WO2015032020A1 - 纺织品的一种相转移催化固色加工方法 - Google Patents

纺织品的一种相转移催化固色加工方法 Download PDF

Info

Publication number
WO2015032020A1
WO2015032020A1 PCT/CN2013/082832 CN2013082832W WO2015032020A1 WO 2015032020 A1 WO2015032020 A1 WO 2015032020A1 CN 2013082832 W CN2013082832 W CN 2013082832W WO 2015032020 A1 WO2015032020 A1 WO 2015032020A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixing
fluid
carbon dioxide
phase transfer
textile
Prior art date
Application number
PCT/CN2013/082832
Other languages
English (en)
French (fr)
Inventor
龙家杰
许红梅
崔创龙
陈�峰
魏晓晨
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2013/082832 priority Critical patent/WO2015032020A1/zh
Priority to US14/915,771 priority patent/US9739010B2/en
Publication of WO2015032020A1 publication Critical patent/WO2015032020A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/58Material containing hydroxyl groups
    • D06P3/60Natural or regenerated cellulose
    • D06P3/66Natural or regenerated cellulose using reactive dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B19/00Treatment of textile materials by liquids, gases or vapours, not provided for in groups D06B1/00 - D06B17/00
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/14Containers, e.g. vats
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/16General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dispersed, e.g. acetate, dyestuffs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/38General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using reactive dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/655Compounds containing ammonium groups
    • D06P1/66Compounds containing ammonium groups containing quaternary ammonium groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds
    • D06P1/67333Salts or hydroxides
    • D06P1/6735Salts or hydroxides of alkaline or alkaline-earth metals with anions different from those provided for in D06P1/67341
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/94General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dyes dissolved in solvents which are in the supercritical state
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/58Material containing hydroxyl groups
    • D06P3/60Natural or regenerated cellulose
    • D06P3/6033Natural or regenerated cellulose using dispersed dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B19/00Treatment of textile materials by liquids, gases or vapours, not provided for in groups D06B1/00 - D06B17/00
    • D06B19/0005Fixing of chemicals, e.g. dyestuffs, on textile materials

