachable includes:
  • Determining whether the another lower ring node is reachable by detecting whether the predetermined channel is normal, the predetermined channel being a channel established in advance between the current lower ring node and the another lower ring node; or
  • Determining whether the another lower ring node is reachable by receiving a message sent by the another lower ring node by using a predetermined channel, where the predetermined channel is established in advance between the current lower ring node and the another lower ring node aisle.
  • a network protection apparatus for setting any one of two lower ring nodes connected to a same access device on a ring network protected by a ring network, the device comprising:
  • An information obtaining module configured to acquire service configuration information of another lower ring node
  • a data detection module configured to: when the service data is received, check whether the service configuration information carried by the service data matches the service configuration information of the another downlink node;
  • the policy decision module is configured to: if the detection result is that the service configuration information carried by the service data matches the service configuration information of the another downlink node, the lower ring policy for determining the service data includes:
  • the current lower ring node performs the lower ring operation on the service data, and/or sends the service data to the another lower ring node to perform a lower ring operation.
  • the information acquiring module includes: a first acquiring unit or a second acquiring unit;
  • the first obtaining unit is configured to acquire service configuration information of the another lower ring node from the another lower ring node;
  • the second obtaining unit is configured to obtain service configuration information of the another downlink node from the network management system of the ring network.
  • the first acquiring unit is configured to:
  • the service configuration information of the another downlink node sent by the another downlink node is received by the extended message of the operation, management, and maintenance of the OAM mechanism on the ring network.
  • the network protection device further includes: a link detection module;
  • the link detection module is further configured to detect whether an access link between the current node and the access device fails;
  • the policy decision module is configured to: if the detection result of the link detection module is that the access link does not fail, perform a policy of deciding the service data, and include the service at the current lower ring node. The step of data performing the lower loop operation.
  • the policy decision module is further configured to: if the detection result is that the access link is faulty, The service data is sent to the other lower ring node for the lower ring operation.
  • the network protection device further includes: a peer detection module;
  • the peer detecting module is configured to detect whether the another lower ring node is reachable
  • the policy decision module is configured to: if the detection result is that the another downlink node is reachable, performing the decision that the downlink policy includes the step of sending the service data to the another downlink node for performing a lower ring operation.
  • the peer detection module is configured to:
  • Determining whether the another lower ring node is reachable by detecting whether the predetermined channel is normal, the predetermined channel being a channel established in advance between the current lower ring node and the another lower ring node; or
  • Determining whether the another lower ring node is reachable by receiving a message sent by the another lower ring node by using a predetermined channel, where the predetermined channel is established in advance between the current lower ring node and the another lower ring node aisle.
  • a lower ring node comprising the network protection device of any of the second aspect and various possible implementations.
  • a network system including a ring network provided with ring network protection, and two lower ring nodes connected to the same access device on the ring network;
  • the lower ring node is the lower ring node described in the third aspect above.
  • the service configuration information carried by the service data is matched with the service configuration information of the other lower ring node. If the detection result is a match, the lower loop policy of the service data is determined; the problem that the long holdoff time and the dual-homing protection need to be configured with more OAM resources are solved when the dual-homing protection and the ring network protection coexist; It is necessary to set the dual-homing protection specifically. Only when the ring network protection is set, the two lower-loop nodes on the ring network can decide the lower-loop strategy when receiving the service data of the lower-end ring node. With double Protects the same protection.
  • 1 is a schematic structural diagram of a transmission network using both ring network protection and dual-homing protection
  • FIG. 2 is a schematic structural diagram of an implementation environment involved in a network protection method according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for a network protection method according to an embodiment of the present invention.
  • FIG. 4A is a flowchart of a method for a network protection method according to another embodiment of the present invention.
  • FIG. 4B is a schematic diagram of an implementation of a network protection method provided by the embodiment shown in FIG. 4A;
  • FIG. 5 is a schematic structural diagram of an implementation environment involved in a network protection method according to another embodiment of the present invention.
  • 6A is a flowchart of a method for a network protection method according to another embodiment of the present invention.
  • FIG. 6B is a schematic diagram of an implementation of a network protection method provided by the embodiment shown in FIG. 6A;
  • FIG. 7 is a structural block diagram of a network protection apparatus according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a network protection apparatus according to another embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a lower ring node according to an embodiment of the present invention.
  • FIG. 2 illustrates a network protection method provided by a part of embodiments of the present invention.
  • FIG. 2 illustrates a network protection method provided by a part of embodiments of the present invention.
  • the implementation environment includes a ring network deployed with ring network protection and without traditional dual-homing protection, and two lower ring nodes D and E connected to the same access device RNC 204 on the ring network.
  • the two lower ring nodes D and E are used to implement the traditional dual-homing protection function.
  • the implementation environment further includes a base station 202, a network element A, a network element B, and a network element C. among them:
  • the base station 202 and the network element A are connected by the access link 21; the network element A and the network element B are connected by the transmission link 22, and the network element A and the network element C are connected by the transmission link 23; B and network element C are connected by transmission links 24 and 25, and network element B and lower ring node D are connected by transmission link 26; network element C and lower ring node E are connected by transmission link 27; The lower ring node D and the lower ring node E are connected by a transmission link 28; the lower ring node D and the RNC 204 are connected by an AC (Attachment Circuit) link 29, and the lower ring node E and the RNC 204 pass through The AC link 20 is connected.
  • AC Acttachment Circuit
  • the network element A, the network element B, and the network element C, and the links between the three network elements form a ring network, and the ring network protection is deployed; the network element B, the network element C, the lower ring node D, and the lower ring node E and the links between the four network elements constitute the aforementioned ring network, and ring network protection is also deployed but traditional dual-homing protection is not deployed.
  • the lower ring node D and the lower ring node E may be device entities or logical entities inside the device.
  • FIG. 3 is a flowchart of a method for a network protection method according to an embodiment of the present invention. This embodiment is exemplified by applying the network protection method to any of the two lower ring nodes shown in FIG. 2.
  • the network protection method includes:
  • Step 301 Obtain service configuration information of another downlink node.
  • the current lower ring node needs to obtain the service configuration information of the other lower ring node D.
  • the service configuration information includes the transmission information of the service data and the downlink information.
  • the service configuration information may be a tunnel label and a PW label.
  • the following is the default working node of the ring node D.
  • the service data is defaulted on the lower ring node D.
  • the network element A establishes a PW channel with the lower ring node D.
  • the lower ring node E obtains the service configuration information of the lower ring node D in advance.
  • Step 302 When receiving the service data, check whether the service configuration information carried by the service data matches the service configuration information of another downlink node.
  • the service data that needs to be ringed under another ring node will be directly transmitted to another The ring node does not pass the current lower ring node. However, if the link on the ring network fails or another ring node fails, the ring network will be switched. The service data of the lower ring node will pass through the current lower ring node. When receiving the service data, the point detects whether the service configuration information carried in the service data matches the service configuration information of another downlink node.
  • a service data is required to be downlinked on the lower ring node D by default.
  • the path is transmitted from the path A->B->D to the lower ring node D for the lower ring operation.
  • the transmission link 26 or the lower ring node D between the network element B and the lower ring node D fails, the network element B, the network element C, the landing node D, and the landing node E, and the four network elements
  • the ring link will form a ring network switchover.
  • the service data will be transmitted by the path A->B->C->E->D, and the lower ring node E will receive the service data.
  • the point E When receiving the service data, the point E detects whether the service configuration information carried by the service data matches the service configuration information of another downlink node. If the detection result is a match, it indicates that the service data is defaulted on the lower ring node D. Business data.
  • Step 303 If the detection result is that the service configuration information carried by the service data matches the service configuration information of the other downlink node, the downlink policy of the decision service data includes: performing the lower ring operation on the current downlink node, and/ Or send the service data to another lower ring node for the lower ring operation.
  • the lower ring policy of the lower ring node decision service data is:
  • the current lower ring node performs the lower ring operation on the service data, and sends the service data to another lower ring node for the lower ring operation.
  • the network protection method obtains service configuration information of another lower ring node by using one of the two lower ring nodes, and detects the service carried by the service data when receiving the service data. Whether the configuration information matches the service configuration information of another lower-loop node; if the detection result is a match, the lower-loop policy of the service data is determined; and the long holdoff time and the dual-homing are required to be solved when the dual-homing protection and the ring network protection coexist. Protection requires a lot of OAM resources; it is not necessary to set up dual-homing protection. Only when the ring network protection is set, the two lower ring nodes on the ring network receive the peer lower ring node.
  • FIG. 4A is a flowchart of a method for a network protection method according to another embodiment of the present invention. This embodiment is exemplified by applying the network protection method to any of the two lower ring nodes shown in FIG. 2.
  • the network protection method includes:
  • Step 401 Obtain service configuration information of another downlink node.
  • the current downlink node needs to obtain the service configuration information of the other downlink node.
  • the service configuration information includes the transmission information of the service data and the downlink information.
  • the service configuration information may be a tunnel label and a PW label. That is, the lower ring node D needs to obtain the service configuration information of the lower ring node E, and the lower ring node E needs to obtain the service configuration information of the lower ring node D.
  • the following is the default working node of the ring node D.
  • the service data is defaulted on the lower ring node D.
  • the network element A establishes a PW channel with the lower ring node D.
  • the lower ring node E obtains the service configuration information of the lower ring node D in advance.
  • this step can be implemented in any of the following two implementation manners:
  • the current lower ring node acquires service configuration information of the other lower ring node from another lower ring node;
  • the current lower ring node When there is a predetermined channel between the current lower ring node and another lower ring node, the current lower ring node receives the service configuration information of another lower ring node sent by another lower ring node through the predetermined channel, where the predetermined channel is pre-in the current lower ring node.
  • a channel established between another lower ring node For example, a predetermined channel is pre-established between the lower ring node D and the lower ring node E.
  • the predetermined channel is usually carried on the transmission link 28, and the lower ring node D transmits its own service configuration information to the lower ring node E through the predetermined channel.
  • the lower ring node E receives the service configuration information of the lower ring node D through the predetermined channel; the lower ring node E also sends its own service configuration information to the lower ring node D through the predetermined channel, and the lower ring node D receives the lower channel through the predetermined channel. Service configuration information of the ring node E.
  • the current lower ring node receives the service configuration information of another lower ring node sent by another lower ring node through the extended message of the OAM mechanism on the ring network.
  • the lower ring node D sends its own service configuration information to the lower ring node E through the extended message of the OAM mechanism on the ring network, and the lower ring node E passes the extended report.
  • the message receives the service configuration information of the lower ring node D; the lower ring node E sends its own service configuration information to the lower ring node D through the extended message of the OAM mechanism on the ring network, and the lower ring node D receives the extended message through the extended message.
  • Service configuration information of the ring node E receives the extended message through the extended message.
  • the current lower ring node obtains service configuration information of another lower ring node from the network management system of the ring network.
  • the current lower ring node can also obtain another from the network management system of the ring network.
  • Service configuration information of the ring node For example, when the network management system in the ring network sends the service configuration information of the lower ring node D to the lower ring node D, the service configuration information of the lower ring node D is also sent to the lower ring node E; the network management system in the ring network When the service configuration information of the lower ring node E is sent by the lower ring node E, the service configuration information of the lower ring node E is also sent to the lower ring node D.
  • Step 402 When receiving service data, detecting whether the service configuration information carried in the service data matches the service configuration information of another downlink node;
  • the service data that needs to be ringed at another lower ring node is directly transmitted to another lower ring node and does not pass through the current lower ring node.
  • the link on the ring network fails or another ring node fails, ring network switching occurs.
  • the service data of the ring that needs to be in the ring of another ring node passes through the current lower ring node during transmission.
  • the ring node detects whether the service configuration information carried in the service data matches the service configuration information of another downlink node.
  • a service data is required to be downlinked on the lower ring node D by default.
  • the path is transmitted from the path A->B->D to the lower ring node D for the lower ring operation.
  • the transmission link 26 or the lower ring node D between the network element B and the lower ring node D fails, the network element B, the network element C, the landing node D, and the landing node E, and the four network elements
  • the ring link will form a ring network switchover.
  • the service data will be transmitted by the path A->B->C->E->D, and the lower ring node E will receive the service data.
  • the point E When receiving the service data, the point E detects whether the service configuration information carried by the service data matches the service configuration information of another downlink node. If the detection result is a match, it indicates that the service data is defaulted on the lower ring node D. Business data.
  • Step 403 Detect whether an access link between the current lower ring node and the access device is faulty, and/or detect whether another downlink node is reachable;
  • the current lower ring node detects whether the access link between the current lower ring node and the access device is faulty, and/or the current lower ring node also detects whether another lower ring node is reachable. Another link The unreachable point may be caused by the failure of another lower ring node itself or by a fault between two lower ring nodes.
  • the two fault detections can be performed simultaneously or only one test can be performed. Take two fault detections at the same time as an example, namely:
  • the lower ring node E detects whether the AC link 20 is faulty, and detects whether the lower ring node D is reachable;
  • the lower ring node D If the lower ring node D is the current lower ring node, the lower ring node D detects whether the AC link 29 is faulty and detects whether the lower ring node E is reachable.
  • the current lower ring node When the current lower ring node detects whether the access link between the current lower ring node and the access device is faulty, the current lower ring node can detect whether a fault occurs through an AC fault detection mechanism on the access link.
  • the current lower ring node detects whether another lower ring node is reachable, it can be implemented in any of the following three ways:
  • the current lower ring node detects whether another lower ring node is reachable through the OAM mechanism on the ring network;
  • the OAM detection mechanism on the ring network will alarm to another lower ring node when one lower ring node is unreachable.
  • the current lower ring node determines whether another lower ring node is reachable by detecting whether the predetermined channel is normal, and the predetermined channel is a channel established in advance between the current lower ring node and another lower ring node;
  • the current lower ring node determines whether another lower ring node is reachable by detecting whether the predetermined channel is normal. If the predetermined channel is normal, determining another lower ring node may be If the scheduled channel is abnormal, it is determined that another lower ring node is unreachable. It should be noted that the case that the predetermined channel is abnormal is not all caused by the failure of another lower ring node, or the transmission link carrying the predetermined channel may be faulty, and it is considered that another lower ring node is not available. Da.
  • the current lower ring node may also receive a message sent by another lower ring node through the predetermined channel to determine whether another lower ring node is reachable, if another subordinate node is received.
  • the normal packet sent by the ring node periodically determines that another downlink node is reachable. If the normal packet sent by another loopback node is not received or the abnormal packet sent by another loopback node is received, it is determined.
  • the other lower ring node is unreachable. For example, if the lower ring node D finds that the access link 29 is faulty, the lower ring node E may send an abnormal packet. When receiving the abnormal packet, the lower ring node E determines that the lower ring node D is unreachable.