Definitions

  • the invention relates to a phase transfer catalytic solid color processing method for textiles, in particular to a method for performing phase transfer catalytic fixation on textiles, especially natural textile textiles, by using a dispersed reactive dye in a supercritical carbon dioxide fluid, belonging to textile dyeing.
  • a phase transfer catalytic solid color processing method for textiles in particular to a method for performing phase transfer catalytic fixation on textiles, especially natural textile textiles, by using a dispersed reactive dye in a supercritical carbon dioxide fluid, belonging to textile dyeing.
  • the traditional textile printing and dyeing industry is one of the major industrial wastewater discharges. It not only consumes a lot of water, but also produces complex and variable printing and dyeing wastewater components. It has deep color and high COD value. It often contains a variety of toxic and harmful substances. The pollution and harm of resources and ecological environment are becoming increasingly serious.
  • the use of supercritical carbon dioxide fluid instead of traditional water bath for waterless dyeing of textiles has the characteristics of ecological, environmental protection and clean production. It is of significance to promote the upgrading of traditional textile printing and dyeing industry and to break through the bottlenecks such as water and sewage restrictions. Far-reaching.
  • the dyeing and fixing of natural fiber textiles in supercritical C0 2 fluids, such as cotton, silk, wool, etc. still have technical problems to be solved.
  • the parent structure of such dyes has the hydrophobic character of the disperse dye, the solubility of the dye in the supercritical CO 2 fluid is effectively solved; at the same time, the optimized molecular structure of the dye is small, and the hydrophilic fiber can be Pretreatment such as puffing can also obtain better adsorption and diffusion dyeing in the dry state; the active group in the molecular structure of the dye can react with the functional groups on the fiber under certain conditions, thereby achieving a total of dyes and fibers.
  • the purpose of combining and fixing the valence bond greatly improves the color fastness of the dyed product.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a processing method capable of effectively dispersing reactive dyes in textiles, especially natural textile textiles, in a supercritical carbon dioxide fluid.
  • the technical solution adopted for achieving the object of the present invention is to provide a phase transfer catalytic solid color processing method for textiles, comprising the following steps: 1. Using a disperse reactive dye to place the textile in a supercritical carbon dioxide fluid for dry dyeing in an anhydrous medium;
  • the textile is placed in a phase transfer catalytic fixing device, and the circulating supercritical critical carbon dioxide fluid is transported by the phase transfer catalysis as a carrier to transfer the ionic solid-state catalytic alkaline substance from the aqueous solution to the hydrophobic supercritical carbon dioxide fluid.
  • the crystallization-fixed alkaline substance is sodium hydroxide, sodium carbonate, sodium phosphate, or they are in a micro water environment a concentration of 0.
  • phase transfer catalyst is a perfluorooctyl season An ammonium salt, or a quaternary ammonium salt containing a C 12 -C 18 fatty chain or an aromatic group.
  • the structure of the reactive group of the dispersed reactive dye of the present invention is vinyl sulfone, vinyl, s-triazine, nicotinic acid, or a derivative thereof.
  • a preferred embodiment of the present invention is: a system pressure of 8.0 MPa to 30.0 MPa, a temperature of 40 ° C to 100 ° C, and a treatment time of 30 min. ⁇ 180min.
  • a preferred embodiment of the invention is: a temperature of 60 ° C to 160 ° C, a pressure of 8.0 MPa to 30.0 MPa, and a reaction time of 20 min to 180 min.
  • a phase transfer catalytic color fixing processing method for textiles comprises a phase transfer catalytic color fixing device comprising a supercritical carbon dioxide fluid system, a fixing liquid storage tank and a fixing color tank, and a fixing liquid storage tank
  • the sealing device is connected by a connecting device
  • the fixing liquid storage tank is a cylindrical cavity
  • a fluid distributor is built therein, the fluid distributor is composed of a plurality of pipes communicating with each other, and the nozzle is bent Downward, one of the pipes is a circulating fluid inlet pipe, which is in communication with the supercritical carbon dioxide fluid system, and the remaining pipes are circulating fluid outlet pipes
  • the solid coloring kettle is a cylindrical cavity with a circulating fluid outlet at the top, and the super
  • the critical carbon dioxide fluid treatment system is connected, a porous filter is installed at the bottom of the fixing kettle, a lower portion of the fluid guiding cover is a flared opening, and a cover is placed on the porous filter, and an upper opening of the fluid guiding
  • the present invention has the advantages compared with the prior art: when the textile, especially the natural fiber textile, is dyed and fixed by using a disperse reactive dye in a supercritical carbon dioxide fluid, due to the use in the fixing system
  • the technical solution of the present invention is in textiles, especially Natural fiber textiles have broad application prospects in the processing of supercritical carbon dioxide fluid without dyeing and fixing.
  • FIG. 1 is a schematic diagram of an apparatus for phase transfer catalytic solidification processing of a textile in a supercritical carbon dioxide fluid according to an embodiment of the present invention
  • FIG. 2 is a mixture of a fixing accelerator (Na 2 C0 3 ) and a phase transfer catalyst (FC-134) in a supercritical carbon dioxide fluid according to an embodiment of the present invention (solid content 10%; Na 2 C0 3 : FC- 134 is 3 : 1 ) Comparison of the effect of the color depth value and fixing efficiency (Fix, %) of the textile fixing surface;
  • Figure 1 1, the circulating fluid inlet pipe; 2, fixing liquid storage tank; 3, fixing mixed solution; 4, fluid distributor; 5, filter; 6, connecting device; 7, fluid shroud; , textile winding shaft; 9, fixed color kettle; 10, winding textiles; 1 1, circulating fluid outlet.
  • the present embodiment provides a phase transfer catalytic solid color processing method for textiles, wherein the dyed fiber textile used is a dry pure cotton woven fabric (102.0 g/m 2 ); the dye used is a dispersed reactive red dye (containing a vinyl)
  • the active group is provided by Taiwan Yongguang Chemical Co., Ltd., and the dosage is 0.2% om f).
  • FIG. 1 it is a schematic diagram of a textile phase transfer catalytic fixation device in a supercritical carbon dioxide fluid provided by this embodiment; it comprises a fixing liquid storage tank, a fixing tank and a supercritical carbon dioxide fluid treatment with a circulation pump.
  • a supercritical carbon dioxide fluid treatment system with a circulation pump is omitted.
  • the fixing liquid storage tank 2 is a cylindrical cavity with an inverted "mountain" type tubular fluid distributor 4, which is composed of three pipes communicating with each other, the nozzle is bent downward, and the two pipes are circulating fluids.
  • the outlet pipe, the central pipe is a circulating fluid inlet pipe 1, and the opening at the lower end of the fixing liquid storage tank is connected with the supercritical carbon dioxide fluid system, and the fixing liquid storage tank and the fixing tank 9 are connected by the connecting device 6.
  • the fixing kettle is a cylindrical cavity, the lower end is provided with a filter 5 and a horn-shaped fluid guide hood 7 at the connecting device, and the top is provided with a circulating fluid outlet 1 1 .
  • the textile drum is filled with the textile to be processed in the fixing cylinder.
  • the lower end of the textile winding shaft is open, communicating with the fluid shroud below it, the upper end of the shaft is closed, the shaft of the textile winding shaft is provided with a through hole, and the shaft material is Teflon or The non-thermal conductive material, or the inner and outer surface materials thereof are Teflon or non-thermal conductive materials, and the fixing liquid storage tank and the fixing tank realize the connection with the supercritical carbon dioxide fluid system through the circulating fluid inlet and the circulating fluid outlet thereon.
  • the fixing mixed solution 3 is added to the fixing liquid storage tank, the nozzle of the circulating fluid outlet pipe of the fluid distributor is placed in the solution, and the textile 10 to be treated is wound loosely in the textile winding in a loose state.
  • the filter is full 50 ⁇ 2000 mesh microporous single or multi-layer plate material.
  • the fiber textile finished with the reactive disperse dye is placed in a fixing tank, and the textile winding shaft, the fluid guide, and the filter are assembled in the order of FIG.
  • a mixed solution of a fixing accelerator (Na 2 C0 3 ) and a phase transfer catalyst (FC-134) was added to the fixing liquid storage tank to 5.50 g (solid content 10%; Na 2 C0 3 and FC-134 molar) The ratio is 3 : 1 ). Then, the fixing liquid storage tank and the fixing tank are connected and sealed by a connecting device.
  • the fixing accelerator in the solution is The transfer of the phase transfer catalyst enters the supercritical carbon dioxide fluid phase; and enters the textile winding axis with the fluid through the filter and the fluid guide, and then contacts the fiber and exchanges the substance as the fluid penetrates the fabric layer, so that the transferred alkali is transferred.
  • a substance such as a sex promoter interacts with a functional group such as a hydroxyl group on the fiber to enhance the nucleophilic reactivity with the dye active group, thereby promoting or catalyzing the fixation reaction.
  • the fluid that penetrates the fabric layer and exchanges with the fiber-completed material flows out of the circulating fluid outlet into the cycle of the next cycle.
  • the fluid circulation and the static treatment are alternated, and the time ratio is 1:10.
  • the textile in the solid color kettle was subjected to phase transfer catalytic fixation reaction for 60 min, and then the pressure was released, and the CO 2 gas and the residual fixation catalyst in the system were recovered.
  • a blank control experiment in which the color fixing accelerator (Na 2 CO 3 ) and the phase transfer catalyst (FC-134) were present was carried out under the same conditions as described above.
  • the above-mentioned dyed cotton fabric after dye fixing was used for the analysis test of the dye fixing condition.
  • the fixed color cotton fabric was extracted by an acetone extraction method in a fat extractor at 8 C for 30 min.
  • the ratio of surface color depth (K/S) before and after fabric extraction was used to evaluate the fixation of the dye on the fabric.
  • Fix(%) is the fixing efficiency of the dye on the fabric.
  • the formula for determining the fixing efficiency is: Average surface color depth value after sample extraction
  • phase transfer catalytic solid color processing apparatus and method when performing phase transfer catalytic fixation, a fixing accelerator (Na 2 C0 3 ) and a phase transfer catalyst (FC- are added to the fixing liquid storage tank).
  • the amount of the mixed solution of 134) was ll.OOg (solid content: 10%; molar ratio of Na 2 C0 3 to FC-134 was 3:1). The results obtained are shown in Figure 2.
  • phase transfer catalytic solid color processing apparatus and method when performing phase transfer catalytic fixation, a fixing accelerator (Na 2 C0 3 ) and a phase transfer catalyst (FC- are added to the fixing liquid storage tank).
  • the amount of the mixed solution of 134) was 13.75 g (solid content: 10%; molar ratio of Na 2 CO 3 to FC-134 was 3:1). The results obtained are shown in Figure 2.
  • Example 5 Catalytic fixing processing apparatus and method as in Example 1 to provide a phase transfer, phase transfer catalyst during fixing, the fixing liquid storage tank was added fixation accelerants (Na 2 C0 3) and the phase transfer catalyst (FC- The amount of the mixed solution of 134) was 16.50 g (solid content: 10%; molar ratio of Na 2 CO 3 to FC-134 was 3:1). The results obtained are shown in Figure 2.
  • Example 5
  • phase transfer catalytic solid color processing apparatus and method when performing phase transfer catalytic fixation, a fixing accelerator (Na 2 C0 3 ) and a phase transfer catalyst (FC- are added to the fixing liquid storage tank).
  • the amount of the mixed solution of 134) was 19.25 g (solid content: 10%; molar ratio of Na 2 CO 3 to FC-134 was 3:1). The results obtained are shown in Figure 2.
  • phase transfer catalytic fixing processing device and method when performing phase transfer catalytic fixation, a fixing accelerator (Na 2 C0 3 ) and a phase transfer catalyst (FC- are added to the fixing liquid storage tank).
  • the amount of the mixed solution of 134) was 22.00 g (solid content: 10%; molar ratio of Na 2 CO 3 to FC-134 was 3:1). The results obtained are shown in Figure 2.
  • the alkaline accelerator also causes the bond breaking or hydrolysis of the bonding dye.
  • the amount of the fixing mixture is excessive, the fixing fabric is on the fixing fabric. The moisture content is high, especially when the fabric is in contact with the fixing mixture, its color is significantly lighter.
  • the phase transfer catalysis fixing device and method provided in Example 1 are used for phase transfer catalysis.
  • the system pressure is 8.0MPa
  • a temperature of 140 ° C was added fixation accelerants in the fixing fluid storage tank 2 (Na 2 C0 3) and the amount of the mixed solution phase transfer catalyst (FC-134) was ll .OOg (solid content 10%; molar ratio of Na 2 C0 3 to FC-134 is 3:1).
  • FC-134 mixed solution phase transfer catalyst
  • Table 1 is an experimental result of phase transfer catalytic fixation of a pure cotton woven fabric using a dispersion-reactive red dye (0.2% o.m.f) by the method described in the present embodiment.
  • the system pressure is 20.0 MPa
  • the temperature is 160 ° C
  • a fixing accelerator is added to the fixing liquid storage tank 2.
  • the amount of the mixed solution of (Na 2 C0 3 ) and the phase transfer catalyst (FC-134) was ll.OOg (solid content: 10%; molar ratio of Na 2 CO 3 to FC-134 was 3:1). See Table 2 for the results obtained.
  • Table 2 is a test result of phase transfer catalytic fixation of a pure cotton woven fabric using a dispersion-reactive red dye (0.2% o.m.f) by the method described in the present embodiment.
  • the dry cotton woven fabric dyed by the reactive red dye in the supercritical carbon dioxide fluid can also be used in the phase transfer catalyst in the high pressure and temperature fixing fluid. Under the action, it reaches the fabric fiber and promotes the reaction of the functional groups on the fiber with the dye active group, thereby effectively increasing the color depth value of the fixing surface of the fabric and the fixing efficiency of the dye.
  • Example 9 According to the phase transfer catalytic solid color processing apparatus and method provided in Example 1, when performing phase transfer catalytic fixation, the system pressure is 12.0 MPa, the temperature is 140 ° C, and fixing is added to the fixing liquid storage tank.
  • the amount of the mixed solution of the accelerator (Na 2 CO 3 ) and the phase transfer catalyst (FC-134) was 16.50 g (solid content: 10%; molar ratio of Na 2 CO 3 to FC-134 was 3:1). Fixing treatments were carried out for 40 min, 60 min, and lOO min, respectively, and the ratio of fluid circulation to static alternating treatment was 1:5. See Table 3 for the results obtained. Table 3 is the method of the present embodiment, using a disperse reactive red dye for pure cotton woven fabric
  • phase transfer catalyzed reaction in the supercritical carbon dioxide fluid can effectively improve the color depth value of the disperse active red dye on the solid cotton woven fabric.
  • Fixing efficiency Under the experimental conditions of phase transfer catalysis fixing processing 40min, dye fixation on the fiber surface depth value ⁇ ⁇ ⁇ ⁇ up to 0.222, fixation efficiency can be increased to 69.4%. And with the catalytic fixation time extended to 60min or lOOmin, the color depth value of the solid surface is obviously improved, and the fixing efficiency can exceed 96%.
  • the textile especially the natural fiber cotton textile, which is dyed by the disperse reactive dye in the supercritical carbon dioxide fluid, adopts the principle of phase transfer catalysis in the fixing stage.
  • the fixing agent in the mixed fixing liquid is brought into the hydrophobic fluid and exchanged with the fiber on the fabric to improve the reactivity of the functional groups on the fiber to promote the fixation reaction of the dye and the fiber, thereby effectively Improve the color depth of the dye on the fixed surface of the fiber
  • the method of the invention has the advantages of significantly improving the nucleophilic reactivity of the functional groups on the textile in the hydrophobic supercritical carbon dioxide fluid, improving the fixing efficiency of the dispersed reactive dye on the textile, shortening the fixing time, and the like, and the process It is simple and easy to operate, so its application prospects are broad.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Coloring (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