  • Step 404 If the detection result is that the service configuration information carried by the service data matches the service configuration information of another downlink node, the lower ring policy of the service data is directly or according to the fault detection result;
  • the lower ring node determines the lower ring policy of the service data, and the service data is the service data that is detected in step 402 and matches the service configuration information carried by the service data with the service configuration information of another downlink node. Since the above step 403 is an optional step, the step may specifically have four implementation manners:
  • the current lower ring node directly determines the lower ring policy: the current lower ring node performs the lower ring operation on the service data, and sends the service data to the other lower ring node for the lower ring operation.
  • the RNC 204 may receive 2 copies of the same service data, and the RNC 204 may selectively receive one copy, for example, save the service data received first, and then discard it when receiving the same service data.
  • the current lower ring node determines the delivery policy of the service data according to the fault detection result of the access link
  • the current lower ring node determines the delivery policy of the service data according to the fault detection result of the access link:
  • the lower loop policy of the current lower ring node decision service data includes: performing the lower ring operation on the current lower ring node;
  • the lower loop policy of the current lower ring node decision service data includes: sending the service data to another lower ring node for performing the lower ring operation.
  • the current lower ring node determines the delivery policy of the service data according to the fault detection result of the other lower ring node
  • the current lower ring node determines the delivery policy of the service data according to the fault detection result of the other lower ring node:
  • the lower ring policy of the current lower ring node deciding the service data includes: performing the lower ring operation on the current lower ring node;
  • the lower ring policy of the current lower ring node decision service data includes: sending the service data to another lower ring node for the lower ring operation.
  • the current lower ring node determines the delivery strategy of the service data according to the two fault detection results
  • the decision-making loop policy includes: sending the service data to another lower ring node for performing the lower ring operation;
  • the decision to perform the loopback policy includes: performing the lower loop operation on the current downlink node;
  • the decision-making loop policy includes:
  • the current lower ring node performs the lower ring operation on the service data, and sends the service data to another lower ring node for the lower ring operation.
  • the detection result is that the access link on the current side fails and the other lower ring node is unreachable, the service data cannot be sent.
  • the lower ring node performs the service data of the lower ring, and the current lower ring node according to its own service configuration information.
  • the service data that is received by the current lower ring node to perform the lower ring is also applicable.
  • the lower ring policy determined in this embodiment is also applicable.
  • a master may be introduced between the lower ring node D and the lower ring node E. Prepare the relationship. That is:
  • step 403 After the fault detection process of step 403, the active/standby relationship between the current lower ring node and another lower ring node is determined according to the fault detection result; then in step 404, the current lower ring node decides according to whether it is the primary node or the standby node.
  • the lower ring strategy At this time, the detection process of step 403 and step 401 and step 402 may be independent of each other in the execution order.
  • the process of determining the active/standby relationship may include:
  • the current lower ring node determines the active/standby relationship between the current lower ring node and another lower ring node according to the default active/standby relationship; for example, the ring network defaults clockwise.
  • the default active/standby relationship is the lower ring node D as the primary node, under The ring node E is a standby node.
  • the current lower ring node determines that the active/standby relationship is: the current lower ring node is the master node, and the other lower ring node is the standby node; for example, if the lower ring node D is unreachable, the lower ring node E determines The active/standby relationship is as follows: the lower ring node E is the master node, and the lower ring node D is the standby node. For example, if the lower ring node E is unreachable, the lower ring node D determines that the active/standby relationship is: the lower ring node D is the master node. The lower ring node E is a standby node.
  • the current lower ring node determines that the active/standby relationship is the current lower ring node as the standby node and the other lower ring node as the primary node.
  • the lower ring node D determines that the active/standby relationship is as follows: the lower ring node E is the master node, and the lower ring node D is the standby node; for example, when the AC link 20 fails, the lower link Point E determines that the active/standby relationship is as follows: the lower ring node D is the master node, and the lower ring node E is the standby node.
  • the two lower ring nodes switch the active/standby relationship through the predetermined channel.
  • the process of the current lower ring node determining the lower ring policy may include:
  • the current lower ring node determines the lower ring policy: the current lower ring node performs the lower ring operation on the service data.
  • the current lower ring node determines the lower ring policy to send the service data to another lower ring node for the lower ring operation.
  • the ring network defaults to the normal working direction.
  • the lower ring node D is the master node and the lower ring node E is the standby node.
  • the lower ring node D will receive the service data smoothly and send it directly to the RNC. That is, the transmission path of the service data sent by the base station 202 to the RNC 204 at this time is: base station 202->A->B->D->RNC204.
  • the network element B detects the fault through the ring network OAM when the service data is sent to the lower ring node D, triggering the ring network to be switched, but the lower ring node and the AC link do not occur. If the fault occurs, the lower ring node D is still the master node, and the lower ring node E is still the standby node. The following ring node E receives the service data, and then the lower ring node E forwards the service data to the lower ring node D, and then The lower ring node D sends the service data to the RNC. At this time, the transmission path of the service data sent by the base station 202 to the RNC 204 is: the base station 202->A->B->C->E->D->RNC204.
  • the network element B passes the service data when it sends the service data to the lower ring node D.
  • the ring network OAM detects the fault and triggers the ring network to switch.
  • the following ring node E receives the service data.
  • the lower ring node E detects that the lower ring node D is unreachable through the ring network OAM, triggers the active/standby switchover, and the lower ring node E becomes the master node, and then the lower ring node E sends the service data directly to the RNC according to the lower ring policy.
  • the transmission path of the service data sent by the base station 202 to the RNC 204 is: the base station 202->A->B->C->E->RNC204.
  • the lower ring node D detects the fault through the fault detection mechanism on the AC link, and triggers the active/standby switchover.
  • the lower ring node D becomes the standby node.
  • the service data sent by the base station is received by the lower ring node D, and the lower ring node D forwards the service data to the E according to the lower ring policy, and the lower ring node E sends the service data to the RNC.
  • the transmission path of the service data sent by the base station 202 to the RNC 204 is: the base station 202->A->B->D->E->RNC204.
  • the network protection method obtains service configuration information of another lower ring node by using one of the two lower ring nodes, and detects the service carried by the service data when receiving the service data. Whether the configuration information matches the service configuration information of another lower-loop node; if the detection result is a match, the lower-loop policy of the service data is determined; and the long holdoff time and the dual-homing are required to be solved when the dual-homing protection and the ring network protection coexist.
  • step 403 may not be performed, or only one of the fault detections may be performed, or two fault detections may be performed at the same time.
  • the more types of fault detection mechanisms are performed the more complicated the network side control logic is, but The more redundant service data that may be sent; the fewer types of fault detection mechanisms are performed, the simpler the control logic on the network side, but the less redundant service data that may be sent.
  • different strategies can be adopted according to different implementation environments and computing capabilities on the network side.
  • FIG. 5 is a schematic structural diagram of another implementation environment involved in the network protection method according to another embodiment of the present invention.
  • the implementation environment includes a ring network deployed with ring network protection and without traditional dual-homing protection, and two lower ring nodes D and E connected to the same access device RNC 204 on the ring network, and the lower ring node D includes a transmission component d and
  • the AC side dual-homing component 52, the transmitting component d and the AC-side dual-homing component 52 are logical entities on the device entity to which the lower ring node D belongs;
  • the lower ring node E includes a transmitting component e and an AC-side dual-homing component 54, and the transmitting component e
  • the AC-side dual-homing component 54 is a logical entity on the device entity to which the lower ring node E belongs.
  • the implementation environment further includes a base station 202, a network element A, a network element B, and a network element C. among them:
  • the base station 202 and the network element A are connected by the access link 21; the network element A and the network element B are connected by the transmission link 22, and the network element A and the network element C are connected by the transmission link 23; B and network element C are connected by transmission links 24 and 25, and network element B and lower ring node D are connected by transmission link 26; network element C and lower ring node E are connected by transmission link 27; The lower ring node D and the lower ring node E pass through the transmission link 28; the transmission component d in the lower ring node D runs on the ring network on the network side, and the AC side dual-homing component 52 and AC connected to the transmission component d (Attachment)
  • the circuit 29 is connected to the RNC 204.
  • the transmission component e in the landing node E runs on the ring network on the network side, and the AC side dual-homing component 54 and the AC link 20 connected to the transmission component e are connected to the RNC 204.
  • An AC side protocol channel is established between the two AC side dual-homing components, and the AC side protocol channel is usually carried on the transmission link 28.
  • the network element A, the network element B, and the network element C, and the links between the three network elements form a ring network, and the ring network protection is deployed; the network element B, the network element C, the lower ring node D, and the lower ring node E and the links between the four network elements constitute the aforementioned ring network, and ring network protection is also deployed but traditional dual-homing protection is not deployed.
  • the transmission components in the lower ring node D and the lower ring node E are used to implement the functions of the traditional lower ring node and some logical steps in the network protection method in the embodiment of the present invention.
  • the added AC side dual-homing component is used to perform the main logical steps in the network protection method in the embodiment of the present invention.
  • FIG. 6A is a flowchart of a method for a network protection method according to another embodiment of the present invention. This embodiment is exemplified by applying the network protection method to any of the two lower ring nodes shown in FIG. 5.
  • the network protection method includes:
  • Step 601 Acquire, by using a transmission component in the local end, service configuration information of another downlink node.
  • the current lower ring node obtains the service configuration information of the other lower ring node through the transmission component of the local end, and the service configuration information includes the transmission information of the service data and the downlink information.
  • the service configuration information may be a tunnel label and a PW. label. That is, the transmission component d in the lower ring node D needs to acquire the service configuration information of the transmission component e in the lower ring node E, and the transmission component e in the lower ring node E needs to acquire the service configuration information of the transmission component d in the lower ring node D. .
  • the following ring node D is the default working node as an example.
  • the service data is in the lower ring of the lower ring node D by default.
  • the network element A establishes a PW channel with the transmission component in the lower ring node D, and the transmission component in the lower ring node E is acquired in advance. Service configuration information of the ring node D.
  • this step can be implemented in any of the following two implementation manners:
  • the transmission component in the current lower ring node receives the service configuration information of another lower ring node sent by the transmission component in the other lower ring node through the predetermined channel
  • the reservation A channel is a channel that is established in advance between a current lower ring node and another lower ring node. For example, a predetermined channel is pre-established between the lower ring node D and the lower ring node E.
  • the predetermined channel is usually carried on the transmission link 28, and the transmission component d transmits its own service configuration information to the transmission component e through the predetermined channel, and transmits
  • the component e receives the service configuration information of the lower ring node D through the predetermined channel; the transmission component e also transmits its own service configuration information to the transmission component d through the predetermined channel, and the transmission component d receives the service configuration information of the lower ring node E through the channel. .
  • the transmission component in the current lower ring node receives another link sent by the transmission component in the other lower ring node through the extended message of the OAM mechanism on the ring network.
  • Point of business configuration information When there is no predetermined channel between the current lower ring node and another lower ring node, the transmission component in the current lower ring node receives another link sent by the transmission component in the other lower ring node through the extended message of the OAM mechanism on the ring network.
  • the transmission component d transmits the service configuration information of the lower ring node D to the transmission component e through the extended message of the OAM mechanism on the ring network, and the transmission component e receives the service configuration information of the lower ring node D through the extended message;
  • the e sends the service configuration information of the lower ring node E to the transmission component d through the extended packet of the OAM mechanism on the ring network, and the transmission component d receives the service configuration information of the lower ring node E through the extended packet.
  • the transmission component in the current lower ring node may also be from the network management system of the ring network. Get the service configuration information of another lower ring node. For example, when the network management system in the ring network sends the service configuration information of the lower ring node D to the transmission component d in the lower ring node D, the service of the lower ring node D is also delivered to the transmission component e in the lower ring node E.
  • Configuration information when the network management system in the ring network sends the service configuration information of the lower ring node E to the transmission component e in the lower ring node E, the lower ring node E is also sent to the transmission component d in the lower ring node D.
  • Business configuration information when the network management system in the ring network sends the service configuration information of the lower ring node E to the transmission component e in the lower ring node E, the lower ring node E is also sent to the transmission component d in the lower ring node D.
  • Step 602 When receiving the service data, the transmission component in the local end detects whether the service configuration information carried in the service data matches the service configuration information of another downlink node.
  • the service data that needs to be ringed at another lower ring node is directly transmitted to another lower ring node and does not pass through the current lower ring node.
  • the link on the ring network fails or another ring node fails, ring network switching occurs.
  • the service data of the ring that needs to be in the ring of another ring node passes through the current lower ring node during transmission.
  • the transmission component in the ring node detects whether the service configuration information carried in the service data matches the service configuration information of another downlink node.
  • a service data needs to be looped down at the lower ring node D by default.
  • the path A->B->D is transmitted to the lower ring node D for the lower ring operation.
  • the transmission link 26 or the lower ring node D between the network element B and the lower ring node D fails, the network element B, the network element C, the landing node D, and the landing node E, and the four network elements
  • the ring link will form a ring network switch.
  • the service data will be transmitted by the path A->B->C->E->D, and the transmission component e in the lower ring node E will receive the service.
  • the transmission component e when the transmission component e receives the service data, it detects whether the service configuration information carried by the service data matches the service configuration information of another downlink node. If the detection result is a match, it indicates that the service data is the default link. Point D the business data of the ring.
  • Step 603 detecting, by the AC side dual-homing component in the local end, whether the access link between the current lower ring node and the access device is faulty, and/or detecting whether the AC side dual-homing component in the other lower ring node is Reachable
  • the AC-side dual-homing component in the current lower-loop node detects whether the access link between the current lower-loop node and the access device fails, and/or the AC-side dual-homing component in the current lower-loop node detects another Whether the AC-side dual-homing component in the ring node is reachable.
  • AC side in another lower ring node The dual-homing component is unreachable, which may be caused by the failure of the AC-side dual-homing component itself, or by the failure of the AC-side protocol channel between the two AC-side dual-homing components.
  • the two fault detections can be performed simultaneously or only one test can be performed. Take two fault detections at the same time as an example, namely:
  • the AC side dual return component 54 in the lower ring node E detects whether the AC link 20 is faulty, and detects whether the AC side dual return component 52 in the lower ring node D can be Reach
  • the AC side dual return component 52 in the lower ring node D detects whether the AC link 29 is faulty, and detects whether the AC side dual return component 54 in the lower ring node E can be Da.
  • the AC side dual-homing component in the current lower ring node detects whether the access link between the current lower ring node and the access device fails, the AC side dual-homing component in the current lower ring node can pass the access link.
  • the AC fault detection mechanism on the above is used to detect whether a fault has occurred.
  • the AC-side dual-homing component in the current lower-loop node detects whether the AC-side dual-homing component in the other lower-loop node is reachable, it can be implemented in any of the following three manners:
  • the AC-side dual-homing component in the current lower-loop node detects whether the AC-side dual-homing component in the other lower-loop node is reachable through the OAM mechanism on the ring network;
  • the OAM detection mechanism on the ring network may notify the other when the AC-side dual-homing component in one lower ring node is unreachable.
  • the AC side dual-homed component in the ring node may notify the other when the AC-side dual-homing component in one lower ring node is unreachable.
  • the AC-side dual-homing component in the current lower-loop node determines whether the AC-side dual-homing component in the other lower-loop node is faulty by detecting whether the AC protocol channel is normal.
  • the AC protocol channel is an AC in the current lower-loop node. a channel established between the side dual-homing component and the AC-side dual-homing component in another lower ring node;
  • the AC-side dual-homing component in the current lower-loop node determines whether the AC-side dual-homing component in the other lower-loop node is determined by detecting whether the AC-side protocol channel is normal. If the AC side protocol channel is normal, the AC side dual-homing component in the other lower ring node is reachable. If the AC side protocol channel is abnormal, the AC side dual-homing component in the other lower ring node is determined to be unavailable. Da. The AC side protocol channel is abnormal. It may be caused by a failure of the AC side dual-homed component in another lower ring node, or the transmission link carrying the AC side protocol channel may be faulty.
  • the AC side dual-homing component in the current lower ring node receives another one through the AC side protocol channel.
  • a packet sent by the AC-side dual-homing component of the ring node determines whether the AC-side dual-homing component of the other lower-loop node is reachable.
  • the AC protocol channel is an AC-side dual-homing component and another lower-loop node in the current lower-loop node. The channel established between the two sides of the AC side in the component.
  • the AC-side dual-homing component in the current lower-loop node can also receive the report sent by the AC-side dual-homing component in the other lower-loop node through the AC-side protocol channel. And determining whether the AC-side dual-homing component in the other lower-loop node is reachable. If the normal packet sent by the AC-side dual-homing component in the other lower-loop node is received, the AC side in the other lower-loop node is determined.
  • the dual-homing component is reachable; if the normal packet sent by the AC-side dual-homing component in the other lower-loop node is not received, or the abnormal packet sent by the AC-side dual-homing component in the other lower-loop node is received, It is determined that the AC side dual-homing component in another lower ring node is unreachable.
  • the AC side dual-homing component 52 in the lower ring node D finds that the access link 29 is faulty, the AC side dual-homing component 54 in the lower ring node E may send an abnormal packet, and the lower ring node E Upon receiving the abnormal message, the AC-side dual-homing component 54 determines that the AC-side dual-homing component 52 in the lower-loop node D is unreachable.
  • Step 604 Determine a lower ring policy of the service data by using an AC-side dual-homing component in the local end.
  • the AC-side dual-homing component of the current lower-loop node determines the lower-loop policy of the service data, where the service data is the service configuration information carried in the service data of the current lower-loop node in step 602, and the service configuration information carried by the service data and another lower-loop node.
  • Business configuration information matches business data.
  • the sending policy includes: performing the lower ring operation on the service data by the AC side dual-homing component in the current lower ring node, and/or performing the lower ring operation on the service data through the AC-side dual-homing component in the other lower ring node.
  • step 603 is an optional step, the step may specifically have four implementation manners:
  • the lower-loop policy of the current-side dual-homing component of the current lower-loop node directly determines the service data is: the service data is downlinked by the AC-side dual-homing component in the current lower-loop node. The operation is performed, and the service data is subjected to a lower loop operation by an AC-side dual-homing component in another lower ring node.
  • the RNC may receive 2 copies of the same service data, and the RNC may selectively receive one copy, for example, save the service data received first, and then discard it when receiving the same service data.
  • the AC-side dual-homing component in the current lower-loop node determines the delivery policy of the service data according to the fault detection result of the access link;
  • the AC-side dual-homing component in the current lower-loop node determines the delivery policy of the service data according to the fault detection result of the access link:
  • the lower loop policy of the AC-side dual-homing component decision service data in the current lower ring node includes: performing service data by using the AC-side dual-homing component in the current lower ring node. Lower ring operation;
  • the lower loop policy of the AC-side dual-homing component decision service data in the current lower ring node includes: performing the service data by using the AC-side dual-homing component in the other lower ring node. Ring operation.
  • the AC-side dual-homing component in the current lower-loop node determines the delivery policy of the service data according to the fault detection result of the AC-side dual-homing component in the other lower-loop node;
  • the AC-side dual-homing component in the current lower-loop node determines the service data according to the fault detection result of the other lower-loop node.
  • the lower-loop policy of the AC-side dual-homing component decision service data in the current lower-loop node includes: passing the AC side double in the current lower ring node The component returns the business data to the lower ring operation;
  • the lower-loop policy of the AC-side dual-homing component decision service data in the current lower-loop node includes: passing the AC side in the other lower-loop node
  • the dual-homing component performs the lower-loop operation of the business data.
  • the current lower ring node determines the delivery strategy of the service data according to the two fault detection results
  • the decision-making loop-down policy includes: performing the service through the AC-side dual-homing component in the other lower-loop node.
  • the data is subjected to a lower loop operation;
  • the decision-making loop-down policy includes: passing the AC-side dual-homing component in the current lower-loop node.
  • Business data is performed in the lower ring operation;
  • the decision-making loop policy includes:
  • the service data is downlinked by the AC-side dual-homing component in the current lower ring node;
  • the service data is subjected to the lower ring operation through the AC-side dual-homing component in another lower ring node;
  • the service data is subjected to the lower ring operation by the AC-side dual-homing component in the current lower-loop node, and the service data is subjected to the lower-loop operation by the AC-side dual-homing component in the other lower-loop node.
  • the detection result is that the access link on the current side fails and the AC-side dual-homing component in the other lower ring node is not reachable, the service data cannot be sent.
  • the service data of the lower ring is performed by the other lower ring node, for the current lower ring node.
  • the service component receives the service data of the lower ring at the current lower ring node by default according to the service configuration information of the device, and the lower ring policy determined in this embodiment is also applicable.
  • a master may be introduced between the lower ring node D and the lower ring node E. Prepare the relationship. That is:
  • step 603 After the fault detection process of step 603, determining a master-slave relationship between the AC-side dual-homing component in the current lower-loop node and the AC-side dual-homing component in the other lower-loop node according to the fault detection result; then, in step 604, The AC-side dual-homing component in the current lower-loop node determines the lower-loop policy according to whether it is a primary component or a standby component.
  • the detection process of step 603 and step 601 and step 602 may be independent of each other in the execution order.
  • the process of determining the active/standby relationship may include:
  • the AC-side dual-homing component in the current lower-loop node determines the relationship between the two AC-side dual-homed components according to the default active/standby relationship.
  • the active/standby relationship for example, the default is that the AC side dual-homing component 52 in the lower ring node D is the main component.
  • the AC-side dual-homing component in the current lower-loop node determines the active/standby relationship as follows: the AC-side dual-homing component in the current lower-loop node is the main component, and the other is The AC-side dual-homing component in the ring node is a standby component; for example, the AC-side dual-homing component 52 in the lower ring node D is unreachable, and the AC-side dual-homing component 54 in the lower ring node E determines that the active/standby relationship is: The AC side dual return component 54 in the ring node E is the main component, and the AC side dual return component 52 in the lower ring node D is the spare component.
  • the access link between the AC-side dual-homing component and the access device in the current lower ring node occurs When the fault occurs, the AC-side dual-homing component in the current lower-loop node determines that the active-standby relationship is as follows: the AC-side dual-homing component in the current lower-loop node is the standby node, and the AC-side dual-homing component in the other lower-loop node is the master node.
  • the AC-side dual-homing component 52 in the lower-loop node D determines that the active-standby relationship is: the AC-side dual-homing component 54 in the lower-loop node E is the main component, and the lower-loop node D
  • the AC side dual return component 52 is a standby node.
  • the AC-side dual-homed components of the two lower-loop nodes switch the active/standby relationship through the AC protocol channel.
  • the process of determining the lower ring policy of the AC side dual-homing component in the current lower ring node may include:
  • the decision-making loop-down policy is: performing the lower-loop operation of the service data by using the AC-side dual-homing component in the current lower-loop node.
  • the decision-making loop-down policy is: performing the lower-loop operation on the service data through the AC-side dual-homing component in the other lower-loop node.
  • the ring network defaults to the normal working direction, and the AC-side dual-homed component 52 is the main component.
  • the transmission path of the service data sent by the base station 202 to the RNC 204 is: base station 202->A->B- >d->Part 52->RNC204.
  • the AC side dual-homing component 52 is the main component, and the transmission path of the service data sent by the base station 202 to the RNC 204 is: base station 202->A->B->C->e->component 54 -> Part 52 -> RNC204.
  • the transmission path of the service data sent by the base station 202 to the RNC 204 is: base station 202->A->B->C->e->component 54 -> Part 52 -> RNC204.
  • the AC side dual-homing component 52 is a standby component, and the transmission path of the service data sent by the base station to the RNC is: base station 202->A->B->d->component 52->component 54 ->RNC204.
  • the network protection method obtains service configuration information of another lower ring node by using one of the two lower ring nodes, and detects the service carried by the service data when receiving the service data. Whether the configuration information matches the service configuration information of another lower ring node; if the detection result is a match, the lower ring policy of the decision service data is solved;
  • the ring network protection coexists, you need to configure a long holdoff time and double-homing protection. It requires a lot of OAM resources. You do not need to set up dual-homing protection. You only need to set ring network protection to pass the ring.
  • the two lower-loop nodes on the network can achieve the same protection effect as the dual-homing protection by receiving the loopback policy by default when they receive the service data of the lower-loop operation of the lower-end ring node.
  • the service data can also be downlinked through the AC-side dual-homing component of the lower ring node. operating.
  • FIG. 7 is a structural block diagram of a network protection device according to an embodiment of the present invention.
  • the network protection device may be implemented as all or part of the lower ring node by software, hardware or a combination of the two, and the lower ring node may be two lower ring nodes connected to the same access device on the ring network provided with the ring network protection. Any of the lower ring nodes, the device includes:
  • the information obtaining module 720 is configured to acquire service configuration information of another downlink node.
  • the data detection module 740 is configured to: when the service data is received, check whether the service configuration information carried by the service data matches the service configuration information of the another downlink node;
  • the policy decision module 760 is configured to: if the detection result is that the service configuration information carried by the service data matches the service configuration information of the another downlink node, the lower ring policy for determining the service data includes:
  • the current lower ring node performs the lower ring operation on the service data, and/or sends the service data to the another lower ring node to perform a lower ring operation.
  • the network protection device acquires service configuration information of another lower ring node by using one of the two lower ring nodes, and detects the service carried by the service data when receiving the service data. Whether the configuration information is different from the service configuration information of another lower ring node. If the detection result is matched, the lower loop strategy of the decision service data is solved; the problem that the long holdoff time and the dual-homing protection need to be used for the OAM resources are solved when the dual-homing protection and the ring network protection coexist; It is not necessary to set the dual-homing protection specifically. Only when the ring network protection is set, the two lower ring nodes on the ring network can decide the lower ring strategy when receiving the service data of the lower-end ring node.
  • FIG. 8 is a structural block diagram of a network protection device according to another embodiment of the present invention.
  • the network protection device may be implemented as all or part of the lower ring node by software, hardware or a combination of the two, and the lower ring node may be two lower ring nodes connected to the same access device on the ring network provided with the ring network protection. Any of the lower ring nodes, the device includes:
  • the information obtaining module 720 is configured to acquire service configuration information of another downlink node.
  • the data detection module 740 is configured to: when the service data is received, check whether the service configuration information carried by the service data matches the service configuration information of the another downlink node;
  • the policy decision module 760 is configured to: if the detection result is that the service configuration information carried by the service data matches the service configuration information of the another downlink node, the lower ring policy for determining the service data includes:
  • the current lower ring node performs the lower ring operation on the service data, and/or sends the service data to the another lower ring node to perform a lower ring operation.
  • the information acquiring module 720 includes: a first acquiring unit or a second acquiring unit;
  • the first obtaining unit is configured to acquire service configuration information of the another lower ring node from the another lower ring node;
  • the second obtaining unit is configured to obtain service configuration information of the another downlink node from the network management system of the ring network.
  • the first acquiring unit is configured to:
  • the service configuration information of the another downlink node sent by the another downlink node is received by the extended message of the operation, management, and maintenance of the OAM mechanism on the ring network.
  • the network protection device further includes: a link detection module 752;
  • the link detection module 752 is further configured to detect whether an access link between the current lower ring node and the access device fails.
  • the policy decision module 760 is configured to: if the detection result of the link detection module 752 is that the access link does not fail, perform a decision on the downlink policy of the service data, where the current lower ring node will The step of performing the lower loop operation of the service data.
  • the policy decision module 760 is further configured to: if the detection result of the link detection module 752 is that the access link is faulty, send the service data to the another lower ring node for a lower ring operation.
  • the network protection device further includes: a peer detection module 754;
  • the peer detection module 754 is configured to detect whether the other lower ring node is reachable
  • the policy decision module 760 is configured to: if the detection result of the peer detection module 754 is that the another downlink node is reachable, perform the decision that the downlink policy includes sending the service data to the another link Click the step for the lower ring operation.
  • the peer detection module 754 is configured to:
  • Determining whether the another lower ring node is reachable by detecting whether the predetermined channel is normal, the predetermined channel being a channel established in advance between the current lower ring node and the another lower ring node; or
  • Determining whether the another lower ring node is reachable by receiving a message sent by the another lower ring node by using a predetermined channel, where the predetermined channel is established in advance between the current lower ring node and the another lower ring node aisle.
  • the network protection device acquires service configuration information of another lower ring node by using one of the two lower ring nodes, and detects the service carried by the service data when receiving the service data. Whether the configuration information matches the service configuration information of another lower ring node; if the detection result is a match, the lower ring policy of the decision service data is solved;
  • the ring network protection coexists, you need to configure a long holdoff time and double-homing protection. It requires a lot of OAM resources. You do not need to set up dual-homing protection. You only need to set ring network protection to pass the ring.
  • the two lower-loop nodes on the network can achieve the same protection effect as the dual-homing protection by receiving the loopback policy by default when they receive the service data of the lower-loop operation of the lower-end ring node.
  • the link detection module and the peer detection module may have no, only one, or both.
  • different strategies can be adopted according to different implementation environments and computing capabilities on the network side.
  • FIG. 9 is a schematic structural diagram of a lower ring node according to an embodiment of the present invention.
  • the lower ring node is any lower ring node of the two lower ring nodes connected to the same access device on the ring network provided with the ring network protection.