本发明涉及纺织品的一种相转移催化固色加工方法。将天然纤维纺织品采用分散活性染料在超临界二氧化碳流体无水染色系统中完成上染后,再在超临界二氧化碳流体中利用相转移催化剂实现纤维上染料的反应固着。由于该方法在固色阶段利用了相转移催化剂的作用,将离子化的固色反应促进剂等有效转移到超临界二氧化碳固色流体及固相纤维中,从而改善了纤维上官能团的亲核反应性,实现了超临界二氧化碳流体条件下纤维与染料的固色反应,提高了纤维上染料的固色效率。本发明的技术方法实现了疏水性流体条件下染料在纤维上的反应固着,具有固色效率高,工艺简单,绿色环保等优点。

Description

纺织品的一种相转移催化固色加工方法
技术领域
本发明涉及纺织品的一种相转移催化固色加工方法,特别涉及一种在超 临界二氧化碳流体中采用分散活性染料对纺织品、 尤其是对天然纤维纺织品 实行相转移催化固色的方法, 属纺织染整技术领域。
背景技术
传统的纺织印染行业作为工业废水排放的主要大户之一, 其不但耗水量 大, 而且其产生的印染废水成分复杂多变, 色度深, COD值高, 常含有多种 有毒有害物质, 对淡水资源及生态环境的污染及危害日益严重。 采用和推广 超临界二氧化碳流体代替传统水浴对纺织品进行无水染色加工, 具有生态、 环保、 清洁生产的特点, 对促进传统纺织印染行业的升级改造和突破其发展 受用水和排污限制等瓶颈问题意义深远。 但超临界 C02流体中天然纤维纺织品的染固色, 如棉、 真丝、 羊毛等, 依然还存在需解决的技术性难题。 由于超临界二氧化碳流体的疏水性, 从而 在很大程度上限制了传统离子型或高极性染料或 /及助剂的应用, 而且亲水 性纤维在疏水性的超临界 C02流体中无法获得足够的润湿膨化, 因而染料在 纤维上的吸附和在纤维内的扩散都受到了较大影响。 近年来, 众多研究者采 用不同手段或方法, 对此进行了广泛的研究 (参见文献: Dyeing of modified cotton fibres with disperse dyes from supercritical carbon dioxide Lewis J Soc Dyers Colour 1 14 5/6 ( 1998), pp. 169 - 173; Dyeing natural fibres with disperse dyes in supercritical carbon dioxide. Text Res J. 64 7 ( 1994), pp. 371 - 374; Dyeing wool without water― possibilities and limits of supercritical C02. In: Wenclawiak B, Padberg S, editors. 4th International symposium extraction for sample preparation - SFE - (X)SE - SPME― Book of abstracts 1999. Siegen: University GH of Siegen; 1999. p. 29 - 30;真丝织物的 TCT改性 及其在超临界 C02中的染色 [J] .丝绸, 2005(7) : 32-34 )。 现有技术的研究和实 践表明, 经过结构优化设计的分散活性染料, 是实现超临界二氧化碳流体中 纺织品染色、 尤其是实现天然纤维纺织品染固色的可行且有效的途径之一 (参见文献: Dyeing of cotton fabric with a reactive disperse dye in supercritical carbon dioxide , The sournal of supercritical fluids, 2012, 69 : 13 -20; Solubility of a reactive disperse dye in supercritical carbon dioxide , Coloration technology, 2012, 128 : 127- 132 )。 由于这类染料的母体结构具有分 散染料的疏水特性, 有效解决了染料在超临界 C02流体中的溶解性问题; 同 时经优化设计后的该类染料分子结构较小, 亲水性纤维可不经膨化等预处 理, 在干态下也可使染料获得较好的吸附和扩散上染; 染料分子结构中的活 性基, 在一定条件下可与纤维上的官能团反应, 从而实现染料与纤维以共价 键结合并固着的目的, 大大提高了染色品的色牢度。
然而, 在纺织品染色过程中, 尤其是在天然纤维纺织品染固色加工时, 通常由于超临界二氧化碳流体本身呈弱酸性, 从而使纤维与染料上活性基团 的固色反应难以进行。 因而, 如何提高超临界二氧化碳流体中纤维上各类官 能团, 如棉、 麻等纤维上羟基 (-OH ) 的反应性, 从而提高染料固色效率, 降低固色反应温度、 缩短处理时间等, 具有非常重要的意义。
发明内容
本发明的目的在于克服现有技术存在的不足,提供一种能有效实现在超 临界二氧化碳流体中对纺织品、 尤其是对天然纤维纺织品进行分散活性染料 染固色的加工方法。 实现本发明目的所采用的技术方案是提供纺织品的一种相转移催化固 色加工方法, 包括如下步骤: 1、 采用分散活性染料将纺织品置于超临界二氧化碳流体中进行无水介 质状态下的干态上染;
2、 将纺织品置于相转移催化固色装置中, 循环的超临界临界二氧化碳 流体以相转移催化为载体, 将呈离子态的固色催化碱性物质从水溶液转移到 疏水性的超临界二氧化碳流体中, 与纺织品纤维上的官能团充分接触并与分 散活性染料进行催化固色反应; 所述呈离子态的固色催化碱性物质为氢氧化 钠、碳酸钠、磷酸钠, 或它们在微水环境中水解或受热分解产生氢氧根 OH_的 物质, 所述固色催化碱性物质在水溶液中的浓度为 0. 1 g/L〜20g/L ; 所述相 转移催化剂为全氟辛基季铵盐, 或含 C12〜C18脂肪链或芳香基的季铵盐。
本发明所述分散活性染料的活性基的结构为乙烯砜、 乙烯基、 均三嗪、 烟酸, 或它们的衍生物。
对于纺织品在超临界二氧化碳流体中进行无水介质状态下的干态上染 工艺条件, 本发明的一个优选方案为: 系统压力 8.0MPa〜30.0MPa, 温度 40 °C〜100 °C, 处理时间 30min〜 180min。
对于催化固色反应的工艺条件, 本发明的一个优选方案为: 温度 60 °C〜 160 °C, 压力 8.0MPa〜30.0Mpa, 反应时间 20min〜 180min。