  • the lower ring node includes a processor 920, a memory 940, a transmitter 960, and a receiver 980.
  • the processor 920 is configured to obtain, by using the receiver 980, service configuration information of another downlink node;
  • the processor 920 is further configured to: when the receiver 980 receives the service data, check whether the service configuration information carried by the service data matches the service configuration information of the another downlink node;
  • the processor 920 is further configured to: if the detection result is that the service configuration information carried by the service data matches the service configuration information of the another downlink node, the lower ring policy for determining the service data includes:
  • the current lower ring node performs the lower ring operation on the service data, and/or sends the service data to the another lower ring node through the transmitter 960 to perform a lower ring operation.
  • the lower ring node provided in this embodiment passes through one of two lower ring nodes.
  • the lower ring node obtains service configuration information of another lower ring node, and when receiving the service data, detects whether the service configuration information carried in the service data matches the service configuration information of another downlink node; if the detection result is a match, the service data is determined.
  • the lower ring strategy solves the problem that the long holdoff time and the dual-homing protection need to be configured with more OAM resources when the dual-homing protection and the ring network protection coexist; the need to specifically set the dual-homing protection is achieved only in When the ring network protection is set, the two lower ring nodes on the ring network can realize the double-homing protection by receiving the service policy of the lower ring ring by default. The same protection effect.
  • the processor is further configured to:
  • the processor is further configured to: receive, by using a predetermined channel, service configuration information of the another downlink node sent by the another downlink node,
  • the predetermined channel is a channel established in advance between the current lower ring node and the another lower ring node;
  • the service configuration information of the another downlink node sent by the another downlink node is received by the extended message of the operation, management, and maintenance of the OAM mechanism on the ring network.
  • the processor is further configured to: in the lower ring policy of determining the service data, that: the current downlink node performs the service
  • the lower loop policy of the service data is determined to include: before the current lower ring node performs the downlink operation on the service data, the method further includes:
  • the performing the downlink policy for determining the service data includes the step of performing the lower ring operation on the service data by the current lower ring node.
  • the processor is further And if the detection result is that the access link is faulty, the service data is sent to the another lower ring node for performing a lower ring operation.
  • the processor is further configured to: send the service data to the lower ring policy in the determining the service data If the lower ring node performs the downlink operation, the method further includes: before the performing the lower ring policy of the service data, including: sending the service data to the another lower ring node for the lower ring operation,
  • performing the decision that the lower ring policy includes the step of sending the service data to the another lower ring node for a lower ring operation.
  • the processor is further configured to:
  • Determining whether the another lower ring node is reachable by detecting whether the predetermined channel is normal, the predetermined channel being a channel established in advance between the current lower ring node and the another lower ring node; or
  • Determining whether the another lower ring node is reachable by receiving a message sent by the another lower ring node by using a predetermined channel, where the predetermined channel is established in advance between the current lower ring node and the another lower ring node aisle.
  • a network system is further provided, where the network system includes a ring network provided with ring network protection, and two lower ring nodes connected to the same access device on the ring network;
  • the lower ring node includes the network protection device provided by the embodiment shown in FIG. 7 and the embodiment shown in FIG.
  • the lower ring node is the lower ring node provided by the embodiment shown in FIG. 9 and based on the more preferred embodiment provided by the embodiment of FIG.
  • the program may be For storage in a computer readable storage medium, the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明公开了一种网络保护方法、装置、下环节点及系统,属于通信领域。所述方法包括:获取另一下环节点的业务配置信息;在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;若检测结果为业务数据携带的业务配置信息与另一下环节点的业务配置信息匹配,则决策业务数据的下环策略包括:在当前下环节点和/或将业务数据发送给所述另一下环节点进行下环操作。本发明达到了不需要专门设置双归保护,只需要在设置有环网保护的情况下,就可以实现与双归保护相同的保护效果。而且,由于不需要部署双归保护,只部署环网保护,只需要运行一份基于环网的OAM即可,对OAM资源的占用也非常少。

Description

网络保护方法、装置、下环节点及系统
本申请要求于2013年9月9日提交中国专利局、申请号为201310408390.1、发明名称为“网络保护方法、装置、下环节点及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,特别涉及一种网络保护方法、装置、下环节点及系统。
背景技术
业务数据通常从源节点出发,经过若干个网元以及相邻网元之间的链路传输到宿节点。为了保证在网元或者链路发生故障时,业务数据仍然能够到达宿节点,通常都采用环网保护和/或双归保护来进行网络保护。
请参考图1,其示出了一种同时采用环网保护和双归保护的传输网络的结构示意图。该传输网络包括基站102、接入网元A、传输网元B、传输网元C、下环节点D、下环节点E和RNC(Radio Network Controller,无线网络控制器)104。其中,基站102与接入网元A之间通过接入链路1相连;接入网元A与传输网元B之间通过传输链路2相连、接入网元A与传输网元C之间通过传输链路3相连;传输网元B和传输网元C之间通过传输链路4和5相连,传输网元B与下环节点D之间通过传输链路6相连;传输网元C与下环节点E之间通过传输链路7相连;下环节点D与下环节点E之间通过传输链路8;下环节点D与RNC104之间通过AC(Attachment circuit,接入电路)链路9相连,下环节点E与RNC104之间通过AC链路10相连。其中,接入网元、传输网元、传输链路和下环节点属于网络侧,网络侧可以是MPLS(Multi-Protocol Label Switching,多协议标签交换)网络;AC链路和RNC属于AC侧。具体来讲:
为了解决传输网元和传输链路上可能发生的多点故障,上述传输网络设置有环网保护。接入网元A、传输链路2、传输网元B、传输链路5、传输网元C和传输链路3构成第一个环网;传输网元B、传输链路4、传输网 元C、传输链路7、下环节点E、传输链路8、下环节点D和传输链路6构成第二个环网。每个环网上可以默认设置顺时针方向为正常工作方向,逆时针方向为保护工作方向。也即,在正常工作状态下,业务数据的传输路径为“基站->A->B->D->RNC”,但是环网上的1个传输网元或者传输链路发生故障时,该环网上的工作方向会发生倒换,比如,传输网元B发生节点故障,两个环网均会发生倒换,此时,业务数据的传输路径为“基站->A->C->E->D->RNC”。但是环网保护无法解决下环节点或者AC链路发生故障的情形,下环节点是指业务数据到达该节点后,不需要继续在网络侧转发,需要从该节点由网络侧跳出至AC侧的节点。
为了解决下环节点或者AC链路可能发生的故障,RNC104同时和两个下环节点相连,形成双归保护。该双归保护需要下环节点D和下环节点E所属的网络侧双归技术(结合图中虚线所示)和AC链路所属的AC侧双归技术相互配合实现。以下环节点D为主节点,下环节点E为备节点为例,接入网元A与下环节点D、E之间分别建立PW(Pseudo Wire,虚通路)通道并设置有OAM(operation administration and maintenance,操作、管理和维护)检测,在正常状态下,业务数据的传输路径为“基站->A->B->D->RNC。当主下环节点D或者AC链路9发生故障时,发生主备倒换,由AE之间的PW通道下环节点E和AC链路10来将业务数据传输到RNC104,此时业务数据的传输路径为“基站->A->C->E->RNC”。
需要说明的是,由于双归保护和环网保护共存,则上述传输网络需要配置有holdoff(延迟)时间,holdoff时间是为了协调双归保护和环网保护而人工设置的一个延迟时间。换句话说,对于整个传输网络,当某一个环网链路(如传输链路9)出现故障,网络侧的环网保护和双归保护都可能会发生倒换,这样会引起整个传输网络不必要的紊乱,使得双归保护在接收到故障消息且延迟时间之后故障还未消除时才发生倒换。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
第一,由于holdoff时间通常都大于100ms,无法满足在电信网络中对延迟时间要保证在50ms以下的要求;
第二,双归保护需要每个业务均需要设置两路OAM来检测双归节点的故障,在业务非常多时,需要耗费的OAM资源和带宽非常多,比如有1000个业务,就需要耗费2000路OAM资源。
发明内容
为了解决双归保护和环网保护共存时需要配置较长的holdoff时间、双归保护需要耗费较多的OAM资源的问题,本发明实施例提供了一种网络保护方法、装置、下环节点及系统。所述技术方案如下:
根据本发明的第一方面,提供了一种网络保护方法,用于设置有环网保护的环网上与同一接入设备相连的两个下环节点中的任一下环节点,所述方法包括:
获取另一下环节点的业务配置信息;
在接收到业务数据时,检测所述业务数据携带的业务配置信息是否与所述另一下环节点的业务配置信息匹配;
若检测结果为所述业务数据携带的业务配置信息与所述另一下环节点的业务配置信息匹配,则决策所述业务数据的下环策略包括:
在当前下环节点将所述业务数据进行下环操作,和/或将所述业务数据发送给所述另一下环节点进行下环操作。
在第一方面的第一种可能的实施方式中,所述获取另一下环节点的业务配置信息,包括:
从所述另一下环节点获取所述另一下环节点的业务配置信息;或,
从所述环网的网管系统中获取所述另一下环节点的业务配置信息。
结合第一方面的第一种可能的实施方式,在第二种可能的实施方式中,所述从所述另一下环节点获取所述另一下环节点的业务配置信息,包括:
通过预定通道接收所述另一下环节点发送的所述另一下环节点的业务配置信息,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;
或者,
通过所述环网上的操作、管理和维护OAM机制的扩展报文接收所述另一下环节点发送的所述另一下环节点的业务配置信息。
结合第一方面、第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式,在第三种可能的实施方式中,在所述决策所述业务数据的下环策略包括:在当前节点将所述业务数据进行下环操作的情况下,在所述决策所述业务数据的下环策略包括在当前下环节点将所述业务数据 进行下环操作之前,所述方法还包括:
检测所述当前下环节点与所述接入设备之间的接入链路是否发生故障;
若检测结果为所述接入链路未发生故障,则执行决策所述业务数据的下环策略包括在当前下环节点将所述业务数据进行下环操作的步骤。
结合第一方面的第三种可能的实施方式,在第四种可能的实施方式中,所述方法还包括:
若检测结果为所述接入链路发生故障,则将所述业务数据发送给所述另一下环节点进行下环操作。
结合第一方面、第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式,在第五种可能的实施方式中,在所述决策所述业务数据的下环策略包括:将所述业务数据发送给所述另一下环节点进行下环操作的情况下,在所述决策所述业务数据的下环策略包括将所述业务数据发送给所述另一下环节点进行下环操作之前,所述方法还包括:
检测所述另一下环节点是否可达;
若检测结果为所述另一下环节点可达,则执行决策所述下环策略包括将所述业务数据发送给所述另一下环节点进行下环操作的步骤。
结合第一方面的第五种可能的实施方式,在第六种可能的实施方式中,所述检测所述另一下环节点是否可达,包括:
通过所述环网上的操作、管理和维护OAM机制检测所述另一下环节点是否可达;或,
通过检测预定通道是否正常来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;或,
通过预定通道接收所述另一下环节点发送的报文来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道。
根据本发明的第二方面,提供了一种网络保护装置,用于设置有环网保护的环网上与同一接入设备相连的两个下环节点中的任一下环节点,所述装置包括:
信息获取模块,用于获取另一下环节点的业务配置信息;
数据检测模块,用于在接收到业务数据时,检测所述业务数据携带的业务配置信息是否与所述另一下环节点的业务配置信息匹配;
策略决策模块,用于若检测结果为所述业务数据携带的业务配置信息与所述另一下环节点的业务配置信息匹配,则决策所述业务数据的下环策略包括:
在当前下环节点将所述业务数据进行下环操作,和/或将所述业务数据发送给所述另一下环节点进行下环操作。
在第二方面的第一种可能的实施方式中,所述信息获取模块,包括:第一获取单元或第二获取单元;
所述第一获取单元,用于从所述另一下环节点获取所述另一下环节点的业务配置信息;
所述第二获取单元,用于从所述环网的网管系统中获取所述另一下环节点的业务配置信息。
结合第二方面的第一种可能的实施方式,在第二种可能的实施方式中,所述第一获取单元,用于:
通过预定通道接收所述另一下环节点发送的所述另一下环节点的业务配置信息,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;
或者,
通过所述环网上的操作、管理和维护OAM机制的扩展报文接收所述另一下环节点发送的所述另一下环节点的业务配置信息。
结合第二方面、第二方面的第一种可能的实施方式或者第二种可能的实施方式,在第三种可能的实施方式中,所述网络保护装置,还包括:链路检测模块;
所述链路检测模块,还用于检测所述当前节点与所述接入设备之间的接入链路是否发生故障;
所述策略决策模块,用于若所述链路检测模块的检测结果为所述接入链路未发生故障,则执行决策所述业务数据的下环策略包括在当前下环节点将所述业务数据进行下环操作的步骤。
结合第二方面的第三种可能的实施方式,在第四种可能的实施方式中,所述策略决策模块还用于若检测结果为所述接入链路发生故障,则将所述 业务数据发送给所述另一下环节点进行下环操作。
结合第二方面、第二方面的第一种可能的实施方式或者第二种可能的实施方式,在第五种可能的实施方式中,所述网络保护装置,还包括:对端检测模块;
所述对端检测模块,用于检测所述另一下环节点是否可达;
所述策略决策模块,用于若检测结果为所述另一下环节点可达,则执行决策所述下环策略包括所述业务数据发送给所述另一下环节点进行下环操作的步骤。
结合第二方面的第五种可能的实施方式,在第六种可能的实施方式中,所述对端检测模块,用于:
通过所述环网上的操作、管理和维护OAM机制检测所述另一下环节点是否可达;或,
通过检测预定通道是否正常来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;或,
通过预定通道接收所述另一下环节点发送的报文来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道。
根据本发明的第三方面,提供了一种下环节点,该下环节点包括如上第二方面及各种可能的实施方式中任一所述的网络保护装置。
根据本发明的第四方面,提供了一种网络系统,包括设置有环网保护的环网,以及所述环网上与同一接入设备相连的两个下环节点;
所述下环节点为上述第三方面所述的下环节点。
本发明实施例提供的技术方案带来的有益效果是:
通过由两个下环节点中的一个下环节点获取另一下环节点的业务配置信息,在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;若检测结果为匹配,则决策业务数据的下环策略;解决了双归保护和环网保护共存时需要配置较长的holdoff时间、双归保护需要耗费较多的OAM资源的问题;达到了不需要专门设置双归保护,只需要在设置有环网保护的情况下,通过环网上的两个下环节点在接收到对端下环节点的业务数据时自行决策下环策略的方式就可以实现与双 归保护相同的保护效果。而且,由于不需要专门部署双归保护,只需要部署环网保护,只需要运行一份基于环网的OAM即可,对OAM资源的占用也非常少。同时对于一个业务数据来讲,只需要建立1个PW通道即可,不需要为业务数据同时建立一个主PW通道和备PW通道,节约了传输资源。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种同时采用环网保护和双归保护的传输网络的结构示意图;
图2是本发明一部分实施例提供的网络保护方法所涉及的一种实施环境的结构示意图;
图3是本发明一个实施例提供的网络保护方法的方法流程图;
图4A是本发明另一实施例提供的网络保护方法的方法流程图;
图4B是图4A所示实施例提供的网络保护方法的实施示意图;
图5是本发明另一部分实施例提供的网络保护方法所涉及的一种实施环境的结构示意图;
图6A是本发明另一实施例提供的网络保护方法的方法流程图;
图6B是图6A所示实施例提供的网络保护方法的实施示意图;
图7是本发明一个实施例提供的网络保护装置的结构方框图;
图8是本发明另一实施例提供的网络保护装置的结构方框图;
图9是本发明一个实施例提供的下环节点的结构方框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
请参考图2,其示出了本发明一部分实施例所提供的网络保护方法所涉 及的一种实施环境的结构示意图。该实施环境包括部署有环网保护且未部署传统双归保护的环网,以及该环网上与同一接入设备RNC204相连的两个下环节点D和E。此实施环境下,这两个下环节点D和E用于实现传统双归保护的功能。
该实施环境还包括有基站202、网元A、网元B和网元C。其中:
基站202与网元A之间通过接入链路21相连;网元A与网元B之间通过传输链路22相连、网元A与网元C之间通过传输链路23相连;网元B和网元C之间通过传输链路24和25相连,网元B与下环节点D之间通过传输链路26相连;网元C与下环节点E之间通过传输链路27相连;下环节点D与下环节点E之间通过传输链路28相连;下环节点D与RNC204之间通过AC(Attachment circuit,接入电路)链路29相连,下环节点E与RNC204之间通过AC链路20相连。
网元A、网元B和网元C以及这三个网元之间的链路构成一个环网,且部署有环网保护;网元B、网元C、下环节点D和下环节点E以及这四个网元之间的链路构成前述的环网,也部署有环网保护但未部署传统双归保护。下环节点D和下环节点E可以是设备实体,也可以是设备内部的逻辑实体。
请参考图3,其示出了本发明一个实施例提供的网络保护方法的方法流程图。本实施例以该网络保护方法应用于图2所示的两个下环节点中的任一节点来举例说明。该网络保护方法,包括:
步骤301,获取另一下环节点的业务配置信息;
当前下环节点需要获取另一下环节点D的业务配置信息,业务配置信息包括业务数据的传输信息及下环信息,在MPLS网络中,业务配置信息可以是Tunnel(隧道)标签和PW标签。
以下环节点D为默认的工作节点为例,业务数据默认在下环节点D下环,网元A会与下环节点D建立PW通道,下环节点E事先获取下环节点D的业务配置信息。
步骤302,在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;
正常情况下,需要在另一下环节点下环的业务数据,会直接传输至另 一下环节点,并不经过当前下环节点。但是若环网上的链路发生故障或者另一下环节点发生故障时,会发生环网倒换,需要在另一下环节点下环的业务数据传输时会经过当前下环节点,此时,当前下环节点在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配。
比如,一个业务数据是默认需要在下环节点D下环,正常情况下,会由路径A->B->D传输至下环节点D进行下环操作。但是,若网元B和下环节点D之间的传输链路26或者下环节点D发生故障,则由网元B、网元C、落地节点D和落地节点E以及这四个网元之间的链路构成环网会发生环网倒换,此时,业务数据会由路径A->B->C->E->D传输,下环节点E会接收到该业务数据,该下环节点E收到该业务数据时,会检测该业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配,若检测结果为匹配,则表示该业务数据是默认在下环节点D下环的业务数据。
步骤303,若检测结果为业务数据携带的业务配置信息与另一下环节点的业务配置信息匹配,则决策业务数据的下环策略包括:在当前下环节点将业务数据进行下环操作,和/或将业务数据发送给另一下环节点进行下环操作。
在当前下环节点的检测结果为业务数据携带的业务配置信息与另一下环节点的业务配置信息匹配,则下环节点决策业务数据的下环策略为:
在当前下环节点将业务数据进行下环操作;或,
将业务数据发送给另一下环节点进行下环操作;或,
在当前下环节点将业务数据进行下环操作,且将业务数据发送给另一下环节点进行下环操作。
综上所述,本实施例提供的网络保护方法,通过由两个下环节点中的一个下环节点获取另一下环节点的业务配置信息,在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;若检测结果为匹配,则决策业务数据的下环策略;解决了双归保护和环网保护共存时需要配置较长的holdoff时间、双归保护需要耗费较多的OAM资源的问题;达到了不需要专门设置双归保护,只需要在设置有环网保护的情况下,通过环网上的两个下环节点在接收到对端下环节点的业务数据时自行决策下环策略的方式就可以实现与双归保护相同的保护效果。 而且,由于不需要专门部署双归保护,只需要部署环网保护,只需要运行一份基于环网的OAM即可,对OAM资源的占用也非常少。同时对于一个业务数据来讲,只需要建立1个PW通道即可,不需要为业务数据同时建立一个主PW通道和备PW通道,节约了传输资源。
请参考图4A,其示出了本发明另一实施例提供的网络保护方法的方法流程图。本实施例以该网络保护方法应用于图2所示的两个下环节点中的任一节点来举例说明。该网络保护方法,包括:
步骤401,获取另一下环节点的业务配置信息;
当前下环节点需要获取另一下环节点的业务配置信息,业务配置信息包括业务数据的传输信息及下环信息,在MPLS网络中,业务配置信息可以是Tunnel(隧道)标签和PW标签。也即,下环节点D需要获取下环节点E的业务配置信息,下环节点E需要获取下环节点D的业务配置信息。
以下环节点D为默认的工作节点为例,业务数据默认在下环节点D下环,网元A会与下环节点D建立PW通道,下环节点E事先获取下环节点D的业务配置信息。
具体来讲,本步骤可以采用如下两种实现方式中的任一种实现:
1),当前下环节点从另一下环节点获取该另一下环节点的业务配置信息;
在当前下环节点和另一下环节点之间存在预定通道时,当前下环节点通过预定通道接收另一下环节点发送的另一下环节点的业务配置信息,该预定通道是预先在当前下环节点和另一下环节点之间建立的通道。比如,下环节点D和下环节点E之间预先建立有一预定通道,该预定通道通常承载在传输链路28上,下环节点D通过该预定通道向下环节点E发送自身的业务配置信息,下环节点E通过该预定通道接收下环节点D的业务配置信息;下环节点E也通过该预定通道向下环节点D发送自身的业务配置信息,下环节点D通过该预定通道接收下环节点E的业务配置信息。
在当前下环节点和另一下环节点之间不存在预定通道时,当前下环节点通过环网上的OAM机制的扩展报文接收另一下环节点发送的另一下环节点的业务配置信息。比如,下环节点D通过环网上的OAM机制的扩展报文来向下环节点E发送自身的业务配置信息,下环节点E通过该扩展报 文接收下环节点D的业务配置信息;下环节点E通过环网上的OAM机制的扩展报文来向下环节点D发送自身的业务配置信息,下环节点D通过该扩展报文来接收下环节点E的业务配置信息。
2),当前下环节点从环网的网管系统中获取另一下环节点的业务配置信息。
由于另一下环节点的业务配置信息是环网中的网管系统(未在图中示出)下发给另一下环节点的,所以当前下环节点也可以从环网的网管系统中获取另一下环节点的业务配置信息。比如,环网中的网管系统向下环节点D下发下环节点D的业务配置信息时,也同时向下环节点E下发下环节点D的业务配置信息;环网中的网管系统向下环节点E下发下环节点E的业务配置信息时,也同时向下环节点D下发下环节点E的业务配置信息。
步骤402,在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;
正常情况下,需要在另一下环节点下环的业务数据,会直接传输至另一下环节点,并不经过当前下环节点。但是若环网上的链路发生故障或者另一下环节点发生故障时,会发生环网倒换,需要在另一下环节点下环的业务数据会在传输时经过当前下环节点,此时,当前下环节点在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配。
比如,一个业务数据是默认需要在下环节点D下环,正常情况下,会由路径A->B->D传输至下环节点D进行下环操作。但是,若网元B和下环节点D之间的传输链路26或者下环节点D发生故障,则由网元B、网元C、落地节点D和落地节点E以及这四个网元之间的链路构成环网会发生环网倒换,此时,业务数据会由路径A->B->C->E->D传输,下环节点E会接收到该业务数据,该下环节点E收到该业务数据时,会检测该业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配,若检测结果为匹配,则表示该业务数据是默认在下环节点D下环的业务数据。
步骤403,检测当前下环节点与接入设备之间的接入链路是否发生故障,和/或,检测另一下环节点是否可达;
当前下环节点检测当前下环节点与接入设备之间的接入链路是否发生故障,和/或,当前下环节点还会检测另一下环节点是否可达。另一下环节 点不可抵达的情况,可能是由另一下环节点自身的故障引起,也可能是由两个下环节点之间的故障引起。该两项故障检测可以同时进行,也可以只进行一项检测。以同时进行两项故障检测为例,也即:
若下环节点E为当前下环节点时,下环节点E会检测AC链路20是否发生故障,且检测下环节点D是否可达;
若下环节点D为当前下环节点时,下环节点D会检测AC链路29是否发生故障,且检测下环节点E是否可达。
在当前下环节点检测当前下环节点与接入设备之间的接入链路是否发生故障时,当前下环节点可以通过接入链路上的AC故障检测机制来检测是否发生故障。
在当前下环节点检测另一下环节点是否可达时,可以通过如下三种方式中的任一种实现:
1)当前下环节点通过环网上的OAM机制检测另一下环节点是否可达;
环网上的OAM检测机制会在一个下环节点不可抵达时,告警给另一下环节点。
2)当前下环节点通过检测预定通道是否正常来确定另一下环节点是否可达,预定通道是预先在当前下环节点和另一下环节点之间建立的通道;
在当前下环节点和另一下环节点之间存在预定通道时,当前下环节点通过检测预定通道是否正常来确定另一下环节点是否可达,若预定通道为正常,则确定另一下环节点可达;若预定通道为不正常,则确定另一下环节点不可达。需要说明的是,预定通道不正常的情况并非全部都是由另一下环节点发生故障而引起的,也有可能是承载该预定通道的传输链路发生故障,此时均认为是另一下环节点不可达。
3)通过预定通道接收另一下环节点发送的报文来确定另一下环节点是否可达,预定通道是预先在当前下环节点和另一下环节点之间建立的通道。