本发明技术方案所述的纺织品的一种相转移催化固色加工方法, 采用的 相转移催化固色装置包括超临界二氧化碳流体系统, 固色液储存釜和固色 釜, 固色液储存釜置于固色釜的下部, 通过连接装置密封连通; 所述的固色 液储存釜为圆柱形空腔, 内置流体分布器, 所述的流体分布器由相互连通的 若干个管道组成, 管口弯向下方, 其中的一个管道为循环流体入口管, 与超 临界二氧化碳流体系统连通, 其余管道为循环流体出口管; 所述的固色釜为 圆柱形空腔,顶部开有循环流体出口,与超临界二氧化碳流体处理系统连通, 固色釜的底部安装多孔过滤器, 流体导流罩的下部为喇叭形开口, 罩在多孔 过滤器的上面, 流体导流罩的上部开口与纺织品卷绕轴的下端口连通; 所述 的纺织品卷绕轴为圆柱形空心轴, 上端口封闭, 轴身开有通孔。
由于上述技术方案的运用, 本发明与现有技术相比具有的优点是: 在超 临界二氧化碳流体中对纺织品、 尤其是天然纤维纺织品采用分散活性染料染 固色时, 由于在固色系统中利用了相转移催化原理, 使得只能在极性水溶液 中存在的固色碱性促进剂, 也因此可能进入疏水性流体相, 并进而与固相纤 维上的官能团发生作用, 从而提高了纤维上官能团与染料的反应活泼性; 并 最终提高了染料在纤维上的催化固色效率; 同时, 还有利于降低固色反应温 度, 缩短固色处理时间等; 因此, 本发明技术方案在纺织品、 尤其是天然纤 维纺织品的超临界二氧化碳流体无水染固色加工中具有广阔的应用前景。
附图说明
图 1 是本发明实施例提供的超临界二氧化碳流体中纺织品相转移催化 固色加工的装置的原理图;
图 2 是本发明实施例提供的超临界二氧化碳流体中固色促进剂 ( Na2C03 ) 与相转移催化剂 (FC- 134 ) 混合液用量 (含固量 10% ; Na2C03 : FC- 134 为 3 : 1 ) 对纺织品固色表面色深值 和固色效率 (Fix,% ) 的 影响比较;
图 1 中: 1、 循环流体入口管; 2、 固色液储存釜; 3、 固色混合溶液; 4、 流体分布器; 5、 过滤器; 6、 连接装置; 7、 流体导流罩; 8、 纺织品卷绕轴; 9、 固色釜; 10、 卷绕纺织品; 1 1、 循环流体出口。
具体实施方法
以下结合附图和实施例对本发明技术方案作进一步描述。 实施例 1
本实施例提供纺织品的一种相转移催化固色加工方法,所采用的被染纤 维纺织品为干态纯棉机织物 ( 102.0g/m2 ) ; 所用染料为分散活性红染料 (含 一个乙烯基活性基团,由台湾永光化学品有限公司提供,用量为 0.2% o. m. f)。
本实施例中, 纺织品的超临界二氧化碳流体染色用装置系统及其方法, 参见公开号为 CN102296469A的中国发明专利 "在超临界二氧化碳流体中天 然纤维的染色方法"。
参见附图 1, 它是本实施例提供的超临界二氧化碳流体中纺织品相转移 催化固色加工装置的原理图; 它包括固色液储存釜、 固色釜和带循环泵的超 临界二氧化碳流体处理系统, 图中省略了带循环泵的超临界二氧化碳流体处 理系统。 固色液储存釜 2为圆柱形空腔, 内设有倒置 "山 " 型管状流体分布 器 4, 它由相互连通的三个管道组成, 管口弯向下方, 其中的两个管道为循 环流体出口管, 位于中心的管道为循环流体入口管 1, 经固色液储存釜下端 的开口与超临界二氧化碳流体系统连通, 固色液储存釜与固色釜 9经连接装 置 6连为一体。 固色釜为圆柱形空腔, 下端在连接装置处设有过滤器 5和喇 叭形流体导流罩 7, 顶部设有循环流体出口 1 1, 固色釜内按装卷有待处理纺 织品的纺织品卷绕轴 8, 纺织品卷绕轴的下端为开口状, 与其下方的流体导 流罩连通, 轴的上端为封闭式, 纺织品卷绕轴的轴身上开有通孔, 轴身材料 为特氟龙或非导热性材质, 或其内外表面材料为特氟龙或非导热性材质, 固 色液储存釜和固色釜通过其上的循环流体入口和循环流体出口实现与超临 界二氧化碳流体系统的连接。 加工时, 将固色混合溶液 3加入到固色液储存 釜中, 流体分布器的循环流体出口管道的管口置于溶液中, 待处理纺织 10 呈松式状态平整地卷绕在纺织品卷绕轴上。 在本实施例中, 过滤器为布满 50〜2000 目微孔的单层或多层板状材料。将完成活性分散染料上染的纤维纺 织品置于固色釜中, 并按附图 1 中顺序将纺织品卷绕轴、 流体导流罩、 过滤 器进行组装。 同时在固色液储存釜中加入固色促进剂 (Na2C03 ) 与相转移催 化剂 (FC- 134 ) 的混合溶液 5.50g (含固量 10% ; Na2C03与 FC- 134的摩尔比 为 3 : 1 )。 然后将固色液储存釜与固色釜通过连接装置进行连接密封。 在系统 压力为 20MPa、 温度为 100 °C的条件下, 使超临界二氧化碳循环流体自下而 上经循环流体入口管和流体分布器后进入固色混合溶液时, 溶液中的固色促 进剂在相转移催化剂的转移作用下进入超临界二氧化碳流体相; 并随流体经 过滤器、 流体导流罩进入纺织品卷绕轴, 然后随流体穿透织物层时与纤维接 触并进行物质交换, 使转移的碱性促进剂等物质与纤维上羟基等官能团作 用, 从而提高其与染料活性基的亲核反应性, 起到对固色反应的促进或催化 作用。 最后穿透织物层并与纤维完成物质交换后的流体从循环流体出口处流 出而进入下一周期的循环。 其中流体循环与静止处理交替进行, 其时间比为 1 : 10。 固色釜中纺织品经相转移催化固色反应处理 60min后泄压, 对系统中 的 C02气体及残余固色催化剂进行回收。同时在上述其它条件不变的情况下, 进行无固色促进剂 (Na2C03 ) 与相转移催化剂 (FC- 134 ) 存在的空白对照实 验。 并将上述完成染料固色后的棉织物用于染料固着情况的分析测试。
参照上述处理步骤及工艺, 经本实施例方法加工后棉织物上分散活性红 染料的固着分析测试及其结果如下:
为分析织物上染料的固着率,将固色棉织物在脂肪提取器中采用丙酮萃 取法, 于 8 C、 30min的条件下对未固着的浮色染料进行萃取。 并利用织物 萃取前后表面色深值 (K/S ) 之比来评价染料在织物上的固着情况。 Fix(%) 为染料在织物上的固色效率, 其固色效率计算公式为: 为试样萃取后的平均表面色深值
Figure imgf000009_0001
(分别为织物正反面的头尾、 边中、 内中外的算术平均值; 或称为固色表面 色深值), η为测量的总次数 (n=12), (K/S),, 、max为在最大特征吸收波长处 ( 入 max) i次测量 (采用 Ultrascan PRO型自动测色配色仪测试, HunterLab. Ltd, 美国; 试样折叠 8 层) 的表面色深值 (K/S值); (^J^皿为试样萃取 前的平均表面色深值。 结果参见附图 2所示。
实施例 2