在当前下环节点和另一下环节点之间存在预定通道时,当前下环节点还可以通过预定通道接收另一下环节点发送的报文来确定另一下环节点是否可达,若接收到另一下环节点周期性发送的正常报文,则确定另一下环节点可达;若未接收到另一下环节点周期性发送的正常报文或者接收到另一下环节点发送的不正常报文,则确定另一下环节点不可达。比如,下环节点D发现接入链路29发生故障,则可以向下环节点E发送不正常报文, 下环节点E在接收到该不正常报文时,确定下环节点D不可达。
步骤404,若检测结果为业务数据携带的业务配置信息与另一下环节点的业务配置信息匹配,则直接或者根据故障检测结果决策业务数据的下环策略;
当前下环节点决策该业务数据的下环策略,该业务数据是步骤402中检测结果为业务数据携带的业务配置信息与另一下环节点的业务配置信息匹配的业务数据。由于上述步骤403是可选步骤,本步骤具体可以有四种实现方式:
1)当前下环节点直接决策业务数据的下环策略;
在不执行上述步骤403的情况下,当前下环节点直接决策下环策略为:在当前下环节点将业务数据进行下环操作,且将业务数据发送给另一下环节点进行下环操作。此时RNC204可能会接收到2份相同的业务数据,RNC204选择性地接收一份即可,比如保存先接收到的业务数据,之后收到相同的业务数据时,丢弃即可。
2)当前下环节点根据接入链路的故障检测结果决策该业务数据的下发策略;
若上述步骤403中仅执行了当前下环节点和接入设备之间的接入链路的故障检测,则当前下环节点根据接入链路的故障检测结果决策该业务数据的下发策略:
若检测结果为接入链路未发生故障时,则当前下环节点决策业务数据的下环策略包括:在当前下环节点将业务数据进行下环操作;
若检测结果为接入链路发生故障时,则当前下环节点决策业务数据的下环策略包括:将业务数据发送给另一下环节点进行下环操作。
3)当前下环节点根据另一下环节点的故障检测结果决策该业务数据的下发策略;
若上述步骤403中仅执行了另一下环节点的故障检测,则当前下环节点根据另一下环节点的故障检测结果决策该业务数据的下发策略:
若检测结果为另一下环节点不可达时,则当前下环节点决策业务数据的下环策略包括:在当前下环节点将业务数据进行下环操作;
若检测结果为另一下环节点可达时,则当前下环节点决策业务数据的下环策略包括:将业务数据发送给另一下环节点进行下环操作。
4)当前下环节点根据两种故障检测结果决策该业务数据的下发策略;
若上述步骤403中同时执行了两种故障检测,具体地:
若检测结果为本侧的接入链路发生故障且另一下环节点可达时,则决策下环策略包括:将业务数据发送给另一下环节点进行下环操作;
若检测结果为本侧的接入链路未发生故障且另一下环节点不可达时,则决策下环策略包括:在当前下环节点将业务数据进行下环操作;
若检测结果为本侧的接入链路未发生故障且另一下环节点可达时,则决策下环策略包括:
在当前下环节点将业务数据进行下环操作;或,
将业务数据发送给另一下环节点进行下环操作;或,
在当前下环节点将业务数据进行下环操作,且将业务数据发送给另一下环节点进行下环操作。
若检测结果为本侧的接入链路发生故障且另一下环节点不可达时,则无法发送该业务数据。
需要补充说明的一点是,除了当前下环节点根据另一下环节点的业务配置信息接收到的默认在另一下环节点进行下环的业务数据之外,对于当前下环节点根据自身的业务配置信息接收到的默认在当前下环节点进行下环的业务数据,也适用本实施例中所决策的下环策略。
需要补充说明的另一点是,由于步骤403的检测过程与步骤401和步骤402并没有执行顺序上的先后限定,所以在一些实施例中,可以在下环节点D和下环节点E之间引入主备关系。也即:
在步骤403的故障检测过程之后,根据故障检测结果确定当前下环节点和另一下环节点之间的主备关系;然后在步骤404中,当前下环节点根据自身是主节点还是备节点来决策下环策略。此时,步骤403的检测过程与步骤401和步骤402在执行顺序上可以互相独立。
以步骤403中同时执行两种故障检测为例,确定主备关系的过程可以包括:
在另一下环节点可达且接入链路未发生故障时,当前下环节点根据默认主备关系确定当前下环节点与另一下环节点之间的主备关系;比如,环网默认顺时针为正常工作方向,且下环节点D、下环节点E、AC链路29、AC链路20均未发生故障时,默认的主备关系为下环节点D为主节点,下 环节点E为备节点。
在另一下环节点不可达时,当前下环节点确定主备关系为:当前下环节点为主节点,另一下环节点为备节点;比如,下环节点D不可达,则下环节点E确定主备关系为:下环节点E为主节点,下环节点D为备节点;又比如,下环节点E不可达,则下环节点D确定主备关系为:下环节点D为主节点,下环节点E为备节点。
在当前下环节点与接入设备之间的接入链路发生故障时,当前下环节点确定主备关系为:当前下环节点为备节点,另一下环节点为主节点。比如,AC链路29发生故障时,下环节点D确定主备关系为:下环节点E为主节点,下环节点D为备节点;又比如,AC链路20发生故障时,则下环节点E确定主备关系为:下环节点D为主节点,下环节点E为备节点。
两个下环节点之间通过预定通道倒换主备关系。
在确定主备关系后,当前下环节点决策下环策略的过程可以包括:
在当前下环节点为主节点时,当前下环节点决策下环策略为:在当前下环节点将业务数据进行下环操作。
在当前下环节点为备节点时,当前下环节点决策下环策略为:将业务数据发送给另一下环节点进行下环操作。
下面结合具体的几个场景来描述引入主备关系后的业务数据发送过程,结合参考图4B:
在正常场景下,环网默认顺时针方向为正常工作方向,下环节点D为主节点,下环节点E为备节点,则下环节点D会顺利接收到业务数据,并直接发送给RNC。也即,此时基站202发送给RNC204的业务数据的传输路径为:基站202->A->B->D->RNC204。
在传输链路26发生故障时,网元B在向下环节点D发送业务数据时会通过环网OAM检测到该故障,触发环网发生倒换,但由于下环节点和AC链路并未发生故障,此时下环节点D仍然为主节点,下环节点E仍然为备节点,所以下环节点E会接收到业务数据,然后下环节点E将该业务数据转发给下环节点D,然后由下环节点D将业务数据发送给RNC。此时基站202发送给RNC204的业务数据的传输路径为:基站202->A->B->C->E->D->RNC204。
在下环节点D发生故障时,网元B在向下环节点D发送业务数据时通 过环网OAM检测到该故障,触发环网发生倒换,所以下环节点E会接收到业务数据。由于下环节点E通过环网OAM会检测到下环节点D不可达,触发主备倒换,下环节点E变成主节点,然后下环节点E根据下环策略将业务数据直接发送给RNC。此时基站202发送给RNC204的业务数据的传输路径为:基站202->A->B->C->E->RNC204。
在AC链路29发生故障时,下环节点D会通过AC链路上的故障检测机制检测到该故障,并触发主备倒换,下环节点D变成备节点。基站发送的业务数据会由下环节点D接收,并且下环节点D根据下环策略将该业务数据转发给E,由下环节点E来将业务数据发送给RNC。此时,基站202发送给RNC204的业务数据的传输路径为:基站202->A->B->D->E->RNC204。
综上所述,本实施例提供的网络保护方法,通过由两个下环节点中的一个下环节点获取另一下环节点的业务配置信息,在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;若检测结果为匹配,则决策业务数据的下环策略;解决了双归保护和环网保护共存时需要配置较长的holdoff时间、双归保护需要耗费较多的OAM资源的问题;达到了不需要专门设置双归保护,只需要在设置有环网保护的情况下,通过环网上的两个下环节点在接收到默认在对端下环节点进行下环操作的业务数据时自行决策下环策略的方式就可以实现与双归保护相同的保护效果。
而且,由于不需要专门部署双归保护,只需要部署环网保护,不仅配置工作和维护工作大大减少,而且只需要运行一份基于环网的OAM即可,对OAM资源的占用也非常少。
同时对于一个业务数据来讲,只需要建立1个PW通道即可,不需要为每个业务数据同时建立一个主PW通道和备PW通道,节约了传输资源。
另外,在不同的实施例中,步骤403可以不执行,或仅执行其中一种故障检测,或者同时执行两种故障检测,故障检测机制执行的种类越多,网络侧的控制逻辑越复杂,但是可能发送的冗余业务数据越多;故障检测机制执行的种类越少,网络侧的控制逻辑越简单,但是可能发送的冗余业务数据越少。在具体实现时可以根据不同的实施环境和网络侧的计算能力,采取不同的策略。
请参考图5,其示出了本发明另一部分实施例所提供的网络保护方法所涉及的另一种实施环境的结构示意图。该实施环境包括部署有环网保护且未部署传统双归保护的环网,以及该环网上与同一接入设备RNC204相连的两个下环节点D和E,下环节点D包括传输部件d和AC侧双归部件52,传输部件d和AC侧双归部件52均为下环节点D所属设备实体上的逻辑实体;下环节点E包括传输部件e和AC侧双归部件54,传输部件e和AC侧双归部件54均为下环节点E所属设备实体上的逻辑实体。
该实施环境下,还包括有基站202、网元A、网元B和网元C。其中:
基站202与网元A之间通过接入链路21相连;网元A与网元B之间通过传输链路22相连、网元A与网元C之间通过传输链路23相连;网元B和网元C之间通过传输链路24和25相连,网元B与下环节点D之间通过传输链路26相连;网元C与下环节点E之间通过传输链路27相连;下环节点D与下环节点E之间通过传输链路28;下环节点D中的传输部件d运行在网络侧的环网上,与传输部件d相连的AC侧双归部件52和AC(Attachment circuit,接入电路)链路29与RNC204相连,落地节点E中的传输部件e运行在网络侧的环网上,与传输部件e相连的AC侧双归部件54和AC链路20与RNC204相连。两个AC侧双归部件之间建立有AC侧协议通道,该AC侧协议通道通常承载在传输链路28上。
网元A、网元B和网元C以及这三个网元之间的链路构成一个环网,且部署有环网保护;网元B、网元C、下环节点D和下环节点E以及这四个网元之间的链路构成前述的环网,也部署有环网保护但未部署传统双归保护。
显然,与图2所示实施环境不同的是,下环节点D和下环节点E中的传输部件用于实现传统下环节点的功能以及本发明实施例中网络保护方法中的部分逻辑步骤,增设的AC侧双归部件用于执行本发明实施例中网络保护方法中的主要逻辑步骤。
请参考图6A,其示出了本发明另一实施例提供的网络保护方法的方法流程图。本实施例以该网络保护方法应用于图5所示两个下环节点中的任一节点来举例说明。该网络保护方法,包括:
步骤601,通过本端中的传输部件获取另一下环节点的业务配置信息;
当前下环节点通过本端的传输部件获取另一下环节点的业务配置信息,业务配置信息包括业务数据的传输信息及下环信息,在MPLS网络中,业务配置信息可以是Tunnel(隧道)标签和PW标签。也即,下环节点D中的传输部件d需要获取下环节点E中传输部件e的业务配置信息,下环节点E中的传输部件e需要获取下环节点D中传输部件d的业务配置信息。
以下环节点D为默认的工作节点为例,业务数据默认在下环节点D下环,网元A会与下环节点D中的传输部件建立PW通道,下环节点E中的传输部件事先获取下环节点D的业务配置信息。
具体来讲,本步骤可以采用如下两种实现方式中的任一种实现:
1),通过本端中的传输部件从另一下环节点获取该另一下环节点的业务配置信息;
在当前下环节点和另一下环节点之间存在预定通道时,当前下环节点中的传输部件通过预定通道接收另一下环节点中的传输部件发送的另一下环节点的业务配置信息,该预定通道是预先在当前下环节点和另一下环节点之间建立的通道。比如,下环节点D和下环节点E之间预先建立有一预定通道,该预定通道通常承载在传输链路28上,传输部件d通过该预定通道向传输部件e发送自身的业务配置信息,传输部件e通过该预定通道接收下环节点D的业务配置信息;传输部件e也通过该预定通道向传输部件d发送自身的业务配置信息,传输部件d通过该通道接收下环节点E的业务配置信息。
在当前下环节点和另一下环节点之间不存在预定通道时,当前下环节点中的传输部件通过环网上的OAM机制的扩展报文接收另一下环节点中的传输部件发送的另一下环节点的业务配置信息。比如,传输部件d通过环网上的OAM机制的扩展报文来向传输部件e发送下环节点D的业务配置信息,传输部件e通过该扩展报文接收下环节点D的业务配置信息;传输部件e通过环网上的OAM机制的扩展报文来向传输部件d发送下环节点E的业务配置信息,传输部件d通过该扩展报文来接收下环节点E的业务配置信息。
2),通过本端中的传输部件从环网的网管系统中获取另一下环节点的业务配置信息。
由于另一下环节点的业务配置信息是环网中的网管系统(未在图中示出)下发给另一下环节点的,所以当前下环节点中的传输部件也可以从环网的网管系统中获取另一下环节点的业务配置信息。比如,环网中的网管系统向下环节点D中的传输部件d下发下环节点D的业务配置信息时,也同时向下环节点E中的传输部件e下发下环节点D的业务配置信息;环网中的网管系统向下环节点E中的传输部件e下发下环节点E的业务配置信息时,也同时向下环节点D中的传输部件d下发下环节点E的业务配置信息。
步骤602,通过本端中的传输部件在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;
正常情况下,需要在另一下环节点下环的业务数据,会直接传输至另一下环节点,并不经过当前下环节点。但是若环网上的链路发生故障或者另一下环节点发生故障时,会发生环网倒换,需要在另一下环节点下环的业务数据会在传输时经过当前下环节点,此时,当前下环节点中的传输部件在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配。
比如,一个业务数据默认需要在下环节点D下环,正常情况下,会由路径A->B->D传输至下环节点D进行下环操作。但是,若网元B和下环节点D之间的传输链路26或者下环节点D发生故障,则由网元B、网元C、落地节点D和落地节点E以及这四个网元之间的链路构成环网会发生环网倒换,此时,业务数据会由路径A->B->C->E->D传输,下环节点E中的传输部件e会接收到该业务数据,该传输部件e收到该业务数据时,会检测该业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配,若检测结果为匹配,则表示该业务数据是默认在下环节点D下环的业务数据。
步骤603,通过本端中的AC侧双归部件检测当前下环节点与接入设备之间的接入链路是否发生故障,和/或,检测另一下环节点中的AC侧双归部件是否可达;
当前下环节点中的AC侧双归部件检测当前下环节点与接入设备之间的接入链路是否发生故障,和/或,当前下环节点中的AC侧双归部件还会检测另一下环节点中的AC侧双归部件是否可达。另一下环节点中的AC侧 双归部件不可达,可能是由该AC侧双归部件自身的故障引发,也可能是两个AC侧双归部件之间的AC侧协议通道的故障引发。该两项故障检测可以同时进行,也可以只进行一项检测。以同时进行两项故障检测为例,也即:
若下环节点E为当前下环节点时,下环节点E中的AC侧双归部件54会检测AC链路20是否发生故障,且检测下环节点D中的AC侧双归部件52是否可达;
若下环节点D为当前下环节点时,下环节点D中的AC侧双归部件52会检测AC链路29是否发生故障,且检测下环节点E中的AC侧双归部件54是否可达。
在当前下环节点中的AC侧双归部件检测当前下环节点与接入设备之间的接入链路是否发生故障时,当前下环节点中的AC侧双归部件可以通过接入链路上的AC故障检测机制来检测是否发生故障。
在当前下环节点中的AC侧双归部件检测另一下环节点中的AC侧双归部件是否可达时,可以通过如下三种方式中的任一种实现:
1)当前下环节点中的AC侧双归部件通过环网上的OAM机制检测另一下环节点中的AC侧双归部件是否可达;
在两个AC侧双归部件之间的AC侧协议通道承载在传输链路28上时,环网上的OAM检测机制会在一个下环节点中的AC侧双归部件不可抵达时,告警给另一下环节点中的AC侧双归部件。
2)当前下环节点中的AC侧双归部件通过检测AC协议通道是否正常来确定另一下环节点中的AC侧双归部件是否发生故障,AC协议通道是预先在当前下环节点中的AC侧双归部件和另一下环节点中的AC侧双归部件之间建立的通道;
在两个AC侧双归部件之间存在AC侧协议通道时,当前下环节点中的AC侧双归部件通过检测AC侧协议通道是否正常来确定另一下环节点中的AC侧双归部件是否可达,若AC侧协议通道为正常,则确定另一下环节点中的AC侧双归部件可达;若AC侧协议通道为不正常,则确定另一下环节点中的AC侧双归部件不可达。AC侧协议通道不正常,可能是另一下环节点中的AC侧双归部件发生故障引起的,也可能是承载该AC侧协议通道的传输链路发生故障。
3)当前下环节点中的AC侧双归部件通过AC侧协议通道接收另一下 环节点中AC侧双归部件发送的报文来确定另一下环节点中AC侧双归部件是否可达,AC协议通道是预先在当前下环节点中的AC侧双归部件和另一下环节点中的AC侧双归部件之间建立的通道。
在两个AC侧双归部件之间存在AC侧协议通道时,当前下环节点中的AC侧双归部件还可以通过AC侧协议通道接收另一下环节点中的AC侧双归部件发送的报文来确定另一下环节点中的AC侧双归部件是否可达,若接收到另一下环节点中的AC侧双归部件周期性发送的正常报文,则确定另一下环节点中的AC侧双归部件可达;若未接收到另一下环节点中的AC侧双归部件周期性发送的正常报文或者接收到另一下环节点中的AC侧双归部件发送的不正常报文,则确定另一下环节点中的AC侧双归部件不可达。比如,下环节点D中的AC侧双归部件52发现接入链路29发生故障,则可以向下环节点E中的AC侧双归部件54发送不正常报文,下环节点E中的AC侧双归部件54在接收到该不正常报文时,确定下环节点D中的AC侧双归部件52不可达。
步骤604,通过本端中的AC侧双归部件决策该业务数据的下环策略;