按实施例 1提供的相转移催化固色加工装置及方法,在进行相转移催化 固色时, 在固色液储存釜中加入固色促进剂 (Na2C03) 与相转移催化剂 (FC-134) 的混合溶液量为 ll.OOg (含固量 10%; Na2C03与 FC-134 的摩尔 比为 3:1)。 所得结果参见附图 2。
实施例 3
按实施例 1提供的相转移催化固色加工装置及方法,在进行相转移催化 固色时, 在固色液储存釜中加入固色促进剂 (Na2C03) 与相转移催化剂 (FC-134) 的混合溶液量为 13.75g (含固量 10%; Na2C03与 FC-134 的摩尔 比为 3:1)。 所得结果参见附图 2。
实施例 4
按实施例 1提供的相转移催化固色加工装置及方法,在进行相转移催化 固色时, 在固色液储存釜中加入固色促进剂 (Na2C03) 与相转移催化剂 (FC-134) 的混合溶液量为 16.50g (含固量 10%; Na2C03与 FC-134 的摩尔 比为 3:1)。 所得结果参见附图 2。 实施例 5
按实施例 1提供的相转移催化固色加工装置及方法,在进行相转移催化 固色时, 在固色液储存釜中加入固色促进剂 (Na2C03) 与相转移催化剂 (FC-134) 的混合溶液量为 19.25g (含固量 10%; Na2C03与 FC-134 的摩尔 比为 3:1)。 所得结果参见附图 2。
实施例 6
按实施例 1提供的相转移催化固色加工装置及方法, 在进行相转移催化 固色时, 在固色液储存釜中加入固色促进剂 (Na2C03) 与相转移催化剂 (FC-134) 的混合溶液量为 22.00g (含固量 10%; Na2C03与 FC-134 的摩尔 比为 3:1)。 所得结果参见附图 2。
由图 2结果可看出, 在无固色促进剂的空白对照实验中, 活性分散红染 料在棉纤维上的固色表面色深值和固色效率都比较低, 分别只有 0.16 和 50%。 而在固色系统中加入固色促进剂 (Na2C03) 与相转移催化剂 (FC-134) 的混合溶液时, 染料在纤维上的固色表面色深值 (^L 和固色效率都随其 用量出现显著提高; 且当固色混合液用量达到 16.5g时, 染料在纤维上的固 色表面色深值 ί^ί^^和固色效率都达到最大, 分别达到 0.296和 92.4%, 表 现出非常明显的相转移催化固色效果。 但当继续增大固色混合液用量时, 染 料在纤维上的固色表面色深值! ^!L^和固色效率却出现降低, 这可能与固 色系统中固色混合液过量后, 碱性促进剂也会引起成键染料的断键或水解有 关。 而实验过程中也发现, 在固色混合液用量过多后, 固色织物上含湿率较 高, 尤其当织物接触到固色混合液后, 其颜色显著变浅。
实施例 7
按实施例 1提供的相转移催化固色加工装置及方法,在进行相转移催化 固色时, 系统压力为 8.0MPa、 温度为 140°C, 在固色液储存釜 2中加入固色 促进剂 (Na2C03) 与相转移催化剂 (FC-134) 的混合溶液量为 ll.OOg (含固 量 10%; Na2C03与 FC-134的摩尔比为 3:1)。 所得结果参见表 1。
表 1 是采用本实施例所述的方法, 对纯棉机织物采用分散活性红染料 (0.2% o.m.f) 进行相转移催化固色加工的实验结果。
表 1
Figure imgf000011_0001
表 1 结果可以看到,在超临界二氧化碳流体中分散活性红染料在干态纯 棉机织物也可获得良好上染效果; 且在近临界的低压超临界二氧化碳流体 中, 固色促进剂在相转移催化剂的作用下, 能促使纤维上官能团与染料发生 固色反应, 从而使其固色表面色深值 ί^ίίΗ„和固色效率得到提高。
实施例 8
按实施例 1提供的相转移催化固色加工装置及方法,在进行相转移催化 固色时, 系统压力为 20.0MPa、 温度为 160°C, 在固色液储存釜 2 中加入固 色促进剂 (Na2C03) 与相转移催化剂 (FC-134) 的混合溶液量为 ll.OOg (含 固量 10%; Na2C03与 FC-134的摩尔比为 3:1)。 所得结果参见表 2。
表 2 是采用本实施例所述的方法, 对纯棉机织物采用分散活性红染料 (0.2% o.m.f) 进行相转移催化固色加工的测试结果。
表 2 Fix C%) 相转移催化固色反应条件
( .,,= 80™) (固色效率)
20HPaxl60°C>;60min 0.320 0.219 68.4
由表 2结果可以看到, 经超临界二氧化碳流体中分散活性红染料上染的 干态纯棉机织物, 在较高压力和温度的固色流体中, 固色促进剂也可在相转 移催化剂的作用下, 到达织物纤维并促使纤维上官能团与染料活性基发生反 应, 从而有效提高织物的固色表面色深值^ 和染料固色效率。
实施例 9 按实施例 1提供的相转移催化固色加工装置及方法,在进行相转移催化 固色时, 系统压力为 12.0MPa、 温度为 140°C, 在固色液储存釜中加入固色 促进剂 (Na2C03) 与相转移催化剂 (FC-134) 的混合溶液量为 16.50g (含固 量 10%; Na2C03与 FC-134的摩尔比为 3:1)。分别进行 40min、 60min、 lOOmin 的固色处理, 流体循环与静止交替处理时间比为 1:5。 所得结果参见表 3。 表 3 是采用本实施例所述的方法, 对纯棉机织物采用分散活性红染料
(0.2% o.m.f) 进行不同时间的相转移催化固色加工的测试结果。
表 3
Figure imgf000012_0001
由表 3结果可以看到, 采用超临界二氧化碳流体中的相转移催化反应, 可有效提高分散活性红染料在干态纯棉机织物的固色表面色深值^ ]^ 和 固色效率。 在本实验条件下, 相转移催化固色处理 40min时, 染料在纤维上 的固色表面色深值 ί^ίΛΜΚ可达到 0.222, 固色效率可提高到 69.4%。 并随催 化固色时间延长到 60min或 l OOmin时,其固色表面色深值 有明显提 高, 且其固色效率可超过 96%。
本发明实施例 1〜9 的固色效果可以看出, 本发明对超临界二氧化碳流 体中经分散活性染料完成上染的纺织品、 尤其是天然纤维棉纺织品, 在固色 阶段时采用相转移催化原理将混合固色液中的固色促进剂带入疏水性的流 体中, 并使其与织物上纤维发生物质交换, 以提高纤维上官能团的反应性来 促进染料与纤维的固色反应, 从而有效提高染料在纤维上的固色表面色深值
E^ ™和固色效率等。 因而与现有技术相比, 本发明方法具有显著改善疏 水性超临界二氧化碳流体中纺织品上官能团的亲核反应性, 提高分散活性染 料在纺织品上的固色效率、 缩短固色时间等优点, 且工艺简单, 操作方便, 因而其应用前景广阔。