当前下环节点中的AC侧双归部件决策该业务数据的下环策略,该业务数据是步骤602中当前下环节点中传输部件的检测结果为业务数据携带的业务配置信息与另一下环节点的业务配置信息匹配的业务数据。该发送策略包括:通过当前下环节点中的AC侧双归部件将业务数据进行下环操作,和/或通过另一下环节点中的AC侧双归部件将该业务数据进行下环操作
由于上述步骤603是可选步骤,本步骤具体可以有四种实现方式:
1)当前下环节点中的AC侧双归部件直接决策该业务数据的下环策略;
在不执行上述步骤603的情况下,当前下环节点中的AC侧双归部件直接决策该业务数据的下环策略为:通过当前下环节点中的AC侧双归部件将业务数据进行下环操作,且通过另一下环节点中的AC侧双归部件将该业务数据进行下环操作。此时RNC可能会接收到2份相同的业务数据,RNC选择性地接收一份即可,比如保存先接收到的业务数据,之后收到相同的业务数据时,丢弃即可。
2)当前下环节点中的AC侧双归部件根据接入链路的故障检测结果决策该业务数据的下发策略;
若上述步骤603中仅执行了接入链路的故障检测,则当前下环节点中的AC侧双归部件根据接入链路的故障检测结果决策该业务数据的下发策略:
若检测结果为接入链路未发生故障时,则当前下环节点中的AC侧双归部件决策业务数据的下环策略包括:通过当前下环节点中的AC侧双归部件将业务数据进行下环操作;
若检测结果为接入链路发生故障时,则当前下环节点中的AC侧双归部件决策业务数据的下环策略包括:通过另一下环节点中的AC侧双归部件将业务数据进行下环操作。
3)当前下环节点中的AC侧双归部件根据另一下环节点中的AC侧双归部件的故障检测结果决策该业务数据的下发策略;
若上述步骤603中仅执行了另一下环节点中的AC侧双归部件的故障检测,则当前下环节点中的AC侧双归部件根据另一下环节点的故障检测结果决策该业务数据的下发策略:
若检测结果为另一下环节点中的AC侧双归部件不可达时,则当前下环节点中的AC侧双归部件决策业务数据的下环策略包括:通过当前下环节点中的AC侧双归部件将业务数据进行下环操作;
若检测结果为另一下环节点中的AC侧双归部件未发生故障时,则当前下环节点中的AC侧双归部件决策业务数据的下环策略包括:通过另一下环节点中的AC侧双归部件将业务数据进行下环操作。
4)当前下环节点根据两种故障检测结果决策该业务数据的下发策略;
若上述步骤603中同时执行了两种故障检测,具体地:
若检测结果为本侧的接入链路发生故障且另一下环节点中的AC侧双归部件可达时,则决策下环策略包括:通过另一下环节点中的AC侧双归部件将业务数据进行下环操作;
若检测结果为本侧的接入链路未发生故障且另一下环节点中的AC侧双归部件不可达时,则决策下环策略包括:通过当前下环节点中的AC侧双归部件将业务数据进行下环操作;
若检测结果为本侧的接入链路未发生故障且另一下环节点可达时,则决策下环策略包括:
通过当前下环节点中的AC侧双归部件将业务数据进行下环操作;或,
通过另一下环节点中的AC侧双归部件将业务数据进行下环操作;或,
通过当前下环节点中的AC侧双归部件将业务数据进行下环操作,且通过另一下环节点中的AC侧双归部件将业务数据进行下环操作。
若检测结果为本侧的接入链路发生故障且另一下环节点中的AC侧双归部件也不可达时,则无法发送该业务数据。
需要补充说明的一点是,除了当前下环节点中的传输部件根据另一下环节点的业务配置信息接收到的默认在另一下环节点进行下环的业务数据之外,对于当前下环节点中的传输部件根据自身的业务配置信息接收到的默认在当前下环节点进行下环的业务数据,也适用本实施例中所决策的下环策略。
需要补充说明的另一点是,由于步骤603的检测过程与步骤601和步骤602并没有执行顺序上的先后限定,所以在一些实施例中,可以在下环节点D和下环节点E之间引入主备关系。也即:
在步骤603的故障检测过程之后,根据故障检测结果确定当前下环节点中的AC侧双归部件和另一下环节点中的AC侧双归部件之间的主备关系;然后在步骤604中,当前下环节点中的AC侧双归部件根据自身是主部件还是备部件来决策下环策略。此时,步骤603的检测过程与步骤601和步骤602在执行顺序上可以互相独立。
以步骤603中同时执行两种故障检测为例,确定主备关系的过程可以包括:
在另一下环节点中的AC侧双归部件可达且接入链路未发生故障时,当前下环节点中的AC侧双归部件根据默认主备关系确定两个AC侧双归部件之间的主备关系;比如,默认为下环节点D中的AC侧双归部件52为主部件。
在另一下环节点中的AC侧双归部件不可达时,当前下环节点中的AC侧双归部件确定主备关系为:当前下环节点中的AC侧双归部件为主部件,另一下环节点中的AC侧双归部件为备部件;比如,下环节点D中的AC侧双归部件52不可达,则下环节点E中的AC侧双归部件54确定主备关系为:下环节点E中的AC侧双归部件54为主部件,下环节点D中的AC侧双归部件52为备部件。
在当前下环节点中的AC侧双归部件与接入设备之间的接入链路发生 故障时,当前下环节点中的AC侧双归部件确定主备关系为:当前下环节点中的AC侧双归部件为备节点,另一下环节点中的AC侧双归部件为主节点。比如,AC链路29发生故障时,下环节点D中的AC侧双归部件52确定主备关系为:下环节点E中的AC侧双归部件54为主部件,下环节点D中的AC侧双归部件52为备节点。
两个下环节点中的AC侧双归部件之间通过AC协议通道倒换主备关系。
在确定主备关系后,当前下环节点中的AC侧双归部件决策下环策略的过程可以包括:
在当前下环节点中的AC侧双归部件为主部件时,决策下环策略为:通过当前下环节点中的AC侧双归部件将业务数据进行下环操作。
在当前下环节点中的AC侧双归部件为备部件时,决策下环策略为:通过另一下环节点中的AC侧双归部件将业务数据进行下环操作。
下面结合具体的几个场景来描述引入主备关系后的业务数据发送过程,结合参考图6B:
在正常场景下,环网默认顺时针方向为正常工作方向,AC侧双归部件52为主部件,此时基站202发送给RNC204的业务数据的传输路径为:基站202->A->B->d->部件52->RNC204。
在传输链路26发生故障时,AC侧双归部件52为主部件,基站202发送给RNC204的业务数据的传输路径为:基站202->A->B->C->e->部件54->部件52->RNC204。
在传输部件d发生故障时,AC侧双归部件52仍然为主部件,基站202发送给RNC204的业务数据的传输路径为:基站202->A->B->C->e->部件54->部件52->RNC204。
在AC链路29发生故障时,AC侧双归部件52为备部件,基站发送给RNC的业务数据的传输路径为:基站202->A->B->d->部件52->部件54->RNC204。
综上所述,本实施例提供的网络保护方法,通过由两个下环节点中的一个下环节点获取另一下环节点的业务配置信息,在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;若检测结果为匹配,则决策业务数据的下环策略;解决了双归保护和 环网保护共存时需要配置较长的holdoff时间、双归保护需要耗费较多的OAM资源的问题;达到了不需要专门设置双归保护,只需要在设置有环网保护的情况下,通过环网上的两个下环节点在接收到默认在对端下环节点进行下环操作的业务数据时自行决策下环策略的方式就可以实现与双归保护相同的保护效果。
而且,由于不需要专门部署双归保护,只需要部署环网保护,不仅配置工作和维护工作大大减少,而且只需要运行一份基于环网的OAM即可,对OAM资源的占用也非常少。
同时对于一个业务数据来讲,只需要建立1个PW通道即可,不需要为每个业务数据同时建立一个主PW通道和备PW通道,节约了传输资源。
另外,对于一个下环节点,若该下环节点中的传输部件发生故障,但是AC侧双归部件还能够正常工作,则业务数据还可以通过该下环节点的AC侧双归部件进行下环操作。
以下为本发明的装置实施例,对于其中未详尽描述的部分,可以结合参考上述对应的方法实施例。
请参考图7,其示出了本发明一个实施例提供的网络保护装置的结构方框图。该网络保护装置可以通过软件、硬件或者两者的结合实现成为下环节点的全部或者部分,该下环节点可以是设置有环网保护的环网上与同一接入设备相连的两个下环节点中的任一下环节点,所述装置包括:
信息获取模块720,用于获取另一下环节点的业务配置信息;
数据检测模块740,用于在接收到业务数据时,检测所述业务数据携带的业务配置信息是否与所述另一下环节点的业务配置信息匹配;
策略决策模块760,用于若检测结果为所述业务数据携带的业务配置信息与所述另一下环节点的业务配置信息匹配,则决策所述业务数据的下环策略包括:
在当前下环节点将所述业务数据进行下环操作,和/或将所述业务数据发送给所述另一下环节点进行下环操作。
综上所述,本实施例提供的网络保护装置,通过由两个下环节点中的一个下环节点获取另一下环节点的业务配置信息,在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹 配;若检测结果为匹配,则决策业务数据的下环策略;解决了双归保护和环网保护共存时需要配置较长的holdoff时间、双归保护需要耗费较多的OAM资源的问题;达到了不需要专门设置双归保护,只需要在设置有环网保护的情况下,通过环网上的两个下环节点在接收到对端下环节点的业务数据时自行决策下环策略的方式就可以实现与双归保护相同的保护效果。而且,由于不需要专门部署双归保护,只需要部署环网保护,只需要运行一份基于环网的OAM即可,对OAM资源的占用也非常少。同时对于一个业务数据来讲,只需要建立1个PW通道即可,不需要为每个业务数据同时建立一个主PW通道和备PW通道,节约了传输资源。
请参考图8,其示出了本发明另一实施例提供的网络保护装置的结构方框图。该网络保护装置可以通过软件、硬件或者两者的结合实现成为下环节点的全部或者部分,该下环节点可以是设置有环网保护的环网上与同一接入设备相连的两个下环节点中的任一下环节点,所述装置包括:
信息获取模块720,用于获取另一下环节点的业务配置信息;
数据检测模块740,用于在接收到业务数据时,检测所述业务数据携带的业务配置信息是否与所述另一下环节点的业务配置信息匹配;
策略决策模块760,用于若检测结果为所述业务数据携带的业务配置信息与所述另一下环节点的业务配置信息匹配,则决策所述业务数据的下环策略包括:
在当前下环节点将所述业务数据进行下环操作,和/或将所述业务数据发送给所述另一下环节点进行下环操作。
进一步地,所述信息获取模块720,包括:第一获取单元或第二获取单元;
所述第一获取单元,用于从所述另一下环节点获取所述另一下环节点的业务配置信息;
所述第二获取单元,用于从所述环网的网管系统中获取所述另一下环节点的业务配置信息。
具体地,所述第一获取单元,用于:
通过预定通道接收所述另一下环节点发送的所述另一下环节点的业务配置信息,所述预定通道是预先在所述当前下环节点和所述另一下环节点 之间建立的通道;
或者,
通过所述环网上的操作、管理和维护OAM机制的扩展报文接收所述另一下环节点发送的所述另一下环节点的业务配置信息。
所述网络保护装置,还包括:链路检测模块752;
所述链路检测模块752,还用于检测所述当前下环节点与所述接入设备之间的接入链路是否发生故障;
所述策略决策模块760,用于若所述链路检测模块752的检测结果为所述接入链路未发生故障,则执行决策所述业务数据的下环策略包括在当前下环节点将所述业务数据进行下环操作的步骤。
所述策略决策模块760,还用于若所述链路检测模块752的检测结果为所述接入链路发生故障,则将所述业务数据发送给所述另一下环节点进行下环操作。
所述网络保护装置,还包括:对端检测模块754;
所述对端检测模块754,用于检测所述另一下环节点是否可达;
所述策略决策模块760,用于若所述对端检测模块754的检测结果为所述另一下环节点可达,则执行决策所述下环策略包括所述业务数据发送给所述另一下环节点进行下环操作的步骤。
所述对端检测模块754,用于:
通过所述环网上的操作、管理和维护OAM机制检测所述另一下环节点是否可达;或,
通过检测预定通道是否正常来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;或,
通过预定通道接收所述另一下环节点发送的报文来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道。
综上所述,本实施例提供的网络保护装置,通过由两个下环节点中的一个下环节点获取另一下环节点的业务配置信息,在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;若检测结果为匹配,则决策业务数据的下环策略;解决了双归保护和 环网保护共存时需要配置较长的holdoff时间、双归保护需要耗费较多的OAM资源的问题;达到了不需要专门设置双归保护,只需要在设置有环网保护的情况下,通过环网上的两个下环节点在接收到默认在对端下环节点进行下环操作的业务数据时自行决策下环策略的方式就可以实现与双归保护相同的保护效果。
而且,由于不需要专门部署双归保护,只需要部署环网保护,不仅配置工作和维护工作大大减少,而且只需要运行一份基于环网的OAM即可,对OAM资源的占用也非常少。
同时对于一个业务数据来讲,只需要建立1个PW通道即可,不需要为每个业务数据同时建立一个主PW通道和备PW通道,节约了传输资源。
另外,在不同的实施例中,链路检测模块和对端检测模块可以没有、只包括一个或者同时包括两个,该两个模块包含的越多,网络侧的控制逻辑越复杂,但是可能发送的冗余业务数据越多;该两个模块包含的越少,网络侧的控制逻辑越简单,但是可能发送的冗余业务数据越少。在具体实现时可以根据不同的实施环境和网络侧的计算能力,采取不同的策略。
请参考图9,其示出了本发明一个实施例提供的下环节点的结构示意图。该下环节点是设置有环网保护的环网上与同一接入设备相连的两个下环节点中的任一下环节点。该下环节点包括处理器920、存储器940、发送机960和接收机980。
所述处理器920,用于通过所述接收机980获取另一下环节点的业务配置信息;
所述处理器920,还用于在所述接收机980接收到业务数据时,检测所述业务数据携带的业务配置信息是否与所述另一下环节点的业务配置信息匹配;
所述处理器920,还用于若检测结果为所述业务数据携带的业务配置信息与所述另一下环节点的业务配置信息匹配,则决策所述业务数据的下环策略包括:
在当前下环节点将所述业务数据进行下环操作,和/或通过所述发送机960将所述业务数据发送给所述另一下环节点进行下环操作。
综上所述,本实施例提供的下环节点,通过由两个下环节点中的一个 下环节点获取另一下环节点的业务配置信息,在接收到业务数据时,检测业务数据携带的业务配置信息是否与另一下环节点的业务配置信息匹配;若检测结果为匹配,则决策业务数据的下环策略;解决了双归保护和环网保护共存时需要配置较长的holdoff时间、双归保护需要耗费较多的OAM资源的问题;达到了不需要专门设置双归保护,只需要在设置有环网保护的情况下,通过环网上的两个下环节点在接收到默认在对端下环节点进行下环操作的业务数据时自行决策下环策略的方式就可以实现与双归保护相同的保护效果。
而且,由于不需要专门部署双归保护,只需要部署环网保护,不仅配置工作和维护工作大大减少,而且只需要运行一份基于环网的OAM即可,对OAM资源的占用也非常少。
在基于图9所示实施例提供的更为优选的实施例中,所述处理器,还用于:
从所述另一下环节点获取所述另一下环节点的业务配置信息;或,
从所述环网的网管系统中获取所述另一下环节点的业务配置信息。
在基于图9所示实施例提供的更为优选的实施例中,所述处理器,还用于:通过预定通道接收所述另一下环节点发送的所述另一下环节点的业务配置信息,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;
或者,
通过所述环网上的操作、管理和维护OAM机制的扩展报文接收所述另一下环节点发送的所述另一下环节点的业务配置信息。
在基于图9所示实施例提供的更为优选的实施例中,所述处理器,还用于:在所述决策所述业务数据的下环策略包括:在当前下环节点将所述业务数据进行下环操作的情况下,在所述决策所述业务数据的下环策略包括在当前下环节点将所述业务数据进行下环操作之前,还包括:
检测所述当前下环节点与所述接入设备之间的接入链路是否发生故障;
若检测结果为所述接入链路未发生故障,则执行决策所述业务数据的下环策略包括在当前下环节点将所述业务数据进行下环操作的步骤。
在基于图9所示实施例提供的更为优选的实施例中,所述处理器,还 用于:若检测结果为所述接入链路发生故障,则将所述业务数据发送给所述另一下环节点进行下环操作。
在基于图9所示实施例提供的更为优选的实施例中,所述处理器,还用于:在所述决策所述业务数据的下环策略包括:将所述业务数据发送给所述另一下环节点进行下环操作的情况下,在所述决策所述业务数据的下环策略包括将所述业务数据发送给所述另一下环节点进行下环操作之前,还包括:
检测所述另一下环节点是否可达;
若检测结果为所述另一下环节点可达,则执行决策所述下环策略包括将所述业务数据发送给所述另一下环节点进行下环操作的步骤。
在基于图9所示实施例提供的更为优选的实施例中,所述处理器,还用于:
通过所述环网上的操作、管理和维护OAM机制检测所述另一下环节点是否可达;或,
通过检测预定通道是否正常来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;或,
通过预定通道接收所述另一下环节点发送的报文来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道。
本发明的另一实施例中,还提供了一种网络系统,该网络系统包括设置有环网保护的环网,以及该环网上与同一接入设备相连的两个下环节点;
该下环节点包括如图7所示实施例以及图8所示实施例所提供的网络保护装置。