Claims

权 利 要 求 书
1. 纺织品的一种相转移催化固色加工方法, 其特征在于包括如下步骤:
( 1 ) 采用分散活性染料将纺织品置于超临界二氧化碳流体中进行无水介质状态下的干态上 染;
(2) 将纺织品置于相转移催化固色装置中, 循环的超临界临界二氧化碳流体以相转移催化 为载体, 将呈离子态的固色催化碱性物质从水溶液转移到疏水性的超临界二氧化碳流体中, 与纺织品纤维上的官能团充分接触并与分散活性染料进行催化固色反应; 所述呈离子态的固 色催化碱性物质为氢氧化钠、 碳酸钠、 磷酸钠, 或它们在微水环境中水解或受热分解产生氢 氧根 OH—的物质, 所述固色催化碱性物质在水溶液中的浓度为 0.1g/L〜20g/L; 所述相转移 催化剂为全氟辛基季铵盐, 或含 C12〜C18脂肪链或芳香基的季铵盐。
2. 根据权利要求 1 所述的纺织品的一种相转移催化固色加工方法, 其特征在于: 所述分散 活性染料的活性基的结构为乙烯砜、 乙烯基、 均三嗪、 烟酸, 或它们的衍生物。
3. 根据权利要求 1 所述的纺织品的一种相转移催化固色加工方法, 其特征在于: 所述的纺 织品在超临界二氧化碳流体中进行无水介质状态下的干态上染工艺条件为, 系统压力 8.0MPa〜30.0MPa, 温度 40°C〜100°C, 处理时间 30min〜180min。
4. 根据权利要求 1 所述的纺织品的一种相转移催化固色加工方法, 其特征在于: 催化固色 反应的工艺条件为, 温度 60 °C〜160 °C, 压力 8.0MPa〜30.0Mpa, 反应时间 20min〜 180min。
5. 根据权利要求 1 所述的纺织品的一种相转移催化固色加工方法, 其特征在于: 所述的相 转移催化固色装置包括超临界二氧化碳流体系统, 固色液储存釜 (2) 和固色釜 (9), 固色 液储存釜 (2) 置于固色釜 (9) 的下部, 通过连接装置 (6) 密封连通; 所述的固色液储存 釜 (2) 为圆柱形空腔, 内置流体分布器 (4), 所述的流体分布器 (4) 由相互连通的若干个 管道组成, 管口弯向下方, 其中的一个管道为循环流体入口管 (1), 与超临界二氧化碳流体 系统连通, 其余管道为循环流体出口管; 所述的固色釜 (9) 为圆柱形空腔, 顶部开有循环 流体出口 (11 ), 与超临界二氧化碳流体处理系统连通, 固色釜 (9) 的底部安装多孔过滤器
( 5 ), 流体导流罩 (7) 的下部为喇叭形开口, 罩在多孔过滤器 (5 ) 的上面, 流体导流罩 ( 7) 的上部开口与纺织品卷绕轴 (8 ) 的下端口连通; 所述的纺织品卷绕轴 (8 ) 为圆柱形 空心轴, 上端口封闭, 轴身开有通孔。
PCT/CN2013/082832 2013-09-03 2013-09-03 纺织品的一种相转移催化固色加工方法 WO2015032020A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/082832 WO2015032020A1 (zh) 2013-09-03 2013-09-03 纺织品的一种相转移催化固色加工方法
US14/915,771 US9739010B2 (en) 2013-09-03 2013-09-03 Phase-transfer catalytic colour fixation processing method for textile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/082832 WO2015032020A1 (zh) 2013-09-03 2013-09-03 纺织品的一种相转移催化固色加工方法

Publications (1)

Publication Number Publication Date
WO2015032020A1 true WO2015032020A1 (zh) 2015-03-12

Family

ID=52627669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082832 WO2015032020A1 (zh) 2013-09-03 2013-09-03 纺织品的一种相转移催化固色加工方法

Country Status (2)

Country Link
US (1) US9739010B2 (zh)
WO (1) WO2015032020A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897665A (zh) * 2015-06-10 2015-09-09 山东出入境检验检疫局检验检疫技术中心 染色纺织品中禁用偶氮染料的一步显色筛查法
CN109695163A (zh) * 2019-01-03 2019-04-30 鲁泰纺织股份有限公司 纤维素纤维活性染料少水介质染色方法
WO2020077702A1 (zh) * 2018-10-16 2020-04-23 苏州大学 一种以超临界二氧化碳流体为介质的无水纤染方法
WO2021068277A1 (zh) * 2019-10-11 2021-04-15 上海复璐帝流体技术有限公司 一种超临界二氧化碳印染工艺及其印染系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310257A (zh) * 2000-02-16 2001-08-29 斯刀克布拉邦特股份有限公司 在超临界流体中对纺织材料染色的方法
JP2004300588A (ja) * 2003-03-28 2004-10-28 Howa Kk 繊維の染色方法およびその染色物
JP4197418B2 (ja) * 2002-09-13 2008-12-17 旭化成せんい株式会社 セルロース系繊維構造物の染色方法
CN102392367A (zh) * 2011-07-07 2012-03-28 苏州大学 在低压二氧化碳介质中活性分散染料的固色方法
CN102817194A (zh) * 2012-09-04 2012-12-12 广东出色无水印染科技有限公司 一种采用超临界流体静态染色的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150829A (ja) 1983-02-15 1984-08-29 Takenaka Doboku Co Ltd 止水シ−トの布設装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310257A (zh) * 2000-02-16 2001-08-29 斯刀克布拉邦特股份有限公司 在超临界流体中对纺织材料染色的方法
JP4197418B2 (ja) * 2002-09-13 2008-12-17 旭化成せんい株式会社 セルロース系繊維構造物の染色方法
JP2004300588A (ja) * 2003-03-28 2004-10-28 Howa Kk 繊維の染色方法およびその染色物
CN102392367A (zh) * 2011-07-07 2012-03-28 苏州大学 在低压二氧化碳介质中活性分散染料的固色方法
CN102817194A (zh) * 2012-09-04 2012-12-12 广东出色无水印染科技有限公司 一种采用超临界流体静态染色的方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897665A (zh) * 2015-06-10 2015-09-09 山东出入境检验检疫局检验检疫技术中心 染色纺织品中禁用偶氮染料的一步显色筛查法
WO2020077702A1 (zh) * 2018-10-16 2020-04-23 苏州大学 一种以超临界二氧化碳流体为介质的无水纤染方法
US11608592B2 (en) 2018-10-16 2023-03-21 Soochow University Fiber dyeing method using supercritical carbon dioxide fluid as medium
CN109695163A (zh) * 2019-01-03 2019-04-30 鲁泰纺织股份有限公司 纤维素纤维活性染料少水介质染色方法
WO2021068277A1 (zh) * 2019-10-11 2021-04-15 上海复璐帝流体技术有限公司 一种超临界二氧化碳印染工艺及其印染系统

Also Published As

Publication number Publication date
US9739010B2 (en) 2017-08-22
US20160230335A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
US9920473B2 (en) Method for colour-fixing processing of textile and device therefor
WO2015032020A1 (zh) 纺织品的一种相转移催化固色加工方法
CN103132313B (zh) 填充型棉纤维及其制备方法
CN102359025B (zh) 一种筒子或经轴低恒定浴比棉纱染色方法
CN102899929A (zh) 一种活性染料无盐染色的加工方法
CN105177979A (zh) 一种臭氧-超声波协同的纺织品练漂和染色方法及装置
CN205171156U (zh) 一种臭氧-超声波协同的纺织品练漂和染色装置
CN106567138A (zh) 一种大麻纤维的精细化加工方法
CN102392367B (zh) 在低压二氧化碳介质中活性分散染料的固色方法
CN104372598A (zh) 一种采用组合酶的超临界二氧化碳流体退浆方法
WO2016058252A1 (zh) 一种超临界二氧化碳流体中棉的酶退浆方法
CN109577037A (zh) 一种棉织物的无水染色工艺
CN102392343B (zh) 棉型织物改性前处理同浴处理方法
CN106435757A (zh) 一种亚麻纤维的精细化加工方法
CN106400128A (zh) 一种苎麻纤维的精细化加工方法
CN106567140B (zh) 一种罗布麻精干麻纤维的精细化生产方法
CN103451974B (zh) 纺织品的一种相转移催化固色加工方法
CN105568591A (zh) 一种超临界二氧化碳流体中棉的双氧水退浆前处理法
CN106435756A (zh) 一种罗布麻精干麻的精细化生产方法
CN109403067A (zh) 以废弃食用油作为染色溶剂的染色方法
CN106435758B (zh) 一种红麻纤维的精细化加工方法
CN113338060B (zh) 一种家纺面料的节能短流程保健功能染色方法
CN102953186B (zh) 一种超高分子量聚乙烯纤维染色装置及其方法
CN103451884B (zh) 一种对纺织品进行固色加工的方法及其装置
CN203429415U (zh) 一种涤纶、腈纶筒子纱的小浴量染色装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14915771

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893138

Country of ref document: EP

Kind code of ref document: A1