或者,该下环节点是图9所示实施例以及基于图9所述实施例提供的更为优选的实施例所提供的下环节点。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可 以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种网络保护方法,其特征在于,用于设置有环网保护的环网上与同一接入设备相连的两个下环节点中的任一下环节点,所述方法包括:
    获取另一下环节点的业务配置信息;
    在接收到业务数据时,检测所述业务数据携带的业务配置信息是否与所述另一下环节点的业务配置信息匹配;
    若检测结果为所述业务数据携带的业务配置信息与所述另一下环节点的业务配置信息匹配,则决策所述业务数据的下环策略包括:
    在当前下环节点将所述业务数据进行下环操作,和/或将所述业务数据发送给所述另一下环节点进行下环操作。
  2. 根据权利要求1所述的网络保护方法,其特征在于,所述获取另一下环节点的业务配置信息,包括:
    从所述另一下环节点获取所述另一下环节点的业务配置信息;或,
    从所述环网的网管系统中获取所述另一下环节点的业务配置信息。
  3. 根据权利要求2所述的网络保护方法,其特征在于,所述从所述另一下环节点获取所述另一下环节点的业务配置信息,包括:
    通过预定通道接收所述另一下环节点发送的所述另一下环节点的业务配置信息,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;
    或者,
    通过所述环网上的操作、管理和维护OAM机制的扩展报文接收所述另一下环节点发送的所述另一下环节点的业务配置信息。
  4. 根据权利要求1至3任一所述的网络保护方法,其特征在于,在所述决策所述业务数据的下环策略包括:在当前下环节点将所述业务数据进行下环操作的情况下,在所述决策所述业务数据的下环策略包括在当前下环节点将所述业务数据进行下环操作之前,所述方法还包括:
    检测所述当前下环节点与所述接入设备之间的接入链路是否发生故 障;
    若检测结果为所述接入链路未发生故障,则执行决策所述业务数据的下环策略包括在当前下环节点将所述业务数据进行下环操作的步骤。
  5. 根据权利要求4所述的网络保护方法,其特征在于,所述方法还包括:
    若检测结果为所述接入链路发生故障,则将所述业务数据发送给所述另一下环节点进行下环操作。
  6. 根据权利要求1至3任一所述的网络保护方法,其特征在于,在所述决策所述业务数据的下环策略包括:将所述业务数据发送给所述另一下环节点进行下环操作的情况下,在所述决策所述业务数据的下环策略包括将所述业务数据发送给所述另一下环节点进行下环操作之前,所述方法还包括:
    检测所述另一下环节点是否可达;
    若检测结果为所述另一下环节点可达,则执行决策所述下环策略包括将所述业务数据发送给所述另一下环节点进行下环操作的步骤。
  7. 根据权利要求6所述的网络保护方法,其特征在于,所述检测所述另一下环节点是否可达,包括:
    通过所述环网上的操作、管理和维护OAM机制检测所述另一下环节点是否可达;或,
    通过检测预定通道是否正常来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;或,
    通过预定通道接收所述另一下环节点发送的报文来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道。
  8. 一种网络保护装置,其特征在于,用于设置有环网保护的环网上与同一接入设备相连的两个下环节点中的任一下环节点,所述装置包括:
    信息获取模块,用于获取另一下环节点的业务配置信息;
    数据检测模块,用于在接收到业务数据时,检测所述业务数据携带的业务配置信息是否与所述另一下环节点的业务配置信息匹配;
    策略决策模块,用于若检测结果为所述业务数据携带的业务配置信息与所述另一下环节点的业务配置信息匹配,则决策所述业务数据的下环策略包括:
    在当前下环节点将所述业务数据进行下环操作,和/或将所述业务数据发送给所述另一下环节点进行下环操作。
  9. 根据权利要求8所述的网络保护装置,其特征在于,所述信息获取模块,包括:第一获取单元或第二获取单元;
    所述第一获取单元,用于从所述另一下环节点获取所述另一下环节点的业务配置信息;
    所述第二获取单元,用于从所述环网的网管系统中获取所述另一下环节点的业务配置信息。
  10. 根据权利要求9所述的网络保护装置,其特征在于,所述第一获取单元,用于:
    通过预定通道接收所述另一下环节点发送的所述另一下环节点的业务配置信息,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;
    或者,
    通过所述环网上的操作、管理和维护OAM机制的扩展报文接收所述另一下环节点发送的所述另一下环节点的业务配置信息。
  11. 根据权利要求8至10任一所述的网络保护装置,其特征在于,所述网络保护装置,还包括:链路检测模块;
    所述链路检测模块,还用于检测所述当前下环节点与所述接入设备之间的接入链路是否发生故障;
    所述策略决策模块,用于若所述链路检测模块的检测结果为所述接入链路未发生故障,则执行决策所述业务数据的下环策略包括在当前下环节 点将所述业务数据进行下环操作的步骤。
  12. 根据权利要求11所述的网络保护装置,其特征在于,所述策略决策模块还用于若检测结果为所述接入链路发生故障,则将所述业务数据发送给所述另一下环节点进行下环操作。
  13. 根据权利要求8至10任一所述的网络保护装置,其特征在于,所述网络保护装置,还包括:对端检测模块;
    所述对端检测模块,用于检测所述另一下环节点是否可达;
    所述策略决策模块,用于若检测结果为所述另一下环节点可达,则执行决策所述下环策略包括所述业务数据发送给所述另一下环节点进行下环操作的步骤。
  14. 根据权利要求13所述的网络保护装置,其特征在于,所述对端检测模块,用于:
    通过所述环网上的操作、管理和维护OAM机制检测所述另一下环节点是否可达;或,
    通过检测预定通道是否正常来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道;或,
    通过预定通道接收所述另一下环节点发送的报文来确定所述另一下环节点是否可达,所述预定通道是预先在所述当前下环节点和所述另一下环节点之间建立的通道。
  15. 一种下环节点,其特征在于,包括如权利要求8至14任一所述的网络保护装置。
  16. 一种网络系统,其特征在于,包括设置有环网保护的环网,以及所述环网上与同一接入设备相连的两个下环节点;
    所述下环节点为权利要求15所述的下环节点。
PCT/CN2014/086097 2013-09-09 2014-09-09 网络保护方法、装置、下环节点及系统 WO2015032356A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016539412A JP6308534B2 (ja) 2013-09-09 2014-09-09 ネットワーク保護方法およびネットワーク保護装置、オフリングノード、ならびにシステム
EP14841528.4A EP3029883B1 (en) 2013-09-09 2014-09-09 Network protection method and apparatus, next-ring node, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310408390.1 2013-09-09
CN201310408390.1A CN103490921B (zh) 2013-09-09 2013-09-09 网络保护方法、装置、下环节点及系统

Publications (1)

Publication Number Publication Date
WO2015032356A1 true WO2015032356A1 (zh) 2015-03-12

Family

ID=49830893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086097 WO2015032356A1 (zh) 2013-09-09 2014-09-09 网络保护方法、装置、下环节点及系统

Country Status (4)

Country Link
EP (1) EP3029883B1 (zh)
JP (1) JP6308534B2 (zh)
CN (1) CN103490921B (zh)
WO (1) WO2015032356A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490921B (zh) * 2013-09-09 2017-06-20 华为技术有限公司 网络保护方法、装置、下环节点及系统
CN106302067A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 一种报文处理方法及装置
CN108023754A (zh) * 2016-10-31 2018-05-11 中国移动通信集团广东有限公司 一种双归组主备节点协商机制的实现方法及装置
CN108023800A (zh) * 2016-11-03 2018-05-11 中国移动通信集团广东有限公司 一种lte承载网络的保护方法及装置
CN108259257B (zh) * 2016-12-29 2021-07-09 中国移动通信集团广东有限公司 一种基于环双归虚拟节点的环网测试方法及装置
CN111294226B (zh) * 2018-12-10 2023-05-09 华为技术有限公司 通信方法和装置
CN113891373B (zh) * 2021-10-11 2024-03-12 中盈优创资讯科技有限公司 一种基站质量劣化自愈方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364926A (zh) * 2007-08-08 2009-02-11 华为技术有限公司 一种网络保护的方法和设备
CN101702658A (zh) * 2009-11-24 2010-05-05 中兴通讯股份有限公司 一种环网保护的实现方法及系统
CN102355400A (zh) * 2011-07-27 2012-02-15 华为技术有限公司 处理跨环业务的方法和相交节点
CN103490921A (zh) * 2013-09-09 2014-01-01 华为技术有限公司 网络保护方法、装置、下环节点及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099786A1 (fr) * 2005-03-25 2006-09-28 Hangzhou H3C Technologies Co., Ltd. Procédé de mise en œuvre d’un processus en anneau, d'un processus hors anneau et de transfert de données dans un réseau annulaire de données en paquets à résilience et dispositif en réseau idoine
CN1848714B (zh) * 2005-04-04 2010-06-23 华为技术有限公司 通过网元双归属与环网保护结合实现网络保护的方法
JP4790591B2 (ja) * 2006-12-27 2011-10-12 富士通株式会社 リングノード装置
CN103023770B (zh) * 2011-09-21 2017-09-26 中兴通讯股份有限公司 环网的保护方法及装置
CN103095478B (zh) * 2011-11-03 2016-12-28 中兴通讯股份有限公司 一种跨环业务的保护方法及装置
CN102571426B (zh) * 2011-12-29 2015-05-20 杭州华三通信技术有限公司 一种双归保护方法和装置
CN102546425B (zh) * 2012-01-31 2014-11-05 华为技术有限公司 相交环保护方法、设备和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364926A (zh) * 2007-08-08 2009-02-11 华为技术有限公司 一种网络保护的方法和设备
CN101702658A (zh) * 2009-11-24 2010-05-05 中兴通讯股份有限公司 一种环网保护的实现方法及系统
CN102355400A (zh) * 2011-07-27 2012-02-15 华为技术有限公司 处理跨环业务的方法和相交节点
CN103490921A (zh) * 2013-09-09 2014-01-01 华为技术有限公司 网络保护方法、装置、下环节点及系统

Also Published As

Publication number Publication date
EP3029883B1 (en) 2017-09-06
CN103490921B (zh) 2017-06-20
EP3029883A1 (en) 2016-06-08
EP3029883A4 (en) 2016-08-10
CN103490921A (zh) 2014-01-01
JP6308534B2 (ja) 2018-04-11
JP2016536906A (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2015032356A1 (zh) 网络保护方法、装置、下环节点及系统
EP2243255B1 (en) Method and system for dynamic link failover management
US8208369B2 (en) Ethernet ring system and a master node and an initialization method thereof
US9385944B2 (en) Communication system, path switching method and communication device
US20140211641A1 (en) Using ethernet ring protection switching with computer networks
JP2009005053A (ja) パケットリングネットワークシステム、パケット転送方法
EP1868322B1 (en) A method for implementing network protection combining the network element double-adscription and the ringnet protection
WO2018113294A1 (zh) 一种转发报文的方法、设备及系统
US10110475B2 (en) Restoration method for an MPLS ring network
CN108243114B (zh) 一种转发报文的方法、设备及系统
WO2007057884A2 (en) Vpls remote failure indication
CN111817881A (zh) 一种故障处理方法和相关装置
US20140050092A1 (en) Load sharing method and apparatus
US9716639B2 (en) Protection switching method and system
US8929200B2 (en) Communication device, communication system, and communication method
CN106161232B (zh) 一种隧道保护切换的方法和装置
US10033573B2 (en) Protection switching method, network, and system
US20120269056A1 (en) Method, device, and system for protecting semi-ring network
JP4644233B2 (ja) 伝送路システム、フレーム伝送方法およびフレーム伝送装置
EP2573977A1 (en) Subnet protection method and device for transport multi-protocol label switching (tmpls) network
WO2014079010A1 (zh) 业务保护方法、设备及系统
CN112637054B (zh) Ip承载网的组网优化方法、装置、计算设备和存储介质
CN109495286B (zh) 相交环复用段告警检测方法及装置、计算机可读存储介质
CN107786435B (zh) 伪线保护方法及装置
CN102487327B (zh) 业务切换方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841528

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014841528

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841528

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016539412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE